FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Phillips, CK
Bell, RE
Berry, LA
Bonoli, PT
Harvey, RW
Hosea, JC
Jaeger, EF
LeBlanc, BP
Ryan, PM
Taylor, G
Valeo, EJ
Wilgen, JB
Wilson, JR
Wright, JC
Yuh, H
AF Phillips, C. K.
Bell, R. E.
Berry, L. A.
Bonoli, P. T.
Harvey, R. W.
Hosea, J. C.
Jaeger, E. F.
LeBlanc, B. P.
Ryan, P. M.
Taylor, G.
Valeo, E. J.
Wilgen, J. B.
Wilson, J. R.
Wright, J. C.
Yuh, H.
CA NSTX Team
TI Spectral effects on fast wave core heating and current drive
SO NUCLEAR FUSION
LA English
DT Article
ID PLASMA INTERACTIONS; NSTX; ANTENNA; HHFW
AB Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L-mode and H-mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit radio frequency (rf) power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of HHFW CD were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations.
C1 [Phillips, C. K.; Bell, R. E.; Hosea, J. C.; LeBlanc, B. P.; Taylor, G.; Valeo, E. J.; Wilson, J. R.] Princeton Univ, PPPL, Princeton, NJ 08540 USA.
[Berry, L. A.; Jaeger, E. F.; Ryan, P. M.; Wilgen, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Bonoli, P. T.; Wright, J. C.] MIT, PSFC, Cambridge, MA 02139 USA.
[Harvey, R. W.] CompX, Del Mar, CA 92014 USA.
[Yuh, H.] Nova Photon, Princeton, NJ 08540 USA.
RP Phillips, CK (reprint author), Princeton Univ, PPPL, Princeton, NJ 08540 USA.
EM ckphillips@pppl.gov
FU USDOE [DE-AC02-76CH03073]
FX This work was supported by USDOE Contract No. DE-AC02-76CH03073.
NR 27
TC 25
Z9 25
U1 0
U2 6
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2009
VL 49
IS 7
AR 075015
DI 10.1088/0029-5515/49/7/075015
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 469ZW
UT WOS:000267942000015
ER
PT J
AU Umansky, MV
Bulmer, RH
Cohen, RH
Rognlien, TD
Ryutov, DD
AF Umansky, M. V.
Bulmer, R. H.
Cohen, R. H.
Rognlien, T. D.
Ryutov, D. D.
TI Analysis of geometric variations in high-power tokamak divertors
SO NUCLEAR FUSION
LA English
DT Article
ID ALCATOR C-MOD; ITER; PLASMAS; PHYSICS
AB Quantitative assessment of the performance of high-power tokamak divertors for a range of geometric variations is conducted using the MHD code Corsica (Crotinger et al 1997 Technical Report LLNL) and edge transport code UEDGE (Rognlien et al 1992 J. Nucl. Mater. 196-198 347). In a multi-parametric study the divertor performance is compared for a high-power tokamak with standard and snowflake (Ryutov 2007 Phys. Plasmas 14 064502) configurations for the same core plasma parameters. Divertor and edge quantities that are varied include x-point flux expansion, shape of target plates, and radiating impurity species and concentrations. For a range of studied cases, in the snowflake the peak heat load on the target plates is significantly reduced compared with the standard divertor due to larger plasma-wetted area and a larger fraction of power radiated in the edge.
C1 [Umansky, M. V.; Bulmer, R. H.; Cohen, R. H.; Rognlien, T. D.; Ryutov, D. D.] LLNL, Livermore, CA 94550 USA.
RP Umansky, MV (reprint author), LLNL, Livermore, CA 94550 USA.
EM umansky1@llnl.gov
FU US Department of Energy [DE-AC52-07NA27344]
FX This work was performed under the auspices of the US Department of
Energy by the Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 29
TC 28
Z9 28
U1 1
U2 5
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD JUL
PY 2009
VL 49
IS 7
AR 075005
DI 10.1088/0029-5515/49/7/075005
PG 8
WC Physics, Fluids & Plasmas
SC Physics
GA 469ZW
UT WOS:000267942000005
ER
PT J
AU Blazey, G
Chakraborty, D
Dyshkant, A
Francis, K
Hedin, D
Hill, J
Lima, G
Powell, J
Salcido, P
Zutshi, V
Demarteau, M
Rubinov, P
Pohlman, N
AF Blazey, G.
Chakraborty, D.
Dyshkant, A.
Francis, K.
Hedin, D.
Hill, J.
Lima, G.
Powell, J.
Salcido, P.
Zutshi, V.
Demarteau, M.
Rubinov, P.
Pohlman, N.
TI Directly coupled tiles as elements of a scintillator calorimeter with
MPPC readout
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Scintillator; Calorimeter; Direct coupling; MPPC; Integrated readout
layer
AB We present results on the direct, i.e. fiberless coupling of scintillator tiles to Multi-pixel Photon Counters (MPPC). The fiberless option has the potential of simplifying the assembly and construction of a finely segmented scintillator-based calorimeter with MPPC readout. In this paper we show detailed studies on the response and uniformity of directly coupled tiles and describe our concept for an integrated readout layer (IRL). (C) 2009 Elsevier B.V. All rights reserved.
C1 [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Francis, K.; Hedin, D.; Hill, J.; Lima, G.; Powell, J.; Salcido, P.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA.
[Demarteau, M.; Rubinov, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Pohlman, N.] No Illinois Univ, Dept Engn, De Kalb, IL USA.
RP Zutshi, V (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL USA.
EM zutshi@fnal.gov
OI Hedin, David/0000-0001-9984-215X; Blazey, Gerald/0000-0002-7435-5758
NR 3
TC 10
Z9 10
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2009
VL 605
IS 3
BP 277
EP 281
DI 10.1016/j.nima.2009.03.253
PG 5
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 476HL
UT WOS:000268430000007
ER
PT J
AU Curioni, A
Fleming, BT
Jaskierny, W
Kendziora, C
Krider, J
Pordes, S
Soderberg, M
Spitz, J
Tope, T
Wongjirad, T
AF Curioni, A.
Fleming, B. T.
Jaskierny, W.
Kendziora, C.
Krider, J.
Pordes, S.
Soderberg, M.
Spitz, J.
Tope, T.
Wongjirad, T.
TI A regenerable filter for liquid argon purification
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Liquid argon; Purity; Neutrino; Oscillation; LArTPC
ID TIME PROJECTION CHAMBER; DETECTOR
AB A filter system for removing electronegative impurities from liquid argon is described. The active components of the filter are adsorbing molecular sieve and activated-copper-coated alumina granules. The system is capable of purifying liquid argon to an oxygen-equivalent impurity concentration of better than 30 parts per trillion, corresponding to an electron drift lifetime of at least 10 ms. Reduction reactions that occur at similar to 250 degrees C allow the filter material to be regenerated in situ through a simple procedure. In the following work we describe the filter design, performance, and regeneration process. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Curioni, A.; Fleming, B. T.; Soderberg, M.; Spitz, J.; Wongjirad, T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Tope, T.] Fermilab Natl Accelerator Lab, Particle Phys Div, Chicago, IL USA.
RP Spitz, J (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA.
EM joshua.spitz@yale.edu
OI Spitz, Joshua/0000-0002-6288-7028
FU Department of Energy; Advanced Detector Research Program; National
Science Foundation
FX The electronics and data-acquisition system for the TPC at FNAL were
designed and built by D. Edmunds and P. Laurens of Michigan State
University. The Yale group acknowledges essential help from N. Canci and
F. Ameodo of LNGS, in the initial work on LAr purification; S. Centro,
S. Ventura, B. Baibussinov and the ICARUS group at INFN Padova, for the
readout electronics, software for DAQ and event display; L. Bartoszek of
Bartoszek Engineering. This work is supported by the Department of
Energy through FNAL and the Advanced Detector Research Program, and
through the National Science Foundation.
NR 16
TC 17
Z9 17
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2009
VL 605
IS 3
BP 306
EP 311
DI 10.1016/j.nima.2009.04.020
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 476HL
UT WOS:000268430000011
ER
PT J
AU Battaglia, M
Contarato, D
Denes, P
Doering, D
Radmilovic, V
AF Battaglia, Marco
Contarato, Devis
Denes, Peter
Doering, Dionisio
Radmilovic, Velimir
TI CMOS pixel sensor response to low energy electrons in transmission
electron microscopy
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Monolithic active pixel sensor; Transmission electron microscopy
ID SIMULATION; ILC
AB This letter presents the results of a study of the response of a test CMOS sensor with a radiation tolerant pixel cell design to 80 and 100 keV electrons. The point spread function is measured to be (13.0 +/- 1.7) gm at 100 keV and (12.1 +/- 1.6) mu m at 80 keV, for 20 mu m pixels. Results agree well with values predicted by a Geant-4 and dedicated charge collection simulation. Published by Elsevier B.V.
C1 [Battaglia, Marco; Contarato, Devis; Denes, Peter; Doering, Dionisio; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Battaglia, Marco] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Battaglia, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM MBattaglia@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX We wish to thank Thomas Duden, Rolf Erni and Zhongoon Lee. This work was
supported by the Director, Office of Science, of the U.S. Department of
Energy under Contract no. DE-AC02-05CH11231.
NR 9
TC 9
Z9 9
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2009
VL 605
IS 3
BP 350
EP 352
DI 10.1016/j.nima.2009.03.249
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 476HL
UT WOS:000268430000017
ER
PT J
AU Hong, J
Allen, B
Grindlay, J
Chammas, N
Barthelemy, S
Baker, R
Gehrels, N
Nelson, KE
Labov, S
Collins, J
Cook, WR
McLean, R
Harrison, F
AF Hong, J.
Allen, B.
Grindlay, J.
Chammas, N.
Barthelemy, S.
Baker, R.
Gehrels, N.
Nelson, K. E.
Labov, S.
Collins, J.
Cook, W. R.
McLean, R.
Harrison, F.
TI Building large area CZT imaging detectors for a wide-field hard X-ray
telescope-ProtoEXIST1
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE X-ray imaging; CZT
AB We have constructed a moderately large area (32 cm(2)), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256 cm(2)) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2 cm x 2 cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512 cm(2)) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5 m(2) area) required in EXIST/HET. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Barthelemy, S.; Baker, R.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Nelson, K. E.; Labov, S.; Collins, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Cook, W. R.; McLean, R.; Harrison, F.] CALTECH, Pasadena, CA 91125 USA.
RP Hong, J (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM jaesub@head.cfa.harvard.edu
RI Gehrels, Neil/D-2971-2012
FU NASA APRA [NNG06WC12G]; US Department of Energy [DE-AC52-07NA27344]
FX This work is supported in part by NASA APRA Grant NNG06WC12G. Portions
of this work were performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 9
TC 18
Z9 21
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2009
VL 605
IS 3
BP 364
EP 373
DI 10.1016/j.nima.2009.04.004
PG 10
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 476HL
UT WOS:000268430000020
ER
PT J
AU Wang, ZH
Morris, CL
Makela, MF
Bacon, JD
Baer, EE
Brockwell, MI
Brooks, BJ
Clark, DJ
Green, JA
Greene, SJ
Hogan, GE
Langan, R
Murray, MM
Pazuchanics, FE
Phelps, MP
Ramsey, JC
Reimus, NP
Roybal, JD
Saltus, A
Saltus, M
Shimada, R
Spaulding, RJ
Wood, JG
Wysocki, FJ
AF Wang, Zhehui
Morris, C. L.
Makela, M. F.
Bacon, J. D.
Baer, E. E.
Brockwell, M. I.
Brooks, B. J.
Clark, D. J.
Green, J. A.
Greene, S. J.
Hogan, G. E.
Langan, R.
Murray, M. M.
Pazuchanics, F. E.
Phelps, M. P.
Ramsey, J. C.
Reimus, N. P.
Roybal, J. D.
Saltus, A.
Saltus, M.
Shimada, R.
Spaulding, R. J.
Wood, J. G.
Wysocki, F. J.
TI Inexpensive and practical sealed drift-tube neutron detector
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Sealed drift tubes; Neutron detection efficiency; Detector lifetime;
Gain drift; Diurnal oscillation
AB The design, construction, and performance of a type of sealed (3)He drift tubes for neutron detection are presented. Because the 3He pressure is in the 25-300 mbar range, the detector costs are not dominated by the (3)He gas. Intrinsic neutron detection efficiencies up to 5% have been observed by using high-density polyethylene moderation. Sensitive measurements of the detector lifetime are achieved by monitoring the full-energy peak of the (3)He(n, p)(3)H reaction as a function of time. The neutron peak position shows a 24-h cycle that may be explained by the physical adsorption of gases onto the wall. The estimated lifetimes of the detectors are sufficiently long and therefore, the design and the construction are robust and practical for applications such as fissile material detection. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Wang, Zhehui; Morris, C. L.; Makela, M. F.; Bacon, J. D.; Baer, E. E.; Brockwell, M. I.; Brooks, B. J.; Clark, D. J.; Green, J. A.; Greene, S. J.; Hogan, G. E.; Langan, R.; Murray, M. M.; Pazuchanics, F. E.; Phelps, M. P.; Ramsey, J. C.; Reimus, N. P.; Roybal, J. D.; Shimada, R.; Spaulding, R. J.; Wood, J. G.; Wysocki, F. J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA.
[Saltus, A.; Saltus, M.] Decis Sci Corp, San Diego, CA 92123 USA.
RP Wang, ZH (reprint author), Los Alamos Natl Lab, Div Phys, Grp P-25 Mail Stop H846, Los Alamos, NM 87544 USA.
EM zwang@lanl.gov
OI Makela, Mark/0000-0003-0592-3683; Morris,
Christopher/0000-0003-2141-0255
FU Defense Threat Reduction Agency (DTRA); Department of Defense and a
CRADA agreement between LANL and Decision Sciences Corp
FX This work has been supported in part by the Defense Threat Reduction
Agency (DTRA) of the Department of Defense and a CRADA agreement between
LANL and Decision Sciences Corp.
NR 9
TC 7
Z9 7
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD JUL 1
PY 2009
VL 605
IS 3
BP 430
EP 432
DI 10.1016/j.nima.2009.03.251
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 476HL
UT WOS:000268430000026
ER
PT J
AU Ferrer, RM
Azmy, YY
AF Ferrer, R. M.
Azmy, Y. Y.
TI Error Analysis of the Nodal Integral Method for Solving the Neutron
Diffusion Equation in Two-Dimensional Cartesian Geometry
SO NUCLEAR SCIENCE AND ENGINEERING
LA English
DT Article
AB An error analysis is performed for the nodal integral method (NIM) applied to the one-speed, steady-state neutron diffusion equation in two-dimensional Cartesian geometry. The geometric configuration of the problem employed in the analysis consists of a homogeneous-material unit square with Dirichlet boundary conditions on all four sides. The NIM equations comprise three sets of equations: (a) one neutron balance equation per computational cell, (b) one current continuity condition per internal x const computational cell edge, and (c) one current continuity condition per internal y = const computational cell edge. A Maximum Principle is proved for the solution of the NIM equations, followed by an error analysis achieved by applying the Maximum Principle to a carefully constructed mesh function driven by the truncation error or residual. The error analysis establishes the convergence of the NIM solution to the exact solution if the latter is twice differentiable. Furthermore, if the exact solution is four times differentiable, the NIM solution error is bounded by an 0(a 2) expression involving bounds on the exact solution's fourth partial derivatives, where a is half the scaled length of a computational cell. Numerical experiments are presented whose results successfully verify the conclusions of the error analysis.
C1 [Ferrer, R. M.; Azmy, Y. Y.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.
RP Ferrer, RM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA.
EM rodolfo.ferrer@inl.gov
NR 14
TC 0
Z9 0
U1 0
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5639
J9 NUCL SCI ENG
JI Nucl. Sci. Eng.
PD JUL
PY 2009
VL 162
IS 3
BP 215
EP 233
PG 19
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 465WX
UT WOS:000267621400001
ER
PT J
AU Rosa, M
Azmy, YY
Morel, JE
AF Rosa, Massimiliano
Azmy, Yousry Y.
Morel, Jim E.
TI Properties of the S-N-Equivalent Integral Transport Operator in Slab
Geometry and the Iterative Acceleration of Neutral Particle Transport
Methods
SO NUCLEAR SCIENCE AND ENGINEERING
LA English
DT Article
ID DIFFUSION-SYNTHETIC ACCELERATION; ASYMPTOTIC SOLUTIONS;
INHOMOGENEOUS-MEDIA; OPTICALLY THICK; REGIMES
AB General expressions for the matrix elements of the discrete S-N-equivalent integral transport operator are derived in slab geometry. Their asymptotic behavior versus cell optical thickness is investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in the thick-cell limit for a highly scattering medium shows that the discretized integral transport operator approaches a tridiagonal matrix possessing a diffusion-like coupling stencil. It is further shown that this structure is approached at a fast exponential rate with increasing cell thickness when the arbitrarily high order transport method of the nodal type and zero-order spatial approximation (AHOT-NO) formalism is employed to effect the spatial discretization of the discrete ordinates transport operator. In the case of periodically heterogeneous slab configurations, the asymptotic behavior is realized by pushing apart the cells' optical thicknesses; i.e., the thick cells are made thicker while the thin cells are made thinner at a prescribed rate. We show that in this limit the discretized integral transport operator is approximated by a pentadiagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tridiagonal structure at a fast exponential rate bearing close resemblance to the diffusive operator.
The results of the asymptotic analysis of the integral transport matrix are then used to gain insight into the excellent convergence properties of the adjacent-cell preconditioner (AP) acceleration scheme. Specifically, the AP operator exactly captures the asymptotic structure acquired by the integral transport matrix in the thick-cell limit for homogeneous slabs of pure-scatterer or partial-scatterer material, and for periodically heterogeneous slabs hosting purely scattering materials. In the above limits the integral transport matrix reduces to a diffusive structure consistent with the diffusive matrix template used to construct the AP. In the case of periodically heterogeneous slabs containing absorbing materials, the AP operator partially captures the asymptotic structure acquired by the integral transport matrix. The inexact agreement is due either to discrepancies in the equations for the boundary cells or to the nondiffusive structure acquired by the integral transport matrix. These findings shed light on the immediate convergence, i.e., convergence in two iterations, displayed by the AP acceleration scheme in the asymptotic limit for slabs hosting purely scattering materials, both in the homogeneous and periodically heterogeneous cases. For periodically heterogeneous slabs containing absorbing materials, immediate convergence is achieved by modifying the original recipe for constructing the AP so that the correct asymptotic structure of the integral transport matrix coincides with the AP operator in the asymptotic limit.
C1 [Rosa, Massimiliano] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Azmy, Yousry Y.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA.
[Morel, Jim E.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
RP Rosa, M (reprint author), Los Alamos Natl Lab, POB 1663,MS K784, Los Alamos, NM 87545 USA.
EM maxrosa@lanl.gov
FU U.S. Government [DE-AC52-06NA25396]
FX This research was performed under U.S. Government contract
DE-AC52-06NA25396 for Los Alamos National Laboratory, which is operated
by Los Alamos National Security, LLC, for the U.S. Department of Energy.
The first author performed this work in partial satisfaction of the
requirements for the PhD degree at The Pennsylvania State University.
NR 20
TC 2
Z9 2
U1 1
U2 2
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5639
J9 NUCL SCI ENG
JI Nucl. Sci. Eng.
PD JUL
PY 2009
VL 162
IS 3
BP 234
EP 252
PG 19
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 465WX
UT WOS:000267621400002
ER
PT J
AU Sanchez, R
Bounds, J
Hayes, D
Grove, T
Tovesson, F
AF Sanchez, Rene
Bounds, John
Hayes, David
Grove, Travis
Tovesson, Fredrik
TI Measurement of the Thermal Absorption Cross Section in Lucite Using
Fermi Age Theory
SO NUCLEAR SCIENCE AND ENGINEERING
LA English
DT Article
AB The diffusion processes of neutrons in Lucite have been investigated. The mechanisms for these processes have been described as having two steps. In the first step, the fast neutrons collide with the nuclei of Lucite, losing energy until they reach thermal energies. In the second step of the diffusion process, the thermal neutrons continue to diffuse through the Lucite without any significant loss of energy until they are finally absorbed or leak out of the system. Experiments were performed to study these two processes and to estimate the absorption cross section in Lucite. The experiments yielded an average range of 63 +/- 0.1 cm for fast neutrons slowing down to thermal energies and a thermal absorption cross section in Lucite of 0.52 +/- 0.02 b.
C1 [Sanchez, Rene; Bounds, John; Hayes, David; Grove, Travis; Tovesson, Fredrik] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Sanchez, R (reprint author), Los Alamos Natl Lab, MS-B228, Los Alamos, NM 87545 USA.
EM rsanchez@lanl.gov
NR 8
TC 0
Z9 0
U1 0
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5639
J9 NUCL SCI ENG
JI Nucl. Sci. Eng.
PD JUL
PY 2009
VL 162
IS 3
BP 253
EP 260
PG 8
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 465WX
UT WOS:000267621400003
ER
PT J
AU Brown, NR
Oh, S
Revankar, ST
Vierow, K
Rodriguez, S
Cole, R
Gauntt, R
AF Brown, Nicholas R.
Oh, Seungmin
Revankar, Shripad T.
Vierow, Karen
Rodriguez, Salvador
Cole, Randall, Jr.
Gauntt, Randall
TI SIMULATION OF SULFUR-IODINE THERMOCHEMICAL HYDROGEN PRODUCTION PLANT
COUPLED TO HIGH-TEMPERATURE HEAT SOURCE
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics
CY OCT 04, 2007
CL Pittsburgh, PA
SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div
DE thermochemical hydrogen generation; sulfur-iodine cycle; HTGR
ID CYCLE
AB The sulfur-iodine (SI) cycle is one of the leading candidates in thermochemical processes for hydrogen production. In this paper a simplified model for the SI cycle is developed with chemical kinetics models of the three main SI reactions: the Bunsen reaction, sulfuric acid decomposition, and hydriodic acid decomposition. Each reaction was modeled with a single control volume reaction chamber. The simplified model uses basic heat and mass balance for each of the main three reactions. For sulfuric acid decomposition and hydriodic acid decomposition, reaction heat, latent heat, and sensible heat were considered Since the Bunsen reaction is exothermic and its overall energy contribution is small, its heat energy is neglected. However, the input and output streams from the Bunsen reaction are accounted for in balancing the total stream mass flow rates from the SI cycle. The heat transfer between the reactor coolant (in this case helium) and the chemical reaction chamber was modeled with transient energy balance equations. The steady-state and transient behavior of the coupled system is studied with the model, and the results of the study are presented. It was determined from the study that the hydriodic acid decomposition step is the rate-limiting step of the entire SI cycle.
C1 [Brown, Nicholas R.; Oh, Seungmin; Revankar, Shripad T.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA.
[Vierow, Karen] Texas A&M Univ, Dept Nucl Engn, Zachry Engn Ctr 129, College Stn, TX 77843 USA.
[Rodriguez, Salvador; Cole, Randall, Jr.; Gauntt, Randall] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Revankar, ST (reprint author), Purdue Univ, Sch Nucl Engn, 400 Cent Dr, W Lafayette, IN 47907 USA.
EM shripad@ecn.purdue.edu
NR 10
TC 5
Z9 5
U1 0
U2 6
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
J9 NUCL TECHNOL
JI Nucl. Technol.
PD JUL
PY 2009
VL 167
IS 1
BP 95
EP 106
PG 12
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 463CN
UT WOS:000267406300010
ER
PT J
AU Oh, CH
Park, GC
Davis, C
AF Oh, Chang H.
Park, Goon C.
Davis, Cliff
TI RCCS EXPERIMENTS AND VALIDATION FOR HIGH-TEMPERATURE GAS-COOLED REACTOR
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics
CY OCT 04, 2007
CL Pittsburgh, PA
SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div
DE experiment; reactor cavity cooling for HTGR; validation
AB An air-cooled helical coil reactor cavity cooling system (RCCS) unit immersed in the water pool was proposed to overcome the disadvantages of the weak cooling ability of an air-cooled RCCS and the complex structure of a water-cooled RCCS for the high-temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool-type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool, and the forced convection of air in the cooling pipe.
The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RE-LAP5 code was validated using measured temperatures from the reactor vessel and cavity walls.
C1 [Oh, Chang H.; Davis, Cliff] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Park, Goon C.] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea.
RP Oh, CH (reprint author), Idaho Natl Lab, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA.
EM Chang.Oh@inl.gov
NR 17
TC 0
Z9 0
U1 1
U2 2
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
J9 NUCL TECHNOL
JI Nucl. Technol.
PD JUL
PY 2009
VL 167
IS 1
BP 107
EP 117
PG 11
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 463CN
UT WOS:000267406300011
ER
PT J
AU Rempe, JL
Knudson, DL
Condie, KG
Crepeau, JC
Daw, JE
Wilkins, SC
AF Rempe, Joy L.
Knudson, Darrell L.
Condie, Keith G.
Crepeau, John C.
Daw, Joshua E.
Wilkins, S. Curtis
TI OPTIONS EXTENDING THE APPLICABILITY OF HIGH-TEMPERATURE
IRRADIATION-RESISTANT THERMOCOUPLES
SO NUCLEAR TECHNOLOGY
LA English
DT Article; Proceedings Paper
CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics
CY OCT 04, 2007
CL Pittsburgh, PA
SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div
DE in-pile instrumentation; high-temperature thermocouples
AB Several options have been identified that could further enhance the reliability and extend the applicability of high-temperature irradiation-resistant thermocouples (HTIR-TCs) developed by the Idaho National Laboratory (INL) for in-pile testing, allowing their use in temperature applications as high as 1800 degrees C. The INL and the University of Idaho (UI) investigated these options with the ultimate objective of providing recommendations for alternate thermocouple designs that are optimized for various applications. This paper reports results from INL/UI investigations. Results are reported from tests completed to evaluate the ductility, resolution, transient response, and stability of thermocouples made from specially formulated alloys of molybdenum and niobium, not considered in initial HTIR-TC development. In addition, this paper reports insights gained by comparing the performance of HTIR-TCs fabricated with various heat treatments and alternate geometries.
C1 [Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Crepeau, John C.; Daw, Joshua E.] Univ Idaho, Idaho Falls, ID 83402 USA.
RP Rempe, JL (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA.
EM Joy.Rempe@inl.gov
OI Rempe, Joy/0000-0001-5527-3549
NR 9
TC 6
Z9 6
U1 1
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
J9 NUCL TECHNOL
JI Nucl. Technol.
PD JUL
PY 2009
VL 167
IS 1
BP 169
EP 177
PG 9
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 463CN
UT WOS:000267406300016
ER
PT J
AU Schultz, AK
Zhang, M
Bulla, I
Leitner, T
Korber, B
Morgenstern, B
Stanke, M
AF Schultz, Anne-Kathrin
Zhang, Ming
Bulla, Ingo
Leitner, Thomas
Korber, Bette
Morgenstern, Burkhard
Stanke, Mario
TI jpHMM: Improving the reliability of recombination prediction in HIV-1
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID MULTIPLE ALIGNMENTS; SEQUENCES; GENOMES; TOPALI; VIRUS
AB Previously, we developed jumping profile hidden Markov model (jpHMM), a new method to detect recombinations in HIV-1 genomes. The jpHMM predicts recombination breakpoints in a query sequence and assigns to each position of the sequence one of the major HIV-1 subtypes. Since incorrect subtype assignment or recombination prediction may lead to wrong conclusions in epidemiological or vaccine research, information about the reliability of the predicted parental subtypes and breakpoint positions is valuable. For this reason, we extended the output of jpHMM to include such information in terms of 'uncertainty' regions in the recombination prediction and an interval estimate of the breakpoint. Both types of information are computed based on the posterior probabilities of the subtypes at each query sequence position. Our results show that this extension strongly improves the reliability of the jpHMM recombination prediction. The jpHMM is available online at http://jphmm.gobics.de/.
C1 [Schultz, Anne-Kathrin; Bulla, Ingo; Morgenstern, Burkhard; Stanke, Mario] Univ Gottingen, Abt Bioinformat, Inst Mikrobiol & Genet, D-37077 Gottingen, Germany.
[Zhang, Ming; Leitner, Thomas; Korber, Bette] Los Alamos Natl Lab, T6, Los Alamos, NM 87545 USA.
[Zhang, Ming] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA.
RP Stanke, M (reprint author), Univ Gottingen, Abt Bioinformat, Inst Mikrobiol & Genet, Goldschmidtstr 1, D-37077 Gottingen, Germany.
EM mstanke@gwdg.de
RI Morgenstern, Burkhard/A-7486-2008;
OI Korber, Bette/0000-0002-2026-5757; Schultz,
Anne-Kathrin/0000-0002-0963-4275
FU DFG [STA 1009/4-1, STA 1009/5-1]; NIHDOE Interagency Agreement
[Y1-AI-8309]
FX DFG (grants STA 1009/4-1 and STA 1009/5-1); NIHDOE Interagency Agreement
Y1-AI-8309. Funding for open access charge: Deptartment of
Bioinformatics, Georg-August-Universitat Gottingen.
NR 15
TC 49
Z9 49
U1 0
U2 8
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD JUL 1
PY 2009
VL 37
BP W647
EP W651
DI 10.1093/nar/gkp371
PG 5
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 469IG
UT WOS:000267889100111
PM 19443440
ER
PT J
AU Baboulin, M
Dongarra, J
Gratton, S
Langou, J
AF Baboulin, Marc
Dongarra, Jack
Gratton, Serge
Langou, Julien
TI Computing the conditioning of the components of a linear least-squares
solution
SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
LA English
DT Article
DE linear least squares; statistical linear least squares; parameter
estimation; condition number; variance-covariance matrix; LAPACK;
ScaLAPACK
AB In this paper, we address the accuracy of the results for the overdetermined full rank linear least-squares problem. We recall theoretical results obtained in (SIAM J Matrix Anal. Appl. 2007; 29(2):413-433) on conditioning of the least-squares solution and the components of the solution when the matrix perturbations are measured in Frobenius or spectral norms. Then we define computable estimates for these condition numbers and we interpret them in terms of statistical quantities when the regression matrix and the right-hand side are perturbed. In particular, we show that in the classical linear statistical model, the ratio of the variance of one component of the solution by the variance of the fight-hand side is exactly the condition number of this solution component when only perturbations on the right-hand side are considered. We explain how to compute the variance-covariance matrix and the least-squares conditioning using the libraries LAPACK (LAPACK Users' Guide (3rd edn). SIAM: Philadelphia, 1999) and ScaLAPACK (ScaLAPACK Users' Guide. SIAM: Philadelphia, 1997) and we give the corresponding computational cost. Finally we present a small historical numerical example that was used by Laplace (Theorie Analytique des Probabilites. Mme Ve Courcier, 1820; 497-530) for computing the mass of Jupiter and a physical application if the area of space geodesy. Copyright (C) 2008 John Wiley & Sons, Ltd.
C1 [Baboulin, Marc] Univ Coimbra, Dept Math, Coimbra, Portugal.
[Baboulin, Marc; Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN USA.
[Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Dongarra, Jack] Univ Manchester, Manchester, Lancs, England.
[Gratton, Serge] Ctr Natl Etud Spatiales, F-31055 Toulouse, France.
[Gratton, Serge] CERFACS, F-31057 Toulouse, France.
[Langou, Julien] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80202 USA.
RP Baboulin, M (reprint author), Univ Coimbra, Dept Math, Coimbra, Portugal.
EM baboulin@mat.uc.pt
RI Langou, Julien/G-5788-2013; Dongarra, Jack/E-3987-2014
NR 24
TC 11
Z9 12
U1 0
U2 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 1070-5325
J9 NUMER LINEAR ALGEBR
JI Numer. Linear Algebr. Appl.
PD JUL
PY 2009
VL 16
IS 7
BP 517
EP 533
DI 10.1002/nla.627
PG 17
WC Mathematics, Applied; Mathematics
SC Mathematics
GA 470EY
UT WOS:000267959200001
ER
PT J
AU Iannelli, M
Kostova, T
Milner, FA
AF Iannelli, Mimmo
Kostova, Tanya
Milner, Fabio Augusto
TI A Fourth-Order Method for Numerical Integration of Age- and
Size-Structured Population Models
SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
LA English
DT Article
DE finite differences; quadratures; size-structured equations
ID APPROXIMATION; EQUATIONS
AB In many applications of age- and size-structured Population models, there is an interest in obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Because quadratures can be designed with any order of accuracy, one can obtain numerical approximations of the solutions with very fast convergence. In this article, we present a general framework and a specific example of a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population model. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 918-930, 2009
C1 [Milner, Fabio Augusto] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA.
[Kostova, Tanya] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Iannelli, Mimmo] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy.
RP Milner, FA (reprint author), Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA.
EM milner@purdue.edu
FU National Science Foundation [DMS-0314575]
FX Contract grant sponsor: National Science Foundation; contract grant
number: DMS-0314575
NR 15
TC 10
Z9 10
U1 0
U2 3
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0749-159X
J9 NUMER METH PART D E
JI Numer. Meth. Part Differ. Equ.
PD JUL
PY 2009
VL 25
IS 4
BP 918
EP 930
DI 10.1002/num.20381
PG 13
WC Mathematics, Applied
SC Mathematics
GA 458XY
UT WOS:000267064100010
ER
PT J
AU Williams, PT
Hoffman, KM
AF Williams, Paul T.
Hoffman, Kathryn M.
TI Optimal Body Weight for the Prevention of Coronary Heart Disease in
Normal-weight Physically Active Men
SO OBESITY
LA English
DT Article
ID MIDDLE-AGED MEN; MASS INDEX; FOLLOW-UP; CARDIOVASCULAR-DISEASE;
RISK-FACTORS; MORTALITY; OBESITY; WOMEN; ADIPOSITY; RUNNERS
AB Although 36% of US men are normal weight (BMI <25 kg/m(2)), the health benefits of greater leanness in normal-weight individuals are seldom acknowledged. To assess the optimal body weight with respect to minimizing coronary heart disease (CHD) risk, we applied Cox proportional hazard analyses of 20,525 nonsmoking, nondiabetic, normal-weight men followed prospectively for 7.7 years, including 20,301 who provided follow-up questionnaires. Two-hundred and forty two men reported coronary artery bypass graph (CABG) or percutaneous transluminal coronary angioplasty (PTCA) and 82 reported physician-diagnosed incident myocardial infarction (267 total). The National Death Index identified 40 additional ischemic heart disease deaths. In these normal-weight men, each kg/m(2) decrement in baseline BMI was associated with 11.2% lower risk for total CHD (P = 0.005), 13.2% lower risk for nonfatal CHD (P = 0.002), 19.0% lower risk for nonfatal myocardial infarction (P = 0.01), and 12.2% lower risk for PTCA or CABG (P = 0.007). Compared to men with BMI between 22.5 and 25 kg/m(2), those < 22.5 kg/m(2) had 24.1% lower total CHD risk (P = 0.01), 27.9% lower nonfatal CHD risk (P = 0.01), 37.8% lower nonfatal myocardial infarction risk (P = 0.05), and 27.8% lower PTCA or CABG risk (P = 0.02). In nonabdominally obese men (waist circumference < 102 cm), CHD risk declined linearly with declining waist circumference. CHD risk was unrelated to change in waist circumference between 18 years old and baseline except as it contributed to baseline circumference. These results suggest that the optimal BMI for minimizing CHD risk lies somewhere < 22.5 kg/m(2), as suggested from our previous analyses of incident diabetes, hypertension, and hypercholesterolemia in these men.
C1 [Williams, Paul T.; Hoffman, Kathryn M.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA USA.
RP Williams, PT (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA USA.
EM ptwilliams@lbl.gov
FU National Heart Lung and Blood Institute [HL45652, HL072110]; National
Institute of Diabetes and Digestive and Kidney Diseases; Institute of
Aging [AG032004]; Department of Energy [DE-AC0376SF00098]
FX This work was supported in part by grants HL45652 and HL072110 from the
National Heart Lung and Blood Institute, DK066738 from the National
Institute of Diabetes and Digestive and Kidney Diseases, and AG032004
from the Institute of Aging, and was conducted at the Ernest Orlando
Lawrence Berkeley National Laboratory (Department of Energy
DE-AC0376SF00098 to the University of California).
NR 39
TC 8
Z9 8
U1 2
U2 4
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1930-7381
J9 OBESITY
JI Obesity
PD JUL
PY 2009
VL 17
IS 7
BP 1428
EP 1434
DI 10.1038/oby.2008.680
PG 7
WC Endocrinology & Metabolism; Nutrition & Dietetics
SC Endocrinology & Metabolism; Nutrition & Dietetics
GA 464CY
UT WOS:000267483800022
PM 19553927
ER
PT J
AU Meyers, CA
Schulz, AS
AF Meyers, Carol A.
Schulz, Andreas S.
TI Integer equal flows
SO OPERATIONS RESEARCH LETTERS
LA English
DT Article
DE Network optimization; Equal flows; Computational complexity;
Approximability
ID NETWORK; ALGORITHMS
AB The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R-1,R-..., R-l must carry equal flow. We show that this problem is effectively inapproximable, even if the cardinality of each set R-k is two. When e is fixed, it is solvable in polynomial time. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Meyers, Carol A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Schulz, Andreas S.] MIT, Cambridge, MA 02139 USA.
RP Meyers, CA (reprint author), Lawrence Livermore Natl Lab, L-153,7000 East Ave, Livermore, CA 94550 USA.
EM meyers14@llnl.gov; schulz@mit.edu
FU LLNL [DE-AC52-07NA27344]; ONR [N00014-01208-1-0029]; [LLNL-JRNL-410584]
FX The authors wish to thank Jim Orlin for several helpful discussions,
including an observation that led to a strengthening of Theorem 3.2. The
work of the first author was supported by LLNL under Contract
DE-AC52-07NA27344; document number LLNL-JRNL-410584. The work of the
second author was supported by ONR Grant N00014-01208-1-0029.
NR 19
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-6377
EI 1872-7468
J9 OPER RES LETT
JI Oper. Res. Lett.
PD JUL
PY 2009
VL 37
IS 4
BP 245
EP 249
DI 10.1016/j.orl.2009.03.006
PG 5
WC Operations Research & Management Science
SC Operations Research & Management Science
GA 476HX
UT WOS:000268431300004
ER
PT J
AU Lane, TW
Pawate, A
Lane, PD
Lindquist, EA
Kirton, ES
Simmons, BA
AF Lane, T. W.
Pawate, A.
Lane, P. D.
Lindquist, E. A.
Kirton, E. S.
Simmons, B. A.
TI DIGITAL TRANSCRIPTOMIC ANALYSIS OF SILICATE STARVATION INDUCED
TRIACYLGLYCEROL FORMATION IN THE MARINE DIATOM THALASSIOSIRA PSEUDONANA.
SO PHYCOLOGIA
LA English
DT Meeting Abstract
C1 [Lane, T. W.; Pawate, A.; Lane, P. D.; Simmons, B. A.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Lindquist, E. A.; Kirton, E. S.] Joint Genome Inst, Walnut Creek, CA 94598 USA.
EM twlane@sandia.gov
RI Pawate, Ashtamurthy/B-6843-2008
OI Pawate, Ashtamurthy/0000-0002-0700-9871
NR 0
TC 0
Z9 0
U1 1
U2 3
PU INT PHYCOLOGICAL SOC
PI LAWRENCE
PA NEW BUSINESS OFFICE, PO BOX 1897, LAWRENCE, KS 66044-8897 USA
SN 0031-8884
J9 PHYCOLOGIA
JI Phycologia
PD JUL
PY 2009
VL 48
IS 4
MA 203
BP 71
EP 71
PG 1
WC Plant Sciences; Marine & Freshwater Biology
SC Plant Sciences; Marine & Freshwater Biology
GA 472JN
UT WOS:000268126900204
ER
PT J
AU Wesolowski, DE
Patta, YR
Cima, MJ
AF Wesolowski, D. E.
Patta, Y. R.
Cima, M. J.
TI Conversion behavior comparison of TFA-MOD and non-fluorine
solution-deposited YBCO films
SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS
LA English
DT Article
DE High temperature superconductors; Densification; Coated conductors;
Non-fluorine solution deposition
ID DIPPING-PYROLYSIS PROCESS; SOL-GEL APPROACH; THIN-FILMS; METALORGANIC
DEPOSITION; COATED CONDUCTORS; TRIFLUOROACETATE PRECURSORS; YBA2CU3O7-X
FILMS; OXIDE-FILMS; KINETICS; GROWTH
AB The densification behavior during conversion of YBa2Cu3O7-x (YBCO) films formed by the trifluoroacetate (TFA)-based metal-organic deposition (MOD) technique was compared to a non-fluorine oxycarbonatebased MOD process and nitrate-based polymer-assisted deposition (PAD). The critical current densities obtained in all processes exceeded 10(6) A/cm(2) in films at least 300 nm thick. Rapid densification of films was observed in all processes, beginning at 700 degrees C in the TFA and PAD processes and 650 degrees C in the oxycarbonate process. YBCO nucleation occurred shortly after densification began in all processes. Residual carbon measurements were performed using wavelength dispersive spectroscopy (WDS). Carbon persisted in films from all processes until after densification began, but it was reduced to background levels soon after YBCO nucleation. Film density and second phase morphology were controlled through adjustments to the ambient oxygen partial pressure. Morphological evidence of extensive transient liquid phase formation was observed in PAD films and is consistent with the densification and nucleation behavior. The common behavior between the PAD, oxycarbonate-MOD, and TFA-MOD processes suggests that a melt forms in all systems, but the extent of this melt varies. (c) 2009 Elsevier B.V. All rights reserved.
C1 [Patta, Y. R.; Cima, M. J.] MIT, Cambridge, MA 02139 USA.
[Wesolowski, D. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Patta, YR (reprint author), MIT, 77 Massachusetts Ave 12-011, Cambridge, MA 02139 USA.
EM ypatta@mit.edu
FU National Science Foundation [DMR 02-13282]
FX This work made use of the Shared Experimental Facilities supported by
the MRSEC Program of the National Science Foundation under award number
DMR 02-13282. Special thanks to Nilanjan Chatterjee for the use of the
Electron Microprobe Facility at MIT. This work was funded by Sumitomo
Electric Industries.
NR 37
TC 13
Z9 13
U1 1
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4534
EI 1873-2143
J9 PHYSICA C
JI Physica C
PD JUL 1
PY 2009
VL 469
IS 13
BP 766
EP 773
DI 10.1016/j.physc.2009.04.008
PG 8
WC Physics, Applied
SC Physics
GA 463DC
UT WOS:000267408100018
ER
PT J
AU Lee, SY
Teodorescu, R
Wiegmann, P
AF Lee, S. -Y.
Teodorescu, R.
Wiegmann, P.
TI Shocks and finite-time singularities in Hele-Shaw flow
SO PHYSICA D-NONLINEAR PHENOMENA
LA English
DT Article
DE Singular dynamics; Hydrodynamic instabilities; Stochastic growth
ID INTERFACE DYNAMICS; PATTERN-FORMATION; LAPLACIAN GROWTH; BOUNDARY;
SURFACE; FLUID
AB Hele-Shaw flow at vanishing surface tension is ill-defined. in finite time, the flow develops cusp-like singularities. We show that this ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating into the Viscous fluid. The graph of shocks grows and branches. Velocity and pressure have finite discontinuities across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive weak solution in algebro-geometrical terms as an evolution of the Krichever-Boutroux complex curve. We study in detail the most generic (2, 3)-cusp singularity, which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions. Published by Elsevier B.V.
C1 [Teodorescu, R.] Los Alamos Natl Lab, Ctr Nonlinear Studies & T4, Los Alamos, NM 87545 USA.
[Lee, S. -Y.] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada.
[Wiegmann, P.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
[Wiegmann, P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
RP Teodorescu, R (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies & T4, Los Alamos, NM 87545 USA.
EM razvan@lanl.gov
NR 46
TC 8
Z9 8
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2789
J9 PHYSICA D
JI Physica D
PD JUL 1
PY 2009
VL 238
IS 14
BP 1113
EP 1128
DI 10.1016/j.physd.2009.03.016
PG 16
WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical
SC Mathematics; Physics
GA 465JS
UT WOS:000267580200002
ER
PT J
AU Holmstrom, E
Bock, N
Brannlund, J
AF Holmstrom, Erik
Bock, Nicolas
Brannlund, Johan
TI Modularity density of network community divisions
SO PHYSICA D-NONLINEAR PHENOMENA
LA English
DT Article
DE Modularity; Modularity density; Network clusters; Network communities
ID FINDING COMMUNITIES
AB The problem of dividing a network into communities is extremely complex and grows very rapidly with the number of nodes and edges that are involved. In order to develop good algorithms to identify optimal community divisions it is extremely beneficial to identify properties that are similar for most networks. We introduce the concept of modularity density, the distribution of modularity Values as a function of the number of communities, and find strong indications that the general features of this modularity density are quite similar for different networks. The region of high modularity generally has very low probability density and Occurs where the number of communities is small. The properties and shape of the modularity density may give valuable information and aid in the search for efficient algorithms to find community divisions with high modularities. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Holmstrom, Erik] Univ Austral Chile, Inst Fis, Valdivia, Chile.
[Holmstrom, Erik; Bock, Nicolas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Brannlund, Johan] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada.
RP Holmstrom, E (reprint author), Univ Austral Chile, Inst Fis, Valdivia, Chile.
EM erikh@lanl.gov
RI Holmstrom, Erik/A-5308-2009
OI Holmstrom, Erik/0000-0002-1198-3861
NR 20
TC 3
Z9 3
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2789
EI 1872-8022
J9 PHYSICA D
JI Physica D
PD JUL 1
PY 2009
VL 238
IS 14
BP 1161
EP 1167
DI 10.1016/j.physd.2009.03.015
PG 7
WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical
SC Mathematics; Physics
GA 465JS
UT WOS:000267580200006
ER
PT J
AU Liu, H
Liu, YM
Li, T
Wang, SM
Zhu, SN
Zhang, X
AF Liu, H.
Liu, Y. M.
Li, T.
Wang, S. M.
Zhu, S. N.
Zhang, X.
TI Coupled magnetic plasmons in metamaterials
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article
ID SPLIT-RING RESONATORS; NEGATIVE REFRACTIVE-INDEX; MAGNETOINDUCTIVE
WAVES; 2ND-HARMONIC GENERATION; DIFFRACTION LIMIT; HYBRIDIZATION;
NANOPARTICLES; FREQUENCIES; DIMENSIONS; NANOWIRES
AB Magnetic metamaterials consist of magnetic resonators smaller in size than their excitation wavelengths. Their unique electromagnetic properties were characterized by the effective media theory at the early stage. However, the effective media model does not take into account the interactions between magnetic elements; thus, the effective properties of bulk metamaterials are the result of the "averaged effect" of many uncoupled resonators. In recent years, it has been shown that the interaction between magnetic resonators could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of recent developments in magnetic plasmonics arising from the coupling effect in metamaterials. For the system composed of several identical magnetic resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a system comprising an infinite number of magnetic elements, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable magnetic metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Liu, H.; Li, T.; Wang, S. M.; Zhu, S. N.] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
[Liu, Y. M.; Zhang, X.] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.
[Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Liu, H (reprint author), Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
EM liuhui@nju.edu.cn
RI Wang, Shih-Yuan/C-3889-2009; Liu, Yongmin/F-5322-2010; Zhang,
Xiang/F-6905-2011
OI Wang, Shih-Yuan/0000-0002-1212-3484;
FU National Natural Science Foundation of China [10604029, 10704036,
10874081]; National Key Projects for Basic Researches of China
[2009CB930501, 2006CB921804, 2004CB619003]
FX This work is supported by the National Natural Science Foundation of
China (No. 10604029, No. 10704036 and No. 10874081), and by the National
Key Projects for Basic Researches of China (No. 2009CB930501, No.
2006CB921804 and No. 2004CB619003).
NR 81
TC 62
Z9 66
U1 1
U2 37
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0370-1972
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD JUL
PY 2009
VL 246
IS 7
BP 1397
EP 1406
DI 10.1002/pssb.200844414
PG 10
WC Physics, Condensed Matter
SC Physics
GA 479KV
UT WOS:000268659100001
ER
PT J
AU Ruhl, E
Hitchcock, AP
Bozek, JD
Tyliszczak, T
Kilcoyne, ALD
McIlroy, DN
Knop-Gericke, A
Dowben, PA
AF Ruehl, E.
Hitchcock, A. P.
Bozek, J. D.
Tyliszczak, T.
Kilcoyne, A. L. D.
McIlroy, D. N.
Knop-Gericke, A.
Dowben, P. A.
TI Fission processes following core level excitation in
closo-1,2-orthocarborane
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; RICH NEUTRON DETECTORS; BORON-CARBIDE DIODE;
COULOMB EXPLOSION; DOUBLE PHOTOIONIZATION; SYNCHROTRON-RADIATION;
HETEROJUNCTION DIODES; IONIC FRAGMENTATION; CHARGE SEPARATION;
MASS-SPECTROMETRY
AB Time-of-flight mass analysis with multi-stop coincidence detection was used to study the multi-cation ionic fragmentation of the closo carborane cage molecule closo-1,2-orthocarborane (C(2)B(10)H(12)) following inner-shell excitation in or above the B Is regime. Electron ion coincidence spectra reveal the cationic products which are formed after core level excitation. Distinct changes in fragmentation pattern are observed as a function of excitation energy. Photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy was used to study the dominant fission routes in the core level excitation regime. Series of ion pairs are identified, where asymmetric fission dominates, leading to ion pairs of different mass. Suitable fission and fragmentation mechanisms are discussed. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Ruehl, E.] Free Univ Berlin, D-14195 Berlin, Germany.
[Hitchcock, A. P.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
[Bozek, J. D.] LCLS Project, Menlo Pk, CA 94025 USA.
[Tyliszczak, T.; Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 91420 USA.
[McIlroy, D. N.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA.
[Knop-Gericke, A.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany.
[Dowben, P. A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA.
[Dowben, P. A.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
RP Ruhl, E (reprint author), Free Univ Berlin, Takustr 3, D-14195 Berlin, Germany.
EM ruehl@chemie.fu-berlin.de
RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; Kilcoyne,
David/I-1465-2013
OI Bozek, John/0000-0001-7486-7238;
FU Natural Sciences and Engineering Research Council of Canada; National
Science Foundation [CHE-0415421, CHE-0650453]; Deutsche
Forschungsgemeinschaft [RU 420/8-1]; Fonds der Chemischen Industrie;
DoE; BESSY
FX This work was financially supported by the Natural Sciences and
Engineering Research Council of Canada, the National Science Foundation
through grant CHE-0415421 and CHE-0650453, the Deutsche
Forschungsgemeinschaft through grant RU 420/8-1, and the Fonds der
Chemischen Industrie. We thank the staff of the Advanced Light Source
(funded by DoE) and BESSY for their assistance. We thank Dr. Walter
Braun (BESSY and Helmholtz-Centre Berlin for Materials and Energy) for
his continuous encouragement and support of our work during the last
decades.
NR 67
TC 3
Z9 3
U1 1
U2 6
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0370-1972
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD JUL
PY 2009
VL 246
IS 7
BP 1496
EP 1503
DI 10.1002/pssb.200945126
PG 8
WC Physics, Condensed Matter
SC Physics
GA 479KV
UT WOS:000268659100013
ER
PT J
AU Kurzweil, Y
Head-Gordon, M
AF Kurzweil, Yair
Head-Gordon, Martin
TI Improving approximate-optimized effective potentials by imposing exact
conditions: Theory and applications to electronic statics and dynamics
SO PHYSICAL REVIEW A
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR CHAINS; SPECTROSCOPY; SYSTEMS
AB We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force.
C1 [Kurzweil, Yair] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Kurzweil, Y (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
NR 39
TC 5
Z9 5
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
EI 1094-1622
J9 PHYS REV A
JI Phys. Rev. A
PD JUL
PY 2009
VL 80
IS 1
AR 012509
DI 10.1103/PhysRevA.80.012509
PG 12
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 478VP
UT WOS:000268616900087
ER
PT J
AU Rica, S
Roberts, DC
AF Rica, Sergio
Roberts, David C.
TI Induced interaction and crystallization of self-localized impurity
fields in a Bose-Einstein condensate
SO PHYSICAL REVIEW A
LA English
DT Article
ID SUPERFLUID; TEMPERATURE; MIXTURES; CRYSTALS; BOSONS; SYSTEM
AB We model the behavior of N classical impurity fields immersed in a larger Bose-Einstein condensate by N + 1 coupled nonlinear Schrodinger equations in one, two, and three space dimensions. We discuss the stability of the uniform miscible system and show the importance of surface tension for self-localization of the impurity fields. We derive analytically the attractive tail of the impurity-impurity interaction due to mediation by the underlying condensate. Assuming all impurity fields interact with the same strength, we explore numerically the resulting phase diagram, which contains four phases: (I) all fields are miscible; (II) the impurity fields are miscible with each other but phase separate from the condensate as a single bubble; (III) the localized impurity fields stay miscible with the condensate, but not with each other; and (IV) the impurity fields phase separate from the condensate and each other, forming a crystalline structure within a bubble. Thus, we show that a crystal can be constructed solely from superfluid components. Finally, we argue that the crystalline phases maintain their superfluid behavior, i.e., they possess a nonclassical rotational inertia, which - combined with lattice order-is a characteristic of supersolidity.
C1 [Rica, Sergio] Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, UPMC Paris 06,CNRS, F-75005 Paris, France.
[Rica, Sergio] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile.
[Roberts, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Roberts, David C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
RP Rica, S (reprint author), Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, UPMC Paris 06,CNRS, 24 Rue Lhomond, F-75005 Paris, France.
RI Rica, Sergio/G-9865-2011
FU Agence Nationale de la Recherche [ANR-08-SYSC-004]
FX S. R. would like to thank the Center of Nonlinear Studies at Los Alamos
National Laboratory for their hospitality where part of this work was
done, and the Agence Nationale de la Recherche under Grant No.
ANR-08-SYSC-004 (France). Similarly, D.C.R. is grateful to the
Universidad de Chile and the Ecole Normale Superieure for facilitating
collaboration on this work through their hospitality.
NR 28
TC 1
Z9 1
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
EI 1094-1622
J9 PHYS REV A
JI Phys. Rev. A
PD JUL
PY 2009
VL 80
IS 1
AR 013609
DI 10.1103/PhysRevA.80.013609
PG 13
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 478VP
UT WOS:000268616900142
ER
PT J
AU Rohringer, N
London, R
AF Rohringer, Nina
London, Richard
TI Atomic inner-shell x-ray laser pumped by an x-ray free-electron laser
SO PHYSICAL REVIEW A
LA English
DT Article
ID RADIATION; COHERENT
AB We discuss possibilities of pumping an atomic inner-shell x-ray laser with an x-ray free-electron laser (XFEL). Self-consistent gain calculations show that with the first available XFEL, the Linac Coherent Light Source at Stanford, it will become possible to produce subfemtosecond x-ray pulses at intensities reaching 6 X 10(16) W/cm(2). Small-signal gain calculations indicate that saturation of more than one lasing line is possible, resulting in temporally separated femtosecond x-ray pulses of different wavelengths. The presented lasing scheme creates broad capability for advancing the field of high-intensity ultrashort x-ray physics.
C1 [Rohringer, Nina; London, Richard] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Rohringer, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RI Rohringer, Nina/B-8030-2012; Rohringer, Nina/N-3238-2014
OI Rohringer, Nina/0000-0001-7905-3567
FU U. S. Department of Energy [DE-AC52-07NA27344]; LLNL
FX Work supported by the U. S. Department of Energy under Contract No.
DE-AC52-07NA27344; support from the Laboratory Directed Research and
Development Program at LLNL is also acknowledged.
NR 24
TC 21
Z9 21
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUL
PY 2009
VL 80
IS 1
AR 013809
DI 10.1103/PhysRevA.80.013809
PG 5
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 478VP
UT WOS:000268616900162
ER
PT J
AU Tao, L
McCurdy, CW
Rescigno, TN
AF Tao, Liang
McCurdy, C. W.
Rescigno, T. N.
TI Grid-based methods for diatomic quantum scattering problems. II.
Time-dependent treatment of single- and two-photon ionization of H-2(+)
SO PHYSICAL REVIEW A
LA English
DT Article
ID MULTIPHOTON IONIZATION
AB The time-dependent Schrodinger equation for H-2(+) in a time-varying electromagnetic field is solved in the fixed-nuclei approximation using a previously developed finite-element discrete-variable representation in prolate spheroidal coordinates. Amplitudes for single-and two-photon ionization are obtained using the method of exterior complex scaling to effectively propagate the field-free solutions from the end of the radiation pulse to infinite times. Cross sections are presented for one- and two-photon ionization for both parallel and perpendicular polarizations of the photon field, as well as photoelectron angular distributions for two-photon ionization.
C1 [Tao, Liang; McCurdy, C. W.; Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
RP Tao, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
FU University of California Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]; U.S. DOE Office of Basic Energy Sciences, Division
of Chemical Sciences; NSF [PHY-0604628]
FX This work was performed under the auspices of the U.S. Department of
Energy by the University of California Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the
U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences.
C.W.M. acknowledges support from the NSF (Contract No. PHY-0604628).
NR 11
TC 15
Z9 15
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUL
PY 2009
VL 80
IS 1
AR 013402
DI 10.1103/PhysRevA.80.013402
PG 7
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 478VP
UT WOS:000268616900115
ER
PT J
AU Zhang, M
Gray, SK
Rice, SA
AF Zhang, Ming
Gray, Stephen K.
Rice, Stuart A.
TI Quantum localization due to mirror plane symmetry
SO PHYSICAL REVIEW A
LA English
DT Article
ID FAST LYAPUNOV INDICATORS; PHASE-SPACE; INTRAMOLECULAR DYNAMICS;
SYMPLECTIC INTEGRATORS; ORBITS; SCARS
AB With suitably directed initial states, we show how the time-averaged density of an evolving wave packet localizes on a mirror plane. A classical analog of this behavior can sometimes be found with trajectories weighted according to a Wigner distribution of the initial quantum state. However, in the limit of strongly chaotic classical dynamics, no such classical analog exists and the quantum localization in the density tends to be stronger by a factor of 2. Two very different systems are used to illustrate this effect, one being a three-dimensional model for a lithium atom moving within a C(60) cage and the other being a two-dimensional double well problem.
C1 [Zhang, Ming] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Rice, Stuart A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA.
[Rice, Stuart A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA.
RP Zhang, M (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
FU U. S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-06CH11357]; Joint Theory Institute; University of Chicago;
Argonne National Laboratory
FX We thank T. A. Witten and P. Guyot-Sionnest for helpful suggestions. The
work at Argonne National Laboratory was supported by the U. S.
Department of Energy, Office of Basic Energy Sciences, under Contract
No. DE-AC02-06CH11357. We acknowledge support from the Joint Theory
Institute, a University of Chicago and Argonne National Laboratory
multidisciplinary research institution.
NR 21
TC 0
Z9 0
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUL
PY 2009
VL 80
IS 1
AR 012107
DI 10.1103/PhysRevA.80.012107
PG 5
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 478VP
UT WOS:000268616900038
ER
PT J
AU Zinner, NT
Molmer, K
Ozen, C
Dean, DJ
Langanke, K
AF Zinner, N. T.
Molmer, K.
Oezen, C.
Dean, D. J.
Langanke, K.
TI Shell-model Monte Carlo simulations of the BCS-BEC crossover in
few-fermion systems
SO PHYSICAL REVIEW A
LA English
DT Article
ID GAS; ATOMS
AB We study a trapped system of fermions with a zero-range two-body interaction using the shell- model Monte Carlo method, providing ab initio results for the low particle number limit where mean-field theory is not applicable. We present results for the N-body energies as function of interaction strength, particle number, and temperature. The subtle question of renormalization in a finite model space is addressed and the convergence of our method and its applicability across the BCS-BEC crossover is discussed. Our findings indicate that very good quantitative results can be obtained on the BCS side, whereas at unitarity and in the BEC regime the convergence is less clear. Comparison to N = 2 analytics at zero and finite temperature, and to other calculations in the literature for N > 2 show very good agreement.
C1 [Zinner, N. T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Zinner, N. T.; Molmer, K.] Univ Aarhus, Dept Phys & Astron, Lundbeck Fdn Theoret Ctr Quantum Syst Res, DK-8000 Aarhus C, Denmark.
[Oezen, C.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Oezen, C.; Langanke, K.] Helmholtzzentrum Schwerionenforsch, GSI Darmstadt, D-64259 Darmstadt, Germany.
[Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Langanke, K.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany.
[Langanke, K.] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany.
RP Zinner, NT (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
EM zinner@phys.au.dk
RI Ozen, Cem/C-6868-2016;
OI Ozen, Cem/0000-0001-6388-9175; Dean, David/0000-0002-5688-703X
FU Hemholtz Alliance Institute EMMI
FX We thank the Hemholtz Alliance Institute EMMI for support.
NR 31
TC 16
Z9 16
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUL
PY 2009
VL 80
IS 1
AR 013613
DI 10.1103/PhysRevA.80.013613
PG 5
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 478VP
UT WOS:000268616900146
ER
PT J
AU Alloyeau, D
Freitag, B
Dag, S
Wang, LW
Kisielowski, C
AF Alloyeau, D.
Freitag, B.
Dag, S.
Wang, Lin W.
Kisielowski, C.
TI Atomic-resolution three-dimensional imaging of germanium
self-interstitials near a surface: Aberration-corrected transmission
electron microscopy
SO PHYSICAL REVIEW B
LA English
DT Article
DE elemental semiconductors; germanium; interstitials; transmission
electron microscopy
ID TOTAL-ENERGY CALCULATIONS; IRRADIATION-INDUCED DEFECTS; INTRINSIC
POINT-DEFECTS; AUGMENTED-WAVE METHOD; AB-INITIO; MOLECULAR-DYNAMICS;
BASIS-SET; SI; SEMICONDUCTORS; CRYSTALS
AB We report the formation and direct observation of self-interstitials in surface proximity of an elemental semiconductor by exploiting subthreshold effects in a new generation of aberration-corrected transmission electron microscopes. We find that the germanium interstitial atoms reside close to hexagonal, tetragonal, and S-interstitial sites. Using phase-contrast microscopy, we demonstrate that the three-dimensional position of interstitial atoms can be determined from contrast analysis, with subnanometer precision along the electron-beam direction. Comparison with a first-principles study suggests a strong influence of the surface proximity or a positively charged interstitial. More generally, our investigation demonstrates that imaging of single atom can now be utilized to directly visualize single-defect formation and migration. These high-resolution electron microscopy studies are applicable to a wide range of materials since the reported noise level of the images even allows the detection of single-light atoms.
C1 [Alloyeau, D.; Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Freitag, B.] FEI Co, NL-5600 KA Eindhoven, Netherlands.
[Dag, S.; Wang, Lin W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Sci Comp Grp, Computat Res Div, Berkeley, CA 94720 USA.
RP Alloyeau, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
EM alloyeau.damien@gmail.com; cfkisielowski@lbl.gov
FU (U.S.) Department of Energy [AC0205CH11231, DE-AC02-05CH11231]; National
Energy Research Scientific Computing Center
FX We thank Frances Allen for her kind assistance in writing this
manuscript. The authors acknowledge support from the National Center for
Electron Microscopy, Lawrence Berkeley National Laboratory, which is
supported by the (U.S.) Department of Energy, under Contract No.
DE-AC0205CH11231. The TEAM project was supported by the (U.S.)
Department of Energy, Office of Science, and Basic Energy Sciences. The
detailed image analysis was supported by the Electron Microscopy of Soft
Matter Program at Lawrence Berkeley National Laboratory and supported by
the Director, Office of Science, Office of Basic Energy Sciences,
Materials Sciences and Engineering Division of the (U.S.) Department of
Energy under Contract No. DE-AC02-05CH11231. The theoretical part of
this work was supported by the DMSE/BES/SC of the (U.S.) Department of
Energy under Contract No. DE-AC02-05CH11231. It uses the resources of
the National Energy Research Scientific Computing Center.
NR 38
TC 25
Z9 25
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014114
DI 10.1103/PhysRevB.80.014114
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100040
ER
PT J
AU Aydiner, CC
Bernier, JV
Clausen, B
Lienert, U
Tome, CN
Brown, DW
AF Aydiner, C. C.
Bernier, J. V.
Clausen, B.
Lienert, U.
Tome, C. N.
Brown, D. W.
TI Evolution of stress in individual grains and twins in a magnesium alloy
aggregate
SO PHYSICAL REVIEW B
LA English
DT Article
DE aggregates (materials); aggregation; grain size; internal stresses;
magnesium alloys; shear deformation; synchrotron radiation; twinning;
X-ray diffraction
ID STRAIN EVOLUTION; DEFORMATION; BEHAVIOR; TEXTURE; METALS
AB This is an in situ measurement of the full stress tensor and its evolution in a growing deformation twin and, simultaneously, in the grain where the twin forms. The combined information provides a detailed picture of the grain-twin interaction. The three-dimensional x-ray diffraction method using 80.7 keV synchrotron x rays allows us to in situ investigate a grain within the bulk of a magnesium alloy (AZ31) sample that is compressed to activate the {1012}<< 1011 >> tensile twin system. We observe that the stress state of the twin is drastically different from the one of the grain in which it is embedded. We analyze such result in terms of the shear transformation associated with twinning and the dimensional constraints imposed by the surrounding aggregate.
C1 [Aydiner, C. C.; Tome, C. N.; Brown, D. W.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Bernier, J. V.] Lawrence Livermore Natl Lab, Engn Technol Div, Livermore, CA 94551 USA.
[Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
[Lienert, U.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Aydiner, CC (reprint author), Bogazici Univ, Mech Eng Dept, TR-80815 Bebek, Turkey.
EM can.aydiner@boun.edu.tr
RI Tome, Carlos/D-5058-2013; Clausen, Bjorn/B-3618-2015;
OI Clausen, Bjorn/0000-0003-3906-846X; Aydiner, Cahit/0000-0001-8256-6742
FU Office of Basic Energy Science (DOE) [FWP 06SCPE401]; U.S. Department of
Energy [DE-AC02-06CH11357]
FX This work was supported by the Office of Basic Energy Science (DOE)
through Project No. FWP 06SCPE401. The authors are indebted to A. Jain
and S. R. Agnew of University of Virginia for their help in sample
preparation. Use of the Advanced Photon Source was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 20
TC 66
Z9 66
U1 2
U2 27
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024113
DI 10.1103/PhysRevB.80.024113
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500031
ER
PT J
AU Bud'ko, SL
Nandi, S
Ni, N
Thaler, A
Kreyssig, A
Kracher, A
Yan, JQ
Goldman, AI
Canfield, PC
AF Bud'ko, S. L.
Nandi, S.
Ni, N.
Thaler, A.
Kreyssig, A.
Kracher, A.
Yan, J. -Q.
Goldman, A. I.
Canfield, P. C.
TI Structural phase transition in Ba(Fe0.973Cr0.027)(2)As-2 single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; chromium compounds; electrical resistivity; Hall
effect; iron compounds; magnetic susceptibility; magnetic transition
temperature; space groups; thermodynamics; X-ray diffraction
AB We present thermodynamic, structural, and transport measurements on Ba(Fe0.973Cr0.027)(2)As-2 single crystals. All measurements reveal sharp anomalies at similar to 112 K. Single crystal x-ray diffraction identifies the structural transition as a first order, from the high-temperature tetragonal I4/mmm to the low-temperature orthorhombic Fmmm structure, in contrast to an earlier report.
C1 [Bud'ko, S. L.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Bud'ko, SL (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014
OI Thaler, Alexander/0000-0001-5066-8904
FU U. S. Department of Energy; Basic Energy Sciences [DE-AC02-07CH11358]
FX Work at the Ames Laboratory was supported by the U. S. Department of
Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We
thank R. J. McQueeney for useful comments. S. L. B. and P. C. C. both
acknowledge M. T. C. Apoo for providing important insight into this
problem.
NR 22
TC 14
Z9 14
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014522
DI 10.1103/PhysRevB.80.014522
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100113
ER
PT J
AU Chembrolu, V
Strachan, JP
Yu, XW
Tulapurkar, AA
Tyliszczak, T
Katine, JA
Carey, MJ
Stohr, J
Acremann, Y
AF Chembrolu, V.
Strachan, J. P.
Yu, X. W.
Tulapurkar, A. A.
Tyliszczak, T.
Katine, J. A.
Carey, M. J.
Stoehr, J.
Acremann, Y.
TI Time-resolved x-ray imaging of magnetization dynamics in spin-transfer
torque devices
SO PHYSICAL REVIEW B
LA English
DT Article
DE magnetic switching; magnetic thin films; magnetisation reversal;
nanoelectronics; spin polarised transport; spin valves; vortices; X-ray
imaging; X-ray microscopy
ID POLARIZED CURRENT; CO/CU/CO PILLARS; DRIVEN; MULTILAYER; NANOMAGNET;
EXCITATION; DEPENDENCE; REVERSAL
AB Time-resolved x-ray imaging techniques have recently demonstrated the capability to probe the magnetic switching of nanoscale devices. This technique has enabled, for example, the direct observation of the nonuniform intermediate states assumed by the magnetic free layer during reversal by a spin-polarized current. These experiments have shown an interesting size-dependent behavior associated with the motion of vortices to mediate the magnetization reversal which cannot be explained by the macrospin picture of spin-torque switching. In this paper we present both experimental and analytical results which show the origin of the complex switching behavior. We use time-resolved x-ray microscopy to further study the switching behavior of samples with 45 degrees angle between the free and polarizing magnetic layers. A model is developed in terms of a linearized Landau-Lifshitz-Gilbert equation showing that the initial dynamics is dominated by the balance between the Oersted field and thermal fluctuations. The spin torque amplifies this dynamics, leading to a strong sensitivity to sample size, angle, and temperature. The model is in good agreement with current and previous experimental observations.
C1 [Chembrolu, V.; Strachan, J. P.; Yu, X. W.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Chembrolu, V.; Strachan, J. P.; Yu, X. W.; Tulapurkar, A. A.; Stoehr, J.; Acremann, Y.] Stanford Linear Accelerator Ctr, SIMES Inst, Menlo Pk, CA 94025 USA.
[Tyliszczak, T.] Adv Light Source, Berkeley, CA 94720 USA.
[Katine, J. A.; Carey, M. J.] Hitachi Global Storage Technol San Jose Res Ctr, San Jose, CA 95120 USA.
[Stoehr, J.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Acremann, Y.] Stanford Linear Accelerator Ctr, PULSE Inst, Menlo Pk, CA 94025 USA.
RP Chembrolu, V (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
NR 28
TC 5
Z9 5
U1 1
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024417
DI 10.1103/PhysRevB.80.024417
PG 8
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500068
ER
PT J
AU Clavero, C
Skuza, JR
Choi, Y
Haskel, D
Sanchez-Hanke, C
Loloee, R
Zhernenkov, M
Fitzsimmons, MR
Lukaszew, RA
AF Clavero, C.
Skuza, J. R.
Choi, Y.
Haskel, D.
Sanchez-Hanke, C.
Loloee, R.
Zhernenkov, M.
Fitzsimmons, M. R.
Lukaszew, R. A.
TI Enhancement of induced V polarization due to rough interfaces in
polycrystalline V/Fe/V trilayers
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; chemical interdiffusion; interface
roughness; iron; magnetic circular dichroism; magnetic moments; magnetic
multilayers; magnetic thin films; metallic thin films; reflectometry;
sputter deposition; vanadium; X-ray scattering
ID MAGNETIC SURFACE ANISOTROPY; X-RAY; NEUTRON-SCATTERING; FE/V
MULTILAYERS; ULTRATHIN FILMS; THIN-FILMS; SUPERLATTICES; VANADIUM;
INTERDIFFUSION; MOMENTS
AB The effect of interface roughness on the induced polarization of V in polycrystalline V/Fe/V trilayers was investigated with x-ray magnetic circular dichroism, x-ray resonant magnetic scattering, and polarized neutron reflectometry. Trilayer samples were sputter deposited onto Si substrates at room temperature to minimize interdiffusion. The films were polycrystalline and exhibited an average 0.5 nm root-mean-square interfacial roughness at the Fe/V interfaces. The induced polarization found in V was constrained to the Fe/V interface extending approximately up to 2-3 monolayers into the V and exhibited antiferromagnetic alignment to the Fe layer. A magnetic moment for V ranging between -0.46 and -0.86 mu(B)/V atom is consistent with the neutron and resonant x-ray data. Notably, this value for structurally rough interfaces is significantly larger than that reported for samples with atomically flat Fe/V interfaces.
C1 [Clavero, C.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
[Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.
[Choi, Y.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA.
[Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Sanchez-Hanke, C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Loloee, R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Zhernenkov, M.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Clavero, C (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
RI Skuza, Jonathan/E-9048-2010; Lujan Center, LANL/G-4896-2012; Clavero,
Cesar/C-4391-2008;
OI Skuza, Jonathan/0000-0002-9252-2708; Clavero, Cesar/0000-0001-6665-3141;
Zhernenkov, Mikhail/0000-0003-3604-0672
FU NSF-DMR [0355171]; Research Corporation; U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences [DE-AC52-06NA25396,
DE-AC-02-06CH11357]
FX This work was supported by NSF-DMR (Grant No. 0355171) and the Research
Corporation. This work has benefited from the use of the Lujan Neutron
Scattering Center at LANSCE, which is funded by the Department of
Energy's Office of Basic Energy Science. Los Alamos National Laboratory
is operated by Los Alamos National Security LLC under DOE Contract No.
DE-AC52-06NA25396. Work at Argonne is supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC-02-06CH11357. The authors also wish to acknowledge
fruitful discussions with Brian Kirby from the Center for Neutron
Research at NIST.
NR 39
TC 6
Z9 6
U1 0
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024418
DI 10.1103/PhysRevB.80.024418
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500069
ER
PT J
AU Crooker, SA
Garlid, ES
Chantis, AN
Smith, DL
Reddy, KSM
Hu, QO
Kondo, T
Palmstrom, CJ
Crowell, PA
AF Crooker, S. A.
Garlid, E. S.
Chantis, A. N.
Smith, D. L.
Reddy, K. S. M.
Hu, Q. O.
Kondo, T.
Palmstrom, C. J.
Crowell, P. A.
TI Bias-controlled sensitivity of ferromagnet/semiconductor electrical spin
detectors
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSPORT; SEMICONDUCTOR; INJECTION; DEVICES
AB Using Fe/GaAs Schottky tunnel barriers as electrical spin detectors, we show that the magnitude and the sign of their spin-detection sensitivities can be widely tuned with the voltage bias applied across the Fe/GaAs interface. Experiments and theory establish that this tunability derives not just simply from the bias dependence of the tunneling conductances G(up arrow,down arrow) (a property of the interface), but also from the bias dependence of electric fields in the semiconductor which can dramatically enhance or suppress spin-detection sensitivities. Electrons in GaAs with fixed polarization can therefore be made to induce either positive or negative voltage changes at spin detectors, and some detector sensitivities can be enhanced over tenfold compared to the usual case of zero-bias spin detection.
C1 [Crooker, S. A.; Chantis, A. N.; Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Garlid, E. S.; Hu, Q. O.; Kondo, T.; Crowell, P. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Reddy, K. S. M.; Palmstrom, C. J.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA.
[Palmstrom, C. J.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA.
[Palmstrom, C. J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
RP Crooker, SA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM crooker@lanl.gov
OI Chantis, Athanasios/0000-0001-7933-0579; Reddy, Kotha Sai
Madhukar/0000-0003-2385-7827
NR 23
TC 34
Z9 34
U1 1
U2 13
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 041305
DI 10.1103/PhysRevB.80.041305
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100011
ER
PT J
AU Dai, JH
Zhu, JX
Si, QM
AF Dai, Jianhui
Zhu, Jian-Xin
Si, Qimiao
TI f-spin physics of rare-earth iron pnictides: Influence of d-electron
antiferromagnetic order on the heavy-fermion phase diagram
SO PHYSICAL REVIEW B
LA English
DT Article
DE Anderson model; antiferromagnetic materials; cerium compounds;
frustration; heavy fermion superconductors; high-temperature
superconductors; Kondo effect; magnetic moments; phase diagrams
ID LAYERED SUPERCONDUCTOR; QUANTUM CRITICALITY; METALS
AB Some of the high-T-c iron pnictides contain magnetic rare-earth elements, raising the question of how the existence and tunability of a d-electron antiferromagnetic order influences the heavy-fermion behavior of the f moments. With CeOFeP and CeOFeAs in mind as prototypes, we derive an extended Anderson lattice model appropriate for these quaternary systems. We show that the Kondo screening of the f moments are efficiently suppressed by the d-electron ordering. We also argue that, inside the d-electron ordered state (as in CeOFeAs), the f moments provide a rare realization of a quantum frustrated magnet with competing J(1)-J(2)-J(3) interactions in an effective square lattice. Implications for the heavy-fermion physics in broader contexts are also discussed.
C1 [Dai, Jianhui] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China.
[Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Si, Qimiao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
RP Dai, JH (reprint author), Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China.
OI Zhu, Jianxin/0000-0001-7991-3918
FU NSF of China [IRT-0754, DMR-0706625]; Education Ministry of China; U.S.
DOE [DE-AC52-06NA25396]
FX We thank E. Abrahams, M. Aronson, G. H. Cao, X. H. Chen, X. Dai, C.
Geibel, N. L. Wang, T. Xiang, Z. A. Xu, and H. Q. Yuan for useful
discussions, and the U. S. DOE CINT at LANL for computational support.
This work was supported by the NSF of China, the 973 Program, and the
PCSIRT (Project No. IRT-0754) of Education Ministry of China (J.D.), by
the NSF (Grant No. DMR-0706625) and the Robert A. Welch Foundation
(Q.S.), and by the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396
(J.-X.Z.).
NR 34
TC 14
Z9 14
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 020505
DI 10.1103/PhysRevB.80.020505
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500017
ER
PT J
AU Duguet, T
Unal, B
de Weerd, MC
Ledieu, J
Ribeiro, RA
Canfield, PC
Deloudi, S
Steurer, W
Jenks, CJ
Dubois, JM
Fournee, V
Thiel, PA
AF Duguet, T.
Uenal, B.
de Weerd, M. C.
Ledieu, J.
Ribeiro, R. A.
Canfield, P. C.
Deloudi, S.
Steurer, W.
Jenks, C. J.
Dubois, J. M.
Fournee, V.
Thiel, P. A.
TI Twofold surface of the decagonal Al-Cu-Co quasicrystal
SO PHYSICAL REVIEW B
LA English
DT Article
DE aluminium alloys; cobalt alloys; copper alloys; electron diffraction;
phasons; quasicrystals; scanning tunnelling microscopy; surface
structure
ID TRANSPORT-PROPERTIES; ELECTRONIC-STRUCTURE; PHASE; AL65CU15CO20; ALLOYS;
MODEL; AL70CO15NI15; DIFFRACTION; GROWTH; LEED
AB We have investigated the atomic structure of the twofold surface of the decagonal Al-Cu-Co quasicrystal using scanning tunneling microscopy and low-energy electron diffraction. We have found that most of the surface features can be interpreted using the bulk-structure model proposed by Deloudi and Steurer (S. Deloudi, Ph.D. thesis, ETH, Zuumlrich, 2008). The surface consists of terraces separated by steps of various heights. Step heights and steps sequences match with the thickness and the stacking sequence of blocks of layers separated by gaps in the model. These blocks of layers define possible surface terminations consisting of periodic atomic rows which are aperiodically stacked. These surface terminations are dense (similar to 10 at./nm(2)) and are of three types. The first two types are pure or almost pure Al while the third one contains 30-40 at. % of transition-metal atoms. Experimentally, we observe three different types of fine structures on terraces, which can be interpreted using the three possible types of bulk terminations. Terraces containing transition metals exhibit a strong bias dependency and present a doubling of the basic 0.42 nm periodicity, in agreement with the 0.84 nm superstructure of the bulk. In addition, a high density of interlayer phason defects is observed on this surface that could contribute to the stabilization of this system through configurational entropy associated with phason disorder.
C1 [Duguet, T.; de Weerd, M. C.; Ledieu, J.; Dubois, J. M.; Fournee, V.] Nancy Univ, Inst Jean Lamour, CNRS,Ecole Mines, UMR 7198,UPV Metz, F-54042 Nancy, France.
[Uenal, B.; Ribeiro, R. A.; Canfield, P. C.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Uenal, B.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Dept Chem & Mat Sci, Ames, IA 50011 USA.
[Uenal, B.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Dept Engn, Ames, IA 50011 USA.
[Ribeiro, R. A.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Deloudi, S.; Steurer, W.] ETH, Crystallog Lab, CH-8093 Zurich, Switzerland.
RP Duguet, T (reprint author), Nancy Univ, Inst Jean Lamour, CNRS,Ecole Mines, UMR 7198,UPV Metz, Parc Saurupt,CS14234, F-54042 Nancy, France.
RI Ledieu, Julian/F-1430-2010; DUGUET, Thomas/B-6738-2011; Deloudi,
Sofia/B-8812-2011; Canfield, Paul/H-2698-2014; Steurer,
Walter/A-3278-2008; Ribeiro, Raquel/B-9041-2012; Steurer,
Walter/B-6929-2008
OI Ribeiro, Raquel/0000-0001-6075-1701; Steurer, Walter/0000-0003-0211-7088
FU U.S. Department of Energy (USDOE) [DE-AC02-07CH11358]; European Network
of Excellence on Complex Metallic Alloys (CMA) [NMP3-CT-2005-500145,
ANR-05-NT03-41834]
FX This work was partially supported by the Office of Science, Basic Energy
Sciences, Materials Science Division of the U.S. Department of Energy
(USDOE) under Contract No. DE-AC02-07CH11358 through the Ames
Laboratory. We also acknowledge the European Network of Excellence on
Complex Metallic Alloys (CMA) (Contracts No. NMP3-CT-2005-500145 and No.
ANR-05-NT03-41834) for financial support. We also thank Matt Kramer and
Chris Henley for helpful discussions.
NR 41
TC 11
Z9 11
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024201
DI 10.1103/PhysRevB.80.024201
PG 9
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500038
ER
PT J
AU Dzero, M
Schmalian, J
Wolynes, PG
AF Dzero, Maxim
Schmalian, Joerg
Wolynes, Peter G.
TI Replica theory for fluctuations of the activation barriers in glassy
systems
SO PHYSICAL REVIEW B
LA English
DT Article
DE amorphous state; entropy; fluctuations; glass transition; supercooling;
surface tension; vitreous state
ID SUPERCOOLED O-TERPHENYL; HARD-SPHERE GLASS; MEAN-FIELD THEORY;
METASTABLE STATES; CONFIGURATIONAL ENTROPY; STRUCTURAL GLASSES;
SPIN-GLASSES; HETEROGENEOUS DYNAMICS; FORMING LIQUIDS; LENGTH SCALE
AB We consider the problem of slow activation dynamics in glassy systems undergoing a random first-order phase transition. Using an effective potential approach to supercooled liquids, we determine the spectrum of activation barriers for entropic droplets. We demonstrate that fluctuations of the configurational entropy and of the liquid glass surface tension are crucial to achieve an understanding of the barrier fluctuations in glassy systems and thus are ultimately responsible for the broad spectrum of excitations and heterogeneous dynamics in glasses. In particular we derive a relation between the length scale for dynamic heterogeneity and the related barrier fluctuations. Diluted entropic droplets are shown to have a Gaussian distribution of barriers, strongly suggesting that non-Gaussian behavior results from droplet-droplet interactions.
C1 [Dzero, Maxim] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA.
[Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Wolynes, Peter G.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA.
[Wolynes, Peter G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
RP Dzero, M (reprint author), Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA.
RI Schmalian, Joerg/H-2313-2011
NR 63
TC 10
Z9 10
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024204
DI 10.1103/PhysRevB.80.024204
PG 15
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500041
ER
PT J
AU Fernando, GW
Palandage, K
Kocharian, AN
Davenport, JW
AF Fernando, G. W.
Palandage, K.
Kocharian, A. N.
Davenport, J. W.
TI Pairing in bipartite and nonbipartite repulsive Hubbard clusters:
Octahedron
SO PHYSICAL REVIEW B
LA English
DT Article
DE Bose-Einstein condensation; colossal magnetoresistance; Coulomb
blockade; ferromagnetism; high-temperature superconductors; Hubbard
model
ID PHASE-SEPARATION; MODEL; SUPERCONDUCTORS; FERROMAGNETISM; NANOCLUSTERS;
THERMODYNAMICS; SYSTEMS; NARROW; STATE; BAND
AB Pairing instabilities found from exact studies of repulsive Hubbard clusters with different topologies provide important insights into several many-body problems in condensed-matter physics. Electron charge and spin pairing instabilities in a multiparameter phase space, defined by temperature, magnetic field, and chemical potential, lead to properties that are remarkably similar to correlated inhomogeneous bulk (perovskite) systems such as the high-temperature superconductors and colossal-magnetoresistance materials. In particular, for small to moderate values of the on-site Coulomb repulsion U, the role of square-planar geometry is borne out for weak vertex coupling in an octahedron. These conditions are favorable to forming a Bose condensate in the region of instability near one hole off half filling while strong vertex coupling has a detrimental effect on such condensation. In addition, it is shown that magnetic flux can get trapped in stable minima at half-integral units of the flux quantum in hole-rich regions. For higher values of U, Nagaoka-type ferromagnetism is examined.
C1 [Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.
[Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA.
[Kocharian, A. N.] Santa Monica Coll, Santa Monica, CA 90405 USA.
[Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA.
[Davenport, J. W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Fernando, GW (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.
FU U. S. Department of Energy [DE-AC02-98CH10886]
FX This research was supported in part by the U. S. Department of Energy
under Contract No. DE-AC02-98CH10886.
NR 31
TC 9
Z9 9
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014525
DI 10.1103/PhysRevB.80.014525
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100116
ER
PT J
AU Fischer, G
Dane, M
Ernst, A
Bruno, P
Luders, M
Szotek, Z
Temmerman, W
Hergert, W
AF Fischer, Guntram
Daene, Markus
Ernst, Arthur
Bruno, Patrick
Lueders, Martin
Szotek, Zdzislawa
Temmerman, Walter
Hergert, Wolfram
TI Exchange coupling in transition metal monoxides: Electronic structure
calculations
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; antiferromagnetic materials; exchange
interactions (electron); Heisenberg model; KKR calculations; lattice
constants; manganese compounds; Neel temperature; spin waves; strongly
correlated electron systems
ID SELF-INTERACTION CORRECTION; MAGNETIC-STRUCTURES; NEEL TEMPERATURE;
HIGH-PRESSURE; HYDROSTATIC PRESSURE; PHASE-STABILITY; NIO; MNO; COO; FEO
AB An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d transition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force theorem. Based on these the corresponding Neacuteel temperatures T-N and spin-wave dispersions are calculated. The Neacuteel temperatures are obtained using mean-field approximation, random-phase approximation and Monte Carlo simulations. The pressure dependence of T-N is investigated using exchange constants calculated for different lattice constants. All the calculated results are compared to experimental data.
C1 [Fischer, Guntram; Hergert, Wolfram] Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Germany.
[Daene, Markus; Ernst, Arthur; Bruno, Patrick] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany.
[Daene, Markus] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Bruno, Patrick] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England.
RP Fischer, G (reprint author), Univ Halle Wittenberg, Inst Phys, Von Seckendorff Pl 1, D-06120 Halle, Germany.
RI Bruno, Patrick/C-9159-2009; Lueders, Martin/D-1622-2010; Ernst,
Arthur/K-1836-2012; Dane, Markus/H-6731-2013
OI Bruno, Patrick/0000-0002-2574-1943; Dane, Markus/0000-0001-9301-8469
FU Deutsche Forschungsgesellschaft (DFG) [SFB 762]; U.S. Department of
Energy [DE-AC05-00OR22725]
FX We would like to thank Julie Staunton for helpful discussions and
comments. This work was supported by the Deutsche Forschungsgesellschaft
(DFG) under Grant No. SFB 762 "Functionality of Oxidic Interfaces."
Calculations were performed at the John von Neumann Institute for
Computing in Julich, Germany. Research at the Oak Ridge National
Laboratory was sponsored by the Division of Materials Sciences and
Engineering, Office of Basic Energy Sciences, U.S. Department of Energy,
under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
NR 66
TC 50
Z9 50
U1 0
U2 28
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014408
DI 10.1103/PhysRevB.80.014408
PG 11
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100063
ER
PT J
AU Goko, T
Aczel, AA
Baggio-Saitovitch, E
Bud'ko, SL
Canfield, PC
Carlo, JP
Chen, GF
Dai, PC
Hamann, AC
Hu, WZ
Kageyama, H
Luke, GM
Luo, JL
Nachumi, B
Ni, N
Reznik, D
Sanchez-Candela, DR
Savici, AT
Sikes, KJ
Wang, NL
Wiebe, CR
Williams, TJ
Yamamoto, T
Yu, W
Uemura, YJ
AF Goko, T.
Aczel, A. A.
Baggio-Saitovitch, E.
Bud'ko, S. L.
Canfield, P. C.
Carlo, J. P.
Chen, G. F.
Dai, Pengcheng
Hamann, A. C.
Hu, W. Z.
Kageyama, H.
Luke, G. M.
Luo, J. L.
Nachumi, B.
Ni, N.
Reznik, D.
Sanchez-Candela, D. R.
Savici, A. T.
Sikes, K. J.
Wang, N. L.
Wiebe, C. R.
Williams, T. J.
Yamamoto, T.
Yu, W.
Uemura, Y. J.
TI Superconducting state coexisting with a phase-separated static magnetic
order in (Ba,K)Fe2As2, (Sr,Na)Fe2As2, and CaFe2As2
SO PHYSICAL REVIEW B
LA English
DT Article
DE arsenic alloys; barium alloys; calcium alloys; iron alloys; magnetic
susceptibility; muon probes; phase separation; potassium alloys; sodium
alloys; strontium alloys; superconducting energy gap; superconducting
materials; superconductivity
ID LAYERED SUPERCONDUCTOR; SUPERFLUID DENSITY; MU-SR; DIAGRAM;
SMFEASO1-XFX; CUPRATE
AB By muon spin-relaxation measurements on single-crystal specimens, we show that superconductivity in the AFe(2)As(2) (A=Ca,Ba,Sr) systems, in both the cases of composition and pressure tunings, coexists with a strong static magnetic order in a partial volume fraction. The superfluid response from the remaining paramagnetic volume fraction of (Ba0.5K0.5)Fe2As2 exhibits a nearly linear variation in T at low temperatures, suggesting an anisotropic energy gap with line nodes and/or multigap effects.
C1 [Goko, T.; Carlo, J. P.; Nachumi, B.; Sikes, K. J.; Uemura, Y. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Goko, T.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Goko, T.; Aczel, A. A.; Luke, G. M.; Williams, T. J.; Yu, W.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada.
[Baggio-Saitovitch, E.; Sanchez-Candela, D. R.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
[Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Chen, G. F.; Hu, W. Z.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China.
[Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Hamann, A. C.; Reznik, D.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany.
[Kageyama, H.; Yamamoto, T.] Kyoto Univ, Dept Chem, Kyoto 6068502, Japan.
[Savici, A. T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Wiebe, C. R.] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA.
RP Uemura, YJ (reprint author), Columbia Univ, Dept Phys, New York, NY 10027 USA.
EM tomo@lorentz.phys.columbia.edu
RI Williams, Travis/A-5061-2016; Hu, Wanzheng/K-1171-2016; Kageyama,
Hiroshi/A-4602-2010; Dai, Pengcheng /C-9171-2012; Yu,
Weiqiang/E-9722-2012; Candela, Dalber/G-3636-2012; Savici,
Andrei/F-2790-2013; Canfield, Paul/H-2698-2014; Saitovitch,
Elisa/A-6769-2015; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016;
OI Williams, Travis/0000-0003-3212-2726; Dai, Pengcheng
/0000-0002-6088-3170; Savici, Andrei/0000-0001-5127-8967; Aczel,
Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173
FU NSF [DMR-05-02706, 08-06846, DMR-07-56568, DMR-08-04173]; Florida state
at FSU; DOE [DE-AC02-07CH11358]; NSERC; CIFAR (Canada); CBPF (Brazil);
NSFC; CAS; 973 project of MOST (China); JSPS U. S.-Japan
FX We acknowledge financial support from NSF under Grant Nos. DMR-05-02706
and 08-06846 (Material World Network) at Columbia, NSF under Grant No.
DMR-07-56568 at UT Knoxville, NSF under Grant No. DMR-08-04173 and
Florida state at FSU, DOE under Contract No. DE-AC02-07CH11358 at Ames,
NSERC and CIFAR (Canada) at McMaster, CNPq on MWN-CIAM program at CBPF
(Brazil), NSFC, CAS, and 973 project of MOST (China) at IOP, Beijing,
and JSPS U. S.-Japan cooperative program at Kyoto University (Japan).
NR 53
TC 90
Z9 92
U1 4
U2 48
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024508
DI 10.1103/PhysRevB.80.024508
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500087
ER
PT J
AU Grigoriev, A
Sichel, RJ
Jo, JY
Choudhury, S
Chen, LQ
Lee, HN
Landahl, EC
Adams, BW
Dufresne, EM
Evans, PG
AF Grigoriev, Alexei
Sichel, Rebecca J.
Jo, Ji Young
Choudhury, Samrat
Chen, Long-Qing
Lee, Ho Nyung
Landahl, Eric C.
Adams, Bernhard W.
Dufresne, Eric M.
Evans, Paul G.
TI Stability of the unswitched polarization state of ultrathin epitaxial
Pb(Zr,Ti)O-3 in large electric fields
SO PHYSICAL REVIEW B
LA English
DT Article
DE dielectric polarisation; electric domain walls; epitaxial layers;
ferroelectric capacitors; ferroelectric thin films; lead compounds;
nucleation; thin film capacitors; X-ray diffraction
ID NUCLEATION; THICKNESS; FILMS
AB The initial stage of polarization switching in ferroelectric thin films depends on phenomena that occur at characteristic time scales of tens to hundreds of nanoseconds, including the nucleation polarization domains and the propagation of domain walls. These long intrinsic times allow short-duration electric fields with magnitudes far above the low-frequency coercive electric field to be applied across capacitor devices without inducing switching. Using time-resolved x-ray microdiffraction, we have found that a series of 50 ns duration electric field pulses switches the polarization of a 35-nm-thick ferroelectric Pb(Zr,Ti)O-3 film only at electric fields greater than 1.5 MV/cm, a factor of three higher than the low-frequency coercive field. There is no switching in response to a large number of short pulses with amplitudes lower than 1.5 MV/cm, even when the total duration reaches several milliseconds. In comparison, a series of microsecond-duration pulses causes cumulative changes in the area of switched polarization and eventually switches the entire capacitor. The difference between long- and short-duration electric field pulses arises from effects linked to domain nucleation and charge transport in the ferroelectric film. A phase-field model shows that the shrinking of the switched domain in the interval between pulses is a less important effect. This opportunity to apply large fields for short times without inducing switching by domain-wall motion raises the possibility that future experiments could reach the intrinsic coercive field of ferroelectric layers and provides a way to study the properties of materials under high electric fields.
C1 [Grigoriev, Alexei; Sichel, Rebecca J.; Jo, Ji Young; Choudhury, Samrat; Evans, Paul G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
[Grigoriev, Alexei; Sichel, Rebecca J.; Jo, Ji Young; Choudhury, Samrat; Evans, Paul G.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA.
[Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Landahl, Eric C.; Adams, Bernhard W.; Dufresne, Eric M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Grigoriev, A (reprint author), Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA.
EM evans@engr.wisc.edu
RI Choudhury, Samrat/B-4115-2009; Landahl, Eric/A-1742-2010; Evans,
Paul/A-9260-2009; Lee, Ho Nyung/K-2820-2012; Chen, LongQing/I-7536-2012
OI Evans, Paul/0000-0003-0421-6792; Lee, Ho Nyung/0000-0002-2180-3975;
Chen, LongQing/0000-0003-3359-3781
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-FG02-04ER46147]; Basic Energy Sciences [DE-FG02-04ER46147]; National
Science Foundation [DMR-0705370]; U. S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC0206CH11357]
FX This work was supported by the U.S. Department of Energy, Office of
Basic Energy Sciences through Contract No. DE-FG02-04ER46147, and by the
National Science Foundation through Grant No. DMR-0705370. One of the
authors (H.N.L.) was sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory. Use of the
Advanced Photon Source was supported by the U. S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC0206CH11357.
NR 30
TC 9
Z9 9
U1 0
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014110
DI 10.1103/PhysRevB.80.014110
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100036
ER
PT J
AU Hoch, MJR
Kuhns, PL
Moulton, WG
Lu, J
Reyes, AP
Mitchell, JF
AF Hoch, M. J. R.
Kuhns, P. L.
Moulton, W. G.
Lu, Jun
Reyes, A. P.
Mitchell, J. F.
TI Non-Korringa nuclear relaxation in the ferromagnetic phase of the
bilayered manganite La1.2Sr1.8Mn2O7
SO PHYSICAL REVIEW B
LA English
DT Article
DE colossal magnetoresistance; electronic structure; ferromagnetic
materials; hyperfine interactions; lanthanum compounds; magnetic
polarons; magnetic thin films; nuclear magnetic resonance; spin-lattice
relaxation; strontium compounds
ID MAGNETORESISTANCE; CRYSTALS; STATE
AB In contrast to ferromagnetic (FM) three-dimensional manganites, Mn-55 NMR spectra obtained for the FM phase of the colossal magnetoresistance bilayer manganite La1.2Sr1.8Mn2O7 show a broad distribution of hyperfine fields at Mn sites. The hyperfine distribution reflects variations in the electronic structure at the local level. Mn-55 spin-lattice relaxation rates have a surprisingly weak dependence both on temperature and on applied magnetic field. Significant departures of the relaxation rate from Korringa temperature dependence below 40 K provide evidence for nonFermi liquid behavior in this quasi-two-dimensional metal. At temperatures approaching T-C from below, in the range where colossal magnetoresistance appears, further anomalous and field-dependent behavior is found in the relaxation rate temperature dependence. The results provide evidence for changes in the electronic structure with temperature in this poorly metallic system. At low temperatures the changes are possibly linked to orbital ordering effects. In addition, statistical fluctuations in dopant concentration may play some role in inducing local variations in the electronic structure. Above 90 K the emergence of polarons is likely to be responsible for the observed decrease in the relaxation rate.
