FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Phillips, CK Bell, RE Berry, LA Bonoli, PT Harvey, RW Hosea, JC Jaeger, EF LeBlanc, BP Ryan, PM Taylor, G Valeo, EJ Wilgen, JB Wilson, JR Wright, JC Yuh, H AF Phillips, C. K. Bell, R. E. Berry, L. A. Bonoli, P. T. Harvey, R. W. Hosea, J. C. Jaeger, E. F. LeBlanc, B. P. Ryan, P. M. Taylor, G. Valeo, E. J. Wilgen, J. B. Wilson, J. R. Wright, J. C. Yuh, H. CA NSTX Team TI Spectral effects on fast wave core heating and current drive SO NUCLEAR FUSION LA English DT Article ID PLASMA INTERACTIONS; NSTX; ANTENNA; HHFW AB Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L-mode and H-mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit radio frequency (rf) power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of HHFW CD were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations. C1 [Phillips, C. K.; Bell, R. E.; Hosea, J. C.; LeBlanc, B. P.; Taylor, G.; Valeo, E. J.; Wilson, J. R.] Princeton Univ, PPPL, Princeton, NJ 08540 USA. [Berry, L. A.; Jaeger, E. F.; Ryan, P. M.; Wilgen, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bonoli, P. T.; Wright, J. C.] MIT, PSFC, Cambridge, MA 02139 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08540 USA. RP Phillips, CK (reprint author), Princeton Univ, PPPL, Princeton, NJ 08540 USA. EM ckphillips@pppl.gov FU USDOE [DE-AC02-76CH03073] FX This work was supported by USDOE Contract No. DE-AC02-76CH03073. NR 27 TC 25 Z9 25 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2009 VL 49 IS 7 AR 075015 DI 10.1088/0029-5515/49/7/075015 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 469ZW UT WOS:000267942000015 ER PT J AU Umansky, MV Bulmer, RH Cohen, RH Rognlien, TD Ryutov, DD AF Umansky, M. V. Bulmer, R. H. Cohen, R. H. Rognlien, T. D. Ryutov, D. D. TI Analysis of geometric variations in high-power tokamak divertors SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; ITER; PLASMAS; PHYSICS AB Quantitative assessment of the performance of high-power tokamak divertors for a range of geometric variations is conducted using the MHD code Corsica (Crotinger et al 1997 Technical Report LLNL) and edge transport code UEDGE (Rognlien et al 1992 J. Nucl. Mater. 196-198 347). In a multi-parametric study the divertor performance is compared for a high-power tokamak with standard and snowflake (Ryutov 2007 Phys. Plasmas 14 064502) configurations for the same core plasma parameters. Divertor and edge quantities that are varied include x-point flux expansion, shape of target plates, and radiating impurity species and concentrations. For a range of studied cases, in the snowflake the peak heat load on the target plates is significantly reduced compared with the standard divertor due to larger plasma-wetted area and a larger fraction of power radiated in the edge. C1 [Umansky, M. V.; Bulmer, R. H.; Cohen, R. H.; Rognlien, T. D.; Ryutov, D. D.] LLNL, Livermore, CA 94550 USA. RP Umansky, MV (reprint author), LLNL, Livermore, CA 94550 USA. EM umansky1@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 29 TC 28 Z9 28 U1 1 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2009 VL 49 IS 7 AR 075005 DI 10.1088/0029-5515/49/7/075005 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 469ZW UT WOS:000267942000005 ER PT J AU Blazey, G Chakraborty, D Dyshkant, A Francis, K Hedin, D Hill, J Lima, G Powell, J Salcido, P Zutshi, V Demarteau, M Rubinov, P Pohlman, N AF Blazey, G. Chakraborty, D. Dyshkant, A. Francis, K. Hedin, D. Hill, J. Lima, G. Powell, J. Salcido, P. Zutshi, V. Demarteau, M. Rubinov, P. Pohlman, N. TI Directly coupled tiles as elements of a scintillator calorimeter with MPPC readout SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator; Calorimeter; Direct coupling; MPPC; Integrated readout layer AB We present results on the direct, i.e. fiberless coupling of scintillator tiles to Multi-pixel Photon Counters (MPPC). The fiberless option has the potential of simplifying the assembly and construction of a finely segmented scintillator-based calorimeter with MPPC readout. In this paper we show detailed studies on the response and uniformity of directly coupled tiles and describe our concept for an integrated readout layer (IRL). (C) 2009 Elsevier B.V. All rights reserved. C1 [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Francis, K.; Hedin, D.; Hill, J.; Lima, G.; Powell, J.; Salcido, P.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Demarteau, M.; Rubinov, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Pohlman, N.] No Illinois Univ, Dept Engn, De Kalb, IL USA. RP Zutshi, V (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL USA. EM zutshi@fnal.gov OI Hedin, David/0000-0001-9984-215X; Blazey, Gerald/0000-0002-7435-5758 NR 3 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 277 EP 281 DI 10.1016/j.nima.2009.03.253 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000007 ER PT J AU Curioni, A Fleming, BT Jaskierny, W Kendziora, C Krider, J Pordes, S Soderberg, M Spitz, J Tope, T Wongjirad, T AF Curioni, A. Fleming, B. T. Jaskierny, W. Kendziora, C. Krider, J. Pordes, S. Soderberg, M. Spitz, J. Tope, T. Wongjirad, T. TI A regenerable filter for liquid argon purification SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Liquid argon; Purity; Neutrino; Oscillation; LArTPC ID TIME PROJECTION CHAMBER; DETECTOR AB A filter system for removing electronegative impurities from liquid argon is described. The active components of the filter are adsorbing molecular sieve and activated-copper-coated alumina granules. The system is capable of purifying liquid argon to an oxygen-equivalent impurity concentration of better than 30 parts per trillion, corresponding to an electron drift lifetime of at least 10 ms. Reduction reactions that occur at similar to 250 degrees C allow the filter material to be regenerated in situ through a simple procedure. In the following work we describe the filter design, performance, and regeneration process. (C) 2009 Elsevier B.V. All rights reserved. C1 [Curioni, A.; Fleming, B. T.; Soderberg, M.; Spitz, J.; Wongjirad, T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Tope, T.] Fermilab Natl Accelerator Lab, Particle Phys Div, Chicago, IL USA. RP Spitz, J (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. EM joshua.spitz@yale.edu OI Spitz, Joshua/0000-0002-6288-7028 FU Department of Energy; Advanced Detector Research Program; National Science Foundation FX The electronics and data-acquisition system for the TPC at FNAL were designed and built by D. Edmunds and P. Laurens of Michigan State University. The Yale group acknowledges essential help from N. Canci and F. Ameodo of LNGS, in the initial work on LAr purification; S. Centro, S. Ventura, B. Baibussinov and the ICARUS group at INFN Padova, for the readout electronics, software for DAQ and event display; L. Bartoszek of Bartoszek Engineering. This work is supported by the Department of Energy through FNAL and the Advanced Detector Research Program, and through the National Science Foundation. NR 16 TC 17 Z9 17 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 306 EP 311 DI 10.1016/j.nima.2009.04.020 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000011 ER PT J AU Battaglia, M Contarato, D Denes, P Doering, D Radmilovic, V AF Battaglia, Marco Contarato, Devis Denes, Peter Doering, Dionisio Radmilovic, Velimir TI CMOS pixel sensor response to low energy electrons in transmission electron microscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monolithic active pixel sensor; Transmission electron microscopy ID SIMULATION; ILC AB This letter presents the results of a study of the response of a test CMOS sensor with a radiation tolerant pixel cell design to 80 and 100 keV electrons. The point spread function is measured to be (13.0 +/- 1.7) gm at 100 keV and (12.1 +/- 1.6) mu m at 80 keV, for 20 mu m pixels. Results agree well with values predicted by a Geant-4 and dedicated charge collection simulation. Published by Elsevier B.V. C1 [Battaglia, Marco; Contarato, Devis; Denes, Peter; Doering, Dionisio; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Battaglia, Marco] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Battaglia, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM MBattaglia@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX We wish to thank Thomas Duden, Rolf Erni and Zhongoon Lee. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 9 TC 9 Z9 9 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 350 EP 352 DI 10.1016/j.nima.2009.03.249 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000017 ER PT J AU Hong, J Allen, B Grindlay, J Chammas, N Barthelemy, S Baker, R Gehrels, N Nelson, KE Labov, S Collins, J Cook, WR McLean, R Harrison, F AF Hong, J. Allen, B. Grindlay, J. Chammas, N. Barthelemy, S. Baker, R. Gehrels, N. Nelson, K. E. Labov, S. Collins, J. Cook, W. R. McLean, R. Harrison, F. TI Building large area CZT imaging detectors for a wide-field hard X-ray telescope-ProtoEXIST1 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE X-ray imaging; CZT AB We have constructed a moderately large area (32 cm(2)), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256 cm(2)) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2 cm x 2 cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512 cm(2)) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5 m(2) area) required in EXIST/HET. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Barthelemy, S.; Baker, R.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nelson, K. E.; Labov, S.; Collins, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cook, W. R.; McLean, R.; Harrison, F.] CALTECH, Pasadena, CA 91125 USA. RP Hong, J (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jaesub@head.cfa.harvard.edu RI Gehrels, Neil/D-2971-2012 FU NASA APRA [NNG06WC12G]; US Department of Energy [DE-AC52-07NA27344] FX This work is supported in part by NASA APRA Grant NNG06WC12G. Portions of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 9 TC 18 Z9 21 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 364 EP 373 DI 10.1016/j.nima.2009.04.004 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000020 ER PT J AU Wang, ZH Morris, CL Makela, MF Bacon, JD Baer, EE Brockwell, MI Brooks, BJ Clark, DJ Green, JA Greene, SJ Hogan, GE Langan, R Murray, MM Pazuchanics, FE Phelps, MP Ramsey, JC Reimus, NP Roybal, JD Saltus, A Saltus, M Shimada, R Spaulding, RJ Wood, JG Wysocki, FJ AF Wang, Zhehui Morris, C. L. Makela, M. F. Bacon, J. D. Baer, E. E. Brockwell, M. I. Brooks, B. J. Clark, D. J. Green, J. A. Greene, S. J. Hogan, G. E. Langan, R. Murray, M. M. Pazuchanics, F. E. Phelps, M. P. Ramsey, J. C. Reimus, N. P. Roybal, J. D. Saltus, A. Saltus, M. Shimada, R. Spaulding, R. J. Wood, J. G. Wysocki, F. J. TI Inexpensive and practical sealed drift-tube neutron detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Sealed drift tubes; Neutron detection efficiency; Detector lifetime; Gain drift; Diurnal oscillation AB The design, construction, and performance of a type of sealed (3)He drift tubes for neutron detection are presented. Because the 3He pressure is in the 25-300 mbar range, the detector costs are not dominated by the (3)He gas. Intrinsic neutron detection efficiencies up to 5% have been observed by using high-density polyethylene moderation. Sensitive measurements of the detector lifetime are achieved by monitoring the full-energy peak of the (3)He(n, p)(3)H reaction as a function of time. The neutron peak position shows a 24-h cycle that may be explained by the physical adsorption of gases onto the wall. The estimated lifetimes of the detectors are sufficiently long and therefore, the design and the construction are robust and practical for applications such as fissile material detection. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wang, Zhehui; Morris, C. L.; Makela, M. F.; Bacon, J. D.; Baer, E. E.; Brockwell, M. I.; Brooks, B. J.; Clark, D. J.; Green, J. A.; Greene, S. J.; Hogan, G. E.; Langan, R.; Murray, M. M.; Pazuchanics, F. E.; Phelps, M. P.; Ramsey, J. C.; Reimus, N. P.; Roybal, J. D.; Shimada, R.; Spaulding, R. J.; Wood, J. G.; Wysocki, F. J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. [Saltus, A.; Saltus, M.] Decis Sci Corp, San Diego, CA 92123 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, Div Phys, Grp P-25 Mail Stop H846, Los Alamos, NM 87544 USA. EM zwang@lanl.gov OI Makela, Mark/0000-0003-0592-3683; Morris, Christopher/0000-0003-2141-0255 FU Defense Threat Reduction Agency (DTRA); Department of Defense and a CRADA agreement between LANL and Decision Sciences Corp FX This work has been supported in part by the Defense Threat Reduction Agency (DTRA) of the Department of Defense and a CRADA agreement between LANL and Decision Sciences Corp. NR 9 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 430 EP 432 DI 10.1016/j.nima.2009.03.251 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000026 ER PT J AU Ferrer, RM Azmy, YY AF Ferrer, R. M. Azmy, Y. Y. TI Error Analysis of the Nodal Integral Method for Solving the Neutron Diffusion Equation in Two-Dimensional Cartesian Geometry SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB An error analysis is performed for the nodal integral method (NIM) applied to the one-speed, steady-state neutron diffusion equation in two-dimensional Cartesian geometry. The geometric configuration of the problem employed in the analysis consists of a homogeneous-material unit square with Dirichlet boundary conditions on all four sides. The NIM equations comprise three sets of equations: (a) one neutron balance equation per computational cell, (b) one current continuity condition per internal x const computational cell edge, and (c) one current continuity condition per internal y = const computational cell edge. A Maximum Principle is proved for the solution of the NIM equations, followed by an error analysis achieved by applying the Maximum Principle to a carefully constructed mesh function driven by the truncation error or residual. The error analysis establishes the convergence of the NIM solution to the exact solution if the latter is twice differentiable. Furthermore, if the exact solution is four times differentiable, the NIM solution error is bounded by an 0(a 2) expression involving bounds on the exact solution's fourth partial derivatives, where a is half the scaled length of a computational cell. Numerical experiments are presented whose results successfully verify the conclusions of the error analysis. C1 [Ferrer, R. M.; Azmy, Y. Y.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. RP Ferrer, RM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM rodolfo.ferrer@inl.gov NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2009 VL 162 IS 3 BP 215 EP 233 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 465WX UT WOS:000267621400001 ER PT J AU Rosa, M Azmy, YY Morel, JE AF Rosa, Massimiliano Azmy, Yousry Y. Morel, Jim E. TI Properties of the S-N-Equivalent Integral Transport Operator in Slab Geometry and the Iterative Acceleration of Neutral Particle Transport Methods SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID DIFFUSION-SYNTHETIC ACCELERATION; ASYMPTOTIC SOLUTIONS; INHOMOGENEOUS-MEDIA; OPTICALLY THICK; REGIMES AB General expressions for the matrix elements of the discrete S-N-equivalent integral transport operator are derived in slab geometry. Their asymptotic behavior versus cell optical thickness is investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in the thick-cell limit for a highly scattering medium shows that the discretized integral transport operator approaches a tridiagonal matrix possessing a diffusion-like coupling stencil. It is further shown that this structure is approached at a fast exponential rate with increasing cell thickness when the arbitrarily high order transport method of the nodal type and zero-order spatial approximation (AHOT-NO) formalism is employed to effect the spatial discretization of the discrete ordinates transport operator. In the case of periodically heterogeneous slab configurations, the asymptotic behavior is realized by pushing apart the cells' optical thicknesses; i.e., the thick cells are made thicker while the thin cells are made thinner at a prescribed rate. We show that in this limit the discretized integral transport operator is approximated by a pentadiagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tridiagonal structure at a fast exponential rate bearing close resemblance to the diffusive operator. The results of the asymptotic analysis of the integral transport matrix are then used to gain insight into the excellent convergence properties of the adjacent-cell preconditioner (AP) acceleration scheme. Specifically, the AP operator exactly captures the asymptotic structure acquired by the integral transport matrix in the thick-cell limit for homogeneous slabs of pure-scatterer or partial-scatterer material, and for periodically heterogeneous slabs hosting purely scattering materials. In the above limits the integral transport matrix reduces to a diffusive structure consistent with the diffusive matrix template used to construct the AP. In the case of periodically heterogeneous slabs containing absorbing materials, the AP operator partially captures the asymptotic structure acquired by the integral transport matrix. The inexact agreement is due either to discrepancies in the equations for the boundary cells or to the nondiffusive structure acquired by the integral transport matrix. These findings shed light on the immediate convergence, i.e., convergence in two iterations, displayed by the AP acceleration scheme in the asymptotic limit for slabs hosting purely scattering materials, both in the homogeneous and periodically heterogeneous cases. For periodically heterogeneous slabs containing absorbing materials, immediate convergence is achieved by modifying the original recipe for constructing the AP so that the correct asymptotic structure of the integral transport matrix coincides with the AP operator in the asymptotic limit. C1 [Rosa, Massimiliano] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Azmy, Yousry Y.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Morel, Jim E.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Rosa, M (reprint author), Los Alamos Natl Lab, POB 1663,MS K784, Los Alamos, NM 87545 USA. EM maxrosa@lanl.gov FU U.S. Government [DE-AC52-06NA25396] FX This research was performed under U.S. Government contract DE-AC52-06NA25396 for Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy. The first author performed this work in partial satisfaction of the requirements for the PhD degree at The Pennsylvania State University. NR 20 TC 2 Z9 2 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2009 VL 162 IS 3 BP 234 EP 252 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 465WX UT WOS:000267621400002 ER PT J AU Sanchez, R Bounds, J Hayes, D Grove, T Tovesson, F AF Sanchez, Rene Bounds, John Hayes, David Grove, Travis Tovesson, Fredrik TI Measurement of the Thermal Absorption Cross Section in Lucite Using Fermi Age Theory SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB The diffusion processes of neutrons in Lucite have been investigated. The mechanisms for these processes have been described as having two steps. In the first step, the fast neutrons collide with the nuclei of Lucite, losing energy until they reach thermal energies. In the second step of the diffusion process, the thermal neutrons continue to diffuse through the Lucite without any significant loss of energy until they are finally absorbed or leak out of the system. Experiments were performed to study these two processes and to estimate the absorption cross section in Lucite. The experiments yielded an average range of 63 +/- 0.1 cm for fast neutrons slowing down to thermal energies and a thermal absorption cross section in Lucite of 0.52 +/- 0.02 b. C1 [Sanchez, Rene; Bounds, John; Hayes, David; Grove, Travis; Tovesson, Fredrik] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sanchez, R (reprint author), Los Alamos Natl Lab, MS-B228, Los Alamos, NM 87545 USA. EM rsanchez@lanl.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2009 VL 162 IS 3 BP 253 EP 260 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 465WX UT WOS:000267621400003 ER PT J AU Brown, NR Oh, S Revankar, ST Vierow, K Rodriguez, S Cole, R Gauntt, R AF Brown, Nicholas R. Oh, Seungmin Revankar, Shripad T. Vierow, Karen Rodriguez, Salvador Cole, Randall, Jr. Gauntt, Randall TI SIMULATION OF SULFUR-IODINE THERMOCHEMICAL HYDROGEN PRODUCTION PLANT COUPLED TO HIGH-TEMPERATURE HEAT SOURCE SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div DE thermochemical hydrogen generation; sulfur-iodine cycle; HTGR ID CYCLE AB The sulfur-iodine (SI) cycle is one of the leading candidates in thermochemical processes for hydrogen production. In this paper a simplified model for the SI cycle is developed with chemical kinetics models of the three main SI reactions: the Bunsen reaction, sulfuric acid decomposition, and hydriodic acid decomposition. Each reaction was modeled with a single control volume reaction chamber. The simplified model uses basic heat and mass balance for each of the main three reactions. For sulfuric acid decomposition and hydriodic acid decomposition, reaction heat, latent heat, and sensible heat were considered Since the Bunsen reaction is exothermic and its overall energy contribution is small, its heat energy is neglected. However, the input and output streams from the Bunsen reaction are accounted for in balancing the total stream mass flow rates from the SI cycle. The heat transfer between the reactor coolant (in this case helium) and the chemical reaction chamber was modeled with transient energy balance equations. The steady-state and transient behavior of the coupled system is studied with the model, and the results of the study are presented. It was determined from the study that the hydriodic acid decomposition step is the rate-limiting step of the entire SI cycle. C1 [Brown, Nicholas R.; Oh, Seungmin; Revankar, Shripad T.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Vierow, Karen] Texas A&M Univ, Dept Nucl Engn, Zachry Engn Ctr 129, College Stn, TX 77843 USA. [Rodriguez, Salvador; Cole, Randall, Jr.; Gauntt, Randall] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Revankar, ST (reprint author), Purdue Univ, Sch Nucl Engn, 400 Cent Dr, W Lafayette, IN 47907 USA. EM shripad@ecn.purdue.edu NR 10 TC 5 Z9 5 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2009 VL 167 IS 1 BP 95 EP 106 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 463CN UT WOS:000267406300010 ER PT J AU Oh, CH Park, GC Davis, C AF Oh, Chang H. Park, Goon C. Davis, Cliff TI RCCS EXPERIMENTS AND VALIDATION FOR HIGH-TEMPERATURE GAS-COOLED REACTOR SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div DE experiment; reactor cavity cooling for HTGR; validation AB An air-cooled helical coil reactor cavity cooling system (RCCS) unit immersed in the water pool was proposed to overcome the disadvantages of the weak cooling ability of an air-cooled RCCS and the complex structure of a water-cooled RCCS for the high-temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool-type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool, and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RE-LAP5 code was validated using measured temperatures from the reactor vessel and cavity walls. C1 [Oh, Chang H.; Davis, Cliff] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Park, Goon C.] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea. RP Oh, CH (reprint author), Idaho Natl Lab, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM Chang.Oh@inl.gov NR 17 TC 0 Z9 0 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2009 VL 167 IS 1 BP 107 EP 117 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 463CN UT WOS:000267406300011 ER PT J AU Rempe, JL Knudson, DL Condie, KG Crepeau, JC Daw, JE Wilkins, SC AF Rempe, Joy L. Knudson, Darrell L. Condie, Keith G. Crepeau, John C. Daw, Joshua E. Wilkins, S. Curtis TI OPTIONS EXTENDING THE APPLICABILITY OF HIGH-TEMPERATURE IRRADIATION-RESISTANT THERMOCOUPLES SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div DE in-pile instrumentation; high-temperature thermocouples AB Several options have been identified that could further enhance the reliability and extend the applicability of high-temperature irradiation-resistant thermocouples (HTIR-TCs) developed by the Idaho National Laboratory (INL) for in-pile testing, allowing their use in temperature applications as high as 1800 degrees C. The INL and the University of Idaho (UI) investigated these options with the ultimate objective of providing recommendations for alternate thermocouple designs that are optimized for various applications. This paper reports results from INL/UI investigations. Results are reported from tests completed to evaluate the ductility, resolution, transient response, and stability of thermocouples made from specially formulated alloys of molybdenum and niobium, not considered in initial HTIR-TC development. In addition, this paper reports insights gained by comparing the performance of HTIR-TCs fabricated with various heat treatments and alternate geometries. C1 [Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Crepeau, John C.; Daw, Joshua E.] Univ Idaho, Idaho Falls, ID 83402 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 9 TC 6 Z9 6 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2009 VL 167 IS 1 BP 169 EP 177 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 463CN UT WOS:000267406300016 ER PT J AU Schultz, AK Zhang, M Bulla, I Leitner, T Korber, B Morgenstern, B Stanke, M AF Schultz, Anne-Kathrin Zhang, Ming Bulla, Ingo Leitner, Thomas Korber, Bette Morgenstern, Burkhard Stanke, Mario TI jpHMM: Improving the reliability of recombination prediction in HIV-1 SO NUCLEIC ACIDS RESEARCH LA English DT Article ID MULTIPLE ALIGNMENTS; SEQUENCES; GENOMES; TOPALI; VIRUS AB Previously, we developed jumping profile hidden Markov model (jpHMM), a new method to detect recombinations in HIV-1 genomes. The jpHMM predicts recombination breakpoints in a query sequence and assigns to each position of the sequence one of the major HIV-1 subtypes. Since incorrect subtype assignment or recombination prediction may lead to wrong conclusions in epidemiological or vaccine research, information about the reliability of the predicted parental subtypes and breakpoint positions is valuable. For this reason, we extended the output of jpHMM to include such information in terms of 'uncertainty' regions in the recombination prediction and an interval estimate of the breakpoint. Both types of information are computed based on the posterior probabilities of the subtypes at each query sequence position. Our results show that this extension strongly improves the reliability of the jpHMM recombination prediction. The jpHMM is available online at http://jphmm.gobics.de/. C1 [Schultz, Anne-Kathrin; Bulla, Ingo; Morgenstern, Burkhard; Stanke, Mario] Univ Gottingen, Abt Bioinformat, Inst Mikrobiol & Genet, D-37077 Gottingen, Germany. [Zhang, Ming; Leitner, Thomas; Korber, Bette] Los Alamos Natl Lab, T6, Los Alamos, NM 87545 USA. [Zhang, Ming] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Stanke, M (reprint author), Univ Gottingen, Abt Bioinformat, Inst Mikrobiol & Genet, Goldschmidtstr 1, D-37077 Gottingen, Germany. EM mstanke@gwdg.de RI Morgenstern, Burkhard/A-7486-2008; OI Korber, Bette/0000-0002-2026-5757; Schultz, Anne-Kathrin/0000-0002-0963-4275 FU DFG [STA 1009/4-1, STA 1009/5-1]; NIHDOE Interagency Agreement [Y1-AI-8309] FX DFG (grants STA 1009/4-1 and STA 1009/5-1); NIHDOE Interagency Agreement Y1-AI-8309. Funding for open access charge: Deptartment of Bioinformatics, Georg-August-Universitat Gottingen. NR 15 TC 49 Z9 49 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2009 VL 37 BP W647 EP W651 DI 10.1093/nar/gkp371 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469IG UT WOS:000267889100111 PM 19443440 ER PT J AU Baboulin, M Dongarra, J Gratton, S Langou, J AF Baboulin, Marc Dongarra, Jack Gratton, Serge Langou, Julien TI Computing the conditioning of the components of a linear least-squares solution SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Article DE linear least squares; statistical linear least squares; parameter estimation; condition number; variance-covariance matrix; LAPACK; ScaLAPACK AB In this paper, we address the accuracy of the results for the overdetermined full rank linear least-squares problem. We recall theoretical results obtained in (SIAM J Matrix Anal. Appl. 2007; 29(2):413-433) on conditioning of the least-squares solution and the components of the solution when the matrix perturbations are measured in Frobenius or spectral norms. Then we define computable estimates for these condition numbers and we interpret them in terms of statistical quantities when the regression matrix and the right-hand side are perturbed. In particular, we show that in the classical linear statistical model, the ratio of the variance of one component of the solution by the variance of the fight-hand side is exactly the condition number of this solution component when only perturbations on the right-hand side are considered. We explain how to compute the variance-covariance matrix and the least-squares conditioning using the libraries LAPACK (LAPACK Users' Guide (3rd edn). SIAM: Philadelphia, 1999) and ScaLAPACK (ScaLAPACK Users' Guide. SIAM: Philadelphia, 1997) and we give the corresponding computational cost. Finally we present a small historical numerical example that was used by Laplace (Theorie Analytique des Probabilites. Mme Ve Courcier, 1820; 497-530) for computing the mass of Jupiter and a physical application if the area of space geodesy. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Baboulin, Marc] Univ Coimbra, Dept Math, Coimbra, Portugal. [Baboulin, Marc; Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Manchester, Lancs, England. [Gratton, Serge] Ctr Natl Etud Spatiales, F-31055 Toulouse, France. [Gratton, Serge] CERFACS, F-31057 Toulouse, France. [Langou, Julien] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80202 USA. RP Baboulin, M (reprint author), Univ Coimbra, Dept Math, Coimbra, Portugal. EM baboulin@mat.uc.pt RI Langou, Julien/G-5788-2013; Dongarra, Jack/E-3987-2014 NR 24 TC 11 Z9 12 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1070-5325 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD JUL PY 2009 VL 16 IS 7 BP 517 EP 533 DI 10.1002/nla.627 PG 17 WC Mathematics, Applied; Mathematics SC Mathematics GA 470EY UT WOS:000267959200001 ER PT J AU Iannelli, M Kostova, T Milner, FA AF Iannelli, Mimmo Kostova, Tanya Milner, Fabio Augusto TI A Fourth-Order Method for Numerical Integration of Age- and Size-Structured Population Models SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE finite differences; quadratures; size-structured equations ID APPROXIMATION; EQUATIONS AB In many applications of age- and size-structured Population models, there is an interest in obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Because quadratures can be designed with any order of accuracy, one can obtain numerical approximations of the solutions with very fast convergence. In this article, we present a general framework and a specific example of a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population model. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 918-930, 2009 C1 [Milner, Fabio Augusto] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. [Kostova, Tanya] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Iannelli, Mimmo] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy. RP Milner, FA (reprint author), Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA. EM milner@purdue.edu FU National Science Foundation [DMS-0314575] FX Contract grant sponsor: National Science Foundation; contract grant number: DMS-0314575 NR 15 TC 10 Z9 10 U1 0 U2 3 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0749-159X J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD JUL PY 2009 VL 25 IS 4 BP 918 EP 930 DI 10.1002/num.20381 PG 13 WC Mathematics, Applied SC Mathematics GA 458XY UT WOS:000267064100010 ER PT J AU Williams, PT Hoffman, KM AF Williams, Paul T. Hoffman, Kathryn M. TI Optimal Body Weight for the Prevention of Coronary Heart Disease in Normal-weight Physically Active Men SO OBESITY LA English DT Article ID MIDDLE-AGED MEN; MASS INDEX; FOLLOW-UP; CARDIOVASCULAR-DISEASE; RISK-FACTORS; MORTALITY; OBESITY; WOMEN; ADIPOSITY; RUNNERS AB Although 36% of US men are normal weight (BMI <25 kg/m(2)), the health benefits of greater leanness in normal-weight individuals are seldom acknowledged. To assess the optimal body weight with respect to minimizing coronary heart disease (CHD) risk, we applied Cox proportional hazard analyses of 20,525 nonsmoking, nondiabetic, normal-weight men followed prospectively for 7.7 years, including 20,301 who provided follow-up questionnaires. Two-hundred and forty two men reported coronary artery bypass graph (CABG) or percutaneous transluminal coronary angioplasty (PTCA) and 82 reported physician-diagnosed incident myocardial infarction (267 total). The National Death Index identified 40 additional ischemic heart disease deaths. In these normal-weight men, each kg/m(2) decrement in baseline BMI was associated with 11.2% lower risk for total CHD (P = 0.005), 13.2% lower risk for nonfatal CHD (P = 0.002), 19.0% lower risk for nonfatal myocardial infarction (P = 0.01), and 12.2% lower risk for PTCA or CABG (P = 0.007). Compared to men with BMI between 22.5 and 25 kg/m(2), those < 22.5 kg/m(2) had 24.1% lower total CHD risk (P = 0.01), 27.9% lower nonfatal CHD risk (P = 0.01), 37.8% lower nonfatal myocardial infarction risk (P = 0.05), and 27.8% lower PTCA or CABG risk (P = 0.02). In nonabdominally obese men (waist circumference < 102 cm), CHD risk declined linearly with declining waist circumference. CHD risk was unrelated to change in waist circumference between 18 years old and baseline except as it contributed to baseline circumference. These results suggest that the optimal BMI for minimizing CHD risk lies somewhere < 22.5 kg/m(2), as suggested from our previous analyses of incident diabetes, hypertension, and hypercholesterolemia in these men. C1 [Williams, Paul T.; Hoffman, Kathryn M.