C1 [Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Lu, Jun; Reyes, A. P.] Florida State Univ, Natl High Magnet Field Lab, Tallahssee, FL 32310 USA.
[Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Hoch, MJR (reprint author), Florida State Univ, Natl High Magnet Field Lab, 1800 E Paul Dirac Dr, Tallahssee, FL 32310 USA.
FU NSF [DMR-0084]; state of Florida; U.S. DOE, Office of Science, Basic
Energy Sciences [DE-AC02-06CH11357]
FX Financial support for the work at the NHMFL was provided through grants
from the NSF (Grant No. DMR-0084) and by the state of Florida. The work
at Argonne National Laboratory was supported by the U.S. DOE, Office of
Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Helpful discussions with Pedro Schlottmann at Florida State University
and Chris Leighton at the University of Minnesota are gratefully
acknowledged.
NR 37
TC 2
Z9 2
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024413
DI 10.1103/PhysRevB.80.024413
PG 8
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500064
ER
PT J
AU Horner, DA
Lambert, F
Kress, JD
Collins, LA
AF Horner, D. A.
Lambert, F.
Kress, J. D.
Collins, L. A.
TI Transport properties of lithium hydride from quantum molecular dynamics
and orbital-free molecular dynamics
SO PHYSICAL REVIEW B
LA English
DT Article
DE density functional theory; diffusion; lithium compounds; mixing;
molecular dynamics method; viscosity
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DENSE MATTER; COEFFICIENTS;
PLANETS; METALS; STATES
AB We have performed a systematic study of lithium hydride in the warm-dense-matter regime for a density range from one to four times ambient solid and for temperatures from 2 to 6 eV using both finite-temperature density-functional theory quantum molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD) with a focus on dynamical properties such as diffusion and viscosity. The validity of various mixing rules, especially those utilizing pressure, were checked for composite properties determined from QMD/OFMD simulations of the pure species against calculations on the fully interacting mixture. These rules produce pressures within about 10% of the full-mixture values but mutual-diffusion coefficients as different as 50%. We found very good agreement overall between the QMD, employing a three-electron pseudopotential, and the OFMD in the local-density approximation, especially at the higher temperatures and densities.
C1 [Horner, D. A.; Kress, J. D.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Lambert, F.] DIF, DAM, CEA, F-91297 Arpajon, France.
RP Horner, DA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
FU U.S. Department of Energy [DE-AC52-06NA25396]; Centre de Calcul
Recherche et Technologie in Bruyres-le-Chtel
FX We wish to acknowledge useful conversations with Brad Holian. The Los
Alamos National Laboratory is operated by Los Alamos National Security,
LLC for the National Nuclear Security Administration of the U.S.
Department of Energy under Contract No. DE-AC52-06NA25396. Part of this
work was supported by the Centre de Calcul Recherche et Technologie in
Bruyres-le-Chtel.
NR 31
TC 34
Z9 34
U1 2
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024305
DI 10.1103/PhysRevB.80.024305
PG 10
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500048
ER
PT J
AU Hu, X
Ting, CS
Zhu, JX
AF Hu, Xiang
Ting, C. S.
Zhu, Jian-Xin
TI Vortex core states in a minimal two-band model for iron-based
superconductors
SO PHYSICAL REVIEW B
LA English
DT Article
DE band structure; d-wave superconductivity; electronic density of states;
exchange interactions (electron); Fermi level; flux-line lattice; iron
compounds; localised states; resonant states; scanning tunnelling
microscopy; spin density waves; tight-binding calculations
ID HIGH-TEMPERATURE SUPERCONDUCTORS; LAYERED QUATERNARY COMPOUND;
SPIN-DENSITY-WAVE; PHASE-DIAGRAM; CUPRATE SUPERCONDUCTORS; SMFEASO1-XFX;
COEXISTENCE; MAGNETISM; D(X2-Y2); SYMMETRY
AB The pairing symmetry is one of the major issues in the study of iron-based superconductors. We adopt a minimal two-band tight-binding model with various channels of pairing interaction, and derive a set of two-band Bogoliubov-de Gennes (BdG) equations. The BdG equations are implemented in real space and then solved self-consistently via exact diagonalization. In the uniform case, we find that the d(x)(2)-y(2)-wave pairing state is most favorable for a nearest-neighbor pairing interaction while the s(x)(2)y(2)-wave pairing state is most favorable for a next-nearest-neighbor pairing interaction, which is consistent with that reported by Seo [Phys. Rev. Lett. 101, 206404 (2008)]. We then proceed to study the local electronic structure around a magnetic vortex core for both d(x)(2)-y(2)-wave and s(x)(2)y(2)-wave pairing symmetry in the mixed state. It is found from the local density of states spectra and its spatial variation that the resonance core states near the Fermi energy for the d(x)(2)-y(2)-wave pairing symmetry are bound while those for the s(x)(2)y(2)-wave pairing symmetry can evolve from the localized states into extended ones with varying electron filling factor. Furthermore, by including an effective exchange interaction, the emergent antiferromagnetic spin-density-wave order can suppress the resonance core states, which provides one possible avenue to understand the absence of resonance peak as revealed by recent scanning tunneling microscopy experiment by Yin [Phys. Rev. Lett. 102, 097002 (2009)].
C1 [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Hu, Xiang; Ting, C. S.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.
[Hu, Xiang; Ting, C. S.] Univ Houston, Dept Phys, Houston, TX 77204 USA.
RP Zhu, JX (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM jxzhu@lanl.gov
OI Zhu, Jianxin/0000-0001-7991-3918
FU U. S. DOE [1146, DE-AC52-06NA25396]
FX We thank A. V. Balatsky, J. C. Davis, M. Graf, J. E. Hoffman, Jiangping
Hu, V. Madhavan, Shuheng Pan, Qimiao Si, and Degang Zhang for helpful
discussions. We also thank T. Zhou for discussion and collaboration on
related project. One of the authors (X. H.) acknowledges the hospitality
of Los Alamos National Laboratory (LANL), where this work was initiated.
We acknowledge the U. S. DOE CINT at LANL for computational support.
This work was supported by the Robert Welch Foundation Grant No. E-1146
at the University of Houston (X. H. and C. S. T.), by U. S. DOE at LANL
under Contract No. DE-AC52-06NA25396, the U. S. DOE Office of Science,
and the LANL LDRD Program (J. X. Z.).
NR 85
TC 17
Z9 17
U1 0
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014523
DI 10.1103/PhysRevB.80.014523
PG 8
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100114
ER
PT J
AU Huda, MN
Yan, YF
Walsh, A
Wei, SH
Al-Jassim, MM
AF Huda, Muhammad N.
Yan, Yanfa
Walsh, Aron
Wei, Su-Huai
Al-Jassim, Mowafak M.
TI Group-IIIA versus IIIB delafossites: Electronic structure study
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HYDROGEN-PRODUCTION;
OPTICAL-PROPERTIES; THIN-FILMS; BASIS-SET; CUALO2; TRANSPARENT; WATER;
CONDUCTIVITY
AB First-principles density-functional theory calculations reveal significantly different behavior between group-IIIA and IIIB delafossites CuMO2. The group-IIIA delafossites have indirect band gaps with large differences between the direct and indirect band gaps. However, this difference is small for the group-IIIB delafossites: only 0.22 eV for CuScO2 and it diminishes further for CuYO2 and CuLaO2. Also, whereas group IIIA prefers rhombohedral stacking, group IIIB stabilizes in hexagonal structures. We further find that CuScO2 has the highest calculated fundamental band gap among all the delafossite oxides. In addition, CuLaO2 is found to have a direct band gap. These differences are explained by the different atomic configurations between the group-IIIA and IIIB elements. Our understanding of these delafossites provides general guidance for proper selection of delafossites for suitable applications in optoelectronic devices.
C1 [Huda, Muhammad N.; Yan, Yanfa; Walsh, Aron; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM muhammad.huda@nrel.gov
RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008
OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X
FU U. S. Department of Energy [DE-AC36-08GO28308]
FX M.N.H. gratefully acknowledges the fruitful discussions with Eric W.
McFarland and John A. Turner. This work was supported by the U. S.
Department of Energy under Contract No. DE-AC36-08GO28308. This research
used resources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the U. S.
Department of Energy under Contract No. DE-AC36-08GO28308.
NR 35
TC 45
Z9 45
U1 0
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 035205
DI 10.1103/PhysRevB.80.035205
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800070
ER
PT J
AU Hupalo, M
Conrad, EH
Tringides, MC
AF Hupalo, M.
Conrad, E. H.
Tringides, M. C.
TI Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001)
surfaces: A scanning tunneling microscopy study
SO PHYSICAL REVIEW B
LA English
DT Article
ID GRAPHITE; LAYERS
AB The inability to grow large well-ordered ultra high vacuum (UHV) graphene with a specific number of layers on SiC(0001) is well known. The growth involves several competing processes (Si desorption, carbon diffusion, island nucleation, etc.) and because of the high temperatures, it has not been possible to identify the growth mechanism. Using scanning tunneling microscopy and a vicinal 6H-SiC(0001) sample, we determine that the Si desorption from steps is the main controlling process. Adjacent steps retract with different speeds and the released carbon produces large areas of bilayer graphene with characteristic "fingers" emanating from steps. If faster heating rates are used, the different Si desorption rates are avoided and single-layer graphene films extending over many microns are produced.
C1 [Hupalo, M.; Tringides, M. C.] Iowa Sate Univ, US DOE, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA.
[Conrad, E. H.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.
RP Hupalo, M (reprint author), Iowa Sate Univ, US DOE, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA.
FU Department of Energy-Basic Sciences [DE-AC02-07CH11358]; W. M. Keck
Foundation and the National Science Foundation [0404084, 0521041,
0820382]
FX We wish to thank A. Zangwill and D. Vvedensky for helpful discussions
and a critical reading of the paper. Work at the Ames Laboratory was
supported by the Department of Energy-Basic Sciences under Contract No.
DE-AC02-07CH11358. Work at Georgia Tech was supported by a grant from
the W. M. Keck Foundation and the National Science Foundation under
Grants No. 0404084, No. 0521041, and No. 0820382.
NR 21
TC 76
Z9 77
U1 4
U2 41
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 041401
DI 10.1103/PhysRevB.80.041401
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100020
ER
PT J
AU Jimenez, E
Camarero, J
Sort, J
Nogues, J
Mikuszeit, N
Garcia-Martin, JM
Hoffmann, A
Dieny, B
Miranda, R
AF Jimenez, E.
Camarero, J.
Sort, J.
Nogues, J.
Mikuszeit, N.
Garcia-Martin, J. M.
Hoffmann, A.
Dieny, B.
Miranda, R.
TI Emergence of noncollinear anisotropies from interfacial magnetic
frustration in exchange-bias systems
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; cobalt; exchange interactions (electron);
ferromagnetic materials; frustration; iridium alloys; iron alloys;
magnetic anisotropy; magnetic hysteresis; magnetic multilayers; magnetic
structure; magnetic thin films; magnetisation reversal; manganese
alloys; nickel alloys
ID HYSTERESIS LOOPS; REVERSAL; NANOSTRUCTURES; DEPENDENCE; BILAYERS; FILMS
AB Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials.
C1 [Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain.
[Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain.
[Camarero, J.; Miranda, R.] IMDEA Nanociencia, Madrid 28049, Spain.
[Sort, J.] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Spain.
[Sort, J.] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain.
[Nogues, J.] Ctr Invest Nanociencia & Nanotecnol ICN CSIC, Bellaterra 08193, Spain.
[Nogues, J.] ICREA, Bellaterra 08193, Spain.
[Garcia-Martin, J. M.] CSIC, CNM, IMM, Tres Cantos 28760, Spain.
[Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Dieny, B.] INAC, CEA Grenoble, CEA CNRS UJF, SPINTEC,UMR 8191, F-38054 Grenoble 9, France.
RP Jimenez, E (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Cantoblanco, E-28049 Madrid, Spain.
EM julio.camarero@uam.es
RI Hoffmann, Axel/A-8152-2009; Garcia-Martin, Jose Miguel/H-4434-2011;
Nogues, Josep/D-7791-2012; Sort, Jordi/F-6582-2014; Camarero,
Julio/C-4375-2014; Microelectronica de Madrid, Instituto de/D-5173-2013
OI Camarero De Diego, Julio/0000-0003-0078-7280; Hoffmann,
Axel/0000-0002-1808-2767; Garcia-Martin, Jose
Miguel/0000-0002-5908-8428; Nogues, Josep/0000-0003-4616-1371; Sort,
Jordi/0000-0003-1213-3639; Microelectronica de Madrid, Instituto
de/0000-0003-4211-9045
NR 46
TC 66
Z9 66
U1 0
U2 25
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014415
DI 10.1103/PhysRevB.80.014415
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100070
ER
PT J
AU Kacmarcik, J
Marcenat, C
Klein, T
Pribulova, Z
van der Beek, CJ
Konczykowski, M
Budko, SL
Tillman, M
Ni, N
Canfield, PC
AF Kacmarcik, J.
Marcenat, C.
Klein, T.
Pribulova, Z.
van der Beek, C. J.
Konczykowski, M.
Budko, S. L.
Tillman, M.
Ni, N.
Canfield, P. C.
TI Strongly dissimilar vortex-liquid regimes in single-crystalline
NdFeAs(O,F) and (Ba,K)Fe2As2: A comparative study
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; effective mass; Landau levels; magnetisation; mixed
state; neodymium compounds; phase diagrams; potassium compounds;
specific heat; superconducting critical field; superconducting materials
ID HIGH-TEMPERATURE SUPERCONDUCTORS; MAGNETIC-FIELD; ANISOTROPIC
SUPERCONDUCTORS; II SUPERCONDUCTORS; FLUCTUATIONS; SOLIDS; FILMS
AB The extent of the vortex-liquid state in underdoped single crystals of the oxypnictide superconductors NdFeAs(O,F) and (Ba,K)Fe2As2 is investigated using specific heat (C-p) and Hall-probe magnetization experiments. In both materials, the vortex liquid lies entirely in the regime where the three-dimensional lowest Landau-level (3D-LLL) approximation is valid and both systems present a very small shift in the specific heat anomaly with increasing field. The irreversibility line, defined as the onset of diamagnetic response, is very rapidly shifted toward lower temperatures in NdFeAs(O,F) but remains close to the C-p anomaly in (Ba,K)Fe2As2. These measurements strongly suggest that a vortex-liquid phase occupies a large portion of the mixed-state phase diagram of NdFeAs(O,F) but not in (Ba,K)Fe2As2. This difference can be attributed to different Ginzburg numbers Gi, the latter being about 100 times larger in NdFeAs(O,F) than in (Ba,K)Fe2As2. The angular dependence of the upper critical field, derived from 3D-LLL scaling of the irreversibility lines, presents deviations from the standard 3D effective-mass model in both materials with an anisotropy being about three times smaller in (Ba,K)Fe2As2 (gamma similar to 2.5) than in Nd(F,O)FeAs (gamma similar to 7.5).
C1 [Kacmarcik, J.; Marcenat, C.] CEA, Inst Nanosci & Cryogenie, SPSMS, LATEQS, F-38054 Grenoble 9, France.
[Kacmarcik, J.; Pribulova, Z.] Ctr Low Temp Phys IEP SAS, Kosice 04353, Slovakia.
[Kacmarcik, J.; Pribulova, Z.] FS UPJS, Kosice 04353, Slovakia.
[Klein, T.; Pribulova, Z.] CNRS, Inst Neel, F-38042 Grenoble 9, France.
[Klein, T.] Inst Univ France, F-38041 Grenoble 9, France.
[Klein, T.] Univ Grenoble 1, F-38041 Grenoble 9, France.
[van der Beek, C. J.; Konczykowski, M.] Ecole Polytech, CNRS, UMR7642, Solides Irradies Lab, F-91128 Palaiseau, France.
[van der Beek, C. J.; Konczykowski, M.] CCEA DSM IRAMIS, F-91128 Palaiseau, France.
[Budko, S. L.; Tillman, M.; Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Budko, S. L.; Tillman, M.; Ni, N.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Kacmarcik, J (reprint author), CEA, Inst Nanosci & Cryogenie, SPSMS, LATEQS, 17 Rue Martyrs, F-38054 Grenoble 9, France.
RI Canfield, Paul/H-2698-2014
FU Department of Energy; Basic Energy Sciences [DE-AC02-07CH11358]; Slovak
Research and Development Agency [LPP-0101-06]; 6th Framework Programme
[MTKD-CT-2005-03002]; ANRMICROMAG [BLAN07-2]; [26280]
FX We are most obliged to V. Mosser of ITRON, Montrouge, for the
development of the Hall sensors used in this study. Work at the Ames
Laboratory was supported by the Department of Energy, Basic Energy
Sciences under Contract No. DE-AC02-07CH11358. Z. P. thanks the Slovak
Research and Development Agency under the Contract No. LPP-0101-06. C.
M. and J. K. thank the 6th Framework Programme MCA Transfer of Knowledge
project under ExtreM No. MTKD-CT-2005-03002. T. K., Z. P., and M. K.
thank the ANRMICROMAG BLAN07-2 under Contract No. 26280 for financial
support.
NR 42
TC 19
Z9 19
U1 1
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014515
DI 10.1103/PhysRevB.80.014515
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100106
ER
PT J
AU Kantor, I
Dubrovinsky, L
McCammon, C
Steinle-Neumann, G
Kantor, A
Skorodumova, N
Pascarelli, S
Aquilanti, G
AF Kantor, I.
Dubrovinsky, L.
McCammon, C.
Steinle-Neumann, G.
Kantor, A.
Skorodumova, N.
Pascarelli, S.
Aquilanti, G.
TI Short-range order and Fe clustering in Mg1-xFexO under high pressure
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; antiferromagnetic materials; high-pressure
effects; high-temperature effects; iron; iron compounds; magnesium
compounds; metal clusters; Mossbauer effect; short-range order; solid
solutions
ID ISOMER-SHIFT; SPIN-TRANSITION; MOSSBAUER-SPECTROSCOPY; LOWER MANTLE;
FERRIC-IRON; FE-57; SPECTRA; FIELD; FERROPERICLASE; TEMPERATURE
AB By combining high-pressure and high-temperature Moumlssbauer spectroscopic studies of (Mg,Fe)O with results of ab initio simulations, several important properties of this material were established. Under high pressure (Mg,Fe)O shows changes in the short-range order with the tendency to form iron clusters. These changes were found to be irreversible, implying sluggish kinetics of these processes at ambient conditions. The pressure-induced spin crossover is interpreted here as a gradual noncooperative transition. The onset and width of spin crossover depends, therefore, not only on pressure, temperature, and composition, but also on short-range order in the FeO-MgO solid solution.
C1 [Kantor, I.; Dubrovinsky, L.; McCammon, C.; Steinle-Neumann, G.; Kantor, A.] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany.
[Skorodumova, N.] Uppsala Univ, Condensed Matter Theory Grp, S-75105 Uppsala, Sweden.
[Pascarelli, S.; Aquilanti, G.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
RP Kantor, I (reprint author), Univ Chicago, CARS, Argonne Natl Lab, Argonne, IL 60439 USA.
EM kantor@cars.uchicago.edu
RI McCammon, Catherine/B-4983-2010; Steinle-Neumann, Gerd/D-8805-2012
OI McCammon, Catherine/0000-0001-5680-9106;
FU German Science Foundation (DFG); European Science Foundation
FX We acknowledge the German Science Foundation (DFG) and the European
Science Foundation (EuroMinSci project) for financial support of this
study.
NR 64
TC 24
Z9 24
U1 5
U2 21
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014204
DI 10.1103/PhysRevB.80.014204
PG 12
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100051
ER
PT J
AU Kini, RN
Kent, AJ
Henini, M
AF Kini, R. N.
Kent, A. J.
Henini, M.
TI Phonon-assisted tunneling in a superlattice in an applied magnetic field
SO PHYSICAL REVIEW B
LA English
DT Article
ID GAAS/GA0.65AL0.35AS SUPERLATTICES; ELECTRIC-FIELD
AB We have studied acoustic phonon-assisted tunneling in a weakly coupled GaAs/AlAs superlattice (SL) in a magnetic field. At zero magnetic field, the phonon-assisted tunnel current, delta I, exhibits maximum at a particular value of the Stark splitting, Delta(max), which depends on the spectral distribution of the nonequilibrium phonons. Applying the field (B <= 7 T) perpendicular to the SL growth direction, z, had no significant effect on the phonon-assisted tunneling current compared to B=0. However, in a magnetic field parallel to z, Delta(max) is proportional to B and weakly dependent on the phonon spectrum. This behavior, which we explain in terms of the momentum selection rules for phonon-assisted transitions in a magnetically quantized electron system, suggests that phonon amplification in the SL can be tuned by the magnetic field.
C1 [Kini, R. N.; Kent, A. J.; Henini, M.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
RP Kini, RN (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
EM rajeev.kini@nrel.gov
RI Kini, Rajeev/D-2342-2009; Henini, Mohamed/E-8520-2012;
OI Kini, Rajeev/0000-0002-3305-9346; Henini, Mohamed/0000-0001-9414-8492;
Kent, Anthony/0000-0002-2391-6869
FU Engineering and Physical Sciences Research Council of the U. K.
FX The authors would like to thank B. Glavin for helpful discussions, and
the Engineering and Physical Sciences Research Council of the U. K. for
supporting this work.
NR 15
TC 1
Z9 2
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 035335
DI 10.1103/PhysRevB.80.035335
PG 5
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800107
ER
PT J
AU Kogan, VG
Martin, C
Prozorov, R
AF Kogan, V. G.
Martin, C.
Prozorov, R.
TI Superfluid density and specific heat within a self-consistent scheme for
a two-band superconductor
SO PHYSICAL REVIEW B
LA English
DT Article
DE free energy; impurities; magnesium compounds; silicon alloys; specific
heat; superconducting energy gap; superfluidity; vanadium alloys
ID STATE; MGB2; IMPURITIES; MODEL; GAP
AB The two gaps in a two-band clean s-wave superconductor are evaluated self-consistently within the quasiclassical Eilenberger weak-coupling formalism with two in-band and one interband pairing potentials. Superfluid density, free energy, and specific heat are given in the form amenable for fitting the experimental data. Well-known two-band MgB(2) and V(3)Si superconductors are used to test the developed approach. The pairing potentials obtained from the fit of the superfluid density data in MgB(2) crystal were used to calculate temperature-dependent specific heat C(T). The calculated C(T) compares well with the experimental data. Advantages and validity of this, which we call the "gamma model," are discussed and compared with the commonly used empirical (and not self-consistent) "alpha model." Correlation between the sign of the interband coupling and the signs of the two order parameters is discussed. Suppression of the critical temperature by the interband scattering is evaluated and shown to be severe for the interband repulsion as compared to the attraction. The data on a strong T(c) suppression in MgB(2) crystals by impurities suggest that the order parameters on two effective bands of this material may have opposite signs, i.e., may have the s(+/-) structure similar to proposals for iron-based pnictide superconductors.
C1 [Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM kogan@ameslab.gov; cmartin@ameslab.gov; prozorov@ameslab.gov
RI Prozorov, Ruslan/A-2487-2008
OI Prozorov, Ruslan/0000-0002-8088-6096
FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred
P. Sloan Foundation
FX We thank R. T. Gordon and H. Kim for help with the experiments, J.
Karpinski for MgB2, and D. K. Christen for V3Si single
crystals, P. C. Canfield, A. Carrington, A. V. Chubukov, S. L. Bud'ko,
A. J. Legett, I. I. Mazin, J. Schmalian, M. A. Tanatar, and Z. Tesanovic
for interest and discussions. Work at the Ames Laboratory is supported
by the Department of Energy-Basic Energy Sciences under Contract No.
DE-AC02-07CH11358. R. P. acknowledges support of Alfred P. Sloan
Foundation.
NR 29
TC 80
Z9 80
U1 2
U2 25
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014507
DI 10.1103/PhysRevB.80.014507
PG 8
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100098
ER
PT J
AU Kong, BD
Paul, S
Nardelli, MB
Kim, KW
AF Kong, B. D.
Paul, S.
Nardelli, M. Buongiorno
Kim, K. W.
TI First-principles analysis of lattice thermal conductivity in monolayer
and bilayer graphene
SO PHYSICAL REVIEW B
LA English
DT Article
ID PHONONS
AB Using calculations from first principles, we investigate the lattice thermal conductivity of ideal monolayer and bilayer graphenes. Our result estimates that the intrinsic thermal conductivity of both materials is around 2200 W m(-1) K-1 at 300 K, a value close to the one observed theoretically and experimentally in graphite along the basal plane. It also illustrates the expected T-1 dependence at higher temperatures. The little variation between monolayer and bilayer thermal conductivities suggests that the number of layers may not affect significantly the in-plane thermal properties of these systems. The intrinsic thermal conductivity also appears to be nearly isotropic for graphene.
C1 [Kong, B. D.; Kim, K. W.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA.
[Paul, S.; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Nardelli, M. Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
RP Kong, BD (reprint author), N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA.
EM kwk@ncsu.edu
RI Buongiorno Nardelli, Marco/C-9089-2009; KONG, BYOUNG DON/A-2186-2012
OI KONG, BYOUNG DON/0000-0003-4072-4399
FU NERC/NIST SWAN-NRI; DARPA/HRL CERA; U. S. Department of Energy
[DE-AC0500OR22725]
FX This work was supported, in part, by the NERC/NIST SWAN-NRI and the
DARPA/HRL CERA programs. M. B. N. wishes to acknowledge partial support
from the Office of Basic Energy Sciences, U. S. Department of Energy at
Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with
UT-Battelle, LLC.
NR 20
TC 89
Z9 90
U1 8
U2 54
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 033406
DI 10.1103/PhysRevB.80.033406
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800027
ER
PT J
AU Lazarevic, N
Popovic, ZV
Hu, RW
Petrovic, C
AF Lazarevic, N.
Popovic, Z. V.
Hu, Rongwei
Petrovic, C.
TI Raman scattering study of the Fe1-xCoxSb2 and Fe1-xCrxSb2 (0 < x < 1)
single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE chromium compounds; cobalt compounds; iron compounds; Raman spectra;
semiconductor doping; space groups; X-ray diffraction
ID FESB2; GAP
AB Polarized Raman scattering spectra of the Fe1-xCoxSb2 and Fe1-xCrxSb2 (0 < x < 1) single crystals are measured at room temperature in the 80-200 cm(-1) wavenumber range. All six Raman-active modes, predicted by factor-group analysis, are experimentally observed and assigned. We also analyzed energy and linewidth changes for all six Raman-active modes caused by doping.
C1 [Lazarevic, N.; Popovic, Z. V.] Inst Phys, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia.
[Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Hu, Rongwei] Brown Univ, Dept Phys, Providence, RI 02912 USA.
RP Lazarevic, N (reprint author), Inst Phys, Ctr Solid State Phys & New Mat, Pregrevica 118, Belgrade 11080, Serbia.
RI Lazarevic, Nenad/C-3254-2012; Hu, Rongwei/E-7128-2012; Petrovic,
Cedomir/A-8789-2009
OI Petrovic, Cedomir/0000-0001-6063-1881
FU Serbian Ministry of Science and Technological Development [141047]; U.
S. Department of Energy by Brookhaven Science Associates
[DE-Ac02-98CH10886]
FX We thank Myron Strongin for help with the paper. This work was supported
by the Serbian Ministry of Science and Technological Development under
Project No. 141047. Part of this work was carried out at the Brookhaven
National Laboratory which is operated for the Office of Basic Energy
Sciences, U. S. Department of Energy by Brookhaven Science Associates
(Grant No. DE-Ac02-98CH10886).
NR 16
TC 5
Z9 5
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014302
DI 10.1103/PhysRevB.80.014302
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100053
ER
PT J
AU Lee, H
Park, E
Park, T
Sidorov, VA
Ronning, F
Bauer, ED
Thompson, JD
AF Lee, Hanoh
Park, Eunsung
Park, Tuson
Sidorov, V. A.
Ronning, F.
Bauer, E. D.
Thompson, J. D.
TI Pressure-induced superconducting state of antiferromagnetic CaFe2As2
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; calcium compounds; electrical resistivity;
fluctuations in superconductors; iron compounds; magnetic
susceptibility; type II superconductors
ID LAYERED QUATERNARY COMPOUND
AB The antiferromagnet CaFe2As2 does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibility under quasihydrostatic pressure, however, we find that a substantial volume fraction of the sample is superconducting in a narrow pressure range where collapsed tetragonal and orthorhombic structures coexist. At higher pressures, the collapsed tetragonal structure is stabilized with the boundary between this structure and the phase of coexisting structures strongly dependent on pressure history. Fluctuations in magnetic degrees of freedom in the phase of coexisting structures appear to be important for superconductivity.
C1 [Lee, Hanoh; Park, Tuson; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Park, Eunsung; Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea.
[Sidorov, V. A.] Vereshchagin Inst High Pressure Phys, Troitsk 142190, Russia.
RP Lee, H (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; Mushiake,
Maki/A-2925-2012;
OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937
FU U.S. Department of Energy/Office of Science; Los Alamos LDRD program;
KOSEF [2009-0058687]; Korea government (MEST); Russian Foundation for
Basic Research [09-02-00336]
FX Work at Los Alamos was performed under the auspices of the U.S.
Department of Energy/Office of Science and supported by the Los Alamos
LDRD program. T. P. acknowledges support from KOSEF (Grant No.
2009-0058687) funded by the Korea government (MEST). V. A. S.
acknowledges support from the Russian Foundation for Basic Research
(Grant No. 09-02-00336).
NR 43
TC 47
Z9 47
U1 1
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024519
DI 10.1103/PhysRevB.80.024519
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500098
ER
PT J
AU Li, SL
de la Cruz, C
Huang, Q
Chen, GF
Xia, TL
Luo, JL
Wang, NL
Dai, PC
AF Li, Shiliang
de la Cruz, Clarina
Huang, Q.
Chen, G. F.
Xia, T. -L.
Luo, J. L.
Wang, N. L.
Dai, Pengcheng
TI Structural and magnetic phase transitions in Na1-delta FeAs
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; crystal structure; crystal symmetry;
exchange interactions (electron); high-temperature superconductors; iron
compounds; magnetic structure; neutron diffraction; sodium compounds;
solid-state phase transformations
ID SUPERCONDUCTIVITY; LIFEAS
AB We use neutron scattering to study the spin and lattice structures of single crystal and powder samples of Na1-delta FeAs (T-c=23 K). Upon cooling from room temperature, the system goes through a series of phase transitions: first changing the crystal symmetry from tetragonal to orthorhombic at 49 K, then ordering antiferromagnetically with a spin structure similar to that of LaFeAsO and a small moment (0.09 +/- 0.04 mu(B)), and finally becoming superconducting below about 23 K. These results confirm that antiferromagnetic order is ubiquitous for the parent compounds of the iron arsenide superconductors and suggest that the separated structural and magnetic phase-transition temperatures are due to the reduction in the c-axis exchange coupling of the system.
C1 [Li, Shiliang; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.
[Li, Shiliang; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Li, Shiliang; de la Cruz, Clarina; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[de la Cruz, Clarina; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Huang, Q.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Chen, G. F.; Xia, T. -L.] Remin Univ China, Dept Phys, Beijing 100872, Peoples R China.
RP Li, SL (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100190, Peoples R China.
EM slli@aphy.iphy.ac.cn; daip@ornl.gov
RI Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012; dela Cruz,
Clarina/C-2747-2013; Xia, Tian-Long/N-4467-2016
OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz,
Clarina/0000-0003-4233-2145;
FU U.S. NSF [DMR-0756568]; U.S. DOE BES [DE-FG02-05ER46202]
FX We thank Jiangping Hu, J. A. Fernandez-Baca, Tao Xiang, and Zhong-Yi Lu
for helpful discussions. This work is supported by the U.S. NSF
(Contract No. DMR-0756568), by the U.S. DOE BES (Contract No.
DE-FG02-05ER46202), and by the U. S. DOE, Division of Scientific User
Facilities. The work in IOP is supported by the CAS and MOST.
NR 26
TC 111
Z9 111
U1 0
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 020504
DI 10.1103/PhysRevB.80.020504
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500016
ER
PT J
AU Lin, H
Bozin, ES
Billinge, SJL
Androulakis, J
Malliakas, CD
Lin, CH
Kanatzidis, MG
AF Lin, He
Bozin, E. S.
Billinge, S. J. L.
Androulakis, J.
Malliakas, C. D.
Lin, C. H.
Kanatzidis, M. G.
TI Phase separation and nanostructuring in the thermoelectric material
PbTe1-xSx studied using the atomic pair distribution function technique
SO PHYSICAL REVIEW B
LA English
DT Article
ID X-RAY-DIFFRACTION; PROFILE REFINEMENT; RIETVELD METHOD; PBTE;
TEMPERATURE; TELLURIUM; SULPHUR; SPACE; PBS
AB The average and local structures of the (PbTe)(1-x)(PbS)(x) system of thermoelectric materials has been studied using the Rietveld and atomic pair distribution function methods. Samples with 0.25 <= x are macroscopically phase separated. Phase separation was suppressed in a quenched x = 0.5 sample which, nonetheless, exhibited a partial spinodal decomposition. The promising thermoelectric material with x = 0.16 showed intermediate behavior. Combining TEM and bulk scattering data suggests that the sample is a mixture of PbTe-rich material and a partially spinodally decomposed phase similar to the quenched 50% sample. This confirms that, in the bulk, this sample is inhomogeneous on a nanometer length scale, which may account for its enhanced thermoelectric figure of merit.
C1 [Lin, He] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Bozin, E. S.; Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
[Bozin, E. S.; Billinge, S. J. L.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Androulakis, J.; Malliakas, C. D.; Lin, C. H.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
RP Lin, H (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
EM sb2896@columbia.edu
RI Bozin, Emil/E-4679-2011
FU National Science Foundation (NSF) [DMR-0304391, DMR-0703940]; Office of
Naval Research; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-ACO2-06CH11357, W-7405-Eng-82]
FX We acknowledge Pavol Juhas, Ahmad Masadeh, Hyun-Jeong Kim, and Asel
Sartbaeva for their valuable assistance with the data collection. Work
in the Billinge group was supported in part by National Science
Foundation (NSF) under Grants No. DMR-0304391 and No. DMR-0703940 and in
the Kanatzidis group by the Office of Naval Research. Data were
collected at the 6IDD beamline in the Midwest Universities Collaborative
Access Team (MUCAT) sector at the APS. Use of the Advanced Photon Source
was supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357.
The MUCAT sector at the APS is supported by the U.S. DOE, Office of
Science, Office of Basic Energy Sciences, through the Ames Laboratory
under Contract No. W-7405-Eng-82.
NR 36
TC 12
Z9 12
U1 1
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045204
DI 10.1103/PhysRevB.80.045204
PG 8
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100052
ER
PT J
AU Lin, WC
Gai, Z
Gao, L
Shen, J
Hsu, PJ
Yen, HY
Lin, MT
AF Lin, Wen-Chin
Gai, Zheng
Gao, Lan
Shen, Jian
Hsu, Pin-Jui
Yen, Hong-Yu
Lin, Minn-Tsong
TI Nanoscale magnetic configurations of supported Fe nanoparticle
assemblies studied by scanning electron microscopy with spin analysis
SO PHYSICAL REVIEW B
LA English
DT Article
DE iron; magnetic domains; magnetic particles; magnetic thin films;
nanoparticles; scanning electron microscopy
ID THIN ALUMINA FILM; FORCE MICROSCOPY; ARRAYS; CO
AB Microscopic magnetic behavior of supported nanoparticles is strongly correlated with their functionalities, especially in data storage and biological applications, but still needs to be clarified. We studied nanoscale magnetic configurations of Fe nanoparticle assemblies using scanning electron microscopy with polarization analysis. The flux closure domain configurations and the reduced magnetic correlation length (similar to 250 nm), relative to the conventional thin films, are determined. Quantitative analysis indicates the magnetic interaction energy to be 80-99 meV, close to the magnetic dipolar coupling energy. These direct observations evidence the aforereported simulations and will be valuable for fabricating magnetic nanoparticle assemblies with the desired magnetic properties.
C1 [Lin, Wen-Chin] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan.
[Lin, Wen-Chin; Hsu, Pin-Jui; Yen, Hong-Yu; Lin, Minn-Tsong] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan.
[Gai, Zheng; Gao, Lan; Shen, Jian] Oak Ridge Natl Lab, Ctr Nanophase, Div Mat Sci, Oak Ridge, TN 37831 USA.
[Gai, Zheng; Gao, Lan; Shen, Jian] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Lin, Minn-Tsong] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan.
RP Lin, WC (reprint author), Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan.
EM wclin@ntnu.edu.tw; mtlin@phys.ntu.edu.tw
RI Lin, Minn-Tsong/F-7937-2012; Lin, Wen-Chin/I-3912-2012; Gai,
Zheng/B-5327-2012
OI Lin, Minn-Tsong/0000-0001-7735-4219; Gai, Zheng/0000-0002-6099-4559
FU National Science Council of Taiwan [NSC 96-2120-M-002-011, NSC
95-2112-M-002-051-MY3, NSC 96-2112-M-003-015-MY3]; Scientific User
Facilities Division, Office of Basic Energy Sciences, U.S. Department of
Energy
FX This work was supported by the National Science Council of Taiwan under
Grants No. NSC 96-2120-M-002-011, No. NSC 95-2112-M-002-051-MY3, and No.
NSC 96-2112-M-003-015-MY3. A portion of this research at Oak Ridge
National Laboratory's Center for Nanophase Materials Sciences was
sponsored by the Scientific User Facilities Division, Office of Basic
Energy Sciences, U.S. Department of Energy.
NR 24
TC 5
Z9 5
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024407
DI 10.1103/PhysRevB.80.024407
PG 5
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500058
ER
PT J
AU Ma, D
Stoica, AD
Wang, XL
Lu, ZP
Xu, M
Kramer, M
AF Ma, D.
Stoica, A. D.
Wang, X-L.
Lu, Z. P.
Xu, M.
Kramer, M.
TI Efficient local atomic packing in metallic glasses and its correlation
with glass-forming ability
SO PHYSICAL REVIEW B
LA English
DT Article
DE copper alloys; glass structure; metallic glasses; neutron diffraction;
vitrification; X-ray diffraction; zirconium alloys
ID PAIR DISTRIBUTION FUNCTION; MEDIUM-RANGE ORDER; X-RAY-DIFFRACTION; CU-ZR
SYSTEM; MECHANICAL-PROPERTIES; NEUTRON-DIFFRACTION; SI ALLOYS; LIQUID;
MODEL
AB We have probed local atomic structure of Zr-Cu metallic glasses using time-of-flight neutron and synchrotron x-ray diffraction techniques with high resolution. Our results provide evidence for a scheme of efficient local atomic packing where atomic clusters encompass multiple types of atoms in the first coordination shell. We also demonstrate experimental evidence of a strong correlation between the number of unlike atom bonds and the glass-forming ability. Our findings may provide insights into a broad range of scientific problems where efficient space filling by packing spheres is essential.
C1 [Ma, D.; Stoica, A. D.; Wang, X-L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China.
[Xu, M.; Kramer, M.] Ames Lab, Ames, IA 50011 USA.
RP Ma, D (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
EM dongma@ornl.gov
RI Wang, Xun-Li/C-9636-2010; Ma, Dong/G-5198-2011; Lu,
Zhao-Ping/A-2718-2009; Stoica, Alexandru/K-3614-2013
OI Wang, Xun-Li/0000-0003-4060-8777; Ma, Dong/0000-0003-3154-2454; Stoica,
Alexandru/0000-0001-5118-0134
FU U.S. Department of Energy [DE-AC0500OR22725]; National Natural Science
Foundation of China [50725104]; 973 program [2007CB613903]; Ames
Laboratory was supported by the Department of Energy, Office of Basic
Energy Sciences [DE-AC02-07CH11358]; U.S. Department of Energy, Office
of Science, Basic Energy Sciences [DE-AC0206CH11357]
FX This research was supported by the Laboratory Directed Research and
Development program of Oak Ridge National Laboratory (ORNL), managed by
UT-Battelle, LLC for the U. S. Department of Energy under Contract No.
DE-AC0500OR22725. Z.P.L. acknowledges the financial support from
National Natural Science Foundation of China under Grant No. 50725104
and the 973 program under Contract No. 2007CB613903. Work at the Ames
Laboratory was supported by the Department of Energy, Office of Basic
Energy Sciences, under Contract No. DE-AC02-07CH11358. The high-energy x
ray work at the MUCAT sector of the APS was supported by the U.S.
Department of Energy, Office of Science, Basic Energy Sciences under
Contract No. DE-AC0206CH11357.
NR 37
TC 44
Z9 46
U1 3
U2 33
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014202
DI 10.1103/PhysRevB.80.014202
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100049
ER
PT J
AU Martin, C
Gordon, RT
Tanatar, MA
Kim, H
Ni, N
Bud'ko, SL
Canfield, PC
Luo, H
Wen, HH
Wang, Z
Vorontsov, AB
Kogan, VG
Prozorov, R
AF Martin, C.
Gordon, R. T.
Tanatar, M. A.
Kim, H.
Ni, N.
Bud'ko, S. L.
Canfield, P. C.
Luo, H.
Wen, H. H.
Wang, Z.
Vorontsov, A. B.
Kogan, V. G.
Prozorov, R.
TI Nonexponential London penetration depth of external magnetic fields in
superconducting Ba1-xKxFe2As2 single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; high-temperature superconductors; magnetic anisotropy;
penetration depth (superconductivity); potassium compounds;
superconducting critical field
ID GAPS
AB We have studied the in- and out-of-plane magnetic penetration depths in the hole-doped iron-based superconductor Ba1-xKxFe2As2 (T-c approximate to 30 K). Single crystals grown from different fluxes and by different groups showed nearly identical results. The in-plane London penetration depth lambda(ab) is not exponentially saturating at low temperature, as would be expected from a fully gapped superconductor. Instead, lambda(ab)(T) shows a power-law behavior, lambda proportional to T-n (n approximate to 2), down to T approximate to 0.02T(c), similar to the electron-doped Ba(Fe1-xCox)(2)As-2. The penetration depth anisotropy gamma(lambda)=lambda(c)(T)/lambda(ab)(T) increases upon cooling, opposite to the trend observed in the anisotropy of the upper critical field, gamma(xi)=H-c2(perpendicular to c)(0)/H-c2(c)(0). These are universal characteristics of both the electron- and hole-doped 122 systems, suggesting unconventional multigap superconductivity. The behavior of the in-plane superfluid density rho(ab)(T) is discussed in light of existing theoretical models proposed for the iron pnictide superconductors.
C1 [Martin, C.; Gordon, R. T.; Tanatar, M. A.; Kim, H.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Kogan, V. G.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Martin, C.; Gordon, R. T.; Tanatar, M. A.; Kim, H.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Kogan, V. G.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Luo, H.; Wen, H. H.; Wang, Z.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
[Vorontsov, A. B.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM prozorov@ameslab.gov
RI Luo, Huiqian/F-4049-2012; Prozorov, Ruslan/A-2487-2008; Canfield,
Paul/H-2698-2014; Wang, Zhaosheng/G-5162-2016
OI Prozorov, Ruslan/0000-0002-8088-6096;
FU Department of Energy, Basic Energy Sciences [DE-AC0207CH11358]
FX We thank A. Chubukov, I. I. Mazin, J. Schmallian, and M. Vavilov for
stimulating discussions and A. Carrington for discussions and sharing
unpublished data. Work at the Ames Laboratory was supported by the
Department of Energy, Basic Energy Sciences under Contract No.
DE-AC0207CH11358. M.A.T. acknowledges continuing cross appointment with
the Institute of Surface Chemistry, National Ukrainian Academy of
Sciences.
NR 33
TC 72
Z9 72
U1 1
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 020501
DI 10.1103/PhysRevB.80.020501
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500013
ER
PT J
AU Meier, H
Kharitonov, MY
Efetov, KB
AF Meier, Hendrik
Kharitonov, Maxim Yu.
Efetov, Konstantin B.
TI Anomalous Hall effect in granular ferromagnetic metals and effects of
weak localization
SO PHYSICAL REVIEW B
LA English
DT Article
ID BERRY-PHASE; CONDUCTIVITY; ABSENCE
AB We theoretically investigate the anomalous Hall effect in a system of dense-packed ferromagnetic grains in the metallic regime. Using the formalism recently developed for the conventional Hall effect in granular metals, we calculate the residual anomalous Hall conductivity sigma(xy) and resistivity rho(xy) and weak localization corrections to them for both skew-scattering and side-jump mechanisms. We find that the scaling relation between rho(xy) and the longitudinal resistivity rho(xx) of the array does not hold, regardless of whether it is satisfied for the specific resistivities of the grain material or not. The weak localization corrections, however, are found to be in agreement with those for homogeneous metals. We discuss recent experimental data on the anomalous Hall effect in polycrystalline iron films in view of the obtained results.
C1 [Meier, Hendrik; Kharitonov, Maxim Yu.; Efetov, Konstantin B.] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44780 Bochum, Germany.
[Kharitonov, Maxim Yu.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Meier, H (reprint author), Ruhr Univ Bochum, Inst Theoret Phys 3, D-44780 Bochum, Germany.
RI Efetov, Konstantin/H-8852-2013
FU SFB
FX Financial support of SFB Transregio 12 is greatly appreciated.
NR 30
TC 12
Z9 12
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045122
DI 10.1103/PhysRevB.80.045122
PG 10
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100046
ER
PT J
AU Mlinar, V
Zunger, A
AF Mlinar, Vladan
Zunger, Alex
TI Spectral barcoding of quantum dots: Deciphering structural motifs from
the excitonic spectra
SO PHYSICAL REVIEW B
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; NANOSTRUCTURES; SPECTROSCOPY; ENERGY
AB Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the "spectral barcoding" method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features.
C1 [Mlinar, Vladan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM alex.zunger@nrel.gov
RI Zunger, Alex/A-6733-2013
FU U.S. Department of Energy, Office of Science [DE-AC36-08GO28308]
FX The authors thank P. A. Dalgarno and R. J. Warburton for their
permission to reproduce measured emission spectra in Fig. 1(a) and R. J.
Warburton for discussions and comments on the paper. This work was
funded by the U.S. Department of Energy, Office of Science under NREL
Contract No. DE-AC36-08GO28308.
NR 34
TC 13
Z9 13
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 035328
DI 10.1103/PhysRevB.80.035328
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800100
ER
PT J
AU Muniz, RA
Haas, S
Levi, AFJ
Grigorenko, I
AF Muniz, Rodrigo A.
Haas, Stephan
Levi, A. F. J.
Grigorenko, Ilya
TI Plasmonic excitations in tight-binding nanostructures
SO PHYSICAL REVIEW B
LA English
DT Article
ID SMALL METALLIC PARTICLES
AB We explore the collective electromagnetic response in atomic clusters of various sizes and geometries. Our aim is to understand, and hence to control, their dielectric response based on a fully quantum-mechanical description which captures accurately their relevant collective modes. The electronic energy levels and wave functions, calculated within the tight-binding model, are used to determine the nonlocal dielectric response function. It is found that the system shape, the electron filling, and the driving frequency of the external electric field strongly control the resonance properties of the collective excitations in the frequency and spatial domains. Furthermore, it is shown that one can design spatially localized collective excitations by properly tailoring the nanostructure geometry.
C1 [Muniz, Rodrigo A.; Haas, Stephan] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Levi, A. F. J.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA.
[Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Theoret Div T11, Los Alamos, NM 87545 USA.
[Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Muniz, RA (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
EM rmuniz@usc.edu
RI Grigorenko, Ilya/B-5616-2009; Levi, Anthony/B-4112-2009
FU Department of Energy [DE-FG0206ER46319]
FX We would like to thank Gene Bickers, Richard Thompson, Vitaly Kresin,
Aiichiro Nakano, and Yung-Ching Liang for useful conversations. We also
acknowledge financial support by the Department of Energy (Grant No.
DE-FG0206ER46319). The numerical computations were carried out on the
University of Southern California high- performance computer cluster.
NR 25
TC 10
Z9 11
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045413
DI 10.1103/PhysRevB.80.045413
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100099
ER
PT J
AU Nagle, KP
Seidler, GT
Shirley, EL
Fister, TT
Bradley, JA
Brown, FC
AF Nagle, K. P.
Seidler, G. T.
Shirley, E. L.
Fister, T. T.
Bradley, J. A.
Brown, F. C.
TI Final-state symmetry of Na 1s core-shell excitons in NaCl and NaF
SO PHYSICAL REVIEW B
LA English
DT Article
ID X-RAY-ABSORPTION; ELECTRON-HOLE INTERACTION; AB-INITIO CALCULATION; FAST
CHARGED-PARTICLES; RAMAN-SCATTERING; PHOTOELECTRON-SPECTROSCOPY;
OPTICAL-ABSORPTION; SODIUM-HALIDES; INELASTIC-COLLISIONS; BONDING
CHANGES
AB We report measurements of the Na 1s contribution to the nonresonant inelastic x-ray scattering (NRIXS) from NaCl and NaF. Prior x-ray absorption studies have observed two pre-edge excitons in both materials. The momentum-transfer dependence (q dependence) of the measured NRIXS cross section and of real-space full multiple scattering and Bethe-Salpeter calculations determine that the higher-energy core excitons are s type for each material. The lower-energy core excitons contribute at most weakly to the NRIXS signal and we propose that these may be surface core excitons, as have been observed in several other alkali halides. The analysis of the orbital angular momentum of these features leads to a discussion of the limited sensitivity of NRIXS measurements to d-type final states when investigating 1s initial states. In this case the s- and p-type final density of states can be characterized by measurements at a small number of momentum transfers. This is in contrast to the case of more complex initial states for which measurements at a large number of momentum transfers are needed to separate the rich admixture of accessible and contributing final-state symmetries.
C1 [Nagle, K. P.; Seidler, G. T.; Fister, T. T.; Bradley, J. A.; Brown, F. C.] Univ Washington, Dept Phys, Seattle, WA 98105 USA.
[Shirley, E. L.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA.
[Fister, T. T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA.
EM seidler@phys.washington.edu
FU U.S. Department of Energy, Basic Energy Sciences [DE-FGE03-97ER45628,
W-31-109ENG-38, N0001405-1-0843, DE-FG03-97ER45629, DE-AC02-06CH11357];
Pacific Northwest National Laboratory; University of Washington; Natural
Sciences and Engineering Research Council of Canada
FX This research was supported by the U.S. Department of Energy, Basic
Energy Sciences, Office of Science, under Contracts No.
DE-FGE03-97ER45628 and No. W-31-109ENG-38, Office of Naval Research
under Grant No. N0001405-1-0843, and the Summer Research Institute
program at the Pacific Northwest National Laboratory. The operation of
Sector 20 PNC-CAT/XOR is supported by the U. S. Department of Energy,
Basic Energy Sciences, Office of Science, under Contract No.
DE-FG03-97ER45629, the University of Washington, and grants from the
Natural Sciences and Engineering Research Council of Canada. Use of the
Advanced Photon Source was supported by the U.S. Department of Energy,
Basic Energy Sciences, Office of Science, under Contract No.
DE-AC02-06CH11357. We thank Arvo Kikas, Micah Prange, Joshua Kas, and
John Rehr for useful discussions.
NR 100
TC 11
Z9 11
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045105
DI 10.1103/PhysRevB.80.045105
PG 9
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100029
ER
PT J
AU Ni, N
Thaler, A
Kracher, A
Yan, JQ
Bud'ko, SL
Canfield, PC
AF Ni, N.
Thaler, A.
Kracher, A.
Yan, J. Q.
Bud'ko, S. L.
Canfield, P. C.
TI Phase diagrams of Ba(Fe1-xMx)(2)As-2 single crystals (M=Rh and Pd)
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium alloys; crystal structure; doping; electrical resistivity; iron
alloys; magnetic transitions; magnetisation; palladium alloys; phase
diagrams; rhodium alloys; superconducting materials; superconducting
transition temperature; thermodynamics
ID SUPERCONDUCTIVITY
AB Single crystalline Ba(Fe1-xMx)(2)As-2 (M=Rh,Pd) series have been grown and characterized by structural, thermodynamic, and transport measurements. These measurements show that the structural/magnetic phase transitions, found in pure BaFe2As2 at 134 K, are suppressed monotonically by the doping and that superconductivity can be stabilized over a domelike region. Temperature-composition (T-x) phase diagrams based on electrical transport and magnetization measurements are constructed and compared to those of the Ba(Fe1-xMx)(2)As-2 (M=Co,Ni) series. Despite the generic difference between 3d and 4d shells and the specific, conspicuous differences in the changes to the unit cell parameters, the effects of Rh doping are exceptionally similar to the effects of Co doping and the effects of Pd doping are exceptionally similar to the effects of Ni doping. These data show that whereas the structural/antiferromagnetic phase-transition temperatures can be parameterized by x and the superconducting transition temperature can be parameterized by some combination of x and e, the number of extra electrons associated with the M doping, the transition temperatures of 3d- and 4d-doped BaFe2As2 cannot be simply parameterized by the changes in the unit-cell dimensions or their ratios.
C1 [Ni, N.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Ni, N (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014
OI Thaler, Alexander/0000-0001-5066-8904
FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]
FX Work at the Ames Laboratory was supported by the Department of Energy,
Basic Energy Sciences under Contract No. DE-AC02-07CH11358.We would like
to thank M. Tanatar, C. Martin, E. Colombier, E. D. Mun, M. E. Tillman,
S. Kim, and X. Lin for help and useful discussions.
NR 25
TC 120
Z9 122
U1 1
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024511
DI 10.1103/PhysRevB.80.024511
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500090
ER
PT J
AU Pantea, C
Stroe, I
Ledbetter, H
Betts, JB
Zhao, Y
Daemen, LL
Cynn, H
Migliori, A
AF Pantea, C.
Stroe, I.
Ledbetter, H.
Betts, J. B.
Zhao, Y.
Daemen, L. L.
Cynn, H.
Migliori, A.
TI Elastic constants of osmium between 5 and 300 K
SO PHYSICAL REVIEW B
LA English
DT Article
DE Debye temperature; elastic constants; Gruneisen coefficient; hardness;
osmium; Poisson ratio
ID TEMPERATURE-DEPENDENCE; BULK-MODULUS; ULTRASOUND; CRYSTALS; HARD
AB Using two measurement methods, pulse-echo ultrasound and resonance ultrasound spectroscopy, we measured the elastic constants of both monocrystal and polycrystal osmium between 5 and 300 K. Our measurements help to resolve the current measurement-and-theory controversy concerning whether osmium's bulk modulus exceeds diamond's. It does not at any temperature (for osmium, we find a zero-temperature bulk modulus of 410 GPa and a 300 K value of 405 GPa, while diamond's value being 442 GPa). From the zero-temperature elastic constants, we extract a Debye temperature of 477 K. From Gruumlneisen's first rule, we extract a Gruumlneisen parameter of 2.1, agreeing well with handbook values. Osmium shows near elastic anisotropy and small elastic constant changes with temperature (for example, the bulk modulus increases only about 1.2% upon cooling through the studied temperature interval). In all cases, the C(ij)(T) measurements agree well with an Einstein-oscillator model. We consider especially the Poisson ratio, which is low and anisotropic (nu(12)=0.242, nu(13)=0.196) and suggests some covalent interatomic bonding, which may account for osmium's extreme high hardness and the departure of the 5d elements from Friedel's parabolic bulk-modulus/atomic-number model.
C1 [Pantea, C.; Stroe, I.; Betts, J. B.; Zhao, Y.; Daemen, L. L.; Migliori, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Ledbetter, H.] Univ Colorado, Boulder, CO 80309 USA.
[Cynn, H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Pantea, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Pantea, Cristian/D-4108-2009; Stroe, Izabela/B-3790-2010; Lujan Center,
LANL/G-4896-2012;
OI Pantea, Cristian/0000-0002-0805-8923
NR 39
TC 18
Z9 18
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024112
DI 10.1103/PhysRevB.80.024112
PG 10
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500030
ER
PT J
AU Parshall, D
Lokshin, KA
Niedziela, J
Christianson, AD
Lumsden, MD
Mook, HA
Nagler, SE
McGuire, MA
Stone, MB
Abernathy, DL
Sefat, AS
Sales, BC
Mandrus, DG
Egami, T
AF Parshall, D.
Lokshin, K. A.
Niedziela, Jennifer
Christianson, A. D.
Lumsden, M. D.
Mook, H. A.
Nagler, S. E.
McGuire, M. A.
Stone, M. B.
Abernathy, D. L.
Sefat, A. S.
Sales, B. C.
Mandrus, D. G.
Egami, T.
TI Spin excitations in BaFe1.84Co0.16As2 superconductor observed by
inelastic neutron scattering
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; Fermi surface; iron compounds; neutron diffraction;
spin density waves; superconducting materials
AB Superconductivity appears to compete against the spin-density wave in Fe pnictides. However, optimally cobalt-doped samples show a quasi-two-dimensional spin excitation centered at the (0.5, 0.5, L) wave vector, "the spin-resonance peak," which is strongly tied to the onset of superconductivity. By inelastic neutron scattering on single crystals we show the similarities and differences of the spin excitations in BaFe1.84Co0.16As2 with respect to the spin excitations in the high-temperature superconducting cuprates. As in the cuprates, the resonance occurs as an enhancement to a part of the spin-excitation spectrum, which extends to higher-energy transfer and higher temperature. However, unlike in the cuprates, the resonance peak in this compound is asymmetric in energy.
C1 [Parshall, D.; Niedziela, Jennifer; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Lokshin, K. A.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Niedziela, Jennifer; Christianson, A. D.; Lumsden, M. D.; Mook, H. A.; Nagler, S. E.; McGuire, M. A.; Stone, M. B.; Abernathy, D. L.; Sefat, A. S.; Sales, B. C.; Mandrus, D. G.; Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Parshall, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RI McGuire, Michael/B-5453-2009; Nagler, Stephen/B-9403-2010; Nagler,
Stephen/E-4908-2010; Stone, Matthew/G-3275-2011; Abernathy,
Douglas/A-3038-2012; Mandrus, David/H-3090-2014; christianson,
andrew/A-3277-2016; BL18, ARCS/A-3000-2012; Sefat, Athena/R-5457-2016;
Lumsden, Mark/F-5366-2012
OI McGuire, Michael/0000-0003-1762-9406; Nagler,
Stephen/0000-0002-7234-2339; Stone, Matthew/0000-0001-7884-9715;
Abernathy, Douglas/0000-0002-3533-003X; christianson,
andrew/0000-0003-3369-5884; Sefat, Athena/0000-0002-5596-3504; Lumsden,
Mark/0000-0002-5472-9660
FU Department of Energy EPSCoR Implementation [DE-FG02-08ER46528];
Scientific User Facilities Division; Division of Materials Science and
Engineering, Office of Basic Energy Sciences, Department of Energy
FX The authors are grateful to D. J. Singh, I. I. Mazin, T. Yildirim, N.
Mannella, and D. J. Scalapino for stimulating and useful discussions.
The work at the University of Tennessee was supported by the Department
of Energy EPSCoR Implementation Grant No. DE-FG02-08ER46528. The work at
the Oak Ridge National Laboratory was supported by the Scientific User
Facilities Division and by the Division of Materials Science and
Engineering, Office of Basic Energy Sciences, Department of Energy. The
ARCS data analysis was performed using the MSLICE program.
NR 24
TC 12
Z9 12
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 012502
DI 10.1103/PhysRevB.80.012502
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100017
ER
PT J
AU Patel, U
Xiao, ZL
Gurevich, A
Avci, S
Hua, J
Divan, R
Welp, U
Kwok, WK
AF Patel, U.
Xiao, Z. L.
Gurevich, A.
Avci, S.
Hua, J.
Divan, R.
Welp, U.
Kwok, W. K.
TI Magnetoresistance oscillations in superconducting granular niobium
nitride nanowires
SO PHYSICAL REVIEW B
LA English
DT Article
DE annealing; coherence length; granular materials; granular structure;
magnetoresistance; nanotechnology; nanowires; niobium compounds;
superconducting materials; superconducting transition temperature
ID ONE-DIMENSIONAL SUPERCONDUCTOR; VORTEX LATTICE; THIN-FILMS; FIELD;
TRANSITION; WIRES
AB We report on magnetoresistance oscillations in superconducting NbN(x) nanowires synthesized through ammonia gas annealing of NbSe(3) precursor nanostructures. Even though the transverse dimensions of the nanowires are much larger than the superconducting coherence length, the voltage-current characteristics of these nanowires at low temperatures are reminiscent of one-dimensional superconductors where quantum phase slips are associated with the origin of dissipation. We show that both the magnetoresistance oscillations and voltage-current characteristics observed in this work result from the granular structure of our nanowires.
C1 [Patel, U.; Xiao, Z. L.; Avci, S.; Hua, J.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Patel, U.; Xiao, Z. L.; Hua, J.; Welp, U.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Gurevich, A.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Xiao, ZL (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
EM xiao@anl.gov
RI Gurevich, Alex/A-4327-2008; Patel, Umeshkumar/A-8643-2013
OI Gurevich, Alex/0000-0003-0759-8941; Patel,
Umeshkumar/0000-0002-8259-1646
FU U. S. Department of Energy [DE-FG02-06ER46334, DE-AC02-06CH11357];
National Science Foundation (NSF) [DMR-0605748]
FX This material is based upon work supported by the U. S. Department of
Energy under Grant No. DE-FG02-06ER46334 and under Contract No.
DE-AC02-06CH11357. S. A. was supported by the National Science
Foundation (NSF) under Grant No. DMR-0605748. The nanocontacting and
morphological analysis were performed at Argonne's Center for Nanoscale
Materials (CNM) and Electron Microscopy Center (EMC), respectively.
NR 30
TC 13
Z9 13
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 012504
DI 10.1103/PhysRevB.80.012504
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100019
ER
PT J
AU Petit, L
Svane, A
Szotek, Z
Temmerman, WM
Stocks, GM
AF Petit, L.
Svane, A.
Szotek, Z.
Temmerman, W. M.
Stocks, G. M.
TI Ground-state electronic structure of actinide monocarbides and
mononitrides
SO PHYSICAL REVIEW B
LA English
DT Article
ID SPIN-DENSITY APPROXIMATION; NACL-TYPE COMPOUNDS; MEAN-FIELD THEORY;
URANIUM NITRIDE; CORRELATED ELECTRONS; LIGHT ACTINIDES; FERMI-SURFACE;
5F ELECTRONS; UN; UC
AB The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U, Np, Pu, Am, Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f(7)), CmN (f(7)), and AmN (f(6)). The observed sudden increase in lattice parameter from PuN to AmN is found to be related to the localization transition. The calculated valence electron densities of states are in good agreement with photoemission data.
C1 [Petit, L.; Svane, A.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark.
[Szotek, Z.; Temmerman, W. M.] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England.
[Stocks, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Petit, L (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark.
EM lpetit@phys.au.dk
RI Petit, Leon/B-5255-2008; Stocks, George Malcollm/Q-1251-2016;
OI Stocks, George Malcollm/0000-0002-9013-260X; Petit,
Leon/0000-0001-6489-9922
FU Danish Center for Scientific Computing (DCSC); National Energy Research
Scientific Computing Center (NERSC); U.S. Department of Energy
FX This research used resources of the Danish Center for Scientific
Computing (DCSC) and of the National Energy Research Scientific
Computing Center (NERSC). Research supported in part (GMS) by the
Division of Materials Science and Engineering, Office of Basic Energy
Science, U.S. Department of Energy.
NR 53
TC 40
Z9 40
U1 0
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045124
DI 10.1103/PhysRevB.80.045124
PG 8
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100048
ER
PT J
AU Popescu, V
Bester, G
Zunger, A
AF Popescu, Voicu
Bester, Gabriel
Zunger, Alex
TI Coexistence and coupling of zero-dimensional, two-dimensional, and
continuum resonances in nanostructures
SO PHYSICAL REVIEW B
LA English
DT Article
ID INAS/GAAS QUANTUM DOTS; ELECTRONIC-STRUCTURE; INFRARED PHOTODETECTORS;
STATES; TRANSITIONS; ENERGY; GAAS; SEMICONDUCTORS; SPECTROSCOPY;
CRYSTALS
AB Quantum dots (QDs) embedded in a matrix exhibit a coexistence of "zero-dimensional" (0D) bound electron and hole states on the dot with "three-dimensional" (3D) continuum states of the surrounding matrix. In epitaxial QDs one encounters also "two-dimensional" (2D) states of a quantum well-like supporting structure (wetting layer). This coexistence of 0D, 2D, and 3D states leads to interesting electronic consequences explored here using multiband atomistic pseudopotential calculations. We distinguish strained dots) InAs in GaAs (and strain-free dots) InAs in GaSb (finding crucial differences: in the former case "potential wings" appear in the electron confining potential in the vicinity of the dot. This results in the appearance of localized electronic states that lie above the threshold of the 3D continuum. Such resonances are "strain-induced localized states") SILSs (appearing in strained systems, whereas in strain-free systems the dot resonances in the continuum are the usual "virtual bound states" (VBSs). The SILSs were found to occur regardless of the thickness of the wetting layer and even in interdiffused dots, provided that the interdiffusion length is small compared to the QD size. Thus, the SILSs are well isolated from the environment by the protective potential wings, whereas the VBSs are strongly interacting. These features are seen in our calculated intraband as well as interband absorption spectra. Furthermore, we show that the local barrier created around the dot by these potential wings suppresses the 0D-2D (dot-wetting layer) hybridization of the electron states. Consequently, in contrast to findings of simple model calculations of envelope function, 0D-to-2D "crossed transitions" (bound hole-to-wetting layer electron) are practically absent because of their spatially indirect character. On the other hand, since no such barrier exists in the hole confining potential, a strong 0D-2D hybridization is present for the hole states. We show this to be the source for the strong 2D-to-0D crossed transitions determined experimentally.
C1 [Popescu, Voicu; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Bester, Gabriel] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
RP Zunger, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM alex.zunger@nrel.gov
RI Popescu, Voicu/A-9130-2010; Bester, Gabriel/I-4414-2012; Zunger,
Alex/A-6733-2013
OI Bester, Gabriel/0000-0003-2304-0817;
FU U. S. Department of Energy; Office of Basic Energy Science,; Materials
Science and Engineering Division [DE-AC36-08GO28308]
FX This work was funded by the U. S. Department of Energy, Office of Basic
Energy Science, Materials Science and Engineering Division under
Contract No. DE-AC36-08GO28308 to NREL. G. B. would like to thank Robson
Ferreira for fruitful discussions on the literature of virtual bound
states. We also acknowledge Vladan Mlinar for discussions on
interdiffusion and providing the In/Ga diffusion profiles.
NR 52
TC 15
Z9 15
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045327
DI 10.1103/PhysRevB.80.045327
PG 12
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100086
ER
PT J
AU Rahman, R
Park, SH
Cole, JH
Greentree, AD
Muller, RP
Klimeck, G
Hollenberg, LCL
AF Rahman, Rajib
Park, Seung H.
Cole, Jared H.
Greentree, Andrew D.
Muller, Richard P.
Klimeck, Gerhard
Hollenberg, Lloyd C. L.
TI Atomistic simulations of adiabatic coherent electron transport in triple
donor systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID NEMO 3-D; QUANTUM DOTS; WAVE-GUIDES; ATOM; SEMICONDUCTORS; PASSAGE
AB A solid-state analog of stimulated Raman adiabatic passage can be implemented in a triple-well solid-state system to coherently transport an electron across the wells with exponentially suppressed occupation in the central well at any point of time. Termed coherent-tunneling adiabatic passage (CTAP), this method provides a robust way to transfer quantum information encoded in the electronic spin across a chain of quantum dots or donors. Using large-scale atomistic tight-binding simulations involving over 3.5 x 10(6) atoms, we verify the existence of a CTAP pathway in a realistic solid-state system: gated triple donors in silicon. Realistic gate profiles from commercial tools were combined with tight-binding methods to simulate gate control of the donor to donor tunnel barriers in the presence of crosstalk. As CTAP is an adiabatic protocol, it can be analyzed by solving the time-independent problem at various stages of the pulse justifying the use of time-independent tight-binding methods to this problem. This work also involves the first atomistic treatment to translate the three-state-based quantum-optics type of modeling into a solid-state description beyond the ideal localization assumption. Our results show that a three-donor CTAP transfer, with interdonor spacing of 15 nm can occur on time scales greater than 23 ps, well within experimentally accessible regimes. The method not only provides a tool to guide future CTAP experiments but also illuminates the possibility of system engineering to enhance control and transfer times.
C1 [Rahman, Rajib; Park, Seung H.; Klimeck, Gerhard] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA.
[Cole, Jared H.] Univ Karlsruhe, DFG, CFN, D-76128 Karlsruhe, Germany.
[Cole, Jared H.] Univ Karlsruhe, Inst Theoret Festkorperphys, D-76128 Karlsruhe, Germany.
[Cole, Jared H.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia.
[Muller, Richard P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Klimeck, Gerhard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA.
RP Rahman, R (reprint author), Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA.
EM rrahman@purdue.edu; lloydch@unimelb.edu.au
RI Cole, Jared/G-2992-2010; Hollenberg, Lloyd/B-2296-2010; Greentree,
Andrew/A-8503-2008; Klimeck, Gerhard/A-1414-2012;
OI Cole, Jared/0000-0002-8943-6518; Greentree, Andrew/0000-0002-3505-9163;
Klimeck, Gerhard/0000-0001-7128-773X; Rahman, Rajib/0000-0003-1649-823X
NR 40
TC 20
Z9 20
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 035302
DI 10.1103/PhysRevB.80.035302
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800074
ER
PT J
AU Rossell, MD
Erni, R
Asta, M
Radmilovic, V
Dahmen, U
AF Rossell, M. D.
Erni, R.
Asta, M.
Radmilovic, V.
Dahmen, U.
TI Atomic-resolution imaging of lithium in Al3Li precipitates
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; aluminium alloys; electron beam effects; energy
states; lithium alloys; precipitation; transmission electron microscopy;
wave functions
ID THRESHOLD DISPLACEMENT ENERGIES; INITIO MOLECULAR-DYNAMICS;
AUGMENTED-WAVE METHOD; POINT-DEFECT; BASIS-SET; ALLOYS; METALS
AB Using an aberration-corrected transmission electron microscope, we report on imaging individual atomic columns of Li in the intermetallic compound Al3Li. The effect of electron energy on the imaging characteristic of Li is investigated by performing measurements at 80 kV employing a monochromated electron beam with an energy spread Delta E of 0.2 eV and at 300 kV with Delta E of 0.8 eV. These settings enable similar information transfer at both microscope operation conditions and allow a direct comparison between the 80 and the 300 kV measurements. Our experimental data show that the phase of the reconstructed exit-plane wave is highly sensitive to light atoms and that the displacement damage of light elements of low threshold recoil energy can be larger at 80 kV than at 300 kV. This behavior can be understood in terms of the relativistic elastic-scattering cross section between electrons and atoms.
C1 [Rossell, M. D.; Erni, R.; Radmilovic, V.; Dahmen, U.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA.
[Asta, M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
RP Rossell, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA.
RI Erni, Rolf/P-7435-2014; Rossell, Marta/E-9785-2017
OI Erni, Rolf/0000-0003-2391-5943;
FU (U.S.) Department of Energy [DE-AC02-05CH11231, DE-FG02-06ER46282]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231.
This work was performed at the National Center for Electron Microscopy
under the TEAM project, which is supported by the Department of Energy,
Office of Science, Office of Basic Energy Sciences. M. A. acknowledges
funding from the Department of Energy, Office of Basic Energy Sciences
under Grant No. DE-FG02-06ER46282. We acknowledge C. Kisielowski for
help with the retrieval of the exit-plane waves and the statistical
assessment of the Li signal.
NR 27
TC 27
Z9 28
U1 1
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024110
DI 10.1103/PhysRevB.80.024110
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500028
ER
PT J
AU Sacchetti, F
Orecchini, A
Cunsolo, A
Formisano, F
Petrillo, C
AF Sacchetti, F.
Orecchini, A.
Cunsolo, A.
Formisano, F.
Petrillo, C.
TI Coherent neutron scattering study of confined water in nafion
SO PHYSICAL REVIEW B
LA English
DT Article
DE Brillouin spectra; damping; neutron diffraction; vibrational modes;
water
ID SUPERCOOLED WATER; IONOMER MEMBRANES; LIQUID WATER; HEAVY-WATER;
DYNAMICS; TRANSPORT; MOLECULES; PRESSURE; PROTEINS; DRY
AB The vibrational dynamics of water molecules confined inside the cavities of a nafion membrane has been investigated exploiting the experimental technique of Brillouin neutron scattering to cover two different kinematic regions. Despite the complexity of the experiments, the inelastic data show unambiguously that confined water still sustains collective modes, although the mode lifetime is affected by a larger damping than in bulk water. The collective-mode velocity (3040 m/s) is found to be much higher than the hydrodynamic value (1320 m/s), such as in the case of bulk water. The structure of the inelastic peaks is consistent with a complex picture where normal vibrational modes of a water droplet coexist with the collective excitation. In addition, no evidence of the second nondispersive excitation at similar or equal to 6 meV observed in bulk water is seen in the present experiment. Finally, the analysis of the inelastic integrated intensities suggests that the anomalous trend observed in bulk water at low-momentum transfers disappears under geometrical confinement.
C1 [Sacchetti, F.; Orecchini, A.; Petrillo, C.] Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy.
[Sacchetti, F.; Orecchini, A.; Petrillo, C.] Univ Roma La Sapienza, CNR, INFM, CRS Soft, I-00185 Rome, Italy.
[Formisano, F.] Inst Laue Langevin, CNR, INFM, CRS Soft,OGG, F-38042 Grenoble, France.
[Cunsolo, A.] Argonne Natl Lab, Lemont, IL 60439 USA.
RP Sacchetti, F (reprint author), Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy.
RI Cunsolo, Alessandro/C-7617-2013; Formisano, Ferdinando/G-8888-2013
NR 38
TC 7
Z9 7
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024306
DI 10.1103/PhysRevB.80.024306
PG 9
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500049
ER
PT J
AU Schreiber, DK
Heinonen, OG
Petford-Long, AK
AF Schreiber, D. K.
Heinonen, O. G.
Petford-Long, A. K.
TI Micromagnetic modeling of the magnetization dynamics in a circularly
exchange-biased and exchange-coupled ferromagnetic multilayer
SO PHYSICAL REVIEW B
LA English
DT Article
ID MAGNETORESISTANCE; PERMALLOY; DOTS
AB The magnetization dynamics of a magnetically coupled multilayer structure have been studied by analytical and numerical methods. The simulated multilayer is disk-shaped and consists of a circularly exchange-biased ferromagnetic permalloy (Py) layer coupled to an unbiased Py layer, each in a magnetic vortex configuration, separated by a thin nonmagnetic spacer. The sign and strength of the interlayer exchange coupling was varied, leading to either parallel or antiparallel vortex chiralities in the two Py layers. The magnetization dynamics after the application of an external magnetic field pulse normal to the plane of the disks were investigated. Both analytical and numerical models show two branches of frequency response of circularly symmetric eigenmodes for both parallel and antiparallel configurations. However, the upper branch mode in the antiparallel configuration is severely damped in the numerical simulations due to coupling with short-wavelength spin waves. The frequency of the modes can be tuned independently with interlayer exchange coupling strength and exchange-bias strength. The good agreement between the mode frequencies obtained from the analytical and numerical models confirms that the main driving forces for the eigenmodes are the magnetostatic field from the radial motion of the magnetization, and also the interlayer exchange coupling field. In addition, the vortex cores, which are neglected in the analytical model, are found to play no significant role in the dynamic response.
C1 [Schreiber, D. K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Schreiber, D. K.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Heinonen, O. G.] Seagate Technol, Bloomington, MN 55435 USA.
RP Schreiber, DK (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA.
EM danielschreiber2008@u.northwestern.edu
RI Petford-Long, Amanda/P-6026-2014;
OI Petford-Long, Amanda/0000-0002-3154-8090; Heinonen,
Olle/0000-0002-3618-6092
FU U.S. Department of Energy Office of Science Laboratory
[DEAC02-06CH11357]
FX K. P. L. and D. K. S. acknowledge UChicago Argonne, LLC, operator of the
Argonne National Laboratory ("Argonne"). Argonne, a U. S. Department of
Energy Office of Science Laboratory, is operated under Contract No.
DEAC02-06CH11357.
NR 27
TC 7
Z9 7
U1 2
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014411
DI 10.1103/PhysRevB.80.014411
PG 11
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100066
ER
PT J
AU Taylor, CD
AF Taylor, Christopher D.
TI Connections between the energy functional and interaction potentials for
materials simulations
SO PHYSICAL REVIEW B
LA English
DT Article
DE band structure; copper; crystallography; density functional theory;
phase diagrams; potential energy functions; uranium
ID BOND-ORIENTATIONAL ORDER; EMBEDDED-ATOM METHOD; TIGHT-BINDING; SURFACES;
METALS; MODEL; IMPURITIES; EFFICIENT; MOLECULES; COHESION
AB In this work it is shown that the energy of a material can be expressed as a functional of the atomic density distribution function and that this energy can be approximated via the method of Taylor expansion. It is then shown that a matrix representation of the second-order term in the Taylor expansion of the energy functional provides a parameterizable expression for the energy that avoids the necessity of finding the as yet unknown functional forms connecting atomic positions to system energies. Using the basis of spherical harmonics {Y(lm)} it is shown that the matrix representation of the energy involves the computation of the Steinhardt bond-orientational order parameters, previously used to classify local crystallographic orderings in amorphous materials. It is also shown that these parameters coincide with the "embedding density" corrections utilized in the modified embedded atom method. By incorporating these bond-orientational order parameters into the Taylor expansion for the energy function, it is demonstrated that this method provides a means for reproducing the phase diagram of various metallic states of Cu and U. Consequently, the formalism introduced here is demonstrated to be systematically improvable via improvements in the underlying basis set of spherical harmonics. Finally, it is shown by reference to the body-centered cubic phase of U that extension to arbitrary crystallographic requires a further examination of the use of interatomic screening potentials that "dampen" the contributions of atoms other than first-nearest neighbors.
C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Technol Met MST 6, Los Alamos, NM 87545 USA.
RP Taylor, CD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Technol Met MST 6, Los Alamos, NM 87545 USA.
EM cdtaylor@lanl.gov
OI Taylor, Christopher/0000-0002-0252-0988
FU Seaborg LDRD Post-Doctoral Program; U.S. Department of Energy
[DE-AC52-06NA25396]
FX The author is grateful to S. Lillard at Los Alamos National Laboratory
for encouragement and assistance in funding this work, T. Lookman at Los
Alamos National Laboratory for stimulating conversations regarding
Landau theory, and M. Baskes, S. Valone, and R. Hoagland for discussions
concerning the embedded atom method and interatomic potentials in
general. Gratitude is also expressed toward the reviewers for their
anonymous feedback and help in improving this manuscript. The author
acknowledges the Seaborg LDRD Post-Doctoral Program for funding this
work. Los Alamos National Laboratory is operated by Los Alamos National
Security LLC for the National Nuclear Security Administration of the
U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
NR 38
TC 7
Z9 7
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024104
DI 10.1103/PhysRevB.80.024104
PG 10
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500022
ER
PT J
AU Teodorescu, V
Winkler, R
AF Teodorescu, V.
Winkler, R.
TI Spin angular impulse due to spin-dependent reflection off a barrier
SO PHYSICAL REVIEW B
LA English
DT Article
AB The spin-dependent elastic reflection of quasi-two-dimensional electrons from a lateral impenetrable barrier in the presence of band-structure spin-orbit coupling results in a spin angular impulse exerted on the electrons which is proportional to the nontrivial difference between the electrons' momentum and velocity. Even for an unpolarized incoming beam we find that the spin angular impulse is nonzero when averaged over all components of the reflected beam. We present a detailed analysis of the kinematics of this process.
C1 [Teodorescu, V.; Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Teodorescu, V (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
FU DOE BES [DE-AC02-06CH11357]
FX W. appreciates stimulating discussions with J. Heremans and U. Zulicke.
Work at Argonne was supported by DOE BES under Contract No.
DE-AC02-06CH11357.
NR 22
TC 12
Z9 12
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 041311
DI 10.1103/PhysRevB.80.041311
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100017
ER
PT J
AU Torikachvili, MS
Bud'ko, SL
Ni, N
Canfield, PC
Hannahs, ST
AF Torikachvili, M. S.
Bud'ko, S. L.
Ni, N.
Canfield, P. C.
Hannahs, S. T.
TI Effect of pressure on transport and magnetotransport properties in
CaFe2As2 single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE calcium compounds; high-temperature superconductors; iron compounds;
magnetoresistance; phase diagrams; superconducting transitions
ID QUANTUM LINEAR MAGNETORESISTANCE; TEMPERATURE-DEPENDENCE;
MAGNETIC-PROPERTIES; ELASTIC-CONSTANTS; SUPERCONDUCTIVITY
AB The effects of pressure generated in a liquid-medium clamp pressure cell on the in-plane and c-axis resistance, temperature-dependent Hall coefficient, and low-temperature magnetoresistance in CaFe2As2 are presented. The T-P phase diagram, including the observation of a complete superconducting transition in resistivity delineated in earlier studies is found to be highly reproducible. The Hall resistivity and low-temperature magnetoresistance are sensitive to different states/phases observed in CaFe2As2. Auxiliary measurements under uniaxial c-axis pressure are in general agreement with the liquid-medium clamp cell results with some difference in critical pressure values and pressure derivatives. The data may be viewed as supporting the potential importance of nonhydrostatic components of pressure in inducing superconductivity in CaFe2As2.
C1 [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA.
[Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Hannahs, S. T.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
RP Torikachvili, MS (reprint author), San Diego State Univ, Dept Phys, San Diego, CA 92182 USA.
RI Canfield, Paul/H-2698-2014; Hannahs, Scott/B-1274-2008
OI Hannahs, Scott/0000-0002-5840-7714
FU U. S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358];
National Science Foundation [DMR-0306165, DMR-0805335]; NSF
[DMR-0084173]
FX Work at the Ames Laboratory was supported by the U. S. Department of
Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. M. S.
T. gratefully acknowledges support of the National Science Foundation
under Grants No. DMR-0306165 and No. DMR-0805335. A portion of this work
was performed at the National High Magnetic Field Laboratory, which is
supported by NSF Cooperative Agreement No. DMR-0084173, by the State of
Florida, and by the U. S. DOE.
NR 53
TC 38
Z9 38
U1 2
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014521
DI 10.1103/PhysRevB.80.014521
PG 10
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100112
ER
PT J
AU Vannette, MD
Yeninas, S
Morosan, E
Cava, RJ
Prozorov, R
AF Vannette, M. D.
Yeninas, S.
Morosan, E.
Cava, R. J.
Prozorov, R.
TI Local-moment ferromagnetism and unusual magnetic domains in Fe1/4TaS2
crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE ferromagnetic materials; iron compounds; magnetic anisotropy; magnetic
domains; magnetic susceptibility; tantalum compounds
ID TUNNEL-DIODE OSCILLATOR; SUSCEPTIBILITY
AB Single crystals of Fe1/4TaS2 have been studied by using magneto-optical (MO) imaging and radio-frequency magnetic susceptibility, chi. Real-time MO images reveal unusual slow dynamics of dendritic domain formation, the details of which are strongly dependent upon magnetic and thermal history. Measurements of chi(T) show well-defined local-moment ferromagnetic transition at T approximate to 155 K as well as thermal hysteresis for 50 < T < 60 K. This temperature range corresponds to the domain-formation temperature as determined by MO. Together these observations provide strong evidence for local-moment ferromagnetism in Fe1/4TaS2 crystals with large temperature-dependent magnetic anisotropy.
C1 [Vannette, M. D.; Yeninas, S.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Vannette, M. D.; Yeninas, S.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Morosan, E.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM prozorov@ameslab.gov
RI Prozorov, Ruslan/A-2487-2008
OI Prozorov, Ruslan/0000-0002-8088-6096
FU Department of Energy, Office of Basic Energy Sciences
[DE-AC02-07CH11358, DE-FG02-98ER45706]
FX Work at the Ames Laboratory and Princeton University were supported by
the Department of Energy, Office of Basic Energy Sciences, under
Contracts No. DE-AC02-07CH11358 and No. DE-FG02-98ER45706, respectively.
NR 13
TC 7
Z9 7
U1 5
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024421
DI 10.1103/PhysRevB.80.024421
PG 5
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500072
ER
PT J
AU Vantarakis, G
Mathioudakis, C
Kopidakis, G
Wang, CZ
Ho, KM
Kelires, PC
AF Vantarakis, G.
Mathioudakis, C.
Kopidakis, G.
Wang, C. Z.
Ho, K. M.
Kelires, P. C.
TI Interfacial disorder and optoelectronic properties of diamond
nanocrystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID TETRAHEDRAL AMORPHOUS-CARBON; ELECTRONIC-PROPERTIES; OPTICAL-PROPERTIES;
DYNAMICS; SIMULATIONS; MODEL
AB We present in this work a theoretical framework based on the tight-binding method, which is able to probe at a local atomic level the optoelectronic response of nanomaterial systems and link it to the associated disorder. We apply this methodology to carbon nanocomposites containing diamond nanocrystals. We find that significant structural and topological disorder exists at the interface between the nanodiamonds and the embedding amorphous carbon matrix. This can be quantitatively probed by extracting the Urbach energies from the optical parameters. Disorder in the nanocrystals appears in their outer shell near the interface and is manifested as bond length and angle distortions. Energetics and stability analysis show that nanodiamonds embedded in matrices with high density and high fraction of fourfold coordinated atoms are more stable.
C1 [Vantarakis, G.; Kelires, P. C.] Cyprus Univ Technol, Dept Mech & Mat Sci Engn, CY-3603 Limassol, Cyprus.
[Vantarakis, G.; Mathioudakis, C.; Kopidakis, G.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Crete, Greece.
[Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA.
[Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Kelires, P. C.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece.
RP Kelires, PC (reprint author), Cyprus Univ Technol, Dept Mech & Mat Sci Engn, POB 50329, CY-3603 Limassol, Cyprus.
EM pantelis.kelires@cut.ac.cy
NR 24
TC 4
Z9 4
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045307
DI 10.1103/PhysRevB.80.045307
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100066
ER
PT J
AU Wang, BN
Koschny, T
Soukoulis, CM
AF Wang, Bingnan
Koschny, Thomas
Soukoulis, Costas M.
TI Wide-angle and polarization-independent chiral metamaterial absorber
SO PHYSICAL REVIEW B
LA English
DT Article
ID NEGATIVE REFRACTIVE-INDEX
AB We propose a resonant microwave absorber based on a chiral metamaterial. We show, with both numerical simulations and experimental measurements, that the absorber works well for a very wide range of incident angles for different polarizations. The proposed absorber has a compact size and the absorption is close to one for a wide range of incident angles and it is a good candidate for potential applications.
C1 [Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece.
[Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece.
RP Wang, BN (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM soukoulis@ameslab.gov
RI Soukoulis, Costas/A-5295-2008
FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; AFOSR
[FA 9550-06-1-0337]
FX Work at Ames Laboratory was supported by the Department of Energy (Basic
Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was
partially supported by AFOSR under MURI under Grant No. FA
9550-06-1-0337.
NR 29
TC 135
Z9 142
U1 12
U2 62
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 033108
DI 10.1103/PhysRevB.80.033108
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800008
ER
PT J
AU Wang, F
Kim, J
Kim, YJ
Gu, GD
AF Wang, Fan
Kim, Jungho
Kim, Young-June
Gu, G. D.
TI Spin-glass behavior in LuFe2O4+delta
SO PHYSICAL REVIEW B
LA English
DT Article
DE ageing; lutetium compounds; magnetic susceptibility; magnetic
transitions; magnetisation; specific heat; spin glasses
ID STOICHIOMETRIC YFE2O4; MAGNETIC-FIELD; TEMPERATURE; TRANSITION; SYSTEM;
DYNAMICS; FERROELECTRICITY; EQUILIBRIUM; GROWTH
AB We have carried out a comprehensive investigation of magnetic properties of LuFe2O4+delta, measuring ac susceptibility, dc magnetization, and specific heat. A magnetic phase transition around 236 K is identified as a paramagnetic to ferrimagnetic transition in accordance with previous studies. Upon further cooling below this temperature, highly relaxational magnetic behavior is observed: the dc magnetization exhibits history and time dependence, and the real and the imaginary parts of the ac susceptibility show large frequency dependence. Dynamic scaling of the ac susceptibility data suggests that this low-temperature phase can be described as a spin-glass phase. We also discuss the magnetic field dependence of the spin-glass transition and aging, memory, and rejuvenation effect below the glass transition temperature around 229 K.
C1 [Wang, Fan; Kim, Jungho; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Gu, G. D.] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA.
RP Wang, F (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada.
EM yjkim@physics.utoronto.ca
RI Kim, Young-June /G-7196-2011; Gu, Genda/D-5410-2013
OI Kim, Young-June /0000-0002-1172-8895; Gu, Genda/0000-0002-9886-3255
FU Natural Sciences and Engineering Research Council of Canada; Canadian
Foundation for Innovation; Ontario Innovation Trust; Ontario Ministry of
Research and Innovation; U.S. Department of Energy, Office of Science
FX We would like to thank David Ellis, S. M. Shapiro, G. Xu, J. Brittain,
A. Gershon, and H. Zhang for invaluable discussions. The work at
University of Toronto was supported by Natural Sciences and Engineering
Research Council of Canada, Canadian Foundation for Innovation, Ontario
Innovation Trust, and Early Researcher Award by Ontario Ministry of
Research and Innovation. The work at Brookhaven was supported by the
U.S. Department of Energy, Office of Science.
NR 42
TC 39
Z9 40
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024419
DI 10.1103/PhysRevB.80.024419
PG 7
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500070
ER
PT J
AU Wen, JS
Xu, GY
Gu, G
Shapiro, SM
AF Wen, Jinsheng
Xu, Guangyong
Gu, Genda
Shapiro, S. M.
TI Magnetic-field control of charge structures in the magnetically
disordered phase of multiferroic LuFe2O4
SO PHYSICAL REVIEW B
LA English
DT Article
DE charge-ordered states; ferroelectric materials; ferroelectricity;
lutetium compounds; magnetoelectric effects; multiferroics; neutron
diffraction
ID FERROMAGNETIC PHASE; SYSTEM LUFE2O4; FERROELECTRICITY; LA0.5CA0.5MNO3
AB Using neutron diffraction, we have studied the magnetic-field effect on charge structures in the charge-ordered multiferroic material LuFe2O4. An external magnetic field is able to change the magnitude and correlation lengths of the charge valence order even before the magnetic order sets in. This affects the dielectric and ferroelectric properties of the material and induces a giant magnetoelectric effect. Our results suggest that the magnetoelectric coupling in LuFe2O4 is likely due to magnetic-field effect on local spins, in clear contrast to the case in most other known multiferroic systems where the bulk magnetic order is important.
C1 [Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Shapiro, S. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Wen, Jinsheng] SUNY Stony Brook, Dept Mat Sci, Stony Brook, NY 11794 USA.
RP Wen, JS (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
RI Wen, Jinsheng/F-4209-2010; Xu, Guangyong/A-8707-2010
OI Wen, Jinsheng/0000-0001-5864-1466; Xu, Guangyong/0000-0003-1441-8275
FU U.S. Department of Energy [DE-AC02-98CH20886]
FX We thank W. Ratcliff, C. L. Broholm, and J.M. Tranquada for discussions.
Work at Brookhaven National Laboratory is supported by U.S. Department
of Energy (Contract No. DE-AC02-98CH20886).
NR 31
TC 27
Z9 27
U1 1
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 020403
DI 10.1103/PhysRevB.80.020403
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500006
ER
PT J
AU Wu, J
Choi, J
Scholl, A
Doran, A
Arenholz, E
Wu, YZ
Won, C
Hwang, CY
Qiu, ZQ
AF Wu, J.
Choi, J.
Scholl, A.
Doran, A.
Arenholz, E.
Wu, Y. Z.
Won, C.
Hwang, Chanyong
Qiu, Z. Q.
TI Element-specific study of the anomalous magnetic interlayer coupling
across NiO spacer layer in Co/NiO/Fe/Ag(001) using XMCD and XMLD
SO PHYSICAL REVIEW B
LA English
DT Article
DE cobalt; ferromagnetic materials; interface magnetism; iron; magnetic
circular dichroism; magnetic structure; magnetic thin films; molecular
beam epitaxial growth; nickel compounds; silver; X-ray absorption
spectra
ID QUANTUM-WELL STATES; LARGE MAGNETORESISTANCE; TUNNELING JUNCTION;
EXCHANGE BIAS; THIN-FILMS; SUPERLATTICES; TEMPERATURE; ANISOTROPY;
DICHROISM
AB Co/NiO/Fe trilayers are grown on Ag(001) substrate using molecular-beam epitaxy and investigated by element-specific magnetic domain images using x-ray magnetic circular dichroism and x-ray magnetic linear dichroism techniques. By comparing the Co, Fe, and NiO magnetic domain images, we identify that the anomalous Co-Fe interlayer coupling from a 90 degrees coupling to a collinear coupling with increasing the NiO film thickness is due to a transition from a collinear to 90 degrees coupling at the NiO/Fe interface while retaining a 90 degrees coupling at the Co/NiO interface. Uncompensated Ni spins are found at the Co/NiO interface but are absent at the NiO/Fe interface. No evidence of spiral NiO spin structure is found in this Co/NiO/Fe sandwich.
C1 [Wu, J.; Choi, J.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Choi, J.] Korea Inst Sci & Technol, Seoul 136791, South Korea.
[Scholl, A.; Doran, A.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Wu, Y. Z.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.
[Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea.
[Hwang, Chanyong] Korea Res Inst Stand & Sci, Adv Technol Div, Taejon 305340, South Korea.
RP Wu, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RI wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Scholl,
Andreas/K-4876-2012; Qiu, Zi Qiang/O-4421-2016
OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714
FU National Science Foundation [DMR-0803305]; U. S. Department of Energy
[DE-AC02-05CH11231]; ICQS of Chinese Academy of Science; KICOS through
Global Research Laboratory
FX This work was supported by National Science Foundation under Grant No.
DMR-0803305, U. S. Department of Energy under Grant No.
DE-AC02-05CH11231, ICQS of Chinese Academy of Science, and KICOS through
Global Research Laboratory project.
NR 33
TC 11
Z9 12
U1 3
U2 23
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 012409
DI 10.1103/PhysRevB.80.012409
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100014
ER
PT J
AU Yang, WL
Sorini, AP
Chen, CC
Moritz, B
Lee, WS
Vernay, F
Olalde-Velasco, P
Denlinger, JD
Delley, B
Chu, JH
Analytis, JG
Fisher, IR
Ren, ZA
Yang, J
Lu, W
Zhao, ZX
van den Brink, J
Hussain, Z
Shen, ZX
Devereaux, TP
AF Yang, W. L.
Sorini, A. P.
Chen, C-C.
Moritz, B.
Lee, W-S
Vernay, F.
Olalde-Velasco, P.
Denlinger, J. D.
Delley, B.
Chu, J-H
Analytis, J. G.
Fisher, I. R.
Ren, Z. A.
Yang, J.
Lu, W.
Zhao, Z. X.
van den Brink, J.
Hussain, Z.
Shen, Z-X
Devereaux, T. P.
TI Evidence for weak electronic correlations in iron pnictides
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; density functional theory; electron correlations;
Fermi level; Hubbard model; lanthanum compounds; samarium compounds;
superconducting materials; X-ray absorption spectra
ID X-RAY-ABSORPTION; TRANSITION-METAL COMPOUNDS; SUM-RULES; SCATTERING;
SPECTRA; FE
AB Using x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS), charge dynamics at and near the Fe L edges is investigated in Fe-pnictide materials and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. The best agreement with experiment is obtained using Hubbard parameters U less than or similar to 2 eV and J approximate to 0.8 eV.
C1 [Yang, W. L.; Olalde-Velasco, P.; Denlinger, J. D.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Sorini, A. P.; Chen, C-C.; Moritz, B.; Lee, W-S; Chu, J-H; Analytis, J. G.; Fisher, I. R.; van den Brink, J.; Shen, Z-X; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.
[Chen, C-C.; Shen, Z-X] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Vernay, F.; Delley, B.] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland.
[Olalde-Velasco, P.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico.
[Chu, J-H; Analytis, J. G.; Fisher, I. R.; Shen, Z-X] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Chu, J-H; Analytis, J. G.; Fisher, I. R.; Shen, Z-X; Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA.
[Ren, Z. A.; Yang, J.; Lu, W.; Zhao, Z. X.] Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
[van den Brink, J.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands.
RP Yang, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RI van den Brink, Jeroen/E-5670-2011; yang, jie/F-4389-2012; Ren, Zhi
An/C-1421-2009; Delley, Bernard/E-1336-2014; Yang, Wanli/D-7183-2011;
Moritz, Brian/D-7505-2015
OI van den Brink, Jeroen/0000-0001-6594-9610; yang,
jie/0000-0002-5549-6926; Delley, Bernard/0000-0002-7020-2869; Yang,
Wanli/0000-0003-0666-8063; Moritz, Brian/0000-0002-3747-8484
FU Office of Science of the U. S. Department of Energy (DOE)
[DE-AC02-76SF00515, DE-FG02-08ER4650, DE-AC02-05CH11231]; Stichting voor
Fundamenteel Onderzoek der Materie (FOM); CONTACyT, Mexico
FX The authors would like to acknowledge important discussions with J.