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA USA. RP Williams, PT (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA USA. EM ptwilliams@lbl.gov FU National Heart Lung and Blood Institute [HL45652, HL072110]; National Institute of Diabetes and Digestive and Kidney Diseases; Institute of Aging [AG032004]; Department of Energy [DE-AC0376SF00098] FX This work was supported in part by grants HL45652 and HL072110 from the National Heart Lung and Blood Institute, DK066738 from the National Institute of Diabetes and Digestive and Kidney Diseases, and AG032004 from the Institute of Aging, and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC0376SF00098 to the University of California). NR 39 TC 8 Z9 8 U1 2 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1930-7381 J9 OBESITY JI Obesity PD JUL PY 2009 VL 17 IS 7 BP 1428 EP 1434 DI 10.1038/oby.2008.680 PG 7 WC Endocrinology & Metabolism; Nutrition & Dietetics SC Endocrinology & Metabolism; Nutrition & Dietetics GA 464CY UT WOS:000267483800022 PM 19553927 ER PT J AU Meyers, CA Schulz, AS AF Meyers, Carol A. Schulz, Andreas S. TI Integer equal flows SO OPERATIONS RESEARCH LETTERS LA English DT Article DE Network optimization; Equal flows; Computational complexity; Approximability ID NETWORK; ALGORITHMS AB The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R-1,R-..., R-l must carry equal flow. We show that this problem is effectively inapproximable, even if the cardinality of each set R-k is two. When e is fixed, it is solvable in polynomial time. (C) 2009 Elsevier B.V. All rights reserved. C1 [Meyers, Carol A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Schulz, Andreas S.] MIT, Cambridge, MA 02139 USA. RP Meyers, CA (reprint author), Lawrence Livermore Natl Lab, L-153,7000 East Ave, Livermore, CA 94550 USA. EM meyers14@llnl.gov; schulz@mit.edu FU LLNL [DE-AC52-07NA27344]; ONR [N00014-01208-1-0029]; [LLNL-JRNL-410584] FX The authors wish to thank Jim Orlin for several helpful discussions, including an observation that led to a strengthening of Theorem 3.2. The work of the first author was supported by LLNL under Contract DE-AC52-07NA27344; document number LLNL-JRNL-410584. The work of the second author was supported by ONR Grant N00014-01208-1-0029. NR 19 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6377 EI 1872-7468 J9 OPER RES LETT JI Oper. Res. Lett. PD JUL PY 2009 VL 37 IS 4 BP 245 EP 249 DI 10.1016/j.orl.2009.03.006 PG 5 WC Operations Research & Management Science SC Operations Research & Management Science GA 476HX UT WOS:000268431300004 ER PT J AU Lane, TW Pawate, A Lane, PD Lindquist, EA Kirton, ES Simmons, BA AF Lane, T. W. Pawate, A. Lane, P. D. Lindquist, E. A. Kirton, E. S. Simmons, B. A. TI DIGITAL TRANSCRIPTOMIC ANALYSIS OF SILICATE STARVATION INDUCED TRIACYLGLYCEROL FORMATION IN THE MARINE DIATOM THALASSIOSIRA PSEUDONANA. SO PHYCOLOGIA LA English DT Meeting Abstract C1 [Lane, T. W.; Pawate, A.; Lane, P. D.; Simmons, B. A.] Sandia Natl Labs, Livermore, CA 94551 USA. [Lindquist, E. A.; Kirton, E. S.] Joint Genome Inst, Walnut Creek, CA 94598 USA. EM twlane@sandia.gov RI Pawate, Ashtamurthy/B-6843-2008 OI Pawate, Ashtamurthy/0000-0002-0700-9871 NR 0 TC 0 Z9 0 U1 1 U2 3 PU INT PHYCOLOGICAL SOC PI LAWRENCE PA NEW BUSINESS OFFICE, PO BOX 1897, LAWRENCE, KS 66044-8897 USA SN 0031-8884 J9 PHYCOLOGIA JI Phycologia PD JUL PY 2009 VL 48 IS 4 MA 203 BP 71 EP 71 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 472JN UT WOS:000268126900204 ER PT J AU Wesolowski, DE Patta, YR Cima, MJ AF Wesolowski, D. E. Patta, Y. R. Cima, M. J. TI Conversion behavior comparison of TFA-MOD and non-fluorine solution-deposited YBCO films SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE High temperature superconductors; Densification; Coated conductors; Non-fluorine solution deposition ID DIPPING-PYROLYSIS PROCESS; SOL-GEL APPROACH; THIN-FILMS; METALORGANIC DEPOSITION; COATED CONDUCTORS; TRIFLUOROACETATE PRECURSORS; YBA2CU3O7-X FILMS; OXIDE-FILMS; KINETICS; GROWTH AB The densification behavior during conversion of YBa2Cu3O7-x (YBCO) films formed by the trifluoroacetate (TFA)-based metal-organic deposition (MOD) technique was compared to a non-fluorine oxycarbonatebased MOD process and nitrate-based polymer-assisted deposition (PAD). The critical current densities obtained in all processes exceeded 10(6) A/cm(2) in films at least 300 nm thick. Rapid densification of films was observed in all processes, beginning at 700 degrees C in the TFA and PAD processes and 650 degrees C in the oxycarbonate process. YBCO nucleation occurred shortly after densification began in all processes. Residual carbon measurements were performed using wavelength dispersive spectroscopy (WDS). Carbon persisted in films from all processes until after densification began, but it was reduced to background levels soon after YBCO nucleation. Film density and second phase morphology were controlled through adjustments to the ambient oxygen partial pressure. Morphological evidence of extensive transient liquid phase formation was observed in PAD films and is consistent with the densification and nucleation behavior. The common behavior between the PAD, oxycarbonate-MOD, and TFA-MOD processes suggests that a melt forms in all systems, but the extent of this melt varies. (c) 2009 Elsevier B.V. All rights reserved. C1 [Patta, Y. R.; Cima, M. J.] MIT, Cambridge, MA 02139 USA. [Wesolowski, D. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Patta, YR (reprint author), MIT, 77 Massachusetts Ave 12-011, Cambridge, MA 02139 USA. EM ypatta@mit.edu FU National Science Foundation [DMR 02-13282] FX This work made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award number DMR 02-13282. Special thanks to Nilanjan Chatterjee for the use of the Electron Microprobe Facility at MIT. This work was funded by Sumitomo Electric Industries. NR 37 TC 13 Z9 13 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD JUL 1 PY 2009 VL 469 IS 13 BP 766 EP 773 DI 10.1016/j.physc.2009.04.008 PG 8 WC Physics, Applied SC Physics GA 463DC UT WOS:000267408100018 ER PT J AU Lee, SY Teodorescu, R Wiegmann, P AF Lee, S. -Y. Teodorescu, R. Wiegmann, P. TI Shocks and finite-time singularities in Hele-Shaw flow SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Singular dynamics; Hydrodynamic instabilities; Stochastic growth ID INTERFACE DYNAMICS; PATTERN-FORMATION; LAPLACIAN GROWTH; BOUNDARY; SURFACE; FLUID AB Hele-Shaw flow at vanishing surface tension is ill-defined. in finite time, the flow develops cusp-like singularities. We show that this ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating into the Viscous fluid. The graph of shocks grows and branches. Velocity and pressure have finite discontinuities across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive weak solution in algebro-geometrical terms as an evolution of the Krichever-Boutroux complex curve. We study in detail the most generic (2, 3)-cusp singularity, which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions. Published by Elsevier B.V. C1 [Teodorescu, R.] Los Alamos Natl Lab, Ctr Nonlinear Studies & T4, Los Alamos, NM 87545 USA. [Lee, S. -Y.] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada. [Wiegmann, P.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Wiegmann, P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Teodorescu, R (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies & T4, Los Alamos, NM 87545 USA. EM razvan@lanl.gov NR 46 TC 8 Z9 8 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD JUL 1 PY 2009 VL 238 IS 14 BP 1113 EP 1128 DI 10.1016/j.physd.2009.03.016 PG 16 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 465JS UT WOS:000267580200002 ER PT J AU Holmstrom, E Bock, N Brannlund, J AF Holmstrom, Erik Bock, Nicolas Brannlund, Johan TI Modularity density of network community divisions SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Modularity; Modularity density; Network clusters; Network communities ID FINDING COMMUNITIES AB The problem of dividing a network into communities is extremely complex and grows very rapidly with the number of nodes and edges that are involved. In order to develop good algorithms to identify optimal community divisions it is extremely beneficial to identify properties that are similar for most networks. We introduce the concept of modularity density, the distribution of modularity Values as a function of the number of communities, and find strong indications that the general features of this modularity density are quite similar for different networks. The region of high modularity generally has very low probability density and Occurs where the number of communities is small. The properties and shape of the modularity density may give valuable information and aid in the search for efficient algorithms to find community divisions with high modularities. (C) 2009 Elsevier B.V. All rights reserved. C1 [Holmstrom, Erik] Univ Austral Chile, Inst Fis, Valdivia, Chile. [Holmstrom, Erik; Bock, Nicolas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Brannlund, Johan] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada. RP Holmstrom, E (reprint author), Univ Austral Chile, Inst Fis, Valdivia, Chile. EM erikh@lanl.gov RI Holmstrom, Erik/A-5308-2009 OI Holmstrom, Erik/0000-0002-1198-3861 NR 20 TC 3 Z9 3 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD JUL 1 PY 2009 VL 238 IS 14 BP 1161 EP 1167 DI 10.1016/j.physd.2009.03.015 PG 7 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 465JS UT WOS:000267580200006 ER PT J AU Liu, H Liu, YM Li, T Wang, SM Zhu, SN Zhang, X AF Liu, H. Liu, Y. M. Li, T. Wang, S. M. Zhu, S. N. Zhang, X. TI Coupled magnetic plasmons in metamaterials SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article ID SPLIT-RING RESONATORS; NEGATIVE REFRACTIVE-INDEX; MAGNETOINDUCTIVE WAVES; 2ND-HARMONIC GENERATION; DIFFRACTION LIMIT; HYBRIDIZATION; NANOPARTICLES; FREQUENCIES; DIMENSIONS; NANOWIRES AB Magnetic metamaterials consist of magnetic resonators smaller in size than their excitation wavelengths. Their unique electromagnetic properties were characterized by the effective media theory at the early stage. However, the effective media model does not take into account the interactions between magnetic elements; thus, the effective properties of bulk metamaterials are the result of the "averaged effect" of many uncoupled resonators. In recent years, it has been shown that the interaction between magnetic resonators could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of recent developments in magnetic plasmonics arising from the coupling effect in metamaterials. For the system composed of several identical magnetic resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a system comprising an infinite number of magnetic elements, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable magnetic metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Liu, H.; Li, T.; Wang, S. M.; Zhu, S. N.] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Liu, Y. M.; Zhang, X.] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liu, H (reprint author), Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. EM liuhui@nju.edu.cn RI Wang, Shih-Yuan/C-3889-2009; Liu, Yongmin/F-5322-2010; Zhang, Xiang/F-6905-2011 OI Wang, Shih-Yuan/0000-0002-1212-3484; FU National Natural Science Foundation of China [10604029, 10704036, 10874081]; National Key Projects for Basic Researches of China [2009CB930501, 2006CB921804, 2004CB619003] FX This work is supported by the National Natural Science Foundation of China (No. 10604029, No. 10704036 and No. 10874081), and by the National Key Projects for Basic Researches of China (No. 2009CB930501, No. 2006CB921804 and No. 2004CB619003). NR 81 TC 62 Z9 66 U1 1 U2 37 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD JUL PY 2009 VL 246 IS 7 BP 1397 EP 1406 DI 10.1002/pssb.200844414 PG 10 WC Physics, Condensed Matter SC Physics GA 479KV UT WOS:000268659100001 ER PT J AU Ruhl, E Hitchcock, AP Bozek, JD Tyliszczak, T Kilcoyne, ALD McIlroy, DN Knop-Gericke, A Dowben, PA AF Ruehl, E. Hitchcock, A. P. Bozek, J. D. Tyliszczak, T. Kilcoyne, A. L. D. McIlroy, D. N. Knop-Gericke, A. Dowben, P. A. TI Fission processes following core level excitation in closo-1,2-orthocarborane SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; RICH NEUTRON DETECTORS; BORON-CARBIDE DIODE; COULOMB EXPLOSION; DOUBLE PHOTOIONIZATION; SYNCHROTRON-RADIATION; HETEROJUNCTION DIODES; IONIC FRAGMENTATION; CHARGE SEPARATION; MASS-SPECTROMETRY AB Time-of-flight mass analysis with multi-stop coincidence detection was used to study the multi-cation ionic fragmentation of the closo carborane cage molecule closo-1,2-orthocarborane (C(2)B(10)H(12)) following inner-shell excitation in or above the B Is regime. Electron ion coincidence spectra reveal the cationic products which are formed after core level excitation. Distinct changes in fragmentation pattern are observed as a function of excitation energy. Photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy was used to study the dominant fission routes in the core level excitation regime. Series of ion pairs are identified, where asymmetric fission dominates, leading to ion pairs of different mass. Suitable fission and fragmentation mechanisms are discussed. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Ruehl, E.] Free Univ Berlin, D-14195 Berlin, Germany. [Hitchcock, A. P.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Bozek, J. D.] LCLS Project, Menlo Pk, CA 94025 USA. [Tyliszczak, T.; Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 91420 USA. [McIlroy, D. N.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Knop-Gericke, A.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Dowben, P. A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Dowben, P. A.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Ruhl, E (reprint author), Free Univ Berlin, Takustr 3, D-14195 Berlin, Germany. EM ruehl@chemie.fu-berlin.de RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; Kilcoyne, David/I-1465-2013 OI Bozek, John/0000-0001-7486-7238; FU Natural Sciences and Engineering Research Council of Canada; National Science Foundation [CHE-0415421, CHE-0650453]; Deutsche Forschungsgemeinschaft [RU 420/8-1]; Fonds der Chemischen Industrie; DoE; BESSY FX This work was financially supported by the Natural Sciences and Engineering Research Council of Canada, the National Science Foundation through grant CHE-0415421 and CHE-0650453, the Deutsche Forschungsgemeinschaft through grant RU 420/8-1, and the Fonds der Chemischen Industrie. We thank the staff of the Advanced Light Source (funded by DoE) and BESSY for their assistance. We thank Dr. Walter Braun (BESSY and Helmholtz-Centre Berlin for Materials and Energy) for his continuous encouragement and support of our work during the last decades. NR 67 TC 3 Z9 3 U1 1 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD JUL PY 2009 VL 246 IS 7 BP 1496 EP 1503 DI 10.1002/pssb.200945126 PG 8 WC Physics, Condensed Matter SC Physics GA 479KV UT WOS:000268659100013 ER PT J AU Kurzweil, Y Head-Gordon, M AF Kurzweil, Yair Head-Gordon, Martin TI Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics SO PHYSICAL REVIEW A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR CHAINS; SPECTROSCOPY; SYSTEMS AB We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force. C1 [Kurzweil, Yair] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kurzweil, Y (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 39 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 012509 DI 10.1103/PhysRevA.80.012509 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900087 ER PT J AU Rica, S Roberts, DC AF Rica, Sergio Roberts, David C. TI Induced interaction and crystallization of self-localized impurity fields in a Bose-Einstein condensate SO PHYSICAL REVIEW A LA English DT Article ID SUPERFLUID; TEMPERATURE; MIXTURES; CRYSTALS; BOSONS; SYSTEM AB We model the behavior of N classical impurity fields immersed in a larger Bose-Einstein condensate by N + 1 coupled nonlinear Schrodinger equations in one, two, and three space dimensions. We discuss the stability of the uniform miscible system and show the importance of surface tension for self-localization of the impurity fields. We derive analytically the attractive tail of the impurity-impurity interaction due to mediation by the underlying condensate. Assuming all impurity fields interact with the same strength, we explore numerically the resulting phase diagram, which contains four phases: (I) all fields are miscible; (II) the impurity fields are miscible with each other but phase separate from the condensate as a single bubble; (III) the localized impurity fields stay miscible with the condensate, but not with each other; and (IV) the impurity fields phase separate from the condensate and each other, forming a crystalline structure within a bubble. Thus, we show that a crystal can be constructed solely from superfluid components. Finally, we argue that the crystalline phases maintain their superfluid behavior, i.e., they possess a nonclassical rotational inertia, which - combined with lattice order-is a characteristic of supersolidity. C1 [Rica, Sergio] Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, UPMC Paris 06,CNRS, F-75005 Paris, France. [Rica, Sergio] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile. [Roberts, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roberts, David C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Rica, S (reprint author), Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, UPMC Paris 06,CNRS, 24 Rue Lhomond, F-75005 Paris, France. RI Rica, Sergio/G-9865-2011 FU Agence Nationale de la Recherche [ANR-08-SYSC-004] FX S. R. would like to thank the Center of Nonlinear Studies at Los Alamos National Laboratory for their hospitality where part of this work was done, and the Agence Nationale de la Recherche under Grant No. ANR-08-SYSC-004 (France). Similarly, D.C.R. is grateful to the Universidad de Chile and the Ecole Normale Superieure for facilitating collaboration on this work through their hospitality. NR 28 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013609 DI 10.1103/PhysRevA.80.013609 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900142 ER PT J AU Rohringer, N London, R AF Rohringer, Nina London, Richard TI Atomic inner-shell x-ray laser pumped by an x-ray free-electron laser SO PHYSICAL REVIEW A LA English DT Article ID RADIATION; COHERENT AB We discuss possibilities of pumping an atomic inner-shell x-ray laser with an x-ray free-electron laser (XFEL). Self-consistent gain calculations show that with the first available XFEL, the Linac Coherent Light Source at Stanford, it will become possible to produce subfemtosecond x-ray pulses at intensities reaching 6 X 10(16) W/cm(2). Small-signal gain calculations indicate that saturation of more than one lasing line is possible, resulting in temporally separated femtosecond x-ray pulses of different wavelengths. The presented lasing scheme creates broad capability for advancing the field of high-intensity ultrashort x-ray physics. C1 [Rohringer, Nina; London, Richard] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rohringer, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Rohringer, Nina/B-8030-2012; Rohringer, Nina/N-3238-2014 OI Rohringer, Nina/0000-0001-7905-3567 FU U. S. Department of Energy [DE-AC52-07NA27344]; LLNL FX Work supported by the U. S. Department of Energy under Contract No. DE-AC52-07NA27344; support from the Laboratory Directed Research and Development Program at LLNL is also acknowledged. NR 24 TC 21 Z9 21 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013809 DI 10.1103/PhysRevA.80.013809 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900162 ER PT J AU Tao, L McCurdy, CW Rescigno, TN AF Tao, Liang McCurdy, C. W. Rescigno, T. N. TI Grid-based methods for diatomic quantum scattering problems. II. Time-dependent treatment of single- and two-photon ionization of H-2(+) SO PHYSICAL REVIEW A LA English DT Article ID MULTIPHOTON IONIZATION AB The time-dependent Schrodinger equation for H-2(+) in a time-varying electromagnetic field is solved in the fixed-nuclei approximation using a previously developed finite-element discrete-variable representation in prolate spheroidal coordinates. Amplitudes for single-and two-photon ionization are obtained using the method of exterior complex scaling to effectively propagate the field-free solutions from the end of the radiation pulse to infinite times. Cross sections are presented for one- and two-photon ionization for both parallel and perpendicular polarizations of the photon field, as well as photoelectron angular distributions for two-photon ionization. C1 [Tao, Liang; McCurdy, C. W.; Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Tao, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences; NSF [PHY-0604628] FX This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences. C.W.M. acknowledges support from the NSF (Contract No. PHY-0604628). NR 11 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013402 DI 10.1103/PhysRevA.80.013402 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900115 ER PT J AU Zhang, M Gray, SK Rice, SA AF Zhang, Ming Gray, Stephen K. Rice, Stuart A. TI Quantum localization due to mirror plane symmetry SO PHYSICAL REVIEW A LA English DT Article ID FAST LYAPUNOV INDICATORS; PHASE-SPACE; INTRAMOLECULAR DYNAMICS; SYMPLECTIC INTEGRATORS; ORBITS; SCARS AB With suitably directed initial states, we show how the time-averaged density of an evolving wave packet localizes on a mirror plane. A classical analog of this behavior can sometimes be found with trajectories weighted according to a Wigner distribution of the initial quantum state. However, in the limit of strongly chaotic classical dynamics, no such classical analog exists and the quantum localization in the density tends to be stronger by a factor of 2. Two very different systems are used to illustrate this effect, one being a three-dimensional model for a lithium atom moving within a C(60) cage and the other being a two-dimensional double well problem. C1 [Zhang, Ming] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rice, Stuart A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Rice, Stuart A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Zhang, M (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. FU U. S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Joint Theory Institute; University of Chicago; Argonne National Laboratory FX We thank T. A. Witten and P. Guyot-Sionnest for helpful suggestions. The work at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We acknowledge support from the Joint Theory Institute, a University of Chicago and Argonne National Laboratory multidisciplinary research institution. NR 21 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 012107 DI 10.1103/PhysRevA.80.012107 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900038 ER PT J AU Zinner, NT Molmer, K Ozen, C Dean, DJ Langanke, K AF Zinner, N. T. Molmer, K. Oezen, C. Dean, D. J. Langanke, K. TI Shell-model Monte Carlo simulations of the BCS-BEC crossover in few-fermion systems SO PHYSICAL REVIEW A LA English DT Article ID GAS; ATOMS AB We study a trapped system of fermions with a zero-range two-body interaction using the shell- model Monte Carlo method, providing ab initio results for the low particle number limit where mean-field theory is not applicable. We present results for the N-body energies as function of interaction strength, particle number, and temperature. The subtle question of renormalization in a finite model space is addressed and the convergence of our method and its applicability across the BCS-BEC crossover is discussed. Our findings indicate that very good quantitative results can be obtained on the BCS side, whereas at unitarity and in the BEC regime the convergence is less clear. Comparison to N = 2 analytics at zero and finite temperature, and to other calculations in the literature for N > 2 show very good agreement. C1 [Zinner, N. T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Zinner, N. T.; Molmer, K.] Univ Aarhus, Dept Phys & Astron, Lundbeck Fdn Theoret Ctr Quantum Syst Res, DK-8000 Aarhus C, Denmark. [Oezen, C.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Oezen, C.; Langanke, K.] Helmholtzzentrum Schwerionenforsch, GSI Darmstadt, D-64259 Darmstadt, Germany. [Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Langanke, K.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. [Langanke, K.] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. RP Zinner, NT (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM zinner@phys.au.dk RI Ozen, Cem/C-6868-2016; OI Ozen, Cem/0000-0001-6388-9175; Dean, David/0000-0002-5688-703X FU Hemholtz Alliance Institute EMMI FX We thank the Hemholtz Alliance Institute EMMI for support. NR 31 TC 16 Z9 16 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013613 DI 10.1103/PhysRevA.80.013613 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900146 ER PT J AU Alloyeau, D Freitag, B Dag, S Wang, LW Kisielowski, C AF Alloyeau, D. Freitag, B. Dag, S. Wang, Lin W. Kisielowski, C. TI Atomic-resolution three-dimensional imaging of germanium self-interstitials near a surface: Aberration-corrected transmission electron microscopy SO PHYSICAL REVIEW B LA English DT Article DE elemental semiconductors; germanium; interstitials; transmission electron microscopy ID TOTAL-ENERGY CALCULATIONS; IRRADIATION-INDUCED DEFECTS; INTRINSIC POINT-DEFECTS; AUGMENTED-WAVE METHOD; AB-INITIO; MOLECULAR-DYNAMICS; BASIS-SET; SI; SEMICONDUCTORS; CRYSTALS AB We report the formation and direct observation of self-interstitials in surface proximity of an elemental semiconductor by exploiting subthreshold effects in a new generation of aberration-corrected transmission electron microscopes. We find that the germanium interstitial atoms reside close to hexagonal, tetragonal, and S-interstitial sites. Using phase-contrast microscopy, we demonstrate that the three-dimensional position of interstitial atoms can be determined from contrast analysis, with subnanometer precision along the electron-beam direction. Comparison with a first-principles study suggests a strong influence of the surface proximity or a positively charged interstitial. More generally, our investigation demonstrates that imaging of single atom can now be utilized to directly visualize single-defect formation and migration. These high-resolution electron microscopy studies are applicable to a wide range of materials since the reported noise level of the images even allows the detection of single-light atoms. C1 [Alloyeau, D.; Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Freitag, B.] FEI Co, NL-5600 KA Eindhoven, Netherlands. [Dag, S.; Wang, Lin W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Sci Comp Grp, Computat Res Div, Berkeley, CA 94720 USA. RP Alloyeau, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM alloyeau.damien@gmail.com; cfkisielowski@lbl.gov FU (U.S.) Department of Energy [AC0205CH11231, DE-AC02-05CH11231]; National Energy Research Scientific Computing Center FX We thank Frances Allen for her kind assistance in writing this manuscript. The authors acknowledge support from the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the (U.S.) Department of Energy, under Contract No. DE-AC0205CH11231. The TEAM project was supported by the (U.S.) Department of Energy, Office of Science, and Basic Energy Sciences. The detailed image analysis was supported by the Electron Microscopy of Soft Matter Program at Lawrence Berkeley National Laboratory and supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. The theoretical part of this work was supported by the DMSE/BES/SC of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. It uses the resources of the National Energy Research Scientific Computing Center. NR 38 TC 25 Z9 25 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014114 DI 10.1103/PhysRevB.80.014114 PG 6 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100040 ER PT J AU Aydiner, CC Bernier, JV Clausen, B Lienert, U Tome, CN Brown, DW AF Aydiner, C. C. Bernier, J. V. Clausen, B. Lienert, U. Tome, C. N. Brown, D. W. TI Evolution of stress in individual grains and twins in a magnesium alloy aggregate SO PHYSICAL REVIEW B LA English DT Article DE aggregates (materials); aggregation; grain size; internal stresses; magnesium alloys; shear deformation; synchrotron radiation; twinning; X-ray diffraction ID STRAIN EVOLUTION; DEFORMATION; BEHAVIOR; TEXTURE; METALS AB This is an in situ measurement of the full stress tensor and its evolution in a growing deformation twin and, simultaneously, in the grain where the twin forms. The combined information provides a detailed picture of the grain-twin interaction. The three-dimensional x-ray diffraction method using 80.7 keV synchrotron x rays allows us to in situ investigate a grain within the bulk of a magnesium alloy (AZ31) sample that is compressed to activate the {1012}<< 1011 >> tensile twin system. We observe that the stress state of the twin is drastically different from the one of the grain in which it is embedded. We analyze such result in terms of the shear transformation associated with twinning and the dimensional constraints imposed by the surrounding aggregate. C1 [Aydiner, C. C.; Tome, C. N.; Brown, D. W.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Bernier, J. V.] Lawrence Livermore Natl Lab, Engn Technol Div, Livermore, CA 94551 USA. [Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Lienert, U.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Aydiner, CC (reprint author), Bogazici Univ, Mech Eng Dept, TR-80815 Bebek, Turkey. EM can.aydiner@boun.edu.tr RI Tome, Carlos/D-5058-2013; Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Aydiner, Cahit/0000-0001-8256-6742 FU Office of Basic Energy Science (DOE) [FWP 06SCPE401]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Office of Basic Energy Science (DOE) through Project No. FWP 06SCPE401. The authors are indebted to A. Jain and S. R. Agnew of University of Virginia for their help in sample preparation. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 20 TC 66 Z9 66 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024113 DI 10.1103/PhysRevB.80.024113 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500031 ER PT J AU Bud'ko, SL Nandi, S Ni, N Thaler, A Kreyssig, A Kracher, A Yan, JQ Goldman, AI Canfield, PC AF Bud'ko, S. L. Nandi, S. Ni, N. Thaler, A. Kreyssig, A. Kracher, A. Yan, J. -Q. Goldman, A. I. Canfield, P. C. TI Structural phase transition in Ba(Fe0.973Cr0.027)(2)As-2 single crystals SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; chromium compounds; electrical resistivity; Hall effect; iron compounds; magnetic susceptibility; magnetic transition temperature; space groups; thermodynamics; X-ray diffraction AB We present thermodynamic, structural, and transport measurements on Ba(Fe0.973Cr0.027)(2)As-2 single crystals. All measurements reveal sharp anomalies at similar to 112 K. Single crystal x-ray diffraction identifies the structural transition as a first order, from the high-temperature tetragonal I4/mmm to the low-temperature orthorhombic Fmmm structure, in contrast to an earlier report. C1 [Bud'ko, S. L.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bud'ko, SL (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU U. S. Department of Energy; Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the U. S. Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We thank R. J. McQueeney for useful comments. S. L. B. and P. C. C. both acknowledge M. T. C. Apoo for providing important insight into this problem. NR 22 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014522 DI 10.1103/PhysRevB.80.014522 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100113 ER PT J AU Chembrolu, V Strachan, JP Yu, XW Tulapurkar, AA Tyliszczak, T Katine, JA Carey, MJ Stohr, J Acremann, Y AF Chembrolu, V. Strachan, J. P. Yu, X. W. Tulapurkar, A. A. Tyliszczak, T. Katine, J. A. Carey, M. J. Stoehr, J. Acremann, Y. TI Time-resolved x-ray imaging of magnetization dynamics in spin-transfer torque devices SO PHYSICAL REVIEW B LA English DT Article DE magnetic switching; magnetic thin films; magnetisation reversal; nanoelectronics; spin polarised transport; spin valves; vortices; X-ray imaging; X-ray microscopy ID POLARIZED CURRENT; CO/CU/CO PILLARS; DRIVEN; MULTILAYER; NANOMAGNET; EXCITATION; DEPENDENCE; REVERSAL AB Time-resolved x-ray imaging techniques have recently demonstrated the capability to probe the magnetic switching of nanoscale devices. This technique has enabled, for example, the direct observation of the nonuniform intermediate states assumed by the magnetic free layer during reversal by a spin-polarized current. These experiments have shown an interesting size-dependent behavior associated with the motion of vortices to mediate the magnetization reversal which cannot be explained by the macrospin picture of spin-torque switching. In this paper we present both experimental and analytical results which show the origin of the complex switching behavior. We use time-resolved x-ray microscopy to further study the switching behavior of samples with 45 degrees angle between the free and polarizing magnetic layers. A model is developed in terms of a linearized Landau-Lifshitz-Gilbert equation showing that the initial dynamics is dominated by the balance between the Oersted field and thermal fluctuations. The spin torque amplifies this dynamics, leading to a strong sensitivity to sample size, angle, and temperature. The model is in good agreement with current and previous experimental observations. C1 [Chembrolu, V.; Strachan, J. P.; Yu, X. W.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chembrolu, V.; Strachan, J. P.; Yu, X. W.; Tulapurkar, A. A.; Stoehr, J.; Acremann, Y.] Stanford Linear Accelerator Ctr, SIMES Inst, Menlo Pk, CA 94025 USA. [Tyliszczak, T.] Adv Light Source, Berkeley, CA 94720 USA. [Katine, J. A.; Carey, M. J.] Hitachi Global Storage Technol San Jose Res Ctr, San Jose, CA 95120 USA. [Stoehr, J.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Acremann, Y.] Stanford Linear Accelerator Ctr, PULSE Inst, Menlo Pk, CA 94025 USA. RP Chembrolu, V (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. NR 28 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024417 DI 10.1103/PhysRevB.80.024417 PG 8 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500068 ER PT J AU Clavero, C Skuza, JR Choi, Y Haskel, D Sanchez-Hanke, C Loloee, R Zhernenkov, M Fitzsimmons, MR Lukaszew, RA AF Clavero, C. Skuza, J. R. Choi, Y. Haskel, D. Sanchez-Hanke, C. Loloee, R. Zhernenkov, M. Fitzsimmons, M. R. Lukaszew, R. A. TI Enhancement of induced V polarization due to rough interfaces in polycrystalline V/Fe/V trilayers SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; chemical interdiffusion; interface roughness; iron; magnetic circular dichroism; magnetic moments; magnetic multilayers; magnetic thin films; metallic thin films; reflectometry; sputter deposition; vanadium; X-ray scattering ID MAGNETIC SURFACE ANISOTROPY; X-RAY; NEUTRON-SCATTERING; FE/V MULTILAYERS; ULTRATHIN FILMS; THIN-FILMS; SUPERLATTICES; VANADIUM; INTERDIFFUSION; MOMENTS AB The effect of interface roughness on the induced polarization of V in polycrystalline V/Fe/V trilayers was investigated with x-ray magnetic circular dichroism, x-ray resonant magnetic scattering, and polarized neutron reflectometry. Trilayer samples were sputter deposited onto Si substrates at room temperature to minimize interdiffusion. The films were polycrystalline and exhibited an average 0.5 nm root-mean-square interfacial roughness at the Fe/V interfaces. The induced polarization found in V was constrained to the Fe/V interface extending approximately up to 2-3 monolayers into the V and exhibited antiferromagnetic alignment to the Fe layer. A magnetic moment for V ranging between -0.46 and -0.86 mu(B)/V atom is consistent with the neutron and resonant x-ray data. Notably, this value for structurally rough interfaces is significantly larger than that reported for samples with atomically flat Fe/V interfaces. C1 [Clavero, C.