Zaanen, I. Mazin, D. Reznik, J. J. Rehr, A. Baron, S. Johnston, Y.- D.
Chuang, W. A. Harrison, S. Kumar, J.- H. Guo, and M. Golden. This work
was supported by the Office of Science of the U. S. Department of Energy
(DOE) under Contracts No. DE-AC02-76SF00515 and No. DE-FG02-08ER4650
(CMSN). This research used resources of the National Energy Research
Scientific Computing Center, which is supported by DOE under Contract
No. DE-AC02-05CH11231. This work was supported by the "Stichting voor
Fundamenteel Onderzoek der Materie (FOM)." The Advanced Light Source
(ALS) is supported by the Director, Office of Science, Office of Basic
Energy Sciences, of the (U.S.) Department of Energy under Contract No.
DE-AC02-05CH11231. P. O. would like to acknowledge the support from
CONTACyT, Mexico.
NR 57
TC 134
Z9 134
U1 3
U2 40
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 1
AR 014508
DI 10.1103/PhysRevB.80.014508
PG 10
WC Physics, Condensed Matter
SC Physics
GA 478VR
UT WOS:000268617100099
ER
PT J
AU Ye, HG
Chen, GD
Wu, YL
Zhu, YZ
Wei, SH
AF Ye, Honggang
Chen, Guangde
Wu, Yelong
Zhu, Youzhang
Wei, Su-Huai
TI Stability of a planar-defect structure of the wurtzite AlN
(10(1)over-bar0) surface: Density functional study
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; THREADING
DISLOCATIONS; ELECTRON-MICROSCOPY; NONPOLAR SURFACES; GAN; GROWTH;
PSEUDOPOTENTIALS; SAPPHIRE
AB The formation energy of a structure is usually increased by the appearance of a defect. A stoichiometric planar defect structure of the wurtzite AlN (10 (1) over bar0) surface, however, is found to be lower in energy than the ideally truncated surface by first-principles calculations. The intriguing phenomenon is directly attributed to the large scale surface relaxation induced by the defect structure and the intrinsic reason is pointed to the strong ionicity and small c/a (lattice constant ratio) of AlN. A suggested growth mode shows that the defect surface structure is compatible with the growth of the correct wurtzite AlN film on the (10 (1) over bar0) plane.
C1 [Ye, Honggang; Chen, Guangde; Wu, Yelong; Zhu, Youzhang] Xi An Jiao Tong Univ, Nonequilibrium Condensed Matter & Quantum Engn L, Key Lab Minist Educ, Sch Sci, Xian 710049, Peoples R China.
[Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Ye, HG (reprint author), Xi An Jiao Tong Univ, Nonequilibrium Condensed Matter & Quantum Engn L, Key Lab Minist Educ, Sch Sci, Xian 710049, Peoples R China.
RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen,
Guangde/D-4373-2011; chen, guangde/I-4260-2014
OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X;
FU China National Natural Science Fund [10474078]; "Intelligent Information
Processing and Computing Laboratory" of XJTU; U. S. DOE
[DE-AC36-99GO10337]
FX The authors gratefully acknowledge the financial support of China
National Natural Science Fund (Grant No. 10474078) and the computing
support of the "Intelligent Information Processing and Computing
Laboratory" of XJTU. The work at NREL is supported by the U. S. DOE
under Contract No. DE-AC36-99GO10337.
NR 28
TC 8
Z9 8
U1 1
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 033301
DI 10.1103/PhysRevB.80.033301
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800015
ER
PT J
AU Ye, Z
Hu, XH
Li, M
Ho, KM
Cao, JR
Miyawaki, M
AF Ye, Zhuo
Hu, Xinhua
Li, Ming
Ho, Kai-Ming
Cao, Jiangrong
Miyawaki, Mamoru
TI Localized optical orbital approach to study localized states of light in
photonic crystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID WANNIER FUNCTIONS; DEVICE DESIGN; ENERGY-BANDS; WAVE-GUIDES;
OPTIMIZATION; CIRCUITS; MODES
AB A set of localized basis orbitals are presented to locally represent electromagnetic field in photonic crystals. These orbitals are different from the optical Wannier functions. They are the optical parallelism of quasiatomic orbitals in the context of electronic problems. We demonstrate the utility of these localized optical orbitals by recapturing eigenmodes in defected structures. Calculations for cavity modes and dispersion relations of waveguides agree well with the results from plane-wave expansion calculations. This approach also offers interesting physical insight to understand the state of light in ideal photonic crystals as well as defected structures.
C1 [Ye, Zhuo; Hu, Xinhua; Li, Ming; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA.
[Ye, Zhuo; Hu, Xinhua; Li, Ming; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50010 USA.
[Cao, Jiangrong; Miyawaki, Mamoru] Canon Dev Amer Inc, Irvine, CA 92618 USA.
RP Ye, Z (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA.
EM zye@iastate.edu; kmh@ameslab.gov
RI Cao, Jiangrong/A-4725-2008; Hu, Xinhua/A-5930-2010; Ye,
Zhuo/H-4027-2011;
OI Hu, Xinhua/0000-0003-3153-7612; Ye, Zhuo/0000-0002-8958-5740
FU Department of Energy [DE-AC-02-05CH11231]
FX Z. Y. thanks W. C. Lu, Y. Yao, and C. Z. Wang for discussions on QUAMBOs
in Refs. 16 and 17. This work was supported by the Department of Energy
under Project No. DE-AC-02-05CH11231. The Ames Laboratory is operated
for the U. S. Department of Energy by Iowa State University under
Contract No. W-7405-ENG-82.
NR 30
TC 1
Z9 1
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 035111
DI 10.1103/PhysRevB.80.035111
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800045
ER
PT J
AU Yi, M
Lu, DH
Analytis, JG
Chu, JH
Mo, SK
He, RH
Moore, RG
Zhou, XJ
Chen, GF
Luo, JL
Wang, NL
Hussain, Z
Singh, DJ
Fisher, IR
Shen, ZX
AF Yi, M.
Lu, D. H.
Analytis, J. G.
Chu, J. -H.
Mo, S. -K.
He, R. -H.
Moore, R. G.
Zhou, X. J.
Chen, G. F.
Luo, J. L.
Wang, N. L.
Hussain, Z.
Singh, D. J.
Fisher, I. R.
Shen, Z. -X.
TI Electronic structure of the BaFe2As2 family of iron-pnictide
superconductors
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; Brillouin zones; cobalt compounds; doping profiles;
Fermi level; high-temperature superconductors; iron compounds;
paramagnetic materials; photoelectron spectra; potassium compounds
ID SPIN-DENSITY-WAVE; ORDER; GAPS
AB We use high-resolution angle-resolved photoemission to study the electronic structure of the BaFe2As2 pnictides. We observe two electron bands and two hole bands near the X point, (pi,pi) of the Brillouin zone, in the paramagnetic state for electron-doped Ba(Co0.06Fe0.94)(2)As-2, undoped BaFe2As2, and hole-doped Ba0.6K0.4Fe2As2. Among these bands, only the electron bands cross the Fermi level, forming two electron pockets around X while the hole bands approach but never reach the Fermi level. We show that the band structure of the BaFe2As2 family matches reasonably well with the prediction of local-density approximation calculations after a momentum-dependent shift and renormalization. Our finding resolves a number of inconsistencies regarding the electronic structure of pnictides.
C1 [Yi, M.; Lu, D. H.; He, R. -H.; Moore, R. G.; Shen, Z. -X.] SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA.
[Yi, M.; Lu, D. H.; Mo, S. -K.; He, R. -H.; Moore, R. G.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA.
[Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA.
[Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Zhou, X. J.; Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China.
[Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Yi, M (reprint author), SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA.
EM zxshen@stanford.edu
RI He, Ruihua/A-6975-2010; Yi, Ming/E-3145-2010; Singh, David/I-2416-2012;
Mo, Sung-Kwan/F-3489-2013
OI Mo, Sung-Kwan/0000-0003-0711-8514
FU U.S. DOE, Office of Basic Energy Sciences [DE-AC02-05CH11231]; SSRL,
Stanford University [DE-AC02-76SF00515]; ORNL; NSF
FX We thank I. I. Mazin, Y. Yin, H. Yao, W. S. Lee, and B. Moritz for
helpful discussions. This work is supported by the U.S. DOE, Office of
Basic Energy Sciences at ALS (Grant No. DE-AC02-05CH11231), SSRL,
Stanford University (Grant No. DE-AC02-76SF00515), and at ORNL. M. Y.
thanks the NSF Graduate Research Fellowship for support.
NR 21
TC 103
Z9 103
U1 0
U2 30
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024515
DI 10.1103/PhysRevB.80.024515
PG 5
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500094
ER
PT J
AU Zhang, Y
Ke, XZ
Chen, CF
Yang, J
Kent, PRC
AF Zhang, Yi
Ke, Xuezhi
Chen, Changfeng
Yang, J.
Kent, P. R. C.
TI Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study
SO PHYSICAL REVIEW B
LA English
DT Article
DE anharmonic lattice modes; band structure; density functional theory;
electronic structure; entropy; Gruneisen coefficient; IV-VI
semiconductors; lead compounds; nanocomposites; permittivity; phonon
dispersion relations; specific heat; spin-orbit interactions; thermal
conductivity; thermoelectricity
ID IV-VI-SEMICONDUCTORS; THERMOELECTRIC-MATERIALS; AB-INITIO;
ELECTRONIC-STRUCTURE; STRUCTURAL-PROPERTIES; THERMAL-CONDUCTIVITY; LEAD
CHALCOGENIDES; CRYSTAL DYNAMICS; HIGH-PRESSURE; MERIT
AB The recent discoveries of novel nanocomposite and doped lead chalcogenide-based thermoelectric materials have attracted great interest. These materials exhibit low thermal conductivity which is closely related to their lattice dynamics and thermodynamic properties. In this paper, we report a systematic study of electronic structures and lattice dynamics of the lead chalcogenides PbX (X=Te, Se, and S) using first-principles density-functional-theory calculations and a direct force-constant method. We calculate the structural parameters, elastic moduli, electronic band structures, dielectric constants, and Born effective charges. Moreover, we determine phonon dispersions, phonon density of states, and phonon softening modes in these materials. Based on the results of these calculations, we further employ quasiharmonic approximation to calculate the heat capacity, internal energy, and vibrational entropy. The obtained results are in good agreement with experimental data. Lattice thermal conductivities are evaluated in terms of the Gruumlneisen parameters. The mode Gruumlneisen parameters are calculated to explain the anharmonicity in these materials. The effect of the spin-orbit interaction is found to be negligible in determining the thermodynamic properties of PbTe, PbSe, and PbS.
C1 [Zhang, Yi; Ke, Xuezhi; Chen, Changfeng] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA.
[Zhang, Yi; Ke, Xuezhi; Chen, Changfeng] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA.
[Ke, Xuezhi] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China.
[Yang, J.] GM R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA.
[Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Zhang, Y (reprint author), Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA.
RI Yang, Jihui/A-3109-2009; Zhang, Yi/C-9291-2011; Kent, Paul/A-6756-2008
OI Kent, Paul/0000-0001-5539-4017
FU DOE [DE-FC52-06NA26274, DE-FC26-04NT42278]
FX This work was supported by DOE Cooperative Agreements No.
DE-FC52-06NA26274 and No. DE-FC26-04NT42278; and by GM. This research
used resources (Cray XT4) of the National Center for Computational
Sciences (NCCS) and the Center for Nanophase Materials Sciences at ORNL,
which are sponsored by the respective facilities divisions of the DOE
Offices of Advanced Scientific Computing Research and Basic Energy
Sciences. Y.Z. also acknowledges the useful discussion with Hong Sun of
Shanghai Jiao Tong University and the assistance in accessing computer
resource by Markus Eisenbach of NCCS. J.Y. would like to thank J.F.
Herbst and M. W. Verbrugge for continuous support and encouragement.
NR 52
TC 123
Z9 124
U1 22
U2 112
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 2
AR 024304
DI 10.1103/PhysRevB.80.024304
PG 12
WC Physics, Condensed Matter
SC Physics
GA 478VU
UT WOS:000268617500047
ER
PT J
AU Zhang, Y
Mascarenhas, A
Wei, SH
Wang, LW
AF Zhang, Yong
Mascarenhas, A.
Wei, Su-Huai
Wang, L. -W.
TI Comparison of atomistic simulations and statistical theories for
variable degree of long-range order in semiconductor alloys
SO PHYSICAL REVIEW B
LA English
DT Article
ID CRYSTALS
AB A direct atomistic quantum-mechanical theory is used for a comprehensive investigation on the applicability of a statistical theory based on cluster expansion to the electronic band structure of a semiconductor alloy with variable degree of long-range order. This study reveals that the applicability of the statistical theory depends on the modulation of the relevant wave function within the alloyed sublattice. This finding can be generalized beyond the prototype system-CuPt-ordered Ga(x)In(1-x)P-to other alloys or other forms of long-range order and thus establishes a framework for understanding the effect of ordering in semiconductor alloys and the limitation of the cluster expansion approach for treating the electronic structure of alloys.
C1 [Zhang, Yong; Mascarenhas, A.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Wang, L. -W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Zhang, Y (reprint author), UNC Charlotte, Dept Elect & Comp Engn, Charlotte, NC USA.
EM yong.zhang@uncc.edu
RI Zhang, Yong/D-3412-2013
FU DOE-OS-BES [AC36-08GO28308, DE-AC02-05CH11231]; NERSC
FX This work was supported by the DOE-OS-BES under Contracts No.
DE-AC36-08GO28308 to NREL and No. DE-AC02-05CH11231 to LBNL. The work
used the computational resources of NERSC at LBNL.
NR 13
TC 1
Z9 1
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 4
AR 045206
DI 10.1103/PhysRevB.80.045206
PG 4
WC Physics, Condensed Matter
SC Physics
GA 478WA
UT WOS:000268618100054
ER
PT J
AU Zhou, JF
Koschny, T
Kafesaki, M
Soukoulis, CM
AF Zhou, Jiangfeng
Koschny, Thomas
Kafesaki, Maria
Soukoulis, Costas M.
TI Negative refractive index response of weakly and strongly coupled
optical metamaterials
SO PHYSICAL REVIEW B
LA English
DT Article
ID MAGNETIC RESPONSE; WAVELENGTHS; FREQUENCIES
AB We present a detailed study of the retrieved optical parameters, electrical permittivity epsilon, magnetic permeability mu, and refractive index n of the coupled-fishnet metamaterial structures as a function of the separation between layers. For the weak-coupling case, the retrieved parameters are very close to the one-functional-layer results and converge relatively fast. For the strong-coupling case, the retrieved parameters are completely different from the one-unit fishnet results. We also demonstrate that the high value of the figure of merit [FOM = vertical bar Re(n)/Im(n)vertical bar] for the strongly coupled structures is due to the fact that the real part of the negative n moves away from the maximum of the imaginary part of n (close to the resonance), where the losses are high.
C1 [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece.
[Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece.
RP Zhou, JF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou,
Jiangfeng/D-4292-2009
OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342
NR 27
TC 76
Z9 76
U1 0
U2 16
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2009
VL 80
IS 3
AR 035109
DI 10.1103/PhysRevB.80.035109
PG 6
WC Physics, Condensed Matter
SC Physics
GA 478VX
UT WOS:000268617800043
ER
PT J
AU Abdurashitov, JN
Gavrin, VN
Gorbachev, VV
Gurkina, PP
Ibragimova, TV
Kalikhov, AV
Khairnasov, NG
Knodel, TV
Mirmov, IN
Shikhin, AA
Veretenkin, EP
Yants, VE
Zatsepin, GT
Bowles, TJ
Elliott, SR
Teasdale, WA
Nico, JS
Cleveland, BT
Wilkerson, JF
AF Abdurashitov, J. N.
Gavrin, V. N.
Gorbachev, V. V.
Gurkina, P. P.
Ibragimova, T. V.
Kalikhov, A. V.
Khairnasov, N. G.
Knodel, T. V.
Mirmov, I. N.
Shikhin, A. A.
Veretenkin, E. P.
Yants, V. E.
Zatsepin, G. T.
Bowles, T. J.
Elliott, S. R.
Teasdale, W. A.
Nico, J. S.
Cleveland, B. T.
Wilkerson, J. F.
CA SAGE Collaboration
TI Measurement of the solar neutrino capture rate with gallium metal. III.
Results for the 2002-2007 data-taking period
SO PHYSICAL REVIEW C
LA English
DT Article
ID SPIN-ISOSPIN RESPONSES; GE-71; DECAY; DETECTOR; GALLEX; AR-37; GA-71;
FLUX
AB The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keV of 65.4(-3.0)(+3.1) (stat) (+2.6)(-2.8) (syst) SNU. The weighted average of the results of all three Ga solar neutrino experiments, SAGE, Gallex, and GNO, is now 66.1 +/- 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced (37)Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior (51)Cr neutrino-source experiments with Ga, is 0.87 +/- 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in (71)Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63 SNU to 66 SNU with an uncertainty of about 4%, in good agreement with experiment. We derive the current value of the neutrino flux produced in the Sun by the proton-proton fusion reaction to be phi(circle dot)(pp)=(6.0 +/- 0.8)x10(10)/(cm(2) s), which agrees well with the pp flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.
C1 [Abdurashitov, J. N.; Gavrin, V. N.; Gorbachev, V. V.; Gurkina, P. P.; Ibragimova, T. V.; Kalikhov, A. V.; Khairnasov, N. G.; Knodel, T. V.; Mirmov, I. N.; Shikhin, A. A.; Veretenkin, E. P.; Yants, V. E.; Zatsepin, G. T.] Russian Acad Sci, Nucl Res Inst, RU-117312 Moscow, Russia.
[Bowles, T. J.; Elliott, S. R.; Teasdale, W. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Nico, J. S.] NIST, Gaithersburg, MD 20899 USA.
[Cleveland, B. T.; Wilkerson, J. F.] Univ Washington, Seattle, WA 98195 USA.
RP Cleveland, BT (reprint author), SNOLAB, POB 159, Lively, ON P3Y 1M3, Canada.
EM bclevela@snolab.ca
RI Abdurashitov, Dzhonrid/B-2206-2014; Yants, Viktor/C-1038-2014;
OI Abdurashitov, Dzhonrid/0000-0002-1577-1364; Wilkerson,
John/0000-0002-0342-0217
FU Russian Academy of Sciences; Ministry of Education and Science of the
Russian Federation,; Division of Nuclear Physics of the US Department of
Energy; US National Science Foundation; Russian Foundation [99-02-16110,
02-02-16776, 05-02-17199, 08-02-00146]; Russian Federation [00-1596632,
NS-1782.2003, NS-5573.2006.2, NS-959.2008.2]; Presidium of the Russian
Academy of Sciences; International Science and Technology Center [1431];
US Civilian Research and Development Foundation [CGP RP2-159, CGP
RP2-2360-MO-02]
FX SAGE is grateful to M. Baldo-Ceolin, W. Haxton, V. A. Kuzmin, V. A.
Matveev, S. P. Mikheev, R. G. H. Robertson, V. A. Rubakov, A. Yu.
Smirnov, A. Suzuki, A. N. Tavkhelidze, and our colleagues from the
GALLEX and GNO Collaborations for their continued interest and for
fruitful and stimulating discussions. We especially thank W. Hampel for
vital comments on many aspects of our investigations. SAGE acknowledges
the support of the Russian Academy of Sciences, the Ministry of
Education and Science of the Russian Federation, the Division of Nuclear
Physics of the US Department of Energy, and the US National Science
Foundation. This work was partially funded by the Russian Foundation for
Basic Research under grants 99-02-16110, 02-02-16776, 05-02-17199, and
08-02-00146; by the Program of the President of the Russian Federation
under grants 00-1596632, NS-1782.2003, NS-5573.2006.2, and
NS-959.2008.2; by the Program of Basic Research "Neutrino Physics" of
the Presidium of the Russian Academy of Sciences; by the International
Science and Technology Center under grant 1431; and by the US Civilian
Research and Development Foundation under grants CGP RP2-159 and CGP
RP2-2360-MO-02.
NR 41
TC 252
Z9 253
U1 2
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 015807
DI 10.1103/PhysRevC.80.015807
PG 16
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500074
ER
PT J
AU Alver, B
Back, BB
Baker, MD
Ballintijn, M
Barton, DS
Betts, RR
Bindel, R
Busza, W
Chai, Z
Chetluru, V
Garcia, E
Gburek, T
Gulbrandsen, K
Hamblen, J
Harnarine, I
Henderson, C
Hofman, DJ
Hollis, RS
Holynski, R
Holzman, B
Iordanova, A
Kane, JL
Kulinich, P
Kuo, CM
Li, W
Lin, WT
Loizides, C
Manly, S
Mignerey, AC
Nouicer, R
Olszewski, A
Pak, R
Reed, C
Richardson, E
Roland, C
Roland, G
Sagerer, J
Sedykh, I
Smith, CE
Stankiewicz, MA
Steinberg, P
Stephans, GSF
Sukhanov, A
Szostak, A
Tonjes, MB
Trzupek, A
van Nieuwenhuizen, GJ
Vaurynovich, SS
Verdier, R
Veres, G
Walters, P
Wenger, E
Willhelm, D
Wolfs, FLH
Wosiek, B
Wozniak, K
Wyngaardt, S
Wyslouch, B
AF Alver, B.
Back, B. B.
Baker, M. D.
Ballintijn, M.
Barton, D. S.
Betts, R. R.
Bindel, R.
Busza, W.
Chai, Z.
Chetluru, V.
Garcia, E.
Gburek, T.
Gulbrandsen, K.
Hamblen, J.
Harnarine, I.
Henderson, C.
Hofman, D. J.
Hollis, R. S.
Holynski, R.
Holzman, B.
Iordanova, A.
Kane, J. L.
Kulinich, P.
Kuo, C. M.
Li, W.
Lin, W. T.
Loizides, C.
Manly, S.
Mignerey, A. C.
Nouicer, R.
Olszewski, A.
Pak, R.
Reed, C.
Richardson, E.
Roland, C.
Roland, G.
Sagerer, J.
Sedykh, I.
Smith, C. E.
Stankiewicz, M. A.
Steinberg, P.
Stephans, G. S. F.
Sukhanov, A.
Szostak, A.
Tonjes, M. B.
Trzupek, A.
van Nieuwenhuizen, G. J.
Vaurynovich, S. S.
Verdier, R.
Veres, G.
Walters, P.
Wenger, E.
Willhelm, D.
Wolfs, F. L. H.
Wosiek, B.
Wozniak, K.
Wyngaardt, S.
Wyslouch, B.
CA PHOBOS Collaboration
TI Scaling properties in bulk and p(T)-dependent particle production near
midrapidity in relativistic heavy ion collisions
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEAR COLLISIONS; PHOBOS; DETECTOR
AB The centrality dependence of the midrapidity charged-particle multiplicity density (vertical bar eta vertical bar < 1) is presented for Au+Au and Cu+Cu collisions at RHIC over a broad range of collision energies. The multiplicity measured in the Cu+Cu system is found to be similar to that measured in the Au+Au system, for an equivalent N-part, with the observed factorization in energy and centrality still persistent in the smaller Cu+Cu system. The extent of the similarities observed for bulk particle production is tested by a comparative analysis of the inclusive transverse momentum distributions for Au+Au and Cu+Cu collisions near midrapidity. It is found that, within the uncertainties of the data, the ratio of yields between the various energies for both Au+Au and Cu+Cu systems are similar and constant with centrality, both in the bulk yields and as a function of p(T), up to at least 4 GeV/c. The effects of multiple nucleon collisions that strongly increase with centrality and energy appear to only play a minor role in bulk and intermediate transverse momentum particle production.
C1 [Alver, B.; Ballintijn, M.; Busza, W.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G.; Wenger, E.; Wyslouch, B.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Back, B. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Dept CA, Upton, NY 11973 USA.
[Betts, R. R.; Chetluru, V.; Garcia, E.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Nouicer, R.; Sagerer, J.; Smith, C. E.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
[Bindel, R.; Mignerey, A. C.; Richardson, E.; Tonjes, M. B.; Willhelm, D.] Univ Maryland, Dept Chem, College Pk, MD 20742 USA.
[Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] Inst Nucl Phys PAN, Krakow, Poland.
[Hamblen, J.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA.
[Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Dept Phys, Chungli 32054, Taiwan.
RP Alver, B (reprint author), MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
RI Mignerey, Alice/D-6623-2011;
OI Holzman, Burt/0000-0001-5235-6314
FU US DOE [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG0294ER40818,
DE-FG02-94ER40865, DE-FG02-99ER41099, DE-AC02-06CH1135]; US NSF
[9603486, 0072204, 0245011]; Polish MNiSW [N N202 282234]; NSC of Taiwan
[NSC 89-2112-M-008-024]; Hungarian OTKA [F 049823]
FX This work was partially supported by US DOE Grant Nos.
DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG0294ER40818,
DE-FG02-94ER40865, DE-FG02-99ER41099, and DE-AC02-06CH11357, by US NSF
Grant Nos. 9603486, 0072204, and 0245011, by Polish MNiSW Grant No. N
N202 282234 ( 2008-2010), by NSC of Taiwan Contract No. NSC
89-2112-M-008-024, and by Hungarian OTKA Grant No. F 049823.
NR 18
TC 12
Z9 12
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 011901
DI 10.1103/PhysRevC.80.011901
PG 5
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500011
ER
PT J
AU Bender, PC
Hoffman, CR
Wiedeking, M
Allmond, JM
Bernstein, LA
Burke, JT
Bleuel, DL
Clark, RM
Fallon, P
Goldblum, BL
Hinners, TA
Jeppesen, HB
Lee, S
Lee, IY
Lesher, SR
Macchiavelli, AO
McMahan, MA
Morris, D
Perry, M
Phair, L
Scielzo, ND
Tabor, SL
Tripathi, V
Volya, A
AF Bender, P. C.
Hoffman, C. R.
Wiedeking, M.
Allmond, J. M.
Bernstein, L. A.
Burke, J. T.
Bleuel, D. L.
Clark, R. M.
Fallon, P.
Goldblum, B. L.
Hinners, T. A.
Jeppesen, H. B.
Lee, Sangjin
Lee, I-Y.
Lesher, S. R.
Macchiavelli, A. O.
McMahan, M. A.
Morris, D.
Perry, M.
Phair, L.
Scielzo, N. D.
Tabor, S. L.
Tripathi, Vandana
Volya, A.
TI Approaching the "island of inversion": P-34
SO PHYSICAL REVIEW C
LA English
DT Article
ID BETA-DECAY; MASS; NUCLEI; CLOVER
AB Yrast states in P-34 were investigated using the O-18(O-18,pn) reaction at energies of 20, 24, 25, 30, and 44 MeV at Florida State University and at Lawrence Berkeley National Laboratory. The level scheme was expanded, gamma-ray angular distributions were measured, and lifetimes were inferred with the Doppler-shift attenuation method by detecting decay protons in coincidence with one or more gamma rays. The results provide a clearer picture of the evolution of structure approaching the "island of inversion," particularly how the one- and two-particle-hole (ph) states fall in energy with increasing neutron number approaching inversion. However, the agreement of the lowest few states with pure sd shell model predictions shows that the level scheme of P-34 is not itself inverted. Rather, the accumulated evidence indicates that the 1-ph states start at 2.3 MeV. A good candidate for the lowest 2-ph state lies at 6236 keV, just below the neutron separation energy of 6291 keV. Shell model calculations made using a small modification of the WBP interaction reproduce the negative-parity, 1-ph states rather well.
C1 [Bender, P. C.; Hoffman, C. R.; Hinners, T. A.; Lee, Sangjin; Morris, D.; Perry, M.; Tabor, S. L.; Tripathi, Vandana; Volya, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
[Wiedeking, M.; Clark, R. M.; Fallon, P.; Jeppesen, H. B.; Lee, I-Y.; Macchiavelli, A. O.; McMahan, M. A.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Wiedeking, M.; Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lesher, S. R.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Allmond, J. M.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA.
[Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.
RP Bender, PC (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA.
RI Volya, Alexander/I-9457-2012; Burke, Jason/I-4580-2012
OI Volya, Alexander/0000-0002-1765-6466;
FU National Science Foundation [PHY-04-56463, PHY-0756474]; US Department
of Energy [DE-AC02-05CH11231]; University of California; Lawrence
Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344.]
FX This work was supported in part by the National Science Foundation
through Grants PHY-04-56463 and PHY-0756474. Support for Lawrence
Berkeley National Laboratory was provided by the US Department of Energy
under Contract DE-AC02-05CH11231. Part of this work was performed under
the auspices of the US Department of Energy by the University of
California, Lawrence Livermore National Laboratory, under Contracts
W-7405-Eng-48 and DE-AC52-07NA27344.
NR 20
TC 27
Z9 27
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014302
DI 10.1103/PhysRevC.80.014302
PG 9
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500016
ER
PT J
AU Brown, JR
Bentley, MA
Adrich, P
Bazin, D
Cook, JM
Diget, CA
Gade, A
Glasmacher, T
Lenzi, SM
McDaniel, S
Pritychenko, B
Ratkiewicz, A
Siwek, K
Taylor, MJ
Weisshaar, D
AF Brown, J. R.
Bentley, M. A.
Adrich, P.
Bazin, D.
Cook, J. M.
Diget, C. Aa.
Gade, A.
Glasmacher, T.
Lenzi, S. M.
McDaniel, S.
Pritychenko, B.
Ratkiewicz, A.
Siwek, K.
Taylor, M. J.
Weisshaar, D.
TI First gamma-ray spectroscopy of Fe-49 and Ni-53: Isospin-breaking
effects at large proton excess
SO PHYSICAL REVIEW C
LA English
DT Article
ID SHELL-MODEL; EXOTIC NUCLEI; SYMMETRY; ENERGIES; STATES; CR-49; V-49
AB Isospin-breaking effects have been studied for the first time in T=32 isobaric analog states. Gamma decays have been observed from T-z=-32 nuclei, Fe-49 and Ni-53, presented here in new level schemes, and mirror energy differences have been computed following observation of analog states in V-49 and Mn-53, respectively. Shell-model calculations in the fp shell are in good agreement with the data and reveal the importance of non-Coulomb isospin-breaking effects in T=32 isobaric analog states. A two-step fragmentation process was developed to allow access to highly proton-rich nuclei and to produce each member of a mirror pair via mirrored fragmentation of a Ni-56 secondary beam. This work represents the first study using this technique and demonstrates the power of this approach for future studies of isobaric analog states in very proton-rich systems.
C1 [Brown, J. R.; Bentley, M. A.; Taylor, M. J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
[Adrich, P.; Bazin, D.; Cook, J. M.; Diget, C. Aa.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Lenzi, S. M.] Univ Padua, Dipartimento Fis, Padua, Italy.
[Lenzi, S. M.] Ist Nazl Fis Nucl, Padua, Italy.
[Pritychenko, B.] Natl Nucl Data Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Brown, JR (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England.
EM jb536@york.ac.uk
RI Gade, Alexandra/A-6850-2008; Yan, XinLiang/E-4156-2010; Glasmacher,
Thomas/C-4462-2008; Lenzi, Silvia/I-6750-2012; Glasmacher,
Thomas/H-9673-2014; Taylor, Michael/N-1725-2015; Diget, Christian
Aaen/D-8063-2016
OI Gade, Alexandra/0000-0001-8825-0976; Glasmacher,
Thomas/0000-0001-9436-2448; Taylor, Michael/0000-0002-8718-3684; Diget,
Christian Aaen/0000-0002-9778-8759
FU United Kingdom Science and Technologies Facilities Council; National
Science Foundation [PHY-0606007]
FX The authors thank the staff of the Coupled Cyclotron Facility at
theNational Superconducting Cyclotron Laboratory for their help and
support during this novel experiment. This work was supported by the
United Kingdom Science and Technologies Facilities Council and partly by
the National Science Foundation under Grant No. PHY-0606007.
NR 31
TC 7
Z9 7
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 011306
DI 10.1103/PhysRevC.80.011306
PG 5
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500007
ER
PT J
AU Chugunov, AI
DeWitt, HE
AF Chugunov, A. I.
DeWitt, H. E.
TI Nuclear fusion reaction rates for strongly coupled ionic mixtures
SO PHYSICAL REVIEW C
LA English
DT Article
ID THERMONUCLEAR REACTION-RATES; ACCRETING NEUTRON-STARS; DENSE STELLAR
MATTER; MONTE-CARLO SIMULATIONS; PYCNONUCLEAR REACTIONS; THERMAL STATES;
ENHANCEMENT; PLASMAS; DENSITIES; FLUIDS
AB We analyze the effect of plasma screening on nuclear reaction rates in dense matter composed of atomic nuclei of one or two types. We perform semiclassical calculations of the Coulomb barrier penetrability taking into account a radial mean-field potential of plasma ions. The mean-field potential is extracted from the results of extensive Monte Carlo calculations of radial pair distribution functions of ions in binary ionic mixtures. We calculate the reaction rates in a wide range of plasma parameters and approximate these rates by an analytical expression that is expected to be applicable to multicomponent ion mixtures. Also, we analyze Gamow-peak energies of reacting ions in various nuclear burning regimes. For illustration, we study nuclear burning in (12)C-(16)O mixtures.
C1 [Chugunov, A. I.] AF Ioffe Phys Tech Inst, RU-194021 St Petersburg, Russia.
[DeWitt, H. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Chugunov, AI (reprint author), AF Ioffe Phys Tech Inst, Politekhnicheskaya 26, RU-194021 St Petersburg, Russia.
RI Chugunov, Andrey/E-2061-2014
FU Russian Foundation for Basic Research [08-02-00837]; State Program
"Leading Scientific Schools of Russian Federation" [NSh 2600.2008.2]; US
Department of Energy at the Lawrence Livermore National Laboratory
[W-7405-ENG-48]
FX We are grateful to D. G. Yakovlev for useful remarks. The work of AIC
was partly supported by the Russian Foundation for Basic Research (Grant
08-02-00837) and by the State Program "Leading Scientific Schools of
Russian Federation" (Grant NSh 2600.2008.2). The work of HED was
performed under the auspices of the US Department of Energy at the
Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
NR 49
TC 9
Z9 9
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014611
DI 10.1103/PhysRevC.80.014611
PG 12
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500049
ER
PT J
AU Clark, RM
Casten, RF
Bettermann, L
Winkler, R
AF Clark, R. M.
Casten, R. F.
Bettermann, L.
Winkler, R.
TI Unified framework for understanding pair transfer between collective
states in atomic nuclei
SO PHYSICAL REVIEW C
LA English
DT Article
ID INTERACTING-BOSON MODEL; T,P REACTION; PHASE-TRANSITIONS; GADOLINIUM
NUCLEI; P,T REACTION; T REACTIONS; ISOTOPES; QUANTUM; SM
AB A new interpretation of two-nucleon pair transfer in collective nuclei is presented. It differs from traditional models and unifies, within a consistent framework, the entire range of monopole pair-transfer phenomenology in collective nuclei. This includes the well-known examples of large cross sections to excited 0(+) states in phase transitional nuclei, and small ones in many other nuclei, but also predicts large cross sections elsewhere under particular circumstances. These predictions can be tested experimentally.
C1 [Clark, R. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Casten, R. F.; Winkler, R.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA.
[Casten, R. F.; Bettermann, L.] Univ Cologne, Inst Nucl Phys, D-50937 Cologne, Germany.
RP Clark, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
FU US DOE [DE-FG0291ER-40609, DE-CA02-05CH11231]; German DFG [J0391/3-2];
Mercator lecture grant at the University of Koln [142/112-1]
FX We are grateful to R. Burcu Cakirli for the nuclear chart in Fig. 3.
Work supported by US DOE Grant No. DE-FG0291ER-40609, US DOE Contract
No. DE-CA02-05CH11231, the German DFG under Grant No. J0391/3-2 and
through a Mercator lecture grant at the University of Koln, under Grant
No. Ko. 142/112-1, and by the Flint Fund.
NR 30
TC 6
Z9 6
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 011303
DI 10.1103/PhysRevC.80.011303
PG 5
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500004
ER
PT J
AU Dalton, MM
Adams, GS
Ahmidouch, A
Angelescu, T
Arrington, J
Asaturyan, R
Baker, OK
Benmouna, N
Bertoncini, C
Boeglin, WU
Bosted, PE
Breuer, H
Christy, ME
Connell, SH
Cui, Y
Danagoulian, S
Day, D
Dodario, T
Dunne, JA
Dutta, D
El Khayari, N
Ent, R
Fenker, HC
Frolov, VV
Gan, L
Gaskell, D
Hafidi, K
Hinton, W
Holt, RJ
Horn, T
Huber, GM
Hungerford, E
Jiang, X
Jones, MK
Joo, K
Kalantarians, N
Kelly, JJ
Keppel, CE
Kubarovsky, V
Li, Y
Liang, Y
Malace, S
Markowitz, P
McKee, P
Meekins, DG
Mkrtchyan, H
Moziak, B
Navasardyan, T
Niculescu, G
Niculescu, I
Opper, AK
Ostapenko, T
Reimer, PE
Reinhold, J
Roche, J
Rock, SE
Schulte, E
Segbefia, E
Smith, C
Smith, GR
Stoler, P
Tadevosyan, V
Tang, L
Tvaskis, V
Ungaro, M
Uzzle, A
Vidakovic, S
Villano, A
Vulcan, WF
Wang, M
Warren, G
Wesselmann, FR
Wojtsekhowski, B
Wood, SA
Xu, C
Yuan, L
Zheng, X
Zhu, H
AF Dalton, M. M.
Adams, G. S.
Ahmidouch, A.
Angelescu, T.
Arrington, J.
Asaturyan, R.
Baker, O. K.
Benmouna, N.
Bertoncini, C.
Boeglin, W. U.
Bosted, P. E.
Breuer, H.
Christy, M. E.
Connell, S. H.
Cui, Y.
Danagoulian, S.
Day, D.
Dodario, T.
Dunne, J. A.
Dutta, D.
El Khayari, N.
Ent, R.
Fenker, H. C.
Frolov, V. V.
Gan, L.
Gaskell, D.
Hafidi, K.
Hinton, W.
Holt, R. J.
Horn, T.
Huber, G. M.
Hungerford, E.
Jiang, X.
Jones, M. K.
Joo, K.
Kalantarians, N.
Kelly, J. J.
Keppel, C. E.
Kubarovsky, V.
Li, Y.
Liang, Y.
Malace, S.
Markowitz, P.
McKee, P.
Meekins, D. G.
Mkrtchyan, H.
Moziak, B.
Navasardyan, T.
Niculescu, G.
Niculescu, I.
Opper, A. K.
Ostapenko, T.
Reimer, P. E.
Reinhold, J.
Roche, J.
Rock, S. E.
Schulte, E.
Segbefia, E.
Smith, C.
Smith, G. R.
Stoler, P.
Tadevosyan, V.
Tang, L.
Tvaskis, V.
Ungaro, M.
Uzzle, A.
Vidakovic, S.
Villano, A.
Vulcan, W. F.
Wang, M.
Warren, G.
Wesselmann, F. R.
Wojtsekhowski, B.
Wood, S. A.
Xu, C.
Yuan, L.
Zheng, X.
Zhu, H.
TI Electroproduction of eta mesons in the S-11(1535) resonance region at
high momentum transfer
SO PHYSICAL REVIEW C
LA English
DT Article
ID FORM-FACTORS; QUARK-MODEL; PION-PHOTOPRODUCTION; EXCLUSIVE PROCESSES;
NUCLEON RESONANCES; SIGMA-T; THRESHOLD; PROTON; TRANSITION; SCATTERING
AB The differential cross section for the process p(e,e(')p)eta has been measured at Q(2 similar to)5.7 and 7.0(GeV/c)(2) for center-of-mass energies from threshold to 1.8 GeV, encompassing the S-11(1535) resonance, which dominates the channel. This is the highest momentum-transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A(1/2), for the production of the S-11(1535) resonance, is extracted from the data. Within the limited Q(2) now measured, this quantity appears to begin scaling as Q(-3)-a predicted, but not definitive, signal of the dominance of perturbative QCD at Q(2)similar to 5 (GeV/c)(2).
C1 [Dalton, M. M.] Univ Witwatersrand, Johannesburg, South Africa.
[Adams, G. S.; Kubarovsky, V.; Moziak, B.; Stoler, P.; Villano, A.] Rensselaer Polytech Inst, Troy, NY 12180 USA.
[Ahmidouch, A.; Danagoulian, S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA.
[Angelescu, T.; Malace, S.] Univ Bucharest, Bucharest, Romania.
[Arrington, J.; Hafidi, K.; Holt, R. J.; Reimer, P. E.; Schulte, E.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[Baker, O. K.; Christy, M. E.; Hinton, W.; Keppel, C. E.; Li, Y.; Segbefia, E.; Tang, L.; Uzzle, A.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA.
[Baker, O. K.; Bosted, P. E.; Ent, R.; Fenker, H. C.; Gaskell, D.; Hinton, W.; Jones, M. K.; Keppel, C. E.; Kubarovsky, V.; Meekins, D. G.; Roche, J.; Smith, G. R.; Tang, L.; Vulcan, W. F.; Warren, G.; Wojtsekhowski, B.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Benmouna, N.] George Washington Univ, Washington, DC 20052 USA.
[Bertoncini, C.] Vassar Coll, Poughkeepsie, NY 12604 USA.
[Boeglin, W. U.; Markowitz, P.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA.
[Breuer, H.; Horn, T.; Kelly, J. J.] Univ Maryland, College Pk, MD 20742 USA.
[Connell, S. H.] Univ Johannesburg, Johannesburg, South Africa.
[Cui, Y.; Dodario, T.; El Khayari, N.; Hungerford, E.; Kalantarians, N.] Univ Houston, Houston, TX 77204 USA.
[Day, D.; McKee, P.; Niculescu, G.; Smith, C.; Wesselmann, F. R.; Zhu, H.] Univ Virginia, Charlottesville, VA 22901 USA.
[Dunne, J. A.; Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA.
[Frolov, V. V.] LIGO Livingston Observ, Livingston, LA 70754 USA.
[Gan, L.] Univ N Carolina, Wilmington, NC 28403 USA.
[Huber, G. M.; Vidakovic, S.; Xu, C.] Univ Regina, Regina, SK S4S 0A2, Canada.
[Jiang, X.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Joo, K.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA.
[Liang, Y.; Opper, A. K.] Ohio Univ, Athens, OH 45071 USA.
[Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA.
[Ostapenko, T.] Gettysburg Coll, Gettysburg, PA 18103 USA.
[Rock, S. E.; Wang, M.] Univ Massachusetts, Amherst, MA 01003 USA.
[Tvaskis, V.] Natl Inst Subatomaire Fys, Amsterdam, Netherlands.
RP Dalton, MM (reprint author), Univ Witwatersrand, Johannesburg, South Africa.
EM dalton@jlab.org
RI Holt, Roy/E-5803-2011; Arrington, John/D-1116-2012; Reimer,
Paul/E-2223-2013; Day, Donal/C-5020-2015; Connell, Simon/F-2962-2015;
Dalton, Mark/B-5380-2016
OI Arrington, John/0000-0002-0702-1328; Day, Donal/0000-0001-7126-8934;
Connell, Simon/0000-0001-6000-7245; Dalton, Mark/0000-0001-9204-7559
FU US Department of Energy [DE-AC02-06CH11357, DEAC05-84ER40150]; US
National Science Foundation; South African National Research Foundation
FX We acknowledge the support of staff and management at Jefferson Lab.
Thiswork is supported in part by research grants from theUS Department
of Energy (including grant DE-AC02-06CH11357), the US National Science
Foundation and the South African National Research Foundation. The
Southeastern Universities Research Association operates the Thomas
Jefferson National Accelerator Facility under the US Department of
Energy contract DEAC05-84ER40150.
NR 43
TC 21
Z9 21
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 015205
DI 10.1103/PhysRevC.80.015205
PG 34
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500064
ER
PT J
AU Gintautas, V
Champagne, AE
Kondev, FG
Longland, R
AF Gintautas, Vadas
Champagne, Arthur E.
Kondev, Filip G.
Longland, Richard
TI Thermal equilibration of Lu-176 via K mixing
SO PHYSICAL REVIEW C
LA English
DT Article
ID CAPTURE CROSS-SECTIONS; S-PROCESS; ASTROPHYSICAL CONSEQUENCES; STARS;
SOLAR; NUCLEOSYNTHESIS; TRANSITIONS; ABUNDANCES; SCHEME; MASSES
AB In astrophysical environments, the long-lived (T-1/2=37.6 Gyr) ground state of Lu-176 can communicate with a short-lived (T-1/2=3.664 h) isomeric level through thermal excitations. Thus, the lifetime of Lu-176 in an astrophysical environment can be quite different than in the laboratory. We examine the possibility that the rate of equilibration can be enhanced via K mixing of two levels near E-x=725 keV and estimate the relevant gamma-decay rates. We use this result to illustrate the effect of K mixing on the effective stellar half-life. We also present a network calculation that includes the equilibrating transitions allowed by K mixing. Even a small amount of K mixing will decrease the timescale for equilibration during an s-process triggered by the Ne-22 neutron source.
C1 [Gintautas, Vadas; Champagne, Arthur E.; Longland, Richard] Univ N Carolina, Chapel Hill, NC 27599 USA.
[Champagne, Arthur E.; Longland, Richard] Triangle Univ Nucl Lab, Durham, NC 27708 USA.
[Kondev, Filip G.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Gintautas, V (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
FU US DOE [DE-FG02- 97ER4104, DE-AC02-06CH11357]
FX This work was supported in part by US DOE grant nos. DE-FG02- 97ER4104
and DE-AC02-06CH11357. We would like to thank G. D. Dracoulis, J. Engel,
and P. Mohr for advice and useful discussions. One of the authors (A. E.
C.) wishes to thank Argonne National Laboratory for their hospitality
and another (R. L.) would like to thank J. Lattanzio for his assistance
with the Monash stellar-structure code. The Los Alamos National
Laboratory technical information release number is LA-UR 09-00440.
NR 28
TC 12
Z9 12
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 015806
DI 10.1103/PhysRevC.80.015806
PG 8
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500073
ER
PT J
AU Goodin, C
Ramayya, AV
Hamilton, JH
Stone, NJ
Daniel, AV
Li, K
Liu, SH
Hwang, JK
Luo, YX
Rasmussen, JO
Zhu, SJ
AF Goodin, C.
Ramayya, A. V.
Hamilton, J. H.
Stone, N. J.
Daniel, A. V.
Li, K.
Liu, S. H.
Hwang, J. K.
Luo, Y. X.
Rasmussen, J. O.
Zhu, S. J.
TI Single particle states in neutron-rich Zr-101, Mo-103,Mo-105,Mo-107, and
Ru-109,Ru-111
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEI
AB The multipole mixing ratios of Delta I=1 transitions between levels in rotational bands built on single-particle states in odd neutron nuclei are dependent on the configurations of the states. In particular, the mixing ratio can be used to distinguish between several possible single-particle configurations if interpreted with the particle-axial-rotor model. This work features the first determination of the ground-state configurations of Ru-109,Ru-111. The single-particle structures of the ground states of Zr-101 and Mo-103,Mo-105,Mo-107 as well as excited states in Mo-103,Mo-107 are also investigated, with a new result found in Mo-107.
C1 [Goodin, C.; Ramayya, A. V.; Hamilton, J. H.; Daniel, A. V.; Li, K.; Liu, S. H.; Hwang, J. K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA.
[Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Daniel, A. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia.
[Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37830 USA.
[Luo, Y. X.; Rasmussen, J. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
RP Goodin, C (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA.
FU US Department of Energy [DE-FG05-88ER40407, W-7405-ENG48]; University of
Tennessee; Vanderbilt University; US DOE [DE-FG05-87ER40311 and
DE-FG0296ER40983]
FX We thank V. Oberacker for assistance with calculations. The work at
Vanderbilt University and Lawrence Berkeley National Laboratory are
supported by US Department of Energy under Grant No. DE-FG05-88ER40407
and Contract No. W-7405-ENG48. The Joint Institute for Heavy Ion
Research is supported by the University of Tennessee, Vanderbilt
University, and the US DOE through Contract Nos. DE-FG05-87ER40311 and
DE-FG0296ER40983 with University of Tennessee is gratefully
acknowledged.
NR 16
TC 10
Z9 10
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014318
DI 10.1103/PhysRevC.80.014318
PG 7
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500032
ER
PT J
AU Hutcheson, A
Angell, C
Becker, JA
Crowell, AS
Dashdorj, D
Fallin, B
Fotiades, N
Howell, CR
Karwowski, HJ
Kawano, T
Kelley, JH
Kwan, E
Macri, RA
Nelson, RO
Pedroni, RS
Tonchev, AP
Tornow, W
AF Hutcheson, A.
Angell, C.
Becker, J. A.
Crowell, A. S.
Dashdorj, D.
Fallin, B.
Fotiades, N.
Howell, C. R.
Karwowski, H. J.
Kawano, T.
Kelley, J. H.
Kwan, E.
Macri, R. A.
Nelson, R. O.
Pedroni, R. S.
Tonchev, A. P.
Tornow, W.
TI Cross sections for U-238(n,n(')gamma) and U-238(n,2n gamma) reactions at
incident neutron energies between 5 and 14 MeV
SO PHYSICAL REVIEW C
LA English
DT Article
AB Precision measurements of U-238(n,n(')gamma) and U-238(n,2n gamma) partial cross sections have been performed at Triangle Universities Nuclear Laboratory (TUNL) to improve crucial data needed for testing nuclear reaction models in the actinide mass region. A pulsed and monoenergetic neutron beam was used in combination with high-resolution gamma-ray spectroscopy to obtain partial cross sections for incident neutron energies between 5 and 14 MeV. gamma-ray yields were measured with high-purity germanium clover and planar detectors. Measured partial cross-section data are compared with previous results using white and monoenergetic neutron beams and calculations from the GNASH and TALYS Hauser-Feshbach statistical-model codes. Present experimental results are in fair to good agreement with most of the existing data for the U-238(n,n(')gamma) reaction. However, significant discrepancies are observed for the U-238(n,2n gamma) reaction.
C1 [Dashdorj, D.; Kelley, J. H.] N Carolina State Univ, Raleigh, NC 27695 USA.
[Angell, C.; Karwowski, H. J.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA.
[Pedroni, R. S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA.
[Hutcheson, A.; Angell, C.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kwan, E.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA.
[Fotiades, N.; Kawano, T.; Nelson, R. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Becker, J. A.; Dashdorj, D.; Macri, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Hutcheson, A.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Kwan, E.; Tonchev, A. P.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA.
RP Hutcheson, A (reprint author), USN, Res Lab, Washington, DC 20375 USA.
EM hutch@tunl.duke.edu
FU National Nuclear Security Administration [DE-FG52-06NA26155]; US
Department of Energy by Los Alamos National Security, LLC, Los Alamos
National Laboratory [DE-AC52-06NA25396]; Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]
FX We would like to thank C. K. Walker for valuable discussions. The
research described in this work was supported by the National Nuclear
Security Administration under the Stewardship Science Academic Alliance
Program through US Department of Energy Grant No. DE-FG52-06NA26155.
Portions of this work were performed under the auspices of the US
Department of Energy by Los Alamos National Security, LLC, Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396 and by Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
NR 21
TC 3
Z9 3
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014603
DI 10.1103/PhysRevC.80.014603
PG 7
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500041
ER
PT J
AU Johansson, EK
Rudolph, D
Ragnarsson, I
Andersson, LL
Torres, DA
Andreoiu, C
Baktash, C
Carpenter, MP
Charity, RJ
Chiara, CJ
Ekman, J
Fahlander, C
Pechenaya, OL
Reviol, W
du Rietz, R
Sarantites, DG
Seweryniak, D
Sobotka, LG
Yu, CH
Zhu, S
AF Johansson, E. K.
Rudolph, D.
Ragnarsson, I.
Andersson, L. -L.
Torres, D. A.
Andreoiu, C.
Baktash, C.
Carpenter, M. P.
Charity, R. J.
Chiara, C. J.
Ekman, J.
Fahlander, C.
Pechenaya, O. L.
Reviol, W.
du Rietz, R.
Sarantites, D. G.
Seweryniak, D.
Sobotka, L. G.
Yu, C. H.
Zhu, S.
TI Thorough gamma-ray and particle decay investigations of Ni-58
SO PHYSICAL REVIEW C
LA English
DT Article
ID PROMPT PROTON-DECAY; ROTATIONAL BANDS; HIGH-SPIN; SHELL-MODEL;
CHANNEL-SELECTION; SPECTROSCOPY; GAMMASPHERE; STATES; COLLECTIVITY;
TERMINATION
AB The combined data from three fusion-evaporation reaction experiments have been utilized to investigate the semi-magic nucleus Ni-58(28)30. To detect gamma rays in coincidence with evaporated particles, the Ge-detector array Gammasphere was used in conjunction with the charged-particle detectors Microball and LuWuSiA (the Lund Washington University Silicon Array), and a neutron detector array. The results yield a significantly extended level scheme of Ni-58 comprising some 340 gamma-ray transitions and include a total of at least 14 discrete particle decays into excited states of the daughter nuclei Fe-54 and Co-57. The level scheme is compared with large-scale shell-model calculations and cranked Nilsson-Strutinsky calculations.
C1 [Johansson, E. K.; Rudolph, D.; Andersson, L. -L.; Ekman, J.; Fahlander, C.; du Rietz, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden.
[Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden.
[Torres, D. A.] Univ Nacl Colombia, Dept Fis, Bogota, Colombia.
[Andreoiu, C.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada.
[Baktash, C.; Yu, C. H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Carpenter, M. P.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Charity, R. J.; Chiara, C. J.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA.
RP Johansson, EK (reprint author), Lund Univ, Dept Phys, S-22100 Lund, Sweden.
RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; du Rietz,
Rickard/I-3794-2013; Carpenter, Michael/E-4287-2015
OI Rudolph, Dirk/0000-0003-1199-3055; du Rietz,
Rickard/0000-0002-9884-9058; Carpenter, Michael/0000-0002-3237-5734
FU Swedish Research Council; US DOE [DE-AC-02-06CH11357]
FX The authors thank the staff and the accelerator crew at LBNL and ANL, as
well as D. P. Balamuth, M. Devlin, J. Eberth, A. Galindo-Uribarri, P. A.
Hausladen, L. L. Riedinger, and T. Steinhardt for support during the
experiments. This work is supported in part by the Swedish Research
Council and the US DOE Grant DE-AC-02-06CH11357.
NR 43
TC 13
Z9 13
U1 1
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014321
DI 10.1103/PhysRevC.80.014321
PG 32
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500035
ER
PT J
AU Kay, BP
Chiara, CJ
Schiffer, JP
Kondev, FG
Zhu, S
Carpenter, MP
Janssens, RVF
Lauritsen, T
Lister, CJ
McCutchan, EA
Seweryniak, D
Stefanescu, I
AF Kay, B. P.
Chiara, C. J.
Schiffer, J. P.
Kondev, F. G.
Zhu, S.
Carpenter, M. P.
Janssens, R. V. F.
Lauritsen, T.
Lister, C. J.
McCutchan, E. A.
Seweryniak, D.
Stefanescu, I.
TI Properties of excited states in Ge-77
SO PHYSICAL REVIEW C
LA English
DT Article
ID ELASTIC-SCATTERING; ENERGY-DEPENDENCE; ISOTOPES; PB-208; O-16
AB The nucleus Ge-77 was studied through the Ge-76(C-13,C-12)Ge-77 reaction at a sub-Coulomb energy. The angular distributions of gamma rays depopulating excited states in Ge-77 were measured in order to constrain spin and parity assignments. Some of these assignments are of use in connection with neutrinoless double beta decay, where the population of states near the Fermi surface of Ge-76 was recently explored using transfer reactions.
C1 [Kay, B. P.; Chiara, C. J.; Schiffer, J. P.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Stefanescu, I.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania.
RP Kay, BP (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RI Kay, Benjamin/F-3291-2011; Carpenter, Michael/E-4287-2015
OI Kay, Benjamin/0000-0002-7438-0208; Carpenter,
Michael/0000-0002-3237-5734
FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]
FX The authors would like to thank J.P. Greene for provision of the targets
for this experiment. The work was supported by the US Department of
Energy, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357.
NR 12
TC 4
Z9 4
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 017301
DI 10.1103/PhysRevC.80.017301
PG 4
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500076
ER
PT J
AU Kondev, FG
Dracoulis, GD
Lane, GJ
Ahmad, I
Byrne, AP
Carpenter, MP
Chowdhury, P
Janssens, RVF
Kibedi, T
Lauritsen, T
Lister, CJ
Seweryniak, D
Tandel, SK
Zhu, S
AF Kondev, F. G.
Dracoulis, G. D.
Lane, G. J.
Ahmad, I.
Byrne, A. P.
Carpenter, M. P.
Chowdhury, P.
Janssens, R. V. F.
Kibedi, T.
Lauritsen, T.
Lister, C. J.
Seweryniak, D.
Tandel, S. K.
Zhu, S.
TI Multi-quasiparticle isomers in Lu-174
SO PHYSICAL REVIEW C
LA English
DT Article
ID GAMMA-GAMMA-COINCIDENCES; ODD-ODD LU-174; HIGH-K ISOMERS;
QUADRUPOLE-MOMENTS; SPECTROSCOPY; COLLISIONS; NUCLEI; REGION; STATES;
BEAM
AB Four-, six-, and eight-quasiparticle isomers with K-pi=14(-), (21(+)) and (26(-)) have been identified in the deformed nucleus Lu-174, in addition to the previously reported K-pi=13(+), four-quasiparticle isomeric state. Analysis of alignments and in-band crossover-to-cascade branching ratios lead to the characterization of the configurations associated with the K-pi=14(-) and (21(+)) isomers. The excitation energies of the observed states are compared with results from multi-quasiparticle calculations that include effects of blocking and residual nucleon-nucleon interactions. Good agreement is found for medium-spin (I=13-14h) and the highest spin (I>20h) states observed, but there remain ambiguities in assigning configurations in the I=15-19h region.
C1 [Kondev, F. G.; Ahmad, I.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Kibedi, T.] Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia.
[Byrne, A. P.] Australian Natl Univ, Dept Phys, The Faculties, Canberra, ACT 0200, Australia.
[Chowdhury, P.; Tandel, S. K.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA.
RP Kondev, FG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Kibedi, Tibor/E-8282-2010; Lane, Gregory/A-7570-2011; Carpenter,
Michael/E-4287-2015
OI Kibedi, Tibor/0000-0002-9205-7500; Lane, Gregory/0000-0003-2244-182X;
Carpenter, Michael/0000-0002-3237-5734
FU US Department of Energy; Office of Science; Office of Nuclear Physics
[DE-AC02-06CH11357, DE-FG02-94ER40848]; ANSTO program for Access to
Major Research Facilities [02/03-H-05]; Australian Research Council
[DP0343027, DP0345844]
FX The authors thank R. B. Turkentine for producing the targets, and S. J.
Freeman and N. J. Hammond for assistance in the experiments. Thiswork is
supported by the US Department of Energy, Office of Science, Office of
Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No.
DE-FG02-94ER40848, the ANSTO program for Access to Major Research
Facilities, Grant No. 02/ 03-H-05, and the Australian Research Council
Discovery projects DP0343027 and DP0345844.
NR 30
TC 4
Z9 4
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014304
DI 10.1103/PhysRevC.80.014304
PG 9
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500018
ER
PT J
AU Lukyanov, S
Mocko, M
Andronenko, L
Andronenko, M
Bazin, D
Famiano, MA
Gade, A
Lobastov, SP
Lynch, WG
Rogers, AM
Tarasov, OB
Tsang, MB
Verde, G
Wallace, MS
Zegers, RGT
AF Lukyanov, S.
Mocko, M.
Andronenko, L.
Andronenko, M.
Bazin, D.
Famiano, M. A.
Gade, A.
Lobastov, S. P.
Lynch, W. G.
Rogers, A. M.
Tarasov, O. B.
Tsang, M. B.
Verde, G.
Wallace, M. S.
Zegers, R. G. T.
TI Projectile fragmentation of radioactive beams of Ni-68, Cu-69, and Zn-72
SO PHYSICAL REVIEW C
LA English
DT Article
ID RELATIVISTIC HEAVY-IONS; CROSS-SECTIONS; SEPARATOR; FACILITY
AB The fragment production cross sections of secondary neutron-rich beams of Ni-68, Cu-69, and Zn-72 isotopes at energies of about 95A MeV have been measured. We compare the measured cross sections to EPAX, an empirical parametrization of fragmentation cross sections. A reasonable agreement of the experimental data and EPAX predictions suggests that an EPAX parametrization used for stable beams seems to be valid for unstable neutron-rich ion beams. EPAX tends to overestimate the yields of neutron-rich isotopes. This problem is amplified when neutron-rich radioactive beams are employed, leading to overly optimistic estimates of the production of neutron-rich isotopes.
C1 [Lukyanov, S.; Mocko, M.; Andronenko, L.; Andronenko, M.; Bazin, D.; Famiano, M. A.; Gade, A.; Lobastov, S. P.; Lynch, W. G.; Rogers, A. M.; Tarasov, O. B.; Tsang, M. B.; Verde, G.; Wallace, M. S.; Zegers, R. G. T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Lukyanov, S.; Lobastov, S. P.; Tarasov, O. B.] Joint Inst Nucl Res, Flerov Lab Nucl React, RU-141980 Dubna, Moscow Region, Russia.
[Mocko, M.; Wallace, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Mocko, M.; Lynch, W. G.; Rogers, A. M.; Tsang, M. B.; Zegers, R. G. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Andronenko, L.; Andronenko, M.] PNPI, RU-188300 Gatchina, Russia.
[Famiano, M. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA.
[Verde, G.] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy.
RP Lukyanov, S (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
EM lukyan@nrmail.jinr.ru
RI Gade, Alexandra/A-6850-2008; Mocko, Michal/B-1794-2010; Lujan Center,
LANL/G-4896-2012; Verde, Giuseppe/J-3609-2012; Zegers,
Remco/A-6847-2008; Lynch, William/I-1447-2013
OI Gade, Alexandra/0000-0001-8825-0976; Lynch, William/0000-0003-4503-176X
FU National Science Foundation [PHY-01-10253, PHY-0606007, INT-0218329,
DEFG02-04ER41313]; Michigan State University
FX Our sincere gratitude is extended to the staff members of the NSCL
coupled cyclotron facility for their assistance in providing the beams
for the experiment. This work is supported by the National Science
Foundation under Grant Nos. PHY-01-10253, PHY-0606007, INT-0218329, and
DEFG02-04ER41313. SL acknowledges partial support from Michigan State
University during his stay at the NSCL.
NR 17
TC 12
Z9 12
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014609
DI 10.1103/PhysRevC.80.014609
PG 6
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500047
ER
PT J
AU Matejska-Minda, M
Fornal, B
Broda, R
Carpenter, MP
Janssens, RVF
Krolas, W
Lauritsen, T
Mantica, PF
Mazurek, K
Pawlat, T
Wrzesinski, J
Zhu, S
AF Matejska-Minda, M.
Fornal, B.
Broda, R.
Carpenter, M. P.
Janssens, R. V. F.
Krolas, W.
Lauritsen, T.
Mantica, P. F.
Mazurek, K.
Pawlat, T.
Wrzesinski, J.
Zhu, S.
TI Yrast structure of Zr-97 and beta decay of the 27/2(-) high-spin isomer
in Y-97
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION REACTIONS; NUCLEI; EXCITATIONS; OCTUPOLE; REGION
AB The yrast structure of the neutron-rich nucleus Zr-97 has been studied using fission of targetlike products in the reaction of a Ca-48 beam on a thick U-238 target. The level scheme, known from previous studies up to an excitation energy and spin-parity of approximately 4619 keV and 23/2(-), has been extended by about 3 MeV and a few units of angular momentum. Two states fed in the beta decay of the 27/2(-) high-spin isomer in Y-97 were identified at 5570 and 5606 keV. The located level structure can be discussed in terms of shell-model configurations.
C1 [Matejska-Minda, M.; Fornal, B.; Broda, R.; Krolas, W.; Mazurek, K.; Pawlat, T.; Wrzesinski, J.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
[Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Mantica, P. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA.
RP Matejska-Minda, M (reprint author), Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland.
RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015
OI Carpenter, Michael/0000-0002-3237-5734
FU US Department of Energy, Office of Nuclear Physics [DE-AC0206CH11357];
Polish Ministry of Science and Higher Education [NN202103333]
FX This work is supported by the US Department of Energy, Office of Nuclear
Physics, under contract DE-AC0206CH11357. This work is supported by the
Polish Ministry of Science and Higher Education under contract
NN202103333.
NR 20
TC 6
Z9 7
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 017302
DI 10.1103/PhysRevC.80.017302
PG 4
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500077
ER
PT J
AU Ollitrault, JY
Poskanzer, AM
Voloshin, SA
AF Ollitrault, Jean-Yves
Poskanzer, Arthur M.
Voloshin, Sergei A.
TI Effect of flow fluctuations and nonflow on elliptic flow methods
SO PHYSICAL REVIEW C
LA English
DT Article
ID RELATIVISTIC NUCLEAR COLLISIONS; ECCENTRICITY FLUCTUATIONS; ANISOTROPIC
FLOW; COLLECTIVE FLOW
AB We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v(2,PP) elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v(2,RP) in the reaction plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious.
C1 [Ollitrault, Jean-Yves] CNRS, URA2306, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France.
[Poskanzer, Arthur M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Voloshin, Sergei A.] Wayne State Univ, Detroit, MI 48201 USA.
RP Ollitrault, JY (reprint author), CNRS, URA2306, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France.
RI Ollitrault, Jean-Yves/B-3709-2010
OI Ollitrault, Jean-Yves/0000-0001-6037-7975
FU US Department of Energy [DE-AC02-05CH11231, DE-FG02-92ER40713]
FX We thank the authors of Ref. [20] and Constantin Loizides for permission
to use Fig. 1. For discussions we thank Hiroshi Masui, Aihong Tang, and
Paul Sorensen. This work was supported in part by the HENP Divisions of
the Office of Science of the US Department of Energy under Contract Nos.
DE-AC02-05CH11231 and DE-FG02-92ER40713.
NR 31
TC 94
Z9 95
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014904
DI 10.1103/PhysRevC.80.014904
PG 12
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500054
ER
PT J
AU Reviol, W
Sarantites, DG
Chiara, CJ
Montero, M
Janssens, RVF
Carpenter, MP
Khoo, TL
Lauritsen, T
Lister, CJ
Seweryniak, D
Zhu, S
Pechenaya, OL
Frauendorf, SG
AF Reviol, W.
Sarantites, D. G.
Chiara, C. J.
Montero, M.
Janssens, R. V. F.
Carpenter, M. P.
Khoo, T. L.
Lauritsen, T.
Lister, C. J.
Seweryniak, D.
Zhu, S.
Pechenaya, O. L.
Frauendorf, S. G.
TI Parity doubling in Th-219 and the onset of collectivity above N=126
SO PHYSICAL REVIEW C
LA English
DT Article
ID GAMMASPHERE; NUCLEI; SPECTROSCOPY; STATES
AB Excited states in Th-219 have been observed for the first time in an experiment using the Mg-26+Pt-198 reaction and evaporation-residue-gated gamma-ray spectroscopy. Two structures of interlinked alternating-parity levels with simplex quantum numbers s=+/- i are observed, reminiscent of similar sequences in heavier odd-mass isotopes, but only three mass units away from the N=126 neutron closed shell. The emergence of quadrupole-octupole collectivity in this mass region and the trend for parity-doublet bands are discussed.
C1 [Reviol, W.; Sarantites, D. G.; Chiara, C. J.; Montero, M.] Washington Univ, Dept Chem, St Louis, MO 63130 USA.
[Chiara, C. J.; Janssens, R. V. F.; Carpenter, M. P.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Pechenaya, O. L.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Frauendorf, S. G.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Reviol, W (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA.
RI Carpenter, Michael/E-4287-2015
OI Carpenter, Michael/0000-0002-3237-5734
FU US Department of Energy, Office of Nuclear Physics [DE-FG02-88ER-40406,
DE-AC02-06CH11357, DE-FG02-95ER40934]
FX The authors thank J. Elson (WU) and J. Rohrer (ANL) for technical
support and J. P. Greene (ANL) for the preparation of the target. One of
the authors (W. R.) acknowledges inspiring discussions with I. Y. Lee.
This work was supported by the US Department of Energy, Office of
Nuclear Physics, Grant Nos. DE-FG02-88ER-40406, DE-AC02-06CH11357, and
DE-FG02-95ER40934.
NR 18
TC 7
Z9 7
U1 1
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 011304
DI 10.1103/PhysRevC.80.011304
PG 5
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500005
ER
PT J
AU Sheikh, JA
Nazarewicz, W
Pei, JC
AF Sheikh, J. A.
Nazarewicz, W.
Pei, J. C.
TI Systematic study of fission barriers of excited superheavy nuclei
SO PHYSICAL REVIEW C
LA English
DT Article
ID ROTATING NUCLEI; HOT NUCLEI; FINITE TEMPERATURES; EXCITATION-ENERGY;
DEFORMATION SPACE; POTENTIAL-ENERGY; SELF-CONSISTENT; STABILITY;
ELEMENTS; HEAVY
AB A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock + BCS (FT-HF + BCS) formalism with the SkM(*) Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection-asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N=164 and spherical nuclei around N=184 that are strongly stabilized by ground-state shell effects. For the nuclei (240)Pu and (256)Fm, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies owing to the thermal quenching of static reflection asymmetric deformations.
C1 [Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland.
[Pei, J. C.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA.
RP Sheikh, JA (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RI Pei, Junchen/E-3532-2010
FU National Nuclear Security Administration [DE-FG03-03NA00083]; US
Department of Energy [DE-FG02-96ER40963]; Oak Ridge National Laboratory
[DE-AC0500OR22725]; UNEDF SciDAC Collaboration [DE-FC02-07ER41457]
FX Useful discussions with Arthur Kerman, Yuri Oganessian, and Andrzej
Staszczak are gratefully acknowledged. Computational resources were
provided by the National Center for Computational Sciences at Oak Ridge
National Laboratory. This work was supported in part by the National
Nuclear Security Administration under the Stewardship Science Academic
Alliances program through Grant DE-FG03-03NA00083 and by the US
Department of Energy under Contract Nos. DE-FG02-96ER40963 (university
of Tennessee), DE-AC0500OR22725 with UT-Battelle, LLC (Oak Ridge
National Laboratory), and DE-FC02-07ER41457 (UNEDF SciDAC
Collaboration).
NR 54
TC 25
Z9 25
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 011302
DI 10.1103/PhysRevC.80.011302
PG 5
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500003
ER
PT J
AU Staszczak, A
Baran, A
Dobaczewski, J
Nazarewicz, W
AF Staszczak, A.
Baran, A.
Dobaczewski, J.
Nazarewicz, W.
TI Microscopic description of complex nuclear decay: Multimodal fission
SO PHYSICAL REVIEW C
LA English
DT Article
ID FOCK-BOGOLYUBOV EQUATIONS; HARMONIC-OSCILLATOR BASIS; SUPERHEAVY NUCLEI;
HALF-LIVES; SYMMETRICAL FISSION; HEAVIEST ELEMENTS; FERMIUM ISOTOPES;
SELF-CONSISTENT; BARRIERS; HEAVY
AB Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.
C1 [Staszczak, A.; Baran, A.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland.
[Staszczak, A.; Baran, A.; Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Staszczak, A.; Baran, A.; Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland.
[Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland.
RP Staszczak, A (reprint author), Marie Curie Sklodowska Univ, Inst Phys, Pl M Curie Sklodowskiej 1, PL-20031 Lublin, Poland.
FU National Nuclear Security Administration under the Stewardship Science
Academic Alliances program through US Department of Energy Research
[DE-FG03-03NA00083]; US Department of Energy [DEFG02- 96ER40963,
DE-AC0500OR22725, DE-FC0209ER41583]; Polish Ministry of Science and
Higher Education [N N 202 328234]
FX This work was supported in part by the National Nuclear Security
Administration under the Stewardship Science Academic Alliances program
through US Department of Energy Research Grant No. DE-FG03-03NA00083; by
the US Department of Energy under Contract Nos. DEFG02- 96ER40963
(University of Tennessee), DE-AC0500OR22725 with UT-Battelle, LLC (Oak
Ridge National Laboratory), and DE-FC0209ER41583 (UNEDF SciDAC
Collaboration); by the Polish Ministry of Science and Higher Education
under Contract No. N N 202 328234; and by the Academy of Finland and
University of Jyvaskyla within the FIDIPRO program. Computational
resources were provided by the National Center for Computational
Sciences at Oak Ridge National Laboratory.
NR 65
TC 56
Z9 56
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD JUL
PY 2009
VL 80
IS 1
AR 014309
DI 10.1103/PhysRevC.80.014309
PG 6
WC Physics, Nuclear
SC Physics
GA 478WE
UT WOS:000268618500023
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
Di Canto, A
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Garosi, P
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Ketchum, W
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Loreti, M
Lovas, L
Lucchesi, D
Luci, C
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lyons, L
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maki, T
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martiacutenez, M
Martiacutenez-Ballariacuten, R
Maruyama, T
Mastrandrea, P
Masubuchi, T
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Merkel, P
Mesropian, C
Miao, T
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moggi, N
Mondragon, MN
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Mumford, R
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Nagano, A
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Necula, V
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Osterberg, K
Griso, SP
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramonov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Poukhov, O
Pounder, N
Prakoshyn, F
Pronko, A
Proudfoot, J
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Rutherford, B
Saarikko, H
Safonov, A
Sakumoto, WK
Salto, O
Santi, L
Sarkar, S
Sartori, L
Sato, K
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Spreitzer, T
Squillacioti, P
Stanitzki, M
Denis, RS
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Suh, JS
Sukhanov, A
Suslov, I
Suzuki, T
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tecchio, M
Teng, PK
Terashi, K
Thom, J
Thompson, AS
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Tourneur, S
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Vallecorsa, S
van Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Vidal, M
Vidal, R
Vila, I
Vilar, R
Vine, T
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wright, T
Wu, X
Wurthwein, F
Xie, S
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanello, L
Zanetti, A
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Akimoto, T.
Aacutelvarez Gonzalez, B.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Apresyan, A.
Arisawa, T.
Artikov, A.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartsch, V.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Beringer, J.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bolla, G.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burke, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Choudalakis, G.
Chuang, S. H.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Cordelli, M.
Cortiana, G.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demortier, L.
Deng, J.
Deninno, M.
Derwent, P. F.
Di Canto, A.
di Giovanni, G. P.
Dionisi, C.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Donini, J.
Dorigo, T.
Dube, S.
Efron, J.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Garosi, P.
Genser, K.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, K.
Hahn, S. R.
Halkiadakis, E.
Han, B.-Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harper, S.
Harr, R. F.
Harris, R. M.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heijboer, A.
Heinrich, J.
Henderson, C.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Huffman, B. T.
Hughes, R. E.
Husemann, U.
Hussein, M.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Ketchum, W.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Knuteson, B.
Ko, B. R.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kubo, T.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C.-S.
Linacre, J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Loreti, M.
Lovas, L.
Lucchesi, D.
Luci, C.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lyons, L.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maki, T.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martiacutenez, M.
Martiacutenez-Ballariacuten, R.
Maruyama, T.
Mastrandrea, P.
Masubuchi, T.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Merkel, P.
Mesropian, C.
Miao, T.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moggi, N.
Mondragon, M. N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Fernandez, P. Movilla
Muelmenstaedt, J.
Mukherjee, A.
Muller, Th.
Mumford, R.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Nagano, A.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Necula, V.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Osterberg, K.
Griso, S. Pagan
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramonov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Poukhov, O.
Pounder, N.
Prakoshyn, F.
Pronko, A.
Proudfoot, J.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Rutherford, B.
Saarikko, H.
Safonov, A.
Sakumoto, W. K.
Salto, O.
Santi, L.
Sarkar, S.
Sartori, L.
Sato, K.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Spreitzer, T.
Squillacioti, P.
Stanitzki, M.
Denis, R. St.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Suzuki, T.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tecchio, M.
Teng, P. K.
Terashi, K.
Thom, J.
Thompson, A. S.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Tourneur, S.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Vallecorsa, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Vidal, M.
Vidal, R.
Vila, I.
Vilar, R.
Vine, T.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wright, T.
Wu, X.
Wuerthwein, F.
Xie, S.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanello, L.
Zanetti, A.
Zhang, X.
Zheng, Y.
Zucchelli, S.
TI Search for standard model Higgs boson production in association with a W
boson using a neural network discriminant at CDF
SO PHYSICAL REVIEW D
LA English
DT Article
ID ELECTROMAGNETIC CALORIMETER; UPGRADE; DETECTOR; PHYSICS; TEV
AB We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp ->(WH)-H-+/--> l nu bb) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 fb(-1). We select events consistent with a signature of a single charged lepton (e(+/-)/mu(+/-)), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150 GeV/c(2), respectively.
C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martiacutenez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain.
[Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA.
[Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Aacutelvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Vet Med, Kosice 04001, Slovakia.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA.
[Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
Chonbuk Natl Univ, Jeonju 561756, South Korea.
[Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C.-S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martiacutenez-Ballariacuten, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain.
[Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France.
[Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B.-Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA.
[De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy.
[Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ,
James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera,
Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban,
Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese
/I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt,
Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Punzi,
Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio,
Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson,
Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton,
Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak,
Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro,
Luca/K-9091-2014; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011;
Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Chiarelli,
Giorgio/E-8953-2012;
OI Grinstein, Sebastian/0000-0002-6460-8694; Paulini,
Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan,
zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531;
ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt,
Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580;
Punzi, Giovanni/0000-0002-8346-9052; Annovi,
Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315;
Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro,
Luca/0000-0002-4974-8330; Ivanov, Andrew/0000-0002-9270-5643; Ruiz,
Alberto/0000-0002-3639-0368; Farrington, Sinead/0000-0001-5350-9271;
Robson, Aidan/0000-0002-1659-8284; Gallinaro,
Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini,
Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414;
Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono,
Miguel/0000-0002-2590-5987; Latino, Giuseppe/0000-0002-4098-3502; iori,
maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292;
Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109;
Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723;
Gorelov, Igor/0000-0001-5570-0133; Canelli,
Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147;
Margaroli, Fabrizio/0000-0002-3869-0153; Group,
Robert/0000-0002-4097-5254; Chiarelli, Giorgio/0000-0001-9851-4816;
Giordani, Mario/0000-0002-0792-6039
FU U.S. Department of Energy and National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A. P. Sloan
Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean
Science and Engineering Foundation; Korean Research Foundation; Science
and Technology Facilities Council; Royal Society, UK; Institut National
de Physique Nucleaire et Physique des Particules/CNRS; Russian
Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and
Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of
Finland
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by the U.S. Department of Energy and National Science
Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Culture, Sports, Science and Technology of Japan;
the Natural Sciences and Engineering Research Council of Canada; the
National Science Council of the Republic of China; the Swiss National
Science Foundation; the A. P. Sloan Foundation; the Bundesministerium
fur Bildung und Forschung, Germany; the Korean Science and Engineering
Foundation and the Korean Research Foundation; the Science and
Technology Facilities Council and the Royal Society, UK; the Institut
National de Physique Nucleaire et Physique des Particules/CNRS; the
Russian Foundation for Basic Research; the Ministerio de Ciencia e
Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D
Agency; and the Academy of Finland.
NR 35
TC 5
Z9 5
U1 1
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 012002
DI 10.1103/PhysRevD.80.012002
PG 15
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600004
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
Di Canto, A
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Frisch, HJ
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Garosi, P
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Ketchum, W
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Loreti, M
Lovas, L
Lucchesi, D
Luci, C
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lyons, L
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maki, T
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Maruyama, T
Mastrandrea, P
Masubuchi, T
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Merkel, P
Mesropian, C
Miao, T
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Mumford, R
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Nagano, A
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Necula, V
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Osterberg, K
Griso, SP
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramonov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Poukhov, O
Pounder, N
Prakoshyn, F
Pronko, A
Proudfoot, J
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Rutherford, B
Saarikko, H
Safonov, A
Sakumoto, WK
Salto, O
Santi, L
Sarkar, S
Sartori, L
Sato, K
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Spreitzer, T
Squillacioti, P
Stanitzki, M
St Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Suh, JS
Sukhanov, A
Suslov, I
Suzuki, T
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tecchio, M
Teng, PK
Terashi, K
Thom, J
Thompson, AS
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Tourneur, S
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Vallecorsa, S
van Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Vidal, M
Vidal, R
Vila, I
Vilar, R
Vine, T
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wright, T
Wu, X
Wurthwein, F
Xie, S
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yi, K
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanello, L
Zanetti, A
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Akimoto, T.
Alvarez Gonzalez, B.
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Apresyan, A.
Arisawa, T.
Artikov, A.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Barria, P.
Bartsch, V.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Beringer, J.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bolla, G.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burke, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Choudalakis, G.
Chuang, S. H.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Cordelli, M.
Cortiana, G.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demortier, L.
Deng, J.
Deninno, M.
Derwent, P. F.
Di Canto, A.
di Giovanni, G. P.
Dionisi, C.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Donini, J.
Dorigo, T.
Dube, S.
Efron, J.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Frisch, H. J.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Garosi, P.
Genser, K.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, K.
Hahn, S. R.
Halkiadakis, E.
Han, B. -Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harper, S.
Harr, R. F.
Harris, R. M.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heijboer, A.
Heinrich, J.
Henderson, C.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Huffman, B. T.
Hughes, R. E.
Husemann, U.
Hussein, M.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Ketchum, W.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Knuteson, B.
Ko, B. R.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kubo, T.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C. -S.
Linacre, J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Loreti, M.
Lovas, L.
Lucchesi, D.
Luci, C.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lyons, L.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maki, T.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Maruyama, T.
Mastrandrea, P.
Masubuchi, T.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Merkel, P.
Mesropian, C.
Miao, T.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Fernandez, P. Movilla
Muelmenstaedt, J.
Mukherjee, A.
Muller, Th.
Mumford, R.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Nagano, A.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Necula, V.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Osterberg, K.
Griso, S. Pagan
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramonov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Poukhov, O.
Pounder, N.
Prakoshyn, F.
Pronko, A.
Proudfoot, J.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Rutherford, B.
Saarikko, H.
Safonov, A.
Sakumoto, W. K.
Salto, O.
Santi, L.
Sarkar, S.
Sartori, L.
Sato, K.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Spreitzer, T.
Squillacioti, P.
Stanitzki, M.
St. Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Suzuki, T.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tecchio, M.
Teng, P. K.
Terashi, K.
Thom, J.
Thompson, A. S.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Tourneur, S.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Vallecorsa, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Vidal, M.
Vidal, R.
Vila, I.
Vilar, R.
Vine, T.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wright, T.
Wu, X.
Wuerthwein, F.
Xie, S.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yi, K.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanello, L.
Zanetti, A.
Zhang, X.
Zheng, Y.
Zucchelli, S.
CA CDF Collaboration
TI Searching the inclusive l gamma E-T + b-quark signature for radiative
top quark decay and non-standard-model processes
SO PHYSICAL REVIEW D
LA English
DT Article
ID CDF; DETECTOR; PHYSICS; CALORIMETER; PERFORMANCE; COLLISIONS; UPGRADE;
TEV
AB We compare the inclusive production of events containing a lepton (l), a photon (gamma), significant transverse momentum imbalance (E-T), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at root sp = 1.96 TeV corresponding to 1.9 fb(-1) of integrated luminosity taken with the CDF detector. We find 28 l gamma E-T events versus an expectation of 31.0(-3.5)(+4.1) events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, t (r) over bar + gamma. In the data we observe 16 t (t) over bar gamma candidate events versus an expectation from SM sources of 11.2(-2.1)(+2.3) Assuming the difference between the observed number and the predicted non-top-quark total of 6.8(-2.0)(+2.2) is due to SM top- quark production, we estimate the t (t) over bart cross section to be 0.15 +/- 0.08 pb.
C1 [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Brigliadori, L.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA.
[Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Frisch, H. J.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA.
[Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Ferrazza, C.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA.
[Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Bridgeman, A.; Budd, H. S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain.
[Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Ciobanu, C. I.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, UMR7585,LPNHE, IN2P3, F-75252 Paris, France.
[Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Ferrazza, C.; Garosi, P.; Giunta, M.; Introzzi, G.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Barria, P.; Catastini, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Carosi, R.; Cavaliere, V.; Chung, Y. S.; de Barbaro, P.; Giannetti, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lami, S.; McFarland, K. S.; Ristori, L.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA.
[Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy.
[Cauz, D.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy.
[Cauz, D.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy.
[Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[De Cecco, S.; Hare, M.; Napier, A.; Rolli, S.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mathis, M.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
RI Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz,
Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco,
Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca,
giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi,
Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov,
Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim,
Soo-Bong/B-7061-2014; Scodellaro, Luca/K-9091-2014; Grinstein,
Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ,
James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera,
Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban,
Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese
/I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt,
Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov,
Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016;
Chiarelli, Giorgio/E-8953-2012;
OI Moon, Chang-Seong/0000-0001-8229-7829; Ruiz,
Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052;
Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643;
Warburton, Andreas/0000-0002-2298-7315; Latino,
Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380;
Lancaster, Mark/0000-0002-8872-7292; Scodellaro,
Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694;
Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155;
unalan, zeynep/0000-0003-2570-7611; Lazzizzera,
Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462;
Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi,
Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie,
Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117;
Chiarelli, Giorgio/0000-0001-9851-4816; Giordani,
Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964
FU U.S. Department of Energy; National Science Foundation; Italian Istituto
Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports,
Science and Technology of Japan; Natural Sciences and Engineering
Research Council of Canada; National Science Council of the Republic of
China; Swiss National Science Foundation; A. P. Sloan Foundation;
Bundesministerium fur Bildung und Forschung, Germany; Korean Science and
Engineering Foundation; Korean Research Foundation; Science and
Technology Facilities Council; Royal Society, UK; Institut National de
Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation
for Basic Research; Ministerio de Ciencia e Innovacion; Programa
Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland
FX This work was supported by the U.S. Department of Energy and National
Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare;
the Ministry of Education, Culture, Sports, Science and Technology of
Japan; the Natural Sciences and Engineering Research Council of Canada;
the National Science Council of the Republic of China; the Swiss
National Science Foundation; the A. P. Sloan Foundation; the
Bundesministerium fur Bildung und Forschung, Germany; the Korean Science
and Engineering Foundation and the Korean Research Foundation; the
Science and Technology Facilities Council and the Royal Society, UK; the
Institut National de Physique Nucleaire et Physique des Particules/CNRS;
the Russian Foundation for Basic Research; the Ministerio de Ciencia e
Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D
Agency; and the Academy of Finland.
NR 38
TC 6
Z9 6
U1 1
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 011102
DI 10.1103/PhysRevD.80.011102
PG 10
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600002
ER
PT J
AU Aharmim, B
Ahmed, SN
Andersen, TC
Anthony, AE
Barros, N
Beier, EW
Bellerive, A
Beltran, B
Bergevin, M
Biller, SD
Boudjemline, K
Boulay, MG
Burritt, TH
Cai, B
Chan, YD
Chen, M
Chon, MC
Cleveland, BT
Cox-Mobrand, GA
Currat, CA
Dai, X
Dalnoki-Veress, F
Deng, H
Detwiler, J
Doe, PJ
Dosanjh, RS
Doucas, G
Drouin, PL
Duncan, FA
Dunford, M
Elliott, SR
Evans, HC
Ewan, GT
Farine, J
Fergani, H
Fleurot, F
Ford, RJ
Formaggio, JA
Gagnon, N
Goon, JTM
Graham, K
Grant, DR
Guillian, E
Habib, S
Hahn, RL
Hallin, AL
Hallman, ED
Hargrove, CK
Harvey, PJ
Hazama, R
Heeger, KM
Heintzelman, WJ
Heise, J
Helmer, RL
Hemingway, RJ
Henning, R
Hime, A
Howard, C
Howe, MA
Huang, M
Jamieson, B
Jelley, NA
Klein, JR
Kos, M
Kruger, A
Kraus, C
Krauss, CB
Kutter, T
Kyba, CCM
Lange, R
Law, J
Lawson, IT
Lesko, KT
Leslie, JR
Levine, I
Loach, JC
Luoma, S
MacLellan, R
Majerus, S
Mak, HB
Maneira, J
Marino, AD
Martin, R
McCauley, N
McDonald, AB
McGee, S
Mifflin, C
Miller, ML
Monreal, B
Monroe, J
Noble, AJ
Oblath, NS
Okada, CE
O'Keeffe, HM
Opachich, Y
Gann, GDO
Oser, SM
Ott, RA
Peeters, SJM
Poon, AWP
Prior, G
Rielage, K
Robertson, BC
Robertson, RGH
Rollin, E
Schwendener, MH
Secrest, JA
Seibert, SR
Simard, O
Simpson, JJ
Sinclair, D
Skensved, P
Smith, MWE
Sonley, TJ
Steiger, TD
Stonehill, LC
Tagg, N
Tesic, G
Tolich, N
Tsui, T
Van de Water, RG
VanDevender, BA
Virtue, CJ
Waller, D
Waltham, CE
Tseung, HWC
Wark, DL
Watson, P
Wendland, J
West, N
Wilkerson, JF
Wilson, JR
Wouters, JM
Wright, A
Yeh, M
Zhang, F
Zuber, K
AF Aharmim, B.
Ahmed, S. N.
Andersen, T. C.
Anthony, A. E.
Barros, N.
Beier, E. W.
Bellerive, A.
Beltran, B.
Bergevin, M.
Biller, S. D.
Boudjemline, K.
Boulay, M. G.
Burritt, T. H.
Cai, B.
Chan, Y. D.
Chen, M.
Chon, M. C.
Cleveland, B. T.
Cox-Mobrand, G. A.
Currat, C. A.
Dai, X.
Dalnoki-Veress, F.
Deng, H.
Detwiler, J.
Doe, P. J.
Dosanjh, R. S.
Doucas, G.
Drouin, P. -L.
Duncan, F. A.
Dunford, M.
Elliott, S. R.
Evans, H. C.
Ewan, G. T.
Farine, J.
Fergani, H.
Fleurot, F.
Ford, R. J.
Formaggio, J. A.
Gagnon, N.
Goon, J. T. M.
Graham, K.
Grant, D. R.
Guillian, E.
Habib, S.
Hahn, R. L.
Hallin, A. L.
Hallman, E. D.
Hargrove, C. K.
Harvey, P. J.
Hazama, R.
Heeger, K. M.
Heintzelman, W. J.
Heise, J.
Helmer, R. L.
Hemingway, R. J.
Henning, R.
Hime, A.
Howard, C.
Howe, M. A.
Huang, M.
Jamieson, B.
Jelley, N. A.
Klein, J. R.
Kos, M.
Krueger, A.
Kraus, C.
Krauss, C. B.
Kutter, T.
Kyba, C. C. M.
Lange, R.
Law, J.
Lawson, I. T.
Lesko, K. T.
Leslie, J. R.
Levine, I.
Loach, J. C.
Luoma, S.
MacLellan, R.
Majerus, S.
Mak, H. B.
Maneira, J.
Marino, A. D.
Martin, R.
McCauley, N.
McDonald, A. B.
McGee, S.
Mifflin, C.
Miller, M. L.
Monreal, B.
Monroe, J.
Noble, A. J.
Oblath, N. S.
Okada, C. E.
O'Keeffe, H. M.
Opachich, Y.
Gann, G. D. Orebi
Oser, S. M.
Ott, R. A.
Peeters, S. J. M.
Poon, A. W. P.
Prior, G.
Rielage, K.
Robertson, B. C.
Robertson, R. G. H.
Rollin, E.
Schwendener, M. H.
Secrest, J. A.
Seibert, S. R.
Simard, O.
Simpson, J. J.
Sinclair, D.
Skensved, P.
Smith, M. W. E.
Sonley, T. J.
Steiger, T. D.
Stonehill, L. C.
Tagg, N.
Tesic, G.
Tolich, N.
Tsui, T.
Van de Water, R. G.
VanDevender, B. A.
Virtue, C. J.
Waller, D.
Waltham, C. E.
Tseung, H. Wan Chan
Wark, D. L.
Watson, P.
Wendland, J.
West, N.
Wilkerson, J. F.
Wilson, J. R.
Wouters, J. M.
Wright, A.
Yeh, M.
Zhang, F.
Zuber, K.
TI Measurement of the cosmic ray and neutrino-induced muon flux at the
Sudbury neutrino observatory
SO PHYSICAL REVIEW D
LA English
DT Article
ID CURRENT CROSS-SECTION; PROPAGATION; KAMIOKANDE; DETECTOR; MACRO
AB Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between -1 < cos theta(zenith)< 0.4 in a total exposure of 2.30x10(14) cm(2) s. The measured flux normalization is 1.22 +/- 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos theta(zenith)> 0.4 is measured to be (3.31 +/- 0.01(stat)+/- 0.09(sys))x10(-10) mu/s/cm(2).
C1 [Aharmim, B.; Farine, J.; Fleurot, F.; Hallman, E. D.; Huang, M.; Krueger, A.; Luoma, S.; Schwendener, M. H.; Virtue, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada.
[Beltran, B.; Habib, S.; Hallin, A. L.; Howard, C.; Krauss, C. B.; Okada, C. E.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada.
[Heise, J.; Jamieson, B.; Oser, S. M.; Tsui, T.; Waltham, C. E.; Wendland, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada.
[Hahn, R. L.; Lange, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Bellerive, A.; Boudjemline, K.; Dai, X.; Dalnoki-Veress, F.; Dosanjh, R. S.; Drouin, P. -L.; Graham, K.; Grant, D. R.; Hargrove, C. K.; Hemingway, R. J.; Levine, I.; Mifflin, C.; Rollin, E.; Simard, O.; Sinclair, D.; Tesic, G.; Waller, D.; Watson, P.; Zhang, F.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada.
[Andersen, T. C.; Bergevin, M.; Chon, M. C.; Law, J.; Lawson, I. T.; Simpson, J. J.; Tagg, N.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada.
[Bergevin, M.; Chan, Y. D.; Currat, C. A.; Detwiler, J.; Gagnon, N.; Henning, R.; Lesko, K. T.; Loach, J. C.; Marino, A. D.; Okada, C. E.; Opachich, Y.; Poon, A. W. P.; Prior, G.; Tolich, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA.
[Bergevin, M.; Chan, Y. D.; Detwiler, J.; Gagnon, N.; Henning, R.; Lesko, K. T.; Loach, J. C.; Marino, A. D.; Okada, C. E.; Opachich, Y.; Poon, A. W. P.; Prior, G.; Tolich, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Barros, N.; Maneira, J.] Lab Instrumentacao & Fis Expt Particulas, P-1000149 Lisbon, Portugal.
[Boulay, M. G.; Elliott, S. R.; Gagnon, N.; Heise, J.; Hime, A.; Rielage, K.; Seibert, S. R.; Smith, M. W. E.; Stonehill, L. C.; Van de Water, R. G.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Goon, J. T. M.; Kutter, T.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
[Formaggio, J. A.; Miller, M. L.; Monreal, B.; Monroe, J.; Ott, R. A.; Sonley, T. J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Biller, S. D.; Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Gagnon, N.; Jelley, N. A.; Loach, J. C.; Majerus, S.; McCauley, N.; O'Keeffe, H. M.; Gann, G. D. Orebi; Peeters, S. J. M.; Tagg, N.; Tseung, H. Wan Chan; West, N.; Wilson, J. R.; Zuber, K.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Beier, E. W.; Deng, H.; Dunford, M.; Heintzelman, W. J.; Klein, J. R.; Kyba, C. C. M.; McCauley, N.; Secrest, J. A.; Van de Water, R. G.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Ahmed, S. N.; Beltran, B.; Boulay, M. G.; Cai, B.; Chen, M.; Dai, X.; Duncan, F. A.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Guillian, E.; Habib, S.; Hallin, A. L.; Harvey, P. J.; Heise, J.; Howard, C.; Kos, M.; Kraus, C.; Krauss, C. B.; Leslie, J. R.; MacLellan, R.; Mak, H. B.; Martin, R.; McDonald, A. B.; Noble, A. J.; Robertson, B. C.; Skensved, P.; Wright, A.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
[Wark, D. L.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Duncan, F. A.; Ford, R. J.; Lawson, I. T.] SNOLAB, Sudbury, ON P3Y 1M3, Canada.
[Anthony, A. E.; Huang, M.; Klein, J. R.; Seibert, S. R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Helmer, R. L.; Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Heeger, K. M.; Howe, M. A.; McGee, S.; Miller, M. L.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA.
[Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Heeger, K. M.; Howe, M. A.; McGee, S.; Miller, M. L.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Wark, D. L.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada.
RI Heeger, Karsten/A-9533-2011; Hallin, Aksel/H-5881-2011; Kyba,
Christopher/I-2014-2012; Dai, Xiongxin/I-3819-2013; Prior,
Gersende/I-8191-2013; Maneira, Jose/D-8486-2011; Barros,
Nuno/O-1921-2016;
OI Heeger, Karsten/0000-0002-4623-7543; Kyba,
Christopher/0000-0001-7014-1843; Maneira, Jose/0000-0002-3222-2738;
Barros, Nuno/0000-0002-1192-0705; MARINO, ALYSIA/0000-0002-1709-538X;
Wilkerson, John/0000-0002-0342-0217; Prior,
Gersende/0000-0002-6058-1420; Jamieson, Blair/0000-0003-3589-9127;
Rielage, Keith/0000-0002-7392-7152; Andersen,
Thomas/0000-0003-1614-4124; Van de Water, Richard/0000-0002-1573-327X
FU Canada: Natural Sciences and Engineering Research Council; Industry
Canada; National Research Council; Northern Ontario Heritage Fund;
Atomic Energy of Canada, Ltd.; Ontario Power Generation, High
Performance Computing Virtual Laboratory; Canada Foundation for
Innovation; US: Department of Energy; National Energy Research
Scientific Computing Center; UK; Science and Technology Facilities
Council; Portugal; Fundacao para a Ciencia e a Tecnologia
FX This research was supported by: Canada: Natural Sciences and Engineering
Research Council, Industry Canada, National Research Council, Northern
Ontario Heritage Fund, Atomic Energy of Canada, Ltd., Ontario Power
Generation, High Performance Computing Virtual Laboratory, Canada
Foundation for Innovation; US: Department of Energy, National Energy
Research Scientific Computing Center; UK: Science and Technology
Facilities Council; Portugal: Fundacao para a Ciencia e a Tecnologia. We
thank the SNO technical staff for their strong contributions. We thank
Vale Inco for hosting this project.