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Choi, Y.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sanchez-Hanke, C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Loloee, R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Zhernenkov, M.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Clavero, C (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. RI Skuza, Jonathan/E-9048-2010; Lujan Center, LANL/G-4896-2012; Clavero, Cesar/C-4391-2008; OI Skuza, Jonathan/0000-0002-9252-2708; Clavero, Cesar/0000-0001-6665-3141; Zhernenkov, Mikhail/0000-0003-3604-0672 FU NSF-DMR [0355171]; Research Corporation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC52-06NA25396, DE-AC-02-06CH11357] FX This work was supported by NSF-DMR (Grant No. 0355171) and the Research Corporation. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Science. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. Work at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357. The authors also wish to acknowledge fruitful discussions with Brian Kirby from the Center for Neutron Research at NIST. NR 39 TC 6 Z9 6 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024418 DI 10.1103/PhysRevB.80.024418 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500069 ER PT J AU Crooker, SA Garlid, ES Chantis, AN Smith, DL Reddy, KSM Hu, QO Kondo, T Palmstrom, CJ Crowell, PA AF Crooker, S. A. Garlid, E. S. Chantis, A. N. Smith, D. L. Reddy, K. S. M. Hu, Q. O. Kondo, T. Palmstrom, C. J. Crowell, P. A. TI Bias-controlled sensitivity of ferromagnet/semiconductor electrical spin detectors SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; SEMICONDUCTOR; INJECTION; DEVICES AB Using Fe/GaAs Schottky tunnel barriers as electrical spin detectors, we show that the magnitude and the sign of their spin-detection sensitivities can be widely tuned with the voltage bias applied across the Fe/GaAs interface. Experiments and theory establish that this tunability derives not just simply from the bias dependence of the tunneling conductances G(up arrow,down arrow) (a property of the interface), but also from the bias dependence of electric fields in the semiconductor which can dramatically enhance or suppress spin-detection sensitivities. Electrons in GaAs with fixed polarization can therefore be made to induce either positive or negative voltage changes at spin detectors, and some detector sensitivities can be enhanced over tenfold compared to the usual case of zero-bias spin detection. C1 [Crooker, S. A.; Chantis, A. N.; Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Garlid, E. S.; Hu, Q. O.; Kondo, T.; Crowell, P. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Reddy, K. S. M.; Palmstrom, C. J.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Palmstrom, C. J.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [Palmstrom, C. J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM crooker@lanl.gov OI Chantis, Athanasios/0000-0001-7933-0579; Reddy, Kotha Sai Madhukar/0000-0003-2385-7827 NR 23 TC 34 Z9 34 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 041305 DI 10.1103/PhysRevB.80.041305 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100011 ER PT J AU Dai, JH Zhu, JX Si, QM AF Dai, Jianhui Zhu, Jian-Xin Si, Qimiao TI f-spin physics of rare-earth iron pnictides: Influence of d-electron antiferromagnetic order on the heavy-fermion phase diagram SO PHYSICAL REVIEW B LA English DT Article DE Anderson model; antiferromagnetic materials; cerium compounds; frustration; heavy fermion superconductors; high-temperature superconductors; Kondo effect; magnetic moments; phase diagrams ID LAYERED SUPERCONDUCTOR; QUANTUM CRITICALITY; METALS AB Some of the high-T-c iron pnictides contain magnetic rare-earth elements, raising the question of how the existence and tunability of a d-electron antiferromagnetic order influences the heavy-fermion behavior of the f moments. With CeOFeP and CeOFeAs in mind as prototypes, we derive an extended Anderson lattice model appropriate for these quaternary systems. We show that the Kondo screening of the f moments are efficiently suppressed by the d-electron ordering. We also argue that, inside the d-electron ordered state (as in CeOFeAs), the f moments provide a rare realization of a quantum frustrated magnet with competing J(1)-J(2)-J(3) interactions in an effective square lattice. Implications for the heavy-fermion physics in broader contexts are also discussed. C1 [Dai, Jianhui] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Si, Qimiao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Dai, JH (reprint author), Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China. OI Zhu, Jianxin/0000-0001-7991-3918 FU NSF of China [IRT-0754, DMR-0706625]; Education Ministry of China; U.S. DOE [DE-AC52-06NA25396] FX We thank E. Abrahams, M. Aronson, G. H. Cao, X. H. Chen, X. Dai, C. Geibel, N. L. Wang, T. Xiang, Z. A. Xu, and H. Q. Yuan for useful discussions, and the U. S. DOE CINT at LANL for computational support. This work was supported by the NSF of China, the 973 Program, and the PCSIRT (Project No. IRT-0754) of Education Ministry of China (J.D.), by the NSF (Grant No. DMR-0706625) and the Robert A. Welch Foundation (Q.S.), and by the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396 (J.-X.Z.). NR 34 TC 14 Z9 14 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020505 DI 10.1103/PhysRevB.80.020505 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500017 ER PT J AU Duguet, T Unal, B de Weerd, MC Ledieu, J Ribeiro, RA Canfield, PC Deloudi, S Steurer, W Jenks, CJ Dubois, JM Fournee, V Thiel, PA AF Duguet, T. Uenal, B. de Weerd, M. C. Ledieu, J. Ribeiro, R. A. Canfield, P. C. Deloudi, S. Steurer, W. Jenks, C. J. Dubois, J. M. Fournee, V. Thiel, P. A. TI Twofold surface of the decagonal Al-Cu-Co quasicrystal SO PHYSICAL REVIEW B LA English DT Article DE aluminium alloys; cobalt alloys; copper alloys; electron diffraction; phasons; quasicrystals; scanning tunnelling microscopy; surface structure ID TRANSPORT-PROPERTIES; ELECTRONIC-STRUCTURE; PHASE; AL65CU15CO20; ALLOYS; MODEL; AL70CO15NI15; DIFFRACTION; GROWTH; LEED AB We have investigated the atomic structure of the twofold surface of the decagonal Al-Cu-Co quasicrystal using scanning tunneling microscopy and low-energy electron diffraction. We have found that most of the surface features can be interpreted using the bulk-structure model proposed by Deloudi and Steurer (S. Deloudi, Ph.D. thesis, ETH, Zuumlrich, 2008). The surface consists of terraces separated by steps of various heights. Step heights and steps sequences match with the thickness and the stacking sequence of blocks of layers separated by gaps in the model. These blocks of layers define possible surface terminations consisting of periodic atomic rows which are aperiodically stacked. These surface terminations are dense (similar to 10 at./nm(2)) and are of three types. The first two types are pure or almost pure Al while the third one contains 30-40 at. % of transition-metal atoms. Experimentally, we observe three different types of fine structures on terraces, which can be interpreted using the three possible types of bulk terminations. Terraces containing transition metals exhibit a strong bias dependency and present a doubling of the basic 0.42 nm periodicity, in agreement with the 0.84 nm superstructure of the bulk. In addition, a high density of interlayer phason defects is observed on this surface that could contribute to the stabilization of this system through configurational entropy associated with phason disorder. C1 [Duguet, T.; de Weerd, M. C.; Ledieu, J.; Dubois, J. M.; Fournee, V.] Nancy Univ, Inst Jean Lamour, CNRS,Ecole Mines, UMR 7198,UPV Metz, F-54042 Nancy, France. [Uenal, B.; Ribeiro, R. A.; Canfield, P. C.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Uenal, B.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Dept Chem & Mat Sci, Ames, IA 50011 USA. [Uenal, B.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Dept Engn, Ames, IA 50011 USA. [Ribeiro, R. A.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Deloudi, S.; Steurer, W.] ETH, Crystallog Lab, CH-8093 Zurich, Switzerland. RP Duguet, T (reprint author), Nancy Univ, Inst Jean Lamour, CNRS,Ecole Mines, UMR 7198,UPV Metz, Parc Saurupt,CS14234, F-54042 Nancy, France. RI Ledieu, Julian/F-1430-2010; DUGUET, Thomas/B-6738-2011; Deloudi, Sofia/B-8812-2011; Canfield, Paul/H-2698-2014; Steurer, Walter/A-3278-2008; Ribeiro, Raquel/B-9041-2012; Steurer, Walter/B-6929-2008 OI Ribeiro, Raquel/0000-0001-6075-1701; Steurer, Walter/0000-0003-0211-7088 FU U.S. Department of Energy (USDOE) [DE-AC02-07CH11358]; European Network of Excellence on Complex Metallic Alloys (CMA) [NMP3-CT-2005-500145, ANR-05-NT03-41834] FX This work was partially supported by the Office of Science, Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy (USDOE) under Contract No. DE-AC02-07CH11358 through the Ames Laboratory. We also acknowledge the European Network of Excellence on Complex Metallic Alloys (CMA) (Contracts No. NMP3-CT-2005-500145 and No. ANR-05-NT03-41834) for financial support. We also thank Matt Kramer and Chris Henley for helpful discussions. NR 41 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024201 DI 10.1103/PhysRevB.80.024201 PG 9 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500038 ER PT J AU Dzero, M Schmalian, J Wolynes, PG AF Dzero, Maxim Schmalian, Joerg Wolynes, Peter G. TI Replica theory for fluctuations of the activation barriers in glassy systems SO PHYSICAL REVIEW B LA English DT Article DE amorphous state; entropy; fluctuations; glass transition; supercooling; surface tension; vitreous state ID SUPERCOOLED O-TERPHENYL; HARD-SPHERE GLASS; MEAN-FIELD THEORY; METASTABLE STATES; CONFIGURATIONAL ENTROPY; STRUCTURAL GLASSES; SPIN-GLASSES; HETEROGENEOUS DYNAMICS; FORMING LIQUIDS; LENGTH SCALE AB We consider the problem of slow activation dynamics in glassy systems undergoing a random first-order phase transition. Using an effective potential approach to supercooled liquids, we determine the spectrum of activation barriers for entropic droplets. We demonstrate that fluctuations of the configurational entropy and of the liquid glass surface tension are crucial to achieve an understanding of the barrier fluctuations in glassy systems and thus are ultimately responsible for the broad spectrum of excitations and heterogeneous dynamics in glasses. In particular we derive a relation between the length scale for dynamic heterogeneity and the related barrier fluctuations. Diluted entropic droplets are shown to have a Gaussian distribution of barriers, strongly suggesting that non-Gaussian behavior results from droplet-droplet interactions. C1 [Dzero, Maxim] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA. [Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wolynes, Peter G.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Wolynes, Peter G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Dzero, M (reprint author), Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA. RI Schmalian, Joerg/H-2313-2011 NR 63 TC 10 Z9 10 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024204 DI 10.1103/PhysRevB.80.024204 PG 15 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500041 ER PT J AU Fernando, GW Palandage, K Kocharian, AN Davenport, JW AF Fernando, G. W. Palandage, K. Kocharian, A. N. Davenport, J. W. TI Pairing in bipartite and nonbipartite repulsive Hubbard clusters: Octahedron SO PHYSICAL REVIEW B LA English DT Article DE Bose-Einstein condensation; colossal magnetoresistance; Coulomb blockade; ferromagnetism; high-temperature superconductors; Hubbard model ID PHASE-SEPARATION; MODEL; SUPERCONDUCTORS; FERROMAGNETISM; NANOCLUSTERS; THERMODYNAMICS; SYSTEMS; NARROW; STATE; BAND AB Pairing instabilities found from exact studies of repulsive Hubbard clusters with different topologies provide important insights into several many-body problems in condensed-matter physics. Electron charge and spin pairing instabilities in a multiparameter phase space, defined by temperature, magnetic field, and chemical potential, lead to properties that are remarkably similar to correlated inhomogeneous bulk (perovskite) systems such as the high-temperature superconductors and colossal-magnetoresistance materials. In particular, for small to moderate values of the on-site Coulomb repulsion U, the role of square-planar geometry is borne out for weak vertex coupling in an octahedron. These conditions are favorable to forming a Bose condensate in the region of instability near one hole off half filling while strong vertex coupling has a detrimental effect on such condensation. In addition, it is shown that magnetic flux can get trapped in stable minima at half-integral units of the flux quantum in hole-rich regions. For higher values of U, Nagaoka-type ferromagnetism is examined. C1 [Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Kocharian, A. N.] Santa Monica Coll, Santa Monica, CA 90405 USA. [Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Davenport, J. W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Fernando, GW (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. FU U. S. Department of Energy [DE-AC02-98CH10886] FX This research was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 31 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014525 DI 10.1103/PhysRevB.80.014525 PG 7 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100116 ER PT J AU Fischer, G Dane, M Ernst, A Bruno, P Luders, M Szotek, Z Temmerman, W Hergert, W AF Fischer, Guntram Daene, Markus Ernst, Arthur Bruno, Patrick Lueders, Martin Szotek, Zdzislawa Temmerman, Walter Hergert, Wolfram TI Exchange coupling in transition metal monoxides: Electronic structure calculations SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; exchange interactions (electron); Heisenberg model; KKR calculations; lattice constants; manganese compounds; Neel temperature; spin waves; strongly correlated electron systems ID SELF-INTERACTION CORRECTION; MAGNETIC-STRUCTURES; NEEL TEMPERATURE; HIGH-PRESSURE; HYDROSTATIC PRESSURE; PHASE-STABILITY; NIO; MNO; COO; FEO AB An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d transition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force theorem. Based on these the corresponding Neacuteel temperatures T-N and spin-wave dispersions are calculated. The Neacuteel temperatures are obtained using mean-field approximation, random-phase approximation and Monte Carlo simulations. The pressure dependence of T-N is investigated using exchange constants calculated for different lattice constants. All the calculated results are compared to experimental data. C1 [Fischer, Guntram; Hergert, Wolfram] Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Germany. [Daene, Markus; Ernst, Arthur; Bruno, Patrick] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Daene, Markus] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bruno, Patrick] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Fischer, G (reprint author), Univ Halle Wittenberg, Inst Phys, Von Seckendorff Pl 1, D-06120 Halle, Germany. RI Bruno, Patrick/C-9159-2009; Lueders, Martin/D-1622-2010; Ernst, Arthur/K-1836-2012; Dane, Markus/H-6731-2013 OI Bruno, Patrick/0000-0002-2574-1943; Dane, Markus/0000-0001-9301-8469 FU Deutsche Forschungsgesellschaft (DFG) [SFB 762]; U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank Julie Staunton for helpful discussions and comments. This work was supported by the Deutsche Forschungsgesellschaft (DFG) under Grant No. SFB 762 "Functionality of Oxidic Interfaces." Calculations were performed at the John von Neumann Institute for Computing in Julich, Germany. Research at the Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 66 TC 50 Z9 50 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014408 DI 10.1103/PhysRevB.80.014408 PG 11 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100063 ER PT J AU Goko, T Aczel, AA Baggio-Saitovitch, E Bud'ko, SL Canfield, PC Carlo, JP Chen, GF Dai, PC Hamann, AC Hu, WZ Kageyama, H Luke, GM Luo, JL Nachumi, B Ni, N Reznik, D Sanchez-Candela, DR Savici, AT Sikes, KJ Wang, NL Wiebe, CR Williams, TJ Yamamoto, T Yu, W Uemura, YJ AF Goko, T. Aczel, A. A. Baggio-Saitovitch, E. Bud'ko, S. L. Canfield, P. C. Carlo, J. P. Chen, G. F. Dai, Pengcheng Hamann, A. C. Hu, W. Z. Kageyama, H. Luke, G. M. Luo, J. L. Nachumi, B. Ni, N. Reznik, D. Sanchez-Candela, D. R. Savici, A. T. Sikes, K. J. Wang, N. L. Wiebe, C. R. Williams, T. J. Yamamoto, T. Yu, W. Uemura, Y. J. TI Superconducting state coexisting with a phase-separated static magnetic order in (Ba,K)Fe2As2, (Sr,Na)Fe2As2, and CaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; barium alloys; calcium alloys; iron alloys; magnetic susceptibility; muon probes; phase separation; potassium alloys; sodium alloys; strontium alloys; superconducting energy gap; superconducting materials; superconductivity ID LAYERED SUPERCONDUCTOR; SUPERFLUID DENSITY; MU-SR; DIAGRAM; SMFEASO1-XFX; CUPRATE AB By muon spin-relaxation measurements on single-crystal specimens, we show that superconductivity in the AFe(2)As(2) (A=Ca,Ba,Sr) systems, in both the cases of composition and pressure tunings, coexists with a strong static magnetic order in a partial volume fraction. The superfluid response from the remaining paramagnetic volume fraction of (Ba0.5K0.5)Fe2As2 exhibits a nearly linear variation in T at low temperatures, suggesting an anisotropic energy gap with line nodes and/or multigap effects. C1 [Goko, T.; Carlo, J. P.; Nachumi, B.; Sikes, K. J.; Uemura, Y. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Goko, T.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Goko, T.; Aczel, A. A.; Luke, G. M.; Williams, T. J.; Yu, W.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Baggio-Saitovitch, E.; Sanchez-Candela, D. R.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Chen, G. F.; Hu, W. Z.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. [Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hamann, A. C.; Reznik, D.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Kageyama, H.; Yamamoto, T.] Kyoto Univ, Dept Chem, Kyoto 6068502, Japan. [Savici, A. T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Wiebe, C. R.] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. RP Uemura, YJ (reprint author), Columbia Univ, Dept Phys, New York, NY 10027 USA. EM tomo@lorentz.phys.columbia.edu RI Williams, Travis/A-5061-2016; Hu, Wanzheng/K-1171-2016; Kageyama, Hiroshi/A-4602-2010; Dai, Pengcheng /C-9171-2012; Yu, Weiqiang/E-9722-2012; Candela, Dalber/G-3636-2012; Savici, Andrei/F-2790-2013; Canfield, Paul/H-2698-2014; Saitovitch, Elisa/A-6769-2015; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; OI Williams, Travis/0000-0003-3212-2726; Dai, Pengcheng /0000-0002-6088-3170; Savici, Andrei/0000-0001-5127-8967; Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173 FU NSF [DMR-05-02706, 08-06846, DMR-07-56568, DMR-08-04173]; Florida state at FSU; DOE [DE-AC02-07CH11358]; NSERC; CIFAR (Canada); CBPF (Brazil); NSFC; CAS; 973 project of MOST (China); JSPS U. S.-Japan FX We acknowledge financial support from NSF under Grant Nos. DMR-05-02706 and 08-06846 (Material World Network) at Columbia, NSF under Grant No. DMR-07-56568 at UT Knoxville, NSF under Grant No. DMR-08-04173 and Florida state at FSU, DOE under Contract No. DE-AC02-07CH11358 at Ames, NSERC and CIFAR (Canada) at McMaster, CNPq on MWN-CIAM program at CBPF (Brazil), NSFC, CAS, and 973 project of MOST (China) at IOP, Beijing, and JSPS U. S.-Japan cooperative program at Kyoto University (Japan). NR 53 TC 90 Z9 92 U1 4 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024508 DI 10.1103/PhysRevB.80.024508 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500087 ER PT J AU Grigoriev, A Sichel, RJ Jo, JY Choudhury, S Chen, LQ Lee, HN Landahl, EC Adams, BW Dufresne, EM Evans, PG AF Grigoriev, Alexei Sichel, Rebecca J. Jo, Ji Young Choudhury, Samrat Chen, Long-Qing Lee, Ho Nyung Landahl, Eric C. Adams, Bernhard W. Dufresne, Eric M. Evans, Paul G. TI Stability of the unswitched polarization state of ultrathin epitaxial Pb(Zr,Ti)O-3 in large electric fields SO PHYSICAL REVIEW B LA English DT Article DE dielectric polarisation; electric domain walls; epitaxial layers; ferroelectric capacitors; ferroelectric thin films; lead compounds; nucleation; thin film capacitors; X-ray diffraction ID NUCLEATION; THICKNESS; FILMS AB The initial stage of polarization switching in ferroelectric thin films depends on phenomena that occur at characteristic time scales of tens to hundreds of nanoseconds, including the nucleation polarization domains and the propagation of domain walls. These long intrinsic times allow short-duration electric fields with magnitudes far above the low-frequency coercive electric field to be applied across capacitor devices without inducing switching. Using time-resolved x-ray microdiffraction, we have found that a series of 50 ns duration electric field pulses switches the polarization of a 35-nm-thick ferroelectric Pb(Zr,Ti)O-3 film only at electric fields greater than 1.5 MV/cm, a factor of three higher than the low-frequency coercive field. There is no switching in response to a large number of short pulses with amplitudes lower than 1.5 MV/cm, even when the total duration reaches several milliseconds. In comparison, a series of microsecond-duration pulses causes cumulative changes in the area of switched polarization and eventually switches the entire capacitor. The difference between long- and short-duration electric field pulses arises from effects linked to domain nucleation and charge transport in the ferroelectric film. A phase-field model shows that the shrinking of the switched domain in the interval between pulses is a less important effect. This opportunity to apply large fields for short times without inducing switching by domain-wall motion raises the possibility that future experiments could reach the intrinsic coercive field of ferroelectric layers and provides a way to study the properties of materials under high electric fields. C1 [Grigoriev, Alexei; Sichel, Rebecca J.; Jo, Ji Young; Choudhury, Samrat; Evans, Paul G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Grigoriev, Alexei; Sichel, Rebecca J.; Jo, Ji Young; Choudhury, Samrat; Evans, Paul G.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Landahl, Eric C.; Adams, Bernhard W.; Dufresne, Eric M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Grigoriev, A (reprint author), Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. EM evans@engr.wisc.edu RI Choudhury, Samrat/B-4115-2009; Landahl, Eric/A-1742-2010; Evans, Paul/A-9260-2009; Lee, Ho Nyung/K-2820-2012; Chen, LongQing/I-7536-2012 OI Evans, Paul/0000-0003-0421-6792; Lee, Ho Nyung/0000-0002-2180-3975; Chen, LongQing/0000-0003-3359-3781 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-04ER46147]; Basic Energy Sciences [DE-FG02-04ER46147]; National Science Foundation [DMR-0705370]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences through Contract No. DE-FG02-04ER46147, and by the National Science Foundation through Grant No. DMR-0705370. One of the authors (H.N.L.) was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. NR 30 TC 9 Z9 9 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014110 DI 10.1103/PhysRevB.80.014110 PG 6 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100036 ER PT J AU Hoch, MJR Kuhns, PL Moulton, WG Lu, J Reyes, AP Mitchell, JF AF Hoch, M. J. R. Kuhns, P. L. Moulton, W. G. Lu, Jun Reyes, A. P. Mitchell, J. F. TI Non-Korringa nuclear relaxation in the ferromagnetic phase of the bilayered manganite La1.2Sr1.8Mn2O7 SO PHYSICAL REVIEW B LA English DT Article DE colossal magnetoresistance; electronic structure; ferromagnetic materials; hyperfine interactions; lanthanum compounds; magnetic polarons; magnetic thin films; nuclear magnetic resonance; spin-lattice relaxation; strontium compounds ID MAGNETORESISTANCE; CRYSTALS; STATE AB In contrast to ferromagnetic (FM) three-dimensional manganites, Mn-55 NMR spectra obtained for the FM phase of the colossal magnetoresistance bilayer manganite La1.2Sr1.8Mn2O7 show a broad distribution of hyperfine fields at Mn sites. The hyperfine distribution reflects variations in the electronic structure at the local level. Mn-55 spin-lattice relaxation rates have a surprisingly weak dependence both on temperature and on applied magnetic field. Significant departures of the relaxation rate from Korringa temperature dependence below 40 K provide evidence for nonFermi liquid behavior in this quasi-two-dimensional metal. At temperatures approaching T-C from below, in the range where colossal magnetoresistance appears, further anomalous and field-dependent behavior is found in the relaxation rate temperature dependence. The results provide evidence for changes in the electronic structure with temperature in this poorly metallic system. At low temperatures the changes are possibly linked to orbital ordering effects. In addition, statistical fluctuations in dopant concentration may play some role in inducing local variations in the electronic structure. Above 90 K the emergence of polarons is likely to be responsible for the observed decrease in the relaxation rate. C1 [Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Lu, Jun; Reyes, A. P.] Florida State Univ, Natl High Magnet Field Lab, Tallahssee, FL 32310 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Hoch, MJR (reprint author), Florida State Univ, Natl High Magnet Field Lab, 1800 E Paul Dirac Dr, Tallahssee, FL 32310 USA. FU NSF [DMR-0084]; state of Florida; U.S. DOE, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support for the work at the NHMFL was provided through grants from the NSF (Grant No. DMR-0084) and by the state of Florida. The work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Helpful discussions with Pedro Schlottmann at Florida State University and Chris Leighton at the University of Minnesota are gratefully acknowledged. NR 37 TC 2 Z9 2 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024413 DI 10.1103/PhysRevB.80.024413 PG 8 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500064 ER PT J AU Horner, DA Lambert, F Kress, JD Collins, LA AF Horner, D. A. Lambert, F. Kress, J. D. Collins, L. A. TI Transport properties of lithium hydride from quantum molecular dynamics and orbital-free molecular dynamics SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; diffusion; lithium compounds; mixing; molecular dynamics method; viscosity ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DENSE MATTER; COEFFICIENTS; PLANETS; METALS; STATES AB We have performed a systematic study of lithium hydride in the warm-dense-matter regime for a density range from one to four times ambient solid and for temperatures from 2 to 6 eV using both finite-temperature density-functional theory quantum molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD) with a focus on dynamical properties such as diffusion and viscosity. The validity of various mixing rules, especially those utilizing pressure, were checked for composite properties determined from QMD/OFMD simulations of the pure species against calculations on the fully interacting mixture. These rules produce pressures within about 10% of the full-mixture values but mutual-diffusion coefficients as different as 50%. We found very good agreement overall between the QMD, employing a three-electron pseudopotential, and the OFMD in the local-density approximation, especially at the higher temperatures and densities. C1 [Horner, D. A.; Kress, J. D.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lambert, F.] DIF, DAM, CEA, F-91297 Arpajon, France. RP Horner, DA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy [DE-AC52-06NA25396]; Centre de Calcul Recherche et Technologie in Bruyres-le-Chtel FX We wish to acknowledge useful conversations with Brad Holian. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Part of this work was supported by the Centre de Calcul Recherche et Technologie in Bruyres-le-Chtel. NR 31 TC 34 Z9 34 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024305 DI 10.1103/PhysRevB.80.024305 PG 10 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500048 ER PT J AU Hu, X Ting, CS Zhu, JX AF Hu, Xiang Ting, C. S. Zhu, Jian-Xin TI Vortex core states in a minimal two-band model for iron-based superconductors SO PHYSICAL REVIEW B LA English DT Article DE band structure; d-wave superconductivity; electronic density of states; exchange interactions (electron); Fermi level; flux-line lattice; iron compounds; localised states; resonant states; scanning tunnelling microscopy; spin density waves; tight-binding calculations ID HIGH-TEMPERATURE SUPERCONDUCTORS; LAYERED QUATERNARY COMPOUND; SPIN-DENSITY-WAVE; PHASE-DIAGRAM; CUPRATE SUPERCONDUCTORS; SMFEASO1-XFX; COEXISTENCE; MAGNETISM; D(X2-Y2); SYMMETRY AB The pairing symmetry is one of the major issues in the study of iron-based superconductors. We adopt a minimal two-band tight-binding model with various channels of pairing interaction, and derive a set of two-band Bogoliubov-de Gennes (BdG) equations. The BdG equations are implemented in real space and then solved self-consistently via exact diagonalization. In the uniform case, we find that the d(x)(2)-y(2)-wave pairing state is most favorable for a nearest-neighbor pairing interaction while the s(x)(2)y(2)-wave pairing state is most favorable for a next-nearest-neighbor pairing interaction, which is consistent with that reported by Seo [Phys. Rev. Lett. 101, 206404 (2008)]. We then proceed to study the local electronic structure around a magnetic vortex core for both d(x)(2)-y(2)-wave and s(x)(2)y(2)-wave pairing symmetry in the mixed state. It is found from the local density of states spectra and its spatial variation that the resonance core states near the Fermi energy for the d(x)(2)-y(2)-wave pairing symmetry are bound while those for the s(x)(2)y(2)-wave pairing symmetry can evolve from the localized states into extended ones with varying electron filling factor. Furthermore, by including an effective exchange interaction, the emergent antiferromagnetic spin-density-wave order can suppress the resonance core states, which provides one possible avenue to understand the absence of resonance peak as revealed by recent scanning tunneling microscopy experiment by Yin [Phys. Rev. Lett. 102, 097002 (2009)]. C1 [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hu, Xiang; Ting, C. S.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Hu, Xiang; Ting, C. S.] Univ Houston, Dept Phys, Houston, TX 77204 USA. RP Zhu, JX (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jxzhu@lanl.gov OI Zhu, Jianxin/0000-0001-7991-3918 FU U. S. DOE [1146, DE-AC52-06NA25396] FX We thank A. V. Balatsky, J. C. Davis, M. Graf, J. E. Hoffman, Jiangping Hu, V. Madhavan, Shuheng Pan, Qimiao Si, and Degang Zhang for helpful discussions. We also thank T. Zhou for discussion and collaboration on related project. One of the authors (X. H.) acknowledges the hospitality of Los Alamos National Laboratory (LANL), where this work was initiated. We acknowledge the U. S. DOE CINT at LANL for computational support. This work was supported by the Robert Welch Foundation Grant No. E-1146 at the University of Houston (X. H. and C. S. T.), by U. S. DOE at LANL under Contract No. DE-AC52-06NA25396, the U. S. DOE Office of Science, and the LANL LDRD Program (J. X. Z.). NR 85 TC 17 Z9 17 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014523 DI 10.1103/PhysRevB.80.014523 PG 8 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100114 ER PT J AU Huda, MN Yan, YF Walsh, A Wei, SH Al-Jassim, MM AF Huda, Muhammad N. Yan, Yanfa Walsh, Aron Wei, Su-Huai Al-Jassim, Mowafak M. TI Group-IIIA versus IIIB delafossites: Electronic structure study SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HYDROGEN-PRODUCTION; OPTICAL-PROPERTIES; THIN-FILMS; BASIS-SET; CUALO2; TRANSPARENT; WATER; CONDUCTIVITY AB First-principles density-functional theory calculations reveal significantly different behavior between group-IIIA and IIIB delafossites CuMO2. The group-IIIA delafossites have indirect band gaps with large differences between the direct and indirect band gaps. However, this difference is small for the group-IIIB delafossites: only 0.22 eV for CuScO2 and it diminishes further for CuYO2 and CuLaO2. Also, whereas group IIIA prefers rhombohedral stacking, group IIIB stabilizes in hexagonal structures. We further find that CuScO2 has the highest calculated fundamental band gap among all the delafossite oxides. In addition, CuLaO2 is found to have a direct band gap. These differences are explained by the different atomic configurations between the group-IIIA and IIIB elements. Our understanding of these delafossites provides general guidance for proper selection of delafossites for suitable applications in optoelectronic devices. C1 [Huda, Muhammad N.; Yan, Yanfa; Walsh, Aron; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM muhammad.huda@nrel.gov RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008 OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X FU U. S. Department of Energy [DE-AC36-08GO28308] FX M.N.H. gratefully acknowledges the fruitful discussions with Eric W. McFarland and John A. Turner. This work was supported by the U. S. Department of Energy under Contract No. DE-AC36-08GO28308. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 35 TC 45 Z9 45 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035205 DI 10.1103/PhysRevB.80.035205 PG 7 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800070 ER PT J AU Hupalo, M Conrad, EH Tringides, MC AF Hupalo, M. Conrad, E. H. Tringides, M. C. TI Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study SO PHYSICAL REVIEW B LA English DT Article ID GRAPHITE; LAYERS AB The inability to grow large well-ordered ultra high vacuum (UHV) graphene with a specific number of layers on SiC(0001) is well known. The growth involves several competing processes (Si desorption, carbon diffusion, island nucleation, etc.) and because of the high temperatures, it has not been possible to identify the growth mechanism. Using scanning tunneling microscopy and a vicinal 6H-SiC(0001) sample, we determine that the Si desorption from steps is the main controlling process. Adjacent steps retract with different speeds and the released carbon produces large areas of bilayer graphene with characteristic "fingers" emanating from steps. If faster heating rates are used, the different Si desorption rates are avoided and single-layer graphene films extending over many microns are produced. C1 [Hupalo, M.; Tringides, M. C.] Iowa Sate Univ, US DOE, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. [Conrad, E. H.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. RP Hupalo, M (reprint author), Iowa Sate Univ, US DOE, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. FU Department of Energy-Basic Sciences [DE-AC02-07CH11358]; W. M. Keck Foundation and the National Science Foundation [0404084, 0521041, 0820382] FX We wish to thank A. Zangwill and D. Vvedensky for helpful discussions and a critical reading of the paper. Work at the Ames Laboratory was supported by the Department of Energy-Basic Sciences under Contract No. DE-AC02-07CH11358. Work at Georgia Tech was supported by a grant from the W. M. Keck Foundation and the National Science Foundation under Grants No. 0404084, No. 0521041, and No. 0820382. NR 21 TC 76 Z9 77 U1 4 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 041401 DI 10.1103/PhysRevB.80.041401 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100020 ER PT J AU Jimenez, E Camarero, J Sort, J Nogues, J Mikuszeit, N Garcia-Martin, JM Hoffmann, A Dieny, B Miranda, R AF Jimenez, E. Camarero, J. Sort, J. Nogues, J. Mikuszeit, N. Garcia-Martin, J. M. Hoffmann, A. Dieny, B. Miranda, R. TI Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; cobalt; exchange interactions (electron); ferromagnetic materials; frustration; iridium alloys; iron alloys; magnetic anisotropy; magnetic hysteresis; magnetic multilayers; magnetic structure; magnetic thin films; magnetisation reversal; manganese alloys; nickel alloys ID HYSTERESIS LOOPS; REVERSAL; NANOSTRUCTURES; DEPENDENCE; BILAYERS; FILMS AB Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials. C1 [Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. [Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain. [Camarero, J.; Miranda, R.] IMDEA Nanociencia, Madrid 28049, Spain. [Sort, J.] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Spain. [Sort, J.] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain. [Nogues, J.] Ctr Invest Nanociencia & Nanotecnol ICN CSIC, Bellaterra 08193, Spain. [Nogues, J.] ICREA, Bellaterra 08193, Spain. [Garcia-Martin, J. M.] CSIC, CNM, IMM, Tres Cantos 28760, Spain. [Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dieny, B.] INAC, CEA Grenoble, CEA CNRS UJF, SPINTEC,UMR 8191, F-38054 Grenoble 9, France. RP Jimenez, E (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Cantoblanco, E-28049 Madrid, Spain. EM julio.camarero@uam.es RI Hoffmann, Axel/A-8152-2009; Garcia-Martin, Jose Miguel/H-4434-2011; Nogues, Josep/D-7791-2012; Sort, Jordi/F-6582-2014; Camarero, Julio/C-4375-2014; Microelectronica de Madrid, Instituto de/D-5173-2013 OI Camarero De Diego, Julio/0000-0003-0078-7280; Hoffmann, Axel/0000-0002-1808-2767; Garcia-Martin, Jose Miguel/0000-0002-5908-8428; Nogues, Josep/0000-0003-4616-1371; Sort, Jordi/0000-0003-1213-3639; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045 NR 46 TC 66 Z9 66 U1 0 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014415 DI 10.1103/PhysRevB.80.014415 PG 7 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100070 ER PT J AU Kacmarcik, J Marcenat, C Klein, T Pribulova, Z van der Beek, CJ Konczykowski, M Budko, SL Tillman, M Ni, N Canfield, PC AF Kacmarcik, J. Marcenat, C. Klein, T. Pribulova, Z. van der Beek, C. J. Konczykowski, M. Budko, S. L. Tillman, M. Ni, N. Canfield, P. C. TI Strongly dissimilar vortex-liquid regimes in single-crystalline NdFeAs(O,F) and (Ba,K)Fe2As2: A comparative study SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; effective mass; Landau levels; magnetisation; mixed state; neodymium compounds; phase diagrams; potassium compounds; specific heat; superconducting critical field; superconducting materials ID HIGH-TEMPERATURE SUPERCONDUCTORS; MAGNETIC-FIELD; ANISOTROPIC SUPERCONDUCTORS; II SUPERCONDUCTORS; FLUCTUATIONS; SOLIDS; FILMS AB The extent of the vortex-liquid state in underdoped single crystals of the oxypnictide superconductors NdFeAs(O,F) and (Ba,K)Fe2As2 is investigated using specific heat (C-p) and Hall-probe magnetization experiments. In both materials, the vortex liquid lies entirely in the regime where the three-dimensional lowest Landau-level (3D-LLL) approximation is valid and both systems present a very small shift in the specific heat anomaly with increasing field. The irreversibility line, defined as the onset of diamagnetic response, is very rapidly shifted toward lower temperatures in NdFeAs(O,F) but remains close to the C-p anomaly in (Ba,K)Fe2As2. These measurements strongly suggest that a vortex-liquid phase occupies a large portion of the mixed-state phase diagram of NdFeAs(O,F) but not in (Ba,K)Fe2As2. This difference can be attributed to different Ginzburg numbers Gi, the latter being about 100 times larger in NdFeAs(O,F) than in (Ba,K)Fe2As2. The angular dependence of the upper critical field, derived from 3D-LLL scaling of the irreversibility lines, presents deviations from the standard 3D effective-mass model in both materials with an anisotropy being about three times smaller in (Ba,K)Fe2As2 (gamma similar to 2.5) than in Nd(F,O)FeAs (gamma similar to 7.5). C1 [Kacmarcik, J.; Marcenat, C.] CEA, Inst Nanosci & Cryogenie, SPSMS, LATEQS, F-38054 Grenoble 9, France. [Kacmarcik, J.; Pribulova, Z.] Ctr Low Temp Phys IEP SAS, Kosice 04353, Slovakia. [Kacmarcik, J.; Pribulova, Z.] FS UPJS, Kosice 04353, Slovakia. [Klein, T.; Pribulova, Z.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Klein, T.] Inst Univ France, F-38041 Grenoble 9, France. [Klein, T.] Univ Grenoble 1, F-38041 Grenoble 9, France. [van der Beek, C. J.; Konczykowski, M.] Ecole Polytech, CNRS, UMR7642, Solides Irradies Lab, F-91128 Palaiseau, France. [van der Beek, C. J.; Konczykowski, M.] CCEA DSM IRAMIS, F-91128 Palaiseau, France. [Budko, S. L.; Tillman, M.; Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Budko, S. L.; Tillman, M.; Ni, N.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kacmarcik, J (reprint author), CEA, Inst Nanosci & Cryogenie, SPSMS, LATEQS, 17 Rue Martyrs, F-38054 Grenoble 9, France. RI Canfield, Paul/H-2698-2014 FU Department of Energy; Basic Energy Sciences [DE-AC02-07CH11358]; Slovak Research and Development Agency [LPP-0101-06]; 6th Framework Programme [MTKD-CT-2005-03002]; ANRMICROMAG [BLAN07-2]; [26280] FX We are most obliged to V. Mosser of ITRON, Montrouge, for the development of the Hall sensors used in this study. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Z. P. thanks the Slovak Research and Development Agency under the Contract No. LPP-0101-06. C. M. and J. K. thank the 6th Framework Programme MCA Transfer of Knowledge project under ExtreM No. MTKD-CT-2005-03002. T. K., Z. P., and M. K. thank the ANRMICROMAG BLAN07-2 under Contract No. 26280 for financial support. NR 42 TC 19 Z9 19 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014515 DI 10.1103/PhysRevB.80.014515 PG 7 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100106 ER PT J AU Kantor, I Dubrovinsky, L McCammon, C Steinle-Neumann, G Kantor, A Skorodumova, N Pascarelli, S Aquilanti, G AF Kantor, I. Dubrovinsky, L. McCammon, C. Steinle-Neumann, G. Kantor, A. Skorodumova, N. Pascarelli, S. Aquilanti, G. TI Short-range order and Fe clustering in Mg1-xFexO under high pressure SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; high-pressure effects; high-temperature effects; iron; iron compounds; magnesium compounds; metal clusters; Mossbauer effect; short-range order; solid solutions ID ISOMER-SHIFT; SPIN-TRANSITION; MOSSBAUER-SPECTROSCOPY; LOWER MANTLE; FERRIC-IRON; FE-57; SPECTRA; FIELD; FERROPERICLASE; TEMPERATURE AB By combining high-pressure and high-temperature Moumlssbauer spectroscopic studies of (Mg,Fe)O with results of ab initio simulations, several important properties of this material were established. Under high pressure (Mg,Fe)O shows changes in the short-range order with the tendency to form iron clusters. These changes were found to be irreversible, implying sluggish kinetics of these processes at ambient conditions. The pressure-induced spin crossover is interpreted here as a gradual noncooperative transition. The onset and width of spin crossover depends, therefore, not only on pressure, temperature, and composition, but also on short-range order in the FeO-MgO solid solution. C1 [Kantor, I.; Dubrovinsky, L.; McCammon, C.; Steinle-Neumann, G.; Kantor, A.] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Skorodumova, N.] Uppsala Univ, Condensed Matter Theory Grp, S-75105 Uppsala, Sweden. [Pascarelli, S.; Aquilanti, G.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Kantor, I (reprint author), Univ Chicago, CARS, Argonne Natl Lab, Argonne, IL 60439 USA. EM kantor@cars.uchicago.edu RI McCammon, Catherine/B-4983-2010; Steinle-Neumann, Gerd/D-8805-2012 OI McCammon, Catherine/0000-0001-5680-9106; FU German Science Foundation (DFG); European Science Foundation FX We acknowledge the German Science Foundation (DFG) and the European Science Foundation (EuroMinSci project) for financial support of this study. NR 64 TC 24 Z9 24 U1 5 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014204 DI 10.1103/PhysRevB.80.014204 PG 12 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100051 ER PT J AU Kini, RN Kent, AJ Henini, M AF Kini, R. N. Kent, A. J. Henini, M. TI Phonon-assisted tunneling in a superlattice in an applied magnetic field SO PHYSICAL REVIEW B LA English DT Article ID GAAS/GA0.65AL0.35AS SUPERLATTICES; ELECTRIC-FIELD AB We have studied acoustic phonon-assisted tunneling in a weakly coupled GaAs/AlAs superlattice (SL) in a magnetic field. At zero magnetic field, the phonon-assisted tunnel current, delta I, exhibits maximum at a particular value of the Stark splitting, Delta(max), which depends on the spectral distribution of the nonequilibrium phonons. Applying the field (B <= 7 T) perpendicular to the SL growth direction, z, had no significant effect on the phonon-assisted tunneling current compared to B=0. However, in a magnetic field parallel to z, Delta(max) is proportional to B and weakly dependent on the phonon spectrum. This behavior, which we explain in terms of the momentum selection rules for phonon-assisted transitions in a magnetically quantized electron system, suggests that phonon amplification in the SL can be tuned by the magnetic field. C1 [Kini, R. N.; Kent, A. J.; Henini, M.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. RP Kini, RN (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM rajeev.kini@nrel.gov RI Kini, Rajeev/D-2342-2009; Henini, Mohamed/E-8520-2012; OI Kini, Rajeev/0000-0002-3305-9346; Henini, Mohamed/0000-0001-9414-8492; Kent, Anthony/0000-0002-2391-6869 FU Engineering and Physical Sciences Research Council of the U. K. FX The authors would like to thank B. Glavin for helpful discussions, and the Engineering and Physical Sciences Research Council of the U. K. for supporting this work. NR 15 TC 1 Z9 2 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035335 DI 10.1103/PhysRevB.80.035335 PG 5 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800107 ER PT J AU Kogan, VG Martin, C Prozorov, R AF Kogan, V. G. Martin, C. Prozorov, R. TI Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor SO PHYSICAL REVIEW B LA English DT Article DE free energy; impurities; magnesium compounds; silicon alloys; specific heat; superconducting energy gap; superfluidity; vanadium alloys ID STATE; MGB2; IMPURITIES; MODEL; GAP AB The two gaps in a two-band clean s-wave superconductor are evaluated self-consistently within the quasiclassical Eilenberger weak-coupling formalism with two in-band and one interband pairing potentials. Superfluid density, free energy, and specific heat are given in the form amenable for fitting the experimental data. Well-known two-band MgB(2) and V(3)Si superconductors are used to test the developed approach. The pairing potentials obtained from the fit of the superfluid density data in MgB(2) crystal were used to calculate temperature-dependent specific heat C(T). The calculated C(T) compares well with the experimental data. Advantages and validity of this, which we call the "gamma model," are discussed and compared with the commonly used empirical (and not self-consistent) "alpha model." Correlation between the sign of the interband coupling and the signs of the two order parameters is discussed. Suppression of the critical temperature by the interband scattering is evaluated and shown to be severe for the interband repulsion as compared to the attraction. The data on a strong T(c) suppression in MgB(2) crystals by impurities suggest that the order parameters on two effective bands of this material may have opposite signs, i.e., may have the s(+/-) structure similar to proposals for iron-based pnictide superconductors. C1 [Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM kogan@ameslab.gov; cmartin@ameslab.gov; prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX We thank R. T. Gordon and H. Kim for help with the experiments, J. Karpinski for MgB2, and D. K. Christen for V3Si single crystals, P. C. Canfield, A. Carrington, A. V. Chubukov, S. L. Bud'ko, A. J. Legett, I. I. Mazin, J. Schmalian, M. A. Tanatar, and Z. Tesanovic for interest and discussions. Work at the Ames Laboratory is supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support of Alfred P. Sloan Foundation. NR 29 TC 80 Z9 80 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014507 DI 10.1103/PhysRevB.80.014507 PG 8 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100098 ER PT J AU Kong, BD Paul, S Nardelli, MB Kim, KW AF Kong, B. D. Paul, S. Nardelli, M. Buongiorno Kim, K. W. TI First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene SO PHYSICAL REVIEW B LA English DT Article ID PHONONS AB Using calculations from first principles, we investigate the lattice thermal conductivity of ideal monolayer and bilayer graphenes. Our result estimates that the intrinsic thermal conductivity of both materials is around 2200 W m(-1) K-1 at 300 K, a value close to the one observed theoretically and experimentally in graphite along the basal plane. It also illustrates the expected T-1 dependence at higher temperatures. The little variation between monolayer and bilayer thermal conductivities suggests that the number of layers may not affect significantly the in-plane thermal properties of these systems. The intrinsic thermal conductivity also appears to be nearly isotropic for graphene. C1 [Kong, B. D.; Kim, K. W.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. [Paul, S.; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, M. Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Kong, BD (reprint author), N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. EM kwk@ncsu.edu RI Buongiorno Nardelli, Marco/C-9089-2009; KONG, BYOUNG DON/A-2186-2012 OI KONG, BYOUNG DON/0000-0003-4072-4399 FU NERC/NIST SWAN-NRI; DARPA/HRL CERA; U. S. Department of Energy [DE-AC0500OR22725] FX This work was supported, in part, by the NERC/NIST SWAN-NRI and the DARPA/HRL CERA programs. M. B. N. wishes to acknowledge partial support from the Office of Basic Energy Sciences, U. S. Department of Energy at Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with UT-Battelle, LLC. NR 20 TC 89 Z9 90 U1 8 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 033406 DI 10.1103/PhysRevB.80.033406 PG 4 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800027 ER PT J AU Lazarevic, N Popovic, ZV Hu, RW Petrovic, C AF Lazarevic, N. Popovic, Z. V. Hu, Rongwei Petrovic, C. TI Raman scattering study of the Fe1-xCoxSb2 and Fe1-xCrxSb2 (0 < x < 1) single crystals SO PHYSICAL REVIEW B LA English DT Article DE chromium compounds; cobalt compounds; iron compounds; Raman spectra; semiconductor doping; space groups; X-ray diffraction ID FESB2; GAP AB Polarized Raman scattering spectra of the Fe1-xCoxSb2 and Fe1-xCrxSb2 (0 < x < 1) single crystals are measured at room temperature in the 80-200 cm(-1) wavenumber range. All six Raman-active modes, predicted by factor-group analysis, are experimentally observed and assigned. We also analyzed energy and linewidth changes for all six Raman-active modes caused by doping. C1 [Lazarevic, N.; Popovic, Z. V.] Inst Phys, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Hu, Rongwei] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Lazarevic, N (reprint author), Inst Phys, Ctr Solid State Phys & New Mat, Pregrevica 118, Belgrade 11080, Serbia. RI Lazarevic, Nenad/C-3254-2012; Hu, Rongwei/E-7128-2012; Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU Serbian Ministry of Science and Technological Development [141047]; U. S. Department of Energy by Brookhaven Science Associates [DE-Ac02-98CH10886] FX We thank Myron Strongin for help with the paper. This work was supported by the Serbian Ministry of Science and Technological Development under Project No. 141047. Part of this work was carried out at the Brookhaven National Laboratory which is operated for the Office of Basic Energy Sciences, U. S. Department of Energy by Brookhaven Science Associates (Grant No. DE-Ac02-98CH10886). NR 16 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014302 DI 10.1103/PhysRevB.80.014302 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100053 ER PT J AU Lee, H Park, E Park, T Sidorov, VA Ronning, F Bauer, ED Thompson, JD AF Lee, Hanoh Park, Eunsung Park, Tuson Sidorov, V. A. Ronning, F. Bauer, E. D. Thompson, J. D. TI Pressure-induced superconducting state of antiferromagnetic CaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; calcium compounds; electrical resistivity; fluctuations in superconductors; iron compounds; magnetic susceptibility; type II superconductors ID LAYERED QUATERNARY COMPOUND AB The antiferromagnet CaFe2As2 does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibility under quasihydrostatic pressure, however, we find that a substantial volume fraction of the sample is superconducting in a narrow pressure range where collapsed tetragonal and orthorhombic structures coexist. At higher pressures, the collapsed tetragonal structure is stabilized with the boundary between this structure and the phase of coexisting structures strongly dependent on pressure history. Fluctuations in magnetic degrees of freedom in the phase of coexisting structures appear to be important for superconductivity. C1 [Lee, Hanoh; Park, Tuson; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, Eunsung; Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Sidorov, V. A.] Vereshchagin Inst High Pressure Phys, Troitsk 142190, Russia. RP Lee, H (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; Mushiake, Maki/A-2925-2012; OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy/Office of Science; Los Alamos LDRD program; KOSEF [2009-0058687]; Korea government (MEST); Russian Foundation for Basic Research [09-02-00336] FX Work at Los Alamos was performed under the auspices of the U.S. Department of Energy/Office of Science and supported by the Los Alamos LDRD program. T. P. acknowledges support from KOSEF (Grant No. 2009-0058687) funded by the Korea government (MEST). V. A. S. acknowledges support from the Russian Foundation for Basic Research (Grant No. 09-02-00336). NR 43 TC 47 Z9 47 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024519 DI 10.1103/PhysRevB.80.024519 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500098 ER PT J AU Li, SL de la Cruz, C Huang, Q Chen, GF Xia, TL Luo, JL Wang, NL Dai, PC AF Li, Shiliang de la Cruz, Clarina Huang, Q. Chen, G. F. Xia, T. -L. Luo, J. L. Wang, N. L. Dai, Pengcheng TI Structural and magnetic phase transitions in Na1-delta FeAs SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; crystal structure; crystal symmetry; exchange interactions (electron); high-temperature superconductors; iron compounds; magnetic structure; neutron diffraction; sodium compounds; solid-state phase transformations ID SUPERCONDUCTIVITY; LIFEAS AB We use neutron scattering to study the spin and lattice structures of single crystal and powder samples of Na1-delta FeAs (T-c=23 K). Upon cooling from room temperature, the system goes through a series of phase transitions: first changing the crystal symmetry from tetragonal to orthorhombic at 49 K, then ordering antiferromagnetically with a spin structure similar to that of LaFeAsO and a small moment (0.09 +/- 0.04 mu(B)), and finally becoming superconducting below about 23 K. These results confirm that antiferromagnetic order is ubiquitous for the parent compounds of the iron arsenide superconductors and suggest that the separated structural and magnetic phase-transition temperatures are due to the reduction in the c-axis exchange coupling of the system. C1 [Li, Shiliang; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Li, Shiliang; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Li, Shiliang; de la Cruz, Clarina; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [de la Cruz, Clarina; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Huang, Q.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, G. F.; Xia, T. -L.] Remin Univ China, Dept Phys, Beijing 100872, Peoples R China. RP Li, SL (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100190, Peoples R China. EM slli@aphy.iphy.ac.cn; daip@ornl.gov RI Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012; dela Cruz, Clarina/C-2747-2013; Xia, Tian-Long/N-4467-2016 OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz, Clarina/0000-0003-4233-2145; FU U.S. NSF [DMR-0756568]; U.S. DOE BES [DE-FG02-05ER46202] FX We thank Jiangping Hu, J. A. Fernandez-Baca, Tao Xiang, and Zhong-Yi Lu for helpful discussions. This work is supported by the U.S. NSF (Contract No. DMR-0756568), by the U.S. DOE BES (Contract No. DE-FG02-05ER46202), and by the U. S. DOE, Division of Scientific User Facilities. The work in IOP is supported by the CAS and MOST. NR 26 TC 111 Z9 111 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020504 DI 10.1103/PhysRevB.80.020504 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500016 ER PT J AU Lin, H Bozin, ES Billinge, SJL Androulakis, J Malliakas, CD Lin, CH Kanatzidis, MG AF Lin, He Bozin, E. S. Billinge, S. J. L. Androulakis, J. Malliakas, C. D. Lin, C. H. Kanatzidis, M. G. TI Phase separation and nanostructuring in the thermoelectric material PbTe1-xSx studied using the atomic pair distribution function technique SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; PROFILE REFINEMENT; RIETVELD METHOD; PBTE; TEMPERATURE; TELLURIUM; SULPHUR; SPACE; PBS AB The average and local structures of the (PbTe)(1-x)(PbS)(x) system of thermoelectric materials has been studied using the Rietveld and atomic pair distribution function methods. Samples with 0.25 <= x are macroscopically phase separated. Phase separation was suppressed in a quenched x = 0.5 sample which, nonetheless, exhibited a partial spinodal decomposition. The promising thermoelectric material with x = 0.16 showed intermediate behavior. Combining TEM and bulk scattering data suggests that the sample is a mixture of PbTe-rich material and a partially spinodally decomposed phase similar to the quenched 50% sample. This confirms that, in the bulk, this sample is inhomogeneous on a nanometer length scale, which may account for its enhanced thermoelectric figure of merit. C1 [Lin, He] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Bozin, E. S.; Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Bozin, E. S.; Billinge, S. J. L.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Androulakis, J.; Malliakas, C. D.; Lin, C. H.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Lin, H (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM sb2896@columbia.edu RI Bozin, Emil/E-4679-2011 FU National Science Foundation (NSF) [DMR-0304391, DMR-0703940]; Office of Naval Research; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357, W-7405-Eng-82] FX We acknowledge Pavol Juhas, Ahmad Masadeh, Hyun-Jeong Kim, and Asel Sartbaeva for their valuable assistance with the data collection. Work in the Billinge group was supported in part by National Science Foundation (NSF) under Grants No. DMR-0304391 and No. DMR-0703940 and in the Kanatzidis group by the Office of Naval Research. Data were collected at the 6IDD beamline in the Midwest Universities Collaborative Access Team (MUCAT) sector at the APS. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. The MUCAT sector at the APS is supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, through the Ames Laboratory under Contract No. W-7405-Eng-82. NR 36 TC 12 Z9 12 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045204 DI 10.1103/PhysRevB.80.045204 PG 8 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100052 ER PT J AU Lin, WC Gai, Z Gao, L Shen, J Hsu, PJ Yen, HY Lin, MT AF Lin, Wen-Chin Gai, Zheng Gao, Lan Shen, Jian Hsu, Pin-Jui Yen, Hong-Yu Lin, Minn-Tsong TI Nanoscale magnetic configurations of supported Fe nanoparticle assemblies studied by scanning electron microscopy with spin analysis SO PHYSICAL REVIEW B LA English DT Article DE iron; magnetic domains; magnetic particles; magnetic thin films; nanoparticles; scanning electron microscopy ID THIN ALUMINA FILM; FORCE MICROSCOPY; ARRAYS; CO AB Microscopic magnetic behavior of supported nanoparticles is strongly correlated with their functionalities, especially in data storage and biological applications, but still needs to be clarified. We studied nanoscale magnetic configurations of Fe nanoparticle assemblies using scanning electron microscopy with polarization analysis. The flux closure domain configurations and the reduced magnetic correlation length (similar to 250 nm), relative to the conventional thin films, are determined. Quantitative analysis indicates the magnetic interaction energy to be 80-99 meV, close to the magnetic dipolar coupling energy. These direct observations evidence the aforereported simulations and will be valuable for fabricating magnetic nanoparticle assemblies with the desired magnetic properties. C1 [Lin, Wen-Chin] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. [Lin, Wen-Chin; Hsu, Pin-Jui; Yen, Hong-Yu; Lin, Minn-Tsong] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Gai, Zheng; Gao, Lan; Shen, Jian] Oak Ridge Natl Lab, Ctr Nanophase, Div Mat Sci, Oak Ridge, TN 37831 USA. [Gai, Zheng; Gao, Lan; Shen, Jian] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, Minn-Tsong] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. RP Lin, WC (reprint author), Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. EM wclin@ntnu.edu.tw; mtlin@phys.ntu.edu.tw RI Lin, Minn-Tsong/F-7937-2012; Lin, Wen-Chin/I-3912-2012; Gai, Zheng/B-5327-2012 OI Lin, Minn-Tsong/0000-0001-7735-4219; Gai, Zheng/0000-0002-6099-4559 FU National Science Council of Taiwan [NSC 96-2120-M-002-011, NSC 95-2112-M-002-051-MY3, NSC 96-2112-M-003-015-MY3]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the National Science Council of Taiwan under Grants No. NSC 96-2120-M-002-011, No. NSC 95-2112-M-002-051-MY3, and No. NSC 96-2112-M-003-015-MY3. A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 24 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024407 DI 10.1103/PhysRevB.80.024407 PG 5 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500058 ER PT J AU Ma, D Stoica, AD Wang, XL Lu, ZP Xu, M Kramer, M AF Ma, D. Stoica, A. D. Wang, X-L. Lu, Z. P. Xu, M. Kramer, M. TI Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability SO PHYSICAL REVIEW B LA English DT Article DE copper alloys; glass structure; metallic glasses; neutron diffraction; vitrification; X-ray diffraction; zirconium alloys ID PAIR DISTRIBUTION FUNCTION; MEDIUM-RANGE ORDER; X-RAY-DIFFRACTION; CU-ZR SYSTEM; MECHANICAL-PROPERTIES; NEUTRON-DIFFRACTION; SI ALLOYS; LIQUID; MODEL AB We have probed local atomic structure of Zr-Cu metallic glasses using time-of-flight neutron and synchrotron x-ray diffraction techniques with high resolution. Our results provide evidence for a scheme of efficient local atomic packing where atomic clusters encompass multiple types of atoms in the first coordination shell. We also demonstrate experimental evidence of a strong correlation between the number of unlike atom bonds and the glass-forming ability. Our findings may provide insights into a broad range of scientific problems where efficient space filling by packing spheres is essential. C1 [Ma, D.; Stoica, A. D.; Wang, X-L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Xu, M.; Kramer, M.] Ames Lab, Ames, IA 50011 USA. RP Ma, D (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM dongma@ornl.gov RI Wang, Xun-Li/C-9636-2010; Ma, Dong/G-5198-2011; Lu, Zhao-Ping/A-2718-2009; Stoica, Alexandru/K-3614-2013 OI Wang, Xun-Li/0000-0003-4060-8777; Ma, Dong/0000-0003-3154-2454; Stoica, Alexandru/0000-0001-5118-0134 FU U.S. Department of Energy [DE-AC0500OR22725]; National Natural Science Foundation of China [50725104]; 973 program [2007CB613903]; Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC0206CH11357] FX This research was supported by the Laboratory Directed Research and Development program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC0500OR22725. Z.P.L. acknowledges the financial support from National Natural Science Foundation of China under Grant No. 50725104 and the 973 program under Contract No. 2007CB613903. Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. The high-energy x ray work at the MUCAT sector of the APS was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC0206CH11357. NR 37 TC 44 Z9 46 U1 3 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014202 DI 10.1103/PhysRevB.80.014202 PG 6 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100049 ER PT J AU Martin, C Gordon, RT Tanatar, MA Kim, H Ni, N Bud'ko, SL Canfield, PC Luo, H Wen, HH Wang, Z Vorontsov, AB Kogan, VG Prozorov, R AF Martin, C. Gordon, R. T. Tanatar, M. A. Kim, H. Ni, N. Bud'ko, S. L. Canfield, P. C. Luo, H. Wen, H. H. Wang, Z. Vorontsov, A. B. Kogan, V. G. Prozorov, R. TI Nonexponential London penetration depth of external magnetic fields in superconducting Ba1-xKxFe2As2 single crystals SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; high-temperature superconductors; magnetic anisotropy; penetration depth (superconductivity); potassium compounds; superconducting critical field ID GAPS AB We have studied the in- and out-of-plane magnetic penetration depths in the hole-doped iron-based superconductor Ba1-xKxFe2As2 (T-c approximate to 30 K). Single crystals grown from different fluxes and by different groups showed nearly identical results. The in-plane London penetration depth lambda(ab) is not exponentially saturating at low temperature, as would be expected from a fully gapped superconductor. Instead, lambda(ab)(T) shows a power-law behavior, lambda proportional to T-n (n approximate to 2), down to T approximate to 0.02T(c), similar to the electron-doped Ba(Fe1-xCox)(2)As-2. The penetration depth anisotropy gamma(lambda)=lambda(c)(T)/lambda(ab)(T) increases upon cooling, opposite to the trend observed in the anisotropy of the upper critical field, gamma(xi)=H-c2(perpendicular to c)(0)/H-c2(c)(0). These are universal characteristics of both the electron- and hole-doped 122 systems, suggesting unconventional multigap superconductivity. The behavior of the in-plane superfluid density rho(ab)(T) is discussed in light of existing theoretical models proposed for the iron pnictide superconductors. C1 [Martin, C.; Gordon, R. T.; Tanatar, M. A.; Kim, H.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Kogan, V. G.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Martin, C.; Gordon, R. T.; Tanatar, M. A.; Kim, H.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Kogan, V. G.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Luo, H.; Wen, H. H.; Wang, Z.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Vorontsov, A. B.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Luo, Huiqian/F-4049-2012; Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014; Wang, Zhaosheng/G-5162-2016 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy, Basic Energy Sciences [DE-AC0207CH11358] FX We thank A. Chubukov, I. I. Mazin, J. Schmallian, and M. Vavilov for stimulating discussions and A. Carrington for discussions and sharing unpublished data. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC0207CH11358. M.A.T. acknowledges continuing cross appointment with the Institute of Surface Chemistry, National Ukrainian Academy of Sciences. NR 33 TC 72 Z9 72 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020501 DI 10.1103/PhysRevB.80.020501 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500013 ER PT J AU Meier, H Kharitonov, MY Efetov, KB AF Meier, Hendrik Kharitonov, Maxim Yu. Efetov, Konstantin B. TI Anomalous Hall effect in granular ferromagnetic metals and effects of weak localization SO PHYSICAL REVIEW B LA English DT Article ID BERRY-PHASE; CONDUCTIVITY; ABSENCE AB We theoretically investigate the anomalous Hall effect in a system of dense-packed ferromagnetic grains in the metallic regime. Using the formalism recently developed for the conventional Hall effect in granular metals, we calculate the residual anomalous Hall conductivity sigma(xy) and resistivity rho(xy) and weak localization corrections to them for both skew-scattering and side-jump mechanisms. We find that the scaling relation between rho(xy) and the longitudinal resistivity rho(xx) of the array does not hold, regardless of whether it is satisfied for the specific resistivities of the grain material or not. The weak localization corrections, however, are found to be in agreement with those for homogeneous metals. We discuss recent experimental data on the anomalous Hall effect in polycrystalline iron films in view of the obtained results. C1 [Meier, Hendrik; Kharitonov, Maxim Yu.; Efetov, Konstantin B.] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44780 Bochum, Germany. [Kharitonov, Maxim Yu.