NR 52
TC 23
Z9 23
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 012001
DI 10.1103/PhysRevD.80.012001
PG 15
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600003
ER
PT J
AU Albuquerque, IFM
Carvalho, WR
AF Albuquerque, Ivone F. M.
Carvalho, Washington R., Jr.
TI Detection of exotic massive hadrons in ultrahigh energy cosmic ray
telescopes
SO PHYSICAL REVIEW D
LA English
DT Article
ID NUCLEUS COLLISIONS; UPPER LIMIT; SPECTRUM; SIMULATION; CASCADES; MODEL;
LSP; EYE
AB We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultrahigh energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes, is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by a heavier nucleus, the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed.
C1 [Albuquerque, Ivone F. M.; Carvalho, Washington R., Jr.] Univ Sao Paulo, Inst Fis, BR-05314 Sao Paulo, Brazil.
[Albuquerque, Ivone F. M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
RP Albuquerque, IFM (reprint author), Univ Sao Paulo, Inst Fis, BR-05314 Sao Paulo, Brazil.
RI Albuquerque, Ivone/H-4645-2012; Carvalho Jr., Washington/H-9855-2015
OI Albuquerque, Ivone/0000-0001-7328-0136; Carvalho Jr.,
Washington/0000-0002-2328-7628
NR 39
TC 3
Z9 3
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 2
AR 023006
DI 10.1103/PhysRevD.80.023006
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WH
UT WOS:000268618800008
ER
PT J
AU Albuquerque, IFM
Klein, SR
AF Albuquerque, Ivone F. M.
Klein, Spencer R.
TI Supersymmetric and Kaluza-Klein particles multiple scattering in the
Earth
SO PHYSICAL REVIEW D
LA English
DT Article
AB Neutrino telescopes with cubic kilometer volumes have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering.
C1 [Albuquerque, Ivone F. M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Albuquerque, Ivone F. M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
[Klein, Spencer R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Albuquerque, IFM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA.
RI Albuquerque, Ivone/H-4645-2012
OI Albuquerque, Ivone/0000-0001-7328-0136
FU U.S. National Science Foundation [0653266]; U.S. Department of Energy
[DE-AC-76SF00098, DE-AC02-07CH11359]; Brazilian National Counsel for
Scientific Research (CNPq)
FX This work was partially funded by the U.S. National Science Foundation
under grant number 0653266, the U.S. Department of Energy under contract
numbers DE-AC-76SF00098 and DE-AC02-07CH11359 and the Brazilian National
Counsel for Scientific Research (CNPq).
NR 13
TC 4
Z9 4
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 015015
DI 10.1103/PhysRevD.80.015015
PG 5
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600063
ER
PT J
AU Aoki, S
Bar, O
Sharpe, SR
AF Aoki, Sinya
Baer, Oliver
Sharpe, Stephen R.
TI Vector and axial currents in Wilson chiral perturbation theory
SO PHYSICAL REVIEW D
LA English
DT Article
ID IMPROVED LATTICE QCD; NONPERTURBATIVE RENORMALIZATION; CONTINUUM-LIMIT;
FERMION ACTION; ONE-LOOP; IMPROVEMENT; OPERATORS; SYMMETRY; QUARK
AB We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory, the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two-flavor theory. Our result differs from previously published ones.
C1 [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
[Aoki, Sinya] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA.
[Baer, Oliver] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Sharpe, Stephen R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan.
OI Baer, Oliver/0000-0002-7480-6467
FU Ministry of Education, Culture, Sports, Science and Technology
[20340047, 20105001, 20105003]; Deutsche Forschungsgemeinschaft [SFB/TR
09]; U.S. Department of Energy
FX O. B. acknowledges useful discussions with Johan Bijnens, Maarten
Golterman and Rainer Sommer. We also thank Rainer Sommer for feedback on
a first draft of this paper. This work is supported in part by the
Grants-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology (Nos. 20340047, 20105001,
20105003), by the Deutsche Forschungsgemeinschaft (SFB/TR 09) and by the
U.S. Department of Energy.
NR 29
TC 7
Z9 7
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 014506
DI 10.1103/PhysRevD.80.014506
PG 19
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600048
ER
PT J
AU Aubert, B
Karyotakis, Y
Lees, JP
Poireau, V
Prencipe, E
Prudent, X
Tisserand, V
Tico, JG
Grauges, E
Martinelli, M
Palano, A
Pappagallo, M
Eigen, G
Stugu, B
Sun, L
Battaglia, M
Brown, DN
Kerth, LT
Kolomensky, YG
Lynch, G
Osipenkov, IL
Tackmann, K
Tanabe, T
Hawkes, CM
Soni, N
Watson, AT
Koch, H
Schroeder, T
Asgeirsson, DJ
Fulsom, BG
Hearty, C
Mattison, TS
McKenna, JA
Barrett, M
Khan, A
Randle-Conde, A
Blinov, VE
Bukin, AD
Buzykaev, AR
Druzhinin, VP
Golubev, VB
Onuchin, AP
Serednyakov, SI
Skovpen, YI
Solodov, EP
Todyshev, KY
Bondioli, M
Curry, S
Eschrich, I
Kirkby, D
Lankford, AJ
Lund, P
Mandelkern, M
Martin, EC
Stoker, DP
Atmacan, H
Gary, JW
Liu, F
Long, O
Vitug, GM
Yasin, Z
Zhang, L
Sharma, V
Campagnari, C
Hong, TM
Kovalskyi, D
Mazur, MA
Richman, JD
Beck, TW
Eisner, AM
Heusch, CA
Kroseberg, J
Lockman, WS
Martinez, AJ
Schalk, T
Schumm, BA
Seiden, A
Wang, L
Winstrom, LO
Cheng, CH
Doll, DA
Echenard, B
Fang, F
Hitlin, DG
Narsky, I
Piatenko, T
Porter, FC
Andreassen, R
Mancinelli, G
Meadows, BT
Mishra, K
Sokoloff, MD
Bloom, PC
Ford, WT
Gaz, A
Hirschauer, JF
Nagel, M
Nauenberg, U
Smith, JG
Wagner, SR
Ayad, R
Toki, WH
Wilson, RJ
Feltresi, E
Hauke, A
Jasper, H
Karbach, TM
Merkel, J
Petzold, A
Spaan, B
Wacker, K
Kobel, MJ
Nogowski, R
Schubert, KR
Schwierz, R
Volk, A
Bernard, D
Latour, E
Verderi, M
Clark, PJ
Playfer, S
Watson, JE
Andreotti, M
Bettoni, D
Bozzi, C
Calabrese, R
Cecchi, A
Cibinetto, G
Fioravanti, E
Franchini, P
Luppi, E
Munerato, M
Negrini, M
Petrella, A
Piemontese, L
Santoro, V
Baldini-Ferroli, R
Calcaterra, A
de Sangro, R
Finocchiaro, G
Pacetti, S
Patteri, P
Peruzzi, IM
Piccolo, M
Rama, M
Zallo, A
Contri, R
Guido, E
Lo Vetere, M
Monge, MR
Passaggio, S
Patrignani, C
Robutti, E
Tosi, S
Chaisanguanthum, KS
Morii, M
Adametz, A
Marks, J
Schenk, S
Uwer, U
Bernlochner, FU
Klose, V
Lacker, HM
Bard, DJ
Dauncey, PD
Tibbetts, M
Behera, PK
Charles, MJ
Mallik, U
Cochran, J
Crawley, HB
Dong, L
Eyges, V
Meyer, WT
Prell, S
Rosenberg, EI
Rubin, AE
Gao, YY
Gritsan, AV
Guo, ZJ
Arnaud, N
Bequilleux, J
D'Orazio, A
Davier, M
Derkach, D
da Costa, JF
Grosdidier, G
Le Diberder, F
Lepeltier, V
Lutz, AM
Malaescu, B
Pruvot, S
Roudeau, P
Schune, MH
Serrano, J
Sordini, V
Stocchi, A
Wormser, G
Lange, DJ
Wright, DM
Bingham, I
Burke, JP
Chavez, CA
Fry, JR
Gabathuler, E
Gamet, R
Hutchcroft, DE
Payne, DJ
Touramanis, C
Bevan, AJ
Clarke, CK
Di Lodovico, F
Sacco, R
Sigamani, M
Cowan, G
Paramesvaran, S
Wren, AC
Brown, DN
Davis, CL
Denig, AG
Fritsch, M
Gradl, W
Hafner, A
Alwyn, KE
Bailey, D
Barlow, RJ
Jackson, G
Lafferty, GD
West, TJ
Yi, JI
Anderson, J
Chen, C
Jawahery, A
Roberts, DA
Simi, G
Tuggle, JM
Dallapiccola, C
Salvati, E
Saremi, S
Cowan, R
Dujmic, D
Fisher, PH
Henderson, SW
Sciolla, G
Spitznagel, M
Yamamoto, RK
Zhao, M
Patel, PM
Robertson, SH
Schram, M
Biassoni, P
Cerutti, F
Lazzaro, A
Lombardo, V
Palombo, F
Stracka, S
Bauer, JM
Cremaldi, L
Godang, R
Kroeger, R
Sonnek, P
Summers, DJ
Zhao, HW
Simard, M
Taras, P
Nicholson, H
De Nardo, G
Lista, L
Monorchio, D
Onorato, G
Sciacca, C
Raven, G
Snoek, HL
Jessop, CP
Knoepfel, KJ
LoSecco, JM
Wang, WF
Corwin, LA
Honscheid, K
Kagan, H
Kass, R
Morris, JP
Rahimi, AM
Regensburger, JJ
Sekula, SJ
Wong, QK
Blount, NL
Brau, J
Frey, R
Igonkina, O
Kolb, JA
Lu, M
Rahmat, R
Sinev, NB
Strom, D
Strube, J
Torrence, E
Castelli, G
Gagliardi, N
Margoni, M
Morandin, M
Posocco, M
Rotondo, M
Simonetto, F
Stroili, R
Voci, C
Sanchez, PD
Ben-Haim, E
Bonneaud, GR
Briand, H
Chauveau, J
Hamon, O
Leruste, P
Marchiori, G
Ocariz, J
Perez, A
Prendki, J
Sitt, S
Gladney, L
Biasini, M
Manoni, E
Angelini, C
Batignani, G
Bettarini, S
Calderini, G
Carpinelli, M
Cervelli, A
Forti, F
Giorgi, MA
Lusiani, A
Morganti, M
Neri, N
Paoloni, E
Rizzo, G
Walsh, JJ
Pegna, DL
Lu, C
Olsen, J
Smith, AJS
Telnov, AV
Anulli, F
Baracchini, E
Cavoto, G
Faccini, R
Ferrarotto, F
Ferroni, F
Gaspero, M
Jackson, PD
Gioi, LL
Mazzoni, MA
Morganti, S
Piredda, G
Renga, F
Voena, C
Ebert, M
Hartmann, T
Schroder, H
Waldi, R
Adye, T
Franek, B
Olaiya, EO
Wilson, FF
Emery, S
Esteve, L
de Monchenault, GH
Kozanecki, W
Vasseur, G
Yeche, C
Zito, M
Allen, MT
Aston, D
Bartoldus, R
Benitez, JF
Cenci, R
Coleman, JP
Convery, MR
Dingfelder, JC
Dorfan, J
Dubois-Felsmann, GP
Dunwoodie, W
Field, RC
Sevilla, MF
Gabareen, AM
Graham, MT
Grenier, P
Hast, C
Innes, WR
Kaminski, J
Kelsey, MH
Kim, H
Kim, P
Kocian, ML
Leith, DWGS
Li, S
Lindquist, B
Luitz, S
Luth, V
Lynch, HL
MacFarlane, DB
Marsiske, H
Messner, R
Muller, DR
Neal, H
Nelson, S
O'Grady, CP
Ofte, I
Perl, M
Ratcliff, BN
Roodman, A
Salnikov, AA
Schindler, RH
Schwiening, J
Snyder, A
Su, D
Sullivan, MK
Suzuki, K
Swain, SK
Thompson, JM
Va'vra, J
Wagner, AP
Weaver, M
West, CA
Wisniewski, WJ
Wittgen, M
Wright, DH
Wulsin, HW
Yarritu, AK
Young, CC
Ziegler, V
Chen, XR
Liu, H
Park, W
Purohit, MV
White, RM
Wilson, JR
Burchat, PR
Edwards, AJ
Miyashita, TS
Ahmed, S
Alam, MS
Ernst, JA
Pan, B
Saeed, MA
Zain, SB
Soffer, A
Spanier, SM
Wogsland, BJ
Eckmann, R
Ritchie, JL
Ruland, AM
Schilling, CJ
Schwitters, RF
Wray, BC
Drummond, BW
Izen, JM
Lou, XC
Bianchi, F
Gamba, D
Pelliccioni, M
Bomben, M
Bosisio, L
Cartaro, C
Della Ricca, G
Lanceri, L
Vitale, L
Azzolini, V
Lopez-March, N
Martinez-Vidal, F
Milanes, DA
Oyanguren, A
Albert, J
Banerjee, S
Bhuyan, B
Choi, HHF
Hamano, K
King, GJ
Kowalewski, R
Lewczuk, MJ
Nugent, IM
Roney, JM
Sobie, RJ
Gershon, TJ
Harrison, PF
Ilic, J
Latham, TE
Mohanty, GB
Puccio, EMT
Band, HR
Chen, X
Dasu, S
Flood, KT
Pan, Y
Prepost, R
Vuosalo, CO
Wu, SL
AF Aubert, B.
Karyotakis, Y.
Lees, J. P.
Poireau, V.
Prencipe, E.
Prudent, X.
Tisserand, V.
Garra Tico, J.
Grauges, E.
Martinelli, M.
Palano, A.
Pappagallo, M.
Eigen, G.
Stugu, B.
Sun, L.
Battaglia, M.
Brown, D. N.
Kerth, L. T.
Kolomensky, Yu. G.
Lynch, G.
Osipenkov, I. L.
Tackmann, K.
Tanabe, T.
Hawkes, C. M.
Soni, N.
Watson, A. T.
Koch, H.
Schroeder, T.
Asgeirsson, D. J.
Fulsom, B. G.
Hearty, C.
Mattison, T. S.
McKenna, J. A.
Barrett, M.
Khan, A.
Randle-Conde, A.
Blinov, V. E.
Bukin, A. D.
Buzykaev, A. R.
Druzhinin, V. P.
Golubev, V. B.
Onuchin, A. P.
Serednyakov, S. I.
Skovpen, Yu. I.
Solodov, E. P.
Todyshev, K. Yu.
Bondioli, M.
Curry, S.
Eschrich, I.
Kirkby, D.
Lankford, A. J.
Lund, P.
Mandelkern, M.
Martin, E. C.
Stoker, D. P.
Atmacan, H.
Gary, J. W.
Liu, F.
Long, O.
Vitug, G. M.
Yasin, Z.
Zhang, L.
Sharma, V.
Campagnari, C.
Hong, T. M.
Kovalskyi, D.
Mazur, M. A.
Richman, J. D.
Beck, T. W.
Eisner, A. M.
Heusch, C. A.
Kroseberg, J.
Lockman, W. S.
Martinez, A. J.
Schalk, T.
Schumm, B. A.
Seiden, A.
Wang, L.
Winstrom, L. O.
Cheng, C. H.
Doll, D. A.
Echenard, B.
Fang, F.
Hitlin, D. G.
Narsky, I.
Piatenko, T.
Porter, F. C.
Andreassen, R.
Mancinelli, G.
Meadows, B. T.
Mishra, K.
Sokoloff, M. D.
Bloom, P. C.
Ford, W. T.
Gaz, A.
Hirschauer, J. F.
Nagel, M.
Nauenberg, U.
Smith, J. G.
Wagner, S. R.
Ayad, R.
Toki, W. H.
Wilson, R. J.
Feltresi, E.
Hauke, A.
Jasper, H.
Karbach, T. M.
Merkel, J.
Petzold, A.
Spaan, B.
Wacker, K.
Kobel, M. J.
Nogowski, R.
Schubert, K. R.
Schwierz, R.
Volk, A.
Bernard, D.
Latour, E.
Verderi, M.
Clark, P. J.
Playfer, S.
Watson, J. E.
Andreotti, M.
Bettoni, D.
Bozzi, C.
Calabrese, R.
Cecchi, A.
Cibinetto, G.
Fioravanti, E.
Franchini, P.
Luppi, E.
Munerato, M.
Negrini, M.
Petrella, A.
Piemontese, L.
Santoro, V.
Baldini-Ferroli, R.
Calcaterra, A.
de Sangro, R.
Finocchiaro, G.
Pacetti, S.
Patteri, P.
Peruzzi, I. M.
Piccolo, M.
Rama, M.
Zallo, A.
Contri, R.
Guido, E.
Lo Vetere, M.
Monge, M. R.
Passaggio, S.
Patrignani, C.
Robutti, E.
Tosi, S.
Chaisanguanthum, K. S.
Morii, M.
Adametz, A.
Marks, J.
Schenk, S.
Uwer, U.
Bernlochner, F. U.
Klose, V.
Lacker, H. M.
Bard, D. J.
Dauncey, P. D.
Tibbetts, M.
Behera, P. K.
Charles, M. J.
Mallik, U.
Cochran, J.
Crawley, H. B.
Dong, L.
Eyges, V.
Meyer, W. T.
Prell, S.
Rosenberg, E. I.
Rubin, A. E.
Gao, Y. Y.
Gritsan, A. V.
Guo, Z. J.
Arnaud, N.
Bequilleux, J.
D'Orazio, A.
Davier, M.
Derkach, D.
da Costa, J. Firmino
Grosdidier, G.
Le Diberder, F.
Lepeltier, V.
Lutz, A. M.
Malaescu, B.
Pruvot, S.
Roudeau, P.
Schune, M. H.
Serrano, J.
Sordini, V.
Stocchi, A.
Wormser, G.
Lange, D. J.
Wright, D. M.
Bingham, I.
Burke, J. P.
Chavez, C. A.
Fry, J. R.
Gabathuler, E.
Gamet, R.
Hutchcroft, D. E.
Payne, D. J.
Touramanis, C.
Bevan, A. J.
Clarke, C. K.
Di Lodovico, F.
Sacco, R.
Sigamani, M.
Cowan, G.
Paramesvaran, S.
Wren, A. C.
Brown, D. N.
Davis, C. L.
Denig, A. G.
Fritsch, M.
Gradl, W.
Hafner, A.
Alwyn, K. E.
Bailey, D.
Barlow, R. J.
Jackson, G.
Lafferty, G. D.
West, T. J.
Yi, J. I.
Anderson, J.
Chen, C.
Jawahery, A.
Roberts, D. A.
Simi, G.
Tuggle, J. M.
Dallapiccola, C.
Salvati, E.
Saremi, S.
Cowan, R.
Dujmic, D.
Fisher, P. H.
Henderson, S. W.
Sciolla, G.
Spitznagel, M.
Yamamoto, R. K.
Zhao, M.
Patel, P. M.
Robertson, S. H.
Schram, M.
Biassoni, P.
Cerutti, F.
Lazzaro, A.
Lombardo, V.
Palombo, F.
Stracka, S.
Bauer, J. M.
Cremaldi, L.
Godang, R.
Kroeger, R.
Sonnek, P.
Summers, D. J.
Zhao, H. W.
Simard, M.
Taras, P.
Nicholson, H.
De Nardo, G.
Lista, L.
Monorchio, D.
Onorato, G.
Sciacca, C.
Raven, G.
Snoek, H. L.
Jessop, C. P.
Knoepfel, K. J.
LoSecco, J. M.
Wang, W. F.
Corwin, L. A.
Honscheid, K.
Kagan, H.
Kass, R.
Morris, J. P.
Rahimi, A. M.
Regensburger, J. J.
Sekula, S. J.
Wong, Q. K.
Blount, N. L.
Brau, J.
Frey, R.
Igonkina, O.
Kolb, J. A.
Lu, M.
Rahmat, R.
Sinev, N. B.
Strom, D.
Strube, J.
Torrence, E.
Castelli, G.
Gagliardi, N.
Margoni, M.
Morandin, M.
Posocco, M.
Rotondo, M.
Simonetto, F.
Stroili, R.
Voci, C.
del Amo Sanchez, P.
Ben-Haim, E.
Bonneaud, G. R.
Briand, H.
Chauveau, J.
Hamon, O.
Leruste, Ph.
Marchiori, G.
Ocariz, J.
Perez, A.
Prendki, J.
Sitt, S.
Gladney, L.
Biasini, M.
Manoni, E.
Angelini, C.
Batignani, G.
Bettarini, S.
Calderini, G.
Carpinelli, M.
Cervelli, A.
Forti, F.
Giorgi, M. A.
Lusiani, A.
Morganti, M.
Neri, N.
Paoloni, E.
Rizzo, G.
Walsh, J. J.
Pegna, D. Lopes
Lu, C.
Olsen, J.
Smith, A. J. S.
Telnov, A. V.
Anulli, F.
Baracchini, E.
Cavoto, G.
Faccini, R.
Ferrarotto, F.
Ferroni, F.
Gaspero, M.
Jackson, P. D.
Gioi, L. Li
Mazzoni, M. A.
Morganti, S.
Piredda, G.
Renga, F.
Voena, C.
Ebert, M.
Hartmann, T.
Schroeder, H.
Waldi, R.
Adye, T.
Franek, B.
Olaiya, E. O.
Wilson, F. F.
Emery, S.
Esteve, L.
de Monchenault, G. Hamel
Kozanecki, W.
Vasseur, G.
Yeche, Ch.
Zito, M.
Allen, M. T.
Aston, D.
Bartoldus, R.
Benitez, J. F.
Cenci, R.
Coleman, J. P.
Convery, M. R.
Dingfelder, J. C.
Dorfan, J.
Dubois-Felsmann, G. P.
Dunwoodie, W.
Field, R. C.
Sevilla, M. Franco
Gabareen, A. M.
Graham, M. T.
Grenier, P.
Hast, C.
Innes, W. R.
Kaminski, J.
Kelsey, M. H.
Kim, H.
Kim, P.
Kocian, M. L.
Leith, D. W. G. S.
Li, S.
Lindquist, B.
Luitz, S.
Luth, V.
Lynch, H. L.
MacFarlane, D. B.
Marsiske, H.
Messner, R.
Muller, D. R.
Neal, H.
Nelson, S.
O'Grady, C. P.
Ofte, I.
Perl, M.
Ratcliff, B. N.
Roodman, A.
Salnikov, A. A.
Schindler, R. H.
Schwiening, J.
Snyder, A.
Su, D.
Sullivan, M. K.
Suzuki, K.
Swain, S. K.
Thompson, J. M.
Va'vra, J.
Wagner, A. P.
Weaver, M.
West, C. A.
Wisniewski, W. J.
Wittgen, M.
Wright, D. H.
Wulsin, H. W.
Yarritu, A. K.
Young, C. C.
Ziegler, V.
Chen, X. R.
Liu, H.
Park, W.
Purohit, M. V.
White, R. M.
Wilson, J. R.
Burchat, P. R.
Edwards, A. J.
Miyashita, T. S.
Ahmed, S.
Alam, M. S.
Ernst, J. A.
Pan, B.
Saeed, M. A.
Zain, S. B.
Soffer, A.
Spanier, S. M.
Wogsland, B. J.
Eckmann, R.
Ritchie, J. L.
Ruland, A. M.
Schilling, C. J.
Schwitters, R. F.
Wray, B. C.
Drummond, B. W.
Izen, J. M.
Lou, X. C.
Bianchi, F.
Gamba, D.
Pelliccioni, M.
Bomben, M.
Bosisio, L.
Cartaro, C.
Della Ricca, G.
Lanceri, L.
Vitale, L.
Azzolini, V.
Lopez-March, N.
Martinez-Vidal, F.
Milanes, D. A.
Oyanguren, A.
Albert, J.
Banerjee, Sw.
Bhuyan, B.
Choi, H. H. F.
Hamano, K.
King, G. J.
Kowalewski, R.
Lewczuk, M. J.
Nugent, I. M.
Roney, J. M.
Sobie, R. J.
Gershon, T. J.
Harrison, P. F.
Ilic, J.
Latham, T. E.
Mohanty, G. B.
Puccio, E. M. T.
Band, H. R.
Chen, X.
Dasu, S.
Flood, K. T.
Pan, Y.
Prepost, R.
Vuosalo, C. O.
Wu, S. L.
TI Search for B-0 meson decays to pi(KSKS0)-K-0-K-0, eta(KSKS0)-K-0, and
eta(KSKS0)-K-'-K-0
SO PHYSICAL REVIEW D
LA English
DT Article
ID CP-VIOLATION
AB We describe searches for B-0 meson decays to the charmless final states pi(KSKS0)-K-0-K-0, eta(KSKS0)-K-0, and eta(KSKS0)-K-'-K-0. The data sample corresponds to 467x10(6) BB pairs produced in e(+)e(-) annihilation and collected with the BABAR detector at the SLAC National Accelerator Laboratory. We find no significant signals and determine the 90% confidence level upper limits on the branching fractions, in units of 10(-7), B(B-0 ->pi(KSKS0)-K-0-K-0)< 9, B(B-0 ->eta(KSKS0)-K-0)< 10, and B(B-0 ->eta(KSKS0)-K-'-K-0)< 20.
C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France.
[Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.
[Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy.
[Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway.
[Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England.
[Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany.
[Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada.
[Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England.
[Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Adametz, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia.
[Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA.
[Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA.
[Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA.
[Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA.
[Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA.
[Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany.
[Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany.
[Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy.
[Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy.
[Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy.
[Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA.
[Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany.
[Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England.
[Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA.
[Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA.
[Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France.
[Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France.
[Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England.
[Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England.
[Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA.
[Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany.
[Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England.
[Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA.
[Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA.
[Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA.
[Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada.
[Biassoni, P.; Cerutti, F.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy.
[Biassoni, P.; Cerutti, F.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy.
[Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA.
[Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada.
[Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA.
[De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy.
[De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy.
[Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands.
[Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA.
[Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.
[Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy.
[del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Bettarini, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France.
[Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA.
[Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy.
[Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy.
[Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy.
[Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA.
[Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Smith, A. J. S.; Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany.
[Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France.
[Allen, M. T.; Aston, D.; Benitez, J. F.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kocian, M. L.; Leith, D. W. G. S.; Lindquist, B.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
[Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA.
[Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA.
[Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA.
[Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel.
[Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA.
[Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA.
[Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.
[Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.
[Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy.
[Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain.
[Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada.
[Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England.
[Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA.
[Calderini, G.] Univ Sassari, I-07100 Sassari, Italy.
RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France.
RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere,
Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani,
Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka,
Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico,
Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra,
Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Patrignani,
Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; White, Ryan/E-2979-2015;
Calabrese, Roberto/G-4405-2015; Forti, Francesco/H-3035-2011; Rotondo,
Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad
Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria
Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi,
Eleonora/A-4902-2015
OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky,
Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480;
Lusiani, Alberto/0000-0002-6876-3288; Lusiani,
Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240;
Stracka, Simone/0000-0003-0013-4714; Della Ricca,
Giuseppe/0000-0003-2831-6982; Di Lodovico,
Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602;
Calcaterra, Alessandro/0000-0003-2670-4826; Frey,
Raymond/0000-0003-0341-2636; Patrignani, Claudia/0000-0002-5882-1747;
Neri, Nicola/0000-0002-6106-3756; White, Ryan/0000-0003-3589-5900;
Calabrese, Roberto/0000-0002-1354-5400; Forti,
Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de
Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad
Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge,
Maria Roberta/0000-0003-1633-3195; Oyanguren,
Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633
FU DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France);
BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR
(Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie
EIF (European Union); A. P. Sloan Foundation
FX We are grateful for the excellent luminosity and machine conditions
provided by our PEP-II colleagues, and for the substantial dedicated
effort from the computing organizations that support BABAR. The
collaborating institutions wish to thank SLAC for its support and kind
hospitality. This work is supported by DOE and NSF (USA), NSERC
(Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN
(Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain),
and STFC (United Kingdom). Individuals have received support from the
Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
NR 29
TC 5
Z9 5
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 011101
DI 10.1103/PhysRevD.80.011101
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600001
ER
PT J
AU Bar-Shalom, S
Oaknin, D
Soni, A
AF Bar-Shalom, Shaouly
Oaknin, David
Soni, Amarjit
TI Extended Friedberg-Lee hidden symmetries, quark masses, and CP violation
with four generations
SO PHYSICAL REVIEW D
LA English
DT Article
ID INVARIANT FORMULATION; 4TH GENERATION; DECAYS; FAMILIES; MATRICES;
PHYSICS; MODEL
AB Motivated in part by the several observed anomalies involving CP asymmetries of B and B(s) decays, we consider the standard model with a 4th sequential family (SM4) which seems to offer a rather simple resolution. We initially assume T-invariance by taking the up and down-quark 4x4 mass matrix to be real. Following Friedberg and Lee (FL), we then impose a hidden symmetry on the unobserved (hidden) up and down-quark SU(2) states. The hidden symmetry for four generations ensures the existence of two zero-mass eigenstates, which we take to be the (u,c) and (d,s) states in the up and down-quark sectors, respectively. Then, we simultaneously break T-invariance and the hidden symmetry by introducing two phase factors in each sector. This breaking mechanism generates the small quark masses m(u), m(c) and m(d), m(s), which, along with the orientation of the hidden symmetry, determine the size of CP-violation in the SM4. For illustration we choose a specific physical picture for the hidden symmetry and the breaking mechanism that reproduces the observed quark masses, mixing angles and CP-violation, and at the same time allows us to further obtain very interesting relations/predictions for the mixing angles of t and t('). For example, with this choice we get V(td)similar to(V(cb)/V(cd)-V(ts)/V(us))+O(lambda(2)) and V(t)(')b similar to V(t)(')d center dot(V(cb)/V(cd)), V(tb)(')similar to V(t)(')d center dot(V(ts)/V(us)), implying that V(t)(')d > V(t)(')b, V(tb)('). We furthermore find that the Cabibbo angle is related to the orientation of the hidden symmetry and that the key CP-violating quantity of our model at high energies, J(SM4)equivalent to Im(V(tb)V(t)(')b(star)V(t)(')b(')V(tb)('star)), which is the high-energy analogue of the Jarlskog invariant of the SM, is proportional to the light-quark masses and the measured Cabibbo-Kobayashi-Maskawa quark-mixing matrix angles: |J(SM4)|similar to A(3)lambda(5)x(m(u)/m(t)+m(c)/m(t)(')-m(d)/m(b)+m(s)/m(b)('))similar to 10(-5), where A similar to 0.81 and lambda=0.2257 are the Wolfenstein parameters. Other choices for the orientation of the hidden symmetry and/or the breaking mechanism may lead to different physical outcomes. A general solution, obtained numerically, will be presented in a forthcoming paper.
C1 [Bar-Shalom, Shaouly; Oaknin, David] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
[Soni, Amarjit] Brookhaven Natl Lab, Theory Grp, Upton, NY 11973 USA.
RP Bar-Shalom, S (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
EM shaouly@physics.technion.ac.il; d1306av@gmail.com; soni@bnl.gov
FU U. S. DOE [DE-AC02-98CH10886]
FX We thank Gad Eilam for discussions. The work of AS is supported in part
by the U. S. DOE Contract No. DE-AC02-98CH10886.
NR 36
TC 12
Z9 12
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 015011
DI 10.1103/PhysRevD.80.015011
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600059
ER
PT J
AU Bazavov, A
Bhattacharya, T
Cheng, M
Christ, NH
Detar, C
Ejiri, S
Gottlieb, S
Gupta, R
Heller, UM
Huebner, K
Jung, C
Karsch, F
Laermann, E
Levkova, L
Miao, C
Mawhinney, RD
Petreczky, P
Schmidt, C
Soltz, RA
Soeldner, W
Sugar, R
Toussaint, D
Vranas, P
AF Bazavov, A.
Bhattacharya, T.
Cheng, M.
Christ, N. H.
DeTar, C.
Ejiri, S.
Gottlieb, Steven
Gupta, R.
Heller, U. M.
Huebner, K.
Jung, C.
Karsch, F.
Laermann, E.
Levkova, L.
Miao, C.
Mawhinney, R. D.
Petreczky, P.
Schmidt, C.
Soltz, R. A.
Soeldner, W.
Sugar, R.
Toussaint, D.
Vranas, P.
TI Equation of state and QCD transition at finite temperature
SO PHYSICAL REVIEW D
LA English
DT Article
ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; THERMODYNAMICS;
COLLABORATION; PERSPECTIVE; MATTER
AB We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent N(tau)=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a(2)) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on N(tau)=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we include an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects.
C1 [Bazavov, A.; Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
[Bhattacharya, T.; Gupta, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Cheng, M.; Soltz, R. A.; Vranas, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA.
[Christ, N. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[DeTar, C.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA.
[Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA.
[Heller, U. M.] Amer Phys Soc, Ridge, NY 11961 USA.
[Ejiri, S.; Huebner, K.; Jung, C.; Karsch, F.; Miao, C.; Petreczky, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Karsch, F.; Laermann, E.; Schmidt, C.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany.
[Petreczky, P.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA.
[Soeldner, W.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany.
[Sugar, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
RP Bazavov, A (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.
RI Bhattacharya, Tanmoy/J-8956-2013;
OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Heller, Urs
M./0000-0002-2780-5584; Gupta, Rajan/0000-0003-1784-3058; Schmidt,
Christian/0000-0002-9071-4757
FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC52-07NA27344,
DE-FG02-92ER40699, DE-FG02-91ER-40628, DE-FG02-91ER-40661,
DE-FG02-04ER-41298, DE-KA14-01-02]; NSF [PHY08-57333, PHY07-57035,
PHY07-57333, PHY07-03296]; Bundesministerium fur Bildung und Forschung
[06BI401]; Gesellschaft fur Schwerionenforschung; Deutsche
Forschungsgemeinschaft [GRK 881]
FX This work has been supported in part by contracts DE-AC02-98CH10886,
DE-AC52-07NA27344, DE-FG02-92ER40699, DE-FG02-91ER-40628,
DE-FG02-91ER-40661, DE-FG02-04ER-41298, DE-KA14-01-02 with the U.S.
Department of Energy, and NSF grants PHY08-57333, PHY07-57035,
PHY07-57333 and PHY07-03296, the Bundesministerium fur Bildung und
Forschung under grant 06BI401, the Gesellschaft fur Schwerionenforschung
under grant BILAER and the Deutsche Forschungsgemeinschaft under grant
GRK 881. We wish to thank Dimitri Kusnezov of the NNSA for providing
access to the BlueGene/L at Lawrence Livermore National Laboratory
(LLNL) and the computer support staff for the BlueGene/L computers at
LLNL and the New York Center for Computational Sciences (NYCCS), where
the numerical simulations have been performed. Some portions of the
calculations were also carried out with U.S. National Science Foundation
Teragrid resources at the San Diego Supercomputer Center, the Texas
Advanced Computing Center and the QCDOC at the RIKEN-BNL Research
Center.
NR 39
TC 377
Z9 380
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 014504
DI 10.1103/PhysRevD.80.014504
PG 24
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600046
ER
PT J
AU Bertone, G
Jackson, CB
Shaughnessy, G
Tait, TMP
Vallinotto, A
AF Bertone, Gianfranco
Jackson, C. B.
Shaughnessy, Gabe
Tait, Tim M. P.
Vallinotto, Alberto
TI WIMP forest: Indirect detection of a chiral square
SO PHYSICAL REVIEW D
LA English
DT Article
ID DARK-MATTER ANNIHILATION; NEUTRALINO ANNIHILATION; GALACTIC-CENTER;
MILKY-WAY; 2 PHOTONS; HALOS; MODEL; PARTICLE; CONTRACTION; DENSITY
AB We consider the signals of indirect dark matter detection resulting from a theory of two universal extra dimensions compactified on a chiral square. Aside from the continuum emission, which is a generic prediction of most dark matter candidates, we find a series of prominent annihilation lines (a WIMP forest) that, after convolution with the angular resolution of current experiments, leads to a distinctive (2-bump plus continuum) spectrum, which may be visible in the near future with the Fermi Gamma-Ray Space Telescope (formerly known as GLAST).
C1 [Bertone, Gianfranco] Inst Astrophys Paris, Paris, France.
[Bertone, Gianfranco] Univ Paris 06, CNRS, UMR7095, F-75014 Paris, France.
[Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M. P.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Shaughnessy, Gabe; Tait, Tim M. P.] Northwestern Univ, Evanston, IL 60208 USA.
[Vallinotto, Alberto] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
RP Bertone, G (reprint author), Inst Astrophys Paris, Paris, France.
FU Department of Energy [DE-AC02-06CH11357]; DOE; NASA
FX The authors are grateful for conversations with Bogdan Dobrescu, Dan
Hooper, Rakhi Mahbubani, Simona Murgia, and especially to Eduardo
Ponton, and K. C. Kong (particularly for his publicly available chiral
square MICROMEGAS model files). T. Tait is grateful to the SLAC theory
group for their extraordinary generosity during his many visits.
Research at Argonne National Laboratory is supported in part by the
Department of Energy under Contract No. DE-AC02-06CH11357. A Vallinotto
is supported by the DOE and NASA at Fermilab.
NR 64
TC 49
Z9 49
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 2
AR 023512
DI 10.1103/PhysRevD.80.023512
PG 10
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WH
UT WOS:000268618800028
ER
PT J
AU Chung, KY
Chiow, SW
Herrmann, S
Chu, S
Muller, H
AF Chung, Keng-Yeow
Chiow, Sheng-wey
Herrmann, Sven
Chu, Steven
Mueller, Holger
TI Atom interferometry tests of local Lorentz invariance in gravity and
electrodynamics
SO PHYSICAL REVIEW D
LA English
DT Article
ID FINE-STRUCTURE CONSTANT; CPT VIOLATION; RELATIVISTIC GRAVITY; PHOTON
RECOIL; PARTICLES; ELECTRON; MODEL
AB We present atom-interferometer tests of the local Lorentz invariance of post-Newtonian gravity. An experiment probing for anomalous vertical gravity on Earth, which has already been performed, uses the highest-resolution atomic gravimeter so far. The influence of Lorentz violation in electrodynamics is also taken into account, resulting in combined bounds on Lorentz violation in gravity and electrodynamics. Expressed within the standard model extension or Nordtvedt's anisotropic universe model, we limit 12 linear combinations of seven coefficients for Lorentz violation at the part per billion level, from which we derive limits on six coefficients (and seven when taking into account additional data from lunar laser ranging). We also discuss the use of horizontal interferometers, including atom-chip or guided-atom devices, which potentially allow the use of longer coherence times in order to achieve higher sensitivity.
C1 [Chung, Keng-Yeow] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore.
[Chiow, Sheng-wey] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Herrmann, Sven] Univ Bremen Fallturm Hochschulring, ZARM, D-28359 Bremen, Germany.
[Chu, Steven; Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Chu, Steven] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Chung, KY (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore.
EM hm@berkeley.edu
RI Mueller, Holger/E-3194-2015
NR 94
TC 61
Z9 63
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 016002
DI 10.1103/PhysRevD.80.016002
PG 12
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600077
ER
PT J
AU Cirigliano, V
Kitano, R
Okada, Y
Tuzon, P
AF Cirigliano, Vincenzo
Kitano, Ryuichiro
Okada, Yasuhiro
Tuzon, Paula
TI Model discriminating power of mu -> e conversion in nuclei
SO PHYSICAL REVIEW D
LA English
DT Article
ID MUON-ELECTRON CONVERSION; LEPTON-FLAVOR; R-PARITY; MU(-)-E(-)
CONVERSION; SIGMA-TERM; NUMBER; COUPLINGS; VIOLATION; MASSES; LIMIT
AB We assess the model discriminating power of a combined phenomenological analysis of mu -> e gamma and mu -> e conversion on different target nuclei, including the current hadronic uncertainties. We find that the theoretical uncertainties can be largely reduced by using input from lattice QCD, and do not constitute a limiting factor in discriminating models where one or, at most, two underlying operators (dipole, scalar, vector) provide the dominant source of lepton flavor violation. Our results show that a realistic discrimination among underlying mechanisms requires a measurement of the ratio of conversion rates at the 5% level (two light nuclei) or at the 20% level (one light and one heavy nucleus). We also illustrate these main conclusions in the context of a supersymmetric model.
C1 [Cirigliano, Vincenzo; Kitano, Ryuichiro; Tuzon, Paula] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Kitano, Ryuichiro] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan.
[Okada, Yasuhiro] Grad Univ Adv Studies, Dept Particle & Nucl Phys, Tsukuba, Ibaraki 3050801, Japan.
[Tuzon, Paula] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain.
[Okada, Yasuhiro] KEK, Theory Grp, Tsukuba, Ibaraki 3050801, Japan.
RP Cirigliano, V (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA.
RI Tuzon, Paula/L-3653-2014;
OI Tuzon, Paula/0000-0003-1344-3751; Cirigliano,
Vincenzo/0000-0002-9056-754X
FU KEK theory group; Institute for Nuclear Theory at the University of
Washington; Grant-in-Aid for Science Research, Ministry of Education,
Culture, Sports, Science and Technology, Japan [16081211]; Grant-in-Aid
for Science Research, Japan Society for the Promotion of Science
[20244037]; theory group at LANL; Spanish Ministry of Science and
Innovation [AP2006-04522]; EU [MRTN-CT-2006-035482]; MEC (Spain)
[FPA2007-60323]; Spanish Consolider-Ingeino 2010 Programme CPAN
[CSD2007-00042]
FX We thank Satoshi Mihara for useful exchanges on the experimental aspects
of mu-to-e conversion and Tetsuya Onogi for useful comments on the sigma
term. V. C. thanks the KEK theory group for its hospitality and support,
as well as the Institute for Nuclear Theory at the University of
Washington for its hospitality and the Department of Energy for support
during the completion of this work. Y.O. is supported in part by the
Grant-in-Aid for Science Research, Ministry of Education, Culture,
Sports, Science and Technology, Japan, No. 16081211 and by the
Grant-in-Aid for Science Research, Japan Society for the Promotion of
Science, No. 20244037. P. T. has been supported in part by the theory
group at LANL (during her visit), by a grant from the Spanish Ministry
of Science and Innovation (No. AP2006-04522), as well as by the EU under
Grant No. MRTN-CT-2006-035482 (FLAVIAnet), by MEC (Spain) under Grant
No. FPA2007-60323, and by the Spanish Consolider-Ingeino 2010 Programme
CPAN (No. CSD2007-00042).
NR 35
TC 31
Z9 31
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 013002
DI 10.1103/PhysRevD.80.013002
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600006
ER
PT J
AU Dawson, JF
Mihaila, B
Cooper, F
AF Dawson, John F.
Mihaila, Bogdan
Cooper, Fred
TI Fermion particle production in semiclassical Boltzmann-Vlasov transport
theory
SO PHYSICAL REVIEW D
LA English
DT Article
ID NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; CENTRAL RAPIDITY
REGION; STRONG ELECTRIC-FIELD; QUARK-GLUON PLASMA; FLUX-TUBE MODEL; PAIR
PRODUCTION; ANTIQUARK PLASMA; OSCILLATIONS; EQUATIONS
AB We present numerical solutions of the semiclassical Boltzmann-Vlasov equation for fermion particle-antiparticle production by strong electric fields in boost-invariant coordinates in (1+1) and (3+1) dimensional QED. We compare the Boltzmann-Vlasov results with those of recent quantum field theory calculations and find good agreement. We conclude that extending the Boltzmann-Vlasov approach to the case of QCD should allow us to do a thorough investigation of how backreaction affects recent results on the dependence of the transverse momentum distribution of quarks and antiquarks on a second Casimir invariant of color SU(3).
C1 [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Cooper, Fred] Natl Sci Fdn, Arlington, VA 22230 USA.
[Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA.
[Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
RP Dawson, JF (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
EM john.dawson@unh.edu; bmihaila@lanl.gov; cooper@santafe.edu
RI Mihaila, Bogdan/D-8795-2013
OI Mihaila, Bogdan/0000-0002-1489-8814
NR 22
TC 7
Z9 7
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 014011
DI 10.1103/PhysRevD.80.014011
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600028
ER
PT J
AU Essig, R
Sehgal, N
Strigari, LE
AF Essig, Rouven
Sehgal, Neelima
Strigari, Louis E.
TI Bounds on cross sections and lifetimes for dark matter annihilation and
decay into charged leptons from gamma-ray observations of dwarf galaxies
SO PHYSICAL REVIEW D
LA English
DT Article
ID MILKY-WAY; SPHEROIDAL GALAXY; ELECTRONS; EMISSION; POSITRON; SATELLITES;
SPECTRA; PAMELA
AB We provide conservative bounds on the dark matter cross section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle phi. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion similar to 10 to 20 times lower than that of the local Galactic halo, then the cross sections for dark matter annihilating through phi's required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into tau's is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after 1 yr of observation.
C1 [Essig, Rouven] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA.
[Sehgal, Neelima; Strigari, Louis E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.
RP Essig, R (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA.
OI Strigari, Louis/0000-0001-5672-6079
NR 96
TC 87
Z9 87
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 2
AR 023506
DI 10.1103/PhysRevD.80.023506
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WH
UT WOS:000268618800022
ER
PT J
AU Galli, S
Melchiorri, A
Smoot, GF
Zahn, O
AF Galli, Silvia
Melchiorri, Alessandro
Smoot, George F.
Zahn, Oliver
TI From Cavendish to PLANCK: Constraining Newton's gravitational constant
with CMB temperature and polarization anisotropy
SO PHYSICAL REVIEW D
LA English
DT Article
ID MICROWAVE BACKGROUND ANISOTROPIES; POWER SPECTRUM; DARK ENERGY; 2003
FLIGHT; RECOMBINATION; BOOMERANG
AB We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the similar to 10% level, that can be improved to similar to 3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the similar to 1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.
C1 [Galli, Silvia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy.
[Melchiorri, Alessandro] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy.
[Galli, Silvia] Univ Paris Diderot, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France.
[Smoot, George F.; Zahn, Oliver] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Smoot, George F.; Zahn, Oliver] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA.
RP Galli, S (reprint author), Univ Roma La Sapienza, Dept Phys, Ple Aldo Moro 2, I-00185 Rome, Italy.
EM galli@apc.univ-paris7.fr; alessandro.melchiorri@roma1.infn.it;
gfsmoot@lbl.gov; zahn@berkeley.edu
OI Melchiorri, Alessandro/0000-0001-5326-6003
NR 49
TC 30
Z9 30
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 2
AR 023508
DI 10.1103/PhysRevD.80.023508
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WH
UT WOS:000268618800024
ER
PT J
AU Gao, JH
Xiao, BW
AF Gao, Jian-Hua
Xiao, Bo-Wen
TI Polarized deep inelastic and elastic scattering from gauge/string
duality
SO PHYSICAL REVIEW D
LA English
DT Article
ID FORM-FACTORS; QCD
AB In this paper, we investigate deep inelastic and elastic scattering on a polarized spin-112 hadron using gauge/string duality. This spin-12 hadron corresponds to a supergravity mode of the dilatino. The polarized deep inelastic structure functions are computed in the supergravity approximation at large t' Hooft coupling lambda and finite x with lambda(-1/2)< x < 1. Furthermore, we discuss the moments of all structure functions, and propose an interesting sum rule 01dxg(2)(x,q(2))=0 for the g(2) structure function which is known as the Burkhardt-Cottingham sum rule in QCD. In the end, the elastic scattering is studied and elastic form factors of the spin-12 hadron are calculated within the same framework.
C1 [Gao, Jian-Hua] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
[Gao, Jian-Hua] Shandong Univ, Dept Phys, Jinan 250100, Shandong, Peoples R China.
[Xiao, Bo-Wen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Gao, JH (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.
EM gaojh79@ustc.edu.cn; bxiao@lbl.gov
RI Gao, Jianhua/O-9550-2014
FU National Natural Science Foundation of China [10525523]; Office of
Energy Research, Office of High Energy and Nuclear Physics, Divisions of
Nuclear Physics, of the U. S. Department of Energy [DE-AC0205CH11231]
FX We acknowledge inspiring discussions with S. Brodsky, V. Koch, Y.
Kovchegov, A. Mueller, J. Qiu, G. Teramond, and F. Yuan. We would like
to thank Y. Hatta for enormous communication and stimulating discussions
during the preparation of this paper. J. G. acknowledges financial
support by the National Natural Science Foundation of China under Grant
No. 10525523. B. X. is supported by the Director, Office of Energy
Research, Office of High Energy and Nuclear Physics, Divisions of
Nuclear Physics, of the U. S. Department of Energy under Contract No.
DE-AC0205CH11231.
NR 45
TC 18
Z9 18
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 015025
DI 10.1103/PhysRevD.80.015025
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600073
ER
PT J
AU Golec-Biernat, K
Stasto, AM
AF Golec-Biernat, K.
Stasto, A. M.
TI F-L proton structure function from the unified DGLAP/BFKL approach
SO PHYSICAL REVIEW D
LA English
DT Article
ID INITIAL-STATE RADIATION; SMALL-X; QCD COHERENCE; LOW Q(2); MODEL; BFKL;
RESUMMATION; EVOLUTION; APPROXIMATION; FACTORIZATION
AB We compute the longitudinal proton structure function F-L from the k(T) factorization scheme, using the unified DGLAP/BFKL resummation approach at small x for the unintegrated gluon density. The differences between the k(T) factorization, collinear factorization, and dipole approaches are analyzed and discussed. The comparisons with the DESY collider HERA data are made and predictions for the proposed large hadron-electron collider are also provided.
C1 [Golec-Biernat, K.; Stasto, A. M.] Inst Nucl Phys PAN, Krakow, Poland.
[Golec-Biernat, K.] Rzeszow Univ, Inst Phys, Rzeszow, Poland.
[Stasto, A. M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Stasto, A. M.] Brookhaven Natl Lab, RIKEN Ctr, Upton, NY 11973 USA.
RP Golec-Biernat, K (reprint author), Inst Nucl Phys PAN, Krakow, Poland.
EM golec@ifj.edu.pl; astasto@phys.psu.edu
FU MNiSW [N202 249235]; Alfred P. Sloan Research Foundation
FX This work is partially supported by the grant MNiSW no. N202 249235. A.
M. S. gratefully acknowledges the support of the Alfred P. Sloan
Research Foundation.
NR 40
TC 8
Z9 8
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 014006
DI 10.1103/PhysRevD.80.014006
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600023
ER
PT J
AU Joudaki, S
Cooray, A
Holz, DE
AF Joudaki, Shahab
Cooray, Asantha
Holz, Daniel E.
TI Weak lensing and dark energy: The impact of dark energy on nonlinear
dark matter clustering
SO PHYSICAL REVIEW D
LA English
DT Article
ID LARGE-SCALE STRUCTURE; BARYON ACOUSTIC-OSCILLATION; SHEAR POWER
SPECTRUM; DIGITAL SKY SURVEY; EQUATION-OF-STATE; COSMOLOGICAL
PARAMETERS; COSMIC SHEAR; GALAXIES; CONSTRAINTS; TOMOGRAPHY
AB We examine the influence of percent-level dark energy corrections to the nonlinear matter power spectrum on constraints of the dark energy equation of state from future weak lensing probes. We explicitly show that a poor approximation (off by greater than or similar to 10%) to the nonlinear corrections causes a greater than or similar to 1 sigma bias on the determination of the dark energy equation of state. Future weak lensing surveys must therefore incorporate dark energy modifications to the nonlinear matter power spectrum accurate to the percent-level, to avoid introducing significant bias in their measurements. For the WMAP5 cosmology, the more accurate power spectrum is more sensitive to dark energy properties, resulting in a factor of 2 improvement in dark energy equation of state constraints. We explore the complementary constraints on dark energy from future weak lensing and supernova surveys. A space-based, Joint Dark Energy Mission-like survey measures the equation of state in five independent redshift bins to similar to 10%, while this improves to similar to 5% for a wide-field ground-based survey like the Large Synoptic Survey Telescope. These constraints are contingent upon our ability to control weak lensing systematic uncertainties to the sub-percent level.
C1 [Joudaki, Shahab; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA.
[Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Joudaki, S (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA.
NR 71
TC 20
Z9 20
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0010
EI 2470-0029
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 2
AR 023003
DI 10.1103/PhysRevD.80.023003
PG 12
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WH
UT WOS:000268618800005
ER
PT J
AU Linder, EV
Scherrer, RJ
AF Linder, Eric V.
Scherrer, Robert J.
TI Aetherizing Lambda: Barotropic fluids as dark energy
SO PHYSICAL REVIEW D
LA English
DT Article
ID EQUATION-OF-STATE; K-ESSENCE; SCALAR FIELD; X-MATTER; COSMOLOGY;
QUINTESSENCE; PERTURBATIONS; STATEFINDER; INFLATION; COMPONENT
AB We examine the class of barotropic fluid models of dark energy, in which the pressure is an explicit function of the density, p=f(rho). Through general physical considerations we constrain the asymptotic past and future behaviors and show that this class is equivalent to the sum of a cosmological constant and a decelerating perfect fluid, or "aether," with w(AE)>= 0. Barotropic models give substantially disjoint predictions from quintessence, except in the limit of Lambda CDM. They are also interesting in that they simultaneously can ameliorate the coincidence problem and yet "predict" a value of w approximate to-1.
C1 [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Scherrer, Robert J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
RP Linder, EV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
NR 61
TC 52
Z9 52
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 2
AR 023008
DI 10.1103/PhysRevD.80.023008
PG 7
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WH
UT WOS:000268618800010
ER
PT J
AU Medina, AD
Shah, NR
Wagner, CEM
AF Medina, Anibal D.
Shah, Nausheen R.
Wagner, Carlos E. M.
TI Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric
particle in the MSSM with enhanced SU(2) D-terms
SO PHYSICAL REVIEW D
LA English
DT Article
ID STANDARD MODEL; MASS; PHYSICS
AB The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described.
C1 [Medina, Anibal D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Shah, Nausheen R.; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Shah, Nausheen R.; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA.
RP Medina, AD (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA.
FU DOE [DE-FGO3-96ER40956]; U.C. Davis; U.S. DOE [DE-FG02-91ER40674];
Division of HEP [DE-AC02-06CH11357]; Bloomenthal Research
FX We would like to thank P. Batra, M. Carena, A. Delgado, E. Ponton, and
particularly T. Tait for useful discussions and comments. This work was
supported in part by the DOE under Task TeV of Contract No.
DE-FGO3-96ER40956. Work at U.C. Davis was supported in part by U.S. DOE
Grant No. DE-FG02-91ER40674. Work at ANL is supported in part by the US
DOE, Division of HEP, Contract No. DE-AC02-06CH11357. Work of N. R. Shah
is supported by Bloomenthal Research.
NR 49
TC 15
Z9 15
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 015001
DI 10.1103/PhysRevD.80.015001
PG 17
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600049
ER
PT J
AU Mihaila, B
Cooper, F
Dawson, JF
AF Mihaila, Bogdan
Cooper, Fred
Dawson, John F.
TI Backreaction and particle production in (3+1)-dimensional QED
SO PHYSICAL REVIEW D
LA English
DT Article
ID GLUON DISTRIBUTION-FUNCTIONS; STRONG ELECTRIC-FIELD; HEAVY-ION
COLLISIONS; FLUX-TUBE MODEL; PAIR PRODUCTION; LARGE NUCLEI; QUARK;
PLASMA; DYNAMICS; BEHAVIOR
AB We study the fermion pair production from a strong electric field in boost-invariant coordinates in (3+1) dimensions and exploit the cylindrical symmetry of the problem. This problem has been used previously as a toy model for populating the central-rapidity region of a heavy-ion collision (when we can replace the electric by a chromoelectric field). We derive and solve the renormalized equations for the dynamics of the mean electric field and current of the produced particles, when the field is taken to be a function only of the fluid proper time tau=t(2)-z(2). We determine the proper-time evolution of the comoving energy density and pressure of the ensuing plasma and the time evolution of suitable interpolating number operators. We find that unlike in 1+1 dimensions, the energy density epsilon closely follows the longitudinal pressure. The transverse-momentum distribution of fermion pairs at large momentum is quite different and larger than that expected from the constant field result.
C1 [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Cooper, Fred] Natl Sci Fdn, Arlington, VA 22230 USA.
[Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA.
[Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
RP Mihaila, B (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM bmihaila@lanl.gov; cooper@santafe.edu; john.dawson@unh.edu
RI Mihaila, Bogdan/D-8795-2013
OI Mihaila, Bogdan/0000-0002-1489-8814
NR 32
TC 6
Z9 6
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 014010
DI 10.1103/PhysRevD.80.014010
PG 19
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600027
ER
PT J
AU Noronha, J
Dumitru, A
AF Noronha, Jorge
Dumitru, Adrian
TI Heavy quark potential as a function of shear viscosity at strong
coupling
SO PHYSICAL REVIEW D
LA English
DT Article
ID YANG-MILLS THEORY; DE-SITTER SUPERGRAVITY; N GAUGE-THEORY;
FIELD-THEORIES; CONSTANT DEPENDENCE; FINITE-TEMPERATURE; POLYAKOV LOOP;
STRING THEORY; WILSON LOOPS; PLASMA
AB We determine finite temperature corrections to the heavy-quark (static) potential as a function of the shear viscosity-to-entropy density ratio in a strongly coupled, large-N(c) conformal field theory dual to five-dimensional Gauss-Bonnet gravity. We find that these corrections are even smaller than those predicted by perturbative QCD at distances relevant for small bound states in a deconfined plasma. Obtaining the dominant temperature and viscosity dependence of quarkonium binding energies will require a theory where conformal invariance is broken in such a way that the free energy associated with a single heavy quark is not just a pure entropy contribution.
C1 [Noronha, Jorge] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Dumitru, Adrian] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA.
[Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10016 USA.
[Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10016 USA.
[Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
RP Noronha, J (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA.
RI Noronha, Jorge/M-8800-2014; Noronha, Jorge/E-5783-2013
FU US-DOE Nuclear Science [DE-FG02-93ER40764]
FX J. N. acknowledges support from US-DOE Nuclear Science Grant No.
DE-FG02-93ER40764. A. D. thanks R. Pisarski and M. Strickland for useful
comments. J. N. thanks M. Gyulassy for interesting discussions.
NR 76
TC 18
Z9 18
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 014007
DI 10.1103/PhysRevD.80.014007
PG 8
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600024
ER
PT J
AU Ramalho, G
Pena, MT
AF Ramalho, G.
Pena, M. T.
TI Valence quark contribution for the gamma N ->Delta quadrupole transition
extracted from lattice QCD
SO PHYSICAL REVIEW D
LA English
DT Article
ID ELECTROMAGNETIC FORM-FACTORS; HIGH-MOMENTUM-TRANSFER; DELTA(1232)
RESONANCE; PI(0) ELECTROPRODUCTION; GAMMA-ASTERISK; NUCLEON; MODEL;
DELTA; EXCITATION; ENERGY
AB Starting with a covariant spectator quark model developed for the nucleon N and the Delta in the physical pion mass region, we extend the predictions of the reaction gamma N ->Delta to the lattice QCD regime. The quark model includes S and D waves in the quark-diquark wave functions. Within this framework, it is the D-wave part in the Delta wave function that generates nonzero valence contributions for the quadrupole form factors of the transition. Those contributions are however insufficient to explain the physical data, since the pion cloud contributions dominate. To separate the two effects, we apply the model to the lattice regime in a region where the pion cloud effects are negligible and adjust the D-state parameters directly to the lattice data. This process allows us to obtain a better determination of the D-state contributions. Finally, by adding a simple parametrization of the pion cloud, we establish the connection between the experimental data and the lattice data.
C1 [Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal.
[Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal.
RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
RI Pena, Teresa/M-4683-2013;
OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X
FU Jefferson Science Associates, LLC; U.S. DOE [DE-AC05-06OR23177];
Portuguese Fundacao para a Ciencia e Tecnologia [SFRH/BPD/26886/2006];
European Union
FX G. R. wants to thank Jozef Dudek, Kostas Orginos, and Franz Gross for
the helpful discussions. The authors thank Constantia Alexandrou for
sharing details of the lattice data presented in Ref. [10] and Alfred
Stadler for the review of the final text. This work was partially
supported by Jefferson Science Associates, LLC under U.S. DOE Contract
No. DE-AC05-06OR23177. G. R. was supported by the Portuguese Fundacao
para a Ciencia e Tecnologia under Grant No. SFRH/BPD/26886/2006. This
work has been supported in part by the European Union (HadronPhysics2
project "Study of strongly interacting matter'').
NR 62
TC 32
Z9 32
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 013008
DI 10.1103/PhysRevD.80.013008
PG 9
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600012
ER
PT J
AU Sturm, C
Aoki, Y
Christ, NH
Izubuchi, T
Sachrajda, CTC
Soni, A
AF Sturm, C.
Aoki, Y.
Christ, N. H.
Izubuchi, T.
Sachrajda, C. T. C.
Soni, A.
CA RBC Collaboration
UKQCD Collaboration
TI Renormalization of quark bilinear operators in a momentum-subtraction
scheme with a nonexceptional subtraction point
SO PHYSICAL REVIEW D
LA English
DT Article
ID DIMENSIONAL REGULARIZATION; ANOMALOUS DIMENSION; COUPLING-CONSTANT; QCD;
(MS)OVER-BAR; LOOPS; ORDER; MASS; CURRENTS; FIELD
AB We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Green's functions with the insertion of quark bilinear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for "symmetric." Conversion factors are derived, which connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation with substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably.
C1 [Sturm, C.; Izubuchi, T.; Soni, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
[Aoki, Y.; Izubuchi, T.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA.
[Christ, N. H.; Sachrajda, C. T. C.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
[Izubuchi, T.] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan.
[Sachrajda, C. T. C.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England.
RP Sturm, C (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.
RI Sturm, Christian/Q-2713-2015
OI Sturm, Christian/0000-0002-3137-4940
FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-92ER40699]; RIKEN BNL Research
Center; Ministry of Education, Culture, Sports, Science and Technology
[19740134, 20025010]; Japan Society for the Promotion of Science (JSPS);
German Research Foundation (DFG), Japan-German; STFC [ST/G000557/1]; EU
[MRTN-CT-2006-035482]
FX We want to thank our colleagues in the RBC-UKQCD Collaborations,
especially Peter Boyle, for discussions and encouragement. C. T. S.
warmly thanks Norman Christ and Bob Mawhinney for their hospitality at
Columbia University during the autumn term of 2008. This work was
partially supported by U.S. DOE under Contract No. DE-AC02-98CH10886 (A.
S., C. S. and T. I.) and in part by RIKEN BNL Research Center (T. I. and
Y. A.). N. H. C was partially supported by the U.S. DOE under Contract
No. DE-FG02-92ER40699. T. I. was also supported in part by Grants-in-Aid
for Scientific Research from the Ministry of Education, Culture, Sports,
Science and Technology No. 19740134 and No. 20025010, and by Japan
Society for the Promotion of Science (JSPS) and German Research
Foundation (DFG), Japan-German Joint Research Project 2008-2009. C. T.
S. acknowledges support from STFC Grant No. ST/G000557/1 and EU Contract
No. MRTN-CT-2006-035482 (Flavianet).
NR 24
TC 45
Z9 45
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
J9 PHYS REV D
JI Phys. Rev. D
PD JUL
PY 2009
VL 80
IS 1
AR 014501
DI 10.1103/PhysRevD.80.014501
PG 11
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 478WF
UT WOS:000268618600043
ER
PT J
AU Bardhan, JP
Eisenberg, RS
Gillespie, D
AF Bardhan, Jaydeep P.
Eisenberg, Robert S.
Gillespie, Dirk
TI Discretization of the induced-charge boundary integral equation
SO PHYSICAL REVIEW E
LA English
DT Article
ID POISSON-BOLTZMANN EQUATION; MONTE-CARLO SIMULATIONS; ANALYTICAL
MOLECULAR-SURFACE; ELEMENT METHOD; BROWNIAN DYNAMICS; ELECTROSTATIC
INTERACTIONS; DIELECTRIC ENVIRONMENTS; ION PERMEATION; FREE-ENERGIES;
CHANNEL
AB Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
C1 [Bardhan, Jaydeep P.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk] Rush Univ, Med Ctr, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA.
[Eisenberg, Robert S.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
RP Bardhan, JP (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM jbardhan@alum.mit.edu
OI Gillespie, Dirk/0000-0003-0802-5352
FU NIGMS NIH HHS [GM076013, R01 GM076013]
NR 100
TC 18
Z9 18
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 011906
DI 10.1103/PhysRevE.80.011906
PG 10
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VJ
UT WOS:000268616300094
PM 19658728
ER
PT J
AU Belkin, M
Snezhko, A
Aranson, IS
Kwok, WK
AF Belkin, M.
Snezhko, A.
Aranson, I. S.
Kwok, W. -K.
TI Magnetically driven surface mixing
SO PHYSICAL REVIEW E
LA English
DT Article
ID VIBRATED GRANULAR LAYER; PATTERN-FORMATION
AB Magnetic microparticles suspended on the surface of liquid and energized by vertical alternating magnetic field exhibit complex collective behavior. Various immobile and self-propelled self-assembled structures have been observed. Here, we report on experimental studies of mixing and surface diffusion processes in this system. We show that the pattern-induced surface flows have properties of quasi-two-dimensional turbulence. Correspondingly, the surface advection of tracer particle exhibits properties of Brownian diffusion.
C1 [Belkin, M.; Snezhko, A.; Aranson, I. S.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Belkin, M.] IIT, Chicago, IL 60616 USA.
RP Belkin, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Aranson, Igor/I-4060-2013
FU U. S. DOE [DE-AC02-06CH11357]
FX This research was supported by U. S. DOE (Contract No.
DE-AC02-06CH11357).
NR 21
TC 8
Z9 8
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 011310
DI 10.1103/PhysRevE.80.011310
PG 5
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VJ
UT WOS:000268616300067
PM 19658701
ER
PT J
AU Cortis, A
Zoia, A
AF Cortis, Andrea
Zoia, Andrea
TI Model of dispersive transport across sharp interfaces between porous
materials
SO PHYSICAL REVIEW E
LA English
DT Article
ID DIMENSIONAL SOLUTE TRANSPORT; ANOMALOUS TRANSPORT; BOUNDARY-CONDITIONS;
SOIL COLUMNS; MONTE-CARLO; MEDIA
AB Recent laboratory experiments on solute migration in composite porous columns have shown an asymmetry in the solute arrival time upon reversal of the flow direction, which is not explained by current paradigms of transport. In this work, we propose a definition for the solute flux across sharp interfaces and explore the underlying microscopic particle dynamics by applying Monte Carlo simulation. Our results are consistent with previous experimental findings and explain the observed transport asymmetry. An interpretation of the proposed physical mechanism in terms of a flux rectification is also provided. The approach is quite general and can be extended to other situations involving transport across sharp interfaces.
C1 [Cortis, Andrea] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
[Zoia, Andrea] CEA Saclay, DEN DM2S SFME LSET, F-91191 Gif Sur Yvette, France.
RP Cortis, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
EM acortis@lbl.gov
FU (U. S.) Department of Energy [DE-AC02-05CH11231]
FX This work was supported in part by the (U. S.) Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 22
TC 9
Z9 9
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
EI 1550-2376
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 011122
DI 10.1103/PhysRevE.80.011122
PN 1
PG 4
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VJ
UT WOS:000268616300034
PM 19658668
ER
PT J
AU Ferer, M
Bromhal, GS
Smith, DH
AF Ferer, M.
Bromhal, Grant S.
Smith, Duane H.
TI Miscible viscous fingering in three dimensions: Fractal-to-compact
crossover and interfacial roughness
SO PHYSICAL REVIEW E
LA English
DT Article
ID PORE-LEVEL MODELS; POROUS-MEDIA; GROWING INTERFACES; DIFFUSION; FLOW;
DISPLACEMENTS; SIMULATIONS; DYNAMICS
AB Using our standard pore-level model, we have extended our earlier study of the crossover from fractal viscous fingering to compact /linear flow at a characteristic crossover time, tau, in three dimensions to systems with as many as a 10(6) pore bodies. These larger systems enable us to investigate the flows in the fully compact/well-past-crossover regime. The center of mass of the injected fluid exhibits basically the same behavior as found earlier but with an improved characteristic time. However, our earlier study of much smaller systems was unable to study the interfacial width in the important well-past-crossover regime, t >> tau. Now, we can study both the time evolution and roughness of the interfacial width. The interfacial width exhibits the same fractal-to-compact crossover as the center of mass, with the same characteristic time. In the fully compact regime, t >> tau, the interfacial width grows approximately linearly with time so that the standard growth exponent is approximately unity, beta=1.0 +/- 0.1. We find that neither is the interface self-affine nor is the roughness of the interface in the compact regime consistent with an effective long-range surface tension as assumed by various theories. In fact, similar to Levy flights, the height variations across the interface appear to be random with occasional large height variations.
C1 [Ferer, M.; Smith, Duane H.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA.
[Ferer, M.; Bromhal, Grant S.; Smith, Duane H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA.
RP Ferer, M (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA.
FU U.S. Department of Energy; Office of Fossil Energy
FX M. F. acknowledges the support of the U.S. Department of Energy, Office
of Fossil Energy. He also gratefully acknowledges helpful discussions
with Alex Hansen and Thomas Ramstad.
NR 27
TC 3
Z9 3
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 011602
DI 10.1103/PhysRevE.80.011602
PG 9
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VJ
UT WOS:000268616300076
PM 19658710
ER
PT J
AU Li, CK
Frenje, JA
Petrasso, RD
Seguin, FH
Amendt, PA
Landen, OL
Town, RPJ
Betti, R
Knauer, JP
Meyerhofer, DD
Soures, JM
AF Li, C. K.
Frenje, J. A.
Petrasso, R. D.
Seguin, F. H.
Amendt, P. A.
Landen, O. L.
Town, R. P. J.
Betti, R.
Knauer, J. P.
Meyerhofer, D. D.
Soures, J. M.
TI Pressure-driven, resistive magnetohydrodynamic interchange instabilities
in laser-produced high-energy-density plasmas
SO PHYSICAL REVIEW E
LA English
DT Article
AB Recent experiments using proton backlighting of laser-foil interactions provide unique opportunities for studying magnetized plasma instabilities in laser-produced high-energy-density plasmas. Time-gated proton radiograph images indicate that the outer structure of a magnetic field entrained in a hemispherical plasma bubble becomes distinctly asymmetric after the laser turns off. It is shown that this asymmetry is a consequence of pressure-driven, resistive magnetohydrodynamic (MHD) interchange instabilities. In contrast to the predictions made by ideal MHD theory, the increasing plasma resistivity after laser turn-off allows for greater low-mode destabilization (m > 1) from reduced stabilization by field-line bending. For laser-generated plasmas presented herein, a mode-number cutoff for stabilization of perturbations with m > similar to[8 pi beta(1+D(m)k(perpendicular to)(2) gamma(-1)(max))](1/2) is found in the linear growth regime. The growth is measured and is found to be in reasonable agreement with model predictions.
C1 [Li, C. K.; Frenje, J. A.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Amendt, P. A.; Landen, O. L.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Soures, J. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA.
[Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn Phys & Astron, Rochester, NY 14623 USA.
RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
EM li@psfc.mit.edu
FU U.S. DOE [DE-FG52-07NA28059, DEFG52-06N826203]; LLNL [B543881, LDRD-ER
898988]; LLE [414090-G]; Fusion Science Center at University of
Rochester [412761-G]
FX The work was performed at the LLE National Laser User's Facility (NLUF)
and was supported in part by U.S. DOE (Grants No. DE-FG52-07NA28059 and
No. DEFG52-06N826203), LLNL (Grants No. B543881 and No. LDRD-ER 898988),
LLE (Grant No. 414090-G), and The Fusion Science Center at University of
Rochester (Grant No. 412761-G).
NR 25
TC 9
Z9 9
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 016407
DI 10.1103/PhysRevE.80.016407
PG 5
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VL
UT WOS:000268616500068
PM 19658823
ER
PT J
AU Liu, DJ
Chen, HT
Lin, VSY
Evans, JW
AF Liu, Da-Jiang
Chen, Hung-Ting
Lin, Victor S. -Y.
Evans, J. W.
TI Statistical mechanical modeling of catalytic polymerization within
surface-functionalized mesoporous materials
SO PHYSICAL REVIEW E
LA English
DT Article
ID POROUS-MEDIA; RANDOM-WALKS; DIFFUSION; CHANNELS; SILICA; CHAIN
AB A discrete lattice model is developed to describe diffusion-mediated polymerization occurring within mesopores, where reaction is enhanced at catalytic sites distributed within the interior of the pores. Diffusive transport of monomers and polymers is one-dimensional, diffusion coefficients for the latter decreasing with polymer length. Kinetic Monte Carlo simulation is utilized to analyze model behavior focusing on a "clogging" regime, where the amount of polymer within the pores grows. We characterize the evolution of the overall and mean length of polymers, the mean number of polymers, as well as the polymer spatial and length distributions.
C1 [Liu, Da-Jiang; Chen, Hung-Ting; Lin, Victor S. -Y.; Evans, J. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Chen, Hung-Ting; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA.
RP Liu, DJ (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
NR 27
TC 2
Z9 2
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2470-0045
EI 2470-0053
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 011801
DI 10.1103/PhysRevE.80.011801
PN 1
PG 9
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VJ
UT WOS:000268616300086
PM 19658720
ER
PT J
AU Martin, JE
Shea-Rohwer, L
Solis, KJ
AF Martin, James E.
Shea-Rohwer, Lauren
Solis, Kyle J.
TI Strong intrinsic mixing in vortex magnetic fields
SO PHYSICAL REVIEW E
LA English
DT Article
ID CHAIN MODEL
AB We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of similar to 55 degrees. Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads.
C1 [Martin, James E.; Shea-Rohwer, Lauren; Solis, Kyle J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
FU United States Department of Energy [DE-AC04-94AL85000]; Division of
Materials Science, Office of Basic Energy Sciences, U. S. Department of
Energy (DOE)
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under Contract No. DE-AC04-94AL85000. This work was supported by the
Division of Materials Science, Office of Basic Energy Sciences, U. S.
Department of Energy (DOE).
NR 17
TC 19
Z9 19
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 016312
DI 10.1103/PhysRevE.80.016312
PG 6
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VL
UT WOS:000268616500056
PM 19658811
ER
PT J
AU Neusius, T
Sokolov, IM
Smith, JC
AF Neusius, Thomas
Sokolov, Igor M.
Smith, Jeremy C.
TI Subdiffusion in time-averaged, confined random walks
SO PHYSICAL REVIEW E
LA English
DT Article
ID SINGLE-MOLECULE TRACKING; FOKKER-PLANCK EQUATIONS; ANOMALOUS DIFFUSION;
FRACTIONAL DYNAMICS; MONTE-CARLO; MEMBRANE; CELL; TRANSPORT; PROTEINS;
SYSTEMS
AB Certain techniques characterizing diffusive processes, such as single-particle tracking or molecular dynamics simulation, provide time averages rather than ensemble averages. Whereas the ensemble-averaged mean-squared displacement (MSD) of an unbounded continuous time random walk (CTRW) with a broad distribution of waiting times exhibits subdiffusion, the time-averaged MSD, (delta(2)) over bar, does not. We demonstrate that, in contrast to the unbounded CTRW, in which (delta(2)) over bar is linear in the lag time Delta, the time-averaged MSD of the CTRW of a walker confined to a finite volume is sublinear in Delta, i.e., for long lag times (delta(2)) over bar similar to Delta(1-alpha). The present results permit the application of CTRW to interpret time-averaged experimental quantities.
C1 [Neusius, Thomas; Smith, Jeremy C.] Univ Heidelberg, D-69120 Heidelberg, Germany.
[Sokolov, Igor M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany.
[Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA.
RP Neusius, T (reprint author), Univ Heidelberg, Neuenheimer Feld 368, D-69120 Heidelberg, Germany.
RI smith, jeremy/B-7287-2012
OI smith, jeremy/0000-0002-2978-3227
FU DOE Laboratory-Directed Research and Development; DFG [SFB555]
FX J.C.S. acknowledges support from a DOE Laboratory-Directed Research and
Development grant. I. M. S. thankfully acknowledges financial support by
DFG within the SFB555 research program.
NR 41
TC 46
Z9 47
U1 0
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 011109
DI 10.1103/PhysRevE.80.011109
PG 5
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VJ
UT WOS:000268616300021
PM 19658655
ER
PT J
AU Nilson, RH
Griffiths, SK
AF Nilson, Robert H.
Griffiths, Stewart K.
TI Hierarchical transport networks optimizing dynamic response of permeable
energy-storage materials
SO PHYSICAL REVIEW E
LA English
DT Article
ID FLOW; GAS
AB Channel widths and spacing in latticelike hierarchical transport networks are optimized to achieve maximum extraction of gas or electrical charge from nanoporous energy-storage materials during charge and discharge cycles of specified duration. To address a range of physics, the effective transport diffusivity is taken to vary as a power, m, of channel width. Optimal channel widths and spacing in all levels of the hierarchy are found to increase in a power-law manner with normalized system size, facilitating the derivation of closed-form approximations for the optimal dimensions. Characteristic response times and ratios of channel width to spacing are both shown to vary by the factor 2/m between successive levels of any optimal hierarchy. This leads to fractal-like self-similar geometry, but only for m=2. For this case of quadratic dependence of diffusivity on channel width, the introduction of transport channels permits increases in system size on the order of 10(4), 10(8), and 10(10), without any reduction in extraction efficiency, for hierarchies having 1, 2 and, 8 levels, respectively. However, we also find that for a given system size there is an optimum number of hierarchical levels that maximizes extraction efficiency.
C1 [Nilson, Robert H.; Griffiths, Stewart K.] Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94550 USA.
RP Nilson, RH (reprint author), Sandia Natl Labs, Phys & Engn Sci Ctr, POB 969, Livermore, CA 94550 USA.
FU Engineering Sciences Research Foundation at Sandia National
Laboratories; Sandia Corporation, a Lockheed Martin Co., for the U. S.
DOE National Nuclear Security Administration [DE-AC0494AL85000]
FX The authors appreciate support from the Engineering Sciences Research
Foundation at Sandia National Laboratories, a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Co., for the U. S. DOE
National Nuclear Security Administration under Contract No.
DE-AC0494AL85000.
NR 18
TC 3
Z9 3
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 016310
DI 10.1103/PhysRevE.80.016310
PG 10
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VL
UT WOS:000268616500054
PM 19658809
ER
PT J
AU Palastro, JP
Antonsen, TM
AF Palastro, J. P.
Antonsen, T. M.
TI Interaction of an ultrashort laser pulse and relativistic electron beam
in a corrugated plasma channel
SO PHYSICAL REVIEW E
LA English
DT Article
ID NATIONAL-IGNITION-FACILITY; ACCELERATION
AB Copropagation of a laser pulse and a relativistic electron beam in a corrugated plasma channel has been proposed for the direct laser acceleration of electrons [Palastro et al., Phys. Rev. E 77, 036405 (2008)]. The corrugated plasma channel allows for the guiding of laser pulses composed of subluminal spatial harmonics. Phase matching between the electron beam and the spatial harmonics results in acceleration, but for high beam densities, the pulse energy can be rapidly depleted. This depletion may result in interaction times shorter than the waveguide length limited time or pulse length dephasing time. We present an analytic model and self-consistent simulations of the electron beam-laser pulse interaction. A linear dispersion relation is derived. The effect of the electron beam on the pulse after the occurrence of axial bunching is examined. Injection of axially modulated electron beams is also explored. In particular, we find that a properly phased electron beam can transfer energy to the laser pulse as an inverse process to acceleration.
C1 [Palastro, J. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Antonsen, T. M.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA.
RP Palastro, JP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RI Antonsen, Thomas/D-8791-2017
OI Antonsen, Thomas/0000-0002-2362-2430
NR 23
TC 15
Z9 15
U1 2
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 016409
DI 10.1103/PhysRevE.80.016409
PG 15
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VL
UT WOS:000268616500070
PM 19658825
ER
PT J
AU Quinn, JC
Bryant, PH
Creveling, DR
Klein, SR
Abarbanel, HDI
AF Quinn, John C.
Bryant, Paul H.
Creveling, Daniel R.
Klein, Sallee R.
Abarbanel, Henry D. I.
TI Parameter and state estimation of experimental chaotic systems using
synchronization
SO PHYSICAL REVIEW E
LA English
DT Article
ID TIME NONLINEAR-SYSTEMS; ADAPTIVE SYNCHRONIZATION; COLPITTS OSCILLATORS;
DYNAMICAL-SYSTEMS; SERIES; IDENTIFICATION; UNCERTAIN; OBSERVERS;
ALGORITHM; TRACKING
AB We examine the use of synchronization as a mechanism for extracting parameter and state information from experimental systems. We focus on important aspects of this problem that have received little attention previously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an example system. We explore the impact of model imperfection on the ability to extract valid information from an experimental system. We compare two optimization methods: an initial value method and a constrained method. Each of these involves coupling the model equations to the experimental data in order to regularize the chaotic motions on the synchronization manifold. We explore both time-dependent and time-independent coupling and discuss the use of periodic impulse coupling. We also examine both optimized and fixed (or manually adjusted) coupling. For the case of an optimized time-dependent coupling function u(t) we find a robust structure which includes sharp peaks and intervals where it is zero. This structure shows a strong correlation with the location in phase space and appears to depend on noise, imperfections of the model, and the Lyapunov direction vectors. For time-independent coupling we find the counterintuitive result that often the optimal rms error in fitting the model to the data initially increases with coupling strength. Comparison of this result with that obtained using simulated data may provide one measure of model imperfection. The constrained method with time-dependent coupling appears to have benefits in synchronizing long data sets with minimal impact, while the initial value method with time-independent coupling tends to be substantially faster, more flexible, and easier to use. We also describe a method of coupling which is useful for sparse experimental data sets. Our use of the Colpitts oscillator allows us to explore in detail the case of a system with one positive Lyapunov exponent. The methods we explored are easily extended to driven systems such as neurons with time-dependent injected current. They are expected to be of value in nonchaotic systems as well. Software is available on request.
C1 [Quinn, John C.; Klein, Sallee R.; Abarbanel, Henry D. I.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Bryant, Paul H.; Abarbanel, Henry D. I.] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA.
[Creveling, Daniel R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Abarbanel, Henry D. I.] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA.
RP Quinn, JC (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
EM jquinn@ucsd.edu; pbryant@ucsd.edu; drc@lanl.gov; habarbanel@ucsd.edu
FU U.S. Office of Naval Research MURI [N00014-07-1-0741]
FX This work was partially funded by the U.S. Office of Naval Research MURI
grant (ONR Grant No. N00014-07-1-0741). We would like to thank Erik
Lindberg of the Technical University of Denmark for useful discussions
about the Colpitts oscillator. We would also like to thank Philip Gill
and Elizabeth Wong for helpful discussions about SNOPT and SNCTRL
software.
NR 51
TC 27
Z9 27
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1539-3755
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2009
VL 80
IS 1
AR 016201
DI 10.1103/PhysRevE.80.016201
PG 17
WC Physics, Fluids & Plasmas; Physics, Mathematical
SC Physics
GA 478VL
UT WOS:000268616500031
PM 19658786
ER
PT J
AU Ankenbrandt, C
Bogacz, SA
Bross, A
Geer, S
Johnstone, C
Neuffer, D
Popovic, M
AF Ankenbrandt, C.
Bogacz, S. A.
Bross, A.
Geer, S.
Johnstone, C.
Neuffer, D.
Popovic, M.
TI Low-energy neutrino factory design
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID MUON ACCELERATION; BEAM DYNAMICS
AB The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The pi(+/-) decay to produce muons (mu(+/-)), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by similar to 1.4 X 10(21) mu(+) per year decaying in a long straight section of the storage ring, and a similar number of mu(-) decays.
C1 [Ankenbrandt, C.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Bogacz, S. A.] Ctr Adv Studies Accelerators, Jefferson Lab, Newport News, VA 23606 USA.
[Ankenbrandt, C.] Muons Inc, Batavia, IL 60510 USA.
RP Ankenbrandt, C (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
FU Fermi National Accelerator Laboratory; Fermi Research Association
[DE-AC02-76CH03000]; U.S. Department of Energy
FX This work is supported at the Fermi National Accelerator Laboratory,
which is operated by the Fermi Research Association, under Contract No.
DE-AC02-76CH03000 with the U.S. Department of Energy.
NR 47
TC 13
Z9 13
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUL
PY 2009
VL 12
IS 7
AR 070101
DI 10.1103/PhysRevSTAB.12.070101
PG 14
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 487UM
UT WOS:000269302200001
ER
PT J
AU Bruce, R
Bocian, D
Gilardoni, S
Jowett, JM
AF Bruce, R.
Bocian, D.
Gilardoni, S.
Jowett, J. M.
TI Beam losses from ultraperipheral nuclear collisions between Pb-208(82+)
ions in the Large Hadron Collider and their alleviation
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID ELECTRON-CAPTURE; PAIR PRODUCTION; LHC CABLES; HEAVY-IONS; PHYSICS;
IONIZATION; MAGNETS
AB Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte Carlo shower simulation, and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb-208(82+) ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb-208(82+) operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.
C1 [Bruce, R.; Bocian, D.; Gilardoni, S.; Jowett, J. M.] CERN, Geneva, Switzerland.
[Bocian, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Bruce, R.] Lund Univ, MAXlab, S-22100 Lund, Sweden.
[Bocian, D.] IFJ PAN, Krakow, Poland.
RP Bruce, R (reprint author), CERN, Geneva, Switzerland.
EM roderik.bruce@cern.ch
FU U.S. Department of Energy [DE-AC-02-07CH11359]
FX We would like to thank A. Ferrari for enlightening discussions, M.
Giovannozzi for helpful advice and the LHC misalignment data, M.
Magistris for the MB FLUKA model, and M. Aiba for providing rematching
routines for the LHC optics. Other people we would like to thank for
their help during the course of this work are R. W. Assmann, B. Dehning,
J. B. Jeanneret, S. Russenschuck, B. Schroder, A. Siemko, G. I. Smirnov,
D. Tommasini, J. Wenninger, and S. M. White. This work was supported in
part by the U.S. Department of Energy under Contract No.
DE-AC-02-07CH11359.
NR 49
TC 24
Z9 24
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUL
PY 2009
VL 12
IS 7
AR 071002
DI 10.1103/PhysRevSTAB.12.071002
PG 17
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 487UM
UT WOS:000269302200009
ER
PT J
AU Bruner, N
Genoni, T
Madrid, E
Welch, D
Hahn, K
Oliver, B
AF Bruner, Nichelle
Genoni, Thomas
Madrid, Elizabeth
Welch, Dale
Hahn, Kelly
Oliver, Bryan
TI Excitation of voltage oscillations in an induction voltage adder
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID DIODE; FLOW
AB The induction voltage adder is an accelerator architecture used in recent designs of pulsed-power driven x-ray radiographic systems such as Sandia National Laboratories' Radiographic Integrated Test Stand (RITS), the Atomic Weapons Establishment's planned Hydrus Facility, and the Naval Research Laboratory's Mercury. Each of these designs relies on magnetic insulation to prevent electron loss across the anode-cathode gap in the vicinity of the adder as well as in the coaxial transmission line. Particle-incell simulations of the RITS adder and transmission line show that, as magnetic insulation is being established during a pulse, some electron loss occurs across the gap. Sufficient delay in the cavity pulse timings provides an opportunity for high-momentum electrons to deeply penetrate the cavities of the adder cells where they can excite radio-frequency resonances. These oscillations may be amplified in subsequent gaps, resulting in oscillations in the output power. The specific modes supported by the RITS-6 accelerator and details of the mechanism by which they are excited are presented in this paper.
C1 [Bruner, Nichelle; Genoni, Thomas; Madrid, Elizabeth; Welch, Dale] Voss Sci LLC, Albuquerque, NM 87108 USA.
[Hahn, Kelly; Oliver, Bryan] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Bruner, N (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA.
FU Sandia National Laboratories; U.S. Department of Energy; U.K. Ministry
of Defense [DOA-8910]; United States Department of Energy's National
Nuclear Security Administration [DE-AC0494AL85000]
FX This work is supported by Sandia National Laboratories and the U.S.
Department of Energy and the U.K. Ministry of Defense, under Contract
No. DOA-8910 and AWE under PALD 760. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy's National Nuclear Security
Administration under Contract No. DE-AC0494AL85000.
NR 17
TC 8
Z9 8
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUL
PY 2009
VL 12
IS 7
AR 070401
DI 10.1103/PhysRevSTAB.12.070401
PG 8
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 487UM
UT WOS:000269302200002
ER
PT J
AU Dowell, DH
Schmerge, JF
AF Dowell, David H.
Schmerge, John F.
TI Quantum efficiency and thermal emittance of metal photocathodes
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
AB Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths with major advances occurring since the invention of the photocathode gun and the realization of emittance compensation. These state-of-the-art electron beams are now becoming limited by the intrinsic thermal emittance of the cathode. In both dc and rf photocathode guns details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance for metal cathodes using the Fermi-Dirac model for the electron distribution. We use a consistent theory to derive the quantum efficiency and thermal emittance, and compare our results to those of others.
C1 [Dowell, David H.; Schmerge, John F.] SLAC, Menlo Pk, CA 94025 USA.
RP Dowell, DH (reprint author), SLAC, Menlo Pk, CA 94025 USA.
FU U.S. Department of Energy [DE-AC02-76SF00515]
FX This paper has benefited from stimulating discussions with Klaus
Floettmann (DESY), Sven Lederer (DESY), Kevin Jensen (NRL), John Smedley
(BNL), Axel Brachmann (SLAC), and Dao Xiang (SLAC). This work was
supported by the U.S. Department of Energy under Contract No.
DE-AC02-76SF00515.
NR 26
TC 79
Z9 81
U1 2
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUL
PY 2009
VL 12
IS 7
AR 074201
DI 10.1103/PhysRevSTAB.12.074201
PG 10
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 487UM
UT WOS:000269302200013
ER
PT J
AU Kumar, V
Kim, KJ
AF Kumar, Vinit
Kim, Kwang-Je
TI Electron beam requirements for Smith-Purcell backward wave oscillator
with external focusing
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID FIELD
AB Operation of the Smith-Purcell backward wave oscillator requires a flat electron beam. Without the electron beam focusing, the requirement leads to a very stringent criterion on vertical emittance. In this paper, we discuss a way to relax the criterion by introducing an external focusing.
C1 [Kumar, Vinit] Raja Ramanna Ctr Adv Technol, Indore 452013, India.
[Kim, Kwang-Je] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA.
RP Kumar, V (reprint author), Raja Ramanna Ctr Adv Technol, Indore 452013, India.
NR 24
TC 6
Z9 6
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUL
PY 2009
VL 12
IS 7
AR 070703
DI 10.1103/PhysRevSTAB.12.070703
PG 7
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 487UM
UT WOS:000269302200006
ER
PT J
AU Lindberg, RR
Kim, KJ
AF Lindberg, R. R.
Kim, K. -J.
TI Mode growth and competition in the x-ray free-electron laser oscillator
start-up from noise
SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS
LA English
DT Article
ID SPECTRAL STRUCTURE; SIMULATION; RADIATION
AB We describe the radiation properties of an x-ray free-electron laser (FEL) oscillator, beginning with its start-up from noise through saturation. We first decompose the initially chaotic undulator radiation into the growing longitudinal modes of the composite system consisting of the electron beam, the undulator, and the Bragg mirror resonator cavity. Because the radiation initially comprises several modes whose growth rates are comparable, we find that only after many oscillator passes is the output pulse dominantly characterized by the lowest-order Gaussian mode. We verify our analytic results with a novel, reduced one-dimensional FEL code (derived in the text), and with two-dimensional FEL simulations. Understanding the full longitudinal structure during the initial amplification will be critical in assessing the tolerances on the electron beam, undulator, and optical cavity required for robust operation.
C1 [Lindberg, R. R.; Kim, K. -J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Lindberg, RR (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM lindberg@aps.anl.gov
FU U.S. Department of Energy; Office of Science; Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX The authors wish to thank W. M. Fawley for many useful discussions on
FEL simulations, and Y. Shvyd'ko for his expertise with x-ray optics.
This work was supported by U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, Contract No. DE-AC02-06CH11357.
NR 22
TC 5
Z9 6
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-4402
J9 PHYS REV SPEC TOP-AC
JI Phys. Rev. Spec. Top.-Accel. Beams
PD JUL
PY 2009
VL 12
IS 7
AR 070702
DI 10.1103/PhysRevSTAB.12.070702
PG 11
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 487UM
UT WOS:000269302200005
ER
PT J
AU Barnes, M
Abel, IG
Dorland, W
Ernst, DR
Hammett, GW
Ricci, P
Rogers, BN
Schekochihin, AA
Tatsuno, T
AF Barnes, M.
Abel, I. G.
Dorland, W.
Ernst, D. R.
Hammett, G. W.
Ricci, P.
Rogers, B. N.
Schekochihin, A. A.
Tatsuno, T.
TI Linearized model Fokker-Planck collision operators for gyrokinetic
simulations. II. Numerical implementation and tests
SO PHYSICS OF PLASMAS
LA English
DT Article
DE diffusion; plasma collision processes; plasma kinetic theory; plasma
simulation
ID ASTROPHYSICAL GYROKINETICS; NONLINEAR EVOLUTION; INTERCHANGE MODES;
MAGNETIC-FIELD; PLASMA; TURBULENCE; TRANSPORT; TOKAMAK; EQUATIONS; DRIFT
AB A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 [Kotschenreuther , Comput. Phys. Comm. 88, 128 (1995)] is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.
C1 [Barnes, M.; Dorland, W.; Tatsuno, T.] Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA.
[Barnes, M.; Dorland, W.; Tatsuno, T.] Univ Maryland, CSCAMM, College Pk, MD 20742 USA.
[Abel, I. G.; Schekochihin, A. A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England.
[Abel, I. G.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.
[Ernst, D. R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA.
[Hammett, G. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Ricci, P.] Ecole Polytech Fed Lausanne, Assoc EURATOM Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland.
[Rogers, B. N.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA.
RP Barnes, M (reprint author), Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA.
EM mabarnes@umd.edu; i.abel07@imperial.ac.uk
RI Schekochihin, Alexander/C-2399-2009; Tatsuno, Tomo/A-3467-2011; Hammett,
Gregory/D-1365-2011; Ernst, Darin/A-1487-2010; Barnes,
Michael/F-4934-2011; Dorland, William/B-4403-2009
OI Hammett, Gregory/0000-0003-1495-6647; Ernst, Darin/0000-0002-9577-2809;
Dorland, William/0000-0003-2915-724X
NR 51
TC 35
Z9 35
U1 3
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2009
VL 16
IS 7
AR 072107
DI 10.1063/1.3155085
PG 13
WC Physics, Fluids & Plasmas
SC Physics
GA 478UZ
UT WOS:000268615200009
ER
PT J
AU Boerner, JJ
Boyd, ID
AF Boerner, Jeremiah J.
Boyd, Iain D.
TI Evaluation of models for numerical simulation of the non-neutral region
of sheath plasma
SO PHYSICS OF PLASMAS
LA English
DT Article
DE plasma flow; plasma sheaths; plasma simulation; Poisson equation
ID MAGNETIZED PLASMAS; ION COLLECTION
AB Four different electron models are used to simulate the nonequilibrium plasma flow around a representative cylindrical Faraday probe geometry. Each model is implemented in a two-dimensional axisymmetric hybrid electron fluid and particle in cell method. The geometric shadowing model is derived from kinetic theory on the basis that physical obstruction of part of the velocity distribution leads to many of the expected sheath features. The Boltzmann electron fluid model relates the electron density to the plasma potential through the Boltzmann relation. The non-neutral detailed electron fluid model is derived from the electron conservation equations under the assumption of neutrality, and then modified to include non-neutral effects through the electrostatic Poisson equation. The Poisson-consistent detailed electron fluid model is also derived from the conservation equations and the electrostatic Poisson equation, but uses an alternative method that is inherently non-neutral from the outset. Simulations using the geometric shadowing and non-neutral detailed models do not yield satisfactory sheath structures, indicating that these models are not appropriate for sheath simulations. Simulations using the Boltzmann and Poisson-consistent models produce sheath structures that are in excellent agreement with the planar Bohm sheath solution near the centerline of the probe. The computational time requirement for the Poisson-consistent model is much higher than for the Boltzmann model and becomes prohibitive for larger domains.
C1 [Boerner, Jeremiah J.; Boyd, Iain D.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA.
RP Boerner, JJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM jjboern@sandia.gov
NR 20
TC 1
Z9 1
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2009
VL 16
IS 7
AR 073502
DI 10.1063/1.3158559
PG 11
WC Physics, Fluids & Plasmas
SC Physics
GA 478UZ
UT WOS:000268615200056
ER
PT J
AU Bott, SC
Haas, DM
Eshaq, Y
Ueda, U
Beg, FN
Hammer, DA
Kusse, B
Greenly, J
Shelkovenko, TA
Pikuz, SA
Blesener, IC
McBride, RD
Douglass, JD
Bell, K
Knapp, P
Chittenden, JP
Lebedev, SV
Bland, SN
Hall, GN
Vidal, FAS
Marocchino, A
Harvey-Thomson, A
Haines, MG
Palmer, JBA
Esaulov, A
Ampleford, DJ
AF Bott, S. C.
Haas, D. M.
Eshaq, Y.
Ueda, U.
Beg, F. N.
Hammer, D. A.
Kusse, B.
Greenly, J.
Shelkovenko, T. A.
Pikuz, S. A.
Blesener, I. C.
McBride, R. D.
Douglass, J. D.
Bell, K.
Knapp, P.
Chittenden, J. P.
Lebedev, S. V.
Bland, S. N.
Hall, G. N.
Vidal, F. A. Suzuki
Marocchino, A.
Harvey-Thomson, A.
Haines, M. G.
Palmer, J. B. A.
Esaulov, A.
Ampleford, D. J.
TI Study of the effect of current rise time on the formation of the
precursor column in cylindrical wire array Z pinches at 1 MA
SO PHYSICS OF PLASMAS
LA English
DT Article
DE aluminium; plasma X-ray sources; tungsten; Z pinch
ID LABORATORY ASTROPHYSICS; IMPLOSION DYNAMICS; PLASMA FORMATION; JET
DEFLECTION; SUPERNOVA 1987A; X-PINCHES; POWER; GENERATOR; PHASE;
INSTABILITY
AB The limited understanding of the mechanisms driving the mass ablation rate of cylindrical wires arrays is presently one of the major limitations in predicting array performance at the higher current levels required for inertial confinement fusion (ICF) ignition. Continued investigation of this phenomenon is crucial to realize the considerable potential for wire arrays to drive both ICF and inertial fusion energy, by enabling a predictive capability in computational modeling. We present the first study to directly compare the mass ablation rates of wire arrays as a function of the current rise rate. Formation of the precursor column is investigated on both the MAPGIE (1 MA, 250ns [Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)]) and COBRA (1 MA, 100ns [Greenly , Rev. Sci. Instrum. 79, 073501 (2008)]) generators, and results are used to infer the change in the effective ablation velocity induced by the rise rate of the drive current. Laser shadowography, gated extreme ultraviolet (XUV) imaging, and x-ray diodes are used to compare the dynamical behavior on the two generators, and X-pinch radiography and XUV spectroscopy provide density evolution and temperature measurements respectively. Results are compared to predictions from an analytical scaling model developed previously from MAGPIE data, based on a fixed ablation velocity. For COBRA the column formation time occurs at 116 +/- 5 ns and for Al arrays and 146 +/- 5 ns for W arrays, with Al column temperature in the range of 70-165 eV. These values lie close to model predictions, inferring only a small change in the ablation velocity is induced by the factor of 2.5 change in current rise time. Estimations suggest the effective ablation velocities for MAGPIE and COBRA experiments vary by a maximum of 30%.
C1 [Bott, S. C.; Haas, D. M.; Eshaq, Y.; Ueda, U.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
[Hammer, D. A.; Kusse, B.; Greenly, J.; Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Douglass, J. D.; Bell, K.; Knapp, P.] Cornell Univ, Plasma Studies Lab, New York, NY 14853 USA.
[Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Vidal, F. A. Suzuki; Marocchino, A.; Harvey-Thomson, A.; Haines, M. G.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England.
[Palmer, J. B. A.] AWE Plc, Aldermaston RG7 4PR, Berks, England.
[Esaulov, A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA.
[Ampleford, D. J.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Bott, SC (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA.
RI Hall, Gareth/C-4179-2015; Pikuz, Sergey/M-8231-2015; Shelkovenko,
Tatiana/M-8254-2015; Marocchino, Alberto/E-3571-2016
OI Marocchino, Alberto/0000-0002-5287-8355
FU DOE Junior Faculty [DE-FG-05ER4842]; Center of Excellence for Pulsed
Power Driven High Energy Density Physics; Cornell University; NNSA
[DE-F03-02NA00057]
FX This work was supported by the DOE Junior Faculty Under Grant No.
DE-FG-05ER4842, and a grant from the Center of Excellence for Pulsed
Power Driven High Energy Density Physics, Cornell University. Work at
Imperial College London was sponsored by the NNSA under DOE Cooperative
Agreement No. DE-F03-02NA00057.
NR 83
TC 18
Z9 18
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2009
VL 16
IS 7
AR 072701
DI 10.1063/1.3159864
PG 14
WC Physics, Fluids & Plasmas
SC Physics
GA 478UZ
UT WOS:000268615200038
ER
PT J
AU Daughton, W
Roytershteyn, V
Albright, BJ
Karimabadi, H
Yin, L
Bowers, KJ
AF Daughton, W.
Roytershteyn, V.
Albright, B. J.
Karimabadi, H.
Yin, L.
Bowers, Kevin J.
TI Influence of Coulomb collisions on the structure of reconnection layers
SO PHYSICS OF PLASMAS
LA English
DT Article
DE Fokker-Planck equation; magnetic reconnection; Monte Carlo methods;
plasma collision processes; plasma simulation; plasma transport
processes
ID MAGNETIC RECONNECTION; SIMULATION; CHALLENGE; EQUATION; FIELD; CODE
AB The influence of Coulomb collisions on the structure of reconnection layers is examined in neutral sheet geometry using fully kinetic simulations with a Monte Carlo treatment of the Fokker-Planck operator. The algorithm is first carefully benchmarked against key predictions from transport theory, including the parallel and perpendicular resistivities as well as the thermal force. The results demonstrate that the collisionality is accurately specified, thus allowing the initial Lundquist number to be chosen as desired. For modest Lundquist numbers S less than or similar to 1000, the classic Sweet-Parker solution is recovered. Furthermore, a distinct transition to a faster kinetic regime is observed when the thickness of the resistive layer delta(SP) falls below the ion inertial length d(i). For higher Lundquist numbers S greater than or similar to 1000, plasmoids (secondary islands) are observed within the elongated resistive layers. These plasmoids give rise to a measurable increase in the reconnection rate and for certain cases induce a transition to kinetic regimes sooner than expected from the delta(SP)approximate to d(i) condition. During this transition, the reconnection electric field exceeds the runaway limit, leading to electron scale current layers in which the nonideal electric field is supported predominantly by off-diagonal components in the electron pressure tensor, along with a residual contribution from electron-ion momentum exchange. These weakly collisional electron layers are also unstable to the formation of new plasmoids.
C1 [Daughton, W.; Roytershteyn, V.; Albright, B. J.; Yin, L.; Bowers, Kevin J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA.
[Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Bowers, Kevin J.] DE Shaw Res LLC, New York, NY 10036 USA.
RP Daughton, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA.
RI Daughton, William/L-9661-2013;
OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320;
Roytershteyn, Vadim/0000-0003-1745-7587
NR 42
TC 37
Z9 37
U1 0
U2 8
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 1070-664X
EI 1089-7674
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2009
VL 16
IS 7
AR 072117
DI 10.1063/1.3191718
PG 16
WC Physics, Fluids & Plasmas
SC Physics
GA 478UZ
UT WOS:000268615200019
ER
PT J
AU Krommes, JA
Reiman, AH
AF Krommes, John A.
Reiman, Allan H.
TI Plasma equilibrium in a magnetic field with stochastic regions
SO PHYSICS OF PLASMAS
LA English
DT Article
DE plasma toroidal confinement; plasma turbulence
ID DIFFERENTIAL-EQUATIONS; TURBULENCE; TRANSPORT; STELLARATOR; SURFACES;
TOKAMAK; PERTURBATIONS; SIMULATIONS; ISLANDS; SYSTEMS
AB The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schluumlter currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory. An analytically tractable model, previously studied in the context of resonance-broadening theory, is applied with particular attention paid to the periodicity constraints required in toroidal configurations. It is shown that even a very weak radial diffusion of the magnetic field lines can have a significant effect on the equilibrium in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schluumlter currents. Implications for the numerical calculation of three-dimensional equilibria are discussed.
C1 [Krommes, John A.; Reiman, Allan H.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
EM krommes@princeton.edu; reiman@pppl.gov
NR 57
TC 6
Z9 6
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2009
VL 16
IS 7
AR 072308
DI 10.1063/1.3159607
PG 26
WC Physics, Fluids & Plasmas
SC Physics
GA 478UZ
UT WOS:000268615200027
ER
PT J
AU Sheng, ZM
Yu, LM
Hao, GZ
White, R
AF Sheng, Zheng-Mao
Yu, Limin
Hao, Guangzhou
White, Roscoe
TI Nonlinear interaction between ions and multiple electrostatic waves
SO PHYSICS OF PLASMAS
LA English
DT Article
DE astrophysical plasma; plasma electrostatic waves; plasma heating; plasma
magnetohydrodynamics; plasma nonlinear processes; plasma theory; solar
corona
ID COHERENT ACCELERATION; CYCLOTRON FREQUENCY; MAGNETIZED PLASMA; DYNAMICS
AB The nonlinear interaction of ions with multiple electrostatic waves propagating perpendicularly across a uniform magnetic field is investigated both analytically and numerically. Applying a multiscale expansion method with the wave amplitude as the perturbation parameter, a general nonlinear resonance condition is analytically derived. Under this condition, it is confirmed that multiple waves even below the cyclotron frequency and small amplitude are capable of effectively producing acceleration or stochastic heating by numerical simulation. Compared to the single wave situation, the stochastic threshold for heating by multiple waves with frequencies satisfied with a nonlinear resonance condition is significantly reduced because the nonlinear interaction of ions with multiple waves leads more easily to overlapping of islands and spreading of the stochastic layer in phase space. The above result is helpful to understand the energization mechanism of ions in the solar corona.
C1 [Sheng, Zheng-Mao; Yu, Limin; Hao, Guangzhou] Zhejiang Univ, Dept Phys, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China.
[Sheng, Zheng-Mao; Yu, Limin; White, Roscoe] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Sheng, ZM (reprint author), Zhejiang Univ, Dept Phys, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China.
RI White, Roscoe/D-1773-2013
OI White, Roscoe/0000-0002-4239-2685
FU National Natural Science Foundation of China [10675102, 40390150];
National Hi-Tech Inertial Confinement Fusion Committee of China
FX Z.-M. S. would like to thank Professor Liu Chen and Professor J. Q. Dong
for their useful discussions. Z.-M. S. and L. Y. thank the hospitality
of PPPL, where this work was completed. This work is supported by the
National Natural Science Foundation of China under Grant Nos. 10675102
and 40390150 and the National Hi-Tech Inertial Confinement Fusion
Committee of China.
NR 10
TC 5
Z9 5
U1 1
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2009
VL 16
IS 7
AR 072106
DI 10.1063/1.3157245
PG 7
WC Physics, Fluids & Plasmas
SC Physics
GA 478UZ
UT WOS:000268615200008
ER
PT J
AU Steinhauer, LC
Intrator, TP
AF Steinhauer, Loren C.
Intrator, T. P.
TI Equilibrium paradigm for field-reversed configurations and application
to experiments
SO PHYSICS OF PLASMAS
LA English
DT Article
DE plasma transport processes; reversed field pinch
ID MODE-STABILITY; CONFINEMENT; TRANSPORT; PLASMAS; PROFILE; FRX
AB Fresh insights on field-reversed configurations (FRCs) are incorporated in a new paradigm for equilibria. In particular four new or unappreciated properties are accounted for: an empirically based scrape-off layer thickness; a new, more accurate axial force balance relation; viscous force regularity at the O-point; and the broken-surface effect. The new paradigm corrects glaring defects of previous models (rigid rotor, Hill's vortex). Further, the new paradigm is simple enough to be easily used as an interpretive tool despite the limited data suite in most experiments. It is applied to the newly enhanced FRC data compendium, a database of 69 records from 15 facilities. Several important observations and corrections on the previous understanding of FRCs follow, three of which stand out. (1) The traditional axial force balance ("average-beta" relation) gives an inaccurate scaling with the separatrix-to-wall radius ratio. (2) The improved equilibrium paradigm yields separatrix particle transport rates of 3-5 m(2)/s for "best confinement" examples; this is a factor of three lower than crude "bulk" estimates commonly used. (3) The transport compared to the Bohm rate shows a great deal of scatter (40% scatter/mean ratio), i.e., "Bohm" is not a useful representation for transport scaling.
C1 [Steinhauer, Loren C.] Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA.
[Intrator, T. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Steinhauer, LC (reprint author), Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA.
FU U.S. Department of Energy [DE-FG03-98ER54480, DE-AC52-06NA25396]
FX L. C. S. is grateful for useful discussions with R. D. Milroy and D. C.
Barnes and T. P. I. acknowledges the FRXL team (S. Y. Zhang, R. M.
Renneke, W. A. Waganaar, G. A. Wurden, and P. A. Sieck) for help and
effort in acquiring the data over the past several years. This work was
supported by U.S. Department of Energy, Grant No. DE-FG03-98ER54480 and
Contract No. DE-AC52-06NA25396.
NR 21
TC 9
Z9 11
U1 2
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1070-664X
J9 PHYS PLASMAS
JI Phys. Plasmas
PD JUL
PY 2009
VL 16
IS 7
AR 072501
DI 10.1063/1.3157253
PG 9
WC Physics, Fluids & Plasmas
SC Physics
GA 478UZ
UT WOS:000268615200031
ER
PT J
AU Wright, JC
Bonoli, PT
Schmidt, AE
Phillips, CK
Valeo, EJ
Harvey, RW
Brambilla, MA
AF Wright, J. C.
Bonoli, P. T.
Schmidt, A. E.
Phillips, C. K.
Valeo, E. J.
Harvey, R. W.
Brambilla, M. A.
TI An assessment of full wave effects on the propagation and absorption of
lower hybrid waves
SO PHYSICS OF PLASMAS
LA English
DT Article
DE electromagnetic field theory; Fokker-Planck equation; plasma
electromagnetic wave propagation; SCF calculations; Tokamak devices;
wave propagation; WKB calculations
ID LARMOR RADIUS MODELS; ION-CYCLOTRON RANGE; TOKAMAK PLASMAS; CURRENT
DRIVE; TOROIDAL PLASMAS; NUMERICAL-SIMULATION; FREQUENCIES
AB Lower hybrid (LH) waves ((ci) 4)Xyl was chemically synthesized and conjugated to a carrier protein. Two interesting antibodies were obtained, hereinafter named INRA-COU1 and INRA-COU2. The specificity of these monoclonal antibodies has been evaluated using competitive-inhibition assays with different oligosaccharides and phenolic compounds. INRA-COU1, recognized free p-coumaric acid or p-coumarate esters. INRA-COU1 did not react with any of the other hydroxycinnamic acids and related compounds found in plants. INRA-COU2, only recognizes esterified p-coumarate. These antibodies were used to study the localization of p-coumarates in the cell walls of grasses. Immunocytochemical analyses indicated noticeable amounts of p-coumarate in the cell walls of the aleurone layer of wheat grain, in the epiderm of cereal straw, and in the exoderm of wheat root.
The use of these antibodies will contribute to a better understanding of the organisation and developmental dynamics of cell walls in Graminaceae. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Tranquet, Olivier; Saulnier, Luc; Guillon, Fabienne] INRA, Biopolymeres Interact Assemblages UR1268, F-44300 Nantes, France.
[Utille, Jean-Pierre] CERMAV, CNRS, UPR 5301, F-3041 Grenoble, France.
[Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Biochem, Enzyme Inst, Madison, WI 53726 USA.
RP Tranquet, O (reprint author), INRA, Biopolymeres Interact Assemblages UR1268, F-44300 Nantes, France.
EM tranquet@nantes.inra.fr
NR 76
TC 11
Z9 11
U1 2
U2 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0031-9422
J9 PHYTOCHEMISTRY
JI Phytochemistry
PD JUL-AUG
PY 2009
VL 70
IS 11-12
BP 1366
EP 1373
DI 10.1016/j.phytochem.2009.06.019
PG 8
WC Biochemistry & Molecular Biology; Plant Sciences
SC Biochemistry & Molecular Biology; Plant Sciences
GA 511PD
UT WOS:000271177600004
PM 19712948
ER
PT J
AU Bickford, CP
Mcdowell, NG
Erhardt, EB
Hanson, DT
AF Bickford, Christopher P.
Mcdowell, Nate G.
Erhardt, Erik B.
Hanson, David T.
TI High-frequency field measurements of diurnal carbon isotope
discrimination and internal conductance in a semi-arid species,
Juniperus monosperma
SO PLANT CELL AND ENVIRONMENT
LA English
DT Article
DE decarboxylation; Farquhar model; mesophyll conductance; p(i)/p(a)
ID LEAF-RESPIRED CO2; LASER ABSORPTION-SPECTROSCOPY; MESOPHYLL CONDUCTANCE;
ECOSYSTEM RESPIRATION; IN-VIVO; CARBOXYLASE OXYGENASE; TEMPERATURE
RESPONSE; ILLUMINATED LEAVES; PARTIAL-PRESSURE; SPINACH LEAVES
AB We present field observations of carbon isotope discrimination (Delta) and internal conductance of CO(2) (g(i)) collected using tunable diode laser spectroscopy (TDL). Delta ranged from 12.0 to 27.4 parts per thousand over diurnal periods with daily means from 16.3 +/- 0.2 parts per thousand during drought to 19.0 +/- 0.5 parts per thousand during monsoon conditions. We observed a large range in g(i), with most estimates between 0.04 and 4.0 mu mol m(-2) s(-1) Pa(-1). We tested the comprehensive Farquhar, O'Leary and Berry model of Delta (Delta(comp)), a simplified form of Delta(comp) (Delta(simple)) and a recently suggested amendment (Delta(revised)). Sensitivity analyses demonstrated that varying g(i) had a substantial effect on Delta(comp), resulting in mean differences between observed Delta (Delta(obs)) and Delta(comp) ranging from 0.04 to 9.6 parts per thousand. First-order regressions adequately described the relationship between Delta and the ratio of substomatal to atmospheric CO(2) partial pressure (p(i)/p(a)) on all 3 d, but second-order models better described the relationship in July and August. The three tested models each best predicted Delta(obs) on different days. In June, Delta(simple) outperformed Delta(comp) and Delta(revised), but incorporating g(i) and all non-photosynthetic fractionations improved model predictions in July and August.
C1 [Bickford, Christopher P.; Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA.
[Erhardt, Erik B.] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA.
[Mcdowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA.
RP Bickford, CP (reprint author), Univ New Mexico, Dept Biol, MSC03-2020, Albuquerque, NM 87131 USA.
EM bickford@unm.edu
RI Hanson, David/J-8034-2012;
OI Erhardt, Erik/0000-0002-9817-4011
FU Institute of Geophysics and Planetary Physics at Los Alamos National
Laborator [95566-001-05]; National Science Foundation [IOS-0719118]
FX We thank H. Powers, K. Brown and C. Meyer for extensive technical
support, and the Institute of Geophysics and Planetary Physics at Los
Alamos National Laboratory (project 95566-001-05), the National Science
Foundation (IOS-0719118), UNM PIBBS and the UNM Biology Department Lynn
A. Hertel Graduate Research Award for funding. We also thank Professor
Graham Farquhar and two anonymous reviewers for their comments that
improved the paper.
NR 75
TC 27
Z9 27
U1 1
U2 17
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0140-7791
J9 PLANT CELL ENVIRON
JI Plant Cell Environ.
PD JUL
PY 2009
VL 32
IS 7
BP 796
EP 810
DI 10.1111/j.1365-3040.2009.01959.x
PG 15
WC Plant Sciences
SC Plant Sciences
GA 453HN
UT WOS:000266601600004
PM 19220783
ER
PT J
AU Yu, XH
Gou, JY
Liu, CJ
AF Yu, Xiao-Hong
Gou, Jin-Ying
Liu, Chang-Jun
TI BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and
Arabidopsis: bioinformatics and gene expression
SO PLANT MOLECULAR BIOLOGY
LA English
DT Article
DE Acyl CoA-dependent acyltransfease; BAHD enzymes; Populus trichocarpa;
Arabidopsis thaliana; Gene expression
ID ACID N-MALONYLTRANSFERASE; SALVIA-SPLENDENS FLOWERS; CELL-WALL;
1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID; ANTHOCYANIN ACYLTRANSFERASES;
FUNCTIONAL-CHARACTERIZATION; PHENYLPROPANOID METABOLISM; SEQUENCE
ALIGNMENT; MEMBRANE-PROTEINS; CLARKIA-BREWERI
AB Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by "in silico" northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members' evolutionary relationships and gene functions implicated in plant growth, development and metabolism.
C1 [Yu, Xiao-Hong; Gou, Jin-Ying; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM cliu@bnl.gov
RI Gou, Jin-Ying/G-7628-2012
FU DOE -USDA joint Plant Feedstock Genomics [Bo-135]; Laboratory Directed
Research and Development [LDRD-07-047]; Department of Energy
FX Authors would like to thank Dr. Gray Tuskan in Oak Ridge National
Laboratory for providing additional P. trichocarpa plantlets. This work
was supported by the DOE -USDA joint Plant Feedstock Genomics program
(Project no: Bo-135) and the Laboratory Directed Research and
Development program (LDRD-07-047) of Brookhaven National Laboratory
under contract with Department of Energy to C.J.L.
NR 79
TC 34
Z9 38
U1 0
U2 18
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0167-4412
J9 PLANT MOL BIOL
JI Plant Mol.Biol.
PD JUL
PY 2009
VL 70
IS 4
BP 421
EP 442
DI 10.1007/s11103-009-9482-1
PG 22
WC Biochemistry & Molecular Biology; Plant Sciences
SC Biochemistry & Molecular Biology; Plant Sciences
GA 457FP
UT WOS:000266914200005
PM 19343509
ER
PT J
AU Bauer, AL
Jackson, TL
Jiang, Y
AF Bauer, Amy L.
Jackson, Trachette L.
Jiang, Yi
TI Topography of Extracellular Matrix Mediates Vascular Morphogenesis and
Migration Speeds in Angiogenesis
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID TUMOR-INDUCED ANGIOGENESIS; COLLAGEN TYPE-I; ENDOTHELIAL-CELL;
GROWTH-FACTOR; MECHANICAL-PROPERTIES; VEGF; MODEL; PROLIFERATION;
INVASION; NETWORKS
AB The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically.
C1 [Bauer, Amy L.; Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA.
[Jackson, Trachette L.] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA.
RP Bauer, AL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA.
EM jiang@lanl.gov
FU U.S. Department of Energy [DE-AC52-06NA25396]; Alfred P. Sloan and the
James S. McDonnell Foundation
FX ALB and YJ acknowledge support from the U.S. Department of Energy under
Contract No. DE-AC52-06NA25396. TLJ was supported in part by the Alfred
P. Sloan and the James S. McDonnell Foundation. The funders had no role
in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 62
TC 73
Z9 75
U1 2
U2 16
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA
SN 1553-734X
EI 1553-7358
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD JUL
PY 2009
VL 5
IS 7
AR e1000445
DI 10.1371/journal.pcbi.1000445
PG 18
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 486TD
UT WOS:000269220100010
PM 19629173
ER
PT J
AU Gaudet, P
Chisholm, R
Berardini, T
Dimmer, E
Engel, SR
Fey, P
Hill, DP
Howe, D
Hu, JC
Huntley, R
Khodiyar, VK
Kishore, R
Li, D
Lovering, RC
McCarthy, F
Ni, L
Petri, V
Siegele, DA
Tweedie, S
Van Auken, K
Wood, V
Basu, S
Carbon, S
Dolan, M
Mungall, CJ
Dolinski, K
Thomas, P
Ashburner, M
Blake, JA
Cherry, JM
Lewis, SE
AF Gaudet, Pascale
Chisholm, Rex
Berardini, Tanya
Dimmer, Emily
Engel, Stacia R.
Fey, Petra
Hill, David P.
Howe, Doug
Hu, James C.
Huntley, Rachael
Khodiyar, Varsha K.
Kishore, Ranjana
Li, Donghui
Lovering, Ruth C.
McCarthy, Fiona
Ni, Li
Petri, Victoria
Siegele, Deborah A.
Tweedie, Susan
Van Auken, Kimberly
Wood, Valerie
Basu, Siddhartha
Carbon, Seth
Dolan, Mary
Mungall, Christopher J.
Dolinski, Kara
Thomas, Paul
Ashburner, Michael
Blake, Judith A.
Cherry, J. Michael
Lewis, Suzanna E.
CA Gene Ontology Consortium
TI The Gene Ontology's Reference Genome Project: A Unified Framework for
Functional Annotation across Species
SO PLOS COMPUTATIONAL BIOLOGY
LA English
DT Article
ID SEQUENCE; PANTHER
AB The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content.
C1 [Gaudet, Pascale; Chisholm, Rex; Fey, Petra; Basu, Siddhartha] Northwestern Univ, Chicago, IL 60611 USA.
[Berardini, Tanya; Li, Donghui] Carnegie Inst, Dept Plant Biol, Stanford, CA USA.
[Dimmer, Emily; Huntley, Rachael] UniProt, EBI, Hinxton, England.
[Engel, Stacia R.; Cherry, J. Michael] Stanford Univ, Dept Genet, Stanford, CA 94305 USA.
[Hill, David P.; Ni, Li; Dolan, Mary; Blake, Judith A.] Jackson Lab, Bar Harbor, ME 04609 USA.
[Howe, Doug] Univ Oregon, Eugene, OR 97403 USA.
[Hu, James C.; Siegele, Deborah A.] Texas A&M Univ, College Stn, TX USA.
[Khodiyar, Varsha K.; Lovering, Ruth C.] UCL, Dept Med, London, England.
[Kishore, Ranjana; Van Auken, Kimberly] CALTECH, Pasadena, CA 91125 USA.
[McCarthy, Fiona] Mississippi State Univ, Starkville, MS USA.
[Petri, Victoria] Med Coll Wisconsin, Milwaukee, WI 53226 USA.
[Tweedie, Susan; Ashburner, Michael] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England.
[Wood, Valerie] Wellcome Trust Sanger Inst, Hinxton, England.
[Carbon, Seth; Mungall, Christopher J.; Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Dolinski, Kara] Princeton Univ, Princeton, NJ 08544 USA.
[Thomas, Paul] SRI Int, Menlo Pk, CA 94025 USA.
RP Gaudet, P (reprint author), Northwestern Univ, Chicago, IL 60611 USA.
EM pgaudet@northwestern.edu
RI Fey, Petra/O-5977-2015; Huntley, Rachael/R-1036-2016;
OI Khodiyar, Varsha/0000-0002-2743-6918; Fey, Petra/0000-0002-4532-2703;
Huntley, Rachael/0000-0001-6718-3559; Apweiler,
Rolf/0000-0001-7078-200X; Engel, Stacia/0000-0001-5472-917X; Christie,
Karen/0000-0001-5501-853X; Howe, Douglas/0000-0001-5831-7439; Wood,
Valerie/0000-0001-6330-7526; Cherry, J. Michael/0000-0001-9163-5180;
Lewis, Suzanna/0000-0002-8343-612X; Tweedie, Susan/0000-0003-1818-8243;
Siegele, Deborah/0000-0001-8935-0696; Blake, Judith/0000-0001-8522-334X
FU NIH-NHGRI P41 [HG002273, HG000330, HG001315, HG02223, HG002659-06]; USDA
Cooperative State Research, Education and Extension Service
[MISV-329140]; NIH [GM64426, HG00022, HD033745]; NIGMS [U24GM07790];
Medical Research Council [G0500293]; EMBL; British Heart Foundation
[SP/07/007/23671]; National Heart, Lung, and Blood Institute [HL64541];
NSF [DBI-0417062]
FX The Gene Ontology Consortium is supported by a NIH-NHGRI P41 grant,
HG002273. Curation at the model organism databases is supported as
follows: AgBase National Research Initiative of the USDA Cooperative
State Research, Education and Extension Service, grant number
MISV-329140; dictyBase, NIH grants GM64426 and HG00022; EcoliWiki, NIGMS
U24GM07790 to EcoliHub; FlyBase, Medical Research Council grant
G0500293; GOA, core EMBL funding, British Heart Foundation grant
SP/07/007/23671; MGI, NIH-NHGRI P41 grant HG000330 and NIH grant
HD033745; RGD, National Heart, Lung, and Blood Institute grant HL64541;
SGD, NIH-NHGRI P41 grant HG001315; TAIR, NSF grant DBI-0417062;
WormBase, US NIH-NHGRI P41 grant HG02223; ZFIN, NIH-NCRR P41 grant
HG002659-06; UCL-based human cardiovascular GO team, British Heart
Foundation grant SP/07/007/23671. The funders had no role in study
design, data collection and analysis, decision to publish, or
preparation of the manuscript.
NR 21
TC 8
Z9 8
U1 1
U2 7
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1553-734X
J9 PLOS COMPUT BIOL
JI PLoS Comput. Biol.
PD JUL
PY 2009
VL 5
IS 7
AR e1000431
DI 10.1371/journal.pcbi.1000431
PG 8
WC Biochemical Research Methods; Mathematical & Computational Biology
SC Biochemistry & Molecular Biology; Mathematical & Computational Biology
GA 486TD
UT WOS:000269220100031
ER
PT J
AU Zou, C
Lehti-Shiu, MD
Thomashow, M
Shiu, SH
AF Zou, Cheng
Lehti-Shiu, Melissa D.
Thomashow, Michael
Shiu, Shin-Han
TI Evolution of Stress-Regulated Gene Expression in Duplicate Genes of
Arabidopsis thaliana
SO PLOS GENETICS
LA English
DT Article
ID ANCESTRAL CHARACTER STATES; AMINO-ACID-SEQUENCES; FUNCTIONAL DIVERGENCE;
GENOME DUPLICATION; PHYLOGENETIC UNCERTAINTY; BAYESIAN-INFERENCE; PLANT;
YEAST; SUBFUNCTIONALIZATION; NEOFUNCTIONALIZATION
AB Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is., 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.
C1 [Zou, Cheng; Lehti-Shiu, Melissa D.; Shiu, Shin-Han] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
[Zou, Cheng] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA.
[Thomashow, Michael] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA.
RP Zou, C (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.
EM shius@msu.edu
OI Shiu, Shin-Han/0000-0001-6470-235X
FU National Science Foundation [DBI-0701709, DBI-0638591, MCB-0749634]
FX This work is supported in part by National Science Foundation grants
DBI-0701709 to MT and DBI-0638591 and MCB-0749634 to SHS. The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.
NR 77
TC 50
Z9 52
U1 0
U2 11
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1553-7390
J9 PLOS GENET
JI PLoS Genet.
PD JUL
PY 2009
VL 5
IS 7
AR e1000581
DI 10.1371/journal.pgen.1000581
PG 13
WC Genetics & Heredity
SC Genetics & Heredity
GA 486SZ
UT WOS:000269219500005
PM 19649161
ER
PT J
AU Field, RV
Grigoriu, M
AF Field, R. V., Jr.
Grigoriu, M.
TI Model selection for a class of stochastic processes or random fields
with bounded range
SO PROBABILISTIC ENGINEERING MECHANICS
LA English
DT Article
DE Decision theory; Probabilistic mechanics; Model selection; Random
fields; Stochastic processes
ID SIMULATION; DESIGN
AB Methods are developed for finding an optimal model for a non-Gaussian stationary stochastic process or homogeneous random field under limited information. The available information consists of: (i) one or more finite length samples of the process or field; and (ii) knowledge that the process or field takes values in a bounded interval of the real line whose ends may or may not be known. The methods are developed and applied to the special case of non-Gaussian processes or fields belonging to the class of beta translation processes. Beta translation processes provide a flexible model for representing physical phenomena taking values in a bounded range, and are therefore useful for many applications. Numerical examples are presented to illustrate the utility of beta translation processes and the proposed methods for model selection. Published by Elsevier Ltd
C1 [Field, R. V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Grigoriu, M.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA.
RP Field, RV (reprint author), Sandia Natl Labs, POB 5800,M-S 0346, Albuquerque, NM 87185 USA.
EM rvfield@sandia.gov; mdg12@cornell.edu
OI Field, Richard/0000-0002-2765-7032
FU Sandia National Laboratories; United States Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by Sandia National Laboratories. Sandia is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy's National
Nuclear Security Administration under Contract DE-AC04-94AL85000.
NR 29
TC 6
Z9 7
U1 0
U2 0
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0266-8920
J9 PROBABILIST ENG MECH
JI Probab. Eng. Eng. Mech.
PD JUL
PY 2009
VL 24
IS 3
BP 331
EP 342
DI 10.1016/j.probengmech.2008.08.003
PG 12
WC Engineering, Mechanical; Mechanics; Statistics & Probability
SC Engineering; Mechanics; Mathematics
GA 442CT
UT WOS:000265818100008
ER
PT J
AU Grossman, Y
Ligeti, Z
Nir, Y
AF Grossman, Yuval
Ligeti, Zoltan
Nir, Yosef
TI Future Prospects of B Physics
SO PROGRESS OF THEORETICAL PHYSICS
LA English
DT Article; Proceedings Paper
CT Meeting on CP Violation and Flavor Mixing
CY DEC 08, 2008
CL Stockholm Univ, Stockholm, SWEDEN
HO Stockholm Univ
ID EFFECTIVE-FIELD-THEORY; CP-VIOLATION; UNITARITY TRIANGLE; STANDARD
MODEL; HEAVY MESONS; ANGLE-GAMMA; CKM MATRIX; DECAYS; ASYMMETRIES; QUARK
AB In recent years, the CKM picture of flavor and CP violation has been confirmed, mainly due to B decay data. Yet, it is likely that there are small corrections to this picture. We expect to find new physics not much above the weak scale. This new physics could modify flavor changing processes compared to their SM expectations. Much larger B decay data sets, which are expected from LHCb and super-13-factories, will be used to search for these deviations with much improved sensitivity. The combination of low and high energy data will be particularly useful to probe the structure of new physics.
C1 [Grossman, Yuval] Cornell Univ, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA.
[Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Nir, Yosef] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel.
RP Grossman, Y (reprint author), Cornell Univ, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA.
NR 102
TC 14
Z9 14
U1 0
U2 1
PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE
PI KYOTO
PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN
SN 0033-068X
J9 PROG THEOR PHYS
JI Prog. Theor. Phys.
PD JUL
PY 2009
VL 122
IS 1
SI SI
BP 125
EP 143
PG 19
WC Physics, Multidisciplinary
SC Physics
GA 486YX
UT WOS:000269238100011
ER
PT J
AU Mackenzie, PB
AF Mackenzie, Paul B.
TI The CKM Matrix from Lattice QCD
SO PROGRESS OF THEORETICAL PHYSICS
LA English
DT Article; Proceedings Paper
CT Meeting on CP Violation and Flavor Mixing
CY DEC 08, 2008
CL Stockholm Univ, Stockholm, SWEDEN
HO Stockholm Univ
ID KOBAYASHI-MASKAWA MATRIX; CP-VIOLATION; ELEMENTS; DECAYS
AB Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analysing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model.
C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Mackenzie, PB (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
NR 50
TC 1
Z9 1
U1 0
U2 1
PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE
PI KYOTO
PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN
SN 0033-068X
J9 PROG THEOR PHYS
JI Prog. Theor. Phys.
PD JUL
PY 2009
VL 122
IS 1
SI SI
BP 169
EP 184
PG 16
WC Physics, Multidisciplinary
SC Physics
GA 486YX
UT WOS:000269238100013
ER
PT J
AU Blois, TM
Bowie, JU
AF Blois, Tracy M.
Bowie, James U.
TI G-protein-coupled receptor structures were not built in a day
SO PROTEIN SCIENCE
LA English
DT Review
DE membrane protein; crystallization; expression; bicells; lipid cubic
phase
ID X-RAY-STRUCTURE; CRYSTALLIZING MEMBRANE-PROTEINS; 2.3 ANGSTROM
RESOLUTION; LIPIDIC CUBIC PHASES; CELL-FREE PRODUCTION;
ESCHERICHIA-COLI; LACTOSE PERMEASE; FUSION PROTEINS; EXPRESSION; CHANNEL
AB Among the most exciting recent developments in structural biology is the structure determination of G-protein-coupled receptors (GPCRs), which comprise the largest class of membrane proteins in mammalian cells and have enormous importance for disease and drug development. The GPCR structures are perhaps the most visible examples of a nascent revolution in membrane protein structure determination. Like other major milestones in science, however, such as the sequencing of the human genome, these achievements were built on a hidden foundation of technological developments. Here, we describe some of the methods that are fueling the membrane protein structure revolution and have enabled the determination of the current GPCR structures, along with new techniques that may lead to future structures.
C1 [Blois, Tracy M.; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA.
RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Boyer Hall,611 Charles E Young Dr E, Los Angeles, CA 90095 USA.
EM bowie@mbi.ucla.edu
FU NIGMS NIH HHS [R01 GM075922-03, R01 GM063919, R01 GM063919-06, R01
GM063919-07, R01 GM063919-08, R01 GM075922, R01 GM075922-04, R01
GM075922-05, R01 GM081783, R01 GM081783-02, R01 GM081783-03]
NR 69
TC 21
Z9 22
U1 1
U2 10
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0961-8368
J9 PROTEIN SCI
JI Protein Sci.
PD JUL
PY 2009
VL 18
IS 7
BP 1335
EP 1342
DI 10.1002/pro.165
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 469FV
UT WOS:000267882200001
PM 19536805
ER
PT J
AU Lee, J
Kim, SH
AF Lee, Jonas
Kim, Sung-Hou
TI Water polygons in high-resolution protein crystal structures
SO PROTEIN SCIENCE
LA English
DT Article
DE crystal structure; hydration structure; hydrogen bonding; interstitial
water; protein data bank; water cluster; bulk water
ID BOUND WATER; AMINO-ACID; HYDRATION; CRYSTALLOGRAPHY; MOLECULES;
CLUSTERS; VOLUME; NMR
AB We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 angstrom resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time-and space-averaged structures of "stable'' water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state.
C1 [Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA.
[Lee, Jonas; Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA.
EM shkim@cchem.berkeley.edu
NR 22
TC 14
Z9 15
U1 0
U2 6
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0961-8368
J9 PROTEIN SCI
JI Protein Sci.
PD JUL
PY 2009
VL 18
IS 7
BP 1370
EP 1376
DI 10.1002/pro.162
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 469FV
UT WOS:000267882200004
PM 19551896
ER
PT J
AU Wiltzius, JJW
Sievers, SA
Sawaya, MR
Eisenberg, D
AF Wiltzius, Jed J. W.
Sievers, Stuart A.
Sawaya, Michael R.
Eisenberg, David
TI Atomic structures of IAPP (amylin) fusions suggest a mechanism for
fibrillation and the role of insulin in the process
SO PROTEIN SCIENCE
LA English
DT Article
DE IAPP; amylin; amyloid; aggregation; type II diabetes
ID ISLET AMYLOID POLYPEPTIDE; GENE-RELATED PEPTIDE; TYPE-2
DIABETES-MELLITUS; ALPHA-HELICAL STATES; TRANSGENIC MICE; IN-VITRO;
FIBRILLOGENESIS; SPECTROSCOPY; CYTOTOXICITY; GRANULE
AB Islet Amyloid Polypeptide (IAPP or amylin) is a peptide hormone produced and stored in the beta-islet cells of the pancreas along with insulin. IAPP readily forms amyloid fibrils in vitro, and the deposition of fibrillar IAPP has been correlated with the pathology of type II diabetes. The mechanism of the conversion that IAPP undergoes from soluble to fibrillar forms has been unclear. By chaperoning IAPP through fusion to maltose binding protein, we find that IAPP can adopt a a-helical structure at residues 8-18 and 22-27 and that molecules of IAPP dimerize. Mutational analysis suggests that this dimerization is on the pathway to fibrillation. The structure suggests how IAPP may heterodimerize with insulin, which we confirmed by protein crosslinking. Taken together, these experiments suggest the helical dimerization of IAPP accelerates fibril formation and that insulin impedes fibrillation by blocking the IAPP dimerization interface.
C1 [Wiltzius, Jed J. W.; Sievers, Stuart A.; Sawaya, Michael R.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.
EM david@mbi.ucla.edu
RI Eisenberg, David/E-2447-2011;
OI Sawaya, Michael/0000-0003-0874-9043
FU NIH; NSF; HHMI
FX Grant sponsors: NIH; NSF; HHMI.
NR 53
TC 91
Z9 94
U1 3
U2 33
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0961-8368
EI 1469-896X
J9 PROTEIN SCI
JI Protein Sci.
PD JUL
PY 2009
VL 18
IS 7
BP 1521
EP 1530
DI 10.1002/pro.145
PG 10
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 469FV
UT WOS:000267882200016
PM 19475663
ER
PT J
AU Loeppky, JL
Williams, BJ
AF Loeppky, Jason L.
Williams, Brian J.
TI Design and Analysis for the Gaussian Process Model - Discussion
SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL
LA English
DT Editorial Material
C1 [Loeppky, Jason L.] Univ British Columbia Okanagan, Kelowna, BC, Canada.
[Williams, Brian J.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Loeppky, JL (reprint author), Univ British Columbia Okanagan, Kelowna, BC, Canada.
EM jason@stat.ubc.ca; brian@lanl.gov
OI Williams, Brian/0000-0002-3465-4972
NR 14
TC 0
Z9 0
U1 0
U2 1
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0748-8017
J9 QUAL RELIAB ENG INT
JI Qual. Reliab. Eng. Int.
PD JUL
PY 2009
VL 25
IS 5
BP 535
EP 539
DI 10.1002/qre.1040
PG 5
WC Engineering, Multidisciplinary; Engineering, Industrial; Operations
Research & Management Science
SC Engineering; Operations Research & Management Science
GA 477WO
UT WOS:000268549800005
ER
PT J
AU Ntelekos, AA
Smith, JA
Donner, L
Fast, JD
Gustafson, WI
Chapman, EG
Krajewski, WF
AF Ntelekos, Alexandros A.
Smith, James A.
Donner, Leo
Fast, Jerome D.
Gustafson, William I., Jr.
Chapman, Elaine G.
Krajewski, Witold F.
TI The effects of aerosols on intense convective precipitation in the
northeastern United States
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE mesoscale modelling; WRF-Chem; extreme events; flooding
ID MESOSCALE MODEL MM5; CLOUD MODEL; AIR-POLLUTION; PART I; CUMULUS CLOUD;
WRF MODEL; MICROPHYSICS; RAINFALL; IMPACTS; STORMS
AB A fully coupled meteorology-chemistry-aerosol mesoscale model (WRF-Chem) is used to assess the effects of aerosols on intense convective precipitation over the northeastern United States. Numerical experiments are performed for three intense convective storm days and for two scenarios representing 'typical' and 'low' aerosol conditions. The results of the simulations. suggest that increasing concentrations of aerosols can lead to either enhancement or suppression of precipitation. Quantification of the aerosol effect is sensitive to the metric used due to a shift of rainfall accumulation distribution when realistic aerosol concentrations are included in the simulations. Maximum rainfall accumulation amounts and areas with rainfall accumulations exceeding specified thresholds provide robust metrics of the aerosol effect on convective precipitation. Storms developing over areas with medium to low aerosol concentrations showed a suppression effect on rainfall independent of the meteorological environment. Storms developing in areas of relatively high particulate concentrations showed enhancement of rainfall when there were simultaneous high values of convective available potential energy, relative humidity and wind shear. In these cases, elevated aerosol concentrations resulted in stronger updraughts and downdraughts and more coherent organization of convection. For the extreme case, maximum rainfall accumulation differences exceeded 40 mm. The modelling results suggest that areas of the northeastern US urban corridor that are close to or downwind of intense sources of aerosols, could be more favourable for rainfall enhancement due to aerosols for the aerosol concentrations typical of this area. Copyright (C) 2009 Royal Meteorological Society
C1 [Ntelekos, Alexandros A.] Princeton Univ, Dept Civil & Environm Engn, CEE Equad, Princeton, NJ 08544 USA.
[Donner, Leo] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA.
[Fast, Jerome D.; Gustafson, William I., Jr.; Chapman, Elaine G.] Pacific NW Natl Lab, Div Atmospher Sci & Global Change, Richland, WA 99352 USA.
[Krajewski, Witold F.] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA USA.
RP Ntelekos, AA (reprint author), Princeton Univ, Dept Civil & Environm Engn, CEE Equad, Princeton, NJ 08544 USA.
EM ntelekos@alumni.princeton.edu
RI Gustafson, William/A-7732-2008
OI Gustafson, William/0000-0001-9927-1393
NR 52
TC 46
Z9 49
U1 2
U2 19
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0035-9009
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD JUL
PY 2009
VL 135
IS 643
BP 1367
EP 1391
DI 10.1002/qj.476
PN B
PG 25
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 506MI
UT WOS:000270778500001
ER
PT J
AU Zeng, XP
Tao, WK
Zhang, MH
Hou, AY
Xie, SC
Lang, S
Li, XW
Starr, DO
Li, XF
AF Zeng, Xiping
Tao, Wei-Kuo
Zhang, Minghua
Hou, Arthur Y.
Xie, Shaocheng
Lang, Stephen
Li, Xiaowen
Starr, David O'C
Li, Xiaofan
TI A contribution by ice nuclei to global warming
SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
LA English
DT Article
DE TRMM; cloud-resolving model
ID RESOLVING MODEL SIMULATIONS; CLOUD SYSTEMS; NUCLEATION PROCESSES;
PROFILING ALGORITHM; CONVECTIVE CLOUD; WATER-VAPOR; MICROPHYSICS;
PRECIPITATION; RADIATION; DYNAMICS
AB Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, ten years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes.
To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a cloud-resolving model to generate long-term cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the top of the atmosphere from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction.
Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic CO(2). It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics.
With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g. the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and can then be compared with observations. A general match in geographic and seasonal variations between the inferred and observed warming suggests that IN may have contributed positively to global warming over the past decades, especially in middle and high latitudes. Copyright (C) 2009 Royal Meteorological Society
C1 [Zeng, Xiping; Tao, Wei-Kuo; Hou, Arthur Y.; Lang, Stephen; Li, Xiaowen; Starr, David O'C] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA.
[Zeng, Xiping; Li, Xiaowen] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA.
[Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, New York, NY USA.
[Xie, Shaocheng] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA.
[Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA.
[Li, Xiaofan] NOAA, Natl Environm Satellite Data & Informat Serv, Camp Springs, MD USA.
RP Zeng, XP (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, C423,Bldg 33,Mail Code 613-1, Greenbelt, MD 20771 USA.
EM zeng@agnes.gsfc.nasa.gov
RI Li, Xiaofan/F-5605-2010; Hou, Arthur/D-8578-2012; Xie,
Shaocheng/D-2207-2013; Li, Xiaofan/G-2094-2014
OI Xie, Shaocheng/0000-0001-8931-5145;
FU NASA Headquarters Atmospheric Dynamics and Thermodynamics Program; NASA
Tropical Rainfall Measuring Mission (TRMM); Office of Science (BER); US
Department of Energy/Atmospheric Radiation Measurement (DOE/ARM)
Interagency Agreement [DE-AI02-04ER63755]; NASA; DOE Atmospheric
Radiation Measurement Program; University of California Lawrence
Livermore National Laboratory [W-7405-Eng-48]
FX The authors acknowledge the NASA Ames Research Center and the NASA
Goddard Space Flight Center for the enormous computer time used in this
research. They greatly thank Drs. Richard Johnson and Paul Ciesielski
for providing the large-scale forcing data derived from NAME, TOGA-COARE
and SCSMEX/SESA. Special thanks are extended to Drs. Joanne Simpson,
Warren Wiscombe and three anonymous reviewers for their kind comments
and suggestions.
NR 72
TC 21
Z9 26
U1 0
U2 8
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0035-9009
J9 Q J ROY METEOR SOC
JI Q. J. R. Meteorol. Soc.
PD JUL
PY 2009
VL 135
IS 643
BP 1614
EP 1629
DI 10.1002/qj.449
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 506MI
UT WOS:000270778500017
ER
PT J
AU Bandstra, ER
Thompson, RW
Nelson, GA
Willey, JS
Judex, S
Cairns, MA
Benton, ER
Vazquez, ME
Carson, JA
Bateman, TA
AF Bandstra, Eric R.
Thompson, Raymond W.
Nelson, Gregory A.
Willey, Jeffrey S.
Judex, Stefan
Cairns, Mark A.
Benton, Eric R.
Vazquez, Marcelo E.
Carson, James A.
Bateman, Ted A.
TI Musculoskeletal Changes in Mice from 20-50 cGy of Simulated Galactic
Cosmic Rays
SO RADIATION RESEARCH
LA English
DT Article
ID DIGITORUM LONGUS MUSCLE; HIGH-DOSE IRRADIATION; SKELETAL-MUSCLE;
IN-VIVO; CONTRACTILE PROPERTIES; GAMMA-IRRADIATION; BODY IRRADIATION;
TRABECULAR BONE; SOLEUS MUSCLE; RADIATION
AB On a mission to Mars, astronauts will be exposed to a complex mix of radiation from galactic cosmic rays. We have demonstrated a loss of bone mass from exposure to types of radiation relevant to space flight at doses of 1 and 2 Gy. The effects of space radiation on skeletal muscle, however, have not been investigated. To evaluate the effect of simulated galactic cosmic radiation on muscle fiber area and bone volume, we examined mice from a study in which brains were exposed to collimated iron-ion radiation. The collimator transmitted a complex mix of charged secondary particles to bone and muscle tissue that represented a low-fidelity simulation of the space radiation environment. Measured radiation doses of uncollimated secondary particles were 0.47 Gy at the proximal humerus, 0.24-0.31 Gy at the midbelly of the triceps brachii, and 0.18 Gy at the proximal tibia. Compared to nonirradiated controls, the proximal humerus of irradiated mice had a lower trabecular bone volume fraction, lower trabecular thickness, greater cortical porosity, and lower polar moment of inertia. The tibia showed no differences in any bone parameter. The triceps brachii of irradiated mice had fewer small-diameter fibers and more fibers containing central nuclei. These results demonstrate a negative effect on the skeletal muscle and bone systems of simulated galactic cosmic rays at a dose and LET range relevant to a Mars exploration mission. The presence of evidence of muscle remodeling highlights the need for further study. (C) 2009 by Radiation Research Society
C1 [Bateman, Ted A.] Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29634 USA.
[Thompson, Raymond W.; Cairns, Mark A.; Carson, James A.] Univ S Carolina, Dept Exercise Sci, Columbia, SC 29208 USA.
[Nelson, Gregory A.] Loma Linda Univ & Med Ctr, Dept Radiat Med, Loma Linda, CA USA.
[Judex, Stefan] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA.
[Benton, Eric R.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA.
[Vazquez, Marcelo E.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
RP Bateman, TA (reprint author), Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29634 USA.
EM bateman@clemson.edu
OI Carson, James/0000-0003-3733-8796
FU NIAMS NIH HHS [R21 AR054889]
NR 45
TC 15
Z9 15
U1 1
U2 3
PU RADIATION RESEARCH SOC
PI LAWRENCE
PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA
SN 0033-7587
J9 RADIAT RES
JI Radiat. Res.
PD JUL
PY 2009
VL 172
IS 1
BP 21
EP 29
DI 10.1667/RR1509.1
PG 9
WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology,
Nuclear Medicine & Medical Imaging
GA 465WF
UT WOS:000267619200003
PM 19580504
ER
PT J
AU Weber, TJ
Opresko, LK
Waisman, DM
Newton, GJ
Quesenberry, RD
Bollinger, N
Moore, RJ
Smith, RD
AF Weber, Thomas J.
Opresko, Lee K.
Waisman, David M.
Newton, Greg J.
Quesenberry, Ryan D.
Bollinger, Nikki
Moore, Ronald J.
Smith, Richard D.
TI Regulation of the Low-Dose Radiation Paracrine-Specific
Anchorage-Independent Growth Response by Annexin A2
SO RADIATION RESEARCH
LA English
DT Article
ID GAMMA-IRRADIATION; CELL-SURFACE; PLASMINOGEN-ACTIVATOR;
MASS-SPECTROMETRY; INDUCED APOPTOSIS; II EXPRESSION; FACTOR-BETA; JB6
CELLS; IN-VITRO; PROTEIN
AB Here we identify the release of annexin A2 into the culture medium in response to low-dose X-radiation exposure and establish functional linkages to an established paracrine factor-mediated anchorage-independent growth response. Using a standard bicameral coculture model, we demonstrate that annexin A2 is secreted into the medium by irradiated cells (seeded in upper chamber) and is capable of binding to nonirradiated neighboring cells (seeded in lower chamber). The paracrine factor-mediated anchorage-independent growth response to low-dose X irradiation is reduced when irradiated annexin A2-silenced (shRNA) JB6 cells are co-cultured with nonirradiated cells relative to co-culture with irradiated annexin A2-competent vector control cells. Consistent with this observation, purified bovine annexin A2 tetramer induces anchorage-independent growth. These observations suggest that annexin A2 regulates, in part, the radiation paracrine factor-specific anchorage-independent growth response in JB6 cells. (C) 2009 by Radiation Research Society
C1 [Weber, Thomas J.; Opresko, Lee K.; Newton, Greg J.; Quesenberry, Ryan D.; Bollinger, Nikki; Moore, Ronald J.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA.
[Waisman, David M.] Dalhousie Univ, Dept Biochem & Mol Biol, Halifax, NS, Canada.
RP Weber, TJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, 790 6th St,P7-56, Richland, WA 99354 USA.
EM Thomas.Weber@pnl.gov
RI Smith, Richard/J-3664-2012;
OI Smith, Richard/0000-0002-2381-2349; Waisman, David/0000-0002-5097-9662
NR 55
TC 7
Z9 7
U1 0
U2 1
PU RADIATION RESEARCH SOC
PI LAWRENCE
PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA
SN 0033-7587
J9 RADIAT RES
JI Radiat. Res.
PD JUL
PY 2009
VL 172
IS 1
BP 96
EP 105
DI 10.1667/RR1220.1
PG 10
WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology,
Nuclear Medicine & Medical Imaging
GA 465WF
UT WOS:000267619200010
PM 19580511
ER
PT J
AU Blakely, E
Evans, T
Oleinick, N
Sedwick, D
AF Blakely, Eleanor
Evans, Thomas
Oleinick, Nancy
Sedwick, David
TI Helen Harrington Evans (1924-2007) IN MEMORIAM
SO RADIATION RESEARCH
LA English
DT Biographical-Item
C1 [Blakely, Eleanor] Lawrence Berkeley Natl Lab, Berkeley, CA USA.
[Oleinick, Nancy; Sedwick, David] Case Western Reserve Univ, Cleveland, OH 44106 USA.
RP Blakely, E (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU RADIATION RESEARCH SOC
PI LAWRENCE
PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA
SN 0033-7587
J9 RADIAT RES
JI Radiat. Res.
PD JUL
PY 2009
VL 172
IS 1
BP 139
EP 140
DI 10.1667/RRXX13.1
PG 2
WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging
SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology,
Nuclear Medicine & Medical Imaging
GA 465WF
UT WOS:000267619200015
ER
PT J
AU Davis, A
Gift, JS
Woodall, GM
Narotsky, MG
Foureman, GL
AF Davis, Allen
Gift, Jeff S.
Woodall, George M.
Narotsky, Michael G.
Foureman, Gary L.
TI The role of developmental toxicity studies in acute exposure
assessments: Analysis of single-day vs. multiple-day exposure regimens
SO REGULATORY TOXICOLOGY AND PHARMACOLOGY
LA English
DT Article
DE Developmental toxicity; Butylbenzyl phthalate; Tributyltin; Benchmark
dose; Risk assessment; Acute exposure; Single-day; Multiple-day
ID BUTYL BENZYL PHTHALATE; TRIBUTYLTIN CHLORIDE; RATS; ENVIRONMENT;
TERATOLOGY; SEDIMENT; ESTERS
AB In accordance with most toxicity guidelines, developmental studies typically utilize repeated exposures, usually throughout gestation or during organogenesis in particular. However, it is known that developmental toxicity may occur in response to single exposures, especially during specific windows of susceptibility. An overview of the available literature gave sufficient evidence that for many agents, the same endpoints observed in repeated dose, multiple-day studies were also observed in single-day exposures, thus indicating the relevance of developmental toxicity to health assessments of acute exposures. Further, results of benchmark dose modeling of developmental endpoints indicated that for embryo lethality, single-day exposures required a two- to fourfold higher dose than the multiple-day exposures to produce the same level of response. For fused sternebrae, exposures on specific days produced equivalent levels of response at doses that were more similar to those utilized in the repeated exposures. Appreciable differences in biological half-life (and corresponding dose metrics) as well as specific windows of susceptibility may partially explain the observed multiple- vs. single-day exposure dose-response relationships. Our results highlight the need of a more thorough evaluation of outcomes from repeated dose developmental toxicity studies in regards to their importance to chronic and acute risk assessments. Published by Elsevier Inc.
C1 [Davis, Allen; Gift, Jeff S.; Woodall, George M.; Foureman, Gary L.] US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA.
[Davis, Allen] Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA.
[Narotsky, Michael G.] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA.
RP Davis, A (reprint author), US EPA, Natl Ctr Environm Assessment, 109 TW Alexander Dr,Mail Code B243-01, Res Triangle Pk, NC 27711 USA.
EM davis.allen@epa.gov
RI Woodall, George/M-5658-2014
FU NCEA-CRISE Interagency Agreement; U.S. Environmental Protection Agency
FX Partial funding was provided by the NCEA-CRISE Interagency Agreement.
The information in this document has been subjected to review by the
National Center for Environmental Assessment, U.S. Environmental
Protection Agency, and approved for publication. Approval does not
signify that the contents reflect the views of the Agency, nor does
mention of trade names or commercial products constitute endorsement or
recommendation for use. The research presented in this document was
funded in part by the U.S. Environmental Protection Agency.
NR 27
TC 3
Z9 3
U1 0
U2 6
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0273-2300
J9 REGUL TOXICOL PHARM
JI Regul. Toxicol. Pharmacol.
PD JUL
PY 2009
VL 54
IS 2
BP 134
EP 142
DI 10.1016/j.yrtph.2009.03.006
PG 9
WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology
SC Legal Medicine; Pharmacology & Pharmacy; Toxicology
GA 457NW
UT WOS:000266939500005
PM 19306903
ER
PT J
AU Gibson, JM
AF Gibson, J. M.
TI The birth of the blues: how physics underlies music
SO REPORTS ON PROGRESS IN PHYSICS
LA English
DT Review
ID SCALES
AB Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.
C1 Argonne Natl Lab, Argonne, IL 60439 USA.
RP Gibson, JM (reprint author), Argonne Natl Lab, 9700 Cass Ave, Argonne, IL 60439 USA.
EM jmgibson@aps.anl.gov
RI Gibson, Murray/E-5855-2013
OI Gibson, Murray/0000-0002-0807-6224
FU Department of Energy [DE-AC02-06CH11357]
FX This work was supported by the Department of Energy under Contract
DE-AC02-06CH11357. Thanks to Faye Gibson for the graphics.
NR 22
TC 0
Z9 0
U1 3
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0034-4885
J9 REP PROG PHYS
JI Rep. Prog. Phys.
PD JUL
PY 2009
VL 72
IS 7
AR 076001
DI 10.1088/0034-4885/72/7/076001
PG 17
WC Physics, Multidisciplinary
SC Physics
GA 464NG
UT WOS:000267511200001
ER
PT J
AU Cook, AR
Shen, YZ
AF Cook, Andrew R.
Shen, Yuzhen
TI Optical fiber-based single-shot picosecond transient absorption
spectroscopy
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
DE CCD image sensors; high-speed optical techniques; measurement by laser
beam; optical fibres; optical parametric amplifiers; radiolysis
ID TIME-RESOLVED SPECTROSCOPY; STREAK CAMERA; REAL-TIME; ELECTRON
AB A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving similar to 15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device (CCD) detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse radiolysis, the prototype bundle provides the ability to collect data with a time resolution limited only by the electron pulse width of 7-10 ps, over a total single-shot time window of similar to 1.5 ns. Tunable probe light is obtained from a titanium-sapphire laser and an optical parametric amplifier. Corrections are made to remove the fiber-to-fiber variations in signal magnitude due to the spatial overlap of the electron beam and probe image. High quality data can be collected over most of the sensitivity range of the CCD camera detectors. The single-shot instrument is valuable for measurement of samples that are only available in very limited quantities, are too viscous to flow, or are rigid. It is therefore excellent in applications, such as picosecond pulse radiolysis, where the thousands of pulses per kinetic trace typical in classical pump-probe experiments can damage the sample before useful results could be obtained.
C1 [Cook, Andrew R.; Shen, Yuzhen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Cook, AR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM acook@bnl.gov
OI Cook, Andrew/0000-0001-6633-3447
FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences [DE-AC02-98-CH10886]
FX The authors would like to thank, in particular, Dr. John Miller for
helpful discussions during the development of this experiment, as well
as Dr. Jim Wishart, Dr. Sean McIlroy, Dr. Thomas Y. Tsang, and Dr. Peter
Z. Takacs. This work was supported by the U. S. Department of Energy,
Office of Basic Energy Sciences, Division of Chemical Sciences, under
Contract No. DE-AC02-98-CH10886.
NR 24
TC 10
Z9 10
U1 3
U2 20
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0034-6748
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD JUL
PY 2009
VL 80
IS 7
AR 073106
DI 10.1063/1.3156048
PG 7
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 478VD
UT WOS:000268615700007
PM 19655942
ER
PT J
AU Hong, XG
Newville, M
Prakapenka, VB
Rivers, ML
Sutton, SR
AF Hong, Xinguo
Newville, Matthew
Prakapenka, Vitali B.
Rivers, Mark L.
Sutton, Stephen R.
TI High quality x-ray absorption spectroscopy measurements with long energy
range at high pressure using diamond anvil cell
SO REVIEW OF SCIENTIFIC INSTRUMENTS
LA English
DT Article
DE germanium compounds; glass; high-pressure effects; polymorphism; X-ray
absorption spectra
ID NEAR-EDGE STRUCTURE; FINE-STRUCTURE; SYNCHROTRON-RADIATION;
HIGH-TEMPERATURE; DISPERSIVE MODE; COORDINATION CHANGES; EXAFS
MEASUREMENTS; XANES SPECTRA; LIQUID; DIFFRACTION
AB We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/- 3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.
C1 [Hong, Xinguo] Cornell Univ, Cornell High Energy Synchrotron Source, MacCHESS, Ithaca, NY 14853 USA.
[Newville, Matthew; Prakapenka, Vitali B.; Rivers, Mark L.; Sutton, Stephen R.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA.
[Rivers, Mark L.; Sutton, Stephen R.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA.
RP Hong, XG (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
EM xhong@bnl.gov
FU NSF-EAR [0229987]; NSF [EAR-0622171, DMR-0225180]; DOE
[DE-FG02-94ER14466]; National Institutes of Health through its National
Center for Research Resources [RR-01646]
FX We would like to thank M. Szebenyi, X. M. Yu, and G. Shen for their
support to this research. This work was supported by the NSF-EAR under
Grant No. 0229987. The GSECARS sector was supported by the NSF (Earth
Sciences Instrumentation and Facilities Program, EAR-0622171) and DOE
(Geoscience Program, DE-FG02-94ER14466). Macromolecular Diffraction at
CHESS (MacCHESS) facility was supported by Award No. RR-01646 from the
National Institutes of Health through its National Center for Research
Resources. CHESS is supported by NSF award DMR-0225180.
NR 81
TC 20
Z9 20
U1 4
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0034-6748
EI 1089-7623
J9 REV SCI INSTRUM
JI Rev. Sci. Instrum.
PD JUL
PY 2009
VL 80
IS 7
AR 073908
DI 10.1063/1.3186736
PG 10
WC Instruments & Instrumentation; Physics, Applied
SC Instruments & Instrumentation; Physics
GA 478VD
UT WOS:000268615700031
PM 19655966
ER
PT J
AU Esarey, E
Schroeder, CB
Leemans, WP
AF Esarey, E.
Schroeder, C. B.
Leemans, W. P.
TI Physics of laser-driven plasma-based electron accelerators
SO REVIEWS OF MODERN PHYSICS
LA English
DT Review
DE electron accelerators; electron beams; optical self-focusing; particle
beam bunching; plasma accelerators; plasma instability; plasma light
propagation; plasma nonlinear waves; stimulated Raman scattering;
wakefield accelerators
ID HIGH-INTENSITY LASER; BEAT-WAVE ACCELERATOR; WAKE-FIELD ACCELERATION;
STIMULATED COMPTON-SCATTERING; GAS-FILLED CAPILLARY; FEMTOSECOND X-RAYS;
SHORT-PULSE LASERS; UNDERDENSE PLASMAS; WAKEFIELD ACCELERATOR;
RAMAN-SCATTERING
AB Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.
C1 [Esarey, E.; Schroeder, C. B.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Esarey, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
OI Schroeder, Carl/0000-0002-9610-0166
FU U.S. Department Energy [DE-AC0205CH11231]
FX The authors acknowledge many contributions from past and present members
of the LOASIS Program at Lawrence Berkeley National Laboratory, in
particular, C. Geddes, E. Cormier-Michel, B. Shadwick, and Cs. Toth, and
many insightful conversations with the researchers in the plasma-based
accelerator community. This work was supported by the Director, Office
of Science, Office of High Energy Physics, of the U.S. Department Energy
under Contract No. DE-AC0205CH11231.
NR 306
TC 766
Z9 778
U1 36
U2 228
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0034-6861
EI 1539-0756
J9 REV MOD PHYS
JI Rev. Mod. Phys.
PD JUL-SEP
PY 2009
VL 81
IS 3
BP 1229
EP 1285
DI 10.1103/RevModPhys.81.1229
PG 57
WC Physics, Multidisciplinary
SC Physics
GA 500DW
UT WOS:000270279000011
ER
PT J
AU Dhawan, A
Gerhold, M
Madison, A
Fowlkes, J
Russell, PE
Vo-Dinh, T
Leonard, DN
AF Dhawan, Anuj
Gerhold, Michael
Madison, Andrew
Fowlkes, Jason
Russell, Phillip E.
Vo-Dinh, Tuan
Leonard, Donovan N.
TI Fabrication of Nanodot Plasmonic Waveguide Structures Using FIB Milling
and Electron Beam-Induced Deposition
SO SCANNING
LA English
DT Article
DE electron beam-induced deposition; surface plasmons; nanostructures;
localized surface plasmon resonance; plasmonic waveguide
ID PLATINUM; NANOSTRUCTURES; PT(PF3)(4); COPPER
AB Fabrication of metallic Au nanopillars and linear arrays of Au-containing nanodots for plasmonic waveguides is reported in this article by two different processes-focused ion beam (FIB) milling of deposited thin films and electron beam-induced deposition (EBID) of metallic nanostructures from an organometallic precursor gas. Finite difference time domain (FDTD) modeling of electromagnetic fields around metallic nanostructures was used to predict the optimal size and spacing between nanostructures useful for plasmonic waveguides. Subsequently, a multi-step FIB fabrication method was developed for production of metallic nanorods and nanopillars of the size and geometry suggested by the results of the FDTD simulations. Nanostructure fabrication was carried out on planar substrates including Au-coated glass, quartz, and mica slides as well as cleaved 4-mode optical fibers. In the second fabrication process, EBID was utilized for the development of similar nanostructures on planar Indium Tin Oxide and Titanium-coated glass substrates. Each method allows formation of nanostructures such that the plasmon resonances associated with the nanostructures could be engineered and precisely controlled by controlling the nanostructure size and shape. Linear arrays of low aspect ratio nanodot structures ranging in diameter between 50-70 nm were fabricated using EBID. Preliminary dark field optical microscopy demonstrates differences in the plasmonic response of the fabricated structures. SCANNING 31: 139-146, 2009. (c) 2009 Wiley Periodicals, Inc.
C1 [Dhawan, Anuj; Gerhold, Michael; Vo-Dinh, Tuan] Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA.
[Dhawan, Anuj; Gerhold, Michael] USA, Res Off, Durham, NC USA.
[Madison, Andrew; Russell, Phillip E.; Leonard, Donovan N.] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA.
[Fowlkes, Jason] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA.
RP Dhawan, A (reprint author), Duke Univ, Fitzpatrick Inst Photon, 3527 FCIEMAS, Durham, NC 27708 USA.
EM anuj.dhawan@duke.edu
FU U.S. Army Research Office; National Research Council (NRC); Scientific
User Facilities Division; Office of Basic Energy Sciences; U.S.
Department of Energy
FX Contract grant sponsors: U.S. Army Research Office and the National
Research Council (NRC); Scientific User Facilities Division; Office of
Basic Energy Sciences; U.S. Department of Energy.
NR 26
TC 17
Z9 17
U1 1
U2 32
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0161-0457
J9 SCANNING
JI Scanning
PD JUL-AUG
PY 2009
VL 31
IS 4
BP 139
EP 146
DI 10.1002/sca.20152
PG 8
WC Instruments & Instrumentation; Microscopy
SC Instruments & Instrumentation; Microscopy
GA 513RK
UT WOS:000271340700001
PM 19670460
ER
PT J
AU Fu, EG
Carter, J
Martin, M
Xie, G
Zhang, X
Wang, YQ
Littleton, R
Shao, L
AF Fu, E. G.
Carter, Jesse
Martin, Michael
Xie, Guoqiang
Zhang, X.
Wang, Y. Q.
Littleton, Rick
Shao, Lin
TI Electron irradiation-induced structural transformation in metallic
glasses
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Metallic glasses; Recrystallization
ID AMORPHOUS-ALLOYS; MECHANICAL-PROPERTIES; CRYSTALLIZATION;
NANOCRYSTALLIZATION; SIMULATION; DIFFUSION; SI
AB Microstructural evolution of Zr(55)Cu(30)Al(10)Ni(5) and Cu(50)Zr(45)Ti(5) metallic glasses under 200 keV electron irradiation has been studied in situ by transmission electron microscopy. Zr(55)Cu(30)Al(10)Ni(5), which has a wider supercooled liquid region, is found to be stable under electron irradiation and no crystallization is observed up to an irradiation fluence of 8.7 x 10(26) electrons m(-2). In contrast, nanometer size crystalline Cu(10)Zr(7) phases are formed in Cu(50)Zr(45)Ti(5) under electron irradiation. The partial crystallization is attributed to irradiation enhanced atomic mobility. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Carter, Jesse; Martin, Michael; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.
[Fu, E. G.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.
[Xie, Guoqiang] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan.
[Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Littleton, Rick] Texas A&M Univ, Microscopy & Imaging Ctr, College Stn, TX 77843 USA.
RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, 129 Zachry,TAMU 3133, College Stn, TX 77843 USA.
EM lshao@mailaps.org
RI Xie, Guoqiang/A-8619-2011; Zhang, Xinghang/H-6764-2013
OI Zhang, Xinghang/0000-0002-8380-8667
FU DOE [DE-FC07-05ID14657]; U.S. Department of Energy [DE-AC52-06NA25396]
FX This work was financially supported by the University Embryonic
Technologies Program from Siemens Power Generation Emerging
Technologies. L.S. acknowledges the support from the NRC Early Career
Development Grant and the access to the user facilities at DOE-Center
for Integrated Nanotechnologies (CINT). X.Z. acknowledges the support by
DOE under grant number DE-FC07-05ID14657. Los Alamos National
Laboratory, an affirmative action equal opportunity employer, is
operated by Los Alamos National Security, LLC, for the National Nuclear
Security Administration of the U.S. Department of Energy under contract
DE-AC52-06NA25396.
NR 29
TC 10
Z9 10
U1 2
U2 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD JUL
PY 2009
VL 61
IS 1
BP 40
EP 43
DI 10.1016/j.scriptamat.2009.03.001
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 447XK
UT WOS:000266225100011
ER
PT J
AU Vo, NQ
Averback, RS
Bellon, P
Caro, A
AF Vo, Nhon Q.
Averback, Robert S.
Bellon, Pascal
Caro, Alfredo
TI Yield strength in nanocrystalline Cu during high strain rate deformation
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Yield strength; Nanocrystalline; Molecular dynamics; Hall-Petch
ID MOLECULAR-DYNAMICS; NANOPHASE METALS; MECHANISMS; BEHAVIOR; COPPER
AB Molecular dynamics simulations are used to study the yield strength of thermally annealed nanocrystalline Cu samples. For strain rates of 1 x 10(10) and 1 x 10(9) s(-1), the observed yield strength scales with the fractional number of grain boundary (GB) atoms. This observation suggests a new scaling behavior for the onset of plasticity in nanocrystalline materials, controlled not by the grain size alone, but by a combination of both grain size and degree of GB relaxation, as measured by the GB volume. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Vo, Nhon Q.; Averback, Robert S.; Bellon, Pascal] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Caro, Alfredo] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA.
RP Vo, NQ (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA.
EM nhonvo2@illinois.edu; averback@illinois.edu
RI Vo, Nhon/E-4599-2010
NR 17
TC 22
Z9 23
U1 0
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD JUL
PY 2009
VL 61
IS 1
BP 76
EP 79
DI 10.1016/j.scriptamat.2009.03.003
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 447XK
UT WOS:000266225100020
ER
PT J
AU Clarke, AJ
Speer, JG
Matlock, DK
Rizzo, FC
Edmonds, DV
Santofimia, MJ
AF Clarke, A. J.
Speer, J. G.
Matlock, D. K.
Rizzo, F. C.
Edmonds, D. V.
Santofimia, M. J.
TI Influence of carbon partitioning kinetics on final austenite fraction
during quenching and partitioning
SO SCRIPTA MATERIALIA
LA English
DT Article
DE Quenching; Partitioning; Kinetics; Austenite; Martensite
ID MARTENSITE-TRANSFORMATION; STEELS; BAINITE; FERRITE; PLATES
AB The quenching and partitioning (Q&P) process is a two-stage heat-treatment procedure proposed for producing steel microstructures that contain carbon-enriched retained austenite. In Q&P processing, austenite stabilization is accomplished by carbon partitioning from supersaturated martensite. A quench temperature selection methodology was developed to predict an optimum process quench temperature; extension of this methodology to include carbon partitioning kinetics is developed here. The final austenite fraction is less sensitive to quench temperature than previously predicted, in agreement with experimental results. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Clarke, A. J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Speer, J. G.; Matlock, D. K.] Colorado Sch Mines, Adv Steel Proc & Prod Res Ctr, Golden, CO 80401 USA.
[Rizzo, F. C.] Pontificia Univ Catolica Rio de Janeiro, Dept Mat Sci & Met, BR-22543900 Rio De Janeiro, Brazil.
[Edmonds, D. V.] Univ Leeds, Sch Proc Environm & Mat Engn, Leeds LS2 9JT, W Yorkshire, England.
[Santofimia, M. J.] Mat Innovat Inst M2i, NL-2628 CD Delft, Netherlands.
[Santofimia, M. J.] Delft Univ Technol, Dept Mat Sci & Engn, NL-2628 CD Delft, Netherlands.
RP Clarke, AJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G770, Los Alamos, NM 87545 USA.
EM aclarke@lanl.gov
RI Santofimia, Maria Jesus/C-3979-2013
OI Santofimia, Maria Jesus/0000-0002-1628-7611
FU Advanced Steel Processing and Products Research Center; National Science
Foundation Industry/University Cooperative Research Center; NSF
[0303510]; CNPq (Brazil); EPSRC (UK); U.S. Department of Energy
[DE-AC52-06NA25396]
FX The authors gratefully acknowledge the support of the Advanced Steel
Processing and Products Research Center, a National Science Foundation
Industry/University Cooperative Research Center, at the Colorado School
of Mines and the Inter-American Materials Collaboration Program. Funding
is acknowledged from NSF award No. 0303510 (US), CNPq (Brazil) and EPSRC
(UK). AJC acknowledges support from the U.S. Department of Energy
(contract DE-AC52-06NA25396) during the preparation of this manuscript.
The authors also thank POSCO for providing the experimental material.
Technical assistance and helpful discussions provided by K.D. Clarke,
E.J. Pavlina and E. De Moor are also greatly acknowledged; the
helpfulness of A.R. Martins is also greatly appreciated. M.K. Miller and
K.F. Russell at Oak Ridge National Laboratory and K. He at the
University of Leeds are also thanked for their help with related
studies.
NR 17
TC 49
Z9 61
U1 4
U2 48
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6462
J9 SCRIPTA MATER
JI Scr. Mater.
PD JUL
PY 2009
VL 61
IS 2
BP 149
EP 152
DI 10.1016/j.scriptamat.2009.03.021
PG 4
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 456JF
UT WOS:000266840800011
ER
PT J
AU Mintairov, AM
Sun, K
Merz, JL
Yuen, H
Bank, S
Wistey, M
Harris, JS
Peake, G
Egorov, A
Ustinov, V
Kudrawiec, R
Misiewicz, J
AF Mintairov, A. M.
Sun, K.
Merz, J. L.
Yuen, H.
Bank, S.
Wistey, M.
Harris, J. S.
Peake, G.
Egorov, A.
Ustinov, V.
Kudrawiec, R.
Misiewicz, J.
TI Atomic arrangement and emission properties of GaAs(In, Sb)N quantum
wells
SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; OPTICAL-PROPERTIES; DILUTE NITRIDES;
LASER-DIODES; ALLOYS; PHOTOLUMINESCENCE; NITROGEN; LOCALIZATION; SHIFT;
SEMICONDUCTORS
AB Fine structure related to different types of atomic arrangements (short-range order, phase separation and quantum dots) was observed in high-spatial-resolution low-temperature photoluminescence (PL) spectra of GaAsInN, GaAsSbN and GaAsInSbN quantum wells (QWs) containing similar to 1.5% N and emitting at 1.2-1.3 mu m. Using photoreflectance and temperature-dependent PL spectroscopy, we measured the activation energies and band-tail width of localized states, associated with different atomic arrangements, to be 5-66 meV. We found that the emission intensity in these GaAs(In, Sb) N QWs weakly depends on carrier localization and that it is limited at cryogenic temperatures by exciton scattering by N interstitials, while at room temperature it is limited by an intrinsic non-radiative recombination channel having activation energy of similar to 60 meV and capture time between 0.01 and 1 ps.
C1 [Mintairov, A. M.; Sun, K.; Merz, J. L.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Yuen, H.; Bank, S.; Wistey, M.; Harris, J. S.] Stanford Univ, Stanford, CA 94305 USA.
[Peake, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Egorov, A.; Ustinov, V.] AF Ioffe Phys Tech Inst, St Petersburg, Russia.
[Kudrawiec, R.; Misiewicz, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland.
RP Mintairov, AM (reprint author), Univ Notre Dame, Notre Dame, IN 46556 USA.
RI Ustinov, Viktor/J-3545-2013; Egorov, Anton/B-1267-2014
OI Egorov, Anton/0000-0002-0789-4241
FU NSF [DMR06-06406]
FX We wish to thank Dmitri Yakovlev for providing timeresolved
measurements, Thomas Kosel for transmission electron microscopy
measurements and Alexander Efros for helpful discussions. This work has
been partially supported by a subaward under NSF/DMR06-06406.
NR 45
TC 15
Z9 15
U1 1
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0268-1242
J9 SEMICOND SCI TECH
JI Semicond. Sci. Technol.
PD JUL
PY 2009
VL 24
IS 7
AR 075013
DI 10.1088/0268-1242/24/7/075013
PG 8
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Condensed Matter
SC Engineering; Materials Science; Physics
GA 463BG
UT WOS:000267402800014
ER
PT J
AU Wang, R
Tsow, F
Zhang, XZ
Peng, JH
Forzani, ES
Chen, YS
Crittenden, JC
Destaillats, H
Tao, NJ
AF Wang, Rui
Tsow, Francis
Zhang, Xuezhi
Peng, Jhih-Hong
Forzani, Erica S.
Chen, Yongsheng
Crittenden, John C.
Destaillats, Hugo
Tao, Nongjian
TI Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal
Tuning Fork Sensor
SO SENSORS
LA English
DT Article
DE ozone; environmental; epidemiological; population; real-time; selective;
sensitive; sensor; wearable; wireless
ID POLLUTANTS; EXPOSURE; CHILDREN
AB A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of similar to 2 pg/mm(2) and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring.
C1 [Wang, Rui; Tsow, Francis; Forzani, Erica S.; Tao, Nongjian] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA.
[Wang, Rui; Tsow, Francis; Peng, Jhih-Hong; Forzani, Erica S.; Tao, Nongjian] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA.
[Zhang, Xuezhi; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA.
[Destaillats, Hugo] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA.
RP Chen, YS (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA.
EM yongsheng.chen@asu.edu; HDestaillats@asu.edu; njtao@asu.edu
RI Destaillats, Hugo/B-7936-2013; Zhang, Xuezhi/D-2579-2012; Chen,
Yongsheng/B-1541-2010
OI Zhang, Xuezhi/0000-0001-7751-1173;
FU NIH/NIEHS [U01 ES016064-02]
FX The authors thank project scientists Brenda Korte and Larry Nagahara at
NIH, and others at Arizona State University for their help in providing
useful discussions among other supports. This work was supported by the
NIH/NIEHS under Grant U01 ES016064-02.
NR 17
TC 7
Z9 7
U1 2
U2 27
PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI
PI BASEL
PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND
SN 1424-8220
J9 SENSORS-BASEL
JI Sensors
PD JUL
PY 2009
VL 9
IS 7
BP 5655
EP 5663
DI 10.3390/s90705655
PG 9
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA 474XB
UT WOS:000268317000035
PM 22346720
ER
PT J
AU Mukundan, H
Anderson, AS
Grace, WK
Grace, KM
Hartman, N
Martinez, JS
Swanson, BI
AF Mukundan, Harshini
Anderson, Aaron S.
Grace, W. Kevin
Grace, Karen M.
Hartman, Nile
Martinez, Jennifer S.
Swanson, Basil I.
TI Waveguide-Based Biosensors for Pathogen Detection
SO SENSORS
LA English
DT Review
DE planar optical waveguides; biosensors; thin film; fluorescence;
immunoassay; pathogen sensor
ID SELF-ASSEMBLED MONOLAYERS; TRANSFER RADICAL POLYMERIZATION;
POLY(ETHYLENE GLYCOL) FILMS; SILICON-BASED MICRODEVICES;
HISTIDINE-TAGGED PROTEINS; SUPPORTED LIPID-BILAYERS; OPTICAL BIOSENSOR;
OLIGO(ETHYLENE GLYCOL); NUCLEIC-ACIDS; THIN-FILMS
AB Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave-the evanescent field-whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, "dirty" biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning's EPIC (R) (O) over cap, SRU Biosystems' BIND (TM), Zeptosense (R), etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.
C1 [Mukundan, Harshini; Anderson, Aaron S.; Grace, W. Kevin; Swanson, Basil I.] Los Alamos Natl Lab, Phys Chem & Appl Spect Chem Div, Los Alamos, NM 87545 USA.
RP Swanson, BI (reprint author), Los Alamos Natl Lab, Phys Chem & Appl Spect Chem Div, POB 1663, Los Alamos, NM 87545 USA.
EM basil@lanl.gov
NR 74
TC 64
Z9 64
U1 4
U2 92
PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI
PI BASEL
PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND
SN 1424-8220
J9 SENSORS-BASEL
JI Sensors
PD JUL
PY 2009
VL 9
IS 7
BP 5783
EP 5809
DI 10.3390/s90705783
PG 27
WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation
SC Chemistry; Electrochemistry; Instruments & Instrumentation
GA 474XB
UT WOS:000268317000042
PM 22346727
ER
PT J
AU Roach, D
AF Roach, D.
TI Real time crack detection using mountable comparative vacuum monitoring
sensors
SO SMART STRUCTURES AND SYSTEMS
LA English
DT Article
DE Structural health monitoring (SHM); comparative vacuum monitorings;
crack detection; probability of detection
AB Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Roach, D (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM dproach@sandia.gov
NR 9
TC 33
Z9 42
U1 4
U2 10
PU TECHNO-PRESS
PI DAEJEON
PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA
SN 1738-1584
J9 SMART STRUCT SYST
JI Smart. Struct. Syst.
PD JUL
PY 2009
VL 5
IS 4
BP 317
EP 328
PG 12
WC Engineering, Civil; Engineering, Mechanical; Instruments &
Instrumentation
SC Engineering; Instruments & Instrumentation
GA 473NN
UT WOS:000268214100002
ER
PT J
AU Fasel, TR
Kennel, MB
Todd, MD
Clayton, EH
Park, G
AF Fasel, T. R.
Kennel, M. B.
Todd, M. D.
Clayton, E. H.
Park, G.
TI Damage state evaluation of experimental and simulated bolted joints
using chaotic ultrasonic waves
SO SMART STRUCTURES AND SYSTEMS
LA English
DT Article
DE structural health monitoring; bolted joint; active sensing; guided
waves; AR model; information theory
ID SHEAR ADHESIVE JOINTS; LAMB WAVE; COHESIVE PROPERTIES; ACTIVE SENSORS;
GUIDED-WAVES; PRELOAD LOSS; INTERROGATION; CONNECTIONS; PROPAGATION;
SIGNALS
AB Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine a physical experiment on a single-bolt aluminum lap joint as well as a three-dimensional physics-based simulation designed to model the behavior of guided ultrasonic waves through a similarly configured joint. A multiple bolt frame structure is also experimentally examined. In the physical experiment each signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the lap joint and sensed using an equivalent MFC patch on the opposite side of the joint. The model applies the waveform via direct nodal displacement and 'senses' the resulting displacement using an average of the nodal strain over an area equivalent to the MFC patch. A novel statistical classification feature isdeveloped from information theory concepts of cross-prediction and interdependence. This damage detection algorithm is used to evaluate multiple damage levels and locations.
C1 [Fasel, T. R.; Kennel, M. B.; Todd, M. D.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Clayton, E. H.] Quartus Engn, San Diego, CA 92131 USA.
[Park, G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Todd, MD (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA.
EM mdt@ucsd.edu
FU National Defense Science and Engineering Graduate Research Fellowship;
UCSD/Los Alamos National Laboratory Engineering Institute for Structural
Health Monitoring, Damage Prognosis, and Validated Simulations; Air
Force Office of Scientific Research; Air Force Research
Laboratory/Missile Defense Agency Joint SBIR
FX The first author acknowledges partial support through a National Defense
Science and Engineering Graduate Research Fellowship. This work was also
partially supported through the UCSD/Los Alamos National Laboratory
Engineering Institute for Structural Health Monitoring, Damage
Prognosis, and Validated Simulations, the Air Force Office of Scientific
Research (Dr. Victor Giurglutiu, Program Manager) and an Air Force
Research Laboratory/Missile Defense Agency Joint SBIR contract (Mr.
Brandon Arritt, Program Manager).
NR 34
TC 10
Z9 10
U1 0
U2 9
PU TECHNO-PRESS
PI DAEJEON
PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA
SN 1738-1584
J9 SMART STRUCT SYST
JI Smart. Struct. Syst.
PD JUL
PY 2009
VL 5
IS 4
BP 329
EP 344
PG 16
WC Engineering, Civil; Engineering, Mechanical; Instruments &
Instrumentation
SC Engineering; Instruments & Instrumentation
GA 473NN
UT WOS:000268214100003
ER
PT J
AU Overly, TG
Jacobs, LD
Farinholt, KM
Park, G
Farrar, CR
Flynn, EB
Todd, MD
AF Overly, T. G.
Jacobs, L. D.
Farinholt, K. M.
Park, G.
Farrar, C. R.
Flynn, E. B.
Todd, M. D.
TI Developing an integrated software solution for active-sensing SHM
SO SMART STRUCTURES AND SYSTEMS
LA English
DT Article
DE structural health monitoring; active-sensing; damage detection; damage
diagnostics
ID DAMAGE IDENTIFICATION; LAMB WAVES; VALIDATION; SENSORS
AB A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software.
C1 [Overly, T. G.; Jacobs, L. D.; Farinholt, K. M.; Park, G.; Farrar, C. R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA.
[Flynn, E. B.; Todd, M. D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA.
RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, POB 1663, Los Alamos, NM 87545 USA.
EM gpark@lanl.gov
RI Farrar, Charles/C-6954-2012
NR 21
TC 2
Z9 2
U1 0
U2 1
PU TECHNO-PRESS
PI DAEJEON
PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA
SN 1738-1584
J9 SMART STRUCT SYST
JI Smart. Struct. Syst.
PD JUL
PY 2009
VL 5
IS 4
BP 457
EP 468
PG 12
WC Engineering, Civil; Engineering, Mechanical; Instruments &
Instrumentation
SC Engineering; Instruments & Instrumentation
GA 473NN
UT WOS:000268214100012
ER
PT J
AU Sheyka, M
El-Kady, I
Su, MF
Taha, MMR
AF Sheyka, M.
El-Kady, I.
Su, M. F.
Taha, M. M. Reda
TI Photonic sensors for micro-damage detection: A proof of concept using
numerical simulation
SO SMART STRUCTURES AND SYSTEMS
LA English
DT Article
DE structural health monitoring (SHM); micro-damage detection; photonic
crystal (PhC); finite difference time domain (FDTD)
ID CRYSTALS; SYSTEMS; MATRIX
AB Damage detection has been proven to be a challenging task in structural health monitoring (SHM) due to the fact that damage cannot be measured. The difficulty associated with damage detection is related to electing a feature that is sensitive to damage occurrence and evolution. This difficulty increases as the damage size decreases limiting the ability to detect damage occurrence at the micron and submicron length scale. Damage detection at this length scale is of interest for sensitive structures such as aircrafts and nuclear facilities. In this paper a new photonic sensor based on photonic crystal (PhC) technology that can be synthesized at the nanoscale is introduced. PhCs are synthetic materials that are capable of controlling light propagation by creating a photonic bandgap where light is forbidden to propagate. The interesting feature of PhC is that its photonic signature is strongly tied to its microstructure periodicity. This study demonstrates that when a PhC sensor adhered to polymer substrate experiences micron or submicron damage, it will experience changes in its microstructural periodicity thereby creating a photonic signature that can be related to damage severity. This concept is validated here using a three-dimensional integrated numerical simulation.
C1 [Sheyka, M.; Taha, M. M. Reda] Univ New Mexico, Dept Civil Eng, Albuquerque, NM 87131 USA.
[El-Kady, I.; Su, M. F.] Univ New Mexico, Dept Elect Eng, Albuquerque, NM 87131 USA.
[El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87151 USA.
RP Taha, MMR (reprint author), Univ New Mexico, Dept Civil Eng, Albuquerque, NM 87131 USA.
EM mrtaha@unm.edu
RI El-Kady, Ihab/D-2886-2013
OI El-Kady, Ihab/0000-0001-7417-9814
FU Sandia Corporation; Lockheed Martin Company; United States Department of
Energy's National Nuclear Security Administration [DE-AC04-94AL85000];
Defense Threat Reduction Agency (DTRA)
FX Research described in this work has been funded by Sandia National
Laboratories (SNL). Sandia is a multi-program laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000. The authors acknowledge this support.
Funding to the first author by Defense Threat Reduction Agency (DTRA)
through UNM strategic partnership program is strongly appreciated.
NR 29
TC 0
Z9 0
U1 0
U2 0
PU TECHNO-PRESS
PI DAEJEON
PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA
SN 1738-1584
J9 SMART STRUCT SYST
JI Smart. Struct. Syst.
PD JUL
PY 2009
VL 5
IS 4
BP 483
EP 494
PG 12
WC Engineering, Civil; Engineering, Mechanical; Instruments &
Instrumentation
SC Engineering; Instruments & Instrumentation
GA 473NN
UT WOS:000268214100014
ER
PT J
AU Malard, LM
Mafra, DL
Doorn, SK
Pimenta, MA
AF Malard, L. M.
Mafra, D. L.
Doorn, S. K.
Pimenta, M. A.
TI Resonance Raman scattering in graphene: Probing phonons and electrons
SO SOLID STATE COMMUNICATIONS
LA English
DT Article; Proceedings Paper
CT Graphene Week 2008 International Conference
CY 2008
CL Trieste, ITALY
SP ICTP, UNESCO
DE Nanostructures; Electronic band structure; Optical properties
ID BAND-STRUCTURE; BERRYS PHASE; GRAPHITE; SPECTROSCOPY; CARBON; FILMS;
LAYER
AB In this work, by using different laser excitation energies, we obtain important electronic and vibrational properties of mono- and bi-layergraphene. For monolayergraphene, we determine the phonon dispersion near the Dirac point for the in-plane transverse optical (iTO) mode. This result is compared with recent calculations that take into account electron-electron correlations for the phonon dispersion around the K point. For bilayer graphene we extract the Slonczewski-Weiss-McClure band parameters and compare them with recent infrared measurements. We also analyze the second-order feature in the Raman spectrum for trilayer graphene. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Malard, L. M.; Mafra, D. L.; Pimenta, M. A.] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil.
[Doorn, S. K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
RP Malard, LM (reprint author), Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil.
EM lmalard@fisica.ufmg.br
RI Pimenta, Marcos/F-2122-2010; Mafra, Daniela/F-7442-2012; Malard,
Leandro/B-2292-2013; Medicina Molecular, Inct/J-8737-2013;
OI , /0000-0003-2015-611X
NR 31
TC 23
Z9 23
U1 2
U2 28
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PD JUL
PY 2009
VL 149
IS 27-28
BP 1136
EP 1139
DI 10.1016/j.ssc.2009.02.045
PG 4
WC Physics, Condensed Matter
SC Physics
GA 465HV
UT WOS:000267574300019
ER
PT J
AU Ferguson, JW
Dudley, TJ
Sears, KC
McIntyre, SM
Gordon, MS
Houk, RS
AF Ferguson, Jill Wisnewski
Dudley, Timothy J.
Sears, Kyle C.
McIntyre, Sally M.
Gordon, Mark S.
Houk, R. S.
TI Polyatomic ions in inductively coupled plasma-mass spectrometry Part II:
Origins of N2H+ and HxCO+ ions using experimental measurements combined
with calculated energies and structures
SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
LA English
DT Article
DE Polyatomic ions; Dissociation reaction; ICP-MS; N2H+; H2CO+
ID HIGH-RESOLUTION; ICP-MS; SPECTRAL INTERFERENCES; ELECTRON-TEMPERATURE;
PROBE MEASUREMENTS; KINETIC ENERGIES; GAS-DYNAMICS; EXTRACTION;
INTERFACE; DENSITY
AB Several polyatomic ions in inductively coupled plasma-mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (T-gas) value. In our opinion, the resulting T-gas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N2H+ to N-2(+) leads to a calculated T-gas of 4550 to 4900 K, depending on the computational data used. The COH+ to CO+ system yields a similar temperature, which is not surprising considering the similar energies and structures of COH+ and N2H+. The dissociation of H2CO+ to HCO+ leads to a much lower T-gas (<1000 to 2000 K). Finally. the dissociation of H2COH+ to HCOH+ generates a T-gas value between those from the other HxCO+ ions studied here. All of these measured T-gas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO+ and COH+, and H2CO+ and HCOH+, which have virtually the same m/z values and need to be considered in the interpretation of results. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Ferguson, Jill Wisnewski; Dudley, Timothy J.; Sears, Kyle C.; McIntyre, Sally M.; Gordon, Mark S.; Houk, R. S.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA.
RP Houk, RS (reprint author), Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA.
EM rshouk@iastate.edu
RI Ferguson, Jill/B-6910-2008;
OI Dudley, Timothy/0000-0002-6635-7956
FU National Science Foundation [CHE-0309381]; Velmer A. and Mary K. Fassel
Fellowship; Conoco Phillips Fellowship; U.S. Department of Energy,
Office of Nuclear Nonproliferation [NA-22]; Office of Basic Energy
Sciences; U.S. Department of Energy by Iowa State University
[W-7405-Eng-82]
FX This research was supported by the National Science Foundation (award
no. CHE-0309381) through the Institute for Physical Research and
Technology at ISU. JWF was also supported by the Velmer A. and Mary K.
Fassel Fellowship, and SMM is supported by the Conoco Phillips
Fellowship. The nebulizers used were provided by Elemental Scientific
Inc. The ICP-MS device was obtained with funds provided by the U.S.
Department of Energy, Office of Nuclear Nonproliferation (NA-22) and the
Office of Basic Energy Sciences. Ames Laboratory is operated for the
U.S. Department of Energy by Iowa State University under contract no.
W-7405-Eng-82.
NR 39
TC 10
Z9 10
U1 1
U2 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0584-8547
J9 SPECTROCHIM ACTA B
JI Spectroc. Acta Pt. B-Atom. Spectr.
PD JUL
PY 2009
VL 64
IS 7
BP 690
EP 696
DI 10.1016/j.sab.2009.06.008
PG 7
WC Spectroscopy
SC Spectroscopy
GA 489JA
UT WOS:000269415200009
ER
PT J
AU Keller, CF
AF Keller, Charles F.
TI Global warming: a review of this mostly settled issue
SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT
LA English
DT Review
DE Climate; Climate change; Global warming; Climate modeling; Atmosphere;
Ocean; Greenhouse gases; Carbon dioxide; Solar activity; Environment;
Ecosystems
ID TROPOSPHERIC TEMPERATURE TRENDS; LOW-CLOUD PROPERTIES; 11-YEAR
SOLAR-CYCLE; SEA-LEVEL RISE; CLIMATE-CHANGE; EARTHS CLIMATE; BOREHOLE
TEMPERATURES; LAST MILLENNIUM; AIR-TEMPERATURE; TIME-SERIES
AB Global warming and attendant climate change have been controversial for at least a decade. This is largely because of its societal implications since the science is largely straightforward. With the recent publication of the Fourth Assessment Report of the United Nations' Intergovernmental Panel on Climate Change (Working Group 1) there has been renewed interest and controversy about how certain the scientific community is of its conclusions: that humans are influencing the climate and that global temperatures will continue to rise rapidly in this century. This review attempts to update what is known and in particular what advances have been made in the past 5 years or so. It does not attempt to be comprehensive. Rather it focuses on the most controversial issues, which are actually few in number.
Is the surface temperature record accurate or is it biased by heat from cities, etc.?
Is that record significantly different from past warmings such as the Medieval Warming Period?
Are human greenhouse gases changing the climate more than the sun?
Can we model climate and predict its future, or is it just too complex and chaotic?
Are there any other changes in climate other than warming, and can they be attributed to the warming?.