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Meier, H (reprint author), Ruhr Univ Bochum, Inst Theoret Phys 3, D-44780 Bochum, Germany. RI Efetov, Konstantin/H-8852-2013 FU SFB FX Financial support of SFB Transregio 12 is greatly appreciated. NR 30 TC 12 Z9 12 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045122 DI 10.1103/PhysRevB.80.045122 PG 10 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100046 ER PT J AU Mlinar, V Zunger, A AF Mlinar, Vladan Zunger, Alex TI Spectral barcoding of quantum dots: Deciphering structural motifs from the excitonic spectra SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; NANOSTRUCTURES; SPECTROSCOPY; ENERGY AB Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the "spectral barcoding" method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features. C1 [Mlinar, Vladan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Zunger, Alex/A-6733-2013 FU U.S. Department of Energy, Office of Science [DE-AC36-08GO28308] FX The authors thank P. A. Dalgarno and R. J. Warburton for their permission to reproduce measured emission spectra in Fig. 1(a) and R. J. Warburton for discussions and comments on the paper. This work was funded by the U.S. Department of Energy, Office of Science under NREL Contract No. DE-AC36-08GO28308. NR 34 TC 13 Z9 13 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035328 DI 10.1103/PhysRevB.80.035328 PG 7 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800100 ER PT J AU Muniz, RA Haas, S Levi, AFJ Grigorenko, I AF Muniz, Rodrigo A. Haas, Stephan Levi, A. F. J. Grigorenko, Ilya TI Plasmonic excitations in tight-binding nanostructures SO PHYSICAL REVIEW B LA English DT Article ID SMALL METALLIC PARTICLES AB We explore the collective electromagnetic response in atomic clusters of various sizes and geometries. Our aim is to understand, and hence to control, their dielectric response based on a fully quantum-mechanical description which captures accurately their relevant collective modes. The electronic energy levels and wave functions, calculated within the tight-binding model, are used to determine the nonlocal dielectric response function. It is found that the system shape, the electron filling, and the driving frequency of the external electric field strongly control the resonance properties of the collective excitations in the frequency and spatial domains. Furthermore, it is shown that one can design spatially localized collective excitations by properly tailoring the nanostructure geometry. C1 [Muniz, Rodrigo A.; Haas, Stephan] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Levi, A. F. J.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Theoret Div T11, Los Alamos, NM 87545 USA. [Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Muniz, RA (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. EM rmuniz@usc.edu RI Grigorenko, Ilya/B-5616-2009; Levi, Anthony/B-4112-2009 FU Department of Energy [DE-FG0206ER46319] FX We would like to thank Gene Bickers, Richard Thompson, Vitaly Kresin, Aiichiro Nakano, and Yung-Ching Liang for useful conversations. We also acknowledge financial support by the Department of Energy (Grant No. DE-FG0206ER46319). The numerical computations were carried out on the University of Southern California high- performance computer cluster. NR 25 TC 10 Z9 11 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045413 DI 10.1103/PhysRevB.80.045413 PG 6 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100099 ER PT J AU Nagle, KP Seidler, GT Shirley, EL Fister, TT Bradley, JA Brown, FC AF Nagle, K. P. Seidler, G. T. Shirley, E. L. Fister, T. T. Bradley, J. A. Brown, F. C. TI Final-state symmetry of Na 1s core-shell excitons in NaCl and NaF SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-ABSORPTION; ELECTRON-HOLE INTERACTION; AB-INITIO CALCULATION; FAST CHARGED-PARTICLES; RAMAN-SCATTERING; PHOTOELECTRON-SPECTROSCOPY; OPTICAL-ABSORPTION; SODIUM-HALIDES; INELASTIC-COLLISIONS; BONDING CHANGES AB We report measurements of the Na 1s contribution to the nonresonant inelastic x-ray scattering (NRIXS) from NaCl and NaF. Prior x-ray absorption studies have observed two pre-edge excitons in both materials. The momentum-transfer dependence (q dependence) of the measured NRIXS cross section and of real-space full multiple scattering and Bethe-Salpeter calculations determine that the higher-energy core excitons are s type for each material. The lower-energy core excitons contribute at most weakly to the NRIXS signal and we propose that these may be surface core excitons, as have been observed in several other alkali halides. The analysis of the orbital angular momentum of these features leads to a discussion of the limited sensitivity of NRIXS measurements to d-type final states when investigating 1s initial states. In this case the s- and p-type final density of states can be characterized by measurements at a small number of momentum transfers. This is in contrast to the case of more complex initial states for which measurements at a large number of momentum transfers are needed to separate the rich admixture of accessible and contributing final-state symmetries. C1 [Nagle, K. P.; Seidler, G. T.; Fister, T. T.; Bradley, J. A.; Brown, F. C.] Univ Washington, Dept Phys, Seattle, WA 98105 USA. [Shirley, E. L.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. [Fister, T. T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA. EM seidler@phys.washington.edu FU U.S. Department of Energy, Basic Energy Sciences [DE-FGE03-97ER45628, W-31-109ENG-38, N0001405-1-0843, DE-FG03-97ER45629, DE-AC02-06CH11357]; Pacific Northwest National Laboratory; University of Washington; Natural Sciences and Engineering Research Council of Canada FX This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contracts No. DE-FGE03-97ER45628 and No. W-31-109ENG-38, Office of Naval Research under Grant No. N0001405-1-0843, and the Summer Research Institute program at the Pacific Northwest National Laboratory. The operation of Sector 20 PNC-CAT/XOR is supported by the U. S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-FG03-97ER45629, the University of Washington, and grants from the Natural Sciences and Engineering Research Council of Canada. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. We thank Arvo Kikas, Micah Prange, Joshua Kas, and John Rehr for useful discussions. NR 100 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045105 DI 10.1103/PhysRevB.80.045105 PG 9 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100029 ER PT J AU Ni, N Thaler, A Kracher, A Yan, JQ Bud'ko, SL Canfield, PC AF Ni, N. Thaler, A. Kracher, A. Yan, J. Q. Bud'ko, S. L. Canfield, P. C. TI Phase diagrams of Ba(Fe1-xMx)(2)As-2 single crystals (M=Rh and Pd) SO PHYSICAL REVIEW B LA English DT Article DE barium alloys; crystal structure; doping; electrical resistivity; iron alloys; magnetic transitions; magnetisation; palladium alloys; phase diagrams; rhodium alloys; superconducting materials; superconducting transition temperature; thermodynamics ID SUPERCONDUCTIVITY AB Single crystalline Ba(Fe1-xMx)(2)As-2 (M=Rh,Pd) series have been grown and characterized by structural, thermodynamic, and transport measurements. These measurements show that the structural/magnetic phase transitions, found in pure BaFe2As2 at 134 K, are suppressed monotonically by the doping and that superconductivity can be stabilized over a domelike region. Temperature-composition (T-x) phase diagrams based on electrical transport and magnetization measurements are constructed and compared to those of the Ba(Fe1-xMx)(2)As-2 (M=Co,Ni) series. Despite the generic difference between 3d and 4d shells and the specific, conspicuous differences in the changes to the unit cell parameters, the effects of Rh doping are exceptionally similar to the effects of Co doping and the effects of Pd doping are exceptionally similar to the effects of Ni doping. These data show that whereas the structural/antiferromagnetic phase-transition temperatures can be parameterized by x and the superconducting transition temperature can be parameterized by some combination of x and e, the number of extra electrons associated with the M doping, the transition temperatures of 3d- and 4d-doped BaFe2As2 cannot be simply parameterized by the changes in the unit-cell dimensions or their ratios. C1 [Ni, N.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Ni, N (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.We would like to thank M. Tanatar, C. Martin, E. Colombier, E. D. Mun, M. E. Tillman, S. Kim, and X. Lin for help and useful discussions. NR 25 TC 120 Z9 122 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024511 DI 10.1103/PhysRevB.80.024511 PG 7 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500090 ER PT J AU Pantea, C Stroe, I Ledbetter, H Betts, JB Zhao, Y Daemen, LL Cynn, H Migliori, A AF Pantea, C. Stroe, I. Ledbetter, H. Betts, J. B. Zhao, Y. Daemen, L. L. Cynn, H. Migliori, A. TI Elastic constants of osmium between 5 and 300 K SO PHYSICAL REVIEW B LA English DT Article DE Debye temperature; elastic constants; Gruneisen coefficient; hardness; osmium; Poisson ratio ID TEMPERATURE-DEPENDENCE; BULK-MODULUS; ULTRASOUND; CRYSTALS; HARD AB Using two measurement methods, pulse-echo ultrasound and resonance ultrasound spectroscopy, we measured the elastic constants of both monocrystal and polycrystal osmium between 5 and 300 K. Our measurements help to resolve the current measurement-and-theory controversy concerning whether osmium's bulk modulus exceeds diamond's. It does not at any temperature (for osmium, we find a zero-temperature bulk modulus of 410 GPa and a 300 K value of 405 GPa, while diamond's value being 442 GPa). From the zero-temperature elastic constants, we extract a Debye temperature of 477 K. From Gruumlneisen's first rule, we extract a Gruumlneisen parameter of 2.1, agreeing well with handbook values. Osmium shows near elastic anisotropy and small elastic constant changes with temperature (for example, the bulk modulus increases only about 1.2% upon cooling through the studied temperature interval). In all cases, the C(ij)(T) measurements agree well with an Einstein-oscillator model. We consider especially the Poisson ratio, which is low and anisotropic (nu(12)=0.242, nu(13)=0.196) and suggests some covalent interatomic bonding, which may account for osmium's extreme high hardness and the departure of the 5d elements from Friedel's parabolic bulk-modulus/atomic-number model. C1 [Pantea, C.; Stroe, I.; Betts, J. B.; Zhao, Y.; Daemen, L. L.; Migliori, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ledbetter, H.] Univ Colorado, Boulder, CO 80309 USA. [Cynn, H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Pantea, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Pantea, Cristian/D-4108-2009; Stroe, Izabela/B-3790-2010; Lujan Center, LANL/G-4896-2012; OI Pantea, Cristian/0000-0002-0805-8923 NR 39 TC 18 Z9 18 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024112 DI 10.1103/PhysRevB.80.024112 PG 10 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500030 ER PT J AU Parshall, D Lokshin, KA Niedziela, J Christianson, AD Lumsden, MD Mook, HA Nagler, SE McGuire, MA Stone, MB Abernathy, DL Sefat, AS Sales, BC Mandrus, DG Egami, T AF Parshall, D. Lokshin, K. A. Niedziela, Jennifer Christianson, A. D. Lumsden, M. D. Mook, H. A. Nagler, S. E. McGuire, M. A. Stone, M. B. Abernathy, D. L. Sefat, A. S. Sales, B. C. Mandrus, D. G. Egami, T. TI Spin excitations in BaFe1.84Co0.16As2 superconductor observed by inelastic neutron scattering SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; Fermi surface; iron compounds; neutron diffraction; spin density waves; superconducting materials AB Superconductivity appears to compete against the spin-density wave in Fe pnictides. However, optimally cobalt-doped samples show a quasi-two-dimensional spin excitation centered at the (0.5, 0.5, L) wave vector, "the spin-resonance peak," which is strongly tied to the onset of superconductivity. By inelastic neutron scattering on single crystals we show the similarities and differences of the spin excitations in BaFe1.84Co0.16As2 with respect to the spin excitations in the high-temperature superconducting cuprates. As in the cuprates, the resonance occurs as an enhancement to a part of the spin-excitation spectrum, which extends to higher-energy transfer and higher temperature. However, unlike in the cuprates, the resonance peak in this compound is asymmetric in energy. C1 [Parshall, D.; Niedziela, Jennifer; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lokshin, K. A.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Niedziela, Jennifer; Christianson, A. D.; Lumsden, M. D.; Mook, H. A.; Nagler, S. E.; McGuire, M. A.; Stone, M. B.; Abernathy, D. L.; Sefat, A. S.; Sales, B. C.; Mandrus, D. G.; Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parshall, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI McGuire, Michael/B-5453-2009; Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Mandrus, David/H-3090-2014; christianson, andrew/A-3277-2016; BL18, ARCS/A-3000-2012; Sefat, Athena/R-5457-2016; Lumsden, Mark/F-5366-2012 OI McGuire, Michael/0000-0003-1762-9406; Nagler, Stephen/0000-0002-7234-2339; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; christianson, andrew/0000-0003-3369-5884; Sefat, Athena/0000-0002-5596-3504; Lumsden, Mark/0000-0002-5472-9660 FU Department of Energy EPSCoR Implementation [DE-FG02-08ER46528]; Scientific User Facilities Division; Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy FX The authors are grateful to D. J. Singh, I. I. Mazin, T. Yildirim, N. Mannella, and D. J. Scalapino for stimulating and useful discussions. The work at the University of Tennessee was supported by the Department of Energy EPSCoR Implementation Grant No. DE-FG02-08ER46528. The work at the Oak Ridge National Laboratory was supported by the Scientific User Facilities Division and by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy. The ARCS data analysis was performed using the MSLICE program. NR 24 TC 12 Z9 12 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 012502 DI 10.1103/PhysRevB.80.012502 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100017 ER PT J AU Patel, U Xiao, ZL Gurevich, A Avci, S Hua, J Divan, R Welp, U Kwok, WK AF Patel, U. Xiao, Z. L. Gurevich, A. Avci, S. Hua, J. Divan, R. Welp, U. Kwok, W. K. TI Magnetoresistance oscillations in superconducting granular niobium nitride nanowires SO PHYSICAL REVIEW B LA English DT Article DE annealing; coherence length; granular materials; granular structure; magnetoresistance; nanotechnology; nanowires; niobium compounds; superconducting materials; superconducting transition temperature ID ONE-DIMENSIONAL SUPERCONDUCTOR; VORTEX LATTICE; THIN-FILMS; FIELD; TRANSITION; WIRES AB We report on magnetoresistance oscillations in superconducting NbN(x) nanowires synthesized through ammonia gas annealing of NbSe(3) precursor nanostructures. Even though the transverse dimensions of the nanowires are much larger than the superconducting coherence length, the voltage-current characteristics of these nanowires at low temperatures are reminiscent of one-dimensional superconductors where quantum phase slips are associated with the origin of dissipation. We show that both the magnetoresistance oscillations and voltage-current characteristics observed in this work result from the granular structure of our nanowires. C1 [Patel, U.; Xiao, Z. L.; Avci, S.; Hua, J.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Patel, U.; Xiao, Z. L.; Hua, J.; Welp, U.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gurevich, A.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Xiao, ZL (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM xiao@anl.gov RI Gurevich, Alex/A-4327-2008; Patel, Umeshkumar/A-8643-2013 OI Gurevich, Alex/0000-0003-0759-8941; Patel, Umeshkumar/0000-0002-8259-1646 FU U. S. Department of Energy [DE-FG02-06ER46334, DE-AC02-06CH11357]; National Science Foundation (NSF) [DMR-0605748] FX This material is based upon work supported by the U. S. Department of Energy under Grant No. DE-FG02-06ER46334 and under Contract No. DE-AC02-06CH11357. S. A. was supported by the National Science Foundation (NSF) under Grant No. DMR-0605748. The nanocontacting and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) and Electron Microscopy Center (EMC), respectively. NR 30 TC 13 Z9 13 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 012504 DI 10.1103/PhysRevB.80.012504 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100019 ER PT J AU Petit, L Svane, A Szotek, Z Temmerman, WM Stocks, GM AF Petit, L. Svane, A. Szotek, Z. Temmerman, W. M. Stocks, G. M. TI Ground-state electronic structure of actinide monocarbides and mononitrides SO PHYSICAL REVIEW B LA English DT Article ID SPIN-DENSITY APPROXIMATION; NACL-TYPE COMPOUNDS; MEAN-FIELD THEORY; URANIUM NITRIDE; CORRELATED ELECTRONS; LIGHT ACTINIDES; FERMI-SURFACE; 5F ELECTRONS; UN; UC AB The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U, Np, Pu, Am, Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f(7)), CmN (f(7)), and AmN (f(6)). The observed sudden increase in lattice parameter from PuN to AmN is found to be related to the localization transition. The calculated valence electron densities of states are in good agreement with photoemission data. C1 [Petit, L.; Svane, A.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Szotek, Z.; Temmerman, W. M.] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Stocks, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Petit, L (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM lpetit@phys.au.dk RI Petit, Leon/B-5255-2008; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Petit, Leon/0000-0001-6489-9922 FU Danish Center for Scientific Computing (DCSC); National Energy Research Scientific Computing Center (NERSC); U.S. Department of Energy FX This research used resources of the Danish Center for Scientific Computing (DCSC) and of the National Energy Research Scientific Computing Center (NERSC). Research supported in part (GMS) by the Division of Materials Science and Engineering, Office of Basic Energy Science, U.S. Department of Energy. NR 53 TC 40 Z9 40 U1 0 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045124 DI 10.1103/PhysRevB.80.045124 PG 8 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100048 ER PT J AU Popescu, V Bester, G Zunger, A AF Popescu, Voicu Bester, Gabriel Zunger, Alex TI Coexistence and coupling of zero-dimensional, two-dimensional, and continuum resonances in nanostructures SO PHYSICAL REVIEW B LA English DT Article ID INAS/GAAS QUANTUM DOTS; ELECTRONIC-STRUCTURE; INFRARED PHOTODETECTORS; STATES; TRANSITIONS; ENERGY; GAAS; SEMICONDUCTORS; SPECTROSCOPY; CRYSTALS AB Quantum dots (QDs) embedded in a matrix exhibit a coexistence of "zero-dimensional" (0D) bound electron and hole states on the dot with "three-dimensional" (3D) continuum states of the surrounding matrix. In epitaxial QDs one encounters also "two-dimensional" (2D) states of a quantum well-like supporting structure (wetting layer). This coexistence of 0D, 2D, and 3D states leads to interesting electronic consequences explored here using multiband atomistic pseudopotential calculations. We distinguish strained dots) InAs in GaAs (and strain-free dots) InAs in GaSb (finding crucial differences: in the former case "potential wings" appear in the electron confining potential in the vicinity of the dot. This results in the appearance of localized electronic states that lie above the threshold of the 3D continuum. Such resonances are "strain-induced localized states") SILSs (appearing in strained systems, whereas in strain-free systems the dot resonances in the continuum are the usual "virtual bound states" (VBSs). The SILSs were found to occur regardless of the thickness of the wetting layer and even in interdiffused dots, provided that the interdiffusion length is small compared to the QD size. Thus, the SILSs are well isolated from the environment by the protective potential wings, whereas the VBSs are strongly interacting. These features are seen in our calculated intraband as well as interband absorption spectra. Furthermore, we show that the local barrier created around the dot by these potential wings suppresses the 0D-2D (dot-wetting layer) hybridization of the electron states. Consequently, in contrast to findings of simple model calculations of envelope function, 0D-to-2D "crossed transitions" (bound hole-to-wetting layer electron) are practically absent because of their spatially indirect character. On the other hand, since no such barrier exists in the hole confining potential, a strong 0D-2D hybridization is present for the hole states. We show this to be the source for the strong 2D-to-0D crossed transitions determined experimentally. C1 [Popescu, Voicu; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bester, Gabriel] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Zunger, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Popescu, Voicu/A-9130-2010; Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013 OI Bester, Gabriel/0000-0003-2304-0817; FU U. S. Department of Energy; Office of Basic Energy Science,; Materials Science and Engineering Division [DE-AC36-08GO28308] FX This work was funded by the U. S. Department of Energy, Office of Basic Energy Science, Materials Science and Engineering Division under Contract No. DE-AC36-08GO28308 to NREL. G. B. would like to thank Robson Ferreira for fruitful discussions on the literature of virtual bound states. We also acknowledge Vladan Mlinar for discussions on interdiffusion and providing the In/Ga diffusion profiles. NR 52 TC 15 Z9 15 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045327 DI 10.1103/PhysRevB.80.045327 PG 12 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100086 ER PT J AU Rahman, R Park, SH Cole, JH Greentree, AD Muller, RP Klimeck, G Hollenberg, LCL AF Rahman, Rajib Park, Seung H. Cole, Jared H. Greentree, Andrew D. Muller, Richard P. Klimeck, Gerhard Hollenberg, Lloyd C. L. TI Atomistic simulations of adiabatic coherent electron transport in triple donor systems SO PHYSICAL REVIEW B LA English DT Article ID NEMO 3-D; QUANTUM DOTS; WAVE-GUIDES; ATOM; SEMICONDUCTORS; PASSAGE AB A solid-state analog of stimulated Raman adiabatic passage can be implemented in a triple-well solid-state system to coherently transport an electron across the wells with exponentially suppressed occupation in the central well at any point of time. Termed coherent-tunneling adiabatic passage (CTAP), this method provides a robust way to transfer quantum information encoded in the electronic spin across a chain of quantum dots or donors. Using large-scale atomistic tight-binding simulations involving over 3.5 x 10(6) atoms, we verify the existence of a CTAP pathway in a realistic solid-state system: gated triple donors in silicon. Realistic gate profiles from commercial tools were combined with tight-binding methods to simulate gate control of the donor to donor tunnel barriers in the presence of crosstalk. As CTAP is an adiabatic protocol, it can be analyzed by solving the time-independent problem at various stages of the pulse justifying the use of time-independent tight-binding methods to this problem. This work also involves the first atomistic treatment to translate the three-state-based quantum-optics type of modeling into a solid-state description beyond the ideal localization assumption. Our results show that a three-donor CTAP transfer, with interdonor spacing of 15 nm can occur on time scales greater than 23 ps, well within experimentally accessible regimes. The method not only provides a tool to guide future CTAP experiments but also illuminates the possibility of system engineering to enhance control and transfer times. C1 [Rahman, Rajib; Park, Seung H.; Klimeck, Gerhard] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. [Cole, Jared H.] Univ Karlsruhe, DFG, CFN, D-76128 Karlsruhe, Germany. [Cole, Jared H.] Univ Karlsruhe, Inst Theoret Festkorperphys, D-76128 Karlsruhe, Germany. [Cole, Jared H.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia. [Muller, Richard P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Klimeck, Gerhard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rahman, R (reprint author), Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. EM rrahman@purdue.edu; lloydch@unimelb.edu.au RI Cole, Jared/G-2992-2010; Hollenberg, Lloyd/B-2296-2010; Greentree, Andrew/A-8503-2008; Klimeck, Gerhard/A-1414-2012; OI Cole, Jared/0000-0002-8943-6518; Greentree, Andrew/0000-0002-3505-9163; Klimeck, Gerhard/0000-0001-7128-773X; Rahman, Rajib/0000-0003-1649-823X NR 40 TC 20 Z9 20 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035302 DI 10.1103/PhysRevB.80.035302 PG 7 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800074 ER PT J AU Rossell, MD Erni, R Asta, M Radmilovic, V Dahmen, U AF Rossell, M. D. Erni, R. Asta, M. Radmilovic, V. Dahmen, U. TI Atomic-resolution imaging of lithium in Al3Li precipitates SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; aluminium alloys; electron beam effects; energy states; lithium alloys; precipitation; transmission electron microscopy; wave functions ID THRESHOLD DISPLACEMENT ENERGIES; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; POINT-DEFECT; BASIS-SET; ALLOYS; METALS AB Using an aberration-corrected transmission electron microscope, we report on imaging individual atomic columns of Li in the intermetallic compound Al3Li. The effect of electron energy on the imaging characteristic of Li is investigated by performing measurements at 80 kV employing a monochromated electron beam with an energy spread Delta E of 0.2 eV and at 300 kV with Delta E of 0.8 eV. These settings enable similar information transfer at both microscope operation conditions and allow a direct comparison between the 80 and the 300 kV measurements. Our experimental data show that the phase of the reconstructed exit-plane wave is highly sensitive to light atoms and that the displacement damage of light elements of low threshold recoil energy can be larger at 80 kV than at 300 kV. This behavior can be understood in terms of the relativistic elastic-scattering cross section between electrons and atoms. C1 [Rossell, M. D.; Erni, R.; Radmilovic, V.; Dahmen, U.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA. [Asta, M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Rossell, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA. RI Erni, Rolf/P-7435-2014; Rossell, Marta/E-9785-2017 OI Erni, Rolf/0000-0003-2391-5943; FU (U.S.) Department of Energy [DE-AC02-05CH11231, DE-FG02-06ER46282] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed at the National Center for Electron Microscopy under the TEAM project, which is supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences. M. A. acknowledges funding from the Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02-06ER46282. We acknowledge C. Kisielowski for help with the retrieval of the exit-plane waves and the statistical assessment of the Li signal. NR 27 TC 27 Z9 28 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024110 DI 10.1103/PhysRevB.80.024110 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500028 ER PT J AU Sacchetti, F Orecchini, A Cunsolo, A Formisano, F Petrillo, C AF Sacchetti, F. Orecchini, A. Cunsolo, A. Formisano, F. Petrillo, C. TI Coherent neutron scattering study of confined water in nafion SO PHYSICAL REVIEW B LA English DT Article DE Brillouin spectra; damping; neutron diffraction; vibrational modes; water ID SUPERCOOLED WATER; IONOMER MEMBRANES; LIQUID WATER; HEAVY-WATER; DYNAMICS; TRANSPORT; MOLECULES; PRESSURE; PROTEINS; DRY AB The vibrational dynamics of water molecules confined inside the cavities of a nafion membrane has been investigated exploiting the experimental technique of Brillouin neutron scattering to cover two different kinematic regions. Despite the complexity of the experiments, the inelastic data show unambiguously that confined water still sustains collective modes, although the mode lifetime is affected by a larger damping than in bulk water. The collective-mode velocity (3040 m/s) is found to be much higher than the hydrodynamic value (1320 m/s), such as in the case of bulk water. The structure of the inelastic peaks is consistent with a complex picture where normal vibrational modes of a water droplet coexist with the collective excitation. In addition, no evidence of the second nondispersive excitation at similar or equal to 6 meV observed in bulk water is seen in the present experiment. Finally, the analysis of the inelastic integrated intensities suggests that the anomalous trend observed in bulk water at low-momentum transfers disappears under geometrical confinement. C1 [Sacchetti, F.; Orecchini, A.; Petrillo, C.] Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. [Sacchetti, F.; Orecchini, A.; Petrillo, C.] Univ Roma La Sapienza, CNR, INFM, CRS Soft, I-00185 Rome, Italy. [Formisano, F.] Inst Laue Langevin, CNR, INFM, CRS Soft,OGG, F-38042 Grenoble, France. [Cunsolo, A.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Sacchetti, F (reprint author), Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. RI Cunsolo, Alessandro/C-7617-2013; Formisano, Ferdinando/G-8888-2013 NR 38 TC 7 Z9 7 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024306 DI 10.1103/PhysRevB.80.024306 PG 9 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500049 ER PT J AU Schreiber, DK Heinonen, OG Petford-Long, AK AF Schreiber, D. K. Heinonen, O. G. Petford-Long, A. K. TI Micromagnetic modeling of the magnetization dynamics in a circularly exchange-biased and exchange-coupled ferromagnetic multilayer SO PHYSICAL REVIEW B LA English DT Article ID MAGNETORESISTANCE; PERMALLOY; DOTS AB The magnetization dynamics of a magnetically coupled multilayer structure have been studied by analytical and numerical methods. The simulated multilayer is disk-shaped and consists of a circularly exchange-biased ferromagnetic permalloy (Py) layer coupled to an unbiased Py layer, each in a magnetic vortex configuration, separated by a thin nonmagnetic spacer. The sign and strength of the interlayer exchange coupling was varied, leading to either parallel or antiparallel vortex chiralities in the two Py layers. The magnetization dynamics after the application of an external magnetic field pulse normal to the plane of the disks were investigated. Both analytical and numerical models show two branches of frequency response of circularly symmetric eigenmodes for both parallel and antiparallel configurations. However, the upper branch mode in the antiparallel configuration is severely damped in the numerical simulations due to coupling with short-wavelength spin waves. The frequency of the modes can be tuned independently with interlayer exchange coupling strength and exchange-bias strength. The good agreement between the mode frequencies obtained from the analytical and numerical models confirms that the main driving forces for the eigenmodes are the magnetostatic field from the radial motion of the magnetization, and also the interlayer exchange coupling field. In addition, the vortex cores, which are neglected in the analytical model, are found to play no significant role in the dynamic response. C1 [Schreiber, D. K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Schreiber, D. K.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Heinonen, O. G.] Seagate Technol, Bloomington, MN 55435 USA. RP Schreiber, DK (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM danielschreiber2008@u.northwestern.edu RI Petford-Long, Amanda/P-6026-2014; OI Petford-Long, Amanda/0000-0002-3154-8090; Heinonen, Olle/0000-0002-3618-6092 FU U.S. Department of Energy Office of Science Laboratory [DEAC02-06CH11357] FX K. P. L. and D. K. S. acknowledge UChicago Argonne, LLC, operator of the Argonne National Laboratory ("Argonne"). Argonne, a U. S. Department of Energy Office of Science Laboratory, is operated under Contract No. DEAC02-06CH11357. NR 27 TC 7 Z9 7 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014411 DI 10.1103/PhysRevB.80.014411 PG 11 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100066 ER PT J AU Taylor, CD AF Taylor, Christopher D. TI Connections between the energy functional and interaction potentials for materials simulations SO PHYSICAL REVIEW B LA English DT Article DE band structure; copper; crystallography; density functional theory; phase diagrams; potential energy functions; uranium ID BOND-ORIENTATIONAL ORDER; EMBEDDED-ATOM METHOD; TIGHT-BINDING; SURFACES; METALS; MODEL; IMPURITIES; EFFICIENT; MOLECULES; COHESION AB In this work it is shown that the energy of a material can be expressed as a functional of the atomic density distribution function and that this energy can be approximated via the method of Taylor expansion. It is then shown that a matrix representation of the second-order term in the Taylor expansion of the energy functional provides a parameterizable expression for the energy that avoids the necessity of finding the as yet unknown functional forms connecting atomic positions to system energies. Using the basis of spherical harmonics {Y(lm)} it is shown that the matrix representation of the energy involves the computation of the Steinhardt bond-orientational order parameters, previously used to classify local crystallographic orderings in amorphous materials. It is also shown that these parameters coincide with the "embedding density" corrections utilized in the modified embedded atom method. By incorporating these bond-orientational order parameters into the Taylor expansion for the energy function, it is demonstrated that this method provides a means for reproducing the phase diagram of various metallic states of Cu and U. Consequently, the formalism introduced here is demonstrated to be systematically improvable via improvements in the underlying basis set of spherical harmonics. Finally, it is shown by reference to the body-centered cubic phase of U that extension to arbitrary crystallographic requires a further examination of the use of interatomic screening potentials that "dampen" the contributions of atoms other than first-nearest neighbors. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Technol Met MST 6, Los Alamos, NM 87545 USA. RP Taylor, CD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Technol Met MST 6, Los Alamos, NM 87545 USA. EM cdtaylor@lanl.gov OI Taylor, Christopher/0000-0002-0252-0988 FU Seaborg LDRD Post-Doctoral Program; U.S. Department of Energy [DE-AC52-06NA25396] FX The author is grateful to S. Lillard at Los Alamos National Laboratory for encouragement and assistance in funding this work, T. Lookman at Los Alamos National Laboratory for stimulating conversations regarding Landau theory, and M. Baskes, S. Valone, and R. Hoagland for discussions concerning the embedded atom method and interatomic potentials in general. Gratitude is also expressed toward the reviewers for their anonymous feedback and help in improving this manuscript. The author acknowledges the Seaborg LDRD Post-Doctoral Program for funding this work. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 38 TC 7 Z9 7 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024104 DI 10.1103/PhysRevB.80.024104 PG 10 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500022 ER PT J AU Teodorescu, V Winkler, R AF Teodorescu, V. Winkler, R. TI Spin angular impulse due to spin-dependent reflection off a barrier SO PHYSICAL REVIEW B LA English DT Article AB The spin-dependent elastic reflection of quasi-two-dimensional electrons from a lateral impenetrable barrier in the presence of band-structure spin-orbit coupling results in a spin angular impulse exerted on the electrons which is proportional to the nontrivial difference between the electrons' momentum and velocity. Even for an unpolarized incoming beam we find that the spin angular impulse is nonzero when averaged over all components of the reflected beam. We present a detailed analysis of the kinematics of this process. C1 [Teodorescu, V.; Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Teodorescu, V (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU DOE BES [DE-AC02-06CH11357] FX W. appreciates stimulating discussions with J. Heremans and U. Zulicke. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. NR 22 TC 12 Z9 12 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 041311 DI 10.1103/PhysRevB.80.041311 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100017 ER PT J AU Torikachvili, MS Bud'ko, SL Ni, N Canfield, PC Hannahs, ST AF Torikachvili, M. S. Bud'ko, S. L. Ni, N. Canfield, P. C. Hannahs, S. T. TI Effect of pressure on transport and magnetotransport properties in CaFe2As2 single crystals SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; high-temperature superconductors; iron compounds; magnetoresistance; phase diagrams; superconducting transitions ID QUANTUM LINEAR MAGNETORESISTANCE; TEMPERATURE-DEPENDENCE; MAGNETIC-PROPERTIES; ELASTIC-CONSTANTS; SUPERCONDUCTIVITY AB The effects of pressure generated in a liquid-medium clamp pressure cell on the in-plane and c-axis resistance, temperature-dependent Hall coefficient, and low-temperature magnetoresistance in CaFe2As2 are presented. The T-P phase diagram, including the observation of a complete superconducting transition in resistivity delineated in earlier studies is found to be highly reproducible. The Hall resistivity and low-temperature magnetoresistance are sensitive to different states/phases observed in CaFe2As2. Auxiliary measurements under uniaxial c-axis pressure are in general agreement with the liquid-medium clamp cell results with some difference in critical pressure values and pressure derivatives. The data may be viewed as supporting the potential importance of nonhydrostatic components of pressure in inducing superconductivity in CaFe2As2. C1 [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Hannahs, S. T.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Torikachvili, MS (reprint author), San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. RI Canfield, Paul/H-2698-2014; Hannahs, Scott/B-1274-2008 OI Hannahs, Scott/0000-0002-5840-7714 FU U. S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; National Science Foundation [DMR-0306165, DMR-0805335]; NSF [DMR-0084173] FX Work at the Ames Laboratory was supported by the U. S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. M. S. T. gratefully acknowledges support of the National Science Foundation under Grants No. DMR-0306165 and No. DMR-0805335. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the U. S. DOE. NR 53 TC 38 Z9 38 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014521 DI 10.1103/PhysRevB.80.014521 PG 10 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100112 ER PT J AU Vannette, MD Yeninas, S Morosan, E Cava, RJ Prozorov, R AF Vannette, M. D. Yeninas, S. Morosan, E. Cava, R. J. Prozorov, R. TI Local-moment ferromagnetism and unusual magnetic domains in Fe1/4TaS2 crystals SO PHYSICAL REVIEW B LA English DT Article DE ferromagnetic materials; iron compounds; magnetic anisotropy; magnetic domains; magnetic susceptibility; tantalum compounds ID TUNNEL-DIODE OSCILLATOR; SUSCEPTIBILITY AB Single crystals of Fe1/4TaS2 have been studied by using magneto-optical (MO) imaging and radio-frequency magnetic susceptibility, chi. Real-time MO images reveal unusual slow dynamics of dendritic domain formation, the details of which are strongly dependent upon magnetic and thermal history. Measurements of chi(T) show well-defined local-moment ferromagnetic transition at T approximate to 155 K as well as thermal hysteresis for 50 < T < 60 K. This temperature range corresponds to the domain-formation temperature as determined by MO. Together these observations provide strong evidence for local-moment ferromagnetism in Fe1/4TaS2 crystals with large temperature-dependent magnetic anisotropy. C1 [Vannette, M. D.; Yeninas, S.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Vannette, M. D.; Yeninas, S.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Morosan, E.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358, DE-FG02-98ER45706] FX Work at the Ames Laboratory and Princeton University were supported by the Department of Energy, Office of Basic Energy Sciences, under Contracts No. DE-AC02-07CH11358 and No. DE-FG02-98ER45706, respectively. NR 13 TC 7 Z9 7 U1 5 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024421 DI 10.1103/PhysRevB.80.024421 PG 5 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500072 ER PT J AU Vantarakis, G Mathioudakis, C Kopidakis, G Wang, CZ Ho, KM Kelires, PC AF Vantarakis, G. Mathioudakis, C. Kopidakis, G. Wang, C. Z. Ho, K. M. Kelires, P. C. TI Interfacial disorder and optoelectronic properties of diamond nanocrystals SO PHYSICAL REVIEW B LA English DT Article ID TETRAHEDRAL AMORPHOUS-CARBON; ELECTRONIC-PROPERTIES; OPTICAL-PROPERTIES; DYNAMICS; SIMULATIONS; MODEL AB We present in this work a theoretical framework based on the tight-binding method, which is able to probe at a local atomic level the optoelectronic response of nanomaterial systems and link it to the associated disorder. We apply this methodology to carbon nanocomposites containing diamond nanocrystals. We find that significant structural and topological disorder exists at the interface between the nanodiamonds and the embedding amorphous carbon matrix. This can be quantitatively probed by extracting the Urbach energies from the optical parameters. Disorder in the nanocrystals appears in their outer shell near the interface and is manifested as bond length and angle distortions. Energetics and stability analysis show that nanodiamonds embedded in matrices with high density and high fraction of fourfold coordinated atoms are more stable. C1 [Vantarakis, G.; Kelires, P. C.] Cyprus Univ Technol, Dept Mech & Mat Sci Engn, CY-3603 Limassol, Cyprus. [Vantarakis, G.; Mathioudakis, C.; Kopidakis, G.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Crete, Greece. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kelires, P. C.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. RP Kelires, PC (reprint author), Cyprus Univ Technol, Dept Mech & Mat Sci Engn, POB 50329, CY-3603 Limassol, Cyprus. EM pantelis.kelires@cut.ac.cy NR 24 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045307 DI 10.1103/PhysRevB.80.045307 PG 7 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100066 ER PT J AU Wang, BN Koschny, T Soukoulis, CM AF Wang, Bingnan Koschny, Thomas Soukoulis, Costas M. TI Wide-angle and polarization-independent chiral metamaterial absorber SO PHYSICAL REVIEW B LA English DT Article ID NEGATIVE REFRACTIVE-INDEX AB We propose a resonant microwave absorber based on a chiral metamaterial. We show, with both numerical simulations and experimental measurements, that the absorber works well for a very wide range of incident angles for different polarizations. The proposed absorber has a compact size and the absorption is close to one for a wide range of incident angles and it is a good candidate for potential applications. C1 [Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Wang, BN (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; AFOSR [FA 9550-06-1-0337] FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by AFOSR under MURI under Grant No. FA 9550-06-1-0337. NR 29 TC 135 Z9 142 U1 12 U2 62 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 033108 DI 10.1103/PhysRevB.80.033108 PG 4 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800008 ER PT J AU Wang, F Kim, J Kim, YJ Gu, GD AF Wang, Fan Kim, Jungho Kim, Young-June Gu, G. D. TI Spin-glass behavior in LuFe2O4+delta SO PHYSICAL REVIEW B LA English DT Article DE ageing; lutetium compounds; magnetic susceptibility; magnetic transitions; magnetisation; specific heat; spin glasses ID STOICHIOMETRIC YFE2O4; MAGNETIC-FIELD; TEMPERATURE; TRANSITION; SYSTEM; DYNAMICS; FERROELECTRICITY; EQUILIBRIUM; GROWTH AB We have carried out a comprehensive investigation of magnetic properties of LuFe2O4+delta, measuring ac susceptibility, dc magnetization, and specific heat. A magnetic phase transition around 236 K is identified as a paramagnetic to ferrimagnetic transition in accordance with previous studies. Upon further cooling below this temperature, highly relaxational magnetic behavior is observed: the dc magnetization exhibits history and time dependence, and the real and the imaginary parts of the ac susceptibility show large frequency dependence. Dynamic scaling of the ac susceptibility data suggests that this low-temperature phase can be described as a spin-glass phase. We also discuss the magnetic field dependence of the spin-glass transition and aging, memory, and rejuvenation effect below the glass transition temperature around 229 K. C1 [Wang, Fan; Kim, Jungho; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Gu, G. D.] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA. RP Wang, F (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Kim, Young-June /G-7196-2011; Gu, Genda/D-5410-2013 OI Kim, Young-June /0000-0002-1172-8895; Gu, Genda/0000-0002-9886-3255 FU Natural Sciences and Engineering Research Council of Canada; Canadian Foundation for Innovation; Ontario Innovation Trust; Ontario Ministry of Research and Innovation; U.S. Department of Energy, Office of Science FX We would like to thank David Ellis, S. M. Shapiro, G. Xu, J. Brittain, A. Gershon, and H. Zhang for invaluable discussions. The work at University of Toronto was supported by Natural Sciences and Engineering Research Council of Canada, Canadian Foundation for Innovation, Ontario Innovation Trust, and Early Researcher Award by Ontario Ministry of Research and Innovation. The work at Brookhaven was supported by the U.S. Department of Energy, Office of Science. NR 42 TC 39 Z9 40 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024419 DI 10.1103/PhysRevB.80.024419 PG 7 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500070 ER PT J AU Wen, JS Xu, GY Gu, G Shapiro, SM AF Wen, Jinsheng Xu, Guangyong Gu, Genda Shapiro, S. M. TI Magnetic-field control of charge structures in the magnetically disordered phase of multiferroic LuFe2O4 SO PHYSICAL REVIEW B LA English DT Article DE charge-ordered states; ferroelectric materials; ferroelectricity; lutetium compounds; magnetoelectric effects; multiferroics; neutron diffraction ID FERROMAGNETIC PHASE; SYSTEM LUFE2O4; FERROELECTRICITY; LA0.5CA0.5MNO3 AB Using neutron diffraction, we have studied the magnetic-field effect on charge structures in the charge-ordered multiferroic material LuFe2O4. An external magnetic field is able to change the magnitude and correlation lengths of the charge valence order even before the magnetic order sets in. This affects the dielectric and ferroelectric properties of the material and induces a giant magnetoelectric effect. Our results suggest that the magnetoelectric coupling in LuFe2O4 is likely due to magnetic-field effect on local spins, in clear contrast to the case in most other known multiferroic systems where the bulk magnetic order is important. C1 [Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Shapiro, S. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Wen, Jinsheng] SUNY Stony Brook, Dept Mat Sci, Stony Brook, NY 11794 USA. RP Wen, JS (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Wen, Jinsheng/F-4209-2010; Xu, Guangyong/A-8707-2010 OI Wen, Jinsheng/0000-0001-5864-1466; Xu, Guangyong/0000-0003-1441-8275 FU U.S. Department of Energy [DE-AC02-98CH20886] FX We thank W. Ratcliff, C. L. Broholm, and J.M. Tranquada for discussions. Work at Brookhaven National Laboratory is supported by U.S. Department of Energy (Contract No. DE-AC02-98CH20886). NR 31 TC 27 Z9 27 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020403 DI 10.1103/PhysRevB.80.020403 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500006 ER PT J AU Wu, J Choi, J Scholl, A Doran, A Arenholz, E Wu, YZ Won, C Hwang, CY Qiu, ZQ AF Wu, J. Choi, J. Scholl, A. Doran, A. Arenholz, E. Wu, Y. Z. Won, C. Hwang, Chanyong Qiu, Z. Q. TI Element-specific study of the anomalous magnetic interlayer coupling across NiO spacer layer in Co/NiO/Fe/Ag(001) using XMCD and XMLD SO PHYSICAL REVIEW B LA English DT Article DE cobalt; ferromagnetic materials; interface magnetism; iron; magnetic circular dichroism; magnetic structure; magnetic thin films; molecular beam epitaxial growth; nickel compounds; silver; X-ray absorption spectra ID QUANTUM-WELL STATES; LARGE MAGNETORESISTANCE; TUNNELING JUNCTION; EXCHANGE BIAS; THIN-FILMS; SUPERLATTICES; TEMPERATURE; ANISOTROPY; DICHROISM AB Co/NiO/Fe trilayers are grown on Ag(001) substrate using molecular-beam epitaxy and investigated by element-specific magnetic domain images using x-ray magnetic circular dichroism and x-ray magnetic linear dichroism techniques. By comparing the Co, Fe, and NiO magnetic domain images, we identify that the anomalous Co-Fe interlayer coupling from a 90 degrees coupling to a collinear coupling with increasing the NiO film thickness is due to a transition from a collinear to 90 degrees coupling at the NiO/Fe interface while retaining a 90 degrees coupling at the Co/NiO interface. Uncompensated Ni spins are found at the Co/NiO interface but are absent at the NiO/Fe interface. No evidence of spiral NiO spin structure is found in this Co/NiO/Fe sandwich. C1 [Wu, J.; Choi, J.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Choi, J.] Korea Inst Sci & Technol, Seoul 136791, South Korea. [Scholl, A.; Doran, A.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wu, Y. Z.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. [Hwang, Chanyong] Korea Res Inst Stand & Sci, Adv Technol Div, Taejon 305340, South Korea. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Scholl, Andreas/K-4876-2012; Qiu, Zi Qiang/O-4421-2016 OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 FU National Science Foundation [DMR-0803305]; U. S. Department of Energy [DE-AC02-05CH11231]; ICQS of Chinese Academy of Science; KICOS through Global Research Laboratory FX This work was supported by National Science Foundation under Grant No. DMR-0803305, U. S. Department of Energy under Grant No. DE-AC02-05CH11231, ICQS of Chinese Academy of Science, and KICOS through Global Research Laboratory project. NR 33 TC 11 Z9 12 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 012409 DI 10.1103/PhysRevB.80.012409 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100014 ER PT J AU Yang, WL Sorini, AP Chen, CC Moritz, B Lee, WS Vernay, F Olalde-Velasco, P Denlinger, JD Delley, B Chu, JH Analytis, JG Fisher, IR Ren, ZA Yang, J Lu, W Zhao, ZX van den Brink, J Hussain, Z Shen, ZX Devereaux, TP AF Yang, W. L. Sorini, A. P. Chen, C-C. Moritz, B. Lee, W-S Vernay, F. Olalde-Velasco, P. Denlinger, J. D. Delley, B. Chu, J-H Analytis, J. G. Fisher, I. R. Ren, Z. A. Yang, J. Lu, W. Zhao, Z. X. van den Brink, J. Hussain, Z. Shen, Z-X Devereaux, T. P. TI Evidence for weak electronic correlations in iron pnictides SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; density functional theory; electron correlations; Fermi level; Hubbard model; lanthanum compounds; samarium compounds; superconducting materials; X-ray absorption spectra ID X-RAY-ABSORPTION; TRANSITION-METAL COMPOUNDS; SUM-RULES; SCATTERING; SPECTRA; FE AB Using x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS), charge dynamics at and near the Fe L edges is investigated in Fe-pnictide materials and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. The best agreement with experiment is obtained using Hubbard parameters U less than or similar to 2 eV and J approximate to 0.8 eV. C1 [Yang, W. L.; Olalde-Velasco, P.; Denlinger, J. D.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Sorini, A. P.; Chen, C-C.; Moritz, B.; Lee, W-S; Chu, J-H; Analytis, J. G.; Fisher, I. R.; van den Brink, J.; Shen, Z-X; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chen, C-C.; Shen, Z-X] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Vernay, F.; Delley, B.] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland. [Olalde-Velasco, P.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Chu, J-H; Analytis, J. G.; Fisher, I. R.; Shen, Z-X] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chu, J-H; Analytis, J. G.; Fisher, I. R.; Shen, Z-X; Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Ren, Z. A.; Yang, J.; Lu, W.; Zhao, Z. X.] Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China. [van den Brink, J.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. RP Yang, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RI van den Brink, Jeroen/E-5670-2011; yang, jie/F-4389-2012; Ren, Zhi An/C-1421-2009; Delley, Bernard/E-1336-2014; Yang, Wanli/D-7183-2011; Moritz, Brian/D-7505-2015 OI van den Brink, Jeroen/0000-0001-6594-9610; yang, jie/0000-0002-5549-6926; Delley, Bernard/0000-0002-7020-2869; Yang, Wanli/0000-0003-0666-8063; Moritz, Brian/0000-0002-3747-8484 FU Office of Science of the U. S. Department of Energy (DOE) [DE-AC02-76SF00515, DE-FG02-08ER4650, DE-AC02-05CH11231]; Stichting voor Fundamenteel Onderzoek der Materie (FOM); CONTACyT, Mexico FX The authors would like to acknowledge important discussions with J. Zaanen, I. Mazin, D. Reznik, J. J. Rehr, A. Baron, S. Johnston, Y.- D. Chuang, W. A. Harrison, S. Kumar, J.- H. Guo, and M. Golden. This work was supported by the Office of Science of the U. S. Department of Energy (DOE) under Contracts No. DE-AC02-76SF00515 and No. DE-FG02-08ER4650 (CMSN). This research used resources of the National Energy Research Scientific Computing Center, which is supported by DOE under Contract No. DE-AC02-05CH11231. This work was supported by the "Stichting voor Fundamenteel Onderzoek der Materie (FOM)." The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. P. O. would like to acknowledge the support from CONTACyT, Mexico. NR 57 TC 134 Z9 134 U1 3 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014508 DI 10.1103/PhysRevB.80.014508 PG 10 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100099 ER PT J AU Ye, HG Chen, GD Wu, YL Zhu, YZ Wei, SH AF Ye, Honggang Chen, Guangde Wu, Yelong Zhu, Youzhang Wei, Su-Huai TI Stability of a planar-defect structure of the wurtzite AlN (10(1)over-bar0) surface: Density functional study SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; THREADING DISLOCATIONS; ELECTRON-MICROSCOPY; NONPOLAR SURFACES; GAN; GROWTH; PSEUDOPOTENTIALS; SAPPHIRE AB The formation energy of a structure is usually increased by the appearance of a defect. A stoichiometric planar defect structure of the wurtzite AlN (10 (1) over bar0) surface, however, is found to be lower in energy than the ideally truncated surface by first-principles calculations. The intriguing phenomenon is directly attributed to the large scale surface relaxation induced by the defect structure and the intrinsic reason is pointed to the strong ionicity and small c/a (lattice constant ratio) of AlN. A suggested growth mode shows that the defect surface structure is compatible with the growth of the correct wurtzite AlN film on the (10 (1) over bar0) plane. C1 [Ye, Honggang; Chen, Guangde; Wu, Yelong; Zhu, Youzhang] Xi An Jiao Tong Univ, Nonequilibrium Condensed Matter & Quantum Engn L, Key Lab Minist Educ, Sch Sci, Xian 710049, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ye, HG (reprint author), Xi An Jiao Tong Univ, Nonequilibrium Condensed Matter & Quantum Engn L, Key Lab Minist Educ, Sch Sci, Xian 710049, Peoples R China. RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen, Guangde/D-4373-2011; chen, guangde/I-4260-2014 OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X; FU China National Natural Science Fund [10474078]; "Intelligent Information Processing and Computing Laboratory" of XJTU; U. S. DOE [DE-AC36-99GO10337] FX The authors gratefully acknowledge the financial support of China National Natural Science Fund (Grant No. 10474078) and the computing support of the "Intelligent Information Processing and Computing Laboratory" of XJTU. The work at NREL is supported by the U. S. DOE under Contract No. DE-AC36-99GO10337. NR 28 TC 8 Z9 8 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 033301 DI 10.1103/PhysRevB.80.033301 PG 4 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800015 ER PT J AU Ye, Z Hu, XH Li, M Ho, KM Cao, JR Miyawaki, M AF Ye, Zhuo Hu, Xinhua Li, Ming Ho, Kai-Ming Cao, Jiangrong Miyawaki, Mamoru TI Localized optical orbital approach to study localized states of light in photonic crystals SO PHYSICAL REVIEW B LA English DT Article ID WANNIER FUNCTIONS; DEVICE DESIGN; ENERGY-BANDS; WAVE-GUIDES; OPTIMIZATION; CIRCUITS; MODES AB A set of localized basis orbitals are presented to locally represent electromagnetic field in photonic crystals. These orbitals are different from the optical Wannier functions. They are the optical parallelism of quasiatomic orbitals in the context of electronic problems. We demonstrate the utility of these localized optical orbitals by recapturing eigenmodes in defected structures. Calculations for cavity modes and dispersion relations of waveguides agree well with the results from plane-wave expansion calculations. This approach also offers interesting physical insight to understand the state of light in ideal photonic crystals as well as defected structures. C1 [Ye, Zhuo; Hu, Xinhua; Li, Ming; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. [Ye, Zhuo; Hu, Xinhua; Li, Ming; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. [Cao, Jiangrong; Miyawaki, Mamoru] Canon Dev Amer Inc, Irvine, CA 92618 USA. RP Ye, Z (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. EM zye@iastate.edu; kmh@ameslab.gov RI Cao, Jiangrong/A-4725-2008; Hu, Xinhua/A-5930-2010; Ye, Zhuo/H-4027-2011; OI Hu, Xinhua/0000-0003-3153-7612; Ye, Zhuo/0000-0002-8958-5740 FU Department of Energy [DE-AC-02-05CH11231] FX Z. Y. thanks W. C. Lu, Y. Yao, and C. Z. Wang for discussions on QUAMBOs in Refs. 16 and 17. This work was supported by the Department of Energy under Project No. DE-AC-02-05CH11231. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. NR 30 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035111 DI 10.1103/PhysRevB.80.035111 PG 6 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800045 ER PT J AU Yi, M Lu, DH Analytis, JG Chu, JH Mo, SK He, RH Moore, RG Zhou, XJ Chen, GF Luo, JL Wang, NL Hussain, Z Singh, DJ Fisher, IR Shen, ZX AF Yi, M. Lu, D. H. Analytis, J. G. Chu, J. -H. Mo, S. -K. He, R. -H. Moore, R. G. Zhou, X. J. Chen, G. F. Luo, J. L. Wang, N. L. Hussain, Z. Singh, D. J. Fisher, I. R. Shen, Z. -X. TI Electronic structure of the BaFe2As2 family of iron-pnictide superconductors SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; Brillouin zones; cobalt compounds; doping profiles; Fermi level; high-temperature superconductors; iron compounds; paramagnetic materials; photoelectron spectra; potassium compounds ID SPIN-DENSITY-WAVE; ORDER; GAPS AB We use high-resolution angle-resolved photoemission to study the electronic structure of the BaFe2As2 pnictides. We observe two electron bands and two hole bands near the X point, (pi,pi) of the Brillouin zone, in the paramagnetic state for electron-doped Ba(Co0.06Fe0.94)(2)As-2, undoped BaFe2As2, and hole-doped Ba0.6K0.4Fe2As2. Among these bands, only the electron bands cross the Fermi level, forming two electron pockets around X while the hole bands approach but never reach the Fermi level. We show that the band structure of the BaFe2As2 family matches reasonably well with the prediction of local-density approximation calculations after a momentum-dependent shift and renormalization. Our finding resolves a number of inconsistencies regarding the electronic structure of pnictides. C1 [Yi, M.; Lu, D. H.; He, R. -H.; Moore, R. G.; Shen, Z. -X.] SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. [Yi, M.; Lu, D. H.; Mo, S. -K.; He, R. -H.; Moore, R. G.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zhou, X. J.; Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yi, M (reprint author), SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI He, Ruihua/A-6975-2010; Yi, Ming/E-3145-2010; Singh, David/I-2416-2012; Mo, Sung-Kwan/F-3489-2013 OI Mo, Sung-Kwan/0000-0003-0711-8514 FU U.S. DOE, Office of Basic Energy Sciences [DE-AC02-05CH11231]; SSRL, Stanford University [DE-AC02-76SF00515]; ORNL; NSF FX We thank I. I. Mazin, Y. Yin, H. Yao, W. S. Lee, and B. Moritz for helpful discussions. This work is supported by the U.S. DOE, Office of Basic Energy Sciences at ALS (Grant No. DE-AC02-05CH11231), SSRL, Stanford University (Grant No. DE-AC02-76SF00515), and at ORNL. M. Y. thanks the NSF Graduate Research Fellowship for support. NR 21 TC 103 Z9 103 U1 0 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024515 DI 10.1103/PhysRevB.80.024515 PG 5 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500094 ER PT J AU Zhang, Y Ke, XZ Chen, CF Yang, J Kent, PRC AF Zhang, Yi Ke, Xuezhi Chen, Changfeng Yang, J. Kent, P. R. C. TI Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study SO PHYSICAL REVIEW B LA English DT Article DE anharmonic lattice modes; band structure; density functional theory; electronic structure; entropy; Gruneisen coefficient; IV-VI semiconductors; lead compounds; nanocomposites; permittivity; phonon dispersion relations; specific heat; spin-orbit interactions; thermal conductivity; thermoelectricity ID IV-VI-SEMICONDUCTORS; THERMOELECTRIC-MATERIALS; AB-INITIO; ELECTRONIC-STRUCTURE; STRUCTURAL-PROPERTIES; THERMAL-CONDUCTIVITY; LEAD CHALCOGENIDES; CRYSTAL DYNAMICS; HIGH-PRESSURE; MERIT AB The recent discoveries of novel nanocomposite and doped lead chalcogenide-based thermoelectric materials have attracted great interest. These materials exhibit low thermal conductivity which is closely related to their lattice dynamics and thermodynamic properties. In this paper, we report a systematic study of electronic structures and lattice dynamics of the lead chalcogenides PbX (X=Te, Se, and S) using first-principles density-functional-theory calculations and a direct force-constant method. We calculate the structural parameters, elastic moduli, electronic band structures, dielectric constants, and Born effective charges. Moreover, we determine phonon dispersions, phonon density of states, and phonon softening modes in these materials. Based on the results of these calculations, we further employ quasiharmonic approximation to calculate the heat capacity, internal energy, and vibrational entropy. The obtained results are in good agreement with experimental data. Lattice thermal conductivities are evaluated in terms of the Gruumlneisen parameters. The mode Gruumlneisen parameters are calculated to explain the anharmonicity in these materials. The effect of the spin-orbit interaction is found to be negligible in determining the thermodynamic properties of PbTe, PbSe, and PbS. C1 [Zhang, Yi; Ke, Xuezhi; Chen, Changfeng] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Zhang, Yi; Ke, Xuezhi; Chen, Changfeng] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Ke, Xuezhi] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China. [Yang, J.] GM R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. RI Yang, Jihui/A-3109-2009; Zhang, Yi/C-9291-2011; Kent, Paul/A-6756-2008 OI Kent, Paul/0000-0001-5539-4017 FU DOE [DE-FC52-06NA26274, DE-FC26-04NT42278] FX This work was supported by DOE Cooperative Agreements No. DE-FC52-06NA26274 and No. DE-FC26-04NT42278; and by GM. This research used resources (Cray XT4) of the National Center for Computational Sciences (NCCS) and the Center for Nanophase Materials Sciences at ORNL, which are sponsored by the respective facilities divisions of the DOE Offices of Advanced Scientific Computing Research and Basic Energy Sciences. Y.Z. also acknowledges the useful discussion with Hong Sun of Shanghai Jiao Tong University and the assistance in accessing computer resource by Markus Eisenbach of NCCS. J.Y. would like to thank J.F. Herbst and M. W. Verbrugge for continuous support and encouragement. NR 52 TC 123 Z9 124 U1 22 U2 112 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024304 DI 10.1103/PhysRevB.80.024304 PG 12 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500047 ER PT J AU Zhang, Y Mascarenhas, A Wei, SH Wang, LW AF Zhang, Yong Mascarenhas, A. Wei, Su-Huai Wang, L. -W. TI Comparison of atomistic simulations and statistical theories for variable degree of long-range order in semiconductor alloys SO PHYSICAL REVIEW B LA English DT Article ID CRYSTALS AB A direct atomistic quantum-mechanical theory is used for a comprehensive investigation on the applicability of a statistical theory based on cluster expansion to the electronic band structure of a semiconductor alloy with variable degree of long-range order. This study reveals that the applicability of the statistical theory depends on the modulation of the relevant wave function within the alloyed sublattice. This finding can be generalized beyond the prototype system-CuPt-ordered Ga(x)In(1-x)P-to other alloys or other forms of long-range order and thus establishes a framework for understanding the effect of ordering in semiconductor alloys and the limitation of the cluster expansion approach for treating the electronic structure of alloys. C1 [Zhang, Yong; Mascarenhas, A.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wang, L. -W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), UNC Charlotte, Dept Elect & Comp Engn, Charlotte, NC USA. EM yong.zhang@uncc.edu RI Zhang, Yong/D-3412-2013 FU DOE-OS-BES [AC36-08GO28308, DE-AC02-05CH11231]; NERSC FX This work was supported by the DOE-OS-BES under Contracts No. DE-AC36-08GO28308 to NREL and No. DE-AC02-05CH11231 to LBNL. The work used the computational resources of NERSC at LBNL. NR 13 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045206 DI 10.1103/PhysRevB.80.045206 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100054 ER PT J AU Zhou, JF Koschny, T Kafesaki, M Soukoulis, CM AF Zhou, Jiangfeng Koschny, Thomas Kafesaki, Maria Soukoulis, Costas M. TI Negative refractive index response of weakly and strongly coupled optical metamaterials SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC RESPONSE; WAVELENGTHS; FREQUENCIES AB We present a detailed study of the retrieved optical parameters, electrical permittivity epsilon, magnetic permeability mu, and refractive index n of the coupled-fishnet metamaterial structures as a function of the separation between layers. For the weak-coupling case, the retrieved parameters are very close to the one-functional-layer results and converge relatively fast. For the strong-coupling case, the retrieved parameters are completely different from the one-unit fishnet results. We also demonstrate that the high value of the figure of merit [FOM = vertical bar Re(n)/Im(n)vertical bar] for the strongly coupled structures is due to the fact that the real part of the negative n moves away from the maximum of the imaginary part of n (close to the resonance), where the losses are high. C1 [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Zhou, JF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342 NR 27 TC 76 Z9 76 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035109 DI 10.1103/PhysRevB.80.035109 PG 6 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800043 ER PT J AU Abdurashitov, JN Gavrin, VN Gorbachev, VV Gurkina, PP Ibragimova, TV Kalikhov, AV Khairnasov, NG Knodel, TV Mirmov, IN Shikhin, AA Veretenkin, EP Yants, VE Zatsepin, GT Bowles, TJ Elliott, SR Teasdale, WA Nico, JS Cleveland, BT Wilkerson, JF AF Abdurashitov, J. N. Gavrin, V. N. Gorbachev, V. V. Gurkina, P. P. Ibragimova, T. V. Kalikhov, A. V. Khairnasov, N. G. Knodel, T. V. Mirmov, I. N. Shikhin, A. A. Veretenkin, E. P. Yants, V. E. Zatsepin, G. T. Bowles, T. J. Elliott, S. R. Teasdale, W. A. Nico, J. S. Cleveland, B. T. Wilkerson, J. F. CA SAGE Collaboration TI Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002-2007 data-taking period SO PHYSICAL REVIEW C LA English DT Article ID SPIN-ISOSPIN RESPONSES; GE-71; DECAY; DETECTOR; GALLEX; AR-37; GA-71; FLUX AB The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keV of 65.4(-3.0)(+3.1) (stat) (+2.6)(-2.8) (syst) SNU. The weighted average of the results of all three Ga solar neutrino experiments, SAGE, Gallex, and GNO, is now 66.1 +/- 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced (37)Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior (51)Cr neutrino-source experiments with Ga, is 0.87 +/- 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in (71)Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63 SNU to 66 SNU with an uncertainty of about 4%, in good agreement with experiment. We derive the current value of the neutrino flux produced in the Sun by the proton-proton fusion reaction to be phi(circle dot)(pp)=(6.0 +/- 0.8)x10(10)/(cm(2) s), which agrees well with the pp flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time. C1 [Abdurashitov, J. N.; Gavrin, V. N.; Gorbachev, V. V.; Gurkina, P. P.; Ibragimova, T. V.; Kalikhov, A. V.; Khairnasov, N. G.; Knodel, T. V.; Mirmov, I. N.; Shikhin, A. A.; Veretenkin, E. P.; Yants, V. E.; Zatsepin, G. T.] Russian Acad Sci, Nucl Res Inst, RU-117312 Moscow, Russia. [Bowles, T. J.; Elliott, S. R.; Teasdale, W. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nico, J. S.] NIST, Gaithersburg, MD 20899 USA. [Cleveland, B. T.; Wilkerson, J. F.] Univ Washington, Seattle, WA 98195 USA. RP Cleveland, BT (reprint author), SNOLAB, POB 159, Lively, ON P3Y 1M3, Canada. EM bclevela@snolab.ca RI Abdurashitov, Dzhonrid/B-2206-2014; Yants, Viktor/C-1038-2014; OI Abdurashitov, Dzhonrid/0000-0002-1577-1364; Wilkerson, John/0000-0002-0342-0217 FU Russian Academy of Sciences; Ministry of Education and Science of the Russian Federation,; Division of Nuclear Physics of the US Department of Energy; US National Science Foundation; Russian Foundation [99-02-16110, 02-02-16776, 05-02-17199, 08-02-00146]; Russian Federation [00-1596632, NS-1782.2003, NS-5573.2006.2, NS-959.2008.2]; Presidium of the Russian Academy of Sciences; International Science and Technology Center [1431]; US Civilian Research and Development Foundation [CGP RP2-159, CGP RP2-2360-MO-02] FX SAGE is grateful to M. Baldo-Ceolin, W. Haxton, V. A. Kuzmin, V. A. Matveev, S. P. Mikheev, R. G. H. Robertson, V. A. Rubakov, A. Yu. Smirnov, A. Suzuki, A. N. Tavkhelidze, and our colleagues from the GALLEX and GNO Collaborations for their continued interest and for fruitful and stimulating discussions. We especially thank W. Hampel for vital comments on many aspects of our investigations. SAGE acknowledges the support of the Russian Academy of Sciences, the Ministry of Education and Science of the Russian Federation, the Division of Nuclear Physics of the US Department of Energy, and the US National Science Foundation. This work was partially funded by the Russian Foundation for Basic Research under grants 99-02-16110, 02-02-16776, 05-02-17199, and 08-02-00146; by the Program of the President of the Russian Federation under grants 00-1596632, NS-1782.2003, NS-5573.2006.2, and NS-959.2008.2; by the Program of Basic Research "Neutrino Physics" of the Presidium of the Russian Academy of Sciences; by the International Science and Technology Center under grant 1431; and by the US Civilian Research and Development Foundation under grants CGP RP2-159 and CGP RP2-2360-MO-02. NR 41 TC 252 Z9 253 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 015807 DI 10.1103/PhysRevC.80.015807 PG 16 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500074 ER PT J AU Alver, B Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bindel, R Busza, W Chai, Z Chetluru, V Garcia, E Gburek, T Gulbrandsen, K Hamblen, J Harnarine, I Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Kane, JL Kulinich, P Kuo, CM Li, W Lin, WT Loizides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Richardson, E Roland, C Roland, G Sagerer, J Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Szostak, A Tonjes, MB Trzupek, A van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, G Walters, P Wenger, E Willhelm, D Wolfs, FLH Wosiek, B Wozniak, K Wyngaardt, S Wyslouch, B AF Alver, B. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bindel, R. Busza, W. Chai, Z. Chetluru, V. Garcia, E. Gburek, T. Gulbrandsen, K. Hamblen, J. Harnarine, I. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Kane, J. L. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Loizides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Richardson, E. Roland, C. Roland, G. Sagerer, J. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Szostak, A. Tonjes, M. B. Trzupek, A. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. Walters, P. Wenger, E. Willhelm, D. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyngaardt, S. Wyslouch, B. CA PHOBOS Collaboration TI Scaling properties in bulk and p(T)-dependent particle production near midrapidity in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR COLLISIONS; PHOBOS; DETECTOR AB The centrality dependence of the midrapidity charged-particle multiplicity density (vertical bar eta vertical bar < 1) is presented for Au+Au and Cu+Cu collisions at RHIC over a broad range of collision energies. The multiplicity measured in the Cu+Cu system is found to be similar to that measured in the Au+Au system, for an equivalent N-part, with the observed factorization in energy and centrality still persistent in the smaller Cu+Cu system. The extent of the similarities observed for bulk particle production is tested by a comparative analysis of the inclusive transverse momentum distributions for Au+Au and Cu+Cu collisions near midrapidity. It is found that, within the uncertainties of the data, the ratio of yields between the various energies for both Au+Au and Cu+Cu systems are similar and constant with centrality, both in the bulk yields and as a function of p(T), up to at least 4 GeV/c. The effects of multiple nucleon collisions that strongly increase with centrality and energy appear to only play a minor role in bulk and intermediate transverse momentum particle production. C1 [Alver, B.; Ballintijn, M.; Busza, W.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G.; Wenger, E.; Wyslouch, B.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Back, B. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Dept CA, Upton, NY 11973 USA. [Betts, R. R.; Chetluru, V.; Garcia, E.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Nouicer, R.; Sagerer, J.; Smith, C. E.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Bindel, R.; Mignerey, A. C.; Richardson, E.; Tonjes, M. B.; Willhelm, D.] Univ Maryland, Dept Chem, College Pk, MD 20742 USA. [Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] Inst Nucl Phys PAN, Krakow, Poland. [Hamblen, J.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Dept Phys, Chungli 32054, Taiwan. RP Alver, B (reprint author), MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. RI Mignerey, Alice/D-6623-2011; OI Holzman, Burt/0000-0001-5235-6314 FU US DOE [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG0294ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, DE-AC02-06CH1135]; US NSF [9603486, 0072204, 0245011]; Polish MNiSW [N N202 282234]; NSC of Taiwan [NSC 89-2112-M-008-024]; Hungarian OTKA [F 049823] FX This work was partially supported by US DOE Grant Nos. DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG0294ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, and DE-AC02-06CH11357, by US NSF Grant Nos. 9603486, 0072204, and 0245011, by Polish MNiSW Grant No. N N202 282234 ( 2008-2010), by NSC of Taiwan Contract No. NSC 89-2112-M-008-024, and by Hungarian OTKA Grant No. F 049823. NR 18 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011901 DI 10.1103/PhysRevC.80.011901 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500011 ER PT J AU Bender, PC Hoffman, CR Wiedeking, M Allmond, JM Bernstein, LA Burke, JT Bleuel, DL Clark, RM Fallon, P Goldblum, BL Hinners, TA Jeppesen, HB Lee, S Lee, IY Lesher, SR Macchiavelli, AO McMahan, MA Morris, D Perry, M Phair, L Scielzo, ND Tabor, SL Tripathi, V Volya, A AF Bender, P. C. Hoffman, C. R. Wiedeking, M. Allmond, J. M. Bernstein, L. A. Burke, J. T. Bleuel, D. L. Clark, R. M. Fallon, P. Goldblum, B. L. Hinners, T. A. Jeppesen, H. B. Lee, Sangjin Lee, I-Y. Lesher, S. R. Macchiavelli, A. O. McMahan, M. A. Morris, D. Perry, M. Phair, L. Scielzo, N. D. Tabor, S. L. Tripathi, Vandana Volya, A. TI Approaching the "island of inversion": P-34 SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY; MASS; NUCLEI; CLOVER AB Yrast states in P-34 were investigated using the O-18(O-18,pn) reaction at energies of 20, 24, 25, 30, and 44 MeV at Florida State University and at Lawrence Berkeley National Laboratory. The level scheme was expanded, gamma-ray angular distributions were measured, and lifetimes were inferred with the Doppler-shift attenuation method by detecting decay protons in coincidence with one or more gamma rays. The results provide a clearer picture of the evolution of structure approaching the "island of inversion," particularly how the one- and two-particle-hole (ph) states fall in energy with increasing neutron number approaching inversion. However, the agreement of the lowest few states with pure sd shell model predictions shows that the level scheme of P-34 is not itself inverted. Rather, the accumulated evidence indicates that the 1-ph states start at 2.3 MeV. A good candidate for the lowest 2-ph state lies at 6236 keV, just below the neutron separation energy of 6291 keV. Shell model calculations made using a small modification of the WBP interaction reproduce the negative-parity, 1-ph states rather well. C1 [Bender, P. C.; Hoffman, C. R.; Hinners, T. A.; Lee, Sangjin; Morris, D.; Perry, M.; Tabor, S. L.; Tripathi, Vandana; Volya, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Wiedeking, M.; Clark, R. M.; Fallon, P.; Jeppesen, H. B.; Lee, I-Y.; Macchiavelli, A. O.; McMahan, M. A.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wiedeking, M.; Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lesher, S. R.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Allmond, J. M.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Bender, PC (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RI Volya, Alexander/I-9457-2012; Burke, Jason/I-4580-2012 OI Volya, Alexander/0000-0002-1765-6466; FU National Science Foundation [PHY-04-56463, PHY-0756474]; US Department of Energy [DE-AC02-05CH11231]; University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344.] FX This work was supported in part by the National Science Foundation through Grants PHY-04-56463 and PHY-0756474. Support for Lawrence Berkeley National Laboratory was provided by the US Department of Energy under Contract DE-AC02-05CH11231. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under Contracts W-7405-Eng-48 and DE-AC52-07NA27344. NR 20 TC 27 Z9 27 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014302 DI 10.1103/PhysRevC.80.014302 PG 9 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500016 ER PT J AU Brown, JR Bentley, MA Adrich, P Bazin, D Cook, JM Diget, CA Gade, A Glasmacher, T Lenzi, SM McDaniel, S Pritychenko, B Ratkiewicz, A Siwek, K Taylor, MJ Weisshaar, D AF Brown, J. R. Bentley, M. A. Adrich, P. Bazin, D. Cook, J. M. Diget, C. Aa. Gade, A. Glasmacher, T. Lenzi, S. M. McDaniel, S. Pritychenko, B. Ratkiewicz, A. Siwek, K. Taylor, M. J. Weisshaar, D. TI First gamma-ray spectroscopy of Fe-49 and Ni-53: Isospin-breaking effects at large proton excess SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; EXOTIC NUCLEI; SYMMETRY; ENERGIES; STATES; CR-49; V-49 AB Isospin-breaking effects have been studied for the first time in T=32 isobaric analog states. Gamma decays have been observed from T-z=-32 nuclei, Fe-49 and Ni-53, presented here in new level schemes, and mirror energy differences have been computed following observation of analog states in V-49 and Mn-53, respectively. Shell-model calculations in the fp shell are in good agreement with the data and reveal the importance of non-Coulomb isospin-breaking effects in T=32 isobaric analog states. A two-step fragmentation process was developed to allow access to highly proton-rich nuclei and to produce each member of a mirror pair via mirrored fragmentation of a Ni-56 secondary beam. This work represents the first study using this technique and demonstrates the power of this approach for future studies of isobaric analog states in very proton-rich systems. C1 [Brown, J. R.; Bentley, M. A.; Taylor, M. J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Adrich, P.; Bazin, D.; Cook, J. M.; Diget, C. Aa.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Lenzi, S. M.] Univ Padua, Dipartimento Fis, Padua, Italy. [Lenzi, S. M.] Ist Nazl Fis Nucl, Padua, Italy. [Pritychenko, B.] Natl Nucl Data Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Brown, JR (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM jb536@york.ac.uk RI Gade, Alexandra/A-6850-2008; Yan, XinLiang/E-4156-2010; Glasmacher, Thomas/C-4462-2008; Lenzi, Silvia/I-6750-2012; Glasmacher, Thomas/H-9673-2014; Taylor, Michael/N-1725-2015; Diget, Christian Aaen/D-8063-2016 OI Gade, Alexandra/0000-0001-8825-0976; Glasmacher, Thomas/0000-0001-9436-2448; Taylor, Michael/0000-0002-8718-3684; Diget, Christian Aaen/0000-0002-9778-8759 FU United Kingdom Science and Technologies Facilities Council; National Science Foundation [PHY-0606007] FX The authors thank the staff of the Coupled Cyclotron Facility at theNational Superconducting Cyclotron Laboratory for their help and support during this novel experiment. This work was supported by the United Kingdom Science and Technologies Facilities Council and partly by the National Science Foundation under Grant No. PHY-0606007. NR 31 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011306 DI 10.1103/PhysRevC.80.011306 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500007 ER PT J AU Chugunov, AI DeWitt, HE AF Chugunov, A. I. DeWitt, H. E. TI Nuclear fusion reaction rates for strongly coupled ionic mixtures SO PHYSICAL REVIEW C LA English DT Article ID THERMONUCLEAR REACTION-RATES; ACCRETING NEUTRON-STARS; DENSE STELLAR MATTER; MONTE-CARLO SIMULATIONS; PYCNONUCLEAR REACTIONS; THERMAL STATES; ENHANCEMENT; PLASMAS; DENSITIES; FLUIDS AB We analyze the effect of plasma screening on nuclear reaction rates in dense matter composed of atomic nuclei of one or two types. We perform semiclassical calculations of the Coulomb barrier penetrability taking into account a radial mean-field potential of plasma ions. The mean-field potential is extracted from the results of extensive Monte Carlo calculations of radial pair distribution functions of ions in binary ionic mixtures. We calculate the reaction rates in a wide range of plasma parameters and approximate these rates by an analytical expression that is expected to be applicable to multicomponent ion mixtures. Also, we analyze Gamow-peak energies of reacting ions in various nuclear burning regimes. For illustration, we study nuclear burning in (12)C-(16)O mixtures. C1 [Chugunov, A. I.] AF Ioffe Phys Tech Inst, RU-194021 St Petersburg, Russia. [DeWitt, H. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chugunov, AI (reprint author), AF Ioffe Phys Tech Inst, Politekhnicheskaya 26, RU-194021 St Petersburg, Russia. RI Chugunov, Andrey/E-2061-2014 FU Russian Foundation for Basic Research [08-02-00837]; State Program "Leading Scientific Schools of Russian Federation" [NSh 2600.2008.2]; US Department of Energy at the Lawrence Livermore National Laboratory [W-7405-ENG-48] FX We are grateful to D. G. Yakovlev for useful remarks. The work of AIC was partly supported by the Russian Foundation for Basic Research (Grant 08-02-00837) and by the State Program "Leading Scientific Schools of Russian Federation" (Grant NSh 2600.2008.2). The work of HED was performed under the auspices of the US Department of Energy at the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. NR 49 TC 9 Z9 9 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014611 DI 10.1103/PhysRevC.80.014611 PG 12 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500049 ER PT J AU Clark, RM Casten, RF Bettermann, L Winkler, R AF Clark, R. M. Casten, R. F. Bettermann, L. Winkler, R. TI Unified framework for understanding pair transfer between collective states in atomic nuclei SO PHYSICAL REVIEW C LA English DT Article ID INTERACTING-BOSON MODEL; T,P REACTION; PHASE-TRANSITIONS; GADOLINIUM NUCLEI; P,T REACTION; T REACTIONS; ISOTOPES; QUANTUM; SM AB A new interpretation of two-nucleon pair transfer in collective nuclei is presented. It differs from traditional models and unifies, within a consistent framework, the entire range of monopole pair-transfer phenomenology in collective nuclei. This includes the well-known examples of large cross sections to excited 0(+) states in phase transitional nuclei, and small ones in many other nuclei, but also predicts large cross sections elsewhere under particular circumstances. These predictions can be tested experimentally. C1 [Clark, R. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Casten, R. F.; Winkler, R.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Casten, R. F.; Bettermann, L.] Univ Cologne, Inst Nucl Phys, D-50937 Cologne, Germany. RP Clark, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU US DOE [DE-FG0291ER-40609, DE-CA02-05CH11231]; German DFG [J0391/3-2]; Mercator lecture grant at the University of Koln [142/112-1] FX We are grateful to R. Burcu Cakirli for the nuclear chart in Fig. 3. Work supported by US DOE Grant No. DE-FG0291ER-40609, US DOE Contract No. DE-CA02-05CH11231, the German DFG under Grant No. J0391/3-2 and through a Mercator lecture grant at the University of Koln, under Grant No. Ko. 142/112-1, and by the Flint Fund. NR 30 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011303 DI 10.1103/PhysRevC.80.011303 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500004 ER PT J AU Dalton, MM Adams, GS Ahmidouch, A Angelescu, T Arrington, J Asaturyan, R Baker, OK Benmouna, N Bertoncini, C Boeglin, WU Bosted, PE Breuer, H Christy, ME Connell, SH Cui, Y Danagoulian, S Day, D Dodario, T Dunne, JA Dutta, D El Khayari, N Ent, R Fenker, HC Frolov, VV Gan, L Gaskell, D Hafidi, K Hinton, W Holt, RJ Horn, T Huber, GM Hungerford, E Jiang, X Jones, MK Joo, K Kalantarians, N Kelly, JJ Keppel, CE Kubarovsky, V Li, Y Liang, Y Malace, S Markowitz, P McKee, P Meekins, DG Mkrtchyan, H Moziak, B Navasardyan, T Niculescu, G Niculescu, I Opper, AK Ostapenko, T Reimer, PE Reinhold, J Roche, J Rock, SE Schulte, E Segbefia, E Smith, C Smith, GR Stoler, P Tadevosyan, V Tang, L Tvaskis, V Ungaro, M Uzzle, A Vidakovic, S Villano, A Vulcan, WF Wang, M Warren, G Wesselmann, FR Wojtsekhowski, B Wood, SA Xu, C Yuan, L Zheng, X Zhu, H AF Dalton, M. M. Adams, G. S. Ahmidouch, A. Angelescu, T. Arrington, J. Asaturyan, R. Baker, O. K. Benmouna, N. Bertoncini, C. Boeglin, W. U. Bosted, P. E. Breuer, H. Christy, M. E. Connell, S. H. Cui, Y. Danagoulian, S. Day, D. Dodario, T. Dunne, J. A. Dutta, D. El Khayari, N. Ent, R. Fenker, H. C. Frolov, V. V. Gan, L. Gaskell, D. Hafidi, K. Hinton, W. Holt, R. J. Horn, T. Huber, G. M. Hungerford, E. Jiang, X. Jones, M. K. Joo, K. Kalantarians, N. Kelly, J. J. Keppel, C. E. Kubarovsky, V. Li, Y. Liang, Y. Malace, S. Markowitz, P. McKee, P. Meekins, D. G. Mkrtchyan, H. Moziak, B. Navasardyan, T. Niculescu, G. Niculescu, I. Opper, A. K. Ostapenko, T. Reimer, P. E. Reinhold, J. Roche, J. Rock, S. E. Schulte, E. Segbefia, E. Smith, C. Smith, G. R. Stoler, P. Tadevosyan, V. Tang, L. Tvaskis, V. Ungaro, M. Uzzle, A. Vidakovic, S. Villano, A. Vulcan, W. F. Wang, M. Warren, G. Wesselmann, F. R. Wojtsekhowski, B. Wood, S. A. Xu, C. Yuan, L. Zheng, X. Zhu, H. TI Electroproduction of eta mesons in the S-11(1535) resonance region at high momentum transfer SO PHYSICAL REVIEW C LA English DT Article ID FORM-FACTORS; QUARK-MODEL; PION-PHOTOPRODUCTION; EXCLUSIVE PROCESSES; NUCLEON RESONANCES; SIGMA-T; THRESHOLD; PROTON; TRANSITION; SCATTERING AB The differential cross section for the process p(e,e(')p)eta has been measured at Q(2 similar to)5.7 and 7.0(GeV/c)(2) for center-of-mass energies from threshold to 1.8 GeV, encompassing the S-11(1535) resonance, which dominates the channel. This is the highest momentum-transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A(1/2), for the production of the S-11(1535) resonance, is extracted from the data. Within the limited Q(2) now measured, this quantity appears to begin scaling as Q(-3)-a predicted, but not definitive, signal of the dominance of perturbative QCD at Q(2)similar to 5 (GeV/c)(2). C1 [Dalton, M. M.] Univ Witwatersrand, Johannesburg, South Africa. [Adams, G. S.; Kubarovsky, V.; Moziak, B.; Stoler, P.; Villano, A.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Ahmidouch, A.; Danagoulian, S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Angelescu, T.; Malace, S.] Univ Bucharest, Bucharest, Romania. [Arrington, J.; Hafidi, K.; Holt, R. J.; Reimer, P. E.; Schulte, E.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Baker, O. K.; Christy, M. E.; Hinton, W.; Keppel, C. E.; Li, Y.; Segbefia, E.; Tang, L.; Uzzle, A.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA. [Baker, O. K.; Bosted, P. E.; Ent, R.; Fenker, H. C.; Gaskell, D.; Hinton, W.; Jones, M. K.; Keppel, C. E.; Kubarovsky, V.; Meekins, D. G.; Roche, J.; Smith, G. R.; Tang, L.; Vulcan, W. F.; Warren, G.; Wojtsekhowski, B.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Benmouna, N.] George Washington Univ, Washington, DC 20052 USA. [Bertoncini, C.] Vassar Coll, Poughkeepsie, NY 12604 USA. [Boeglin, W. U.; Markowitz, P.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Breuer, H.; Horn, T.; Kelly, J. J.] Univ Maryland, College Pk, MD 20742 USA. [Connell, S. H.] Univ Johannesburg, Johannesburg, South Africa. [Cui, Y.; Dodario, T.; El Khayari, N.; Hungerford, E.; Kalantarians, N.] Univ Houston, Houston, TX 77204 USA. [Day, D.; McKee, P.; Niculescu, G.; Smith, C.; Wesselmann, F. R.; Zhu, H.] Univ Virginia, Charlottesville, VA 22901 USA. [Dunne, J. A.; Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Frolov, V. V.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Gan, L.] Univ N Carolina, Wilmington, NC 28403 USA. [Huber, G. M.; Vidakovic, S.; Xu, C.] Univ Regina, Regina, SK S4S 0A2, Canada. [Jiang, X.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Joo, K.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Liang, Y.; Opper, A. K.] Ohio Univ, Athens, OH 45071 USA. [Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Ostapenko, T.] Gettysburg Coll, Gettysburg, PA 18103 USA. [Rock, S. E.; Wang, M.] Univ Massachusetts, Amherst, MA 01003 USA. [Tvaskis, V.] Natl Inst Subatomaire Fys, Amsterdam, Netherlands. RP Dalton, MM (reprint author), Univ Witwatersrand, Johannesburg, South Africa. EM dalton@jlab.org RI Holt, Roy/E-5803-2011; Arrington, John/D-1116-2012; Reimer, Paul/E-2223-2013; Day, Donal/C-5020-2015; Connell, Simon/F-2962-2015; Dalton, Mark/B-5380-2016 OI Arrington, John/0000-0002-0702-1328; Day, Donal/0000-0001-7126-8934; Connell, Simon/0000-0001-6000-7245; Dalton, Mark/0000-0001-9204-7559 FU US Department of Energy [DE-AC02-06CH11357, DEAC05-84ER40150]; US National Science Foundation; South African National Research Foundation FX We acknowledge the support of staff and management at Jefferson Lab. Thiswork is supported in part by research grants from theUS Department of Energy (including grant DE-AC02-06CH11357), the US National Science Foundation and the South African National Research Foundation. The Southeastern Universities Research Association operates the Thomas Jefferson National Accelerator Facility under the US Department of Energy contract DEAC05-84ER40150. NR 43 TC 21 Z9 21 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 015205 DI 10.1103/PhysRevC.80.015205 PG 34 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500064 ER PT J AU Gintautas, V Champagne, AE Kondev, FG Longland, R AF Gintautas, Vadas Champagne, Arthur E. Kondev, Filip G. Longland, Richard TI Thermal equilibration of Lu-176 via K mixing SO PHYSICAL REVIEW C LA English DT Article ID CAPTURE CROSS-SECTIONS; S-PROCESS; ASTROPHYSICAL CONSEQUENCES; STARS; SOLAR; NUCLEOSYNTHESIS; TRANSITIONS; ABUNDANCES; SCHEME; MASSES AB In astrophysical environments, the long-lived (T-1/2=37.6 Gyr) ground state of Lu-176 can communicate with a short-lived (T-1/2=3.664 h) isomeric level through thermal excitations. Thus, the lifetime of Lu-176 in an astrophysical environment can be quite different than in the laboratory. We examine the possibility that the rate of equilibration can be enhanced via K mixing of two levels near E-x=725 keV and estimate the relevant gamma-decay rates. We use this result to illustrate the effect of K mixing on the effective stellar half-life. We also present a network calculation that includes the equilibrating transitions allowed by K mixing. Even a small amount of K mixing will decrease the timescale for equilibration during an s-process triggered by the Ne-22 neutron source. C1 [Gintautas, Vadas; Champagne, Arthur E.; Longland, Richard] Univ N Carolina, Chapel Hill, NC 27599 USA. [Champagne, Arthur E.; Longland, Richard] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Kondev, Filip G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Gintautas, V (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. FU US DOE [DE-FG02- 97ER4104, DE-AC02-06CH11357] FX This work was supported in part by US DOE grant nos. DE-FG02- 97ER4104 and DE-AC02-06CH11357. We would like to thank G. D. Dracoulis, J. Engel, and P. Mohr for advice and useful discussions. One of the authors (A. E. C.) wishes to thank Argonne National Laboratory for their hospitality and another (R. L.) would like to thank J. Lattanzio for his assistance with the Monash stellar-structure code. The Los Alamos National Laboratory technical information release number is LA-UR 09-00440. NR 28 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 015806 DI 10.1103/PhysRevC.80.015806 PG 8 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500073 ER PT J AU Goodin, C Ramayya, AV Hamilton, JH Stone, NJ Daniel, AV Li, K Liu, SH Hwang, JK Luo, YX Rasmussen, JO Zhu, SJ AF Goodin, C. Ramayya, A. V. Hamilton, J. H. Stone, N. J. Daniel, A. V. Li, K. Liu, S. H. Hwang, J. K. Luo, Y. X. Rasmussen, J. O. Zhu, S. J. TI Single particle states in neutron-rich Zr-101, Mo-103,Mo-105,Mo-107, and Ru-109,Ru-111 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI AB The multipole mixing ratios of Delta I=1 transitions between levels in rotational bands built on single-particle states in odd neutron nuclei are dependent on the configurations of the states. In particular, the mixing ratio can be used to distinguish between several possible single-particle configurations if interpreted with the particle-axial-rotor model. This work features the first determination of the ground-state configurations of Ru-109,Ru-111. The single-particle structures of the ground states of Zr-101 and Mo-103,Mo-105,Mo-107 as well as excited states in Mo-103,Mo-107 are also investigated, with a new result found in Mo-107. C1 [Goodin, C.; Ramayya, A. V.; Hamilton, J. H.; Daniel, A. V.; Li, K.; Liu, S. H.; Hwang, J. K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daniel, A. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37830 USA. [Luo, Y. X.; Rasmussen, J. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Goodin, C (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. FU US Department of Energy [DE-FG05-88ER40407, W-7405-ENG48]; University of Tennessee; Vanderbilt University; US DOE [DE-FG05-87ER40311 and DE-FG0296ER40983] FX We thank V. Oberacker for assistance with calculations. The work at Vanderbilt University and Lawrence Berkeley National Laboratory are supported by US Department of Energy under Grant No. DE-FG05-88ER40407 and Contract No. W-7405-ENG48. The Joint Institute for Heavy Ion Research is supported by the University of Tennessee, Vanderbilt University, and the US DOE through Contract Nos. DE-FG05-87ER40311 and DE-FG0296ER40983 with University of Tennessee is gratefully acknowledged. NR 16 TC 10 Z9 10 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014318 DI 10.1103/PhysRevC.80.014318 PG 7 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500032 ER PT J AU Hutcheson, A Angell, C Becker, JA Crowell, AS Dashdorj, D Fallin, B Fotiades, N Howell, CR Karwowski, HJ Kawano, T Kelley, JH Kwan, E Macri, RA Nelson, RO Pedroni, RS Tonchev, AP Tornow, W AF Hutcheson, A. Angell, C. Becker, J. A. Crowell, A. S. Dashdorj, D. Fallin, B. Fotiades, N. Howell, C. R. Karwowski, H. J. Kawano, T. Kelley, J. H. Kwan, E. Macri, R. A. Nelson, R. O. Pedroni, R. S. Tonchev, A. P. Tornow, W. TI Cross sections for U-238(n,n(')gamma) and U-238(n,2n gamma) reactions at incident neutron energies between 5 and 14 MeV SO PHYSICAL REVIEW C LA English DT Article AB Precision measurements of U-238(n,n(')gamma) and U-238(n,2n gamma) partial cross sections have been performed at Triangle Universities Nuclear Laboratory (TUNL) to improve crucial data needed for testing nuclear reaction models in the actinide mass region. A pulsed and monoenergetic neutron beam was used in combination with high-resolution gamma-ray spectroscopy to obtain partial cross sections for incident neutron energies between 5 and 14 MeV. gamma-ray yields were measured with high-purity germanium clover and planar detectors. Measured partial cross-section data are compared with previous results using white and monoenergetic neutron beams and calculations from the GNASH and TALYS Hauser-Feshbach statistical-model codes. Present experimental results are in fair to good agreement with most of the existing data for the U-238(n,n(')gamma) reaction. However, significant discrepancies are observed for the U-238(n,2n gamma) reaction. C1 [Dashdorj, D.; Kelley, J. H.] N Carolina State Univ, Raleigh, NC 27695 USA. [Angell, C.; Karwowski, H. J.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Pedroni, R. S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Hutcheson, A.; Angell, C.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kwan, E.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Fotiades, N.; Kawano, T.; Nelson, R. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Becker, J. A.; Dashdorj, D.; Macri, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hutcheson, A.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Kwan, E.; Tonchev, A. P.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. RP Hutcheson, A (reprint author), USN, Res Lab, Washington, DC 20375 USA. EM hutch@tunl.duke.edu FU National Nuclear Security Administration [DE-FG52-06NA26155]; US Department of Energy by Los Alamos National Security, LLC, Los Alamos National Laboratory [DE-AC52-06NA25396]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank C. K. Walker for valuable discussions. The research described in this work was supported by the National Nuclear Security Administration under the Stewardship Science Academic Alliance Program through US Department of Energy Grant No. DE-FG52-06NA26155. Portions of this work were performed under the auspices of the US Department of Energy by Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 21 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014603 DI 10.1103/PhysRevC.80.014603 PG 7 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500041 ER PT J AU Johansson, EK Rudolph, D Ragnarsson, I Andersson, LL Torres, DA Andreoiu, C Baktash, C Carpenter, MP Charity, RJ Chiara, CJ Ekman, J Fahlander, C Pechenaya, OL Reviol, W du Rietz, R Sarantites, DG Seweryniak, D Sobotka, LG Yu, CH Zhu, S AF Johansson, E. K. Rudolph, D. Ragnarsson, I. Andersson, L. -L. Torres, D. A. Andreoiu, C. Baktash, C. Carpenter, M. P. Charity, R. J. Chiara, C. J. Ekman, J. Fahlander, C. Pechenaya, O. L. Reviol, W. du Rietz, R. Sarantites, D. G. Seweryniak, D. Sobotka, L. G. Yu, C. H. Zhu, S. TI Thorough gamma-ray and particle decay investigations of Ni-58 SO PHYSICAL REVIEW C LA English DT Article ID PROMPT PROTON-DECAY; ROTATIONAL BANDS; HIGH-SPIN; SHELL-MODEL; CHANNEL-SELECTION; SPECTROSCOPY; GAMMASPHERE; STATES; COLLECTIVITY; TERMINATION AB The combined data from three fusion-evaporation reaction experiments have been utilized to investigate the semi-magic nucleus Ni-58(28)30. To detect gamma rays in coincidence with evaporated particles, the Ge-detector array Gammasphere was used in conjunction with the charged-particle detectors Microball and LuWuSiA (the Lund Washington University Silicon Array), and a neutron detector array. The results yield a significantly extended level scheme of Ni-58 comprising some 340 gamma-ray transitions and include a total of at least 14 discrete particle decays into excited states of the daughter nuclei Fe-54 and Co-57. The level scheme is compared with large-scale shell-model calculations and cranked Nilsson-Strutinsky calculations. C1 [Johansson, E. K.; Rudolph, D.; Andersson, L. -L.; Ekman, J.; Fahlander, C.; du Rietz, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. [Torres, D. A.] Univ Nacl Colombia, Dept Fis, Bogota, Colombia. [Andreoiu, C.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Baktash, C.; Yu, C. H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Carpenter, M. P.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Charity, R. J.; Chiara, C. J.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. RP Johansson, EK (reprint author), Lund Univ, Dept Phys, S-22100 Lund, Sweden. RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; du Rietz, Rickard/I-3794-2013; Carpenter, Michael/E-4287-2015 OI Rudolph, Dirk/0000-0003-1199-3055; du Rietz, Rickard/0000-0002-9884-9058; Carpenter, Michael/0000-0002-3237-5734 FU Swedish Research Council; US DOE [DE-AC-02-06CH11357] FX The authors thank the staff and the accelerator crew at LBNL and ANL, as well as D. P. Balamuth, M. Devlin, J. Eberth, A. Galindo-Uribarri, P. A. Hausladen, L. L. Riedinger, and T. Steinhardt for support during the experiments. This work is supported in part by the Swedish Research Council and the US DOE Grant DE-AC-02-06CH11357. NR 43 TC 13 Z9 13 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014321 DI 10.1103/PhysRevC.80.014321 PG 32 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500035 ER PT J AU Kay, BP Chiara, CJ Schiffer, JP Kondev, FG Zhu, S Carpenter, MP Janssens, RVF Lauritsen, T Lister, CJ McCutchan, EA Seweryniak, D Stefanescu, I AF Kay, B. P. Chiara, C. J. Schiffer, J. P. Kondev, F. G. Zhu, S. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Lister, C. J. McCutchan, E. A. Seweryniak, D. Stefanescu, I. TI Properties of excited states in Ge-77 SO PHYSICAL REVIEW C LA English DT Article ID ELASTIC-SCATTERING; ENERGY-DEPENDENCE; ISOTOPES; PB-208; O-16 AB The nucleus Ge-77 was studied through the Ge-76(C-13,C-12)Ge-77 reaction at a sub-Coulomb energy. The angular distributions of gamma rays depopulating excited states in Ge-77 were measured in order to constrain spin and parity assignments. Some of these assignments are of use in connection with neutrinoless double beta decay, where the population of states near the Fermi surface of Ge-76 was recently explored using transfer reactions. C1 [Kay, B. P.; Chiara, C. J.; Schiffer, J. P.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Stefanescu, I.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. RP Kay, BP (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Kay, Benjamin/F-3291-2011; Carpenter, Michael/E-4287-2015 OI Kay, Benjamin/0000-0002-7438-0208; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors would like to thank J.P. Greene for provision of the targets for this experiment. The work was supported by the US Department of Energy, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357. NR 12 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 017301 DI 10.1103/PhysRevC.80.017301 PG 4 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500076 ER PT J AU Kondev, FG Dracoulis, GD Lane, GJ Ahmad, I Byrne, AP Carpenter, MP Chowdhury, P Janssens, RVF Kibedi, T Lauritsen, T Lister, CJ Seweryniak, D Tandel, SK Zhu, S AF Kondev, F. G. Dracoulis, G. D. Lane, G. J. Ahmad, I. Byrne, A. P. Carpenter, M. P. Chowdhury, P. Janssens, R. V. F. Kibedi, T. Lauritsen, T. Lister, C. J. Seweryniak, D. Tandel, S. K. Zhu, S. TI Multi-quasiparticle isomers in Lu-174 SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-GAMMA-COINCIDENCES; ODD-ODD LU-174; HIGH-K ISOMERS; QUADRUPOLE-MOMENTS; SPECTROSCOPY; COLLISIONS; NUCLEI; REGION; STATES; BEAM AB Four-, six-, and eight-quasiparticle isomers with K-pi=14(-), (21(+)) and (26(-)) have been identified in the deformed nucleus Lu-174, in addition to the previously reported K-pi=13(+), four-quasiparticle isomeric state. Analysis of alignments and in-band crossover-to-cascade branching ratios lead to the characterization of the configurations associated with the K-pi=14(-) and (21(+)) isomers. The excitation energies of the observed states are compared with results from multi-quasiparticle calculations that include effects of blocking and residual nucleon-nucleon interactions. Good agreement is found for medium-spin (I=13-14h) and the highest spin (I>20h) states observed, but there remain ambiguities in assigning configurations in the I=15-19h region. C1 [Kondev, F. G.; Ahmad, I.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Kibedi, T.] Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Byrne, A. P.] Australian Natl Univ, Dept Phys, The Faculties, Canberra, ACT 0200, Australia. [Chowdhury, P.; Tandel, S. K.