C1 [Keller, Charles F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Keller, Charles F.] Univ Calif, Inst Geophys & Planetary Phys, Los Alamos Branch, Los Alamos, NM USA.
RP Keller, CF (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM alfanso@cybermesa.com
FU UCSD
FX The author is indebted to The University of California's Institute of
Geophysics and Planetary Physics-branches at Los Alamos National
Laboratory and at Scripps Institute of Oceanography, UCSD for supporting
the author as a Cecil Greene Scholar during which time much of this
information was brought together. He is also indebted to the following
for helpful discussions and references suggested or supplied: Richard
Alley, Tim Barnett, Jim Hansen, Phil Jones, David Keeling, Judith Lean,
Mike MacCracken, Joel Norris, Michael Mann, Roger Pielke, V. Ramanathan,
Ben Santer, Drew Schindell, Gavin Schmidt, Jeff Severinghaus, Tom
Shankland, Richard Somerville, Brian Tinsley, Kevin Trenberth, Warren
White, Tom Wigley, Guang Zhang, and my long suffering but thoughtful
critic, Yvonne Keller. In addition there have been a rather larger
number of people who have both helped and encouraged me to take on this
project. To them I am also thankful.
NR 135
TC 23
Z9 24
U1 6
U2 61
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1436-3240
EI 1436-3259
J9 STOCH ENV RES RISK A
JI Stoch. Environ. Res. Risk Assess.
PD JUL
PY 2009
VL 23
IS 5
BP 643
EP 676
DI 10.1007/s00477-008-0253-3
PG 34
WC Engineering, Environmental; Engineering, Civil; Environmental Sciences;
Statistics & Probability; Water Resources
SC Engineering; Environmental Sciences & Ecology; Mathematics; Water
Resources
GA 450IR
UT WOS:000266394700010
ER
PT J
AU Weickum, G
Eldred, MS
Maute, K
AF Weickum, G.
Eldred, M. S.
Maute, K.
TI A multi-point reduced-order modeling approach of transient structural
dynamics with application to robust design optimization
SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
LA English
DT Article
DE Galerkin projection; Proper orthogonal decomposition; Design
sensitivities; Stochastic analysis; Shape optimization
ID PRECONDITIONED CONJUGATE-GRADIENT; PARTIAL-DIFFERENTIAL-EQUATIONS;
COMBINED APPROXIMATIONS; SHAPE OPTIMIZATION; SENSITIVITY CALCULATIONS;
COMPUTATIONAL ASPECTS; REANALYSIS APPROACH; REDUCTION; SYSTEMS;
DERIVATIVES
AB Predicting the transient response of structures by high-fidelity simulation models within design optimization and uncertainty quantification often leads to unacceptable computational cost. This paper presents a reduced-order modeling (ROM) framework for approximating the transient response of linear elastic structures over a range of design and random parameters. The full-order response is projected onto a lower-dimensional basis spanned by modes computed from a proper orthogonal decomposition (POD) of full-order model simulation results at multiple calibration points. The basis is further enriched by gradients of the POD modes with respect to the design/random parameters. A truncation strategy is proposed to compensate for the increase in basis vectors due to the proposed enrichment strategies. The accuracy, efficiency and robustness of the proposed framework are studied with a two-dimensional model problem. The numerical results suggest that the proposed ROM approach is well suited for large parameter changes and that the number of basis vectors needs to be increased only linearly with the number of design and random parameters to maintain a particular ROM performance. The application of the proposed ROM approach to robust shape optimization demonstrates significant savings in computational cost over using full-order models.
C1 [Weickum, G.; Maute, K.] Univ Colorado, Ctr Aerosp Struct, Dept Aerosp Engn Sci, Boulder, CO 80309 USA.
[Eldred, M. S.] Sandia Natl Labs, Optimizat & Uncertainty Estimat Dept, Albuquerque, NM 87185 USA.
RP Weickum, G (reprint author), Univ Colorado, Ctr Aerosp Struct, Dept Aerosp Engn Sci, Boulder, CO 80309 USA.
EM weickum@colorado.edu; maute@colorado.edu
FU National Science Foundation [DMI-0300539, DMI-0348759]; Sandia Computer
Science Research Institute (CSRI)
FX The first and third authors acknowledge the support by the National
Science Foundation under grants DMI-0300539 and DMI-0348759. All authors
thank the Sandia Computer Science Research Institute (CSRI) for support
of this collaborative work between Sandia National Laboratories and the
University of Colorado. The opinions and conclusions presented are those
of the authors and do not necessarily reflect the views of the
sponsoring organizations.
NR 74
TC 8
Z9 8
U1 1
U2 4
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1615-147X
J9 STRUCT MULTIDISCIP O
JI Struct. Multidiscip. Optim.
PD JUL
PY 2009
VL 38
IS 6
BP 599
EP 611
DI 10.1007/s00158-008-0309-5
PG 13
WC Computer Science, Interdisciplinary Applications; Engineering,
Multidisciplinary; Mechanics
SC Computer Science; Engineering; Mechanics
GA 448IE
UT WOS:000266255500005
ER
PT J
AU Brambilla, R
Grilli, F
Nguyen, DN
Martini, L
Sirois, F
AF Brambilla, Roberto
Grilli, Francesco
Nguyen, Doan N.
Martini, Luciano
Sirois, Frederic
TI AC losses in thin superconductors: the integral equation method applied
to stacks and windings
SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY
LA English
DT Article
ID TEMPERATURE; CONDUCTORS; TAPES; FILMS
AB In this paper we present a method for computing transport current ac losses in interacting thin superconductors. The method solves the integral equations for the sheet current density distribution and is specifically developed for those configurations where the symmetry of the current density distributions allows writing the equation in a self-consistent form, without the need for using an auxiliary 2D model to describe the interaction between superconducting tapes. This results in very short computation times and therefore the model can be very useful for optimizing the design of superconducting devices. The method has been tested for different cases of practical applications and the ac loss results have been compared with those obtained with analytical models and with experiments.
C1 [Brambilla, Roberto; Martini, Luciano] CESI Ric SpA, I-20134 Milan, Italy.
[Grilli, Francesco; Sirois, Frederic] Ecole Polytech, Montreal, PQ H3C 3A7, Canada.
[Grilli, Francesco] Forschungszentrum Karlsruhe, Inst Tech Phys, D-76344 Eggenstein Leopoldshafen, Germany.
[Nguyen, Doan N.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA.
RP Brambilla, R (reprint author), CESI Ric SpA, Via Rubattino 54, I-20134 Milan, Italy.
EM francesco.grilli@itp.fzk.de
RI Sirois, Frederic/F-3736-2010; Nguyen, Doan/F-3148-2010
OI Sirois, Frederic/0000-0003-0372-9449;
FU Research Fund for the Italian Electrical System; Mathematics of
Information Technology and Complex System (MITACS) network (Canada); US
DOE Office of Electricity Delivery and Energy Reliability
FX This work was supported partly by the Research Fund for the Italian
Electrical System under the Contract Agreement between CESI Ricerca and
the Ministry of Economic Development-General Directorate for Energy and
Mining Resources stipulated on June 21, 2007 in compliance with the
Decree no. 73 of June 18, 2007; partly by the Mathematics of Information
Technology and Complex System (MITACS) network (Canada); and partly by
the US DOE Office of Electricity Delivery and Energy Reliability. The
authors would like to acknowledge Dr Oscar De Feo (Solianis Monitoring
AG) for his help on mathematical techniques and their implementation.
NR 23
TC 24
Z9 24
U1 1
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-2048
J9 SUPERCOND SCI TECH
JI Supercond. Sci. Technol.
PD JUL
PY 2009
VL 22
IS 7
AR 075018
DI 10.1088/0953-2048/22/7/075018
PG 10
WC Physics, Applied; Physics, Condensed Matter
SC Physics
GA 461SL
UT WOS:000267291300019
ER
PT J
AU Xiao, W
Baskes, MI
Cho, K
AF Xiao, Wei
Baskes, M. I.
Cho, Kyeongjae
TI MEAM study of carbon atom interaction with Ni nano particle
SO SURFACE SCIENCE
LA English
DT Article
DE Modified embedded atom method (MEAM); Carbon nanotube growth; Catalyst;
Ni-C alloy; Adsorption energy
ID CHEMICAL-VAPOR-DEPOSITION; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS;
LARGE-SCALE; NANOTUBES; GROWTH; NANOPARTICLES; HYDROCARBONS; IMPURITIES;
NUCLEATION
AB Carbon, Ni, and C-Ni alloy modified embedded atom method (MEAM) potentials were developed to study the initial process of carbon nanotube growth on Ni catalyst particles. The MEAM potentials were used to study the atomistic interaction between a carbon atom and a fcc Ni nano particle, both on the particle surfaces and inside the Ni nano particles. The result shows that surface carbon atom is more stable than those in the bulk and sub-surface interstitial positions. Carbon atoms are expected to diffuse from the bulk to the surface, and the single walled and double-walled carbon nanotubes would be more favorable to form on Ni nano particle catalyst. The carbon and Ni nano particle interaction calculation shows that the corner and the edge of the particle are the energetically more favorable sites for the carbon adatom. The carbon nanotube may grow from the corner and edge of the particle. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Cho, Kyeongjae] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA.
[Cho, Kyeongjae] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA.
[Xiao, Wei] Wuhan Univ, Dept Phys, Wuhan 430072, Hubei, Peoples R China.
[Baskes, M. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Cho, K (reprint author), Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA.
EM kjcho@utdallas.edu
FU Stanford University Global Climate and Energy Project (GCEP); Korea
Institute for Advanced Study (KIAS); Chinese National Science Foundation
[10704058]
FX This work was supported by Stanford University Global Climate and Energy
Project (GCEP) during 2005-2006. Korea Institute for Advanced Study
(KIAS) has supported the meeting to prepare the manuscript. Partial work
is done in Wuhan University and supported by Chinese National Science
Foundation project 10704058.
NR 40
TC 18
Z9 20
U1 2
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURF SCI
JI Surf. Sci.
PD JUL 1
PY 2009
VL 603
IS 13
BP 1985
EP 1998
DI 10.1016/j.susc.2009.03.009
PG 14
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 459EL
UT WOS:000267083500004
ER
PT J
AU Dhaka, RS
D'Souza, SW
Maniraj, M
Chakrabarti, A
Schlagel, DL
Lograsso, TA
Barman, SR
AF Dhaka, R. S.
D'Souza, S. W.
Maniraj, M.
Chakrabarti, Aparna
Schlagel, D. L.
Lograsso, T. A.
Barman, S. R.
TI Photoemission study of the (100) surface of Ni2MnGa and Mn2NiGa
ferromagnetic shape memory alloys
SO SURFACE SCIENCE
LA English
DT Article
DE Ferromagnetic shape memory alloy; Photoemission spectroscopy; Low energy
electron diffraction
ID NI-MN-GA; RAY PHOTOELECTRON-SPECTROSCOPY; FIELD-INDUCED STRAIN;
SINGLE-CRYSTALS; PHASE; TRANSITION
AB The (1 0 0) surface of Ni2MnGa and Mn2NiGa ferromagnetic shape memory alloys have been studied by photoelectron spectroscopy and low energy electron diffraction (LEED). It is shown that by sputtering and annealing, it is possible to obtain a clean, ordered and stoichiometric surface that shows a four-fold 1 x 1 LEED pattern at room temperature. For both Ni2MnGa and Mn2NiGa, the surface becomes Ni-rich and Mn deficient after sputtering. However, as the annealing temperature is increased Mn segregates to the surface and at sufficiently high annealing temperature the Mn deficiency caused by sputtering is compensated. The (1 0 0) surface of Ni2MnGa is found to have Mn-Ga termination. The valence band spectra of both Ni2MnGa and Mn2NiGa exhibits modifications with surface composition. For the stoichiometric surface, the origin of the spectral shape of the valence band is explained by calculations based on first principles density functional theory. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Dhaka, R. S.; D'Souza, S. W.; Maniraj, M.; Barman, S. R.] UGC DAE Consortium Sci Res, Surface Phys Lab, Indore 452001, Madhya Pradesh, India.
[Chakrabarti, Aparna] Raja Ramanna Ctr Adv Technol, Indore 452013, Madhya Pradesh, India.
[Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
RP Barman, SR (reprint author), UGC DAE Consortium Sci Res, Surface Phys Lab, Khandwa Rd, Indore 452001, Madhya Pradesh, India.
EM barmansr@gmail.com
RI Roy Barman, Sudipta/B-2026-2010; Chakrabarti, Aparna/B-2227-2010; Dhaka,
Rajendra/F-9018-2011; Dhaka, Rajendra/C-2486-2013; M,
MANIRAJ/C-2684-2011
FU D.S.T-Max-Planck Partner Group; Ramanna Fellowship Research Grant; US
Department of Energy Contract [DE-AC02-07CH11358]
FX P. Chaddah, V.C. Sahni, K. Horn, A. Gupta, and S.M. Oak are thanked for
support and encouragement. Fundings from D.S.T-Max-Planck Partner Group
project and Ramanna Fellowship Research Grant are acknowledged. DLS and
TAL acknowledge the support of the US Department of Energy Contract No.
DE-AC02-07CH11358.
NR 41
TC 19
Z9 19
U1 3
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURF SCI
JI Surf. Sci.
PD JUL 1
PY 2009
VL 603
IS 13
BP 1999
EP 2004
DI 10.1016/j.susc.2009.03.010
PG 6
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 459EL
UT WOS:000267083500005
ER
PT J
AU Mugarza, A
Shimizu, TK
Ogletree, DF
Salmeron, M
AF Mugarza, Aitor
Shimizu, Tomoko K.
Ogletree, D. Frank
Salmeron, Miquel
TI Chemical reactions of water molecules on Ru(0001) induced by selective
excitation of vibrational modes
SO SURFACE SCIENCE
LA English
DT Article
DE Scanning tunneling microscopy
ID SCANNING TUNNELING MICROSCOPE; DISSOCIATIVE ADSORPTION; SINGLE-MOLECULE;
SURFACE; MANIPULATION; DIFFUSION; STABILITY; COVERAGE; PD(111); CU(110)
AB Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H2O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H2O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV. Published by Elsevier B.V.
C1 [Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Mugarza, Aitor] CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Spain.
[Shimizu, Tomoko K.; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 67-2206, Berkeley, CA 94720 USA.
EM mbsalmeron@lbl.gov
RI Shimizu, Tomoko/A-6780-2010; mugarza, aitor/B-6871-2012; Ogletree, D
Frank/D-9833-2016
OI mugarza, aitor/0000-0002-2698-885X; Ogletree, D
Frank/0000-0002-8159-0182
FU US Department of Energy [DE-AC02-05CH11231]; Marie Curie Outgoing
International Fellowship [514412]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the US Department of Energy under Contract No. DE-AC02-05CH11231. The
work of A.M. was financed by the Marie Curie Outgoing International
Fellowship, Project No. 514412.
NR 34
TC 13
Z9 13
U1 1
U2 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURF SCI
JI Surf. Sci.
PD JUL 1
PY 2009
VL 603
IS 13
BP 2030
EP 2036
DI 10.1016/j.susc.2009.03.026
PG 7
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 459EL
UT WOS:000267083500009
ER
PT J
AU Miller, JB
Gellman, AJ
AF Miller, James B.
Gellman, Andrew J.
TI Structural evolution of sulfur overlayers on Pd(111)
SO SURFACE SCIENCE
LA English
DT Article
DE Palladium; Sulfur; Low energy ion scattering (LEIS)
ID ELEVATED-TEMPERATURES; ADSORBATE STRUCTURE; HYDROGEN PERMEANCE; ALLOY
MEMBRANES; SURFACE; PALLADIUM; ABSORPTION; ADSORPTION; 1ST-PRINCIPLES;
PRESSURES
AB Low energy ion scattering spectroscopy (LEISS) has been used to characterize the evolution of ordered structures of S on the Pd(1 1 1) surface during annealing. During exposure of the Pd(1 1 1) surface to 0.7 L H(2)S at 300 K-conditions that produce the S(root 3 x root 3)R30 overlayer-the intensity of the Pd LEIS signal decreases and a feature assigned to adsorbed S appears as the adsorbed layer forms. When the surface is held at 300 K after exposure to H2S is stopped, the LEIS Pd intensity partially recovers and the S signal weakens, presumably as surface S atoms assume their equilibrium positions in the S(root 3 x root 3)R30 overlayer. Subsequent annealing of the S(root 3 x root 3)R30 structure at 700 K causes it to convert into a S(root 7 x root 7)R19 overlayer, whose LEIS spectrum is identical to that of clean Pd(1 1 1). The absence of LEIS evidence for S atoms at the exposed surface of the S(root 7 x root 7)R79 overlayer is at odds with published models of a mixed Pd-S top layer. Despite the similarity of the LEIS spectra of Pd(1 1 1) and Pd(1 1 1)-S(root 7 x root 7)R19, their activities for dissociative hydrogen adsorption are very different-the former readily adsorbs hydrogen at 100 K, while the latter does not-suggesting that S exerts its influence on surface chemistry from subsurface locations. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Miller, James B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA.
RP Miller, JB (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM jbmiller@andrew.cmu.edu
RI Gellman, Andrew/M-2487-2014
OI Gellman, Andrew/0000-0001-6618-7427
FU National Energy Technology Laboratory [DE-AC2604NT41817]
FX This technical effort was performed in support of the National Energy
Technology Laboratory's on-going research in Computational and Basic
Sciences under the RDS contract DE-AC2604NT41817.
NR 25
TC 8
Z9 8
U1 1
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURF SCI
JI Surf. Sci.
PD JUL 1
PY 2009
VL 603
IS 13
BP L82
EP L85
DI 10.1016/j.susc.2009.04.012
PG 4
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 459EL
UT WOS:000267083500003
ER
PT J
AU Zhu, ZT
Zhang, LF
Smith, S
Fong, H
Sun, YG
Gosztola, D
AF Zhu, Zhengtao
Zhang, Lifeng
Smith, Steve
Fong, Hao
Sun, Yugang
Gosztola, David
TI Fluorescence studies of electrospun MEH-PPV/PEO nanofibers
SO SYNTHETIC METALS
LA English
DT Article
DE MEH-PPV; Fluorescence; Electrospinning; Nanofibers
ID SCANNING OPTICAL MICROSCOPY; FIELD-EFFECT TRANSISTORS;
LIGHT-EMITTING-DIODES; CONJUGATED POLYMER; INTERCHAIN INTERACTIONS; FILM
MORPHOLOGY; PPV FILMS; FIBERS; BLENDS; PHOTOLUMINESCENCE
AB We report a study of the fluorescence properties of the conjugated polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and polyethylene oxide (PEO) nanofibers. MEH-PPV/PEO nanofibers with different compositions have been fabricated by the electrospinning technique. The fluorescence spectra of the nanofibers show that the emission shoulder at similar to 630 nm blue-shifts similar to 45 nm, whereas the main emission peak around 590 nm blue-shifts similar to 15 nm with decreasing concentration of MEH-PPV in the nanofiber. in addition, confocal microscopic studies of a single MEH-PPV/PEO electrospun nanofiber indicate that the fluorescence spectra of the nanofiber do not show any polarization dependence. The results are discussed in terms of the aggregation of MEH-PPV in an inert matrix. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Zhu, Zhengtao; Zhang, Lifeng; Fong, Hao] S Dakota Sch Mines & Technol, Dept Chem, Rapid City, SD 57701 USA.
[Smith, Steve] S Dakota Sch Mines & Technol, Nanosci & Nanoenigneering Program, Rapid City, SD 57701 USA.
[Sun, Yugang; Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Zhu, ZT (reprint author), S Dakota Sch Mines & Technol, Dept Chem, 501 E St Joseph St, Rapid City, SD 57701 USA.
EM Zhengtao.Zhu@sdsmt.edu; Hao.Fong@sdsmt.edu
RI Zhu, Zhengtao/A-1633-2009; Gosztola, David/D-9320-2011; Sun, Yugang
/A-3683-2010
OI Zhu, Zhengtao/0000-0002-9311-2110; Gosztola, David/0000-0003-2674-1379;
Sun, Yugang /0000-0001-6351-6977
FU American Chemical Society Petroleum Research Fund [PRF 46993-GB10]; U.S.
Department of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX This research was supported by American Chemical Society Petroleum
Research Fund (Grant No. PRF 46993-GB10). Use of Center for Nanoscale
Materials at Argonne was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. The authors are grateful to the "Nanoscience and
Nanoengineering Ph.D. program" at the South Dakota School of Mines and
Technology (SDSM&T).
NR 34
TC 23
Z9 24
U1 5
U2 27
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHETIC MET
JI Synth. Met.
PD JUL
PY 2009
VL 159
IS 14
BP 1454
EP 1459
DI 10.1016/j.synthmet.2009.03.025
PG 6
WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer
Science
SC Materials Science; Physics; Polymer Science
GA 479GQ
UT WOS:000268648100012
ER
PT J
AU Graven, HD
Stephens, BB
Guilderson, TP
Campos, TL
Schimel, DS
Campbell, JE
Keeling, RF
AF Graven, Heather D.
Stephens, Britton B.
Guilderson, Thomas P.
Campos, Teresa L.
Schimel, David S.
Campbell, J. Elliott
Keeling, Ralph F.
TI Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil
fuel CO2 : CO ratios from airborne measurements of Delta C-14, CO2 and
CO above Colorado, USA
SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY
LA English
DT Article
ID ATMOSPHERIC TRANSPORT MODELS; CARBON-DIOXIDE; ANTHROPOGENIC CO2; COMPLEX
TERRAIN; C-14; EXCHANGE; INVERSIONS; (CO2)-C-14; EMISSIONS; EUROPE
AB Measurements of Delta C-14 in atmospheric CO2 are an effective method of separating CO2 additions from fossil fuel and biospheric sources or sinks of CO2. We illustrate this technique with vertical profiles of CO2 and Delta C-14 analysed in whole air flask samples collected above Colorado, USA in May and July 2004. Comparison of lower tropospheric composition to cleaner air at higher altitudes (>5 km) revealed considerable additions from respiration in the morning in both urban and rural locations. Afternoon concentrations were mainly governed by fossil fuel emissions and boundary layer depth, also showing net biospheric CO2 uptake in some cases. We estimate local industrial CO2: CO emission ratios using in situ measurements of CO concentration. Ratios are found to vary by 100% and average 57 mole CO2:1 mole CO, higher than expected from emissions inventories. Uncertainty in CO2 from different sources was +/- 1.1 to +/- 4.1 ppm for addition or uptake of -4.6 to 55.8 ppm, limited by Delta 14C measurement precision and uncertainty in background Delta C-14 and CO2 levels.
C1 [Graven, Heather D.; Keeling, Ralph F.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
[Stephens, Britton B.; Campos, Teresa L.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA.
[Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA.
[Schimel, David S.] Natl Ecol Observ Network, Boulder, CO USA.
[Campbell, J. Elliott] Univ Calif Merced, Coll Engn, Merced, CA USA.
RP Graven, HD (reprint author), ETH, Inst Biogeochem & Pollutant Dynam, Zurich, Switzerland.
EM heather.graven@env.ethz.ch
RI Campbell, Elliott/B-8025-2008; Stephens, Britton/B-7962-2008;
OI Stephens, Britton/0000-0002-1966-6182; Graven,
Heather/0000-0003-3934-2502
FU National Science Foundation Award [EAR-0321918]; National Science
Foundation; UC Office of the President; NASA ESS Fellowship; US
Department of Energy by the University of California, Lawrence Livermore
National Laboratory [W-7405-Eng-48]; NOAA's Office of Global Programs
[NA05OAR4311166]; LLNL's Directed Research and Development programme
[06-ERD-031]; US National Science Foundation [ATM-0632770]; Office of
Science (BER); US Department of Energy [DE-FG02-04ER63898, -07ER64632]
FX The Carbon in the Mountains experiment was funded by National Science
Foundation Award EAR-0321918. The National Center for Atmospheric
Research is sponsored by the National Science Foundation. H. D. G.
received support from the UC Office of the President and a NASA ESS
Fellowship. A portion of this work was performed under the auspices of
the US Department of Energy by the University of California, Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48.
Radiocarbon analyses were funded by grants from NOAA's Office of Global
Programs (NA05OAR4311166) and LLNL's Directed Research and Development
programme (06-ERD-031) to T. P. G. Alane Bollenbacher conducted
CO2 and stable isotope analyses. Guy Emanuele assisted with
CO2 extractions. Design and construction of the flask sampling apparatus
was aided by NCAR Research Aviation Facility staff, David Moss, Bill
Paplawsky and Adam Cox. Design and analysis work at the Scripps
Institution of Oceanography was supported by the US National Science
Foundation grants ATM-0632770 and the Office of Science (BER), US
Department of Energy, through Contracts No. DE-FG02-04ER63898 and
-07ER64632. This research was also presented in H.D.G.'s doctoral
dissertation at the University of California, San Diego, USA, 2008.
NR 46
TC 24
Z9 26
U1 0
U2 20
PU CO-ACTION PUBLISHING
PI JARFALLA
PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN
SN 0280-6509
J9 TELLUS B
JI Tellus Ser. B-Chem. Phys. Meteorol.
PD JUL
PY 2009
VL 61
IS 3
BP 536
EP 546
DI 10.1111/j.1600-0889.2009.00421.x
PG 11
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 454JM
UT WOS:000266678200003
ER
PT J
AU Veltman, K
McKone, TE
Huijbregts, MAJ
Hendriks, AJ
AF Veltman, Karin
McKone, Thomas E.
Huijbregts, Mark A. J.
Hendriks, A. Jan
TI Bioaccumulation potential of air contaminants: Combining biological
allometry, chemical equilibrium and mass-balances to predict
accumulation of air pollutants in various mammals
SO TOXICOLOGY AND APPLIED PHARMACOLOGY
LA English
DT Article
DE Bioaccumulation; Volatile organic compounds; Mammals; Human; Mechanistic
model
ID ECOLOGICAL RISK-ASSESSMENT; LIQUID/AIR PARTITION-COEFFICIENTS;
PERSISTENT ORGANIC POLLUTANTS; GAS UPTAKE; INHALATION PHARMACOKINETICS;
B6C3F1 MICE; IN-VITRO; ORGANOPHOSPHOROUS PESTICIDES; ENVIRONMENTAL
CONTAMINANTS; PHYSIOLOGICAL-PARAMETERS
AB In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult Mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity for lipid components ill tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (K-ba) and tissue-air partition coefficients (K-ta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components.
The results show that 68% of the modeled inhalation and exhalation rate constants are within a factor of 2.1 from independent empirical values for humans, rats and mice, and 87% of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals. (c) 2009 Elsevier Inc. All rights reserved.
C1 [Veltman, Karin; Huijbregts, Mark A. J.; Hendriks, A. Jan] Radboud Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands.
[McKone, Thomas E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA.
[McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Veltman, K (reprint author), Norwegian Univ Sci & Technol NTNU, Ind Ecol Programme, Hogskoleringen 5, NO-7491 Trondheim, Norway.
EM karin.veltman@ntnu.no
RI Huijbregts, Mark/B-8971-2011; Hendriks, Aalbert Jan/C-6767-2013
NR 93
TC 9
Z9 10
U1 2
U2 13
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0041-008X
EI 1096-0333
J9 TOXICOL APPL PHARM
JI Toxicol. Appl. Pharmacol.
PD JUL 1
PY 2009
VL 238
IS 1
BP 47
EP 55
DI 10.1016/j.taap.2009.04.012
PG 9
WC Pharmacology & Pharmacy; Toxicology
SC Pharmacology & Pharmacy; Toxicology
GA 458IF
UT WOS:000267009800006
PM 19389415
ER
PT J
AU Levine, B
Nozick, L
Jones, D
AF Levine, Brian
Nozick, Linda
Jones, Dean
TI Estimating an origin-destination table for US imports of waterborne
containerized freight
SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
LA English
DT Article
DE Origin-destination table; Containerized freight; Optimization; Gravity
model
ID COMMODITY TRANSPORTATION; MODELS
AB Containerized freight imports into the US are growing at an average of 10% per year. This traffic is concentrated at a small number of US seaports. It is therefore important to have an accurate understanding of the flow of containers from their origin country through these seaports to their final destination. This paper develops an optimization model to estimate route flows and a corresponding multi-modal origin-destination table for containers by synthesizing data on international trade and railcar movements with a gravity model for the demand of container traffic. This analysis provides insights into the balance of rail and truck inland transportation from each port. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Levine, Brian; Nozick, Linda] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA.
[Jones, Dean] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Nozick, L (reprint author), Cornell Univ, Sch Civil & Environm Engn, Hollister Hall, Ithaca, NY 14853 USA.
EM BL76@cornell.edu; LKN3@cornell.edu; dajones@sandia.gov
NR 17
TC 12
Z9 14
U1 0
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1366-5545
J9 TRANSPORT RES E-LOG
JI Transp. Res. Pt. e-Logist. Transp. Rev.
PD JUL
PY 2009
VL 45
IS 4
BP 611
EP 626
DI 10.1016/j.tre.2008.11.001
PG 16
WC Economics; Engineering, Civil; Operations Research & Management Science;
Transportation; Transportation Science & Technology
SC Business & Economics; Engineering; Operations Research & Management
Science; Transportation
GA 458MB
UT WOS:000267026700009
ER
PT J
AU Malone, JD
Brigantic, R
Muller, GA
Gadgil, A
Delp, W
McMahon, BH
Lee, R
Kulesz, J
Mihelic, FM
AF Malone, John D.
Brigantic, Robert
Muller, George A.
Gadgil, Ashok
Delp, Woody
McMahon, Benjamin H.
Lee, Russell
Kulesz, Jim
Mihelic, F. Matthew
TI US airport entry screening in response to pandemic influenza: Modeling
and analysis
SO TRAVEL MEDICINE AND INFECTIOUS DISEASE
LA English
DT Article
DE Pandemic influenza; Airport screening; Influenza transmission
AB Background: A stochastic discrete event simulation model was developed to assess the effectiveness of passenger screening for Pandemic Influenza (PI) at U.S. airport foreign entry.
Methods: International passengers arriving at 18 U.S. airports from Asia, Europe, South America, and Canada were assigned to one of three states: not infected, infected with PI, infected with other respiratory illness. Passengers passed through layered screening then exited the model. 80% screening effectiveness was assumed for symptomatic passengers; 6% asymptomatic passengers.
Results: In the first 100 days of a global pandemic, U.S. airport screening would evaluate over 17 M passengers with 800 K secondary screenings. 11,570 PI infected passengers (majority asymptomatic) would enter the U.S. undetected from all 18 airports. Foreign airport departure screening significantly decreased the false negative (infected/undetected) passengers. U.S. attack rates: no screening (26.9%-30.9%); screening (26.4%-30.6%); however airport screening results in 800 K-1.8 M less U.S. PI cases; 16 K-35 K less deaths (2% fatality rate). Antiviral medications for travel contact prophylaxis (10 contacts/PI passenger) were high - 8.8 M. False positives from all 18 airports: 100-200/day.
Conclusions: Foreign shore exit screening greatly reduces numbers of PI infected passengers. U.S. airport screening identifies 50% infected individuals; efficacy is limited by the asymptomatic PI infected. Screening will not significantly delay arrival of PI via international air transport, but will reduce the rate of new US cases and subsequent deaths. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Malone, John D.] Uniformed Serv Univ Hlth Sci, Ctr Disaster & Humanitarian Assistance Med, Bethesda, MD 20814 USA.
[Brigantic, Robert; Muller, George A.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Gadgil, Ashok; Delp, Woody] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[McMahon, Benjamin H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Lee, Russell; Kulesz, Jim; Mihelic, F. Matthew] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Malone, JD (reprint author), Uniformed Serv Univ Hlth Sci, Ctr Disaster & Humanitarian Assistance Med, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA.
EM jdmalone@cdham.org
OI Gadgil, Ashok/0000-0002-0357-9455
FU U.S. Department of Homeland Security [52157]; U.S. Department of Energy
[DE-GM05-00RLO1831]
FX This joint National Laboratory research project was conducted for the
U.S. Department of Homeland Security under project number 52157. PNNL is
a multi-program National Laboratory operated by Battelle for the U.S.
Department of Energy under contract DE-GM05-00RLO1831. The work is the
opinion of the authors and not the Department of Homeland Security,
Department of Energy, or Department of Defense.
NR 22
TC 20
Z9 20
U1 2
U2 8
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1477-8939
J9 TRAVEL MED INFECT DI
JI Travel Med. Infect. Dis.
PD JUL
PY 2009
VL 7
IS 4
SI SI
BP 181
EP 191
DI 10.1016/j.tmaid.2009.02.006
PG 11
WC Public, Environmental & Occupational Health; Infectious Diseases
SC Public, Environmental & Occupational Health; Infectious Diseases
GA V17ND
UT WOS:000207943000002
PM 19717097
ER
PT J
AU Zhang, B
Tong, CF
Yin, TM
Zhang, XY
Zhuge, QQ
Huang, MR
Wang, MX
Wu, RL
AF Zhang, Bo
Tong, Chunfa
Yin, Tongming
Zhang, Xinye
Zhuge, Qiang
Huang, Minren
Wang, Mingxiu
Wu, Rongling
TI Detection of quantitative trait loci influencing growth trajectories of
adventitious roots in Populus using functional mapping
SO TREE GENETICS & GENOMES
LA English
DT Article
DE Adventitious root; Functional mapping; Legendre polynomial; Populus; QTL
ID FRAGMENT LENGTH POLYMORPHISMS; GENETIC-LINKAGE MAPS; RAPD MARKERS;
MICROSATELLITE MARKERS; POPLAR POPULUS; MOLECULAR-GENETICS; PLANT
BIOLOGY; HYBRID POPLAR; FOREST TREE; NIGRA L.
AB The capacity to root from cuttings is a key factor for the mass deployment of superior genotypes in clonal forestry. We studied the genetic basis of rooting capacity by mapping quantitative trait loci (QTLs) that control growth rate and form of root traits in a full-sib family of 93 hybrids derived from an interspecific cross between two Populus species, P. deltoides and P. euramericana. The hybrid family was typed for different marker systems (including SSRs, AFLPs, RAPDs, ISSRs, and SNPs), leading to the construction of two linkage maps based on the female P. deltoides (D map) and male P. euramericana (E map) with a pseudotestcross mapping strategy. The two maps were scanned by functional mapping to detect QTLs that control early growth trajectories of two rooting traits, maximal single-root length and the total number of roots per cutting, measured at five time points in water culture. Of the six QTLs detected for these two growth traits, only one is segregating in P. deltoides with poor rooting capacity, while the other five are segregating in P. euramericana showing good rooting capacity. Tests with functional mapping suggest different developmental patterns of the genetic effects of these root QTLs in time course. Five QTLs were detected to change their effects on root growth trajectories with time, whereas one detected to affect root growth consistently in time course. Knowledge about the genetic and developmental control mechanisms of root QTLs will have important implications for the genetic improvement of vegetative propagation traits in Populus.
C1 [Zhang, Bo; Tong, Chunfa; Yin, Tongming; Zhang, Xinye; Zhuge, Qiang; Huang, Minren; Wang, Mingxiu; Wu, Rongling] Nanjing Forestry Univ, Key Lab Forest Genet & Biotechnol, Nanjing 210037, Jiangsu Prov, Peoples R China.
[Yin, Tongming; Zhuge, Qiang; Huang, Minren; Wang, Mingxiu] Nanjing Forestry Univ, Jiangsu Key Lab Poplar Germplasm Enhancement & Va, Nanjing 210037, Jiangsu Prov, Peoples R China.
[Yin, Tongming] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Wu, Rongling] Univ Florida, Dept Stat, Gainesville, FL 32611 USA.
RP Zhang, B (reprint author), Nanjing Forestry Univ, Key Lab Forest Genet & Biotechnol, Longpan Rd 159, Nanjing 210037, Jiangsu Prov, Peoples R China.
EM zhangbo@njfu.edu.cn
FU National Natural Science Foundation of China [30671705, 30872051]; NSF
[0540745]
FX We thank the two anonymous reviewers for their constructive comments on
this manuscript. This work was partially supported by the National
Natural Science Foundation of China (grant nos. 30671705 and 30872051)
and NSF grant (no. 0540745).
NR 52
TC 19
Z9 22
U1 3
U2 25
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1614-2942
J9 TREE GENET GENOMES
JI Tree Genet. Genomes
PD JUL
PY 2009
VL 5
IS 3
BP 539
EP 552
DI 10.1007/s11295-009-0207-z
PG 14
WC Forestry; Genetics & Heredity; Horticulture
SC Forestry; Genetics & Heredity; Agriculture
GA 451RI
UT WOS:000266487200014
ER
PT J
AU Doktycz, MJ
Allison, DP
AF Doktycz, Mitchel J.
Allison, David P.
TI PROCEEDINGS OF THE 10(TH) INTERNATIONAL SCANNING PROBE MICROSCOPY (ISPM)
CONFERENCE SEATTLE, WASHINGTON, USA, JUNE 22-24, 2008 Preface
SO ULTRAMICROSCOPY
LA English
DT Editorial Material
C1 [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA.
[Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
RP Allison, DP (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA.
EM allisond@utk.edu
RI Doktycz, Mitchel/A-7499-2011
OI Doktycz, Mitchel/0000-0003-4856-8343
NR 0
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD JUL
PY 2009
VL 109
IS 8
BP XI
EP XI
DI 10.1016/j.ultramic.2009.03.001e
PG 1
WC Microscopy
SC Microscopy
GA 475JL
UT WOS:000268354400001
ER
PT J
AU Jiang, CS
Ptak, A
Yan, B
Moutinho, HR
Li, JV
Al-Jassim, MM
AF Jiang, C. -S.
Ptak, A.
Yan, B.
Moutinho, H. R.
Li, J. V.
Al-Jassim, M. M.
TI Microelectrical characterizations of junctions in solar cell devices by
scanning Kelvin probe force microscopy
SO ULTRAMICROSCOPY
LA English
DT Article; Proceedings Paper
CT 10th International Scanning Probe Microscopy Conference (ISPM)
CY JUN 22-24, 2008
CL Seattle, WA
DE Atomic force microscopy; Microscopic methods; Specifically for solid
interfaces and multilayers
ID SILICON; SURFACTANT; BISMUTH; GROWTH
AB Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (V(b)) to the device and taking the V(b)-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potential measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n-i-p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance. (c) 2009 Elsevier B.V. All rights reserved.
C1 [Jiang, C. -S.; Ptak, A.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Yan, B.] United Solar Ovon LLC, Troy, MI 48084 USA.
RP Jiang, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
EM chun.sheng.jiang@nrel.gov
RI jiang, chun-sheng/F-7839-2012; Li, Jian/B-1627-2016
NR 19
TC 7
Z9 7
U1 0
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD JUL
PY 2009
VL 109
IS 8
BP 952
EP 957
DI 10.1016/j.ultramic.2009.03.048
PG 6
WC Microscopy
SC Microscopy
GA 475JL
UT WOS:000268354400019
PM 19409706
ER
PT J
AU Kocharian, AN
Fernando, GW
Palandage, K
Davenport, JW
AF Kocharian, A. N.
Fernando, G. W.
Palandage, K.
Davenport, J. W.
TI Spin-charge separation and electron pairing instabilities in Hubbard
nanoclusters
SO ULTRAMICROSCOPY
LA English
DT Article; Proceedings Paper
CT 10th International Scanning Probe Microscopy Conference (ISPM)
CY JUN 22-24, 2008
CL Seattle, WA
DE High-T(c) superconductivity; Scanning tunneling microscopy; Coherent and
incoherent pairing; Charge and spin pseudogaps; Spin-charge separation;
Magnetism; Ultra-cold fermions
ID PHASE-SEPARATION; GROUND-STATE; MODEL; SUPERCONDUCTIVITY;
BI2SR2CACU2O8+DELTA; THERMODYNAMICS; FERROMAGNETISM; PSEUDOGAP; SYSTEMS;
FIELD
AB Electron charge and spin pairing instabilities in various cluster geometries for attractive and repulsive electrons are studied exactly under variation of interaction strength, electron doping and temperature. The exact diagonalization, level crossing degeneracies, spin-charge separation and separate condensation of paired electron charge and opposite spins yield intriguing insights into the origin of magnetism, ferroelectricity and superconductivity seen in inhomogeneous bulk nanomaterials and various phenomena in cold fermionic atoms in optical lattices. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases found recently in high-T(c) cuprates, manganites and multiferroic nanomaterials probed by scanning tunneling microscopy. Separate condensation of electron charge and spin degrees at various crossover temperatures offers a new route for superconductivity, different from the BCS scenario. The calculated phase diagrams resemble a number of inhomogeneous paired phases, superconductivity, ferromagnetism and ferroelectricity found in Nb and Co nanoparticles. The phase separation and electron pairing, monitored by electron doping and magnetic field surprisingly resemble incoherent electron pairing in the family of doped high-T(c) cuprates, ruthenocuprates, iron pnictides and spontaneous ferroelectricity in multiferroic materials. (C) Published by Elsevier B.V.
C1 [Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA.
[Kocharian, A. N.] Santa Monica Coll, Santa Monica, CA 90405 USA.
[Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA.
[Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA.
RP Kocharian, AN (reprint author), Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA.
EM armen.kocharian@calstatela.edu
NR 44
TC 3
Z9 3
U1 2
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-3991
J9 ULTRAMICROSCOPY
JI Ultramicroscopy
PD JUL
PY 2009
VL 109
IS 8
BP 1066
EP 1073
DI 10.1016/j.ultramic.2009.03.032
PG 8
WC Microscopy
SC Microscopy
GA 475JL
UT WOS:000268354400038
PM 19398274
ER
PT J
AU Moberly, JG
Borch, T
Sani, RK
Spycher, NF
Sengor, SS
Ginn, TR
Peyton, BM
AF Moberly, James G.
Borch, Thomas
Sani, Rajesh K.
Spycher, Nicolas F.
Sengoer, S. Sevinc
Ginn, Timothy R.
Peyton, Brent M.
TI Heavy Metal-Mineral Associations in Coeur d'Alene River Sediments: A
Synchrotron-Based Analysis
SO WATER AIR AND SOIL POLLUTION
LA English
DT Article
DE Coeur d'Alene; Zinc; Lead; Sediment Characterization; XAS
ID TRACE-ELEMENT GEOCHEMISTRY; MINING DISTRICT; PHASE ASSOCIATIONS; SURFACE
WATERS; LAKE-SEDIMENTS; IDAHO; USA; ZN; LEAD; REDUCTION
AB Nearly a century of mining activities upstream have contaminated Lake Coeur d'Alene and its tributaries with Pb, Zn, and other heavy metals. Heavy metal concentrations in sediments of the Coeur d'Alene watershed have been shown to be inversely proportional to the sediment size fraction; thus, analysis on a very small scale is essential to determine the mobility and stability of heavy metals in this environment. Micron-scale synchrotron-based methods were used to determine the association of heavy metals with solid phases in sediments of the Coeur d'Alene River. Bulk X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy, and synchrotron-based microfocused XRD combined with microfocused X-ray fluorescence mapping indicate the presence of crystalline Pb- and Zn-bearing mineral phases of dundasite [Pb(2)Al(4)(CO(3))(4)(OH)(8)center dot 3H(2)O], coronadite [PbMn(8)O(16)], stolzite [PbWO(4)], mattheddleite [Pb(10)(SiO(4))(3.5)(SO(4))(2)Cl(2)], bindheimite [Pb(2)Sb(2)O(7)], and smithsonite [ZnCO(3)]. Likely phases for Zn and Pb adsorption were ferrihydrite, diaspore [AlO(OH)], manganite [Mn((III))O(OH)], muscovite [KAl(2)(Si(3)Al)O(10)(OH,F)(2)], biotite [K(Fe,Mg)(3)AlSi(3)O(10)(F,OH)(2)], and montmorillonite [Na(0.3)(Al,Mg)(2)Si(4)O(10)(OH)(2)center dot 8H(2)O]. The large predominance of Fe and Mn (hydr)oxides over other sorbent minerals suggests that the metal sorption behavior is dominated by these (hydr)oxide phases.
C1 [Moberly, James G.; Sani, Rajesh K.] Washington State Univ, Sch Chem & Bioengn, Pullman, WA 99164 USA.
[Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA.
[Borch, Thomas] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA.
[Borch, Thomas] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA.
[Spycher, Nicolas F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA.
[Sengoer, S. Sevinc; Ginn, Timothy R.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA.
RP Sani, RK (reprint author), S Dakota Sch Mines & Technol, Chem & Biol Engn Dept, 501 E St Joseph St, Rapid City, SD 57701 USA.
EM rajesh.sani@sdsmt.edu
RI Spycher, Nicolas/E-6899-2010; Borch, Thomas/A-2288-2008; Peyton,
Brent/G-5247-2015;
OI Borch, Thomas/0000-0002-4251-1613; Peyton, Brent/0000-0003-0033-0651;
Moberly, James/0000-0003-0950-0952
FU National Science Foundation [0628258]; Director, Office of Science,
Office of Basic Energy Sciences, of the US Department of Energy
[DE-AC02-05CH11231]
FX This material is based upon work supported by the National Science
Foundation under Grant No. 0628258. The support of the WSU Center for
Multiphase Environmental Research and the WSU School of Chemical and
Bioengineering also contributed significantly to this research. Portions
of this research were carried out at the Stanford Synchrotron Radiation
Laboratory, a national user facility operated by Stanford University on
behalf of the US Department of Energy, Office of Basic Energy Sciences.
The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the US Department of Energy
under Contract No. DE-AC02-05CH11231. The authors greatly appreciate the
help of Charles Knaack, Diane Johnson Cornelius, and Rick Conrey at WSU
Geo Analytical Laboratories for sample analysis and counsel. Additional
thanks to Peg Dirckx, Brandy Stewart, Lisa Kirk, and two anonymous
reviewers for greatly improving the quality of the manuscript.
NR 70
TC 16
Z9 16
U1 2
U2 18
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0049-6979
J9 WATER AIR SOIL POLL
JI Water Air Soil Pollut.
PD JUL
PY 2009
VL 201
IS 1-4
BP 195
EP 208
DI 10.1007/s11270-008-9937-z
PG 14
WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water
Resources
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences;
Water Resources
GA 457LD
UT WOS:000266928600017
ER
PT J
AU Jonkman, JM
AF Jonkman, Jason M.
TI Dynamics of Offshore Floating Wind Turbines-Model Development and
Verification
SO WIND ENERGY
LA English
DT Article
DE offshore wind turbine; floating; model development; model verification;
aero-hydro-servo-elastic analysis
AB The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modelling the coupled dynamic response of offshore floating wind turbines and the verification of the simulation tool through model-to-model comparisons. The fully coupled time-domain aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address limitations of previous studies and has features required to perform loads analyses for a variety of rotor-nacelle assembly, tower, support platform and mooring system configurations. The developed hydrodynamics module accounts for linear hydrostatic restoring, non-linear viscous drag; the added-mass and damping contributions from linear wave radiation, including free-surface memory effects; and the incident-wove excitation from linear diffraction in regular or irregular seas. The developed mooring line module is quasi-static and accounts for the elastic stretching of an array of homogenous taut or slack catenary lines with seabed interaction. The hydrodynamics module, the moorings module, and the overall simulation tool were tested by comparing to results of other models, including frequency domain models. The favourable results of all the verification exercises provided confidence to perform more thorough analyses. Copyright (C) 2009 John Wiley & Sons, Ltd.
C1 Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Jonkman, JM (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
EM jason.jonkman@nrel.gov
FU US Department of Energy [DE-AC36-99-G010337]; Cooperative Research and
Development Agreement [CRD-06-178]
FX This work was performed at NREL in support of the US Department of
Energy under contract number DE-AC36-99-G010337 and in support of a
Cooperative Research and Development Agreement (CRD-06-178) with ITI
Energy.
NR 37
TC 94
Z9 101
U1 8
U2 52
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 1095-4244
J9 WIND ENERGY
JI Wind Energy
PD JUL
PY 2009
VL 12
IS 5
BP 459
EP 492
DI 10.1002/we.347
PG 34
WC Energy & Fuels; Engineering, Mechanical
SC Energy & Fuels; Engineering
GA 477KQ
UT WOS:000268518400004
ER
PT J
AU Sporty, J
Lin, SJ
Kato, M
Ognibene, T
Stewart, B
Turteltaub, K
Bench, G
AF Sporty, Jennifer
Lin, Su-Ju
Kato, Michiko
Ognibene, Ted
Stewart, Benjamin
Turteltaub, Ken
Bench, Graham
TI Quantitation of NAD(+) biosynthesis from the salvage pathway in
Saccharomyces cerevisiae
SO YEAST
LA English
DT Article
DE calorie restriction; NAD; NADH; yeast; NPT1; QPT1; salvage; de novo; AMS
ID ACCELERATOR MASS-SPECTROMETRY; NICOTINIC-ACID; CALORIE RESTRICTION;
LIFE-SPAN; YEAST; SIR2; IDENTIFICATION; LEVEL; NADH; AMS
AB Nicotinamide adenine dinucleotide (NAD(+)) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD(+) decomposition products. NAD(+) biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR). However, the relative contribution of each pathway to NAD(+) biosynthesis under both normal and CR conditions is not known. Here, we have performed lifespan, NAD(+) and NADH (the reduced form of NAD(+)) analyses on BY4742 wild-type, NAD(+) salvage pathway knockout (npt1 Delta) and NAD(+) de novo pathway knockout (qpt1 Delta) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR). We have utilized C-14 labelled nicotinic acid in the culture media combined with HPLC speciation and both UV and 14 C detection to quantitate the total amounts of NAD(+) and NADH and the amounts derived from the salvage pathway. We observed that wild-type and qpt1 Delta yeast exclusively utilized extracellular nicotinic acid for NAD(+) and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions, suggesting that the de novo pathway plays little role if a functional salvage pathway is present. We also observed that NAD(+) concentrations decreased in all three strains under CR. However, unlike the wild-type strain, NADH concentrations did not decrease and NAD(+): NADH ratios did not increase under CR for either knockout strain. Lifespan analyses revealed that CR resulted in a lifespan increase of approximately 25% for the wild-type and qpt1 Delta strains, while no increase in lifespan was observed for the npt1 Delta strain. In combination, these data suggest that having a functional salvage pathway is required for lifespan extension under CR. Copyright (C) 2009 John Wiley & Sons, Ltd.
C1 [Sporty, Jennifer; Ognibene, Ted; Stewart, Benjamin; Turteltaub, Ken; Bench, Graham] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA.
[Lin, Su-Ju; Kato, Michiko] Univ Calif Davis, Dept Microbiol, Davis, CA 95616 USA.
RP Bench, G (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, L-397,7000 E Ave, Livermore, CA 94551 USA.
EM bench1@llnl.gov
FU US Department of Energy [DE-AC52-07NA27344]; National Institutes of
Health, National Center for Research Resources, Biomedical Technology
Program [P41 RR013461]
FX This work was performed under the auspices of the US Department of
Energy by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344 and was supported by the National Institutes of
Health, National Center for Research Resources, Biomedical Technology
Program (P41 RR013461).
NR 20
TC 12
Z9 13
U1 2
U2 7
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0749-503X
J9 YEAST
JI Yeast
PD JUL
PY 2009
VL 26
IS 7
BP 363
EP 369
DI 10.1002/yea.1671
PG 7
WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Microbiology; Mycology
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Microbiology; Mycology
GA 471DM
UT WOS:000268035200001
PM 19399913
ER
PT J
AU Michalak, W
Broitman, E
Alvin, MA
Gellman, AJ
Miller, JB
AF Michalak, W.
Broitman, E.
Alvin, M. A.
Gellman, A. J.
Miller, J. B.
TI Interactions of SO2 and H2S with amorphous carbon films
SO APPLIED CATALYSIS A-GENERAL
LA English
DT Article
DE Activated carbon; Hydrogen sulfide; Sulfur dioxide; Sulfur adsorption;
Thin carbon films
ID MAGNETIC DATA-STORAGE; HYDROGEN-SULFIDE; ACTIVATED CARBON; SELECTIVE
OXIDATION; ADSORPTION; SULFUR; REGENERATION; OVERCOATS; NITROGEN;
CREATION
AB There is significant interest in development of efficient catalyst-sorbents for the capture and conversion of sulfur-compounds such as H2S and SO2. In this work, ultra-high vacuum (UHV) techniques have been used to carefully prepare and thoroughly characterize amorphous carbon (a-C) thin films as models of activated carbon sorbents. Films with modified surface chemistries were prepared by oxidation of a sputter deposited carbon film (a-COx) and by sputter depositing carbon in the presence of N-2 (a-CNx) or methane (a-CHx). Temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to study H2S and SO2 surface chemistry on these films and on a highly oriented pyrolytic graphite (HOPG) reference-surface. The modification of the carbons with different heteroatoms influences both the strength of their interactions with SO2 and H2S and their capacities for sulfur-compound adsorption. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Michalak, W.; Alvin, M. A.; Gellman, A. J.; Miller, J. B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Michalak, W.; Broitman, E.; Gellman, A. J.; Miller, J. B.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA.
RP Miller, JB (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
EM jbmiller@andrew.cmu.edu
RI Gellman, Andrew/M-2487-2014; Broitman, Esteban/L-6950-2015
OI Gellman, Andrew/0000-0001-6618-7427; Broitman,
Esteban/0000-0003-3277-1945
FU National Energy Technology Laboratory [DE-AC26-04NT41817.606.01.05,
DE-AC26-04NT41817.630.01.10]
FX The authors thank Radisav Vidic and Jason Monnell at the University of
Pittsburgh for helpful discussions.; This technical effort was performed
in support of the National Energy Technology Laboratory under the RDS
contracts DE-AC26-04NT41817.606.01.05 and DE-AC26-04NT41817.630.01.10.
NR 34
TC 6
Z9 6
U1 1
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-860X
J9 APPL CATAL A-GEN
JI Appl. Catal. A-Gen.
PD JUN 30
PY 2009
VL 362
IS 1-2
BP 8
EP 13
DI 10.1016/j.apcata.2009.04.008
PG 6
WC Chemistry, Physical; Environmental Sciences
SC Chemistry; Environmental Sciences & Ecology
GA 466QA
UT WOS:000267676000002
ER
PT J
AU Vukovic, G
Marinkovic, A
Obradovic, M
Radmilovic, V
Colic, M
Aleksic, R
Uskokovic, PS
AF Vukovic, Goran
Marinkovic, Aleksandar
Obradovic, Maja
Radmilovic, Velimir
Colic, Miodrag
Aleksic, Radoslav
Uskokovic, Petar S.
TI Synthesis, characterization and cytotoxicity of surface
amino-functionalized water-dispersible multi-walled carbon nanotubes
SO APPLIED SURFACE SCIENCE
LA English
DT Article
DE Carbon nanotubes; Amino-functionalization; Cyclic voltammetry;
Cytotoxicity
ID DEOXYRIBONUCLEIC-ACID; COMPOSITE; CELLS; ELECTROCHEMISTRY;
BIOCOMPATIBILITY; CHEMISTRY; OXIDATION
AB Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N, N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 mu g ml(-1), were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 mu g ml(-1) reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Vukovic, Goran; Marinkovic, Aleksandar; Aleksic, Radoslav; Uskokovic, Petar S.] Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia.
[Obradovic, Maja] Univ Belgrade, Inst Chem Technol & Met, Belgrade 11001, Serbia.
[Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Colic, Miodrag] Mil Med Acad, Inst Med Res, Belgrade 11002, Serbia.
RP Uskokovic, PS (reprint author), Univ Belgrade, Fac Technol & Met, Karnegijeva 4, Belgrade 11120, Serbia.
EM puskokovic@tmf.bg.ac.rs
RI Obradovic, Maja/C-5999-2008
NR 46
TC 73
Z9 74
U1 7
U2 49
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-4332
J9 APPL SURF SCI
JI Appl. Surf. Sci.
PD JUN 30
PY 2009
VL 255
IS 18
BP 8067
EP 8075
DI 10.1016/j.apsusc.2009.05.016
PG 9
WC Chemistry, Physical; Materials Science, Coatings & Films; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 463YG
UT WOS:000267469500039
ER
PT J
AU Jaisi, DP
Dong, HL
Plymale, AE
Fredrickson, JK
Zachara, JM
Heald, S
Liu, CX
AF Jaisi, Deb P.
Dong, Hailiang
Plymale, Andrew E.
Fredrickson, James K.
Zachara, John M.
Heald, Steve
Liu, Chongxuan
TI Reduction and long-term immobilization of technetium by Fe(II)
associated with clay mineral nontronite
SO CHEMICAL GEOLOGY
LA English
DT Article
DE Iron; Microbial; Nontronite; Reduction; Reoxidation; Technetium
ID RAY-ABSORPTION SPECTROSCOPY; SOLID-WATER INTERFACE; MICROBIAL REDUCTION;
SHEWANELLA-PUTREFACIENS; DISSIMILATORY REDUCTION; REOXIDATION BEHAVIOR;
BACTERIAL REDUCTION; STRUCTURAL FE(III); KINETIC-ANALYSIS; BIOGENIC
FE(II)
AB Tc-99 is formed mostly during nuclear reactions and is released into the environment during weapons testing and inadvertent waste disposal. The long half-life, high environmental mobility (as Tc(VII)O-4(-)) and its possible uptake into the food chain cause Tc-99 to be a significant environmental contaminant. In this study, we evaluated the role of Fe(II) in biologically reduced clay mineral, nontronite (NAu-2), in reducing Tc(VII) O-4(-) to poorly soluble Tc(IV) species as a function of pH and Fe(II) concentration. The rate of Tc(VII) reduction by Fe(II) in NAu-2 was higher at neutral pH (pH 7.0) than at acidic and basic pHs when Fe(II) concentration was low (<1 mmol/g). The effect of pH, however. was insignificant at higher Fe(II) concentrations. The reduction of Tc(VII) by Fe(II) associated with NAu-2 was also studied in the presence of common subsurface oxidants including iron and manganese oxides, nitrate, and oxygen, to evaluate the effect of these oxidants on the enhancement and inhibition of Tc(VII) reduction, and reoxidation of Tc(IV). Addition of iron oxides (goethite and hematite) to the Tc(VII)-NAu-2 system, where Tc(VII) reduction was ongoing, enhanced reduction of Tc(VII), apparently as a result of re-distribution of reactive Fe(II) from NAu-2 to more reactive goethite/hematite surfaces. Addition of manganese oxides stopped further Tc(VII) reduction, and in case of K+-birnessite, it reoxidized previously reduced Tc(IV). Nitrate neither enhanced reduction of Tc(VII) nor promoted reoxidation of Tc(IV). Approximately 11% of Tc(IV) was oxidized by oxygen. The rate and extent of Tc(IV) reoxidation was found to strongly depend on the nature of the oxidants and concentration of Fe (II). When the same oxidants were added to aged Tc reduction products (mainly NAu-2 and TcO2 center dot nH(2)O), the extent of Tc(IV) reoxidation decreased significantly relative to fresh Tc(IV) products. Increasing NAu-2 concentration also resulted in the decreased extent of Tc(IV) reoxidation. The results were attributed to the effect of NAu-2 aggregation that effectively retained Tc(IV) in the solid and decreased its vulnerability to reoxidation. Overall, our results implied that bioreduced clay minerals could play an important role in reducing Tc(VII) and in maintaining the long-term stability of reduced Tc(IV). (c) 2009 Elsevier B.V. All rights reserved.
C1 [Jaisi, Deb P.; Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA.
[Plymale, Andrew E.; Fredrickson, James K.; Zachara, John M.; Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Heald, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Dong, HL (reprint author), Miami Univ, Dept Geol, Oxford, OH 45056 USA.
EM dongh@muohio.edu
RI Liu, Chongxuan/C-5580-2009
NR 56
TC 53
Z9 55
U1 7
U2 64
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2541
EI 1878-5999
J9 CHEM GEOL
JI Chem. Geol.
PD JUN 30
PY 2009
VL 264
IS 1-4
BP 127
EP 138
DI 10.1016/j.chemgeo.2009.02.018
PG 12
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 462TQ
UT WOS:000267379900011
ER
PT J
AU Kinman, WS
Neal, CR
Davidson, JP
Font, L
AF Kinman, William S.
Neal, Clive R.
Davidson, Jon P.
Font, Laura
TI The dynamics of Kerguelen Plateau magma evolution: New insights from
major element, trace element and Sr isotope microanalysis of plagioclase
hosted in Elan Bank basalts
SO CHEMICAL GEOLOGY
LA English
DT Article
DE Kerguelen; Laser ablation; Microanalysis; Large igneous province; Ocean
Drilling Program
ID SOUTHERN INDIAN-OCEAN; LARGE IGNEOUS PROVINCES; BROKEN RIDGE; ODP
LEG-183; CONTINENTAL-CRUST; VOLCANO; CRYSTALLIZATION; CONSTRAINTS;
DIFFUSION; SYSTEMS
AB The Kerguelen Plateau and Broken Ridge in the southern Indian Ocean together represent one of the most voluminous large igneous provinces (LIPs) ever emplaced on Earth. A scientific objective of Ocean Drilling Program (ODP) Leg 183 was to constrain the post-melting magma evolution of Kerguelen Plateau magmas. In an effort to better understand this evolution, isotopic and trace element analysis of individual plagioclase crystals hosted within two Kerguelen Plateau basalts recovered from Elan Bank were undertaken. Previous whole-rock studies established that the two host basalts; investigated in this study are samples of crustally contaminated (lower group) and relatively uncontaminated (upper group) basalt.
Plagioclase phenocrysts; from the uncontaminated basalt are dominantly normal zoned and exhibit a (87)Sr/(86)Sr(I) range of 0.704845-0.704985, which overlaps uncontaminated group whole-rock values previously reported. Plagioclase crystals from the contaminated basalt are dominantly reverse zoned and exhibit a (87)Sr/(86)Sr(I) range of 0.705510-0.705735, which all lie within contaminated group whole-rock values previously reported. There are no systematic within crystal core to rim variations in (87)Sr/(86)Sr(I) from either group, with the exception that contaminated group crystal rims have overall less radiogenic (87)Sr/(86)Sr(I) than other zones. These observations indicate that crustal assimilation occurred before the formation of Unit 10 plagioclase phenocrysts, which is supported by parent magma trace element abundance data inverted using carefully calculated partition coefficients. Trace element diffusion modeling indicates that the upper group basalt (Unit 4) experienced a more vigorous eruptive flux than the lower group basalt (Unit 10).
We suggest that plagioclase phenocrysts in both the upper and lower group basalts originated from the shallowest section of what was likely a complex magma chamber system. We contend that the magmatic system contained regions of extensive plagioclase-dominated crystal mush. Crustal assimilation was not a significant ongoing process in this portion of the Elan Bank magmatic system. Both basalts exhibit compelling evidence for remobilization and partial resorption of crystalline debris (e.g., reverse zoned crystals, glomerocrysts). We suggest Unit 4 and 10 magmas ascended different sections of the Elan Bank magma system, where the Unit 10 magmas ascended a section of the magma system that penetrated a stranded fragment of continental crust. (c) 2009 Elsevier B.V. All rights reserved.
C1 [Kinman, William S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Davidson, Jon P.; Font, Laura] Univ Durham, Dept Earth Sci, Durham DH1 3LE, England.
[Kinman, William S.; Neal, Clive R.] Univ 6 Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA.
[Font, Laura] Vrije Univ Amsterdam, IVA Earth Sci Petrol Dept, Amsterdam, Netherlands.
RP Kinman, WS (reprint author), Los Alamos Natl Lab, Div Chem, MSJ514, Los Alamos, NM 87545 USA.
EM wkinman@lanl.gov
FU NSF [OCE-0452102]
FX This research used samples provided by the Ocean Drilling Program (ODP).
ODP was sponsored by the US National Science Foundation and
participating countries under management of theJoint Oceanographic
Institutions. We are indebted to the staff and crew of the RVJOIDES
Resolution whose professionalism and cooperation allowed the collection
of drill cores at Site 1137. A special thanks to Prof. Gerhard Worner
for a thorough and tremendously useful review of this manuscript.
Funding was provided to CRN by NSF for this work under OCE-0452102.
Support from the University of Notre Dame to WSK is gratefully
acknowledged. We also thank Prof. D. Graham Pearson, Dr. Geoff Nowell,
Dr. Dan Morgan and Dr. Bruce Charlier for their direct and indirect
efforts and support with this project
NR 47
TC 4
Z9 7
U1 2
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2541
J9 CHEM GEOL
JI Chem. Geol.
PD JUN 30
PY 2009
VL 264
IS 1-4
BP 247
EP 265
DI 10.1016/j.chemgeo.2009.03.010
PG 19
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 462TQ
UT WOS:000267379900021
ER
PT J
AU Lord, OT
Walter, MJ
Dasgupta, R
Walker, D
Clark, SM
AF Lord, O. T.
Walter, M. J.
Dasgupta, R.
Walker, D.
Clark, S. M.
TI Melting in the Fe-C system to 70 GPa
SO EARTH AND PLANETARY SCIENCE LETTERS
LA English
DT Article
DE carbon; core; iron carbide; light element
ID CORE DENSITY DEFICIT; DIAMOND-ANVIL CELL; EARTHS OUTER CORE;
X-RAY-DIFFRACTION; HIGH-PRESSURE; THERMAL-EXPANSION; CRYSTAL-STRUCTURE;
MANTLE BOUNDARY; LIGHT-ELEMENTS; PHASE-DIAGRAM
AB We determined high-pressure melting curves for Fe(3)C, Fe(7)C(3) and the Fe-Fe(3)C eutectic using laser-heated diamond anvil cell techniques. The principal criterion for melting is the observation of plateaus in the temperature vs. laser power function, which is an expected behavior at isobaric invariant points (e.g. congruent, eutectic, or peritectic melting) as increased power provides the latent heat of melting. We verified this technique by reproducing the melting curves of well-studied congruently melting compounds at high pressure (Fe, Pt, FeS, Pb), and by comparison with melting determinations made using thermocouple-based large-volume press techniques. The incongruent melting curve of Fe(3)C measured to 70 GPa has an apparent change in slope at similar to 8 GPa, which we attribute to stabilization of Fe(7)C(3) at the solidus and the creation of a P-Tinvariant point. We observe that Fe(7)C(3) Melts at higher temperatures than Fe(3)C between 14 and 52 GPa and has a steep P-T slope, and on this basis predicts an expanding field of Fe(7)C(3) + liquid with pressure. The Fe-Fe(3)C eutectic melting curve measured to 70 GPa agrees closely with multi-anvil data and thermodynamic calculations. We also measured the eutectic composition as a function of pressure using an in situ X-radiographic imaging technique, and find a rapid drop in carbon in the eutectic composition above about 20 GPa, generally consistent with previous thermodynamic calculations. and predict that the eutectic lies close to pure iron by similar to 50 GPa. We use these observations to extrapolate phase relations to core-relevant pressures. Convergence of the Fe(3)C and Fe-Fe(3)C eutectic melting curves indicate that Fe(3)C is replaced at the solidus by Fe(7)C(3) at similar to 120 GPa, forming another P-T invariant point and a new eutectic between Fe and Fe(7)C(3). Thus, Fe(3)C is unlikely to be an important crystallizing phase at core conditions. whereas Fe(7)C(3) could become an important crystallizing phase. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Lord, O. T.; Walter, M. J.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England.
[Dasgupta, R.; Walker, D.] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA.
[Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Lord, OT (reprint author), Univ Bristol, Dept Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England.
EM Oliver.Lord@bristol.ac.uk
RI Dasgupta, Rajdeep/C-7252-2009; Lord, Oliver/D-4663-2014; Clark,
Simon/B-2041-2013
OI Dasgupta, Rajdeep/0000-0001-5392-415X; Lord, Oliver/0000-0003-0563-1293;
Clark, Simon/0000-0002-7488-3438
FU LDEO post-doctoral fellowship; NERC [NE/C511548/1]; NSF; Director,
Office of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy [DE-AC02-05CH11231]; COMPRES; Consortium for
Materials Properties Research in Earth Sciences [EAR 06-49658]
FX We thank J. Knight at ALS for technical support during the imaging
experiments. RD acknowledges support of LDEO post-doctoral fellowship.
OTL acknowledges support of a NERC PhD studentship. This work was
supported by NERC grant NE/C511548/1 to MJW and by NSF grants to DW. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. This research was partially supported by
COMPRES, the Consortium for Materials Properties Research in Earth
Sciences under NSF Cooperative Agreement EAR 06-49658.
NR 68
TC 93
Z9 99
U1 7
U2 62
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0012-821X
J9 EARTH PLANET SC LETT
JI Earth Planet. Sci. Lett.
PD JUN 30
PY 2009
VL 284
IS 1-2
BP 157
EP 167
DI 10.1016/j.epsl.2009.04.017
PG 11
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 476KK
UT WOS:000268438900018
ER
PT J
AU Zhang, YX
Zheng, HH
Liu, G
Battaglia, V
AF Zhang, Yuxi
Zheng, Honghe
Liu, Gao
Battaglia, Vince
TI Synthesis and electrochemical studies of a layered spheric TiO2 through
low temperature solvothermal method
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE Lithium ion batteries; Solvothermal method; Anatase TiO2; Anode
materials
ID LITHIUM-ION BATTERIES; ANATASE NANOPARTICLES; ANODE MATERIALS;
INTERCALATION; NANOWIRES; STORAGE; NANOTUBES; NANORODS; GROWTH
AB This paper demonstrates a low temperature solvothermal method for the synthesis of a layered spheric TiO2. The crystal structure and morphology of the material were characterized by using X-ray diffraction (XRD) and scanning electron miscopy (SEM). Electrochemical performances of the TiO2 when used as anode material in lithium ion batteries were investigated by galvanostatic charge/discharge and cyclic voltammetry experiments. A discharge capacity of 179 m Ah g(-1) was obtained in the potential range between 3.0 and 1.5 V. No significant capacity decay was observed in the successive 30 cycles showing satisfactory cycling performance of the electrode. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Zhang, Yuxi; Zheng, Honghe] Henan Normal Univ, Coll Chem & Environm Sci, Xinxiang 453007, Peoples R China.
[Zheng, Honghe; Liu, Gao; Battaglia, Vince] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Zheng, HH (reprint author), Henan Normal Univ, Coll Chem & Environm Sci, Xinxiang 453007, Peoples R China.
EM hhzheng@mail.com
FU Natural Science Foundation of China [20573033]; Henan Province
[04120001100]
FX The authors are greatly indebted to the funding of Natural Science
Foundation of China (NSFC, contract no. 20573033) and the young
researcher program of Henan Province (04120001100), China.
NR 24
TC 12
Z9 12
U1 1
U2 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD JUN 30
PY 2009
VL 54
IS 16
BP 4079
EP 4083
DI 10.1016/j.electacta.2009.02.044
PG 5
WC Electrochemistry
SC Electrochemistry
GA 453RO
UT WOS:000266628900015
ER
PT J
AU Milewski, A
Sultan, M
Yan, E
Becker, R
Abdeldayem, A
Soliman, F
Gelil, KA
AF Milewski, Adam
Sultan, Mohamed
Yan, Eugene
Becker, Richard
Abdeldayem, Ahmed
Soliman, Farouk
Gelil, Kamil Abdel
TI A remote sensing solution for estimating runoff and recharge in arid
environments
SO JOURNAL OF HYDROLOGY
LA English
DT Article
DE SWAT; Continuous rainfall-runoff model; Eastern Desert; Sinai peninsula;
Remote sensing; GIs
ID GROUNDWATER RECHARGE; UNGAUGED CATCHMENTS; TRANSMISSION LOSSES; EASTERN
DESERT; SOIL-MOISTURE; RIVER-BASIN; MODEL; RAINFALL; WATER; BALANCE
AB Efforts to understand and to quantify precipitation and its partitioning into runoff evapo-transpiration, and icecharge are often hampered by the absence or paucity of appropriate monitoring systems. We applied methodologies for rainfall-runoff and groundwater recharge computations that heavily rely on observations extracted from a wide-range of global remote sensing data sets (TRMM, SSM/l, Landsat TM, AVHRR, AMSR-E, and ASTER) using the arid Sinai Peninsula (SP; area: 61,000 km(2)) and the Eastern Desert (ED; area: 220,000 km(2)) of Egypt as our test sites. A two-fold exercise was conducted. Spatiotemporal remote sensing data (TRMM, AVHRR and AMSR-E) were extracted from global data sets over the test sites using RESDEM, the Remote Sensing Data Extraction Model, and were then used to identify and to verify precipitation events throughout the past 10 years (1998-2007). This was accomplished by using an automated cloud detection technique to identify clouds and to monitor their propagation prior to and throughout the identified precipitation events, and by examining changes in soil moisture (extracted from AMSR-E data) following the identification of clouds. For the investigated period, 246 of 327 events were verified in the SP, and 179 of 304 in the ED. A catchment-based, continuous, semi-distributed hydrologic model (Soil Water and Assessment Tool model; SWAT) was calibrated against observed runoff values from Wadi Girafi Watershed (area: 3350 km(2)) and then used to provide a continuous simulation (1998-2007) of the overland flow, channel flow, transmission losses, evaporation on bare soils and evapo-transpiration, and groundwater recharge for the major (area: 2014-22,030 km(2)) watersheds in the SP (Watir, El-Arish, Dahab, and Awag) and the ED (Qena, Hammamat, Asyuti, Tarfa, El-Quffa, El-Batur, Kharit, Hodein, and Allaqi) covering 48% and 51% of the total areas of the SP and the ED, respectively. For the investigated watersheds in the SP, the average annual precipitation, average annual runoff, and average annual recharge through transmission losses were found to be: 2955 x 10(6)m(3), 508 x 10(6)m(3) (17.1% total precipitation (TP)), and 463 x 10(6)m(3) (15.7% TP), respectively, whereas in the ED these values are: 807 x 10(6)m(3), 77.8 x 10(6)m(3) (9.6% TP), and 171 x 10(6)m(3) (21.2% TP), respectively. Results demonstrate the enhanced opportunities for groundwater development in the SP (compared to the ED) and highlight the potential for similar applications in and areas elsewhere. The adopted remote sensing-based, regionalization approach is not a substitute for traditional methodologies that rely on extensive field datasets from rain gauge and stream flow networks, yet could provide first-order estimates for rainfall, runoff, and recharge over large sectors of the and world lacking adequate coverage with spatial and temporal precipitation and field data. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Milewski, Adam; Sultan, Mohamed; Becker, Richard] Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA.
[Yan, Eugene] Argonne Natl Lab, Div Environm Sci, Chicago, IL USA.
[Abdeldayem, Ahmed] Cairo Univ, Dept Hydraul & Engn, Cairo, Egypt.
[Soliman, Farouk] Suez Canal Univ, Dept Geol, Ismailia, Egypt.
[Gelil, Kamil Abdel] Natl Water Resource Ctr, Minist Water Resources & Irrigat, Cairo, Egypt.
RP Sultan, M (reprint author), Western Michigan Univ, Dept Geosci, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA.
EM mohamed.sultan@wmich.edu
RI Becker, Richard/A-9120-2010; Milewski, Adam/C-7824-2011
OI Becker, Richard/0000-0003-2514-2040;
FU United Nations Development Programme (UNDP); Global Environmental
Facility (GEF) Internatioal Water Program; National Science Foundation
(NSF) [OISE-0514307]; NATO Science For Peace Program [SFP982614];
Michigan University
FX Funding was provided by the United Nations Development Programme (UNDP)
and the Global Environmental Facility (GEF) Internatioal Water Program,
the National Science Foundation (NSF) Science and Technology Grant
(OISE-0514307), and the NATO Science For Peace Program (SFP982614)
(Environmental Security Program), all awarded to Western Michigan
University. We would also like to thank Dr. DeJeu and his research team
for providing us with the processed AMSR-E data.
NR 76
TC 43
Z9 43
U1 3
U2 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-1694
J9 J HYDROL
JI J. Hydrol.
PD JUN 30
PY 2009
VL 373
IS 1-2
BP 1
EP 14
DI 10.1016/j.jhydrol.2009.04.002
PG 14
WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources
SC Engineering; Geology; Water Resources
GA 471RB
UT WOS:000268074900001
ER
PT J
AU Pluth, MD
Fiedler, D
Mugridge, JS
Bergman, RG
Raymond, KN
AF Pluth, Michael D.
Fiedler, Dorothea
Mugridge, Jeffrey S.
Bergman, Robert G.
Raymond, Kenneth N.
TI Encapsulation and characterization of proton-bound amine homodimers in a
water-soluble, self-assembled supramolecular host
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE host-guest chemistry; molecular recognition; guest encapsulation; amine
protonation
ID BASIC SOLUTION; ORTHOFORMATE HYDROLYSIS; NITROGEN INVERSION;
HYDROGEN-BONDS; GUEST EXCHANGE; RECOGNITION; CATALYSIS; STABILIZATION;
MECHANISM; SPECTROSCOPY
AB Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen-bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly that are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines, and piperidines. Proton-bound homodimer formation is observed for N-alkylaziridines (R = methyl, isopropyl, tert-butyl), N-alkylazetidines (R = isopropyl, tert-butyl), and N-methylpyrrolidine. At high concentration, formation of a proton-bound homotrimer is observed in the case of N-methylaziridine. The homodimers stay intact inside the assembly over a large concentration range, thereby suggesting cooperative encapsulation. Both G3(MP2)B3 and G3B3 calculations of the proton-bound homodimers were used to investigate the enthalpy of the hydrogen bond in the proton-bound homodimers and suggest that the enthalpic gain upon formation of the proton-bound homodimers may drive guest encapsulation.
C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu
RI Pluth, Michael/A-7222-2012
OI Pluth, Michael/0000-0003-3604-653X
FU U.S. Department of Energy [DE-AC02-05CH11231]; National Science
Foundation
FX We thank Drs. Jamin Krinsky and Kathleen Durkin for assistance with
calculations. This work was supported by the Director, Office of
Science, Office of Advanced Scientific Computing Research, Office of
Basic Energy Sciences (U.S. Department of Energy) under contract
DE-AC02-05CH11231 and National Science Foundation Predoctoral
Fellowships ( to M. D. P. and J.S.M.).
NR 41
TC 42
Z9 42
U1 4
U2 13
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 30
PY 2009
VL 106
IS 26
BP 10438
EP 10443
DI 10.1073/pnas.0809806106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 465EI
UT WOS:000267564300011
PM 19181859
ER
PT J
AU Martos, V
Bell, SC
Santos, E
Isacoff, EY
Trauner, D
de Mendoza, J
AF Martos, Vera
Bell, Sarah C.
Santos, Eva
Isacoff, Ehud Y.
Trauner, Dirk
de Mendoza, Javier
TI Calix[4]arene-based conical-shaped ligands for voltage-dependent
potassium channels
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE electrophysiology; Kv1.x channels; ligand-protein surface interactions;
molecular recognition; multivalent calix[4]arene ligands
ID SHAKER K+ CHANNEL; REARRANGEMENTS; INACTIVATION; MODULATORS; STABILITY;
DESIGN
AB Potassium channels are among the core functional elements of life because they underpin essential cellular functions including excitability, homeostasis, and secretion. We present here a series of multivalent calix[4]arene ligands that bind to the surface of voltage-dependent potassium channels (K(v)1.x) in a reversible manner. Molecular modeling correctly predicts the best candidates with a conical C(4) symmetry for optimal binding, and the effects on channel function are assessed electrophysiologically. Reversible inhibition was observed, without noticeable damage of the oocytes, for tetraacylguanidinium or tetraarginine members of the series with small lower rim O-substituents. Apparent binding constants were in the low micromolar range and had Hill coefficients of 1, consistent with a single site of binding. Suppression of current amplitude was accompanied by a positive shift in the voltage dependence of gating and slowing of both voltage sensor motion and channel opening. These effects are in keeping with expectations for docking in the central pore and interaction with the pore domain "turret.''
C1 [Martos, Vera; Santos, Eva; de Mendoza, Javier] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain.
[Martos, Vera; de Mendoza, Javier] Univ Autonoma Madrid, Dept Organ Chem, E-28049 Madrid, Spain.
[Bell, Sarah C.; Trauner, Dirk] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Isacoff, Ehud Y.; Trauner, Dirk] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Bell, Sarah C.; Isacoff, Ehud Y.] Univ Calif Berkeley, Chem Biol Grad Program, Berkeley, CA 94720 USA.
[Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Trauner, Dirk] Univ Munich, Dept Chem, D-81377 Munich, Germany.
RP de Mendoza, J (reprint author), Inst Chem Res Catalonia ICIQ, Avinguda Paisos Catalans 16, Tarragona 43007, Spain.
EM jmendoza@iciq.es
FU Spanish Ministry of Science and Education (MEC)
[CTQ2005-08948-C02-01/BQU]; Consolider Ingenio [CSD2006-0003]; Institute
of Chemical Research of Catalonia (ICIQ) Foundation; National Institutes
of Health [5R01NS035549]; MEC; ICIQ Foundation
FX Thanks to Dr. Francesco Tombola for assistance with experimental design
and data analysis and Drs. Maximilian Ulbrich and Harald Janovjak for
help with data analysis. This work was supported by Spanish Ministry of
Science and Education (MEC) Project CTQ2005-08948-C02-01/BQU, Consolider
Ingenio 2010 Grant CSD2006-0003, the Institute of Chemical Research of
Catalonia (ICIQ) Foundation, and National Institutes of Health Grant
5R01NS035549 ( to E.Y.I.). V. M. thanks MEC and the ICIQ Foundation for
predoctoral fellowships.
NR 27
TC 31
Z9 31
U1 2
U2 27
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 30
PY 2009
VL 106
IS 26
BP 10482
EP 10486
DI 10.1073/pnas.0813396106
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 465EI
UT WOS:000267564300019
PM 19435843
ER
PT J
AU Macfarlane, RJ
Lee, B
Hill, HD
Senesi, AJ
Seifert, S
Mirkin, CA
AF Macfarlane, Robert J.
Lee, Byeongdu
Hill, Haley D.
Senesi, Andrew J.
Seifert, Soenke
Mirkin, Chad A.
TI Assembly and organization processes in DNA-directed colloidal
crystallization
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE DNA materials; SAXS; self assembly
ID GOLD NANOPARTICLE ASSEMBLIES; CRYSTALS; NANOCRYSTALS; DIFFRACTION;
LATTICE; PROTEIN
AB We present an analysis of the key steps involved in the DNA-directed assembly of nanoparticles into crystallites and polycrystalline aggregates. Additionally, the rate of crystal growth as a function of increased DNA linker length, solution temperature, and self-complementary versus non-self-complementary DNA linker strands (1- versus 2-component systems) has been studied. The data show that the crystals grow via a 3-step process: an initial "random binding'' phase resulting in disordered DNA-AuNP aggregates, followed by localized reorganization and subsequent growth of crystalline domain size, where the resulting crystals are well-ordered at all subsequent stages of growth.
C1 [Macfarlane, Robert J.; Hill, Haley D.; Senesi, Andrew J.; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Macfarlane, Robert J.; Hill, Haley D.; Senesi, Andrew J.; Mirkin, Chad A.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA.
[Lee, Byeongdu; Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA.
RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM chadnano@northwestern.edu
RI Mirkin, Chad/E-3911-2010
FU National Science Foundation Nanoscience and Engineering Center; Air
Force Office of Scientific Research; National Cancer Institute Center
for Cancer Nanotechnology Excellence; National Institutes of Health
Director's Pioneer Award; U.S. Department of Homeland Security Graduate
Fellowship; U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX This work was supported by the National Science Foundation Nanoscience
and Engineering Center, the Air Force Office of Scientific Research, the
National Cancer Institute Center for Cancer Nanotechnology Excellence,
and a National Institutes of Health Director's Pioneer Award ( to C. A.
M.) and a U.S. Department of Homeland Security Graduate Fellowship under
the DHS Scholarship and Fellowship Program ( to H. D. H.). Portions of
this work were performed at the DuPont-Northwestern-Dow Collaborative
Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source.
The DuPont-Northwestern-Dow Collaborative Access Team is supported by E.
I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of
Illinois. Use of the Advanced Photon Source was supported by U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract DE-AC02-06CH11357.
NR 37
TC 77
Z9 77
U1 6
U2 71
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 30
PY 2009
VL 106
IS 26
BP 10493
EP 10498
DI 10.1073/pnas.0900630106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 465EI
UT WOS:000267564300021
PM 19549828
ER
PT J
AU Sinitsyn, NA
Hengartner, N
Nemenman, I
AF Sinitsyn, N. A.
Hengartner, Nicolas
Nemenman, Ilya
TI Adiabatic coarse-graining and simulations of stochastic biochemical
networks
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
ID CHEMICAL-KINETICS; SYSTEMS
AB We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical networks, which rests on elimination of fast chemical species without a loss of information about mesoscopic, non-Poissonian fluctuations of the slow ones. Our approach is similar to the Born-Oppenheimer approximation in quantum mechanics and follows from the stochastic path integral representation of the cumulant generating function of reaction events. In applications with a small number of chemical reactions, it produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, interpretable representation and can be used for high-accuracy, low-complexity coarse-grained numerical simulations. As an example, we derive the coarse-grained description for a chain of biochemical reactions and show that the coarse-grained and the microscopic simulations agree, but the former is 3 orders of magnitude faster.
C1 [Sinitsyn, N. A.; Nemenman, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Sinitsyn, N. A.; Hengartner, Nicolas; Nemenman, Ilya] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA.
RP Nemenman, I (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
EM ilya@menem.com
RI Sinitsyn, nikolai/B-5617-2009;
OI Nemenman, Ilya/0000-0003-3024-4244; Hengartner,
Nicolas/0000-0002-4157-134X
FU U. S. Department of Energy [DE-AC52-06NA25396]
FX We thank F. Alexander, G. Bel, W. Hlavacek, B. Munsky, and M. Wall for
useful discussions and the anonymous referees for their insightful
comments. This work was supported in part by the U. S. Department of
Energy under Contract No. DE-AC52-06NA25396.
NR 22
TC 33
Z9 34
U1 0
U2 6
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 30
PY 2009
VL 106
IS 26
BP 10546
EP 10551
DI 10.1073/pnas.0809340106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 465EI
UT WOS:000267564300030
PM 19525397
ER
PT J
AU Chiarelli, PA
Liu, DG
Watkins, EB
Trouw, FR
Majewski, J
Casson, JL
Tang, ZX
Johal, MS
Robinson, JM
Wang, HL
AF Chiarelli, Peter A.
Liu, Ding-Guo
Watkins, Erik B.
Trouw, Frans R.
Majewski, Jaroslaw
Casson, Joanna L.
Tang, Zhexiong
Johal, Malkiat S.
Robinson, Jeanne M.
Wang, Hsing-Lin
TI Molecular order in Langmuir-Blodgett assembled films of an azobenzene
amphiphile
SO THIN SOLID FILMS
LA English
DT Article
DE Langmuir-Blodgett films; X-ray scattering; Structure properties;
Interface
ID 2ND-HARMONIC GENERATION; THIN-FILMS; NONLINEAR OPTICS; MONOLAYERS;
MICROSTRUCTURE; SPECTROSCOPY; MONODENDRONS; ENHANCEMENT; MULTILAYERS;
REFLECTION
AB Alternating multilayers of amphiphile, 4-{4-[Methyl-(4-octadecylcarbamoyl-butyl)-amino]-phenylazo}-benzenesulfonic acid (S-azo-C(18)), and stearic acid were deposited on hydrophobized silica surfaces using the Langmuir-Blodgett technique. Ellipsometry, UV-visible spectroscopy, and second harmonic generation were used to characterize the films, demonstrating reproducible deposition and suggesting a well ordered film structure. Despite the appearance of order at the macroscopic level, neutron and X-ray scattering results unequivocally show that there is considerable disorder, with significant interpenetration between the stearic acid and S-azo-C(18) layers. These results suggest that molecular disorder in Langmuir-Blodgett deposited multilayer films may often go unrecognized mainly because the macroscopic probes based on these optical measurements are not adequate for determining the molecular level structural order. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Chiarelli, Peter A.; Liu, Ding-Guo; Casson, Joanna L.; Tang, Zhexiong; Robinson, Jeanne M.; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Watkins, Erik B.; Trouw, Frans R.; Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
[Johal, Malkiat S.] Pomona Coll, Dept Chem, Claremont, CA 91711 USA.
RP Robinson, JM (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.
EM hwang@lanl.gov
RI Lujan Center, LANL/G-4896-2012;
OI Robinson, Jeanne/0000-0002-4251-7169
FU Los Alamos National Laboratory [W7405-ENG-36]; DOE Office of Basic
Energy Science
FX The work was supported by the Laboratory Directed Research and
Development program at Los Alamos National Laboratory under the auspices
of the United States Department of Energy and was supported by Los
Alamos National Laboratory under DOE contract W7405-ENG-36, and by the
DOE Office of Basic Energy Science. The neutron reflectometry
experiments benefited from use of the SPEAR time-of-flight reflectometer
at LANSCE, LANL.
NR 31
TC 2
Z9 2
U1 0
U2 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD JUN 30
PY 2009
VL 517
IS 16
BP 4638
EP 4643
DI 10.1016/j.tsf.2009.02.148
PG 6
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 459NQ
UT WOS:000267110200027
ER
PT J
AU Smith, JN
Campbell, JA
Busby-Hjerpe, AL
Lee, S
Poet, TS
Barr, DB
Timchalk, C
AF Smith, Jordan Ned
Campbell, James A.
Busby-Hjerpe, Andrea L.
Lee, Sookwang
Poet, Torka S.
Barr, Dana B.
Timchalk, Charles
TI Comparative chlorpyrifos pharmacokinetics via multiple routes of
exposure and vehicles of administration in the adult rat
SO TOXICOLOGY
LA English
DT Article
DE Chlorpyrifos; 3,5,6-Trichloro-2-pyridinol; Pharmacokinetics;
Trichloropyridinol
ID ORGANOPHOSPHORUS INSECTICIDE CHLORPYRIFOS; DEVELOPMENTAL NEUROTOXICITY;
CHOLINESTERASE INHIBITION; PHARMACODYNAMIC MODEL; ORAL CHLORPYRIFOS;
BINARY-MIXTURE; IN-VITRO; BRAIN; LIVER; METABOLISM
AB Chlorpyrifos (CPF) is a commonly used organophosphorus pesticide. A number of toxicity and mechanistic studies have been conducted in animals, where CPF has been administered via a variety of different exposure routes and dosing vehicles. This study compared chlorpyrifos (CPF) pharmacokinetics using oral, intravenous (IV), and subcutaneous (SC) exposure routes and corn oil, saline/Tween 20, and dimethyl sulfoxide (DMSO) as dosing vehicles. Two groups of rats were co-administered target doses (5 mg/kg) of CPF and isotopically labeled CPF (L-CPF). One group was exposed by both oral (CPF) and IV (L-CPF) routes using saline/Tween 20 vehicle; whereas, the second group was exposed by the SC route using two vehicles, corn oil (CPF) and DMSO (L-CPF). A third group was only administered CPF by the oral route in corn oil. For all treatments, blood and urine time course samples were collected and analyzed for 3,5,6-trichloro-2-pyridinol (TCPy), and isotopically labeled 3,5,6-trichloro-2-pyridinol (L-TCPy). Peak TCPy/L-TCPy concentrations in blood (20.2 mu mol/l), TCPy/L-TCPy blood AUC (94.9 mu mol/l h), and percent of dose excreted in urine (100%) were all highest in rats dosed orally with CPF in saline/Tween 20 and second highest in rats dosed orally with CPF in corn oil. Peak TCPy concentrations in blood were more rapidly obtained after oral administration of CPF in saline/Tween 20 compared to all other dosing scenarios (>1.5 h). These results indicate that orally administered CPF is more extensively metabolized than systemic exposures of CPF(SC and IV), and vehicle of administration also has an effect on absorption rates. Thus, equivalent doses via different routes and/or vehicles of administration could potentially lead to different body burdens of CPF, different rates of bioactivation to CPF-oxon, and different toxic responses. Simulations using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF are consistent with these possibilities. These results suggest that exposure route and dosing vehicle can substantially impact target tissue dosimetry. This is of particular importance when comparing studies that use varying exposure paradigms, which are then used for extrapolation of risk to humans. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
C1 [Smith, Jordan Ned; Campbell, James A.; Busby-Hjerpe, Andrea L.; Lee, Sookwang; Poet, Torka S.; Timchalk, Charles] Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA.
[Barr, Dana B.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA.
RP Timchalk, C (reprint author), Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA.
EM jordan.smith@pnl.gov; james.campbell@pnl.gov; andrea.busby@pnl.gov;
sookwang.lee@pnl.gov; torka.poet@pnl.gov; dbarr@cdc.gov;
charles.timchalk@pnl.gov
RI Barr, Dana/E-6369-2011; Barr, Dana/E-2276-2013
FU Centers for Disease Control and Prevention/National Institute for
Occupational Safety and Health (CDC/NIOSH) [R01 OH008173, R01 OH003629,
AGR05FED40077.02]
FX This publication was supported by funding from Centers for Disease
Control and Prevention/National Institute for Occupational Safety and
Health (CDC/NIOSH) grants R01 OH008173, R01 OH003629, and
AGR05FED40077.02. Findings in this study were those of the authors, and
do not necessarily reflect the official opinion of the CDC/NIOSH.
NR 38
TC 25
Z9 30
U1 1
U2 22
PU ELSEVIER IRELAND LTD
PI CLARE
PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000,
IRELAND
SN 0300-483X
J9 TOXICOLOGY
JI Toxicology
PD JUN 30
PY 2009
VL 261
IS 1-2
BP 47
EP 58
DI 10.1016/j.tox.2009.04.041
PG 12
WC Pharmacology & Pharmacy; Toxicology
SC Pharmacology & Pharmacy; Toxicology
GA 465KZ
UT WOS:000267584800007
PM 19397948
ER
PT J
AU Chang, CY
Pearton, SJ
Lo, CF
Ren, F
Kravchenko, II
Dabiran, AM
Wowchak, AM
Cui, B
Chow, PP
AF Chang, C. Y.
Pearton, S. J.
Lo, C. F.
Ren, F.
Kravchenko, I. I.
Dabiran, A. M.
Wowchak, A. M.
Cui, B.
Chow, P. P.
TI Development of enhancement mode AlN/GaN high electron mobility
transistors
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE aluminium compounds; gallium compounds; high electron mobility
transistors; III-V semiconductors; plasma materials processing;
semiconductor device metallisation; wide band gap semiconductors
ID ALGAN/GAN HEMTS; GANHEMTS; PERFORMANCE; HFETS
AB Enhancement mode AlN/GaN high electron mobility transistors (HEMTs) were fabricated from originally depletion-mode structures using oxygen plasma treatment on the gate area prior to the gate metallization. Starting with a depletion mode AlN/GaN HEMT, the threshold voltage of the HEMT could be shifted from -3.2 to 1 V depending on the oxygen plasma treatment time to partially convert the AlN barrier layer into Al oxide. The gate current was reduced and the current-voltage curves show metal-oxide semiconductor diodelike characteristics after oxygen plasma treatment.
C1 [Chang, C. Y.; Pearton, S. J.] Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA.
[Lo, C. F.; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA.
[Kravchenko, I. I.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA.
[Dabiran, A. M.; Wowchak, A. M.; Cui, B.; Chow, P. P.] SVT Associates Inc, Prairie, MN 55344 USA.
RP Chang, CY (reprint author), Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA.
EM spear@mse.ufl.edu
RI Kravchenko, Ivan/K-3022-2015
OI Kravchenko, Ivan/0000-0003-4999-5822
NR 17
TC 27
Z9 29
U1 1
U2 24
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 29
PY 2009
VL 94
IS 26
AR 263505
DI 10.1063/1.3168648
PG 3
WC Physics, Applied
SC Physics
GA 466XB
UT WOS:000267697300063
ER
PT J
AU Di, ZF
Wang, YQ
Nastasi, M
Bisognin, G
Berti, M
Thompson, PE
AF Di, Z. F.
Wang, Y. Q.
Nastasi, M.
Bisognin, G.
Berti, M.
Thompson, P. E.
TI Strain relaxation of SiGe in a Si/SiGe/Si heterostructure under proton
irradiation
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE elemental semiconductors; Ge-Si alloys; high-temperature effects;
nucleation; proton effects; semiconductor heterojunctions; silicon;
vacancies (crystal)
ID HYDROGEN; SILICON; SUPERLATTICES; IMPLANTATION; EXFOLIATION; DIFFUSION;
MECHANISM; PRESSURE
AB We have studied the mechanisms underlying strained layer relaxation by means of point defect interaction. During high temperature (300 degrees C) proton irradiation, vacancies generated in the vicinity of SiGe layer migrate and accumulate within the compressively strained SiGe layer. The accumulating vacancies are stabilized by hydrogen, which diffuses from the implanted region, thus allowing the nucleation and growth of hydrogen-vacancy (V-H) complexes. The formation of V-H complexes is accompanied by gradual strain relief in SiGe layer. Since the diffusion of both vacancies and hydrogen is limited by the irradiation temperature, strain relaxation of the SiGe layer is not realized during room temperature (20 degrees C) proton irradiation. The study supports the idea that the compressive stress in the SiGe layer induces the indiffusion of vacancies and H, and reveals the important role of point defects in the strain relaxation of the strained SiGe layer.
C1 [Di, Z. F.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Bisognin, G.; Berti, M.] Univ Padua, Dipartmento Fis, I-35131 Padua, Italy.
[Bisognin, G.; Berti, M.] Univ Padua, INFM, CNR, MATIS, I-35131 Padua, Italy.
[Thompson, P. E.] USN, Res Lab, Washington, DC 20375 USA.
[Bisognin, G.] Unita Padova, CNISM, I-35131 Padua, Italy.
RP Di, ZF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM dizengfeng@hotmail.com
RI di, zengfeng/B-1684-2010
NR 24
TC 4
Z9 4
U1 0
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 29
PY 2009
VL 94
IS 26
AR 264102
DI 10.1063/1.3167814
PG 3
WC Physics, Applied
SC Physics
GA 466XB
UT WOS:000267697300068
ER
PT J
AU Kapadia, R
Ko, H
Chueh, YL
Ho, JC
Takahashi, T
Zhang, ZX
Javey, A
AF Kapadia, Rehan
Ko, Hyunhyub
Chueh, Yu-Lun
Ho, Johnny C.
Takahashi, Toshitake
Zhang, Zhenxing
Javey, Ali
TI Hybrid core-multishell nanowire forests for electrical connector
applications
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE adhesion; electric connectors; electrical resistivity; elemental
semiconductors; germanium; nanowires; semiconductor quantum wires;
semiconductor-metal boundaries; silver; van der Waals forces
ID CARBON; ADHESIVE; STRENGTH; ENERGY; MICRO
AB Electrical connectors based on hybrid core-multishell nanowire forests that require low engagement forces are demonstrated. The physical binding and electrical connectivity of the nanowire electrical connectors arise from the van der Waals interactions between the conductive metallic shells of the engaged nanowire forests. Specifically, the nanofibrillar structure of the connectors causes an amplification of the contact area between the interpenetrating nanowire arrays, resulting in strong adhesion with relatively low interfacial resistance. The nanowire electrical connectors may enable the exploration of a wide range of applications involving reversible assembly of micro- and macroscale components with built-in electrical interfacing.
C1 [Kapadia, Rehan] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94705 USA.
Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94705 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Kapadia, R (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94705 USA.
EM ajavey@eecs.berkeley.edu
RI Zhang, Zhenxing/A-8762-2008; Ko, Hyunhyub/C-4848-2009; Chueh,
Yu-Lun/E-2053-2013; Ho, Johnny/K-5275-2012; Kapadia, Rehan/B-4100-2013;
Javey, Ali/B-4818-2013
OI Zhang, Zhenxing/0000-0002-4946-0492; Chueh, Yu-Lun/0000-0002-0155-9987;
Ho, Johnny/0000-0003-3000-8794; Kapadia, Rehan/0000-0002-7611-0551;
FU DARPA [5710002393]; NSF Center of Integrated Nanomechanical Systems
FX The authors would like to thank Professor Ron Fearing for insightful
discussion. This work was supported by DARPA Contract No. 5710002393 DSO
and NSF Center of Integrated Nanomechanical Systems. The nanowire
synthesis part of this project was supported by a Laboratory Directed
Research and Development grant from Lawrence Berkeley National
Laboratory. R. K. and J. C. H. acknowledge NSF Graduate Fellowship and
Intel Foundation Fellowship, respectively.
NR 16
TC 17
Z9 17
U1 1
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 29
PY 2009
VL 94
IS 26
AR 263110
DI 10.1063/1.3148365
PG 3
WC Physics, Applied
SC Physics
GA 466XB
UT WOS:000267697300047
ER
PT J
AU Arsene, IC
Bearden, IG
Beavis, D
Bekele, S
Besliu, C
Budick, B
Boggild, H
Chasman, C
Christensen, CH
Christiansen, P
Dalsgaard, HH
Debbe, R
Gaardhoje, JJ
Hagel, K
Ito, H
Jipa, A
Johnson, EB
Jorgensen, CE
Karabowicz, R
Katrynska, N
Kim, EJ
Larsen, TM
Lee, JH
Lovhoiden, G
Majka, Z
Murray, MJ
Natowitz, J
Nielsen, BS
Nygaard, C
Pal, D
Qviller, A
Rami, F
Ristea, C
Ristea, O
Rohrich, D
Sanders, SJ
Staszel, P
Tveter, TS
Videbaek, F
Wada, R
Yang, H
Yin, Z
Zgura, IS
AF Arsene, I. C.
Bearden, I. G.
Beavis, D.
Bekele, S.
Besliu, C.
Budick, B.
Boggild, H.
Chasman, C.
Christensen, C. H.
Christiansen, P.
Dalsgaard, H. H.
Debbe, R.
Gaardhoje, J. J.
Hagel, K.
Ito, H.
Jipa, A.
Johnson, E. B.
Jorgensen, C. E.
Karabowicz, R.
Katrynska, N.
Kim, E. J.
Larsen, T. M.
Lee, J. H.
Lovhoiden, G.
Majka, Z.
Murray, M. J.
Natowitz, J.
Nielsen, B. S.
Nygaard, C.
Pal, D.
Qviller, A.
Rami, F.
Ristea, C.
Ristea, O.
Roehrich, D.
Sanders, S. J.
Staszel, P.
Tveter, T. S.
Videbaek, F.
Wada, R.
Yang, H.
Yin, Z.
Zgura, I. S.
TI Nuclear stopping and rapidity loss in Au plus Au collisions a root
S-NN=62.4 GeV
SO PHYSICS LETTERS B
LA English
DT Article
ID QUARK-GLUON PLASMA; BRAHMS EXPERIMENT; BARYON; COLLABORATION;
PERSPECTIVE; MATTER; MODEL
AB Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0 < y < 3.1 from 0-10% central Au + Au collisions at root S-NN = 62.4 GeV are presented. The rapidity densities, dN/dy, of protons, anti-protons and net-protons (N-p-N-(p) over bar) have been deduced from the spectra over a rapidity range wide enough to observe the expected maximum net-baryon density. From mid-rapidity to y = I the net-proton yield is roughly constant (dN/dy similar to 10), but rises to dN/dy similar to 25 at 2.3 < y < 3.1. The mean rapidity loss is 2.01 +/- 0.14 +/- 0.12 units from beam rapidity. The measured rapidity distributions are compared to model predictions. Systematics of net-baryon distributions and rapidity loss vs. collision energy are discussed. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Christiansen, P.; Dalsgaard, H. H.; Gaardhoje, J. J.; Jorgensen, C. E.; Larsen, T. M.; Nielsen, B. S.; Nygaard, C.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark.
[Beavis, D.; Chasman, C.; Debbe, R.; Ito, H.; Lee, J. H.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Rami, F.] Inst Pluridisciplinaire Hubert Curien, IN2P3, CNRS, Strasbourg, France.
[Rami, F.] Univ Strasbourg, Strasbourg, France.
[Zgura, I. S.] Inst Space Sci, Bucharest, Romania.
[Karabowicz, R.; Katrynska, N.; Majka, Z.; Staszel, P.] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland.
[Budick, B.] NYU, New York, NY 10003 USA.
[Hagel, K.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX USA.
[Roehrich, D.; Yang, H.; Yin, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway.
[Besliu, C.; Jipa, A.; Ristea, O.] Univ Bucharest, Bucharest, Romania.
[Bekele, S.; Johnson, E. B.; Kim, E. J.; Murray, M. J.; Pal, D.; Sanders, S. J.] Univ Kansas, Lawrence, KS 66045 USA.
[Arsene, I. C.; Lovhoiden, G.; Qviller, A.; Tveter, T. S.] Univ Oslo, Dept Phys, Oslo, Norway.
RP Dalsgaard, HH (reprint author), Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
EM canute@nbi.dk; videbaek@bnl.gov
RI Christensen, Christian Holm/A-4901-2010; Christensen,
Christian/D-6461-2012; Yang, Hongyan/J-9826-2014; Bearden,
Ian/M-4504-2014
OI Christensen, Christian Holm/0000-0002-1850-0121; Christensen,
Christian/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094
NR 24
TC 35
Z9 36
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD JUN 29
PY 2009
VL 677
IS 5
BP 267
EP 271
DI 10.1016/j.physletb.2009.05.049
PG 5
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 467HS
UT WOS:000267729900008
ER
PT J
AU Hornig, A
Lee, C
Ovanesyan, G
AF Hornig, Andrew
Lee, Christopher
Ovanesyan, Grigory
TI Infrared safety in factorized hard scattering cross-sections
SO PHYSICS LETTERS B
LA English
DT Article
DE Factorization; Soft collinear effective theory; Jets; Event shapes
ID ENERGY; JETS
AB The rules of soft-collinear effective theory can be used naively to write hard scattering cross-sections as convolutions of separate hard, jet, and soft functions. One condition required to guarantee the validity of such a factorization is the infrared safety of these functions in perturbation theory. Using e(+)e(-) angularity distributions as an example, we propose and illustrate an intuitive method to test this infrared safety at one loop. We look for regions of integration in the sum of Feymnan diagrams contributing to the jet and soft functions where the integrals become infrared divergent. Our analysis is independent of an explicit infrared regulator, clarifies how to distinguish infrared and ultraviolet singularities in pure dimensional regularization, and demonstrates the necessity of taking zero-bins into account to obtain infrared-safe jet functions. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Lee, Christopher] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Berkeley, CA 94720 USA.
RP Lee, C (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM ahornig@berkeley.edu; clee@berkeley.edu; ovanesyan@berkeley.edu
OI Lee, Christopher/0000-0003-2385-7536
NR 28
TC 12
Z9 12
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD JUN 29
PY 2009
VL 677
IS 5
BP 272
EP 277
DI 10.1016/j.physletb.2009.05.039
PG 6
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 467HS
UT WOS:000267729900009
ER
PT J
AU Bollen, J
Van de Sompel, H
Hagberg, A
Chute, R
AF Bollen, Johan
Van de Sompel, Herbert
Hagberg, Aric
Chute, Ryan
TI A Principal Component Analysis of 39 Scientific Impact Measures
SO PLOS ONE
LA English
DT Article
ID JOURNAL IMPACT; CITATION IMPACT; PAGERANK; INDEX
AB Background: The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact.
Methodology: We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data.
Conclusions: Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution.
RP Bollen, J (reprint author), Los Alamos Natl Lab, Res Lib, Digital Lib Res & Prototyping Team, Los Alamos, NM 87545 USA.
EM jbollen@lanl.gov
OI Van de Sompel, Herbert/0000-0002-0715-6126
NR 29
TC 147
Z9 150
U1 5
U2 68
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 29
PY 2009
VL 4
IS 6
AR e6022
DI 10.1371/journal.pone.0006022
PG 11
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 463XB
UT WOS:000267465900001
PM 19562078
ER
PT J
AU Florez, E
Vines, F
Rodriguez, JA
Illas, F
AF Florez, Elizabeth
Vines, Francesc
Rodriguez, Jose A.
Illas, Francesc
TI Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf,
V, Nb, Ta, and Mo carbides
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE adsorbed layers; adsorption; density functional theory; diffusion; gold
ID TRANSITION-METAL CARBIDES; GAS-SHIFT REACTION; TOTAL-ENERGY
CALCULATIONS; TEMPERATURE CO OXIDATION; WAVE BASIS-SET; GOLD CATALYSTS;
CHEMOSELECTIVE HYDROGENATION; SUBSTITUTED NITROAROMATICS;
MOLECULAR-MECHANISM; NANOPARTICLES
AB The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.
C1 [Florez, Elizabeth] Univ Chile, Dept Fis, Santiago, Chile.
[Vines, Francesc] Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem, D-91058 Erlangen, Germany.
[Vines, Francesc] Univ Erlangen Nurnberg, Interdisciplinary Ctr Interface Controlled Proc, D-91058 Erlangen, Germany.
[Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain.
[Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain.
RP Florez, E (reprint author), Univ Chile, Dept Fis, Las Palmeras 3425 Nunoa, Santiago, Chile.
EM francesc.illas@ub.edu
RI Illas, Francesc /C-8578-2011;
OI Illas, Francesc /0000-0003-2104-6123; Florez,
Elizabeth/0000-0002-8301-8550; Vines, Francesc/0000-0001-9987-8654
FU MICINN [FIS2008-02238]; Fondecyt [3080033]; Barcelona Supercomputing
Center (BSC); Centre de Supercomputacio de Catalunya (CESCA); U.S.
Department of Energy [DE-AC02-98CH10886]; National Synchrotron Light
Source (NSLS); U.S. Department of Energy
FX E. F. would like to thank Colciencias and the University of Antioquia
for her scholarship. F. V. is grateful to Alexander von Humboldt
Foundation for a Postdoctoral Fellowship and to the Spanish Ministry of
Education and Science (MEC) for a predoctoral grant. Financial support
has been provided by the MICINN under Grant No. FIS2008-02238 and by
Fondecyt Grant No. 3080033. Computational time provided by the Barcelona
Supercomputing Center (BSC) and Centre de Supercomputacio de Catalunya
(CESCA) is gratefully acknowledged. The research carried out at
Brookhaven National Laboratory was supported by the U.S. Department of
Energy (Chemical Sciences Division under Grant No. DE-AC02-98CH10886).
The National Synchrotron Light Source (NSLS) is supported by the
Divisions of Chemical and Materials Science of the U.S. Department of
Energy.
NR 63
TC 12
Z9 12
U1 0
U2 28
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 28
PY 2009
VL 130
IS 24
AR 244706
DI 10.1063/1.3158620
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 465PX
UT WOS:000267600400039
PM 19566173
ER
PT J
AU Yacovitch, TI
Garand, E
Neumark, DM
AF Yacovitch, Tara I.
Garand, Etienne
Neumark, Daniel M.
TI Slow photoelectron velocity-map imaging spectroscopy of the vinoxide
anion
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE electron affinity; excited states; Franck-Condon factors; free radicals;
ground states; molecular electronic states; negative ions; organic
compounds; photoelectron spectra; potential energy functions;
vibrational states
ID ACETALDEHYDE ENOLATE ANION; LASER-INDUCED FLUORESCENCE; CROSSED
MOLECULAR-BEAM; FRANCK-CONDON FACTORS; NEGATIVE-IONS;
POLYATOMIC-MOLECULES; ACETYL RADICALS; STATE; DYNAMICS; PHOTODETACHMENT
AB High resolution photoelectron spectra of the vinoxide anion are obtained by slow electron velocity-map imaging. Transitions between the anion X approximate to (1)A(') ground electronic state and the radical X approximate to (2)A(') and A approximate to (2)A(') states are observed. This experiment yields a precise value of 1.8250 +/- 0.0012 eV for the adiabatic electron affinity and 0.996 +/- 0.003 eV for the A approximate to-X approximate to term energy of the vinoxy radical. Franck-Condon simulations of the X approximate to (2)A(')<- X approximate to (1)A(') transition are performed at varying levels of approximation. Full treatment with Duschinsky rotation is necessary to reproduce experimental results. Comparison of the experimental and simulated spectra leads to the assignment of previously unresolved transitions, notably between levels of a(') symmetry.
C1 [Yacovitch, Tara I.; Garand, Etienne; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM dneumark@berkeley.edu
RI Neumark, Daniel/B-9551-2009;
OI Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453
FU Air Force Office of Scientific Research [F49620-03-1-0085]; Fonds
Quebecois de la Recherche sur la Nature et les Technologies (FQRNT);
National Science and Engineering Research Council of Canada (NSERC)
FX This work was supported by the Air Force Office of Scientific Research
under Grant No. F49620-03-1-0085. T.I.Y. thanks the Fonds Quebecois de
la Recherche sur la Nature et les Technologies (FQRNT) for a master's
scholarship. E. G. thanks the National Science and Engineering Research
Council of Canada (NSERC) for a postgraduate scholarship.
NR 52
TC 12
Z9 12
U1 1
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 28
PY 2009
VL 130
IS 24
AR 244309
DI 10.1063/1.3157208
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 465PX
UT WOS:000267600400021
PM 19566155
ER
PT J
AU Kollias, P
Miller, MA
Johnson, KL
Jensen, MP
Troyan, DT
AF Kollias, Pavlos
Miller, Mark A.
Johnson, Karen L.
Jensen, Michael P.
Troyan, David T.
TI Cloud, thermodynamic, and precipitation observations in West Africa
during 2006
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID TOP HEIGHT; TOGA-COARE; TROPICAL ATLANTIC; RADIATION BUDGET;
NAURU-ISLAND; DRY AIR; PACIFIC; RADAR; STATISTICS; INTRUSION
AB In 2006, the ARM Mobile Facility (AMF) completed a 1-year deployment at Niamey, Niger, Africa, in support of the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) field campaign, which is the subject of this special issue. Observations from the AMF instrumentation are used to analyze the relationship between clouds, precipitation, and the thermodynamic environment in this rarely observed region and to evaluate the cloud fields in the National Center for Environmental Prediction Global Forecast System (GFS) initialization product. The 1-year deployment period enabled measurements in the dry and wet (monsoon) seasons and through the transitions in May and September, respectively. Cirrus clouds in the 10- to 15-km layer with modest monthly cloud fraction and mean depth of similar to 1 km are ubiquitous through the observing period as observed in other regions of the tropics. The monsoon season from May to September is characterized by convective clouds of varying depth that produce precipitation of varying intensity, as indicated by cloud radar. Peak surface rainfall is observed during August, and the largest daily rainfall rates are observed during the period from July to September. The lifting condensation level (LCL) is observed to decrease as the monsoon season progresses, and a strong correlation between the height of the LCL and precipitation is demonstrated. Cooling of the lower troposphere is implicated as the probable cause of the lowering of the LCL. Conversely, the amount of convective available potential energy is found to be poorly correlated with precipitation. As in other tropical regions, the physical height at which the zero-degree isotherm is observed corresponds to gradients in the thermodynamic profiles and a gradient in the profile of cloud occurrence. Comparisons with the GFS initialization data, which are derived from a number of sources including satellites, show some systematic biases when compared to AMF measurements. There is general correspondence between the locations of clouds and the profile of vertical velocity diagnosed by the GFS initialization early in the monsoon season, but vague correspondence thereafter. The relative humidity in the GFS initialization is too large above 10 km and too small in the monsoon layer near the surface, and it seriously underestimates the amount of cloud below 10 km during August, which is the height of the West African monsoon in Niamey.
C1 [Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2K6, Canada.
[Miller, Mark A.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA.
[Johnson, Karen L.; Jensen, Michael P.; Troyan, David T.] Brookhaven Natl Lab, Dept Atmospher Sci, Upton, NY 11973 USA.
RP Kollias, P (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, 805 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada.
EM pavlos.kollias@mcgill.ca
NR 30
TC 14
Z9 14
U1 0
U2 6
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2009
VL 114
AR D00E08
DI 10.1029/2008JD010641
PG 16
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 464FH
UT WOS:000267490200001
ER
PT J
AU Tilmes, S
Garcia, RR
Kinnison, DE
Gettelman, A
Rasch, PJ
AF Tilmes, Simone
Garcia, Rolando R.
Kinnison, Douglas E.
Gettelman, Andrew
Rasch, Philip J.
TI Impact of geoengineered aerosols on the troposphere and stratosphere
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID OZONE DEPLETION; SOUTHERN-HEMISPHERE; VOLCANIC AEROSOLS; SULFATE
AEROSOLS; CLIMATE; MODEL; CIRCULATION; FORMULATION; SIMULATION;
EVOLUTION
AB A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020-2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth's climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.
C1 [Tilmes, Simone; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, Andrew] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA.
[Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Tilmes, S (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80307 USA.
EM tilmes@ucar.edu
FU U.K. Meteorological Office; European Center for Medium-range Weather
Forecasts
FX We gratefully acknowledge the members of the HALOE team at NASA/Langley
Research Center for their work in producing and making available the
HALOE data set. Thanks are also owed to the U.K. Meteorological Office
and the European Center for Medium-range Weather Forecasts for providing
meteorological analyses. Further, we thank the WACCM team, especially
Francis Vitt, StacyWalters, and Fabrizio Sassi, for assistance with
regard to the WACCM3 model setup and analysis tools. We also thank
Michael Mills and Brian Toon for helpful discussions on microphysical
processes in connection with stratospheric sulfur injection. Finally, we
are grateful to Steven Massie and John Orlando for their review of the
original manuscript. The National Center for Atmospheric Research is
operated by the University Corporation for Atmospheric Research under
sponsorship of the National Science Foundation.
NR 52
TC 62
Z9 62
U1 1
U2 27
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD JUN 27
PY 2009
VL 114
AR D12305
DI 10.1029/2008JD011420
PG 22
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 464FH
UT WOS:000267490200003
ER
PT J
AU Lu, GH
Ocola, LE
Chen, JH
AF Lu, Ganhua
Ocola, Leonidas E.
Chen, Junhong
TI Room-Temperature Gas Sensing Based on Electron Transfer between Discrete
Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes
SO ADVANCED MATERIALS
LA English
DT Article
ID MINIARC PLASMA SOURCE; CHEMICAL SENSORS; NANOPARTICLES; NANOTECHNOLOGY;
CONDUCTANCE; SENSITIVITY; SURFACE
AB A new gas-sensing platform for low-concentration gases (NO(2), H(2), and CO) comprises discrete SnO(2) nanocrystals uniformly distributed on the surface of multiwalled carbon nanotubes (CNTs). The resulting hybrid nanostructures are highly sensitive, even at room temperature, because their gas sensing abilities rely on electron transfer between the nanocrystals and the CNTs.
C1 [Lu, Ganhua; Chen, Junhong] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA.
[Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Chen, JH (reprint author), Univ Wisconsin, Dept Mech Engn, 3200 N Cramer St, Milwaukee, WI 53211 USA.
EM jhchen@uwm.edu
RI Lu, Ganhua/B-4643-2010;
OI Lu, Ganhua/0000-0003-3279-8427; Ocola, Leonidas/0000-0003-4990-1064
FU National Science Foundation [CMMI-0609059, CBET-0803142]; UWMRF; US
Department of Energy [DE-AC02-06CH 11357]
FX This work was financially supported by the National Science Foundation
through grants CMMI-0609059 and CBET-0803142 and by the UWMRF through a
catalyst grant. The authors thank M. Gajdardziska-Josifiovska for
providing TEM access and D. Robertson for technical support with TEM
analyses. The e-bearn lithography was performed at the Center for
Nanoscale Materials of Argonne National Laboratory (ANL), and the SEM
imaging was conducted at the Electron Microscopy Center of ANIL, both of
which are supported by the US Department of Energy, Office of Science,
Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH 11357.
NR 39
TC 153
Z9 155
U1 12
U2 90
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD JUN 26
PY 2009
VL 21
IS 24
BP 2487
EP +
DI 10.1002/adma.200803536
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 467EA
UT WOS:000267719000002
ER
PT J
AU Jura, N
Endres, NF
Engel, K
Deindl, S
Das, R
Lamers, MH
Wemmer, DE
Zhang, XW
Kuriyan, J
AF Jura, Natalia
Endres, Nicholas F.
Engel, Kate
Deindl, Sebastian
Das, Rahul
Lamers, Meindert H.
Wemmer, David E.
Zhang, Xuewu
Kuriyan, John
TI Mechanism for Activation of the EGF Receptor Catalytic Domain by the
Juxtamembrane Segment
SO CELL
LA English
DT Article
ID EPIDERMAL-GROWTH-FACTOR; TYROSINE KINASE; TRANSMEMBRANE DOMAIN;
CRYSTAL-STRUCTURE; PLASMA-MEMBRANE; COILED-COIL; DIMERIZATION;
INHIBITOR; MUTATIONS; LIGAND
AB Signaling by the epidermal growth factor receptor requires an allosteric interaction between the kinase domains of two receptors, whereby one activates the other. We show that the intracellular juxtamembrane segment of the receptor, known to potentiate kinase activity, is able to dimerize the kinase domains. The C-terminal half of the juxtamembrane segment latches the activated kinase domain to the activator, and the N-terminal half of this segment further potentiates dimerization, most likely by forming an antiparallel helical dimer that engages the transmembrane helices of the activated receptor. Our data are consistent with a mechanism in which the extracellular domains block the intrinsic ability of the transmembrane and cytoplasmic domains to dimerize and activate, with ligand binding releasing this block. The formation of the activating juxtamembrane latch is prevented by the C-terminal tails in a structure of an inactive kinase domain dimer, suggesting how alternative
C1 [Jura, Natalia; Endres, Nicholas F.; Engel, Kate; Deindl, Sebastian; Das, Rahul; Lamers, Meindert H.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Jura, Natalia; Endres, Nicholas F.; Engel, Kate; Deindl, Sebastian; Das, Rahul; Lamers, Meindert H.; Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.
[Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA.
[Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA.
RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
EM kuriyan@berkeley.edu
OI Deindl, Sebastian/0000-0001-6807-8654
FU Howard Hughes Medical Institute; NCI NIH HHS [R01 CA096504-06, R01
CA096504, R01 CA96504-06]; NIGMS NIH HHS [GM 68933, P41 GM068933, P41
GM068933-05]
NR 50
TC 262
Z9 264
U1 5
U2 40
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0092-8674
J9 CELL
JI Cell
PD JUN 26
PY 2009
VL 137
IS 7
BP 1293
EP 1307
DI 10.1016/j.cell.2009.04.025
PG 15
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 462RM
UT WOS:000267373400022
PM 19563760
ER
PT J
AU Um, W
Serne, RJ
Last, GV
Clayton, RE
Glossbrenner, ET
AF Um, Wooyong
Serne, R. Jeffrey
Last, George V.
Clayton, Ray E.
Glossbrenner, Ellwood T.
TI The effect of gravel size fraction on the distribution coefficients of
selected radionuclides
SO JOURNAL OF CONTAMINANT HYDROLOGY
LA English
DT Article
DE Gravel fraction; Distribution coefficient (K(d)); Radionuclide;
Adsorption; Mobility
ID HANFORD SITE; AQUIFER SEDIMENTS; ADSORPTION; SORPTION; SAND; WASHINGTON;
TRANSPORT
AB This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient (K(d)) construct can be estimated from laboratory tests on sediments less than 2 mm size fraction. However, this common assumption can lead to inaccurate estimates of the mobility and sorption affinity of many radionuclides (e.g., Tc, U, and Np) on gravel dominated sediments at the Hanford Site and other locations. Laboratory batch sorption experiments showed that the distribution coefficients measured using only sediment less than 2 mm size fraction and correcting for inert gravel fraction were not in agreement with those obtained from the bulk sediments including gravel (larger than 2 mm size fraction), depending on the radionuclide. The least reactive radionuclide, Tc had K(d) values for bulk sediment with negligible deviations from the inert gravel corrected K(d) values measured on less than 2 mm size fraction. However, differences between measured K(d) values using sediment less than 2 mm size fraction and the K(d) values on the bulk sediment were significant for intermediately and strongly reactive radionuclides such as U and Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxide coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the K(d,<2 mm). and K(d,) (>2 mm) values to estimate the K(d) for the bulk sediment were found to best describe Kd values for radionuclides on the bulk sediment. Gravel correction factors should not be neglected to predict precisely the sorption capacity of the bulk sediments that contain more than 30% gravel. In addition, more detailed characterization of gravel surfaces should be conducted to identify whether higher reactive sorbents are present in the gravels. Published by Elsevier B.V.
C1 [Um, Wooyong; Serne, R. Jeffrey; Last, George V.; Clayton, Ray E.; Glossbrenner, Ellwood T.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Um, W (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM Wooyong.um@pnl.gov
FU Fluor Hanford Inc; The Pacific Northwest National Laboratory (PNNL);
U.S. Department of Energy [DE-AC006-76RLO 1830]
FX This study was conducted in support of the Remediation Decision Support
(RDS) Project with funding from Fluor Hanford Inc. The Pacific Northwest
National Laboratory (PNNL) is operated by Battelle for the U.S.
Department of Energy under contracts DE-AC006-76RLO 1830. Eric Clayton,
Steven Baum, and Chris Strickland in PNNL are also gratefully
acknowledged for their help in the sample analyses. The authors also
thank two anonymous reviewers for their helpful comments to improve this
manuscript.
NR 19
TC 1
Z9 1
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0169-7722
J9 J CONTAM HYDROL
JI J. Contam. Hydrol.
PD JUN 26
PY 2009
VL 107
IS 1-2
BP 82
EP 90
DI 10.1016/j.jconhyd.2009.04.003
PG 9
WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources
SC Environmental Sciences & Ecology; Geology; Water Resources
GA 468RA
UT WOS:000267836400007
PM 19442406
ER
PT J
AU Kehr, S
Malinouski, M
Finney, L
Vogt, S
Labunskyy, VM
Kasaikina, MV
Carlson, BA
Zhou, Y
Hatfield, DL
Gladyshev, VN
AF Kehr, Sebastian
Malinouski, Mikalai
Finney, Lydia
Vogt, Stefan
Labunskyy, Vyacheslav M.
Kasaikina, Marina V.
Carlson, Bradley A.
Zhou, You
Hatfield, Dolph L.
Gladyshev, Vadim N.
TI X-Ray Fluorescence Microscopy Reveals the Role of Selenium in
Spermatogenesis
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE selenium; X-ray fluorescence microscopy; spermatogenesis; male
reproduction; trace elements
ID HYDROPEROXIDE GLUTATHIONE-PEROXIDASE; SPERM MATURATION; SELENOPROTEIN-P;
DEVELOPMENTAL EXPRESSION; MITOCHONDRIAL CAPSULES; THIOREDOXIN REDUCTASE;
MOUSE; SELENOCYSTEINE; PROTEIN; SUPPLEMENTATION
AB Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular, and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and colocalized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.2 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. (c) 2009 Elsevier Ltd. All rights reserved.
C1 [Kehr, Sebastian; Malinouski, Mikalai; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Gladyshev, Vadim N.] Univ Nebraska, Redox Biol Ctr, Lincoln, NE 68588 USA.
[Kehr, Sebastian; Malinouski, Mikalai; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Gladyshev, Vadim N.] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA.
[Finney, Lydia] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA.
[Finney, Lydia; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Carlson, Bradley A.; Hatfield, Dolph L.] NCI, Mol Biol Selenium Sect, Lab Canc Prevent, CCR,NIH, Bethesda, MD 20892 USA.
[Zhou, You] Univ Nebraska, Ctr Biotechnol, Lincoln, NE 68588 USA.
RP Gladyshev, VN (reprint author), Univ Nebraska, Redox Biol Ctr, Lincoln, NE 68588 USA.
EM vgladyshev1@unl.edu
RI Gladyshev, Vadim/A-9894-2013; Vogt, Stefan/B-9547-2009; Vogt,
Stefan/J-7937-2013
OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513
FU National Institutes of Health [GM065204]; Intramural Research Program of
the Center for Cancer Research; National Cancer Institute; National
Institutes of Health; Department of Energy, Office of Science, Office of
Basic Energy Sciences [DE-AC02-06CH11357]
FX We thank Wayne Vogl for helpful discussion. We also thank Marcus Conrad
for providing tissues from nGPx4 and mGPx4 knockout mice and Raymond
Burk and Kristina Hill for tissues from Sell? knockout mice. This study
was supported by National Institutes of Health Grant GM065204 (to
V.N.G.) and the Intramural Research Program of the Center for Cancer
Research, National Cancer Institute, National Institutes of Health (to
D.L.H.). Use of the Advanced Photon Source was supported by the
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357.
NR 44
TC 41
Z9 43
U1 0
U2 6
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD JUN 26
PY 2009
VL 389
IS 5
BP 808
EP 818
DI 10.1016/j.jmb.2009.04.024
PG 11
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 466OL
UT WOS:000267671700002
PM 19379757
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Ancu, LS
Andeen, T
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Atramentov, O
Avila, C
BackusMayes, J
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calpas, B
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Cho, DK
Choi, S
Choudhary, B
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cuplov, V
Cutts, D
Cwiok, M
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Duggan, D
Duperrin, A
Dutt, S
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Ermolov, P
Escalier, M
Evans, H
Evdokimov, A
Evdokimov, VN
Facini, G
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greder, S
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hadley, NJ
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Heredia-De La Cruz, I
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Huske, N
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jamin, D
Jarvis, C
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lellouch, J
Li, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Mattig, P
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
McGivern, CL
Meijer, MM
Melnitchouk, A
Mendoza, L
Menezes, D
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mitrevski, J
Mommsen, RK
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
Obrant, G
Ochando, C
Onoprienko, D
Orduna, J
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padilla, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Popov, AV
Potter, C
da Silva, WLP
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rodrigues, RF
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strandberg, S
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Takahashi, M
Tanasijczuk, A
Taylor, W
Tiller, B
Tissandier, F
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
Vachon, B
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vilanova, D
Vint, P
Vokac, P
Voutilainen, M
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Ye, Z
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Ancu, L. S.
Andeen, T.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Atramentov, O.
Avila, C.
BackusMayes, J.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calpas, B.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Cho, D. K.
Choi, S.
Choudhary, B.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cuplov, V.
Cutts, D.
Cwiok, M.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Ermolov, P.
Escalier, M.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Facini, G.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greder, S.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hadley, N. J.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Heredia-De La Cruz, I.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Huske, N.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jamin, D.
Jarvis, C.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Maettig, P.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
McGivern, C. L.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Menezes, D.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mitrevski, J.
Mommsen, R. K.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
Obrant, G.
Ochando, C.
Onoprienko, D.
Orduna, J.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padilla, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Popov, A. V.
Potter, C.
Prado da Silva, W. L.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rodrigues, R. F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strandberg, S.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Takahashi, M.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Tissandier, F.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Vachon, B.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vilanova, D.
Vint, P.
Vokac, P.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Ye, Z.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
TI Search for the Standard Model Higgs Boson in Tau Final States
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID EVENTS
AB We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron pp collider. We select two final states: tau(+/-) plus missing transverse energy and b jets, and tau(+)tau(-) plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion, and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV.
C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; Maciel, A. K. A.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France.
[Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France.
[Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France.
[Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Buescher, V.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA.
[Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina.
RI Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Juste,
Aurelio/I-2531-2015; Ancu, Lucian Stefan/F-1812-2010; Fisher,
Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013;
Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014;
Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae
Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Shivpuri, R K/A-5848-2010;
Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko,
Lev/D-7127-2012; Mercadante, Pedro/K-1918-2012; Mundim,
Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Leflat, Alexander/D-7284-2012;
Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin,
Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012
OI Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941;
Belanger-Champagne, Camille/0000-0003-2368-2617; Heinson,
Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian,
Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455;
Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031;
Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk,
Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057;
Blessing, Susan/0000-0002-4455-7279; Gershtein,
Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825;
Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655;
Blazey, Gerald/0000-0002-7435-5758; Heredia De La Cruz,
Ivan/0000-0002-8133-6467; Evans, Harold/0000-0003-2183-3127; Beuselinck,
Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Li,
Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Sawyer,
Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin,
David/0000-0001-9984-215X; Carrera, Edgar/0000-0002-0857-8507; Wahl,
Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; Begel,
Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367;
Landsberg, Greg/0000-0002-4184-9380; Ancu, Lucian
Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy,
Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo,
Jun/0000-0001-8125-9433; Dudko, Lev/0000-0002-4462-3192; Mundim,
Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Novaes,
Sergio/0000-0003-0471-8549
FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR
(Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST
(India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF
(Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC;
Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CFI,
NSERC; BMBF and DFG (Germany); SFI (Ireland); Swedish Research Council
(Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation
(Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and
GACR (Czech Republic); CRC Program, CFI, NSERC and West-Grid Project
Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research
Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation (Germany).
NR 22
TC 13
Z9 13
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2009
VL 102
IS 25
AR 251801
DI 10.1103/PhysRevLett.102.251801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 463KX
UT WOS:000267432000012
ER
PT J
AU Cloet, IC
Bentz, W
Thomas, AW
AF Cloet, I. C.
Bentz, W.
Thomas, A. W.
TI Isovector EMC Effect and the NuTeV Anomaly
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID EXTENDED NJL MODEL; QUARK DISTRIBUTIONS; NUCLEAR-MATTER; PARTON
DISTRIBUTIONS; NEUTRINO REACTIONS; DYNAMICAL MODEL; SUPERCONDUCTIVITY;
ANALOGY
AB A neutron or proton excess in nuclei leads to an isovector-vector mean field which, through its coupling to the quarks in a bound nucleon, implies a shift in the quark distributions with respect to the Bjorken scaling variable. We show that this result leads to an additional correction to the NuTeV measurement of sin(2)theta(W). The sign of this correction is largely model independent and acts to reduce their result. Explicit calculation in nuclear matter within a covariant and confining Nambu-Jona-Lasinio model predicts that this vector field correction may account for a substantial fraction of the NuTeV anomaly. We are therefore led to offer a new interpretation of the NuTeV measurement, namely, that it provides further evidence for the medium modification of the bound nucleon wave function.
C1 [Cloet, I. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
[Bentz, W.] Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan.
[Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA.
[Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA.
RP Cloet, IC (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA.
RI Thomas, Anthony/G-4194-2012
OI Thomas, Anthony/0000-0003-0026-499X
FU U.S. Department of Energy [DEFG03-97ER4014, DE-AC05-06OR23177]; Japanese
Ministry of Education, Culture, Sports, Science and Technology
[C-19540306]
FX I. C. thanks Jerry Miller for helpful discussions. This work was
supported by the U.S. Department of Energy under Grant No.
DEFG03-97ER4014 and by Contract No. DE-AC05-06OR23177, under which
Jefferson Science Associates, LLC operates Jefferson Laboratory and by
the Grant in Aid for Scientific Research of the Japanese Ministry of
Education, Culture, Sports, Science and Technology, Project No.
C-19540306.
NR 35
TC 54
Z9 54
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2009
VL 102
IS 25
AR 252301
DI 10.1103/PhysRevLett.102.252301
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 463KX
UT WOS:000267432000013
PM 19659069
ER
PT J
AU Dandrea, L
Pederiva, F
Gandolfi, S
Kalos, MH
AF Dandrea, L.
Pederiva, F.
Gandolfi, S.
Kalos, M. H.
TI Fermionic Shadow Wave Function Variational Calculations of the Vacancy
Formation Energy in He-3
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLID HE-3; LIQUID-HE-4; HELIUM
AB We present a novel technique well suited for studying the ground state of inhomogeneous fermionic matter in a wide range of different systems. The system is described using a fermionic shadow wave function, and the energy is computed by means of the variational Monte Carlo technique. The general form of the fermionic shadow wave function is useful for describing many-body systems with the coexistence of different phases as well in the presence of defects or impurities, but it requires overcoming a significant sign problem. As an application, we studied the energy to activate vacancies in solid He-3.
C1 [Dandrea, L.; Pederiva, F.] Univ Trent, Dipartimento Fis, I-38050 Trento, Italy.
[Dandrea, L.; Pederiva, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy.
[Gandolfi, S.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy.
[Gandolfi, S.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy.
[Kalos, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Dandrea, L (reprint author), Univ Trent, Dipartimento Fis, Via Sommarive 14, I-38050 Trento, Italy.
FU U. S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC5207NA27344]
FX We thank G. V. Chester for useful discussions, C. J. Umrigar for
providing us with the Levemberg- Marquardt package used for the
optimization of the wave function, and, in particular, we are indebted
to F. Operetto for help with the optimization procedure. Calculations
were partially performed on the BEN cluster at ECT* in Trento, under a
grant for supercomputing projects, and partially on the HPC facility
WIGLAF of the Department of Physics, University of Trento. This work was
performed under the auspices of the U. S. Department of Energy by
Lawrence Livermore National Laboratory under Contract No.
DE-AC5207NA27344.
NR 18
TC 2
Z9 2
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2009
VL 102
IS 25
AR 255302
DI 10.1103/PhysRevLett.102.255302
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 463KX
UT WOS:000267432000034
PM 19659090
ER
PT J
AU Pollmann, F
Mukerjee, S
Turner, AM
Moore, JE
AF Pollmann, Frank
Mukerjee, Subroto
Turner, Ari M.
Moore, Joel E.
TI Theory of Finite-Entanglement Scaling at One-Dimensional Quantum
Critical Points
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PHASE; SYSTEMS
AB Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the 'central charge' of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)]. The parameter-free theory is checked against numerical scaling at several quantum critical points.
C1 [Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M.; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Mukerjee, Subroto; Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Pollmann, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RI Pollmann, Frank/L-5378-2013; Moore, Joel/O-4959-2016
OI Moore, Joel/0000-0002-4294-5761
FU DARPA OLE; Max Planck Foundation; DOE; NSF [DMR-0804413]
FX The authors thank DARPA OLE and the Max Planck Foundation (F. P.), DOE
(S. M.), and NSF DMR-0804413 (J. E. M.) for support.
NR 27
TC 110
Z9 110
U1 1
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 26
PY 2009
VL 102
IS 25
AR 255701
DI 10.1103/PhysRevLett.102.255701
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 463KX
UT WOS:000267432000040
PM 19659096
ER
PT J
AU Blanchette, CD
Woo, YH
Thomas, C
Shen, N
Sulchek, TA
Hiddessen, AL
AF Blanchette, Craig D.
Woo, Youn-Hi
Thomas, Cynthia
Shen, Nan
Sulchek, Todd A.
Hiddessen, Amy L.
TI Decoupling Internalization, Acidification and
Phagosomal-Endosomal/lysosomal Fusion during Phagocytosis of InlA Coated
Beads in Epithelial Cells
SO PLOS ONE
LA English
DT Article
AB Background: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomalendosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells.
Methodology/Principal Findings: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification.
Conclusions/Significance: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e. g. pathogen-host systems.
RP Blanchette, CD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM hiddessen1@llnl.gov
NR 50
TC 21
Z9 22
U1 0
U2 10
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD JUN 26
PY 2009
VL 4
IS 6
AR e6056
DI 10.1371/journal.pone.0006056
PG 13
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 463ID
UT WOS:000267424600004
PM 19557127
ER
PT J
AU Pushp, A
Parker, CV
Pasupathy, AN
Gomes, KK
Ono, S
Wen, JS
Xu, ZJ
Gu, G
Yazdani, A
AF Pushp, Aakash
Parker, Colin V.
Pasupathy, Abhay N.
Gomes, Kenjiro K.
Ono, Shimpei
Wen, Jinsheng
Xu, Zhijun
Gu, Genda
Yazdani, Ali
TI Extending Universal Nodal Excitations Optimizes Superconductivity in
Bi2Sr2CaCu2O8+delta
SO SCIENCE
LA English
DT Article
ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTORS; UNDERDOPED BI2212; MOTT
INSULATOR; ENERGY GAPS; PSEUDOGAP
AB Understanding the mechanism by which d wave superconductivity in the cuprates emerges and is optimized by doping the Mott insulator is one of the major outstanding problems in condensed-matter physics. Our high-resolution scanning tunneling microscopy measurements of the high-transition temperature (T-c) superconductor Bi2Sr2CaCu2O8+delta show that samples with different T-c values in the low doping regime follow a remarkably universal d wave low-energy excitation spectrum, indicating a doping-independent nodal gap. We demonstrate that T-c instead correlates with the fraction of the Fermi surface over which the samples exhibit the universal spectrum. Optimal T-c is achieved when all parts of the Fermi surface follow this universal behavior. Increasing the temperature above T-c turns the universal spectrum into an arc of gapless excitations, whereas overdoping breaks down the universal nodal behavior.
C1 [Pushp, Aakash; Parker, Colin V.; Pasupathy, Abhay N.; Gomes, Kenjiro K.; Yazdani, Ali] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA.
[Pushp, Aakash; Parker, Colin V.; Pasupathy, Abhay N.; Gomes, Kenjiro K.; Yazdani, Ali] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Pushp, Aakash] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Ono, Shimpei] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan.
[Wen, Jinsheng; Xu, Zhijun; Gu, Genda] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Yazdani, A (reprint author), Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA.
EM yazdani@princeton.edu
RI Wen, Jinsheng/F-4209-2010; Pushp, Aakash/G-6626-2011; xu,
zhijun/A-3264-2013
OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015
FU U.S. Department of Energy (DOE) [DE-FG02-07ER46419, DE-AC02-98CH10886];
NSF through the Princeton Center for Complex Materials; NSF
FX We gratefully acknowledge discussions with P. W. Anderson, N. P. Ong, M.
R. Norman, and M. Randeria. The work at Princeton is supported by the
U.S. Department of Energy (DOE) under contract DE-FG02-07ER46419 and NSF
through the Princeton Center for Complex Materials and through an
NSF-Instrumentation grant. The work in BNL is supported by DOE under
contract DE-AC02-98CH10886.
NR 29
TC 89
Z9 89
U1 4
U2 22
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD JUN 26
PY 2009
VL 324
IS 5935
BP 1689
EP 1693
DI 10.1126/science.1174338
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 462GE
UT WOS:000267338200033
PM 19498107
ER
PT J
AU Maiti, A
Dinh, LN
Baumann, TF
Maxwell, RS
Saab, AP
AF Maiti, A.
Dinh, L. N.
Baumann, T. F.
Maxwell, R. S.
Saab, A. P.
TI Kinetics of hydrogen uptake by scavenger molecules - Insights from
molecular modeling
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID SPILLOVER; STORAGE; DPB
AB Mixed aromatic-alkyne molecules have been designed to scavenge and remove hydrogen in unwanted situations. Such materials in powdered solid form are mixed with catalytic metal particles that dissociate H(2) molecules into H radicals. However, many details of the H uptake mechanism remain poorly understood. Here we report molecular modeling studies, using both classical force fields and first-principles density functional theory, aimed at providing enhanced understanding of the uptake kinetics. Such insights are important in improving the H scavenging efficiency of the present and next-generation materials, as well as to provide molecular-scale interpretation of supporting experiments. (C) 2009 Published by Elsevier B.V.
C1 [Maiti, A.; Dinh, L. N.; Baumann, T. F.; Maxwell, R. S.; Saab, A. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM amaiti@llnl.gov
FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed
Research and Development Program at LLNL [06-SI-005]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 and supported by Project 06-SI-005 funded by the
Laboratory Directed Research and Development Program at LLNL.
NR 24
TC 4
Z9 4
U1 1
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 25
PY 2009
VL 475
IS 4-6
BP 223
EP 226
DI 10.1016/j.cplett.2009.05.047
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 457QV
UT WOS:000266948100012
ER
PT J
AU Papagno, M
Rodriguez, AF
Girit, CO
Meyer, JC
Zettl, A
Pacile, D
AF Papagno, M.
Rodriguez, A. Fraile
Girit, C. Oe
Meyer, J. C.
Zettl, A.
Pacile, D.
TI Polarization-dependent C K near-edge X-ray absorption fine-structure of
graphene
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GRAPHITE-INTERCALATION COMPOUNDS; ELECTRONIC-STRUCTURE; INTERLAYER
STATES; BAND; SPECTROSCOPY; GAS
AB We report the polarization-dependent C K photoabsorption spectra of single-and few-layer graphene (FLG) samples produced by micromechanical cleavage of highly ordered pyrolytic graphite (HOPG) on a SiO(2) substrate. We show that the unoccupied sigma density of states of graphene and FLG strongly reflects the one measured on bulk HOPG, demonstrating the two-dimensional character of sigma states as well as the very-weak interlayer couplings between planes. Moreover, our spectra taken with different polarization allow us to show the predicted hybrid nature of the interlayer state. (C) 2009 Elsevier B. V. All rights reserved.
C1 [Papagno, M.; Pacile, D.] Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy.
[Papagno, M.; Pacile, D.] Univ Calabria, Dip Fis, I-87036 Cosenza, Italy.
[Rodriguez, A. Fraile] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Girit, C. Oe; Meyer, J. C.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Girit, C. Oe; Meyer, J. C.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Papagno, M (reprint author), CNR, Ist Struttura Mat, Basovizza, TS, Italy.
EM marco.papagno@ism.cnr.it
RI Fraile Rodriguez, Arantxa/A-2446-2009; Meyer, Jannik/H-8541-2012; Girit,
Caglar/D-4845-2014; Zettl, Alex/O-4925-2016;
OI Fraile Rodriguez, Arantxa/0000-0003-2722-0882; Meyer,
Jannik/0000-0003-4023-0778; Girit, Caglar/0000-0001-8953-9261; Zettl,
Alex/0000-0001-6330-136X; Pacile, Daniela/0000-0001-6219-3889; Papagno,
Marco/0000-0003-2623-1563
FU European Commission [R113-CT-2004-506008]
FX Part of this work was performed at the Swiss Light Source, Paul Scherrer
Institut, Switzerland. This research project has been supported by the
European Commission under the 6th Framework Programme through the Key
Action: Strengthening the European Research Area, Research
Infrastructures. Contract No. R113-CT-2004-506008.
NR 24
TC 23
Z9 24
U1 1
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 25
PY 2009
VL 475
IS 4-6
BP 269
EP 271
DI 10.1016/j.cplett.2009.05.054
PG 3
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 457QV
UT WOS:000266948100022
ER
PT J
AU Gorton, I
Chavarria, D
Nieplocha, J
AF Gorton, Ian
Chavarria, Daniel
Nieplocha, Jarek
TI Design and implementation of a high-performance CCA event service
SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE
LA English
DT Article
DE components; common component architecture; event service
ID MODEL
AB Event services based on publish-subscribe architectures are well-established components of distributed computing applications. Recently, an event service has been proposed as part of the common component architecture (CCA) for high-performance computing (HPC) applications. In this paper we describe our implementation, experimental evaluation, and initial experience with a high-performance CCA event service that exploits efficient communications mechanisms commonly used on HPC platforms. We describe the CCA event service model and briefly discuss the possible implementation strategies of the model. We then present the design and implementation of the event service using the aggregate remote memory copy interface as an underlying communication layer for this mechanism. Two alternative implementations are presented and evaluated on a Cray XD-1 platform. The performance results demonstrate that event delivery latencies are low and that the event service is able to achieve high-throughput levels. Finally, we describe the use of the event service in an application for high-speed processing of data from a mass spectrometer and conclude by discussing some possible extensions to the event service for other HPC applications. Published in 2009 by John Wiley & Sons, Ltd.
C1 [Gorton, Ian; Chavarria, Daniel; Nieplocha, Jarek] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Gorton, I (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM ian.gorton@pnl.gov
RI Gorton, Ian/A-8247-2009
NR 19
TC 0
Z9 0
U1 0
U2 1
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 1532-0626
J9 CONCURR COMP-PRACT E
JI Concurr. Comput.-Pract. Exp.
PD JUN 25
PY 2009
VL 21
IS 9
BP 1159
EP 1179
DI 10.1002/cpe.1382
PG 21
WC Computer Science, Software Engineering; Computer Science, Theory &
Methods
SC Computer Science
GA 459YE
UT WOS:000267148400003
ER
PT J
AU Wing, S
Johnson, JR
AF Wing, Simon
Johnson, Jay R.
TI Substorm entropies
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Article
ID CENTRAL PLASMA SHEET; ION FLOW; MAGNETOSPHERIC PLASMA; GEOSYNCHRONOUS
ORBIT; FLUX TUBES; CONVECTION; MODEL; TAIL; FIELD; MAGNETOTAIL
AB The specific entropy (s = p/rho(gamma)) and total entropy (S = p(1/gamma)V) of the plasma sheet during substorms are investigated with DMSP observations using a method that assumes ion isotropy (as also assumed in the derivation of S = S = p(1/gamma)V) and empirical magnetic field models that capture the expected characteristics of substorm phases. Earthward reductions of S are found during quasi-steady periods (e.g., growth phase) as well as during the transition from growth to expansion phases. During quasi-steady periods, (1) S and flux tube content (N) decrease moderately at midtail, but more steeply at the inner edge of the plasma sheet, and (2) s appears roughly conserved in the X or convection direction, but closer to Earth, there is a duskward heat flux. Both 1 and 2 suggest that curvature/gradient drifts can play a significant role in the S and N losses. On the other hand, during the transition from growth to expansion phases, S is reduced by an order of magnitude earthward of 20 R-E, which can be attributed mainly to the reduction in V from the dipolarization after onset, but s is roughly conserved. This result is consistent with a mechanism that reduces the flux tube volume/content without significantly altering s. Recent magnetohydrodynamic/particle-in-cell simulations of magnetic reconnection indicate that s tends to be conserved except in the small dissipation region, but the change in the field line topology for a reconnected field line can lead to a reduction in S with the remainder contained in a plasmoid that forms tailward of the X line.
C1 [Wing, Simon] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA.
[Johnson, Jay R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
RP Wing, S (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA.
EM simon.wing@jhuapl.edu
FU NSF [ATM-0703445, ATM-0802715, ATM-0538513, ATM0411392, ATM0614012];
NASA [NNH04AB23I, NNH04AA73I, NNG06GE96G, NNX06AB87G, NNH07AF37I]; DOE
[DE-AC02-76CH03073]
FX Gordon Wilson has been helpful in our acquiring DMSP SSJ4 data, as has
the World Data Center in Boulder, Colorado. Joe Borovsky has kindly and
generously provided Figure 6. The authors thank Jesper Gjerloev for
providing the substorm database and Michelle Thomsen for helpful
discussions. Simon Wing gratefully acknowledges support from NSF grants
ATM-0703445, ATM-0802715, and ATM-0538513 and NASA grant NNX06AB87G. Jay
R. Johnson acknowledges support from NASA grants (NNH04AB23I,
NNH04AA73I, NNG06GE96G, NNX06AB87G and NNH07AF37I), NSF grants
(ATM0411392, ATM0614012, and ATM-0703445), and DOE contract
DE-AC02-76CH03073. Finally, the authors would like to thank both
referees for helpful comments.
NR 57
TC 14
Z9 14
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD JUN 25
PY 2009
VL 114
AR A00D07
DI 10.1029/2008JA013989
PG 14
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 464FX
UT WOS:000267491800001
ER
PT J
AU Jiang, DE
van Duin, ACT
Goddard, WA
Dai, S
AF Jiang, De-en
van Duin, Adri C. T.
Goddard, William A., III
Dai, Sheng
TI Simulating the Initial Stage of Phenolic Resin Carbonization via the
ReaxFF Reactive Force Field
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; MESOPOROUS CARBON MATERIALS; SYSTEMS;
OXIDATION; MODELS
AB Pyrolysis of phenolic resins leads to carbon formation. Simulating this resin-to-carbon process atomistically is a daunting task. In this paper, we attempt to model the initial stage of this process by using the ReaxFF reactive force field, which bridges quantum mechanical and molecular mechanical methods. We run molecular dynamics simulations to examine the evolution of small molecules at different temperatures. The main small-molecule products found include H2O, H-2, CO, and C2H2. We find multiple pathways leading to H2O formation, including a frequent channel via beta-H elimination, which has not been proposed before. We determine the reaction barrier for H2O formation from the reaction rates obtained at different temperatures. We also discuss the relevance of our simulations to previous experimental observations. This work represents a first attempt to model the resin-to-carbon proc ess atomistically.
C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.
[Goddard, William A., III] CALTECH, Div Chem & Chem Engn, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA.
RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
EM jiangd@ornl.gov
RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015
OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931
FU Office of Basic Energy Sciences, U.S. Department of Energy
[DE-AC05-00OR22725]
FX The work was supported by Office of Basic Energy Sciences, U.S.
Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle,
LLC.
NR 27
TC 47
Z9 49
U1 2
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUN 25
PY 2009
VL 113
IS 25
BP 6891
EP 6894
DI 10.1021/jp902986u
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 460RT
UT WOS:000267205500007
PM 19496580
ER
PT J
AU Zheng, LX
Satishkumar, BC
Gao, PQ
Zhang, Q
AF Zheng, Lianxi
Satishkumar, B. C.
Gao, Pingqi
Zhang, Qing
TI Kinetics Studies of Ultralong Single-Walled Carbon Nanotubes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; GROWTH; TEMPERATURE
AB Single-walled carbon nanotubes (SWCNTs) were synthesized using ethanol CVD to study the nucleation kinetics of nanotube growth. By counting the number density of SWCNTs, i.e., the number of nanotubes per unit area on the substrate, the nucleation process of SWCNT growth was studied extensively within a wide range of growth temperatures. A nucleation energy about 2.8 eV was obtained from the Arrhenius-like temperature dependence of the number density of SWCNTs. The big difference between nucleation energy and diffusion energy implies the growth route for ultralong SWCNTs, and our approach may afford control over nanotube structure. The novel approach of studying the influence of "measure length" on activation energy may open an opportunity to understand the physics behind growth of nanotubes.
C1 [Zheng, Lianxi] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore.
[Satishkumar, B. C.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Gao, Pingqi; Zhang, Qing] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.
RP Zheng, LX (reprint author), Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore.
EM Lxzheng@ntu.edu.sg
RI Zhang , Qing/A-5073-2011; Gao, Pingqi/B-4813-2011; Zheng,
Lianxi/A-3855-2011
OI Zhang , Qing/0000-0002-2655-4971; Zheng, Lianxi/0000-0003-4974-365X
FU Singapore MOE tier [I RG26/08]
FX One of the authors, L.Z. would like to thank the Singapore MOE tier I
RG26/08 research fund for financial support.
NR 21
TC 18
Z9 18
U1 3
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD JUN 25
PY 2009
VL 113
IS 25
BP 10896
EP 10900
DI 10.1021/jp901640d
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 460RV
UT WOS:000267205700010
ER
PT J
AU Deng, XY
Matranga, C
AF Deng, Xingyi
Matranga, Christopher
TI Selective Growth of Fe2O3 Nanoparticles and Islands on Au(111)
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; FISCHER-TROPSCH SYNTHESIS; LAYER-ASSISTED
DEPOSITION; IRON-OXIDE FILMS; SURFACE-STRUCTURE; HETEROEPITAXIAL GROWTH;
MOO3 NANOSTRUCTURES; EPITAXIAL-GROWTH; PT(111); ADSORPTION
AB Selective growth of well-defined alpha-Fe2O3 structures was achieved on a Au(111) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Although oxidation of Fe particles on Au(111) with molecular O-2 at room temperature forms FeO, Fe2O3 is prepared by oxidation of Fe particles on Au(111) with NO2 at an elevated temperature, as verified by XPS, based on the binding energy (BE) value of the Fe 2p(3/2) (710.9 eV) peak and atomic ratio of O and Fe similar to 1.5:1. STM images reveal that Fe2O3 adopted ordered three-dimensional structures on Au(111). Although the general morphology of the Fe2O3 structures on Au(111) depends on the cove rage, varying from nanoparticles at low coverage to islands at high coverage, all of these Fe2O3 structures have nearly identical heights of 5-6 angstrom at all coverages. The surface structures of the Fe2O3 are all consistent with an O-terminated alpha-Fe2O3(0001), showing a hexagonal unit cell with a lattice constant of similar to 3 angstrom in atomically resolved STM images.
C1 [Deng, Xingyi; Matranga, Christopher] US DOE, NETL, Pittsburgh, PA 15236 USA.
[Deng, Xingyi] Parsons Project Serv Inc, South Pk, PA 15129 USA.
RP Deng, XY (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA.
EM Xingyi.Deng@netl.doe.gov
RI Matranga, Christopher/E-4741-2015;
OI Matranga, Christopher/0000-0001-7082-5938; Deng,
Xingyi/0000-0001-9109-1443
FU National Energy Technology Laboratory [DE-AC26-04NT41817]
FX We thank Dr. Junseok Lee for his experimental assistance and discussions
regarding our results. This technical effort was performed in support of
the National Energy Technology Laboratory's ongoing research in
Fischer-Tropsch catalysts for the Hydrogen from Coal Program under the
RDS Contract DE-AC26-04NT41817. Reference in this work to any specific
commercial product is to facilitate understanding and does not
necessarily imply endorsement by the U.S. Department of Energy.
NR 47
TC 19
Z9 19
U1 2
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD JUN 25
PY 2009
VL 113
IS 25
BP 11104
EP 11109
DI 10.1021/jp9021954
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 460RV
UT WOS:000267205700036
ER
PT J
AU Brown, DW
Bourke, MAM
Clausen, B
Korzekwa, DR
Korzekwa, RC
McCabe, RJ
Sisneros, TA
Teter, DF
AF Brown, D. W.
Bourke, M. A. M.
Clausen, B.
Korzekwa, D. R.
Korzekwa, R. C.
McCabe, R. J.
Sisneros, T. A.
Teter, D. F.
TI Temperature and direction dependence of internal strain and texture
evolution during deformation of uranium
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Uranium; Deformation; Neutron diffraction; Internal stresses; Texture
ID FINITE-ELEMENT ANALYSIS; RIETVELD REFINEMENT; NEUTRON-DIFFRACTION;
MECHANICAL RESPONSE; RESIDUAL-STRESSES; ROD TEXTURE; ZIRCALOY-2;
ZIRCONIUM
AB Depleted uranium is of current programmatic interest at Los Alamos National Lab due to its high density and nuclear applications. At room temperature, depleted uranium displays an orthorhombic crystal structure with highly anisotropic mechanical and thermal properties. For instance, the coefficient of thermal expansion is roughly 20 x 10(-6) degrees C(-1) in the a and c directions, but near zero or slightly negative in the b direction. The innate anisotropy combined with thermo-mechanical processing during manufacture results in spatially varying residual stresses and crystallographic texture, which can cause distortion, and failure in completed parts, effectively wasting resources. This paper focuses on the development of residual stresses and textures during deformation at room and elevated temperatures with an eye on the future development of computational polycrystalline plasticity models based on the known micro-mechanical deformation mechanisms of the material. (C) 2009 Published by Elsevier B.V.
C1 [Brown, D. W.; Bourke, M. A. M.; Clausen, B.; Korzekwa, D. R.; Korzekwa, R. C.; McCabe, R. J.; Sisneros, T. A.; Teter, D. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Brown, DW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM dbrown@lanl.gov
RI Clausen, Bjorn/B-3618-2015;
OI Clausen, Bjorn/0000-0003-3906-846X; McCabe, Rodney /0000-0002-6684-7410
FU Office of Basic Energy Sciences (DOE); National Security LLC
[DE-AC52-06NA25396]
FX This work has benefited from the use of the Lujan Neutron Scattering
Center at LANSCE, which is funded by the Office of Basic Energy Sciences
(DOE). Los Alamos National Laboratory is operated by Los Alamos National
Security LLC under DOE Contract DE-AC52-06NA25396.
NR 27
TC 16
Z9 17
U1 2
U2 20
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD JUN 25
PY 2009
VL 512
IS 1-2
BP 67
EP 75
DI 10.1016/j.msea.2009.02.004
PG 9
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 452YL
UT WOS:000266577000010
ER
PT J
AU Janssens, RVF
AF Janssens, Robert V. F.
TI NUCLEAR PHYSICS Unexpected doubly magic nucleus
SO NATURE
LA English
DT Editorial Material
ID NUMBERS
C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Janssens, RVF (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM janssens@anl.gov
NR 8
TC 32
Z9 33
U1 0
U2 1
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
EI 1476-4687
J9 NATURE
JI Nature
PD JUN 25
PY 2009
VL 459
IS 7250
BP 1069
EP 1070
DI 10.1038/4591069a
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 466BX
UT WOS:000267636700031
PM 19553989
ER
PT J
AU Zhang, GJ
Wang, RG
De Jonghe, LC
AF Zhang, Guojing
Wang, Ruigang
De Jonghe, Lutgard C.
TI Crystallization and conductivity of 2CaO-La2O3-5P(2)O(5) glass-ceramic
with Al2O3 addition
SO SOLID STATE IONICS
LA English
DT Article
DE Rare earth phosphates; Glass-ceramic; Conductivity
ID TEMPERATURE PROTONIC CONDUCTION; LAP3O9; LAPO4
AB Al2O3 was added to a 2CaO-La2O3-5P(2)O(5) metaphosphate, to replace 10% of the Ca2+ ions by Al3+, forming a phosphate with the nominal composition 1.8CaO-0.1Al(2)O(3)-La2O3-5P(2)O(5). The effect of Al2O3 addition and heat treatment on the microstructure and conductivity of the resulting glass-ceramics was investigated by XRD, SEM, TEM, and AC impedance spectroscopy. Upon transformation from glass to glass-ceramic, conductivities increased significantly. The glasses were isochronally transformed at 700 and at 800 degrees C for 1 h or 5 h, in air, following heating at 3 or 10 degrees C/min. With Al2O3 addition, after a heat treatment at 700 degrees C, 100-300 nm nano-domains of LaP3O9 crystallized from the glass matrix. Annealing at 800 degrees C produced a further order of magnitude conductivity increase for the Al-free glass, but less so for the M-containing glass. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Zhang, Guojing; Wang, Ruigang; De Jonghe, Lutgard C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[De Jonghe, Lutgard C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP De Jonghe, LC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
EM dejonghe@lbl.gov
RI Wang, Ruigang/C-2769-2011
FU U. S. Department of Energy [DE-AC02-05CH11231]; Molecular Foundry;
National Center for Electron Microscopy at the Lawrence Berkeley
National Laboratory
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Science, Materials Sciences and Engineering Division, of
the U. S. Department of Energy under contract No. DE-AC02-05CH11231. The
authors acknowledge support of the Molecular Foundry and the National
Center for Electron Microscopy at the Lawrence Berkeley National
Laboratory, which is also supported by the U.S. Department of Energy
under contract No. DE-AC02-05CH11231.
NR 8
TC 1
Z9 1
U1 1
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2738
J9 SOLID STATE IONICS
JI Solid State Ion.
PD JUN 25
PY 2009
VL 180
IS 14-16
BP 941
EP 945
DI 10.1016/j.ssi.2009.04.008
PG 5
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 466PH
UT WOS:000267674000006
ER
PT J
AU Sugita, S
Yamaoka, K
Ohno, M
Tashiro, MS
Nakagawa, YE
Urata, Y
Pal'shin, V
Golenetskii, S
Sakamoto, T
Cummings, J
Krimm, H
Stamatikos, M
Parsons, A
Barthelmy, S
Gehrels, N
AF Sugita, Satoshi
Yamaoka, Kazutaka
Ohno, Masanori
Tashiro, Makoto S.
Nakagawa, Yujin E.
Urata, Yuji
Pal'shin, Valentin
Golenetskii, Sergei
Sakamoto, Takanori
Cummings, Jay
Krimm, Hans
Stamatikos, Michael
Parsons, Ann
Barthelmy, Scott
Gehrels, Neil
TI Suzaku-WAM, Konus-Wind, and Swift-BAT Observations of Prompt Emission of
the High-Redshift GRB 050904
SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN
LA English
DT Article
DE gamma rays: observations; stars: individual (GRB 050904)
ID GAMMA-RAY BURST; ALL-SKY MONITOR; PEAK ENERGY; LUMINOSITY RELATION;
OPTICAL AFTERGLOW; COSMIC EXPLOSION; GRB-050904; ENERGETICS; SPECTRA;
BRIGHT
AB We present the results of the high-redshift GRB 050904 at z = 6.295 from joint spectral analysis among Swift-BAT, Konus-Wind, and Suzaku-WAM, covering a wide energy range of 15-5000 keV. The nu F-nu spectrum peak energy, E-peak, was measured at 314(-89)(+173) keV, corresponding to 2291(-634)(+1263) keV in the source frame, and the isotropic equivalent radiated energy, E-iso, was estimated to be 1.04(-0.17)(+0.21) x 10(54)erg. Both are among the highest values that have ever been measured. GRBs with such a high E-iso (similar to 10(54) erg) might be associated with prompt optical emission. The derived spectral and energetic parameters are consistent with the correlation between the rest-frame E-p,E-i and the E-iso (Amati relation), but not with the correlation between the intrinsic peak energy E-p,E-i and the collimation-corrected energy E-gamma (Ghirlanda relation), unless the density of the circumburst environment of this burst is much larger than the nominal value, as suggested by other wavelength observations. We also discuss the possibility that this burst is an outlier in the correlation between E-p,E-i and the peak luminosity L-p (Yonetoku relation).
C1 [Sugita, Satoshi; Yamaoka, Kazutaka] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan.
[Sugita, Satoshi; Nakagawa, Yujin E.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan.
[Ohno, Masanori] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan.
[Tashiro, Makoto S.; Urata, Yuji] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan.
[Pal'shin, Valentin; Golenetskii, Sergei] AF Ioffe Phys Tech Inst, Expt Astrophys Lab, St Petersburg 194021, Russia.
[Sakamoto, Takanori; Cummings, Jay; Krimm, Hans; Stamatikos, Michael; Parsons, Ann; Barthelmy, Scott; Gehrels, Neil] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Sakamoto, Takanori; Stamatikos, Michael] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA.
[Cummings, Jay] Univ Maryland, Joint Ctr Astrophys, Baltimore, MD 21250 USA.
[Krimm, Hans] Univ Space Res Assoc, Columbia, MD 21044 USA.
[Urata, Yuji] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan.
RP Sugita, S (reprint author), Aoyama Gakuin Univ, Dept Math & Phys, 5-10-1 Fuchinobe, Kanagawa 2298558, Japan.
EM sugita@phys.aoyama.ac.jp
RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Parsons,
Ann/I-6604-2012; Tashiro, Makoto/J-4562-2012; Pal'shin,
Valentin/F-3973-2014; Golenetskii, Sergey/B-3818-2015; XRAY,
SUZAKU/A-1808-2009
FU Ministry of Education, Culture, Sports, Science and Technology (MEXT)
[19047001]; Special Postdoctoral Researchers Program in RIKEN; Russian
Space Agency contract and RFBR [06-02-16070]
FX We thank an anonymous referee for useful cornments and suggestions. This
research has been supported in part by a Grant-in-Aid for Scientific
Research (19047001 KY) of the Ministry of Education, Culture, Sports,
Science and Technology (MEXT). Y.E.N. is supported in part by the
Special Postdoctoral Researchers Program in RIKEN. The Konus-Wind
experiment is supported by a Russian Space Agency contract and RFBR
grant 06-02-16070.
NR 54
TC 12
Z9 12
U1 0
U2 2
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0004-6264
EI 2053-051X
J9 PUBL ASTRON SOC JPN
JI Publ. Astron. Soc. Jpn.
PD JUN 25
PY 2009
VL 61
IS 3
BP 521
EP 527
DI 10.1093/pasj/61.3.521
PG 7
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 475OI
UT WOS:000268368900016
ER
PT J
AU Burkes, DE
Hartmann, T
Prabhakaran, R
Jue, JF
AF Burkes, Douglas E.
Hartmann, Thomas
Prabhakaran, Ramprashad
Jue, Jan-Fong
TI Microstructural characteristics of DU-xMo alloys with x=7-12 wt%
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Actinide alloys and compounds; Nuclear reactor materials;
Microstructure; Metallography; X-ray diffraction
ID URANIUM-MOLYBDENUM ALLOYS; IRRADIATION BEHAVIOR; PHASE; FUELS
AB Microstructural, phase, and impurity analyses of six depleted uranium-molybdenum alloys were obtained using optical metallography, X-ray diffraction, and carbon/nitrogen/oxygen determination. Uranium-molybdenum alloy foils are currently under investigation for the conversion of high-power research reactors using high-enriched uranium fuel to accommodate the use of low-enriched uranium fuel. Understanding basic microstructural behavior of these foils is an important consideration in determining the impact of fabrication processes and in anticipating performance of the foils in a reactor. Average grain diameter decreased with increasing molybdenum content. Lattice parameter decreased with increasing molybdenum content, and no significant degree of phase decomposition or crystallographic ordering was caused by processing and post-processing conditions employed in this study. Impurity concentration, specifically carbon, inhibited the degree of microstructural recrystallization but did not appear to impact other microstructural traits, such as gamma-phase retention or lattice parameter. (c) 2008 Elsevier B.V. All rights reserved.
C1 [Burkes, Douglas E.; Hartmann, Thomas; Prabhakaran, Ramprashad; Jue, Jan-Fong] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA.
[Hartmann, Thomas] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA.
[Prabhakaran, Ramprashad] Univ Idaho, Mat Sci & Engn Dept, Moscow, ID 83844 USA.
RP Burkes, DE (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA.
EM Douglas.Burkes@inl.gov
NR 28
TC 12
Z9 12
U1 1
U2 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD JUN 24
PY 2009
VL 479
IS 1-2
BP 140
EP 147
DI 10.1016/j.jallcom.2008.12.063
PG 8
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 458XR
UT WOS:000267063300045
ER
PT J
AU Hu, YY
Levin, EM
Schmidt-Rohr, K
AF Hu, Yan-Yan
Levin, E. M.
Schmidt-Rohr, Klaus
TI Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CHEMICAL-SHIFT ANISOTROPY; THERMOELECTRIC-MATERIALS; PULSES
AB high-resolution magic-angle spinning NMR of high-Z spin-1/2 nuclei such as (125)Te, (207)Pb, (119)Sn, (113)Cd, and (195)Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90 degrees pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for Long pulses (comparable to the dwelt time in t(1)) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 gamma B(1), due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS.
C1 [Hu, Yan-Yan; Levin, E. M.; Schmidt-Rohr, Klaus] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Hu, Yan-Yan; Schmidt-Rohr, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM srohr@iastate.edu
RI Hu, Yan-Yan/A-1795-2015
OI Hu, Yan-Yan/0000-0003-0677-5897
FU U.S. Department of Energy - Basic Energy Sciences [DE-AC02-07CH11358]
FX This work was supported by the U.S. Department of Energy - Basic Energy
Sciences, Contract No. DE-AC02-07CH11358.
NR 15
TC 13
Z9 13
U1 6
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8390
EP +
DI 10.1021/ja903334p
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000027
PM 19489580
ER
PT J
AU Zhao, YN
Trewyn, BG
Slowing, II
Lin, VSY
AF Zhao, Yannan
Trewyn, Brian G.
Slowing, Igor I.
Lin, Victor S. -Y.
TI Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for
Glucose-Responsive Controlled Release of Insulin and Cyclic AMP
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID PHYSIOLOGICAL PH; ACID GEL; BIODISTRIBUTION; SENSORS; ISLETS; CELLS
AB A boronic acid-functionalized mesoporous silica nanoparticle-based drug delivery system (BA-MSN) for glucose-responsive controlled release of both insulin and cyclic adenosine monophosphate (CAMP) was synthesized. Fluorescein isothiocyanate-labeled, gluconic acid-modified insulin (FITC-G-Ins) proteins were immobilized on the exterior surface of BA-MSN and also served as caps to encapsulate CAMP molecules inside the mesopores of BA-MSN. The release of both G-Ins and CAMP was triggered by the introduction of saccharides. The selectivity of FITC-G-Ins release toward a series of carbohydrate triggers was determined to be fructose > glucose > other saccharides. The unique feature of this double-release system is that the decrease of FITC-G-Ins release with cycles can be balanced by the release of CAMP from mesopores of MSN, which is regulated by the gatekeeper effect of FITC-G-Ins. In vitro controlled release of cAMP was studied at two pH conditions (pH 7.4 and 8.5). Furthermore, the cytotoxicity of cAMP-loaded G-Ins-MSN with four different cell tines was investigated by cell viability and proliferation studies. The cellular uptake properties of cAMP-loaded FITC-BA-MSN with and without G-Ins capping were investigated by flow cytometry and fluorescence confocal microscopy. We envision that this glucose-responsive MSN-based double-release system could lead to a new generation of self-regulated insulin-releasing devices.
C1 [Zhao, Yannan; Trewyn, Brian G.; Slowing, Igor I.; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA.
RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA.
EM vsylin@iastate.edu
OI Slowing, Igor/0000-0002-9319-8639
FU U.S. National Science Foundation [CHE-0809521]
FX This research was supported by the U.S. National Science Foundation
(CHE-0809521).
NR 23
TC 421
Z9 426
U1 27
U2 361
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8398
EP +
DI 10.1021/ja901831u
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000031
PM 19476380
ER
PT J
AU Mastroianni, AJ
Claridge, SA
Alivisatos, AP
AF Mastroianni, Alexander J.
Claridge, Shelley A.
Alivisatos, A. Paul
TI Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA
Scaffolds
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID BUILDING-BLOCKS; NANOSTRUCTURES; NANOPARTICLE; MOLECULES; ORGANIZATION;
OCTAHEDRON; TRIANGLES; LIGATION
AB Nanostructures constructed from metal and semiconductor nanocrystals conjugated to and organized by DNA are an emerging class of materials with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small-angle X-ray scattering measurments from solutions of these pyramids, we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures.
C1 [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM alivis@berkeley.edu
RI Alivisatos , Paul /N-8863-2015
OI Alivisatos , Paul /0000-0001-6895-9048
FU U.S. Department of Energy [DE-AC02-05CH11231]; NIH-NCI [5U54CA112970];
NSF-IGERT
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contact
No. DE-AC02-05CH11231 and by NIH-NCI Grant No. 5U54CA112970. S.A.C.
gratefully acknowledges an NSF-IGERT Predoctoral Fellowship.
NR 27
TC 254
Z9 261
U1 11
U2 114
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8455
EP 8459
DI 10.1021/ja808570g
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000041
PM 19331419
ER
PT J
AU Xiang, HJ
Kang, J
Wei, SH
Kim, YH
Curtis, C
Blake, D
AF Xiang, Hongjun
Kang, Joongoo
Wei, Su-Huai
Kim, Yong-Hyun
Curtis, Calvin
Blake, Daniel
TI Shape Control of Al Nanoclusters by Ligand Size
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ALUMINUM CLUSTER ANIONS; AUGMENTED-WAVE METHOD; GAS-PHASE; GALLIUM;
ATOMS; AL-77
AB It is a challenge to synthesize clusters having a certain shape associated with a desirable property. In this study, we perform density functional calculations on ligand-protected Al(7) and Al(77) clusters. It is found that small ligands such as NH(2) Still prefer the compact structure of bare Al clusters. However, large ligands such as N(SiMe(3))(2) stabilize the experimentally observed shell-like structures due to the steric effect. This is different from the Ga(84) cluster case where small ligands can stabilize the experimental shell-like Ga(84) cluster. Our study suggests that the shape, and thus the properties, of clusters (for instance, C(3v) Al(7) cluster has a finite dipole moment in contrast to the centrosymmetric D(3d) cluster) can be controlled by using ligands with different sizes.
C1 [Xiang, Hongjun; Kang, Joongoo; Wei, Su-Huai; Kim, Yong-Hyun; Curtis, Calvin; Blake, Daniel] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Xiang, HJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM hongjun_xiang@nrel.gov
RI Xiang, Hongjun/A-4076-2008; Kim, Yong-Hyun/C-2045-2011; Xiang,
Hongjun/I-4305-2016
OI Kim, Yong-Hyun/0000-0003-4255-2068; Xiang, Hongjun/0000-0002-9396-3214
FU DOE/NREU/LDRD program [DE-AC36-08GO28308]; Korea Science and Engineering
Foundation (KOSEF); Korean government (MEST) [R31 2008-000-10071-0]
FX This work was supported by the DOE/NREU/LDRD program, under Contract No.
DE-AC36-08GO28308. We thank Dr. Xiaojun Wu for useful discussions.
Y.H.K. was partly supported by Korea Science and Engineering Foundation
(KOSEF) grant funded by the Korean government (MEST) (grant code: R31
2008-000-10071-0).
NR 34
TC 19
Z9 20
U1 1
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8522
EP 8526
DI 10.1021/ja900965w
PG 5
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000048
PM 19473016
ER
PT J
AU Que, EL
Gianolio, E
Baker, SL
Wong, AP
Aime, S
Chang, CJ
AF Que, Emily L.
Gianolio, Eliana
Baker, Suzanne L.
Wong, Audrey P.
Aime, Silvio
Chang, Christopher J.
TI Copper-Responsive Magnetic Resonance Imaging Contrast Agents
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Review
ID AMYOTROPHIC-LATERAL-SCLEROSIS; PROTON RELAXATION TIMES; SPHERE
WATER-MOLECULES; ON FLUORESCENT SENSOR; HIGH-RELAXIVITY; IN-VIVO;
LANTHANIDE LUMINESCENCE; CEREBRAL MANIFESTATION; MACROCYCLIC GADOLINIUM;
PARAMAGNETIC SOLUTIONS
AB The design, synthesis, and evaluation of the Copper-Gad (CG) family, a new class of copper-activated magnetic resonance imaging (MRI) contrast agents, are presented. These indicators comprise a Gd(3+)-DO3A core coupled to various thioether-rich receptors for copper-induced relaxivity switching. In the absence of copper ions, inner-sphere water binding to the Gd(3+) chelate is restricted, resulting in low longitudinal relaxivity values (r(1) = 1.2-2.2 mM(-1) s(-1) measured at 60 MHz). Addition of Cu(+) to CG2, CG3, CG4, and CG5 and either Cu(+) or Cu(2+) to CG6 triggers marked enhancements in relaxivity (r(1) = 2.3-6.9 mM(-1) s(-1)). CG2 and CG3 exhibit the greatest turn-on responses, going from r(1) = 1.5 mM(-1) s(-1) in the absence of Cu(+) to r(1) = 6.9 mM(-1) s(-1) upon Cu(+) binding (a 360% increase). The CG sensors are highly selective for Cu(+) and/or Cu(2+) over competing metal ions at cellular concentrations, including Zn(2+) at 10-fold higher concentrations. (17)O NMR dysprosium-induced shift and nuclear magnetic relaxation dispersion measurements support a mechanism in which copper-induced changes in the coordination environment of the Gd(3+) core result in increases in q and r(1). T(1)-weighted phantom images establish that the CG sensors re capable of visualizing changes in copper levels by MRI at clinical field strengths.
C1 [Que, Emily L.; Wong, Audrey P.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.
[Baker, Suzanne L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Funct Imaging, Berkeley, CA 94720 USA.
[Gianolio, Eliana; Aime, Silvio] Univ Turin, Ctr Mol Biotechnol, I-10125 Turin, Italy.
RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM chrischang@berkeley.edu
FU University of California, Berkeley, the Dreyfus, Beckman, Packard; Sloan
Foundations; Hellman Faculty Fund (UC Berkeley); National Institute of
General Medical Sciences [79465]; Howard Hughes Medical Institute;
Branch Graduate Fellowship from UC Berkeley
FX We thank the University of California, Berkeley, the Dreyfus, Beckman,
Packard, and Sloan Foundations, the Hellman Faculty Fund (UC Berkeley),
the National Institute of General Medical Sciences (NIH GM 79465), and
the Howard Hughes Medical Institute for funding this work. We thank Ms.
Christine Yin for preliminary synthetic studies. E.L.Q. acknowledges a
Branch Graduate Fellowship from UC Berkeley.
NR 115
TC 88
Z9 91
U1 9
U2 67
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8527
EP 8536
DI 10.1021/ja900884j
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000049
PM 19489557
ER
PT J
AU Norris, AL
Serpersu, EH
AF Norris, Adrianne L.
Serpersu, Engin H.
TI NMR Detected Hydrogen-Deuterium Exchange Reveals Differential Dynamics
of Antibiotic- and Nucleotide-Bound Aminoglycoside Phosphotransferase 3
'-IIIa
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID INTRINSICALLY UNSTRUCTURED PROTEINS; KINASE APH(3')-IIIA; RESISTANCE
ENZYME; MODIFYING ENZYMES; LIGAND-BINDING; MECHANISM; OVEREXPRESSION;
PURIFICATION; FLEXIBILITY; PROTECTION
AB In this work, hydrogen-deuterium exchange detected by NMR spectroscopy is used to determine the dynamic properties of the aminoglycoside phosphotransferase 3 '-IIIa (APH), a protein of intense interest due to its involvement in conferring antibiotic resistance to both Gram negative and Gram positive microorganisms. This represents the first characterization of dynamic properties of an aminoglycoside-modifying enzyme. Herein we describe in vitro dynamics of apo, binary, and ternary complexes of APH with kanamycin A, neomycin B, and metal-nucleotide. Regions of APH in different complexes that are superimposable in crystal structures show remarkably different dynamic behavior. A complete exchange of backbone amides is observed within the first 15 h of exposure to D(2)O in the apo form of this 31 kDa protein. Binding of aminoglycosides to the enzyme induces significant protection against exchange, and similar to 30% of the amides remain unexchanged up to 95 h after exposure to D(2)O. Our data also indicate that neomycin creates greater solvent protection and overall enhanced structural stability to APH than kanamycin. Surprisingly, nucleotide binding to the enzyme-aminoglycoside complex increases solvent accessibility of a number of amides and is responsible for destabilization of a nearby beta-sheet, thus providing a rational explanation for previously observed global thermodynamic parameters. Our data also provide a molecular basis for broad substrate selectivity of APH.
C1 [Norris, Adrianne L.; Serpersu, Engin H.] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Serpersu, Engin H.] Univ Tennessee, Grad Sch Genom Sci & Technol, Knoxville, TN 37996 USA.
[Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN USA.
[Serpersu, Engin H.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA.
RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA.
EM Serpersu@utk.edu
FU National Science Foundation [01110741]; Center of Excellence for
Structural Biology at the University of Tennessee
FX This research was partly supported by a Grant from the National Science
Foundation (MCB 01110741 to EHS) and the Center of Excellence for
Structural Biology at the University of Tennessee. We thank Can Ozen for
purification of isotopically labeled APH. We also thank Dr. Elias
Fernandez for critical reading of the manuscript.
NR 39
TC 14
Z9 15
U1 0
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8587
EP 8594
DI 10.1021/ja901685h
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000056
PM 19463004
ER
PT J
AU Rodriguez, JA
Liu, P
Takahashi, Y
Nakamura, K
Vines, F
Illas, F
AF Rodriguez, Jose A.
Liu, Ping
Takahashi, Yoshiro
Nakamura, Kenichi
Vines, Francesc
Illas, Francesc
TI Desulfurization of Thiophene on Au/TiC(001): Au-C Interactions and
Charge Polarization
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TRANSITION-METAL CARBIDES; GAS SHIFT REACTION; GOLD NANOPARTICLES;
ATOMIC OXYGEN; HYDROTREATING CATALYSTS; MOLECULAR-MECHANISM; MOLYBDENUM
CARBIDE; MGO(001) SURFACE; SULFUR-DIOXIDE; OXIDE SURFACES
AB Photoemission and first-principles DF calculations were used to study the interaction of thiophene with TiC(001) and Au/TiC(001) surfaces. The adsorption strength of thiophene on TiC(001) is weak, and the molecule desorbs at temperatures below 200 K. The molecule binds to Ti centers of TiC(001) through its sulfur atom with negligible structural perturbations. In spite of the very poor desulfurization performance of TiC(001) or Au(111), a Au/TiC(001) system displays a hydrodesulfurization activity higher than that of conventional Ni/MoS(x) catalysts. The Au <-> TiC(001) interactions induce a polarization of electron density around Au which substantially increases the chemical reactivity of this metal. Au nanoparticles drastically increase the hydrodesulfurization activity of TiC(001) by enhancing the bonding energy of thiophene and by helping in the dissociation of H(2) to produce the hydrogen necessary for the hydrogenolysis of C-S bonds and the removal of sulfur. H(2) spontaneously dissociates on small two-dimensional clusters of gold in contact with TiC(001). On these systems, the adsorption energy of thiophene is 0.45-0.65 eV larger than that on TiC(001) or Au(111). Thiophene binds in a eta(5) configuration with a large elongation (similar to 0.2 angstrom) of the C-S bonds.
C1 [Rodriguez, Jose A.; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Takahashi, Yoshiro; Nakamura, Kenichi] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan.
[Vines, Francesc; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain.
[Vines, Francesc; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain.
RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
EM rodrigez@bnl.gov
RI Illas, Francesc /C-8578-2011;
OI Illas, Francesc /0000-0003-2104-6123; Vines,
Francesc/0000-0001-9987-8654
FU U.S. Department of Energy, Chemical Sciences Division; Generalitat de
Catalunya; Spanish Ministry of Education and Science; Universitat de
Barcelona; Nippon Foundation for Materials Science; Spanish MICINN
[FIS2008-02238/FIS]
FX The authors are grateful to B. Roldan-Cuenya (University of Central
Florida) and J. Gomes (Universidade do Porto) for thought-provoking
discussions about the properties of Au/TiC. Many thanks to T. Jirsak
(BNL) for his help with the operation of the U7A beamline and the
photoemission experiments at the NSLS. The research carried out at BNL
was supported by the U.S. Department of Energy, Chemical Sciences
Division. J.A.R. acknowledges the support of the Generalitat de
Catalunya in a visit to the Universitat de Barcelona. F.V. thanks the
Spanish Ministry of Education and Science and Universitat de Barcelona
for supporting his predoctoral research. K.N. is grateful to the Nippon
Foundation for Materials Science for grants that made possible part of
this work. and F.I. acknowledges financial support from Spanish MICINN
Grant FIS2008-02238/FIS. Computational time at the Center for Functional
Nanomaterials at BNL and the Marenostrum Supercomputer of the Barcelona
Supercomputing Center is gratefully acknowledged.
NR 78
TC 52
Z9 52
U1 2
U2 44
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8595
EP 8602
DI 10.1021/ja901522a
PG 8
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000057
PM 19530731
ER
PT J
AU Dai, JC
Gupta, S
Gourdon, O
Kim, HJ
Corbett, JD
AF Dai, Jing-Cao
Gupta, Shalabh
Gourdon, Olivier
Kim, Hyun-Jeong
Corbett, John D.
TI BaHg2Tl2. An Unusual Polar Intermetallic Phase with Strong
Differentiation between the Neighboring Elements Mercury and Thallium
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID METALLIC ZINTL PHASE; ELECTRONIC-STRUCTURE; STRUCTURAL CHEMISTRY; GOLD
SUBSTITUTION; EXAMPLES; CLUSTERS; SOLIDS; RB; CS
AB High yields of the novel BaHg2Tl2 are achieved from reactions of the appropriate cast alloys at similar to 400 degrees C. (Isotypic SrHg2Tl2 also exists.) The tetragonal barium structure (P4(2)/mnm, a = 10.606 angstrom, c = 5.159 angstrom) was refined from both single-crystal X-ray and neutron powder diffraction data in order to ensure the atom site assignments although distances and calculated atom site population also support the results. The Hg and Tl network atoms are distinctive in their functions and bonding. Parallel chains of Hg hexagons and of Tl tetrahedra along care constructed from polyhedra that share opposed like edges, and these are in turn interconnected by Hg-Tl bonds. Overall, the number of Tl-Tl bonds per cell exceeds the Hg-Hg type by 20:12, but these are similar to 1:2 each in bonding according to their average -ICOHP values (related to overlap populations). Barium is bound within a close 15-atom polyhedron, 12 atoms of which are the more electronegative Hg. LMTO-ASA calculations show that scalar relativistic effects are particularly important for Hg 5d-6s mixing in Hg-Hg and Hg-Tl bonding, whereas relatively separate Tl 6s and 6p states are more important in Tl-Tl interactions. The 6p states of Hg and Tl and 5d of Ba define a dominant conduction band around E-F, and the phase is metallic and Pauli-like paramagnetic. The thallium characteristics here are close to those in numerous alkali-metal-Ti cluster systems. Other active metal-mercury phases that have been studied theoretically are all distinctly electron-richer and more reduced, and without appreciable net 5d, 6s contributions to Hg-Hg bonding.
C1 [Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA.
[Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D.] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA.
[Gourdon, Olivier] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Kim, Hyun-Jeong] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA.
RP Corbett, JD (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA.
EM jcorbett@iastate.edu
RI Lujan Center, LANL/G-4896-2012; Gupta, Shalabh/H-6214-2012; Dai,
Jing-Cao/G-8427-2012
FU Office of Basic Energy Sciences (BES), Materials Sciences Division, U.S.
Department of Energy (DOE) [DE-AC02-07CH11358, DE-AC52-06NA25396]; Ames
Laboratory; Iowa State University; NPDF at the Lujan Center at Los
Alamos Neutron Science Center; BES
FX The authors are indebted to Gordon J. Miller for his interest and
helpful insights and to Serge Bud'kov for the magnetic susceptibility
data. This research was supported by the Office of Basic Energy Sciences
(BES), Materials Sciences Division, U.S. Department of Energy (DOE) and
performed primarily in the Ames Laboratory, which is operated for DOE by
Iowa State University under Contract No. DE-AC02-07CH11358. This work
also benefited from the use of NPDF at the Lujan Center at Los Alamos
Neutron Science Center, also funded by BES. Los Alamos National
Laboratory is operated by Los Alamos National Security LLC under DOE
Contract No. DE-AC52-06NA25396.
NR 39
TC 14
Z9 14
U1 0
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 24
PY 2009
VL 131
IS 24
BP 8677
EP 8682
DI 10.1021/ja901865d
PG 6
WC Chemistry, Multidisciplinary
SC Chemistry
GA 465ZP
UT WOS:000267630000067
PM 19459627
ER
PT J
AU Ovchinnikov, OS
Jesse, S
Kalinin, SV
AF Ovchinnikov, Oleg S.
Jesse, S.
Kalinin, S. V.
TI Adaptive probe trajectory scanning probe microscopy for multiresolution
measurements of interface geometry
SO NANOTECHNOLOGY
LA English
DT Article
AB An adaptive scanning method in scanning probe microscopy (SPM) is developed for studies of surfaces with a highly-non-uniform information density such as nanowires or interfaces in disordered media. In path-engineered SPM, the surface is pre-scanned to locate features, and a secondary scan is acquired with the pixel density concentrated in the vicinity of the objects of interest. Here, we demonstrate this approach for piezoresponse force microscopy, and develop approaches for fractal and self-affine characterization of domain interfaces. The relationship between the variational roughness, structure factor, and correlation functions is established and resolution effects on these parameters are determined.
C1 [Ovchinnikov, Oleg S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Ovchinnikov, OS (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
EM sjesse@ornl.gov; sergei2@ornl.gov
RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016
OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483
NR 16
TC 7
Z9 7
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
EI 1361-6528
J9 NANOTECHNOLOGY
JI Nanotechnology
PD JUN 24
PY 2009
VL 20
IS 25
AR 255701
DI 10.1088/0957-4484/20/25/255701
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 453NR
UT WOS:000266618000015
PM 19491461
ER
PT J
AU Loginova, E
Bartelt, NC
Feibelman, PJ
McCarty, KF
AF Loginova, E.
Bartelt, N. C.
Feibelman, P. J.
McCarty, K. F.
TI Factors influencing graphene growth on metal surfaces
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; EPITAXIAL GRAPHENE;
CARBON; TRANSITION; GRAPHITE; DECOMPOSITION; ADSORPTION; IR(111);
SEGREGATION
AB Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces.
C1 [Loginova, E.; Bartelt, N. C.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA USA.
[Feibelman, P. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA USA.
EM mccarty@sandia.gov
RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012
OI McCarty, Kevin/0000-0002-8601-079X;
NR 51
TC 156
Z9 157
U1 16
U2 186
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD JUN 24
PY 2009
VL 11
AR 063046
DI 10.1088/1367-2630/11/6/063046
PG 20
WC Physics, Multidisciplinary
SC Physics
GA 464RH
UT WOS:000267523100003
ER
PT J
AU Virkar, A
Mannsfeld, S
Oh, JH
Toney, MF
Tan, YH
Liu, GY
Scott, JC
Miller, R
Bao, Z
AF Virkar, Ajay
Mannsfeld, Stefan
Oh, Joon Hak
Toney, Michael F.
Tan, Yih Horng
Liu, Gang-yu
Scott, J. Campbell
Miller, Robert
Bao, Zhenan
TI The Role of OTS Density on Pentacene and C-60 Nucleation, Thin Film
Growth, and Transistor Performance
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID SELF-ASSEMBLED MONOLAYERS; ORGANIC SEMICONDUCTORS; MOBILITY; CRYSTAL;
MORPHOLOGY; MOLECULES
AB In organic thin film transistors (OTFTs), charge transport occurs in the first few monolayers of the semiconductor near the semiconductor/dielectric interface. Previous work has investigated the roles of dielectric surface energy, roughness, and chemical functionality on performance. However, large discrepancies in performance, even with apparently identical surface treatments, indicate that additional surface parameters must be identified and controlled in order to optimize OTETs. Here, a crystalline, dense octadecylsilane (OTS) surface modification layer is found that promotes two-dimensional semiconductor growth. Higher mobility is consistently achieved for films deposited on crystalline OTS compared to on disordered OTS, with mobilities as high as 5.3 and 2.3 cm(2)V(-1) s(-1) for C-60 and pentacene, respectively. This is a significant step toward morphological control of organic semiconductors which is directly linked to their thin film carrier transport.
C1 [Virkar, Ajay; Mannsfeld, Stefan; Oh, Joon Hak; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.
[Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
[Tan, Yih Horng; Liu, Gang-yu] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.
[Scott, J. Campbell; Miller, Robert] IBM Almaden Res Ctr, San Jose, CA 95120 USA.
RP Virkar, A (reprint author), Stanford Univ, Dept Chem Engn, 381 N S Mall, Stanford, CA 94305 USA.
EM zbao@stanford.edu
RI Oh, Joon Hak/F-1454-2010
OI Oh, Joon Hak/0000-0003-0481-6069
FU Stanford Center for Polymeric Interfaces and Macromolecular Assemblies;
NSF DMR Solid State Chemistry; Air Force Office of Scientific Research;
Stanford School of Engineering; Sloan Research Fellowship
FX Portions of this research were carried out at the Stanford Synchrotron
Radiation Laboratory, a national user facility operated by Stanford
University on behalf of the U.S. Department of Energy, Office of Basic
Energy Sciences. The authors acknowledge helpful discussion with Y. Ito,
R. Stoltenberg, R. Lowe, M. Wang, M. Roberts, and C. Reese. Y. H. T
acknowledge University of California, Davis, provided 2007 Summer
Graduate Student Researcher Award. This work was partially supported by
the Stanford Center for Polymeric Interfaces and Macromolecular
Assemblies (NSF-Center MRSEC), NSF DMR Solid State Chemistry, Air Force
Office of Scientific Research, the Stanford School of Engineering, and a
Sloan Research Fellowship. Supporting Information is available online at
Wiley InterScience or from the author.
NR 39
TC 152
Z9 152
U1 8
U2 91
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD JUN 23
PY 2009
VL 19
IS 12
BP 1962
EP 1970
DI 10.1002/adfm.200801727
PG 9
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 464MT
UT WOS:000267509900015
ER
PT J
AU Levkin, PA
Svec, F
Frechet, JMJ
AF Levkin, Pavel A.
Svec, Frantisek
Frechet, Jean M. J.
TI Porous Polymer Coatings: a Versatile Approach to Superhydrophobic
Surfaces
SO ADVANCED FUNCTIONAL MATERIALS
LA English
DT Article
ID LENGTH SCALES; TRANSPARENT; FILMS; DESIGN; LOTUS; WATER; FABRICATION;
TOPOGRAPHY; ROUGHNESS; CHEMISTRY
AB Here, a facile and inexpensive approach to superhydrophobic polymer coatings is presented. The method involves the in situ polymerization of common monomers in the presence of a porogenic solvent to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The method is applicable to a variety of substrates and is not limited to small areas or flat surfaces. The polymerized material can be ground into a superhydrophobic powder, which, once applied to a surface, renders it superhydrophobic. The morphology of the porous polymer structure can be efficiently controlled by composition of the polymerization mixture, while surface chemistry can be adjusted by photografting. Morphology control is used to reduce the globule size of the porous architecture from micro down to nanoscale thereby affording a transparent material. The influence of both surface chemistry as well as the length scale of surface roughness on the superhydrophobicity is discussed.
C1 [Levkin, Pavel A.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA.
[Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Levkin, PA (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA.
EM frechet@berkeley.edu
RI Levkin, Pavel/E-5804-2011;
OI Levkin, Pavel/0000-0002-5975-948X; Frechet, Jean /0000-0001-6419-0163
FU National Institute of Biomedical Imaging and Bioengineering; National
Institutes of Health [EB-006133]; Director, Office of Science, Office of
Basic Energy Sciences; Division of Materials Sciences and Engineering;
US Department of Energy [DE-AC02-05CH11231]
FX Support of this research by a grant of the National Institute of
Biomedical Imaging and Bioengineering, National Institutes of Health
(EB-006133) is gratefully acknowledged. Characterization work at the
Molecular Foundry was supported by the Director, Office of Science,
Office of Basic Energy Sciences, Division of Materials Sciences and
Engineering, of the US Department of Energy under Contract No.
DE-AC02-05CH11231. Supporting Information is available online from Wiley
InterScience or from the author.
NR 27
TC 154
Z9 161
U1 4
U2 114
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1616-301X
J9 ADV FUNCT MATER
JI Adv. Funct. Mater.
PD JUN 23
PY 2009
VL 19
IS 12
BP 1993
EP 1998
DI 10.1002/adfm.200801916
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 464MT
UT WOS:000267509900019
PM 20160978
ER
PT J
AU Messman, JM
Lokitz, BS
Pickel, JM
Kilbey, SM
AF Messman, Jamie M.
Lokitz, Bradley S.
Pickel, Joseph M.
Kilbey, S. Michael, II
TI Highly Tailorable Materials based on 2-Vinyl-4,4-dimethyl Azlactone:
(Co)Polymerization, Synthetic Manipulation and Characterization
SO MACROMOLECULES
LA English
DT Article
ID RADICAL POLYMERIZATION; POLYMERS; IMMOBILIZATION; CHEMISTRY; PRECURSOR;
BRUSHES
AB Through rigorous spectroscopic characterizations, including in situ, real-time monitoring, and size-exclusion chromatography (SEC) we describe the functionalization of polymers and copolymers based on vinyl dimethyl azlactone (VDMA), as well as modification of the VDMA monomer using efficient ring-opening strategies. Specifically, we demonstrate modification of VDMA-based materials by "pegylation", base-catalyzed ring-opening hydrolysis, and nucleophilic addition of short alkyl chains, fluorescent markers, and motifs used to specifically bind proteins. All of these functionalizations take advantage of the susceptibility of the pendant azlactone ring of VDMA to undergo nucleophilic attack. Polymers as well Lis copolymers incorporating vinyl pyrrolidone were synthesized by conventional free radical polymerization and thoroughly characterized by FTIR, (1)H NMR, (13)C NMR, SEC, thermogravimetric analysis and differential scanning calorimetry prior to modification. The variety of conjugations and ease of transformations enabled by use of the reactive yet hydrolytically stable VDMA-based materials inspires a broad range of applications for these soft materials.
C1 [Messman, Jamie M.; Pickel, Joseph M.; Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA.
[Lokitz, Bradley S.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
RP Messman, JM (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM messmanjm@ornl.gov
RI Lokitz, Bradley/Q-2430-2015;
OI Lokitz, Bradley/0000-0002-1229-6078; Pickel, Joseph/0000-0001-9828-1565
FU Division of Scientific User Facilities; U.S. Department of Energy;
ORNL's Laboratory Directed Research and Development Program [D07-138]
FX This research was conducted at the Center for Nanophase Materials
Sciences, which is sponsored at Oak Ridge National Laboratory by the
Division of Scientific User Facilities, U.S. Department of Energy, and
enabled through CNMS User Project 2005-024. A portion of this research
was supported by ORNL's Laboratory Directed Research and Development
Program, Project No. D07-138.
NR 21
TC 33
Z9 33
U1 5
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD JUN 23
PY 2009
VL 42
IS 12
BP 3933
EP 3941
DI 10.1021/ma900316t
PG 9
WC Polymer Science
SC Polymer Science
GA 458TW
UT WOS:000267048200021
ER
PT J
AU Duan, YX
Thunga, M
Schlegel, R
Sehneider, K
Rettler, E
Weidisch, R
Siesler, HW
Stamm, M
Mays, JW
Hadjichristidis, N
AF Duan, Yongxin
Thunga, Mahendra
Schlegel, Ralf
Sehneider, Konrad
Rettler, Erik
Weidisch, Roland
Siesler, Heinz W.
Stamm, Manfred
Mays, Jimmy W.
Hadjichristidis, Nikos
TI Morphology and Deformation Mechanisms and Tensile Properties of
Tetrafunctional Multigraft Copolymers
SO MACROMOLECULES
LA English
DT Article
ID X-RAY-SCATTERING; POLY(STYRENE-BLOCK-BUTADIENE-BLOCK-STYRENE) TRIBLOCK
COPOLYMER; BLOCK-COPOLYMERS; CYLINDRICAL MORPHOLOGY;
MOLECULAR-ORIENTATION; BRANCH-POINTS; BEHAVIOR; POLYSTYRENE;
SPECTROSCOPY; ARCHITECTURE
AB Morphology and deformation mechanisms and tensile properties of tetrafunctional multigraft (MG) polystrene-g-polyisoprene (PS-g-PI) copolymers were investigated dependent on PS volume fraction and number of branch points. The combination of various methods such as TEM, real time synchrotron SAXS, rheo-optical FTIR, and tensile tests provides comprehensive information at different dimension levels. TEM and SAXS studies revealed that the number of branch points has no obvious influence on the microphase-separated morphology of tetrafunction MG copolymers with 16 wt % PS. But for tetrafunctional MG copolymers with 25 wt % PS, the size and integrity of PS microdomains decrease with increasing number of branch point. The deformation mechanisms of MG copolymers are highly related to the morphology. Dependent on the microphase-separated morphology and integrity of the PS phase, the strain-induced orientation of the PS phase is at different size scales. Polarized FT-IR spectra analysis reveals that, for all investigated MG copolymers, the PI phase shows strain-induced orientation along SD at molecular scale. The proportion of the PI block effectively bridging PS domains controls the tensile properties of the MG copolymers at high strain, while the stress-strain behavior in the low-mediate strain region is controlled by the continuity of PS microdomains. The special molecular architecture, which leads to the higher effective functionality of PS domains and the higher possibility for an individual PI backbone being tethered with a large number of PS domains, is proposed to be the origin of the superelasticity for MG copolymers.
C1 [Duan, Yongxin; Thunga, Mahendra; Schlegel, Ralf; Weidisch, Roland] Univ Jena, Inst Mat Sci & Technol, D-07743 Jena, Germany.
[Duan, Yongxin; Thunga, Mahendra; Sehneider, Konrad; Weidisch, Roland] Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany.
[Rettler, Erik; Siesler, Heinz W.; Stamm, Manfred] Univ Duisburg Essen, Dept Phys Chem, D-45117 Essen, Germany.
[Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Hadjichristidis, Nikos] Univ Athens, Dept Chem, GR-10680 Athens, Greece.
[Duan, Yongxin] Qingdao Univ Sci & Technol, Minist Educ, Key Lab Rubber Plast, Qingdao 266042, Peoples R China.
RP Weidisch, R (reprint author), Univ Jena, Inst Mat Sci & Technol, Lobdergraben 32, D-07743 Jena, Germany.
EM roland.weidisch@uni-jena.de
RI Thunga, Mahendra/D-4638-2013; Umlauf, Ursula/D-3356-2014
OI Thunga, Mahendra/0000-0002-4856-242X;
FU Alexander von Humboldt foundation; Division of Materials Science and
Engineering; Office of Basic Energy Sciences; U.S. Department of Energy
[DE-ACo5-00OR22725]
FX Y. X. Duan is grateful to the Alexander von Humboldt foundation for
kindly providing the fellowship in Germany which made it possible for
her to perform this study. J. Mays acknowledges Support through the
Division of Materials Science and Engineering, Office of Basic Energy
Sciences, U.S. Department of Energy (DE-ACo5-00OR22725).
NR 39
TC 23
Z9 23
U1 4
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD JUN 23
PY 2009
VL 42
IS 12
BP 4155
EP 4164
DI 10.1021/ma900414h
PG 10
WC Polymer Science
SC Polymer Science
GA 458TW
UT WOS:000267048200049
ER
PT J
AU Ho, CC
Lee, YH
Dai, CA
Segalman, RA
Su, WF
AF Ho, Chun-Chih
Lee, Yi-Huan
Dai, Chi-An
Segalman, Rachel A.
Su, Wei-Fang
TI Synthesis and Self-Assembly of
Poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(methyl methacrylate)
Rod-Coil Block Copolymers
SO MACROMOLECULES
LA English
DT Article
ID DIBLOCK COPOLYMERS; CLICK CHEMISTRY; PHASE-BEHAVIOR; 1,3-DIPOLAR
CYCLOADDITIONS; FUNCTIONALIZED POLYMERS; ANIONIC-POLYMERIZATION;
CRYSTALLINE-STRUCTURE; TRIBLOCK COPOLYMERS; MATERIALS SCIENCE;
THIN-FILMS
AB A series of poly(diethylhexyloxy-p-phenylenevinylene-e-methyl methacrylate) (DEH-PPV-b-PMMA) polymers with narrow polydispersity (PDI < 1.1) were synthesized using Siegrist polycondensation and anionic polymerizations followed by "click" chemistry. Alkyne-terminated-DEH-PPV and azidoterminated PMMA were synthesized first, and then the two functionalized polymers underwent 1,3-cycloaddition reaction to obtain copolymers. Both the conversion of the end-functionalization of the homopolymers and the yield of the "click" reaction were higher than 98% as determined by (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies reveal the details of copolymer morphology. The DEH-PPV-b-PMMA system presented here has higher block segregation strength than many previously studied rod-coil block copolymers yet still shows experimentally accessible phase transitions with respect to temperature. As a result, this molecule offers new insight into the competition between rod-rod and rod-coil interactions that occurs in the system. The DEH-PPV rods are organized as a monolayer that is inclined with the lamellar normal (smectic C) for the copolymers containing low volume fraction of PMMA coil (< 54%). However, as the coil fraction increases, the strips containing DEH-PPV pack into hexagonal lattice. In contrast to previous work which demonstrated similar morphologies, the sequence of reversible liquid crystalline and microphase phase transitions is altered as a result of the increased block segregation. Upon heating, the low coil fraction copolymers exhibit a series of clear transitions of smectic-lamellar to amorphous-lamellar to disordered structures. In high coil fraction copolymers, the transitions between smectic-hexagonal to amorphous-hexagonal and smectic-hexagonal to disorder structures could not be clearly differentiated. The order-to-disorder temperature (ODT) decreases slowly with increasing coil fraction while the smectic-to-isotropic transition (SI) temperature stays relatively unchanged. The steady SI temperature suggests that the strong rod-rod interaction keeps the liquid crystalline rod in the nanodomain structure regardless of the amount of coil segment in the copolymers.
C1 [Ho, Chun-Chih; Su, Wei-Fang] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan.
[Lee, Yi-Huan; Dai, Chi-An] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 106, Taiwan.
[Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Segalman, Rachel A.] Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA.
RP Su, WF (reprint author), Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan.
EM suwf@ntu.edu.tw
RI Ho, Chun-Chih/C-2614-2009; Su, Wei-Fang/C-2646-2009;
OI Segalman, Rachel/0000-0002-4292-5103
NR 72
TC 54
Z9 54
U1 6
U2 53
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD JUN 23
PY 2009
VL 42
IS 12
BP 4208
EP 4219
DI 10.1021/ma802551v
PG 12
WC Polymer Science
SC Polymer Science
GA 458TW
UT WOS:000267048200055
ER
PT J
AU Huang, JY
Ding, F
Yakobson, BI
Lu, P
Qi, L
Li, J
AF Huang, Jian Yu
Ding, Feng
Yakobson, Boris I.
Lu, Ping
Qi, Liang
Li, Ju
TI In situ observation of graphene sublimation and multi-layer edge
reconstructions
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE flat fullerene; fractal sublimation; graphene bilayer edge; in situ
electron microscopy; fractional nanotube
ID CARBON NANOTUBES; CRYSTALS; SHEETS
AB We induced sublimation of suspended few-layer graphene by in situ Joule-heating inside a transmission electron microscope. The graphene sublimation fronts consisted of mostly {1100} zigzag edges. Under appropriate conditions, a fractal-like "coastline'' morphology was observed. Extensive multiple-layer reconstructions at the graphene edges led to the formation of unique carbon nanostructures, such as sp(2)-bonded bilayer edges (BLEs) and nanotubes connected to BLEs. Flat fullerenes/nanopods and nanotubes tunneling multiple layers of graphene sheets were also observed. Remarkably, >99% of the graphene edges observed during sublimation are BLEs rather than monolayer edges (MLEs), indicating that BLEs are the stable edges in graphene at high temperatures. We reproduced the "coastline'' sublimation morphologies by kinetic Monte Carlo (kMC) simulations. The simulation revealed geometrical and topological features unique to quasi-2-dimensional (2D) graphene sublimation and reconstructions. These reconstructions were enabled by bending, which cannot occur in first-order phase transformations of 3D bulk materials. These results indicate that substrate of multiple-layer graphene can offer unique opportunities for tailoring carbon-based nanostructures and engineering novel nano-devices with complex topologies.
C1 [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA.
[Ding, Feng] Hong Kong Polytech Univ, Inst Text & Clothing, Kowloon, Hong Kong, Peoples R China.
[Ding, Feng; Yakobson, Boris I.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA.
[Ding, Feng; Yakobson, Boris I.] Rice Univ, Dept Chem, Houston, TX 77005 USA.
[Qi, Liang; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
RP Huang, JY (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA.
EM jhuang@sandia.gov; biy@rice.edu; liju@seas.upenn.edu
RI Li, Ju/A-2993-2008; Qi, Liang/A-3851-2010; Ding, Feng/D-5938-2011;
Huang, Jianyu/C-5183-2008
OI Li, Ju/0000-0002-7841-8058; Qi, Liang/0000-0002-0201-9333; Ding,
Feng/0000-0001-9153-9279;
FU Sandia Corporation; Lockheed-Martin Company; U. S. Department of Energy
[DE-AC04-94AL85000]; National Science Foundation [CMMI-0728069]; Air
Force Office of Scientific Research; Honda Research Institute U. S. A.,
Department of Energy [DOE-DE-FG02-06ER46330]; Office of Naval Research
[N00014-05-1-0504]
FX This work was performed, in part, at the Center for Integrated
Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy
Sciences user facility. Sandia National Laboratories is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed-Martin Company,
for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
This work was supported by National Science Foundation Grant
CMMI-0728069, the Air Force Office of Scientific Research, Honda
Research Institute U. S. A., Department of Energy Contract
DOE-DE-FG02-06ER46330, and Office of Naval Research Contract
N00014-05-1-0504 ( to L. Q. and J. L.).
NR 31
TC 126
Z9 127
U1 7
U2 70
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD JUN 23
PY 2009
VL 106
IS 25
BP 10103
EP 10108
DI 10.1073/pnas.0905193106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 461SQ
UT WOS:000267292200008
PM 19515820
ER
PT J
AU Chroneos, A
Jiang, C
Grimes, RW
Schwingenschlogl, U
Bracht, H
AF Chroneos, A.
Jiang, C.
Grimes, R. W.
Schwingenschloegl, U.
Bracht, H.
TI Defect interactions in Sn1-xGex random alloys
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE band structure; germanium alloys; lattice constants; tin alloys;
vacancies (crystal)
ID ATOMIC-SCALE SIMULATIONS; VACANCY COMPLEXES; GERMANIUM; SILICON;
SEMICONDUCTORS
AB Sn1-xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1-xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard's Law are consistent with experimental results.
C1 [Chroneos, A.; Grimes, R. W.; Schwingenschloegl, U.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England.
[Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany.
[Schwingenschloegl, U.] KAUST, PCSE Div, Jeddah 21534, Saudi Arabia.
[Jiang, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Chroneos, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England.
EM alexander.chroneos@imperial.ac.uk
RI Jiang, Chao/A-2546-2011;
OI Chroneos, Alex/0000-0002-2558-495X
NR 26
TC 48
Z9 48
U1 1
U2 17
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 252104
DI 10.1063/1.3159468
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700035
ER
PT J
AU Folkman, CM
Baek, SH
Jang, HW
Eom, CB
Nelson, CT
Pan, XQ
Li, YL
Chen, LQ
Kumar, A
Gopalan, V
Streiffer, SK
AF Folkman, C. M.
Baek, S. H.
Jang, H. W.
Eom, C. B.
Nelson, C. T.
Pan, X. Q.
Li, Y. L.
Chen, L. Q.
Kumar, A.
Gopalan, V.
Streiffer, S. K.
TI Stripe domain structure in epitaxial (001) BiFeO3 thin films on
orthorhombic TbScO3 substrate
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE bismuth compounds; dielectric polarisation; electric domains; epitaxial
layers; ferroelasticity; ferroelectric thin films; nucleation; terbium
compounds
ID RHOMBOHEDRAL FERROELECTRIC-FILMS
AB We have analyzed the ferroelastic and ferroelectric domain structure of high crystalline quality (001) BiFeO3 films on orthorhombic (110) TbScO3 substrates. Two domains were present in stripes separated by (010) vertical boundaries, with spontaneous polarizations in adjacent domains rotated by 109 degrees. The striped morphology was caused by nucleation of only two ferroelastic domains on the low symmetry GdFeO3-type substrate. Domain engineering through substrate symmetry is an important finding for rhombohedral ferroelectric epitaxial thin films. The stripe pattern with vertical walls may be useful for extracting domain wall contributions to magnetism and electrical transport properties of BiFeO3 materials.
C1 [Folkman, C. M.; Baek, S. H.; Jang, H. W.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
[Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Li, Y. L.; Chen, L. Q.; Kumar, A.; Gopalan, V.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Nelson, C. T.; Pan, X. Q.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA.
EM eom@engr.wisc.edu
RI Kumar, Amit/C-9662-2012; Baek, Seung-Hyub/B-9189-2013; Eom,
Chang-Beom/I-5567-2014; Jang, Ho Won/D-9866-2011
OI Kumar, Amit/0000-0002-1194-5531; Jang, Ho Won/0000-0002-6952-7359
NR 13
TC 40
Z9 40
U1 5
U2 52
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 251911
DI 10.1063/1.3152009
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700029
ER
PT J
AU Grigorenko, I
Rabitz, H
AF Grigorenko, Ilya
Rabitz, Herschel
TI Optimal control of the local electromagnetic response of nanostructured
materials: Optimal detectors and quantum disguises.
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE electron traps; nanostructured materials
AB We consider the problem of optimization of an effective trapping potential in a nanostructure with a quasi-one-dimensional geometry. The optimization is performed to achieve certain target optical properties of the system. We formulate and solve the optimization problem for a nanostructure that serves either as a single molecule detector or as a "quantum disguise" for a single molecule.
C1 [Grigorenko, Ilya] Los Alamos Natl Lab, Theoret Div T1, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
RP Grigorenko, I (reprint author), Los Alamos Natl Lab, Theoret Div T1, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM ilya@lanl.gov
RI Grigorenko, Ilya/B-5616-2009
FU ARO; NSF
FX This work was performed, in part, at the Center for Integrated
Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy
Sciences user facility. H. R. also acknowledges support from ARO and
NSF.
NR 12
TC 5
Z9 5
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 253107
DI 10.1063/1.3159879
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700061
ER
PT J
AU Huda, MN
Yan, YF
Walsh, A
Wei, SH
Al-Jassim, MM
AF Huda, Muhammad N.
Yan, Yanfa
Walsh, Aron
Wei, Su-Huai
Al-Jassim, Mowafak M.
TI Symmetry-breaking-induced enhancement of visible light absorption in
delafossite alloys
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE copper compounds; density functional theory; energy gap; optical
constants; spontaneous symmetry breaking; visible spectra
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; HYDROGEN GENERATION;
SEMICONDUCTORS; METALS
AB Through density functional theory calculations, we demonstrate that enhancement of optical absorption and optimization of the fundamental band gap for Cu delafossites can be achieved through alloying group IIIA and IIIB delafossites. These alloys significantly improved the flexibility in designing delafossite-based photoelectrodes for application in photoelectrochemical decomposition of water by visible spectra of solar light.
C1 [Huda, Muhammad N.; Yan, Yanfa; Walsh, Aron; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM suhuai_wei@nrel.gov
RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008
OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X
FU U.S. Department of Energy [DE-AC36-08GO28308]; National Energy Research
Scientific Computing Center; Office of Science of the U.S. Department of
Energy [DE-AC36-08GO28308]
FX This work was supported by the U.S. Department of Energy under Contract
No. DE-AC36-08GO28308. This research used resources of the National
Energy Research Scientific Computing Center, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC36-08GO28308.
NR 18
TC 13
Z9 13
U1 0
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 251907
DI 10.1063/1.3157840
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700025
ER
PT J
AU Kan, EJ
Xiang, HJ
Yang, JL
Whangbo, MH
AF Kan, Erjun
Xiang, Hongjun
Yang, Jinlong
Whangbo, Myung-Hwan
TI Magnetism of semiconductor-based magnetic tunnel junctions under
electric field from first principles
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE ab initio calculations; antiferromagnetic materials; cobalt compounds;
density functional theory; ferromagnetic materials;
ferromagnetic-antiferromagnetic transitions; gallium compounds; III-V
semiconductors; II-VI semiconductors; interface magnetism; magnetic
tunnelling; manganese compounds; semimagnetic semiconductors; wide band
gap semiconductors; zinc compounds
AB Semiconductor magnetic tunnel junctions (MTJs), composed of diluted magnetic semiconductors (DMSs) sandwiching a semiconductor barrier, have potential applications in spintronics but their development has been slow due to the difficulty of controlling the magnetism of DMSs. In terms of density functional calculations for model semiconductor MTJs, (Zn,Co)O/ZnO/(Zn,Co)O and (Ga,Mn)N/GaN/(Ga,Mn)N, we show that the magnetic coupling between the transition metal ions in each DMS electrode of such semiconductor MTJs can be switched from ferromagnetic to antiferromagnetic, or vice versa, under the application of external electric field across the junctions. Our results suggest a possible avenue for the application of semiconductor MTJs.
C1 [Kan, Erjun; Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA.
[Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China.
[Xiang, Hongjun] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Whangbo, MH (reprint author), N Carolina State Univ, Dept Chem, Box 8204, Raleigh, NC 27695 USA.
EM mike_whangbo@ncsu.edu
RI Xiang, Hongjun/A-4076-2008; Kan, Erjun/A-4322-2009; Yang,
Jinlong/D-3465-2009; Xiang, Hongjun/I-4305-2016
OI Kan, Erjun/0000-0003-0433-4190; Yang, Jinlong/0000-0002-5651-5340;
Xiang, Hongjun/0000-0002-9396-3214
NR 29
TC 1
Z9 2
U1 1
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 252102
DI 10.1063/1.3157273
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700033
ER
PT J
AU Shin, J
Goyal, A
Jesse, S
Kim, DH
AF Shin, Junsoo
Goyal, Amit
Jesse, Stephen
Kim, Dae Ho
TI Single-crystal-like, c-axis oriented BaTiO3 thin films with
high-performance on flexible metal templates for ferroelectric
applications
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE barium compounds; crystal symmetry; dielectric hysteresis; dielectric
polarisation; electric domains; epitaxial layers; ferroelectric
switching; ferroelectric thin films; laser ablation; piezoelectric thin
films; space groups; X-ray diffraction
ID ENHANCEMENT; CAPACITORS
AB Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of similar to 11.5 mu C/cm(2). Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices.
C1 [Shin, Junsoo; Goyal, Amit; Jesse, Stephen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Kim, Dae Ho] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA.
RP Shin, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM goyala@ornl.gov
RI Kim, Dae Ho/B-4670-2012; Jesse, Stephen/D-3975-2016
OI Jesse, Stephen/0000-0002-1168-8483
NR 26
TC 16
Z9 16
U1 5
U2 23
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 252903
DI 10.1063/1.3158955
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700050
ER
PT J
AU Wu, YL
Chen, GD
Ye, HG
Zhu, YZ
Wei, SH
AF Wu, Yelong
Chen, Guangde
Ye, Honggang
Zhu, Youzhang
Wei, Su-Huai
TI Origin of the phase transition of AlN, GaN, and ZnO nanowires
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE ab initio calculations; aluminium compounds; gallium compounds; III-V
semiconductors; II-VI semiconductors; ionisation potential;
nanofabrication; nanowires; phase diagrams; solid-state phase
transformations; wide band gap semiconductors; zinc compounds
ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SEMICONDUCTORS; BLUE
AB The stabilities of AlN, GaN, and ZnO nanowires/nanorods with different structures and sizes are investigated using first-principles calculations. We found a structure transformation from the graphitelike phase to wurtzite phase as the diameter and length of the nanowire increases. We show that this is due to the competition between the bond energy, the Coulomb energy, and the energy originating from the dipole field of the wurtzite structure. A mechanism of growing uniform nanowires using a graphitelike structure as a precursor is proposed through analyzing the phase diagram of these materials.
C1 [Wu, Yelong; Chen, Guangde; Ye, Honggang; Zhu, Youzhang] Xi An Jiao Tong Univ, Minist Educ, Nonequilibrium Condensed Matter & Quantum Engn La, Key Lab,Sch Sci, Xian 710049, Peoples R China.
[Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Wu, YL (reprint author), Xi An Jiao Tong Univ, Minist Educ, Nonequilibrium Condensed Matter & Quantum Engn La, Key Lab,Sch Sci, Xian 710049, Peoples R China.
EM suhuai.wei@nrel.gov
RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen,
Guangde/D-4373-2011; chen, guangde/I-4260-2014
OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X;
FU China National Natural Science Fund [10474078]; U.S. DOE
[DE-36-AC08GO28308]
FX We gratefully acknowledge the financial support of China National
Natural Science Fund (Grant No. 10474078) and the computing support of
"National High Performance Computing Center (Xi'an)." The work at NREL
is supported by the U.S. DOE under Grant No. DE-36-AC08GO28308.
NR 18
TC 17
Z9 17
U1 3
U2 31
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 253101
DI 10.1063/1.3159816
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700055
ER
PT J
AU Yang, ZH
Lam, CH
DiMasi, E
Bouet, N
Jordan-Sweet, J
Tsui, OKC
AF Yang, Zhaohui
Lam, Chi-Hang
DiMasi, Elaine
Bouet, Nathalie
Jordan-Sweet, Jean
Tsui, Ophelia K. C.
TI Method to measure the viscosity of nanometer liquid films from the
surface fluctuations
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE capillary waves; glass transition; liquid films; nanotechnology; polymer
solutions; viscosity; viscosity measurement
ID THIN POLYMER-FILMS; GLASS-TRANSITION
AB We describe a method to measure the viscosity of polystyrene liquid films with thicknesses similar to 5 and similar to 80 nm spin-cast on oxide-coated silicon. In this method, temporal evolution of the film surface is monitored and modeled according to the dynamics of the surface capillary waves. Viscosities obtained from the similar to 80 nm films display an excellent agreement with those of the bulk polymer, but those from the similar to 5 nm films are up to 10(6) times reduced. By modeling the data to the Vogel-Fulcher-Tammann relation, we find that the observations are consistent with the thickness dependence of the glass transition temperature previously reported of these films.
C1 [Yang, Zhaohui; Bouet, Nathalie; Tsui, Ophelia K. C.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Lam, Chi-Hang] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China.
[DiMasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Jordan-Sweet, Jean] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA.
RP Tsui, OKC (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA.
EM okctsui@bu.edu
RI Lam, Chi-Hang/A-4626-2009; Yang, Zhaohui/B-9331-2013;
OI Lam, Chi-Hang/0000-0002-0476-1857; Bouet, Nathalie/0000-0002-5816-9429;
Tsui, Ophelia K. C./0000-0001-5987-2733
FU NSF [DMR-0706096]; ACS Petroleum Research Fund [47882-AC5]; U.S.
Department of Energy [DE-AC02-98CH10886]
FX We thank Professor K. F. Ludwig for critical reading of this paper and
Dr. Y. Fujii for useful discussions. Funding supports of NSF (Grant No.
DMR-0706096) and ACS Petroleum Research Fund (Grant No. 47882-AC5) are
acknowledged. NSLS is supported by the U.S. Department of Energy
Contract No. DE-AC02-98CH10886.
NR 14
TC 14
Z9 14
U1 0
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 22
PY 2009
VL 94
IS 25
AR 251906
DI 10.1063/1.3158956
PG 3
WC Physics, Applied
SC Physics
GA 463KV
UT WOS:000267431700024
ER
PT J
AU Konidaris, KF
Papaefstathiou, GS
Aromi, G
Teat, SJ
Manessi-Zoupa, E
Escuer, A
Perlepes, SP
AF Konidaris, Konstantis F.
Papaefstathiou, Giannis S.
Aromi, Guillem
Teat, Simon J.
Manessi-Zoupa, Evy
Escuer, Albert
Perlepes, Spyros P.
TI A three-dimensional copper(II) coordination polymer featuring the
2,3-dioxyquinoxalinate(-2) ligand: Preparation, structural
characterization and magnetic study
SO POLYHEDRON
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Molecule-Based Magnets (ICMM 2008)
CY SEP 21-24, 2008
CL Florence, ITALY
DE Coordination polymers; Copper(II) polymers; Crystal structure;
1,4-Dihydro-2,3-quinoxalinedione; 2,3-Dioxyquinoxalinate(-2) metal
complexes; Magnetochemistry
ID METAL-ORGANIC FRAMEWORKS; IN-SITU FORMATION; SOLID-STATE;
MOLECULAR-STRUCTURE; DONOR LIGANDS; NETS; CHEMISTRY; CRYSTAL;
1,4-DIHYDRO-2,3-QUINOXALINEDIONE; NETWORKS
AB The synthesis, single-crystal X-ray structure and magnetic properties of [Cu(3)l(2)Cl(2)(DMF)(4)](n) (1), where L(2-) is the 2,3-dioxyquinoxalinate(-2) ligand, are reported. The complex was prepared by the reaction of CuCl(2) and 1,4-dihydro-2,3-quinoxalinedione (H(2)L') under basic conditions using either solvothermal or normal laboratory techniques. Compound 1 is a 3D coordination polymer with an (8(2).10)-a, lig (LiGe) topology, containing the ligand in a novel 3.1111 (Harris notation) coordination mode. Variable-temperature and variable-field magnetic studies reveal that the ligand L(2-) propagates weak anti ferromagnetic exchange interactions through its "quinoxaline" part. IR data are discussed in terms of the structural features of 1 and the coordination mode of L(2-). (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Konidaris, Konstantis F.; Manessi-Zoupa, Evy; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece.
[Papaefstathiou, Giannis S.] Univ Athens, Dept Chem, Inorgan Chem Lab, Panepistimiopolis 15771, Zografou, Greece.
[Aromi, Guillem; Escuer, Albert] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain.
[Aromi, Guillem; Escuer, Albert] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Spain.
[Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Manessi-Zoupa, E (reprint author), Univ Patras, Dept Chem, Patras 26504, Greece.
EM emane@upatras.gr; albert.escuer@qi.ub.es; perlepes@patreas.upatras.gr
RI Escuer, Albert/L-4706-2014; Aromi, Guillem/I-2483-2015; Papaefstathiou,
Giannis/M-9890-2013;
OI Escuer, Albert/0000-0002-6274-6866; Aromi, Guillem/0000-0002-0997-9484;
Papaefstathiou, Giannis/0000-0001-5514-6371; Konidaris,
Konstantis/0000-0002-7366-5682
NR 38
TC 6
Z9 6
U1 3
U2 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-5387
J9 POLYHEDRON
JI Polyhedron
PD JUN 22
PY 2009
VL 28
IS 9-10
BP 1646
EP 1651
DI 10.1016/j.poly.2008.10.043
PG 6
WC Chemistry, Inorganic & Nuclear; Crystallography
SC Chemistry; Crystallography
GA 465JQ
UT WOS:000267580000011
ER
PT J
AU Fishman, RS
Okamoto, S
Reboredo, FA
AF Fishman, Randy S.
Okamoto, Satoshi
Reboredo, Fernando A.
TI Spin-orbit coupling and Jahn-Teller distortion in bimetallic oxalates
SO POLYHEDRON
LA English
DT Article; Proceedings Paper
CT 11th International Conference on Molecule-Based Magnets (ICMM 2008)
CY SEP 21-24, 2008
CL Florence, ITALY
DE Jahn-Teller distortion; Spin-orbit interaction; Crystal fields;
Bimetallic oxalates
ID MIXED-VALENCY; MAGNETIC-PROPERTIES; HONEYCOMB LATTICE; ORGANIC CATION;
PSEUDOPOTENTIALS; TRANSITIONS; FERRIMAGNET; COMPLEXES; SYSTEM; MN
AB The C3-symmetric crystal-field potential in the Fe(II)Fe(III) bimetallic oxalates splits the L = 2 Fe(II) multiplet into two doublets and one singlet. In compounds that exhibit magnetic compensation, one of the doublets lies lowest in energy and carries an average orbital angular momentum L-z(cf) that exceeds a threshold value of roughly 0.25. In a range of L-z(cf), a Jahn-Teller (JT) distortion enhances the splitting of the low-lying doublet and breaks the C-3 symmetry of the bimetallic planes around the ferrimagnetic transition temperature. Due to the competition with the spin-orbit coupling, the JT distortion disappears at low temperatures in Compounds that display magnetic compensation. A comparison with recent measurements provides compelling evidence for this inverse, low-temperature JT transition. The size of the JT distortion is estimated using first-principles calculations, which suggest that the long-range ordering of smaller, non-C-3-symmetric organic cations can eliminate magnetic compensation. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Fishman, Randy S.; Okamoto, Satoshi; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA.
EM fishmanrs@ornl.gov
RI Reboredo, Fernando/B-8391-2009; Okamoto, Satoshi/G-5390-2011; Fishman,
Randy/C-8639-2013
OI Okamoto, Satoshi/0000-0002-0493-7568;
NR 31
TC 5
Z9 5
U1 0
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0277-5387
J9 POLYHEDRON
JI Polyhedron
PD JUN 22
PY 2009
VL 28
IS 9-10
SI SI
BP 1740
EP 1745
DI 10.1016/j.poly.2008.11.007
PG 6
WC Chemistry, Inorganic & Nuclear; Crystallography
SC Chemistry; Crystallography
GA 465JQ
UT WOS:000267580000029
ER
PT J
AU Bonhommeau, D
Valero, R
Truhlar, DG
Jasper, AW
AF Bonhommeau, David
Valero, Rosendo
Truhlar, Donald G.
Jasper, Ahren W.
TI Coupled-surface investigation of the photodissociation of
NH3((A)over-tilde): Effect of exciting the symmetric and antisymmetric
stretching modes
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE ammonia; excited states; free radical reactions; ground states;
molecule-photon collisions; photochemistry; photodissociation; potential
energy surfaces; translational states; vibrational states
ID ZERO-POINT ENERGY; CLASSICAL TRAJECTORY SIMULATIONS; FORBIDDEN
ELECTRONIC-TRANSITIONS; INITIAL VIBRATIONAL-STATE; JET-COOLED AMMONIA;
MOLECULAR-DYNAMICS; PREDISSOCIATION DYNAMICS; 193.3 NM; NH3; ND3
AB Using previously developed potential energy surfaces and their couplings, non-Born-Oppenheimer trajectory methods are used to study the state-selected photodissociation of ammonia, prepared with up to six quanta of vibrational excitation in the symmetric (nu(1)) or antisymmetric (nu(3)) stretching modes of NH3((A) over tilde). The predicted dynamics is mainly electronically nonadiabatic (that is, it produces ground electronic state amino radicals). The small probability of forming the excited-state amino radical is found, for low excitations, to increase with total energy and to be independent of whether the symmetric or antisymmetric stretch is excited; however some selectivity with respect to exciting the antisymmetric stretch is found when more than one quantum of excitation is added to the stretches, and more than 50% of the amino radical are found to be electronically excited when six quanta are placed in the antisymmetric stretch. These results are in contrast to the mechanism inferred in recent experimental work, where excitation of the antisymmetric stretch by a single quantum was found to produce significant amounts of excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both theory and experiment predict a broad range of translational energies for the departing H atoms when the symmetric stretch is excited, but the present simulations do not reproduce the experimental translational energy profiles when the antisymmetric stretch is excited. The sensitivity of the predicted results to several aspects of the calculation is considered in detail, and the analysis leads to insight into the nature of the dynamics that is responsible for mode selectivity.
C1 [Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA.
[Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA.
[Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
RP Bonhommeau, D (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA.
EM truhlar@umn.edu
RI Jasper, Ahren/A-5292-2011; Valero, Rosendo/J-3724-2013; Truhlar,
Donald/G-7076-2015
OI Valero, Rosendo/0000-0002-4617-0721; Truhlar, Donald/0000-0002-7742-7294
FU National Science Foundation [CHE07-04974]; United States Department of
Energy [DE-AC04-94-AL85000]; Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences and Biosciences
FX We are grateful to Zhen Hua Li for helpful assistance and to Hua Guo for
helpful discussions. This work was supported in part by the National
Science Foundation through Grant No. CHE07-04974 and in part by the
United States Department of Energy Grant No. DE-AC04-94-AL85000, Office
of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and
Biosciences.
NR 64
TC 25
Z9 25
U1 2
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 21
PY 2009
VL 130
IS 23
AR 234303
DI 10.1063/1.3132222
PG 17
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 460DE
UT WOS:000267166200024
PM 19548723
ER
PT J
AU Griffin, GB
Ehrler, OT
Kammrath, A
Young, RM
Cheshnovsky, O
Neumark, DM
AF Griffin, Graham B.
Ehrler, Oli T.
Kammrath, Aster
Young, Ryan M.
Cheshnovsky, Ori
Neumark, Daniel M.
TI Auger recombination and excited state relaxation dynamics in Hg-n(-)
(n=9-20) anion clusters
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE atomic clusters; Auger effect; electron-electron scattering;
electron-hole recombination; excited states; mercury (metal); negative
ions
ID SEMICONDUCTOR QUANTUM DOTS; MERCURY CLUSTERS; INTRABAND EXCITATION;
PHOTOELECTRON; TRANSITION; GENERATION; RESOLUTION; ELECTRON
AB Using femtosecond time-resolved photoelectron imaging, electron-hole pairs are created in size-selected Hg-n(-) anion clusters (n=9-20), and the subsequent decay dynamics are measured. These clusters eject electrons via Auger decay on time scales of 100-600 fs. There is an abrupt increase in the Auger decay time for clusters larger than Hg-12(-), coinciding with the onset of the transition from van der Waals to covalent bonding in mercury clusters. Our results also show evidence for subpicosecond excited state relaxation attributed to inelastic electron-electron and electron-hole scattering as well as hole-induced contraction of the cluster.
C1 [Griffin, Graham B.; Ehrler, Oli T.; Young, Ryan M.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Kammrath, Aster] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA.
[Cheshnovsky, Ori] Tel Aviv Univ, Sch Chem, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel.
[Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM dneumark@berkeley.edu
RI Neumark, Daniel/B-9551-2009; Ehrler, Oli/B-6215-2008
OI Neumark, Daniel/0000-0002-3762-9473;
FU National Science Foundation [CHE-0649647]; States-Israel Binational
Science Foundation (BSF), Jerusalem, Israel [2000-333, 2004-401];
Alexander von Humboldt Foundation (Germany; Feodor-Lynen fellowship
FX This research was supported by the National Science Foundation under
Grant No. CHE-0649647. Additional support was provided by the United
States-Israel Binational Science Foundation (BSF), Jerusalem, Israel,
under Grant Nos. 2000-333 and 2004-401. O. T. E. is grateful to the
Alexander von Humboldt Foundation (Germany) for the award of a
Feodor-Lynen fellowship.
NR 32
TC 1
Z9 1
U1 0
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 21
PY 2009
VL 130
IS 23
AR 231103
DI 10.1063/1.3149562
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 460DE
UT WOS:000267166200003
PM 19548702
ER
PT J
AU Ishizaki, A
Fleming, GR
AF Ishizaki, Akihito
Fleming, Graham R.
TI On the adequacy of the Redfield equation and related approaches to the
study of quantum dynamics in electronic energy transfer
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE energy level crossing; molecular electronic states; molecule-photon
collisions; nonradiative transitions; photosynthesis; quantum theory;
solvent effects
ID PHOTOSYNTHETIC ANTENNA COMPLEXES; PRIMARY CHARGE SEPARATION; REACTION
CENTERS; VARIATIONAL CALCULATION; CHLOROBIUM-TEPIDUM; 2-LEVEL SYSTEM;
RELAXATION; SPECTROSCOPY; BACTERIA; COHERENCE
AB The observation of long-lived electronic coherence in photosynthetic excitation energy transfer (EET) by Engel [Nature (London) 446, 782 (2007)] raises questions about the role of the protein environment in protecting this coherence and the significance of the quantum coherence in light harvesting efficiency. In this paper we explore the applicability of the Redfield equation in its full form, in the secular approximation and with neglect of the imaginary part of the relaxation terms for the study of these phenomena. We find that none of the methods can give a reliable picture of the role of the environment in photosynthetic EET. In particular the popular secular approximation (or the corresponding Lindblad equation) produces anomalous behavior in the incoherent transfer region leading to overestimation of the contribution of environment-assisted transfer. The full Redfield expression on the other hand produces environment-independent dynamics in the large reorganization energy region. A companion paper presents an improved approach, which corrects these deficiencies [A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009)].
C1 [Ishizaki, Akihito] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Ishizaki, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM grfleming@lbl.gov
RI Ishizaki, Akihito/A-7069-2010
OI Ishizaki, Akihito/0000-0002-0246-4461
FU Director, Office of Science, Office of Basic Energy Sciences, U. S.
Department of Energy [DE-AC02-05CH11231]; Chemical Sciences, Geosciences
and Biosciences Division, Office of Basic Energy Sciences, U. S.
Department of Energy [DE-AC03-76SF000098]; JSPS Postdoctoral Fellowship
for Research Abroad
FX We thank Dr. Yuan-Chung Cheng for critical reading of the manuscript and
valuable comments. This work was supported by the Director, Office of
Science, Office of Basic Energy Sciences, U. S. Department of Energy
under Contract No. DE-AC02-05CH11231 and by the Chemical Sciences,
Geosciences and Biosciences Division, Office of Basic Energy Sciences,
U. S. Department of Energy under Contract No. DE-AC03-76SF000098. A. I.
appreciates the support of the JSPS Postdoctoral Fellowship for Research
Abroad.
NR 61
TC 226
Z9 227
U1 10
U2 49
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 21
PY 2009
VL 130
IS 23
AR 234110
DI 10.1063/1.3155214
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 460DE
UT WOS:000267166200015
PM 19548714
ER
PT J
AU Ishizaki, A
Fleming, GR
AF Ishizaki, Akihito
Fleming, Graham R.
TI Unified treatment of quantum coherent and incoherent hopping dynamics in
electronic energy transfer: Reduced hierarchy equation approach
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE dipole coupling; excited states; fluorescence; Markov processes;
nonradiative transitions; quantum theory; radiative lifetimes; wave
functions
ID 2-LEVEL SYSTEM; VARIATIONAL CALCULATION; CHLOROBIUM-TEPIDUM; REDFIELD
EQUATION; ANTENNA COMPLEXES; PHASE RELAXATION; NOISE BATH; SPECTROSCOPY;
PROTEIN; BACTERIOCHLOROPHYLL
AB A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Foumlrster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Foumlrster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores.
C1 [Ishizaki, Akihito] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Ishizaki, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM grfleming@lbl.gov
RI Ishizaki, Akihito/A-7069-2010
OI Ishizaki, Akihito/0000-0002-0246-4461
FU U. S. Department of Energy [DE-AC02-05CH1123, DE-AC03-76SF000098];
Chemical Sciences, Geosciences and Biosciences Division, Office of Basic
Energy Sciences; JSPS Postdoctoral Fellowship for Research Abroad
FX We thank Dr. Yuan-Chung Cheng for valuable comments. This work was
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U. S. Department of Energy under Contract No.
DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and
Biosciences Division, Office of Basic Energy Sciences, U. S. Department
of Energy under Contract No. DE-AC03-76SF000098. A. I. appreciates the
support of the JSPS Postdoctoral Fellowship for Research Abroad.
NR 57
TC 308
Z9 308
U1 8
U2 52
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 21
PY 2009
VL 130
IS 23
AR 234111
DI 10.1063/1.3155372
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 460DE
UT WOS:000267166200016
PM 19548715
ER
PT J
AU Xu, ZJ
Meakin, P
AF Xu, Zhijie
Meakin, Paul
TI A phase-field approach to no-slip boundary conditions in dissipative
particle dynamics and other particle models for fluid flow in
geometrically complex confined systems
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE confined flow; flow simulation
ID DENSE COLLOIDAL SUSPENSIONS; COMPUTER-SIMULATION; SOLIDIFICATION;
CONVECTION; GROWTH
AB Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries.
C1 [Xu, Zhijie; Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA.
[Meakin, Paul] Univ Oslo, N-0316 Oslo, Norway.
[Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2027 Kjeller, Norway.
RP Xu, ZJ (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA.
EM zhijie.xu@inl.gov
RI Xu, Zhijie/A-1627-2009
OI Xu, Zhijie/0000-0003-0459-4531
FU U. S. Department of Energy, Office of Science Scientific Discovery;
Battelle Energy Alliance [DE-AC07-05ID14517]
FX This work was supported by the U. S. Department of Energy, Office of
Science Scientific Discovery through Advanced Computing Program. The
Idaho National Laboratory is operated for the U. S. Department of Energy
by the Battelle Energy Alliance under Contract No. DE-AC07-05ID14517.
NR 40
TC 13
Z9 14
U1 0
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 21
PY 2009
VL 130
IS 23
AR 234103
DI 10.1063/1.3152634
PG 8
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 460DE
UT WOS:000267166200008
PM 19548707
ER
PT J
AU Zhang, Y
Donev, A
Weisgraber, T
Alder, BJ
Graham, MD
de Pablo, JJ
AF Zhang, Yu
Donev, Aleksandar
Weisgraber, Todd
Alder, Berni J.
Graham, Michael D.
de Pablo, Juan J.
TI Tethered DNA dynamics in shear flow
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE biological fluid dynamics; Brownian motion; DNA; fluctuations; lattice
Boltzmann methods; molecular dynamics method; shear flow; stochastic
processes
ID DRIVEN MOLECULAR-DYNAMICS; NONSPHERICAL HARD PARTICLES; IMMERSED
BOUNDARY METHOD; SINGLE-POLYMER DYNAMICS; LATTICE BOLTZMANN;
HYDRODYNAMIC INTERACTIONS; STOCHASTIC SIMULATIONS; ELONGATIONAL FLOW;
INDUCED MIGRATION; CHAIN POLYMERS
AB We study the cyclic dynamics of a single polymer tethered to a hard wall in shear flow using Brownian dynamics, the lattice Boltzmann method, and a recent stochastic event-driven molecular dynamics algorithm. We focus on the dynamics of the free end (last bead) of the tethered chain and we examine the cross-correlation function and power spectral density of the chain extensions in the flow and gradient directions as a function of chain length N and dimensionless shear rate Wi. Extensive simulation results suggest a classical fluctuation-dissipation stochastic process and question the existence of periodicity of the cyclic dynamics, as previously claimed. We support our numerical findings with a simple analytical calculation for a harmonic dimer in shear flow.
C1 [Zhang, Yu; Graham, Michael D.; de Pablo, Juan J.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
[Donev, Aleksandar; Weisgraber, Todd; Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Zhang, Y (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
EM depablo@engr.wisc.edu
RI Graham, Michael/A-8356-2009
OI Graham, Michael/0000-0003-4983-4949
NR 63
TC 27
Z9 27
U1 1
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 21
PY 2009
VL 130
IS 23
AR 234902
DI 10.1063/1.3149860
PG 13
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 460DE
UT WOS:000267166200052
PM 19548751
ER
PT J
AU Schawinski, K
Lintott, C
Thomas, D
Sarzi, M
Andreescu, D
Bamford, SP
Kaviraj, S
Khochfar, S
Land, K
Murray, P
Nichol, RC
Raddick, MJ
Slosar, A
Szalay, A
VandenBerg, J
Yi, SK
AF Schawinski, Kevin
Lintott, Chris
Thomas, Daniel
Sarzi, Marc
Andreescu, Dan
Bamford, Steven P.
Kaviraj, Sugata
Khochfar, Sadegh
Land, Kate
Murray, Phil
Nichol, Robert C.
Raddick, M. Jordan
Slosar, Anze
Szalay, Alex
VandenBerg, Jan
Yi, Sukyoung K.
TI Galaxy Zoo: a sample of blue early-type galaxies at low redshift
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies:
formation; galaxies: fundamental parameters; galaxies: starburst
ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES;
COLOR-MAGNITUDE RELATION; ELLIPTIC GALAXIES; HOST GALAXIES; VELOCITY
DISPERSIONS; STELLAR POPULATIONS; SAURON PROJECT; RADIO GALAXIES
AB We report the discovery of a population of nearby, blue early-type galaxies with high star formation rates (0.5 < SFR < 50 M(circle dot) yr(-1)). They are identified by their visual morphology as provided by Galaxy Zoo for Sloan Digital Sky Survey Data Release 6 and their u - r colour. We select a volume-limited sample in the redshift range 0.02 < z < 0.05, corresponding to luminosities of approximately L* and above and with u - r colours significantly bluer than the red sequence. We confirm the early-type morphology of the objects in this sample and investigate their environmental dependence and star formation properties. Blue early-type galaxies tend to live in lower density environments than 'normal' red sequence early-types and make up 5.7 +/- 0.4 per cent of the low-redshift early-type galaxy population. We find that such blue early-type galaxies are virtually absent at high velocity dispersions above 200 km s(-1). Our analysis uses emission line diagnostic diagrams and we find that similar to 25 per cent of them are actively star forming, while another similar to 25 per cent host both star formation and an active galactic nucleus (AGN). Another similar to 12 per cent are AGN. The remaining 38 per cent show no strong emission lines. When present and uncontaminated by an AGN contribution, the star formation is generally intense. We consider star formation rates derived from Ha, u band and infrared luminosities, and radial colour profiles, and conclude that the star formation is spatially extended. Of those objects that are not currently undergoing star formation must have ceased doing so recently in order to account for their blue optical colours. The gas-phase metallicity of the actively star-forming blue early-types galaxies is supersolar in all cases. We discuss the place of these objects in the context of galaxy formation. Acatalogue of all 204 blue early-type galaxies in our sample, including star formation rates, emission line classification is provided.
C1 [Schawinski, Kevin] Yale Univ, Dept Phys, New Haven, CT 06511 USA.
[Schawinski, Kevin] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Schawinski, Kevin; Lintott, Chris; Kaviraj, Sugata; Khochfar, Sadegh; Land, Kate] Univ Oxford, Dept Phys, Oxford OX1 3RH, England.
[Thomas, Daniel; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England.
[Sarzi, Marc] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England.
[Andreescu, Dan] LinkLab, Bronx, NY 10471 USA.
[Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England.
[Khochfar, Sadegh] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany.
[Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Down, North Ireland.
[Raddick, M. Jordan; Szalay, Alex; VandenBerg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA.
[Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.
[Yi, Sukyoung K.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea.
RP Schawinski, K (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA.
EM kevins@astro.ox.ac.uk
RI Bamford, Steven/E-8702-2010;
OI Bamford, Steven/0000-0001-7821-7195; Schawinski,
Kevin/0000-0001-5464-0888
FU Henry Skynner Junior Research Fellowship; STFC; Leverhulme Early-Career
Fellowship; Worcester College, Oxford; Basic Research Program of the
Korea Science and Engineering Foundation [R01-2006-000-10716-0]; Korean
government [KRF-C00156]; Alfred P. Sloan Foundation
FX We would like to thank Adrienne Slyz and Julien Devrient for helpful
comments and suggestions. We also thank Alice Sheppard and Edd Edmondson
for their help in administering the Galaxy Zoo forum. KS is supported by
the Henry Skynner Junior Research Fellowship at Balliol College Oxford.
CL acknowledges support from the STFC Science in Society Programme. S.
Kaviraj acknowledges a Leverhulme Early-Career Fellowship, a BIPAC
fellowship and a Research Fellowship from Worcester College, Oxford.
This work was supported by grant No. R01-2006-000-10716-0 from the Basic
Research Program of the Korea Science and Engineering Foundation to SKY.
This work was supported by the Korea Research Foundation Grant funded by
the Korean government ( KRF-C00156) to SKY. Funding for the SDSS and
SDSS-II has been provided by the Alfred P. Sloan Foundation, the
Participating Institutions, the National Science Foundation, the US
Department of Energy, the National Aeronautics and Space Administration,
the Japanese Monbukagakusho, theMax Planck Society and the Higher
Education Funding Council for England. The SDSS Web Site is
http://www.sdss.org/
NR 67
TC 72
Z9 73
U1 0
U2 1
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD JUN 21
PY 2009
VL 396
IS 2
BP 818
EP 829
DI 10.1111/j.1365-2966.2009.14793.x
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 457JR
UT WOS:000266924800016
ER
PT J
AU Ren, F
Hall, BD
Case, ED
Timm, EJ
Trejo, RM
Meisner, RA
Lara-Curzio, E
AF Ren, F.
Hall, B. D.
Case, E. D.
Timm, E. J.
Trejo, R. M.
Meisner, R. A.
Lara-Curzio, E.
TI Temperature-dependent thermal expansion of cast and hot-pressed LAST
(Pb-Sb-Ag-Te) thermoelectric materials
SO PHILOSOPHICAL MAGAZINE
LA English
DT Article
DE semiconductor; thermomechanical analysis; powder diffraction; thermal
expansion
ID SOLID-SOLUTIONS; LEAD TELLURIDE; AGPBMSBTE2+M; PERFORMANCE; EFFICIENCY;
POWDERS; SYSTEM; GROWTH
AB The thermal expansion for two compositions of east and hot-presged LAST (Pb-Sb-Ag-Te) n-type thermoelectric materials has been measured between room temperature and 673 K via thermomechanical analysis (TMA). In addition, using high-temperature X-ray diffraction (HT-XRD), the thermal expansion Cor both cast and licit-pressed LAST materials was determined from the temperature-dependent lattice parameters measured between room temperature and 623 K. The TMA and HT-XRD determined values of the coefficient of thermal expansion (CTE) for the LAST compositions ranged between 20 x 10(-6) K-1 and 24 x 10(-6) K-1, which is comparable to the CTE values for other thermoelectric materials including PbTe and Bi2Te3. The CTE of the LAST specimens with a higher Ag content (Ag0.86Pb19Sb1.0Te20) exhibited a higher CTE value than that of the LAST material with a lower Ag content (Ag0.43Pb18Sb1.2Te20). In addition, a peak in the temperature-dependent CTE was observed between room temperature and approximately 450 K. For both the cast and hot-pressed LAST with the Ag0.86Pb19Sb1.0Te20 composition, whereas the CTE of the Ag0.86Pb19Sb1.0Te20 Specimen increased monotonically with temperature.
C1 [Ren, F.; Hall, B. D.; Case, E. D.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA.
[Timm, E. J.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
[Trejo, R. M.; Lara-Curzio, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA.
[Meisner, R. A.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Ren, F (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA.
EM renf@ornl.gov
RI Ren, Fei/E-7706-2011
FU U.S. Department of Energy [DE-FC26-04NT42281, DE-AC05-00OR22725]; Office
of Naval Research MURI [N000140310789]; Assistant Secretary for Energy
Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle
Technologies; High Temperature Materials Laboratory; Oak Ridge National
Laboratory; UT-Battelle; LLC
FX The authors acknowledge the financial assistance of the U.S. Department
of Energy Grant DE-FC26-04NT42281 and Office of Naval Research MURI
Grant number N000140310789. The research work at the High Temperature
Materials Laboratory was sponsored by the Assistant Secretary for Energy
Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle
Technologies, as part of the High Temperature Materials Laboratory User
Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for
the U.S. Department of Energy under contract number DE-AC05-00OR22725.
One of the authors (F. Ren) would like to acknowledge the financial
support from the Higher Education Research Experience program sponsored
by the Oak Ridge National Laboratory during his tenure at the High
Temperature Materials Laboratory.; The authors would like to thank Dr.
Andrew Payzant at the Materials Science and Technology Division of the
Oak Ridge National Laboratory for his technical assistance and helpful
discussion with respect to the high temperature x-ray experiments. One
of the authors (F. Ren) would like to acknowledge the help from Mr.
Takayuki Kobayashi (Visiting scholar, Department of Chemical Engineering
and Materials Science, Michigan State University) for his assistance in
translating ref. [24] to English.
NR 31
TC 7
Z9 7
U1 1
U2 8
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND
SN 1478-6435
EI 1478-6443
J9 PHILOS MAG
JI Philos. Mag.
PD JUN 21
PY 2009
VL 89
IS 18
BP 1439
EP 1455
DI 10.1080/14786430903002376
PG 17
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Metallurgy & Metallurgical Engineering; Physics
GA 478IL
UT WOS:000268580900001
ER
PT J
AU Yu, S
Brown, HM
Huang, XW
Zhou, XD
Amonette, JE
Zhang, ZC
AF Yu Su
Brown, Heather M.
Huang, Xiwen
Zhou, Xiao-dong
Amonette, James E.
Zhang, Z. Conrad
TI Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a
versatile platform chemical
SO APPLIED CATALYSIS A-GENERAL
LA English
DT Article
DE 5-Hydroxymethylfurfural; HMF; Ionic liquid; 1-Alkyl-3-methylimidazolium
chloride; 1-Ethyl-3-methyl-imidazolium chloride; Glucose; Cellobiose;
Maltose; Cellulose conversion; Paired metal chlorides; CuCl(2); CrCl(2)
ID LIGNOCELLULOSIC BIOMASS; IONIC LIQUIDS; HYDROLYSIS; FUELS; ACID
AB The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl(2) and CrCl(2)) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80-120 degrees C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 +/- 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions. (C) 2009 Published by Elsevier B.V.
C1 [Yu Su; Brown, Heather M.; Huang, Xiwen; Zhou, Xiao-dong; Amonette, James E.; Zhang, Z. Conrad] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
RP Zhang, ZC (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA.
EM conrad.zhang@kior.com
FU Pacific Northwest National Lab (PNNL) [DE-AC06-76RL01830]
FX We thank John L. Fulton, Sarah D. Burton, and Guosheng Li for helpful
discussions. We also want to express our deep gratitude to the late
Professor J.M. White and to Dr. M.R. Thompson of the Pacific Northwest
National Lab (PNNL) for their support and for inspiring discussions.
This work was supported by the Laboratory Directed Research and
Development Program at the PNNL, a multiprogram national laboratory
operated by Battelle for the U.S. DOE under contract no.
DE-AC06-76RL01830. Part of the research described in this paper was
performed at the Environmental Molecular Science Laboratory, a national
scientific user facility located at PNNL.
NR 15
TC 36
Z9 43
U1 7
U2 123
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0926-860X
J9 APPL CATAL A-GEN
JI Appl. Catal. A-Gen.
PD JUN 20
PY 2009
VL 361
IS 1-2
BP 117
EP 122
DI 10.1016/j.apcata.2009.04.002
PG 6
WC Chemistry, Physical; Environmental Sciences
SC Chemistry; Environmental Sciences & Ecology
GA 459HR
UT WOS:000267092800016
ER
PT J
AU Naulleau, PP
AF Naulleau, Patrick P.
TI Correlation method for the measure of mask-induced line-edge roughness
in extreme ultraviolet lithography
SO APPLIED OPTICS
LA English
DT Article
AB As critical dimensions for leading-edge semiconductor devices shrink, the line-edge roughness (LER) requirements are pushing well into the single digit nanometer regime. At these scales many new sources of LER must be considered. In the case of extreme ultraviolet (EUV) lithography, modeling has shown the lithographic mask to be a source of significant concern. Here we present a correlation-based methodology for experimentally measuring the magnitude of mask contributors to printed LER. The method is applied to recent printing results from a 0.3 numerical aperture ELTV microfield exposure tool. The measurements demonstrate that such effects are indeed present and of significant magnitude. The method is also used to explore the effects of illumination coherence and defocus and has been used to verify model-based predictions of mask-induced LER. (C) 2009 Optical Society of America
C1 Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA.
RP Naulleau, PP (reprint author), Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA.
EM pnaulleau@lbl.gov
FU DOE
FX The author is greatly indebted to Paul Denham, Bryan Hoef, Gideon Jones,
and Lorie Mae Bacleaan for expert support with the exposure tool, and to
the entire CXRO staff for enabling this research. The author is also
grateful to Warren Montgomery, Chawon Koh, Stefan Wurm, and Brian Rice
of SEMATECH for BMET support. This work was supported by SEMATECH and
carried out at Lawrence Berkeley National Laboratory's Advanced Light
Source, which is supported by the DOE, Office of Science, Basic Energy
Sciences.
NR 8
TC 14
Z9 15
U1 0
U2 0
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD JUN 20
PY 2009
VL 48
IS 18
BP 3302
EP 3307
DI 10.1364/AO.48.003302
PG 6
WC Optics
SC Optics
GA 475HX
UT WOS:000268350300004
PM 19543335
ER
PT J
AU Yoo, J
Weinberg, DH
Tinker, JL
Zheng, Z
Warren, MS
AF Yoo, Jaiyul
Weinberg, David H.
Tinker, Jeremy L.
Zheng, Zheng
Warren, Michael S.
TI EXTENDING RECOVERY OF THE PRIMORDIAL MATTER POWER SPECTRUM
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: theory; dark matter; galaxies: halos; large-scale structure
of universe
ID HALO OCCUPATION DISTRIBUTION; DIGITAL SKY SURVEY; REDSHIFT-SPACE
DISTORTIONS; LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; COLD
DARK-MATTER; COSMOLOGICAL PARAMETERS; FOURIER-ANALYSIS; ANALYTIC MODEL;
MASS FUNCTION
AB The shape of the primordial matter power spectrum encodes critical information on cosmological parameters. At large scales, in the linear regime, the observable galaxy power spectrum P(obs)(k) is expected to follow the shape of the linear matter power spectrum P(lin)(k), but on smaller scales the effects of nonlinearity and galaxy bias make the ratio P(obs)(k)/P(lin)(k) scale dependent. We develop a method that can extend the dynamic range of the primordial matter power spectrum recovery, taking full advantage of precision measurements on quasi-linear scales, by incorporating additional constraints on the galaxy halo occupation distribution (HOD) from the projected galaxy correlation function w(p) (r(p)). We devise an analytic model to calculate observable galaxy power spectrum P(obs)(k) in real space and redshift space, given P(lin)(k) and HOD parameters, and we demonstrate its accuracy at the few percent level with tests against a suite of populated N-body simulations. Once HOD parameters are determined by fitting w(p) (r(p)) measurements for a given cosmological model, galaxy bias is completely specified, and our analytic model predicts both the shape and normalization of P(obs)(k). Applying our method to the main galaxy redshift samples from the Sloan Digital Sky Survey (SDSS), we find that the real-space galaxy power spectrum follows the shape of the nonlinear matter power spectrum at the 1%-2% level up to k = 0.2 h Mpc(-1) and that current observational uncertainties in HOD parameters leave only few percent uncertainties in our scale-dependent bias predictions up to k = 0.5 h Mpc(-1). These uncertainties can be marginalized over in deriving cosmological parameter constraints, and they can be reduced by higher precision w(p) (r(p)) measurements. When we apply our method to the SDSS luminous red galaxy (LRG) samples, we find that the linear bias approximation is accurate to 5% at k <= 0.08 h Mpc(-1), but the strong scale dependence of LRG bias prevents the use of linear theory at k >= 0.08 h Mpc(-1). Our HOD model prediction is in good agreement with the recent SDSS LRG power spectrum measurements at all measured scales (k <= 0.2 h Mpc(-1)), naturally explaining the observed shape of P(obs)(k) in the quasi-linear regime. The phenomenological "Q-model" prescription is a poor description of galaxy bias for the LRG samples, and it can lead to biased cosmological parameter estimates when measurements at k >= 0.1 h Mpc(-1) are included in the analysis. We quantify the potential bias and constraints on cosmological parameters that arise from applying linear theory and Q-model fitting, and we demonstrate the utility of HOD modeling of high-precision measurements of P(obs)(k) on quasi-linear scales, which will be obtainable from the final SDSS data set.
C1 [Yoo, Jaiyul] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Yoo, Jaiyul; Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA.
[Tinker, Jeremy L.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Zheng, Zheng] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA.
[Warren, Michael S.] Los Alamos Natl Lab, Div Theoret Astrophys, Los Alamos, NM 87543 USA.
RP Yoo, J (reprint author), Harvard Univ, Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
EM jyoo@cfa.harvard.edu; dhw@astronomy.ohio-state.edu;
tinker@cfcp.uchicago.edu; zhengz@ias.edu; msw@lanl.gov
OI Warren, Michael/0000-0002-1218-7904
FU Ohio State University; NSF [AST-0707985, AST-0239759]; Chandra award
[GO5-6120B]; Institute for Advanced Study through a John Bahcall
Fellowship
FX We are grateful to Max Tegmark for kindly providing his no-defog
measurements used in our Figure 13. J.Y. has been supported by the
Harvard College Observatory through a Donald H. Menzel Fellowship and by
the Graduate School of The Ohio State University through a Presidential
Fellowship. D. W. acknowledges support from NSF Grant AST-0707985. J.T.
was supported by the Chandra award GO5-6120B and National Science
Foundation ( NSF) under grant AST-0239759. Z.Z. gratefully acknowledges
support from the Institute for Advanced Study through a John Bahcall
Fellowship.
NR 84
TC 15
Z9 15
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2009
VL 698
IS 2
BP 967
EP 985
DI 10.1088/0004-637X/698/2/967
PG 19
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 455RQ
UT WOS:000266782400001
ER
PT J
AU Urrutia, T
Becker, RH
White, RL
Glikman, E
Lacy, M
Hodge, J
Gregg, MD
AF Urrutia, Tanya
Becker, Robert H.
White, Richard L.
Glikman, Eilat
Lacy, Mark
Hodge, Jacqueline
Gregg, Michael D.
TI THE FIRST-2MASS RED QUASAR SURVEY. II. AN ANOMALOUSLY HIGH FRACTION OF
LoBALs IN SEARCHES FOR DUST-REDDENED QUASARS
SO ASTROPHYSICAL JOURNAL
LA English
DT Review
DE galaxies: active; galaxies: evolution; quasars: absorption lines;
quasars: general
ID ACTIVE GALACTIC NUCLEI; BROAD-ABSORPTION-LINE; DIGITAL-SKY-SURVEY;
ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS;
SUPERMASSIVE BLACK-HOLES; HUBBLE-SPACE-TELESCOPE; RADIO-LOUD QUASARS;
DEEP FIELD-SOUTH; 3RD DATA RELEASE
AB We present results on a survey to find extremely dust-reddened Type 1 quasars. Combining the FIRST radio survey, the 2MASS Infrared Survey and the Sloan Digital Sky Survey, we have selected a candidate list of 122 potential red quasars. With more than 80% spectroscopically identified objects, well over 50% are classified as dust-reddened Type 1 quasars, whose reddenings (E(B-V)) range from approximately 0.1 to 1.5 mag. They lie well off the color selection windows usually used to detect quasars and many fall within the stellar locus, which would have made it impossible to find these objects with traditional color selection techniques. The reddenings found are much more consistent with obscuration happening in the host galaxy rather than stemming from the dust torus. We find an unusually high fraction of broad absorption line (BAL) quasars at high redshift, all but one of them belonging to the low-ionization BAL (LoBAL) class and many also showing absorption in the metastable Fe II line (FeLoBAL). The discovery of further examples of dust-reddened LoBAL quasars provides more support for the hypothesis that BAL quasars (at least LoBAL quasars) represent an early stage in the lifetime of the quasar. The fact that we see such a high fraction of BALs could indicate that the quasar is in a young phase in which quasar feedback from the BAL winds is suppressing star formation in the host galaxy.
C1 [Urrutia, Tanya; Lacy, Mark] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA.
[Urrutia, Tanya; Becker, Robert H.; Hodge, Jacqueline; Gregg, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA.
[Urrutia, Tanya; Becker, Robert H.; Gregg, Michael D.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA.
[White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Glikman, Eilat] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
RP Urrutia, T (reprint author), CALTECH, Spitzer Sci Ctr, MS 314-6,1200 E Calif Blvd, Pasadena, CA 91125 USA.
EM bob@igpp.ucllnl.org; rlw@stsci.edu; eilatg@astro.caltech.edu;
mlacy@ipac.caltech.edu; hodge@physics.ucdavis.edu; gregg@igpp.ucllnl.org
RI White, Richard/A-8143-2012;
OI Urrutia, Tanya/0000-0001-6746-9936
FU US Department of Energy [DE-AC52-07NA27344]
FX The authors wish to thank Bryn Feldman for help with the first
selections of this catalog and for help in carrying out the observations
at Lick 3 m telescope. We are also thankful for the helpful comments
from an anonymous referee on this paper. This work was partly performed
under the auspices of the US Department of Energy by the Lawrence
Livermore National Laboratory under contract no. DE-AC52-07NA27344.
NR 110
TC 60
Z9 60
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2009
VL 698
IS 2
BP 1095
EP 1109
DI 10.1088/0004-637X/698/2/1095
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 455RQ
UT WOS:000266782400011
ER
PT J
AU Carrigan, RA
AF Carrigan, Richard A., Jr.
TI IRAS-BASED WHOLE-SKY UPPER LIMIT ON DYSON SPHERES
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE astrobiology; extraterrestrial intelligence; infrared: stars; stars:
carbon; stars: fundamental parameters
ID MASER SOURCES; CARBON STARS; OUTER DISK; GALAXY; SEARCH; IDENTIFICATION;
CLASSIFICATION; CANDIDATES; SPECTRA
AB A Dyson sphere is a hypothetical construct of a star purposely shrouded by a cloak of broken-up planetary material to better utilize all of the stellar energy. A clean Dyson sphere identification would give a significant signature for intelligence at work. A search for Dyson spheres has been carried out using the 250,000 source database of the IRAS infrared satellite which covered 96% of the sky. The search has used the Calgary database for the IRAS Low Resolution Spectrometer (LRS) to look for fits to blackbody spectra. Searches have been conducted for both pure (fully cloaked) and partial Dyson spheres in the blackbody temperature region 100K <= T <= 600 K. When other stellar signatures that resemble a Dyson sphere are used to eliminate sources that mimic Dyson spheres very few candidates remain and even these are ambiguous. Upper limits are presented for both pure and partial Dyson spheres. The sensitivity of the LRS was enough to find Dyson spheres with the luminosity of the Sun out to 300 pc, a reach that encompasses a million solar-type stars.
C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Carrigan, RA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.
EM carrigan@fnal.gov
NR 26
TC 16
Z9 16
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2009
VL 698
IS 2
BP 2075
EP 2086
DI 10.1088/0004-637X/698/2/2075
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 455RQ
UT WOS:000266782400089
ER
PT J
AU Abdo, AA
Allen, BT
Aune, T
Berley, D
Casanova, S
Chen, C
Dingus, BL
Ellsworth, RW
Fleysher, L
Fleysher, R
Gonzalez, MM
Goodman, JA
Hoffman, CM
Hopper, B
Huntemeyer, PH
Kolterman, BE
Lansdell, CP
Linnemann, JT
McEnery, JE
Mincer, AI
Nemethy, P
Noyes, D
Pretz, J
Ryan, JM
Parkinson, PMS
Shoup, A
Sinnis, G
Smith, AJ
Sullivan, GW
Vasileiou, V
Walker, GP
Williams, DA
Yodh, GB
AF Abdo, A. A.
Allen, B. T.
Aune, T.
Berley, D.
Casanova, S.
Chen, C.
Dingus, B. L.
Ellsworth, R. W.
Fleysher, L.
Fleysher, R.
Gonzalez, M. M.
Goodman, J. A.
Hoffman, C. M.
Hopper, B.
Huentemeyer, P. H.
Kolterman, B. E.
Lansdell, C. P.
Linnemann, J. T.
McEnery, J. E.
Mincer, A. I.
Nemethy, P.
Noyes, D.
Pretz, J.
Ryan, J. M.
Parkinson, P. M. Saz
Shoup, A.
Sinnis, G.
Smith, A. J.
Sullivan, G. W.
Vasileiou, V.
Walker, G. P.
Williams, D. A.
Yodh, G. B.
TI THE LARGE-SCALE COSMIC-RAY ANISOTROPY AS OBSERVED WITH MILAGRO
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmic rays; Galaxy: halo; ISM: magnetic fields; solar neighborhood;
Sun: activity; supernova remnants
ID GALACTIC PLANE; INTENSITY
AB Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 +/- 0.02 stat. +/- 0.09 sys.) x 10(-3) in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.
C1 [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA.
[Abdo, A. A.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA.
[Allen, B. T.; Chen, C.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.
[Aune, T.; Parkinson, P. M. Saz; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Berley, D.; Goodman, J. A.; Hopper, B.; Lansdell, C. P.; Noyes, D.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA.
[Casanova, S.; Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Pretz, J.; Sinnis, G.; Walker, G. P.] Los Alamos Natl Lab, Grp P 23, Los Alamos, NM 87545 USA.
[Ellsworth, R. W.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA.
[Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] NYU, Dept Phys, New York, NY 10003 USA.
[Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico.
[Linnemann, J. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[McEnery, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Ryan, J. M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA.
[Shoup, A.] Ohio State Univ, Lima, OH 45804 USA.
RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA.
RI McEnery, Julie/D-6612-2012; Casanova, Sabrina/J-8935-2013;
OI Casanova, Sabrina/0000-0002-6144-9122; Mincer, Allen/0000-0002-6307-1418
FU National Science Foundation [PHY-0245234, PHY-0302000, PHY-0400424,
PHY-0504201, PHY-0601080, ATM-0002744]; US Department of Energy; Los
Alamos National Laboratory; University of California; Institute of
Geophysics and Planetary Physics
FX We acknowledge Scott Delay and Michael Schneider for their dedicated
efforts in the construction and maintenance of the Milagro experiment.
This work has been supported by the National Science Foundation (under
grants PHY-0245234, -0302000, -0400424, -0504201, -0601080, and
ATM-0002744) the US Department of Energy (Office of High-Energy Physics
and Office of Nuclear Physics), Los Alamos National Laboratory, the
University of California, and the Institute of Geophysics and Planetary
Physics.
NR 22
TC 108
Z9 109
U1 0
U2 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2009
VL 698
IS 2
BP 2121
EP 2130
DI 10.1088/0004-637X/698/2/2121
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 455RQ
UT WOS:000266782400093
ER
PT J
AU Ryutov, DD
Drake, RP
Kane, J
Liang, E
Remington, BA
Wood-Vasey, WM
AF Ryutov, D. D.
Drake, R. P.
Kane, J.
Liang, E.
Remington, B. A.
Wood-Vasey, W. M.
TI SIMILARITY CRITERIA FOR THE LABORATORY SIMULATION OF SUPERNOVA
HYDRODYNAMICS (vol 518, pg 821, 1999)
SO ASTROPHYSICAL JOURNAL
LA English
DT Correction
C1 [Ryutov, D. D.; Drake, R. P.; Kane, J.; Liang, E.; Remington, B. A.; Wood-Vasey, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
OI Drake, R Paul/0000-0002-5450-9844
NR 1
TC 0
Z9 0
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JUN 20
PY 2009
VL 698
IS 2
BP 2144
EP 2144
DI 10.1088/0004-637X/698/2/2144
PG 1
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 455RQ
UT WOS:000266782400095
ER
PT J
AU Acciari, VA
Aliu, E
Arlen, T
Aune, T
Bautista, M
Beilicke, M
Benbow, W
Bradbury, SM
Buckley, JH
Bugaev, V
Butt, Y
Byrum, K
Cannon, A
Celik, O
Cesarini, A
Chow, YC
Ciupik, L
Cogan, P
Colin, P
Cui, W
Daniel, MK
Dickherber, R
Duke, C
Dwarkadas, VV
Ergin, T
Fegan, SJ
Finley, JP
Finnegan, G
Fortin, P
Fortson, L
Furniss, A
Gall, D
Gibbs, K
Gillanders, GH
Godambe, S
Grube, J
Guenette, R
Gyuk, G
Hanna, D
Hays, E
Holder, J
Horan, D
Hui, CM
Humensky, TB
Imran, A
Kaaret, P
Karlsson, N
Kertzman, M
Kieda, D
Kildea, J
Konopelko, A
Krawczynski, H
Krennrich, F
Lang, MJ
LeBohec, S
Maier, G
McCann, A
McCutcheon, M
Millis, J
Moriarty, P
Ong, RA
Otte, AN
Pandel, D
Perkins, JS
Pohl, M
Quinn, J
Ragan, K
Reyes, LC
Reynolds, PT
Roache, E
Rose, HJ
Schroedter, M
Sembroski, GH
Smith, AW
Steele, D
Swordy, SP
Theiling, M
Toner, JA
Valcarcel, L
Varlotta, A
Vassiliev, VV
Vincent, S
Wagner, RG
Wakely, SP
Ward, JE
Weekes, TC
Weinstein, A
Weisgarber, T
Williams, DA
Wissel, S
Wood, M
Zitzer, B
AF Acciari, V. A.
Aliu, E.
Arlen, T.
Aune, T.
Bautista, M.
Beilicke, M.
Benbow, W.
Bradbury, S. M.
Buckley, J. H.
Bugaev, V.
Butt, Y.
Byrum, K.
Cannon, A.
Celik, O.
Cesarini, A.
Chow, Y. C.
Ciupik, L.
Cogan, P.
Colin, P.
Cui, W.
Daniel, M. K.
Dickherber, R.
Duke, C.
Dwarkadas, V. V.
Ergin, T.
Fegan, S. J.
Finley, J. P.
Finnegan, G.
Fortin, P.
Fortson, L.
Furniss, A.
Gall, D.
Gibbs, K.
Gillanders, G. H.
Godambe, S.
Grube, J.
Guenette, R.
Gyuk, G.
Hanna, D.
Hays, E.
Holder, J.
Horan, D.
Hui, C. M.
Humensky, T. B.
Imran, A.
Kaaret, P.
Karlsson, N.
Kertzman, M.
Kieda, D.
Kildea, J.
Konopelko, A.
Krawczynski, H.
Krennrich, F.
Lang, M. J.
LeBohec, S.
Maier, G.
McCann, A.
McCutcheon, M.
Millis, J.
Moriarty, P.
Ong, R. A.
Otte, A. N.
Pandel, D.
Perkins, J. S.
Pohl, M.
Quinn, J.
Ragan, K.
Reyes, L. C.
Reynolds, P. T.
Roache, E.
Rose, H. J.
Schroedter, M.
Sembroski, G. H.
Smith, A. W.
Steele, D.
Swordy, S. P.
Theiling, M.
Toner, J. A.
Valcarcel, L.
Varlotta, A.
Vassiliev, V. V.
Vincent, S.
Wagner, R. G.
Wakely, S. P.
Ward, J. E.
Weekes, T. C.
Weinstein, A.
Weisgarber, T.
Williams, D. A.
Wissel, S.
Wood, M.
Zitzer, B.
TI OBSERVATION OF EXTENDED VERY HIGH ENERGY EMISSION FROM THE SUPERNOVA
REMNANT IC 443 WITH VERITAS
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE gamma rays: observations; ISM: individual (IC 443=VER J0616.9+2230, =
MAGIC J0616+225)
ID GAMMA-RAY EMISSION; XMM-NEWTON OBSERVATIONS; MOLECULAR CLOUDS; MAGIC
TELESCOPE; COSMIC-RAYS; IC-443; NEBULA; PULSAR; DISCOVERY; RADIATION
AB We present evidence that the very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hr during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 6(h)16(m)51(s)+22 degrees 30'11 '' (J2000)+/- 0 degrees.03(stat)+/- 0 degrees.08(sys), with an intrinsic extension of 0 degrees.16 +/- 0 degrees.03(stat)+/- 0 degrees.04(sys). The VHE spectrum is well fit by a power law (dN/dE = N(0) x(E/TeV)(-Gamma)) with a photon index of 2.99 +/- 0.38(stat)+/- 0.3(sys) and an integral flux above 300 GeV of (4.63 +/- 0.90(stat)+/- 0.93(sys)) x 10(-12) cm(-2) s(-1). These results are discussed in the context of existing models for gamma-ray production in IC 443.
C1 [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Acciari, V. A.; Benbow, W.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Aliu, E.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Arlen, T.; Celik, O.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Bautista, M.; Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Valcarcel, L.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Bradbury, S. M.; Daniel, M. K.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England.
[Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland.
[Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Colin, P.; Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA.
[Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA.
[Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Fortin, P.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.
[Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France.
[Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA.
[Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA.
[Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA.
[Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland.
[Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland.
RP Humensky, TB (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.
EM humensky@uchicago.edu
RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010;
OI Cesarini, Andrea/0000-0002-8611-8610; Cui, Wei/0000-0002-6324-5772;
Daniel, Michael/0000-0002-8053-7910; Ward, John E/0000-0003-1973-0794;
Otte, Adam Nepomuk/0000-0002-5955-6383; Pandel,
Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201
FU US Department of Energy; US National Science Foundation; Smithsonian
Institution; NSERC in Canada; Science Foundation Ireland; STFC
FX This research is supported by grants from the US Department of Energy,
the US National Science Foundation, and the Smithsonian Institution, by
NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK.
We acknowledge the excellent work of the technical support staff at the
FLWO and the collaborating institutions in the construction and
operation of the instrument. Some of the simulations used in this work
have been performed on the Joint Fermilab-KICP Supercomputing Cluster.
NR 42
TC 66
Z9 66
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 20
PY 2009
VL 698
IS 2
BP L133
EP L137
DI 10.1088/0004-637X/698/2/L133
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 458VB
UT WOS:000267052600014
ER
PT J
AU Acciari, VA
Aliu, E
Arlen, T
Beilicke, M
Benbow, W
Boltuch, D
Bradbury, SM
Buckley, JH
Bugaev, V
Byrum, K
Cannon, A
Cesarini, A
Cesarini, A
Chow, YC
Ciupik, L
Cogan, P
Dickherber, R
Duke, C
Ergin, T
Falcone, A
Fegan, SJ
Finley, JP
Finnegan, G
Fortin, P
Fortson, L
Furniss, A
Gibbs, K
Gillanders, GH
Grube, J
Guenette, R
Gyuk, G
Hanna, D
Holder, J
Horan, D
Hui, CM
Humensky, TB
Imran, A
Kaaret, P
Karlsson, N
Kertzman, M
Kieda, D
Kildea, J
Konopelko, A
Krawczynski, H
Krennrich, F
Lang, MJ
LeBohec, S
LeBohec, S
Maier, G
McCann, A
McCutcheon, M
Millis, J
Millis, J
Moriarty, P
Mukherjee, R
Ong, RA
Otte, AN
Pandel, D
Perkins, JS
Petry, D
Pohl, M
Quinn, J
Ragan, K
Reyes, LC
Reynolds, PT
Rose, HJ
Schroedter, M
Sembroski, GH
Smith, AW
Steele, D
Swordy, S
Theiling, M
Toner, JA
Varlotta, A
Vassiliev, VV
Vincent, S
Wagner, RG
Wakely, SP
Ward, JE
Weekes, TC
Weinstein, A
Weisgarber, T
Williams, DA
Wissel, S
Wood, M
AF Acciari, V. A.
Aliu, E.
Arlen, T.
Beilicke, M.
Benbow, W.
Boltuch, D.
Bradbury, S. M.
Buckley, J. H.
Bugaev, V.
Byrum, K.
Cannon, A.
Cesarini, A.
Cesarini, A.
Chow, Y. C.
Ciupik, L.
Cogan, P.
Dickherber, R.
Duke, C.
Ergin, T.
Falcone, A.
Fegan, S. J.
Finley, J. P.
Finnegan, G.
Fortin, P.
Fortson, L.
Furniss, A.
Gibbs, K.
Gillanders, G. H.
Grube, J.
Guenette, R.
Gyuk, G.
Hanna, D.
Holder, J.
Horan, D.
Hui, C. M.
Humensky, T. B.
Imran, A.
Kaaret, P.
Karlsson, N.
Kertzman, M.
Kieda, D.
Kildea, J.
Konopelko, A.
Krawczynski, H.
Krennrich, F.
Lang, M. J.
LeBohec, S.
LeBohec, S.
Maier, G.
McCann, A.
McCutcheon, M.
Millis, J.
Millis, J.
Moriarty, P.
Mukherjee, R.
Ong, R. A.
Otte, A. N.
Pandel, D.
Perkins, J. S.
Petry, D.
Pohl, M.
Quinn, J.
Ragan, K.
Reyes, L. C.
Reynolds, P. T.
Rose, H. J.
Schroedter, M.
Sembroski, G. H.
Smith, A. W.
Steele, D.
Swordy, S.
Theiling, M.
Toner, J. A.
Varlotta, A.
Vassiliev, V. V.
Vincent, S.
Wagner, R. G.
Wakely, S. P.
Ward, J. E.
Weekes, T. C.
Weinstein, A.
Weisgarber, T.
Williams, D. A.
Wissel, S.
Wood, M.
TI EVIDENCE FOR LONG-TERM GAMMA-RAY AND X-RAY VARIABILITY FROM THE
UNIDENTIFIED TeV SOURCE HESS J0632+057
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE acceleration of particles; binaries: general; gamma rays: observations;
stars: individual (HESS J0632+057, MWC 148)
ID BINARY; DISCOVERY; EMISSION; TELESCOPE; CATALOG; STARS
AB HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I + 61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hr in 2006, 2008, and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The nondetection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with the Swift X-Ray Telescope reveal a factor of 1.8 +/- 0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the object as a gamma-ray emitting binary.
C1 [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Acciari, V. A.; Benbow, W.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA.
[Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA.
[Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA.
[Arlen, T.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.
[Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England.
[Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland.
[Cesarini, A.; Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland.
[Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA.
[Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA.
[Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA.
[Finley, J. P.; Sembroski, G. H.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA.
[Finnegan, G.; Hui, C. M.; Kieda, D.; LeBohec, S.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA.
[Fortin, P.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA.
[Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA.
[Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA.
[Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France.
[Humensky, T. B.; Swordy, S.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA.
[Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA.
[Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA.
[Millis, J.; Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA.
[Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland.
[Petry, D.] European So Observ, D-85748 Garching, Germany.
[Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland.
RP Maier, G (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
EM gernot.maier@mcgill.ca
OI Millis, John/0000-0002-2069-9838; Cesarini, Andrea/0000-0002-8611-8610;
Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586;
Lang, Mark/0000-0003-4641-4201
FU U. S. Department of Energy; U. S. National Science Foundation;
Smithsonian Institution; NSERC in Canada; Science Foundation Ireland;
STFC
FX This research is supported by grants from the U. S. Department of
Energy, the U. S. National Science Foundation, and the Smithsonian
Institution, by NSERC in Canada, by Science Foundation Ireland, and by
STFC in the U. K. We acknowledge the excellent work of the technical
support staff at the FLWO and the collaborating institutions in the
construction and operation of the instrument. We acknowledge the efforts
of the Swift team for providing the UVOT/XRT observations.
NR 27
TC 29
Z9 29
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD JUN 20
PY 2009
VL 698
IS 2
BP L94
EP L97
DI 10.1088/0004-637X/698/2/L94
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 458VB
UT WOS:000267052600005
ER
PT J
AU Barad, MF
Colella, P
Schladow, SG
AF Barad, Michael F.
Colella, Phillip
Schladow, S. Geoffrey
TI An adaptive cut-cell method for environmental fluid mechanics
SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
LA English
DT Article
DE embedded boundary; adaptive mesh refinement; variable-density
incompressible flows; projection method; environmental fluid mechanics;
finite-volume method
ID NAVIER-STOKES EQUATIONS; EMBEDDED BOUNDARY METHOD; INCOMPRESSIBLE
2-PHASE FLOWS; HYPERBOLIC CONSERVATION-LAWS; 2ND-ORDER PROJECTION
METHOD; IRREGULAR DOMAINS; POISSONS-EQUATION; HEAT-EQUATION;
NUMERICAL-SIMULATION; MESH REFINEMENT
AB In this work we present a numerical method for solving the incompressible Navier-Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable-density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded-boundary (or cut-cell) method for complex geometry with block-structured adaptive mesh refinement (AMR) while maintaining conservation and second-order accuracy. The accurate simulation of variable-density fluids necessitates special care in formulating projection methods. This variable-density formulation is well known for incompressible flows in unit-aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addressess the intersection of these issues. The methodology is based on a second-order-accurate projection method with high-order-accurate Godunov finite-differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite-volume AMR discretizations are based on two-way flux matching at refinement boundaries to obtain a conservative method that is second-order accurate in solution error. The control volumes are formed by the intersection of the irregular embeeded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint-block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two- and three-dimensional numerical examples to illustrate the accuracy of the method. Copyright (C) 2008 John Wiley & Sons, Ltd.
C1 [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Barad, Michael F.; Schladow, S. Geoffrey] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA.
RP Barad, MF (reprint author), Stanford Univ, Environm Fluid Mech Lab, Stanford, CA 94305 USA.
EM barad@stanford.edu
FU National Science Foundation MSPRF; Department of Energy CSGF; U.S.
Department of Energy Office of Advanced Scientific Computing
[DE-AC02-05CH11231]; U.S. Environmental Protection Agency's Coastal
Intensive Sites Network Program [R826940-01-0]; Office of Science of the
U.S. Department of Energy [DE-AC02-05CH11231]
FX MFB acknowledges the support of the National Science Foundation MSPRF
program and the Department of Energy CSGF program. PC acknowledges
support by the U.S. Department of Energy Office of Advanced Scientific
Computing under contract No. DE-AC02-05CH11231. SGS acknowledges the
U.S. Environmental Protection Agency's Coastal Intensive Sites Network
Program (Grant no. R826940-01-0). We thank Caroline Gatti-Bono, Dan
Graves, Terry Ligocki, Dan Martin, Peter Schwartz, David Serafini, Chip
Smith, Ted Sternberg, David Trebotich, and Brian Van Straalen without
their efforts this work would not have been possible. Thanks also to
Professor Oliver Fringer. This research used resources of the National
Energy Research Scientific Computing Center, which is supported by the
Office of Science of the U.S. Department of Energy under Contract no.
DE-AC02-05CH11231. This research also used resources at the Stanford
Center for Computational Earth & Environmental Science.
NR 79
TC 13
Z9 13
U1 3
U2 9
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0271-2091
J9 INT J NUMER METH FL
JI Int. J. Numer. Methods Fluids
PD JUN 20
PY 2009
VL 60
IS 5
BP 473
EP 514
DI 10.1002/fld.1893
PG 42
WC Computer Science, Interdisciplinary Applications; Mathematics,
Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas
SC Computer Science; Mathematics; Mechanics; Physics
GA 444RB
UT WOS:000265997000001
ER
PT J
AU Li, QM
Lin, Y
Creighton, JR
Figiel, JJ
Wang, GT
AF Li, Qiming
Lin, Yong
Creighton, J. Randall
Figiel, Jeffrey J.
Wang, George T.
TI Nanowire-Templated Lateral Epitaxilal Growth of Low-Dislocation Density
Nonpolar a-Plane GaN on r-Plane Sapphire
SO ADVANCED MATERIALS
LA English
DT Article
ID LIGHT-EMITTING-DIODES; MISMATCHED SEMICONDUCTOR-MATERIALS;
CHEMICAL-VAPOR-DEPOSITION; GALLIUM NITRIDE; IN-SITU; OVERGROWTH;
NANOHETEROEPITAXY; HETEROEPITAXY; REDUCTION; SUBSTRATE
AB Coalescence of a vertically aligned GaN nanowire array on r-plane sapphire, a technique called nanowire-templated lateral epitaxial growth, is used to grow low-dislocation density a-plane GaN. The resulting film is connected to the lattice-mismatched substrate by nanowires, which facilitates dramatic strain relaxation and leads to a significant reduction in defects.
C1 [Li, Qiming; Lin, Yong; Creighton, J. Randall; Figiel, Jeffrey J.; Wang, George T.] Sandia Natl Labs, Adv Mat Dept, Albuquerque, NM 87185 USA.
RP Wang, GT (reprint author), Sandia Natl Labs, Adv Mat Dept, POB 5800, Albuquerque, NM 87185 USA.
EM gtwang@sandia.gov
RI Wang, George/C-9401-2009
OI Wang, George/0000-0001-9007-0173
FU DOE Basic Energy Sciences; DOE EERE National Energy Technology
Laboratory; Sandia's Laboratory Directed Research and Development
program; United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AI85000]
FX This research is supported by DOE Basic Energy Sciences, DOE EERE
National Energy Technology Laboratory, and Sandia's Laboratory Directed
Research and Development program. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy's National Nuclear Security
Administration under contract no. DE-AC04-94AI85000.
NR 31
TC 34
Z9 35
U1 2
U2 48
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD JUN 19
PY 2009
VL 21
IS 23
BP 2416
EP +
DI 10.1002/adma.200802532
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 465GN
UT WOS:000267570800010
ER
PT J
AU Avraham, O
Hadas, Y
Vald, L
Zisman, S
Schejter, A
Visel, A
Klar, A
AF Avraham, Oshri
Hadas, Yoav
Vald, Lilach
Zisman, Sophie
Schejter, Adi
Visel, Axel
Klar, Avihu
TI Transcriptional control of axonal guidance and sorting in dorsal
interneurons by the Lim-HD proteins Lhx9 and Lhx1
SO NEURAL DEVELOPMENT
LA English
DT Article
ID SPINAL-CORD INTERNEURONS; MOTOR-NEURON; COMMISSURAL AXONS; FLOOR PLATE;
NERVOUS-SYSTEM; HOMEOBOX GENES; IDENTITY; SPECIFICATION; PROJECTIONS;
GENERATION
AB Background: Lim-HD proteins control crucial aspects of neuronal differentiation, including subtype identity and axonal guidance. The Lim-HD proteins Lhx2/9 and Lhx1/5 are expressed in the dorsal spinal interneuron populations dI1 and dI2, respectively. While they are not required for cell fate acquisition, their role in patterning the axonal trajectory of dI1 and dI2 neurons remains incompletely understood.
Results: Using newly identified dI1-and dI2-specific enhancers to trace axonal trajectories originating from these interneurons, we found that each population is subdivided into several distinct groups according to their axonal pathways. dI1 neurons project axons rostrally, either ipsior contra-laterally, while dI2 are mostly commissural neurons that project their axons rostrally and caudally. The longitudinal axonal tracks of each neuronal population self-fasciculate to form dI1-and dI2-specific bundles. The dI1 bundles are spatially located ventral relative to dI2 bundles. To examine the functional contribution of Lim-HD proteins to establishment of dI axonal projections, the Lim-HD code of dI neurons was altered by cell-specific ectopic expression. Expression of Lhx1 in dI1 neurons caused a repression of Lhx2/9 and imposed caudal projection to the caudal commissural dI1 neurons. Complementarily, when expressed in dI2 neurons, Lhx9 repressed Lhx1/5 and triggered a bias toward rostral projection in otherwise caudally projecting dI2 neurons, and ventral shift of the longitudinal axonal fascicule.
Conclusion: The Lim-HD proteins Lhx9 and Lhx1 serve as a binary switch in controlling the rostral versus caudal longitudinal turning of the caudal commissural axons. Lhx1 determines caudal turning and Lhx9 triggers rostral turning.
C1 [Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Zisman, Sophie; Schejter, Adi; Klar, Avihu] Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Med Neurobiol, IMRIC, IL-91010 Jerusalem, Israel.
[Visel, Axel] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA.
RP Klar, A (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Med Neurobiol, IMRIC, IL-91010 Jerusalem, Israel.
EM oshria@ekmd.huji.ac.il; yoavh@ekmd.huji.ac.il; lilachvald@gmail.com;
sophie.zisman@mail.huji.ac.il; aschejter@gmail.com; avisel@lbl.gov;
avihu@cc.huji.ac.il
RI Visel, Axel/A-9398-2009
OI Visel, Axel/0000-0002-4130-7784
FU Israel Science Foundation; DFG (German Research Foundation); National
Human Genome Research Institute; National Institute for Neurological
Disorders and Stroke
FX The authors thank Thomas Jessell for Isl1, the Lhx1/5 monoclonal
antibody, and Lhx2/9 and Lhx1/5 rabbit antibodies and the Lhx2 and Lhx9
chick genes, Artur Kania for chick Lhx1 gene, and Len Pennacchio for
help with initial characterization of enhancers in mice. We are also
grateful to Artur Kania and Sara Wilson for comments on the manuscript.
This work was supported by grants to AK from the Israel Science
Foundation, and DFG (German Research Foundation). AV was supported by
grants from the National Human Genome Research Institute and from the
National Institute for Neurological Disorders and Stroke.
NR 44
TC 42
Z9 42
U1 0
U2 5
PU BIOMED CENTRAL LTD
PI LONDON
PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T
4LB, ENGLAND
SN 1749-8104
J9 NEURAL DEV
JI Neural Dev.
PD JUN 19
PY 2009
VL 4
AR 21
DI 10.1186/1749-8104-4-21
PG 22
WC Developmental Biology; Neurosciences
SC Developmental Biology; Neurosciences & Neurology
GA 475DY
UT WOS:000268339800001
PM 19545367
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Alvarez Gonzalez, B
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Barria, P
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Cuenca Almenar, C
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
Di Canto, A
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Garosi, P
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Ketchum, W
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
L