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. RP Kondev, FG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Kibedi, Tibor/E-8282-2010; Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Kibedi, Tibor/0000-0002-9205-7500; Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy; Office of Science; Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848]; ANSTO program for Access to Major Research Facilities [02/03-H-05]; Australian Research Council [DP0343027, DP0345844] FX The authors thank R. B. Turkentine for producing the targets, and S. J. Freeman and N. J. Hammond for assistance in the experiments. Thiswork is supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-94ER40848, the ANSTO program for Access to Major Research Facilities, Grant No. 02/ 03-H-05, and the Australian Research Council Discovery projects DP0343027 and DP0345844. NR 30 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014304 DI 10.1103/PhysRevC.80.014304 PG 9 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500018 ER PT J AU Lukyanov, S Mocko, M Andronenko, L Andronenko, M Bazin, D Famiano, MA Gade, A Lobastov, SP Lynch, WG Rogers, AM Tarasov, OB Tsang, MB Verde, G Wallace, MS Zegers, RGT AF Lukyanov, S. Mocko, M. Andronenko, L. Andronenko, M. Bazin, D. Famiano, M. A. Gade, A. Lobastov, S. P. Lynch, W. G. Rogers, A. M. Tarasov, O. B. Tsang, M. B. Verde, G. Wallace, M. S. Zegers, R. G. T. TI Projectile fragmentation of radioactive beams of Ni-68, Cu-69, and Zn-72 SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC HEAVY-IONS; CROSS-SECTIONS; SEPARATOR; FACILITY AB The fragment production cross sections of secondary neutron-rich beams of Ni-68, Cu-69, and Zn-72 isotopes at energies of about 95A MeV have been measured. We compare the measured cross sections to EPAX, an empirical parametrization of fragmentation cross sections. A reasonable agreement of the experimental data and EPAX predictions suggests that an EPAX parametrization used for stable beams seems to be valid for unstable neutron-rich ion beams. EPAX tends to overestimate the yields of neutron-rich isotopes. This problem is amplified when neutron-rich radioactive beams are employed, leading to overly optimistic estimates of the production of neutron-rich isotopes. C1 [Lukyanov, S.; Mocko, M.; Andronenko, L.; Andronenko, M.; Bazin, D.; Famiano, M. A.; Gade, A.; Lobastov, S. P.; Lynch, W. G.; Rogers, A. M.; Tarasov, O. B.; Tsang, M. B.; Verde, G.; Wallace, M. S.; Zegers, R. G. T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Lukyanov, S.; Lobastov, S. P.; Tarasov, O. B.] Joint Inst Nucl Res, Flerov Lab Nucl React, RU-141980 Dubna, Moscow Region, Russia. [Mocko, M.; Wallace, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mocko, M.; Lynch, W. G.; Rogers, A. M.; Tsang, M. B.; Zegers, R. G. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Andronenko, L.; Andronenko, M.] PNPI, RU-188300 Gatchina, Russia. [Famiano, M. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Verde, G.] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy. RP Lukyanov, S (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM lukyan@nrmail.jinr.ru RI Gade, Alexandra/A-6850-2008; Mocko, Michal/B-1794-2010; Lujan Center, LANL/G-4896-2012; Verde, Giuseppe/J-3609-2012; Zegers, Remco/A-6847-2008; Lynch, William/I-1447-2013 OI Gade, Alexandra/0000-0001-8825-0976; Lynch, William/0000-0003-4503-176X FU National Science Foundation [PHY-01-10253, PHY-0606007, INT-0218329, DEFG02-04ER41313]; Michigan State University FX Our sincere gratitude is extended to the staff members of the NSCL coupled cyclotron facility for their assistance in providing the beams for the experiment. This work is supported by the National Science Foundation under Grant Nos. PHY-01-10253, PHY-0606007, INT-0218329, and DEFG02-04ER41313. SL acknowledges partial support from Michigan State University during his stay at the NSCL. NR 17 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014609 DI 10.1103/PhysRevC.80.014609 PG 6 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500047 ER PT J AU Matejska-Minda, M Fornal, B Broda, R Carpenter, MP Janssens, RVF Krolas, W Lauritsen, T Mantica, PF Mazurek, K Pawlat, T Wrzesinski, J Zhu, S AF Matejska-Minda, M. Fornal, B. Broda, R. Carpenter, M. P. Janssens, R. V. F. Krolas, W. Lauritsen, T. Mantica, P. F. Mazurek, K. Pawlat, T. Wrzesinski, J. Zhu, S. TI Yrast structure of Zr-97 and beta decay of the 27/2(-) high-spin isomer in Y-97 SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION REACTIONS; NUCLEI; EXCITATIONS; OCTUPOLE; REGION AB The yrast structure of the neutron-rich nucleus Zr-97 has been studied using fission of targetlike products in the reaction of a Ca-48 beam on a thick U-238 target. The level scheme, known from previous studies up to an excitation energy and spin-parity of approximately 4619 keV and 23/2(-), has been extended by about 3 MeV and a few units of angular momentum. Two states fed in the beta decay of the 27/2(-) high-spin isomer in Y-97 were identified at 5570 and 5606 keV. The located level structure can be discussed in terms of shell-model configurations. C1 [Matejska-Minda, M.; Fornal, B.; Broda, R.; Krolas, W.; Mazurek, K.; Pawlat, T.; Wrzesinski, J.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Mantica, P. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Matejska-Minda, M (reprint author), Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC0206CH11357]; Polish Ministry of Science and Higher Education [NN202103333] FX This work is supported by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC0206CH11357. This work is supported by the Polish Ministry of Science and Higher Education under contract NN202103333. NR 20 TC 6 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 017302 DI 10.1103/PhysRevC.80.017302 PG 4 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500077 ER PT J AU Ollitrault, JY Poskanzer, AM Voloshin, SA AF Ollitrault, Jean-Yves Poskanzer, Arthur M. Voloshin, Sergei A. TI Effect of flow fluctuations and nonflow on elliptic flow methods SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC NUCLEAR COLLISIONS; ECCENTRICITY FLUCTUATIONS; ANISOTROPIC FLOW; COLLECTIVE FLOW AB We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v(2,PP) elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v(2,RP) in the reaction plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious. C1 [Ollitrault, Jean-Yves] CNRS, URA2306, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France. [Poskanzer, Arthur M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Voloshin, Sergei A.] Wayne State Univ, Detroit, MI 48201 USA. RP Ollitrault, JY (reprint author), CNRS, URA2306, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France. RI Ollitrault, Jean-Yves/B-3709-2010 OI Ollitrault, Jean-Yves/0000-0001-6037-7975 FU US Department of Energy [DE-AC02-05CH11231, DE-FG02-92ER40713] FX We thank the authors of Ref. [20] and Constantin Loizides for permission to use Fig. 1. For discussions we thank Hiroshi Masui, Aihong Tang, and Paul Sorensen. This work was supported in part by the HENP Divisions of the Office of Science of the US Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-FG02-92ER40713. NR 31 TC 94 Z9 95 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014904 DI 10.1103/PhysRevC.80.014904 PG 12 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500054 ER PT J AU Reviol, W Sarantites, DG Chiara, CJ Montero, M Janssens, RVF Carpenter, MP Khoo, TL Lauritsen, T Lister, CJ Seweryniak, D Zhu, S Pechenaya, OL Frauendorf, SG AF Reviol, W. Sarantites, D. G. Chiara, C. J. Montero, M. Janssens, R. V. F. Carpenter, M. P. Khoo, T. L. Lauritsen, T. Lister, C. J. Seweryniak, D. Zhu, S. Pechenaya, O. L. Frauendorf, S. G. TI Parity doubling in Th-219 and the onset of collectivity above N=126 SO PHYSICAL REVIEW C LA English DT Article ID GAMMASPHERE; NUCLEI; SPECTROSCOPY; STATES AB Excited states in Th-219 have been observed for the first time in an experiment using the Mg-26+Pt-198 reaction and evaporation-residue-gated gamma-ray spectroscopy. Two structures of interlinked alternating-parity levels with simplex quantum numbers s=+/- i are observed, reminiscent of similar sequences in heavier odd-mass isotopes, but only three mass units away from the N=126 neutron closed shell. The emergence of quadrupole-octupole collectivity in this mass region and the trend for parity-doublet bands are discussed. C1 [Reviol, W.; Sarantites, D. G.; Chiara, C. J.; Montero, M.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Chiara, C. J.; Janssens, R. V. F.; Carpenter, M. P.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Pechenaya, O. L.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Frauendorf, S. G.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Reviol, W (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-88ER-40406, DE-AC02-06CH11357, DE-FG02-95ER40934] FX The authors thank J. Elson (WU) and J. Rohrer (ANL) for technical support and J. P. Greene (ANL) for the preparation of the target. One of the authors (W. R.) acknowledges inspiring discussions with I. Y. Lee. This work was supported by the US Department of Energy, Office of Nuclear Physics, Grant Nos. DE-FG02-88ER-40406, DE-AC02-06CH11357, and DE-FG02-95ER40934. NR 18 TC 7 Z9 7 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011304 DI 10.1103/PhysRevC.80.011304 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500005 ER PT J AU Sheikh, JA Nazarewicz, W Pei, JC AF Sheikh, J. A. Nazarewicz, W. Pei, J. C. TI Systematic study of fission barriers of excited superheavy nuclei SO PHYSICAL REVIEW C LA English DT Article ID ROTATING NUCLEI; HOT NUCLEI; FINITE TEMPERATURES; EXCITATION-ENERGY; DEFORMATION SPACE; POTENTIAL-ENERGY; SELF-CONSISTENT; STABILITY; ELEMENTS; HEAVY AB A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock + BCS (FT-HF + BCS) formalism with the SkM(*) Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection-asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N=164 and spherical nuclei around N=184 that are strongly stabilized by ground-state shell effects. For the nuclei (240)Pu and (256)Fm, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies owing to the thermal quenching of static reflection asymmetric deformations. C1 [Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Pei, J. C.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. RP Sheikh, JA (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Pei, Junchen/E-3532-2010 FU National Nuclear Security Administration [DE-FG03-03NA00083]; US Department of Energy [DE-FG02-96ER40963]; Oak Ridge National Laboratory [DE-AC0500OR22725]; UNEDF SciDAC Collaboration [DE-FC02-07ER41457] FX Useful discussions with Arthur Kerman, Yuri Oganessian, and Andrzej Staszczak are gratefully acknowledged. Computational resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through Grant DE-FG03-03NA00083 and by the US Department of Energy under Contract Nos. DE-FG02-96ER40963 (university of Tennessee), DE-AC0500OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC02-07ER41457 (UNEDF SciDAC Collaboration). NR 54 TC 25 Z9 25 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011302 DI 10.1103/PhysRevC.80.011302 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500003 ER PT J AU Staszczak, A Baran, A Dobaczewski, J Nazarewicz, W AF Staszczak, A. Baran, A. Dobaczewski, J. Nazarewicz, W. TI Microscopic description of complex nuclear decay: Multimodal fission SO PHYSICAL REVIEW C LA English DT Article ID FOCK-BOGOLYUBOV EQUATIONS; HARMONIC-OSCILLATOR BASIS; SUPERHEAVY NUCLEI; HALF-LIVES; SYMMETRICAL FISSION; HEAVIEST ELEMENTS; FERMIUM ISOTOPES; SELF-CONSISTENT; BARRIERS; HEAVY AB Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes. C1 [Staszczak, A.; Baran, A.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Staszczak, A.; Baran, A.; Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Staszczak, A.; Baran, A.; Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. RP Staszczak, A (reprint author), Marie Curie Sklodowska Univ, Inst Phys, Pl M Curie Sklodowskiej 1, PL-20031 Lublin, Poland. FU National Nuclear Security Administration under the Stewardship Science Academic Alliances program through US Department of Energy Research [DE-FG03-03NA00083]; US Department of Energy [DEFG02- 96ER40963, DE-AC0500OR22725, DE-FC0209ER41583]; Polish Ministry of Science and Higher Education [N N 202 328234] FX This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through US Department of Energy Research Grant No. DE-FG03-03NA00083; by the US Department of Energy under Contract Nos. DEFG02- 96ER40963 (University of Tennessee), DE-AC0500OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC0209ER41583 (UNEDF SciDAC Collaboration); by the Polish Ministry of Science and Higher Education under Contract No. N N 202 328234; and by the Academy of Finland and University of Jyvaskyla within the FIDIPRO program. Computational resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 65 TC 56 Z9 56 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014309 DI 10.1103/PhysRevC.80.014309 PG 6 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500023 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martiacutenez, M Martiacutenez-Ballariacuten, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Aacutelvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B.-Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C.-S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martiacutenez, M. Martiacutenez-Ballariacuten, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for standard model Higgs boson production in association with a W boson using a neural network discriminant at CDF SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; UPGRADE; DETECTOR; PHYSICS; TEV AB We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp ->(WH)-H-+/--> l nu bb) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 fb(-1). We select events consistent with a signature of a single charged lepton (e(+/-)/mu(+/-)), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150 GeV/c(2), respectively. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martiacutenez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Aacutelvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Vet Med, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C.-S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martiacutenez-Ballariacuten, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B.-Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 35 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 012002 DI 10.1103/PhysRevD.80.012002 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600004 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Frisch, HJ Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Frisch, H. J. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Searching the inclusive l gamma E-T + b-quark signature for radiative top quark decay and non-standard-model processes SO PHYSICAL REVIEW D LA English DT Article ID CDF; DETECTOR; PHYSICS; CALORIMETER; PERFORMANCE; COLLISIONS; UPGRADE; TEV AB We compare the inclusive production of events containing a lepton (l), a photon (gamma), significant transverse momentum imbalance (E-T), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at root sp = 1.96 TeV corresponding to 1.9 fb(-1) of integrated luminosity taken with the CDF detector. We find 28 l gamma E-T events versus an expectation of 31.0(-3.5)(+4.1) events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, t (r) over bar + gamma. In the data we observe 16 t (t) over bar gamma candidate events versus an expectation from SM sources of 11.2(-2.1)(+2.3) Assuming the difference between the observed number and the predicted non-top-quark total of 6.8(-2.0)(+2.2) is due to SM top- quark production, we estimate the t (t) over bart cross section to be 0.15 +/- 0.08 pb. C1 [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Brigliadori, L.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Frisch, H. J.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Ferrazza, C.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, H. S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Ciobanu, C. I.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, UMR7585,LPNHE, IN2P3, F-75252 Paris, France. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Ferrazza, C.; Garosi, P.; Giunta, M.; Introzzi, G.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Carosi, R.; Cavaliere, V.; Chung, Y. S.; de Barbaro, P.; Giannetti, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lami, S.; McFarland, K. S.; Ristori, L.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [De Cecco, S.; Hare, M.; Napier, A.; Rolli, S.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mathis, M.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 38 TC 6 Z9 6 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 011102 DI 10.1103/PhysRevD.80.011102 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600002 ER PT J AU Aharmim, B Ahmed, SN Andersen, TC Anthony, AE Barros, N Beier, EW Bellerive, A Beltran, B Bergevin, M Biller, SD Boudjemline, K Boulay, MG Burritt, TH Cai, B Chan, YD Chen, M Chon, MC Cleveland, BT Cox-Mobrand, GA Currat, CA Dai, X Dalnoki-Veress, F Deng, H Detwiler, J Doe, PJ Dosanjh, RS Doucas, G Drouin, PL Duncan, FA Dunford, M Elliott, SR Evans, HC Ewan, GT Farine, J Fergani, H Fleurot, F Ford, RJ Formaggio, JA Gagnon, N Goon, JTM Graham, K Grant, DR Guillian, E Habib, S Hahn, RL Hallin, AL Hallman, ED Hargrove, CK Harvey, PJ Hazama, R Heeger, KM Heintzelman, WJ Heise, J Helmer, RL Hemingway, RJ Henning, R Hime, A Howard, C Howe, MA Huang, M Jamieson, B Jelley, NA Klein, JR Kos, M Kruger, A Kraus, C Krauss, CB Kutter, T Kyba, CCM Lange, R Law, J Lawson, IT Lesko, KT Leslie, JR Levine, I Loach, JC Luoma, S MacLellan, R Majerus, S Mak, HB Maneira, J Marino, AD Martin, R McCauley, N McDonald, AB McGee, S Mifflin, C Miller, ML Monreal, B Monroe, J Noble, AJ Oblath, NS Okada, CE O'Keeffe, HM Opachich, Y Gann, GDO Oser, SM Ott, RA Peeters, SJM Poon, AWP Prior, G Rielage, K Robertson, BC Robertson, RGH Rollin, E Schwendener, MH Secrest, JA Seibert, SR Simard, O Simpson, JJ Sinclair, D Skensved, P Smith, MWE Sonley, TJ Steiger, TD Stonehill, LC Tagg, N Tesic, G Tolich, N Tsui, T Van de Water, RG VanDevender, BA Virtue, CJ Waller, D Waltham, CE Tseung, HWC Wark, DL Watson, P Wendland, J West, N Wilkerson, JF Wilson, JR Wouters, JM Wright, A Yeh, M Zhang, F Zuber, K AF Aharmim, B. Ahmed, S. N. Andersen, T. C. Anthony, A. E. Barros, N. Beier, E. W. Bellerive, A. Beltran, B. Bergevin, M. Biller, S. D. Boudjemline, K. Boulay, M. G. Burritt, T. H. Cai, B. Chan, Y. D. Chen, M. Chon, M. C. Cleveland, B. T. Cox-Mobrand, G. A. Currat, C. A. Dai, X. Dalnoki-Veress, F. Deng, H. Detwiler, J. Doe, P. J. Dosanjh, R. S. Doucas, G. Drouin, P. -L. Duncan, F. A. Dunford, M. Elliott, S. R. Evans, H. C. Ewan, G. T. Farine, J. Fergani, H. Fleurot, F. Ford, R. J. Formaggio, J. A. Gagnon, N. Goon, J. T. M. Graham, K. Grant, D. R. Guillian, E. Habib, S. Hahn, R. L. Hallin, A. L. Hallman, E. D. Hargrove, C. K. Harvey, P. J. Hazama, R. Heeger, K. M. Heintzelman, W. J. Heise, J. Helmer, R. L. Hemingway, R. J. Henning, R. Hime, A. Howard, C. Howe, M. A. Huang, M. Jamieson, B. Jelley, N. A. Klein, J. R. Kos, M. Krueger, A. Kraus, C. Krauss, C. B. Kutter, T. Kyba, C. C. M. Lange, R. Law, J. Lawson, I. T. Lesko, K. T. Leslie, J. R. Levine, I. Loach, J. C. Luoma, S. MacLellan, R. Majerus, S. Mak, H. B. Maneira, J. Marino, A. D. Martin, R. McCauley, N. McDonald, A. B. McGee, S. Mifflin, C. Miller, M. L. Monreal, B. Monroe, J. Noble, A. J. Oblath, N. S. Okada, C. E. O'Keeffe, H. M. Opachich, Y. Gann, G. D. Orebi Oser, S. M. Ott, R. A. Peeters, S. J. M. Poon, A. W. P. Prior, G. Rielage, K. Robertson, B. C. Robertson, R. G. H. Rollin, E. Schwendener, M. H. Secrest, J. A. Seibert, S. R. Simard, O. Simpson, J. J. Sinclair, D. Skensved, P. Smith, M. W. E. Sonley, T. J. Steiger, T. D. Stonehill, L. C. Tagg, N. Tesic, G. Tolich, N. Tsui, T. Van de Water, R. G. VanDevender, B. A. Virtue, C. J. Waller, D. Waltham, C. E. Tseung, H. Wan Chan Wark, D. L. Watson, P. Wendland, J. West, N. Wilkerson, J. F. Wilson, J. R. Wouters, J. M. Wright, A. Yeh, M. Zhang, F. Zuber, K. TI Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory SO PHYSICAL REVIEW D LA English DT Article ID CURRENT CROSS-SECTION; PROPAGATION; KAMIOKANDE; DETECTOR; MACRO AB Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between -1 < cos theta(zenith)< 0.4 in a total exposure of 2.30x10(14) cm(2) s. The measured flux normalization is 1.22 +/- 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos theta(zenith)> 0.4 is measured to be (3.31 +/- 0.01(stat)+/- 0.09(sys))x10(-10) mu/s/cm(2). C1 [Aharmim, B.; Farine, J.; Fleurot, F.; Hallman, E. D.; Huang, M.; Krueger, A.; Luoma, S.; Schwendener, M. H.; Virtue, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Beltran, B.; Habib, S.; Hallin, A. L.; Howard, C.; Krauss, C. B.; Okada, C. E.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada. [Heise, J.; Jamieson, B.; Oser, S. M.; Tsui, T.; Waltham, C. E.; Wendland, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hahn, R. L.; Lange, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bellerive, A.; Boudjemline, K.; Dai, X.; Dalnoki-Veress, F.; Dosanjh, R. S.; Drouin, P. -L.; Graham, K.; Grant, D. R.; Hargrove, C. K.; Hemingway, R. J.; Levine, I.; Mifflin, C.; Rollin, E.; Simard, O.; Sinclair, D.; Tesic, G.; Waller, D.; Watson, P.; Zhang, F.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. [Andersen, T. C.; Bergevin, M.; Chon, M. C.; Law, J.; Lawson, I. T.; Simpson, J. J.; Tagg, N.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Bergevin, M.; Chan, Y. D.; Currat, C. A.; Detwiler, J.; Gagnon, N.; Henning, R.; Lesko, K. T.; Loach, J. C.; Marino, A. D.; Okada, C. E.; Opachich, Y.; Poon, A. W. P.; Prior, G.; Tolich, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Bergevin, M.; Chan, Y. D.; Detwiler, J.; Gagnon, N.; Henning, R.; Lesko, K. T.; Loach, J. C.; Marino, A. D.; Okada, C. E.; Opachich, Y.; Poon, A. W. P.; Prior, G.; Tolich, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Barros, N.; Maneira, J.] Lab Instrumentacao & Fis Expt Particulas, P-1000149 Lisbon, Portugal. [Boulay, M. G.; Elliott, S. R.; Gagnon, N.; Heise, J.; Hime, A.; Rielage, K.; Seibert, S. R.; Smith, M. W. E.; Stonehill, L. C.; Van de Water, R. G.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goon, J. T. M.; Kutter, T.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Formaggio, J. A.; Miller, M. L.; Monreal, B.; Monroe, J.; Ott, R. A.; Sonley, T. J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Biller, S. D.; Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Gagnon, N.; Jelley, N. A.; Loach, J. C.; Majerus, S.; McCauley, N.; O'Keeffe, H. M.; Gann, G. D. Orebi; Peeters, S. J. M.; Tagg, N.; Tseung, H. Wan Chan; West, N.; Wilson, J. R.; Zuber, K.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Beier, E. W.; Deng, H.; Dunford, M.; Heintzelman, W. J.; Klein, J. R.; Kyba, C. C. M.; McCauley, N.; Secrest, J. A.; Van de Water, R. G.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ahmed, S. N.; Beltran, B.; Boulay, M. G.; Cai, B.; Chen, M.; Dai, X.; Duncan, F. A.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Guillian, E.; Habib, S.; Hallin, A. L.; Harvey, P. J.; Heise, J.; Howard, C.; Kos, M.; Kraus, C.; Krauss, C. B.; Leslie, J. R.; MacLellan, R.; Mak, H. B.; Martin, R.; McDonald, A. B.; Noble, A. J.; Robertson, B. C.; Skensved, P.; Wright, A.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Wark, D. L.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Duncan, F. A.; Ford, R. J.; Lawson, I. T.] SNOLAB, Sudbury, ON P3Y 1M3, Canada. [Anthony, A. E.; Huang, M.; Klein, J. R.; Seibert, S. R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Helmer, R. L.; Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Heeger, K. M.; Howe, M. A.; McGee, S.; Miller, M. L.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Heeger, K. M.; Howe, M. A.; McGee, S.; Miller, M. L.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Wark, D. L.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. RI Heeger, Karsten/A-9533-2011; Hallin, Aksel/H-5881-2011; Kyba, Christopher/I-2014-2012; Dai, Xiongxin/I-3819-2013; Prior, Gersende/I-8191-2013; Maneira, Jose/D-8486-2011; Barros, Nuno/O-1921-2016; OI Heeger, Karsten/0000-0002-4623-7543; Kyba, Christopher/0000-0001-7014-1843; Maneira, Jose/0000-0002-3222-2738; Barros, Nuno/0000-0002-1192-0705; MARINO, ALYSIA/0000-0002-1709-538X; Wilkerson, John/0000-0002-0342-0217; Prior, Gersende/0000-0002-6058-1420; Jamieson, Blair/0000-0003-3589-9127; Rielage, Keith/0000-0002-7392-7152; Andersen, Thomas/0000-0003-1614-4124; Van de Water, Richard/0000-0002-1573-327X FU Canada: Natural Sciences and Engineering Research Council; Industry Canada; National Research Council; Northern Ontario Heritage Fund; Atomic Energy of Canada, Ltd.; Ontario Power Generation, High Performance Computing Virtual Laboratory; Canada Foundation for Innovation; US: Department of Energy; National Energy Research Scientific Computing Center; UK; Science and Technology Facilities Council; Portugal; Fundacao para a Ciencia e a Tecnologia FX This research was supported by: Canada: Natural Sciences and Engineering Research Council, Industry Canada, National Research Council, Northern Ontario Heritage Fund, Atomic Energy of Canada, Ltd., Ontario Power Generation, High Performance Computing Virtual Laboratory, Canada Foundation for Innovation; US: Department of Energy, National Energy Research Scientific Computing Center; UK: Science and Technology Facilities Council; Portugal: Fundacao para a Ciencia e a Tecnologia. We thank the SNO technical staff for their strong contributions. We thank Vale Inco for hosting this project. NR 52 TC 23 Z9 23 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 012001 DI 10.1103/PhysRevD.80.012001 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600003 ER PT J AU Albuquerque, IFM Carvalho, WR AF Albuquerque, Ivone F. M. Carvalho, Washington R., Jr. TI Detection of exotic massive hadrons in ultrahigh energy cosmic ray telescopes SO PHYSICAL REVIEW D LA English DT Article ID NUCLEUS COLLISIONS; UPPER LIMIT; SPECTRUM; SIMULATION; CASCADES; MODEL; LSP; EYE AB We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultrahigh energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes, is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by a heavier nucleus, the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed. C1 [Albuquerque, Ivone F. M.; Carvalho, Washington R., Jr.] Univ Sao Paulo, Inst Fis, BR-05314 Sao Paulo, Brazil. [Albuquerque, Ivone F. M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Albuquerque, IFM (reprint author), Univ Sao Paulo, Inst Fis, BR-05314 Sao Paulo, Brazil. RI Albuquerque, Ivone/H-4645-2012; Carvalho Jr., Washington/H-9855-2015 OI Albuquerque, Ivone/0000-0001-7328-0136; Carvalho Jr., Washington/0000-0002-2328-7628 NR 39 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023006 DI 10.1103/PhysRevD.80.023006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800008 ER PT J AU Albuquerque, IFM Klein, SR AF Albuquerque, Ivone F. M. Klein, Spencer R. TI Supersymmetric and Kaluza-Klein particles multiple scattering in the Earth SO PHYSICAL REVIEW D LA English DT Article AB Neutrino telescopes with cubic kilometer volumes have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering. C1 [Albuquerque, Ivone F. M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Albuquerque, Ivone F. M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Klein, Spencer R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Albuquerque, IFM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RI Albuquerque, Ivone/H-4645-2012 OI Albuquerque, Ivone/0000-0001-7328-0136 FU U.S. National Science Foundation [0653266]; U.S. Department of Energy [DE-AC-76SF00098, DE-AC02-07CH11359]; Brazilian National Counsel for Scientific Research (CNPq) FX This work was partially funded by the U.S. National Science Foundation under grant number 0653266, the U.S. Department of Energy under contract numbers DE-AC-76SF00098 and DE-AC02-07CH11359 and the Brazilian National Counsel for Scientific Research (CNPq). NR 13 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015015 DI 10.1103/PhysRevD.80.015015 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600063 ER PT J AU Aoki, S Bar, O Sharpe, SR AF Aoki, Sinya Baer, Oliver Sharpe, Stephen R. TI Vector and axial currents in Wilson chiral perturbation theory SO PHYSICAL REVIEW D LA English DT Article ID IMPROVED LATTICE QCD; NONPERTURBATIVE RENORMALIZATION; CONTINUUM-LIMIT; FERMION ACTION; ONE-LOOP; IMPROVEMENT; OPERATORS; SYMMETRY; QUARK AB We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory, the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two-flavor theory. Our result differs from previously published ones. C1 [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Baer, Oliver] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Sharpe, Stephen R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. OI Baer, Oliver/0000-0002-7480-6467 FU Ministry of Education, Culture, Sports, Science and Technology [20340047, 20105001, 20105003]; Deutsche Forschungsgemeinschaft [SFB/TR 09]; U.S. Department of Energy FX O. B. acknowledges useful discussions with Johan Bijnens, Maarten Golterman and Rainer Sommer. We also thank Rainer Sommer for feedback on a first draft of this paper. This work is supported in part by the Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (Nos. 20340047, 20105001, 20105003), by the Deutsche Forschungsgemeinschaft (SFB/TR 09) and by the U.S. Department of Energy. NR 29 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014506 DI 10.1103/PhysRevD.80.014506 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600048 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Cerutti, F Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Cerutti, F. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Search for B-0 meson decays to pi(KSKS0)-K-0-K-0, eta(KSKS0)-K-0, and eta(KSKS0)-K-'-K-0 SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION AB We describe searches for B-0 meson decays to the charmless final states pi(KSKS0)-K-0-K-0, eta(KSKS0)-K-0, and eta(KSKS0)-K-'-K-0. The data sample corresponds to 467x10(6) BB pairs produced in e(+)e(-) annihilation and collected with the BABAR detector at the SLAC National Accelerator Laboratory. We find no significant signals and determine the 90% confidence level upper limits on the branching fractions, in units of 10(-7), B(B-0 ->pi(KSKS0)-K-0-K-0)< 9, B(B-0 ->eta(KSKS0)-K-0)< 10, and B(B-0 ->eta(KSKS0)-K-'-K-0)< 20. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Adametz, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Cerutti, F.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Cerutti, F.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Bettarini, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Smith, A. J. S.; Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Benitez, J. F.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kocian, M. L.; Leith, D. W. G. S.; Lindquist, B.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Calderini, G.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015 OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633 FU DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 29 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 011101 DI 10.1103/PhysRevD.80.011101 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600001 ER PT J AU Bar-Shalom, S Oaknin, D Soni, A AF Bar-Shalom, Shaouly Oaknin, David Soni, Amarjit TI Extended Friedberg-Lee hidden symmetries, quark masses, and CP violation with four generations SO PHYSICAL REVIEW D LA English DT Article ID INVARIANT FORMULATION; 4TH GENERATION; DECAYS; FAMILIES; MATRICES; PHYSICS; MODEL AB Motivated in part by the several observed anomalies involving CP asymmetries of B and B(s) decays, we consider the standard model with a 4th sequential family (SM4) which seems to offer a rather simple resolution. We initially assume T-invariance by taking the up and down-quark 4x4 mass matrix to be real. Following Friedberg and Lee (FL), we then impose a hidden symmetry on the unobserved (hidden) up and down-quark SU(2) states. The hidden symmetry for four generations ensures the existence of two zero-mass eigenstates, which we take to be the (u,c) and (d,s) states in the up and down-quark sectors, respectively. Then, we simultaneously break T-invariance and the hidden symmetry by introducing two phase factors in each sector. This breaking mechanism generates the small quark masses m(u), m(c) and m(d), m(s), which, along with the orientation of the hidden symmetry, determine the size of CP-violation in the SM4. For illustration we choose a specific physical picture for the hidden symmetry and the breaking mechanism that reproduces the observed quark masses, mixing angles and CP-violation, and at the same time allows us to further obtain very interesting relations/predictions for the mixing angles of t and t('). For example, with this choice we get V(td)similar to(V(cb)/V(cd)-V(ts)/V(us))+O(lambda(2)) and V(t)(')b similar to V(t)(')d center dot(V(cb)/V(cd)), V(tb)(')similar to V(t)(')d center dot(V(ts)/V(us)), implying that V(t)(')d > V(t)(')b, V(tb)('). We furthermore find that the Cabibbo angle is related to the orientation of the hidden symmetry and that the key CP-violating quantity of our model at high energies, J(SM4)equivalent to Im(V(tb)V(t)(')b(star)V(t)(')b(')V(tb)('star)), which is the high-energy analogue of the Jarlskog invariant of the SM, is proportional to the light-quark masses and the measured Cabibbo-Kobayashi-Maskawa quark-mixing matrix angles: |J(SM4)|similar to A(3)lambda(5)x(m(u)/m(t)+m(c)/m(t)(')-m(d)/m(b)+m(s)/m(b)('))similar to 10(-5), where A similar to 0.81 and lambda=0.2257 are the Wolfenstein parameters. Other choices for the orientation of the hidden symmetry and/or the breaking mechanism may lead to different physical outcomes. A general solution, obtained numerically, will be presented in a forthcoming paper. C1 [Bar-Shalom, Shaouly; Oaknin, David] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Soni, Amarjit] Brookhaven Natl Lab, Theory Grp, Upton, NY 11973 USA. RP Bar-Shalom, S (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. EM shaouly@physics.technion.ac.il; d1306av@gmail.com; soni@bnl.gov FU U. S. DOE [DE-AC02-98CH10886] FX We thank Gad Eilam for discussions. The work of AS is supported in part by the U. S. DOE Contract No. DE-AC02-98CH10886. NR 36 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015011 DI 10.1103/PhysRevD.80.015011 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600059 ER PT J AU Bazavov, A Bhattacharya, T Cheng, M Christ, NH Detar, C Ejiri, S Gottlieb, S Gupta, R Heller, UM Huebner, K Jung, C Karsch, F Laermann, E Levkova, L Miao, C Mawhinney, RD Petreczky, P Schmidt, C Soltz, RA Soeldner, W Sugar, R Toussaint, D Vranas, P AF Bazavov, A. Bhattacharya, T. Cheng, M. Christ, N. H. DeTar, C. Ejiri, S. Gottlieb, Steven Gupta, R. Heller, U. M. Huebner, K. Jung, C. Karsch, F. Laermann, E. Levkova, L. Miao, C. Mawhinney, R. D. Petreczky, P. Schmidt, C. Soltz, R. A. Soeldner, W. Sugar, R. Toussaint, D. Vranas, P. TI Equation of state and QCD transition at finite temperature SO PHYSICAL REVIEW D LA English DT Article ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; THERMODYNAMICS; COLLABORATION; PERSPECTIVE; MATTER AB We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent N(tau)=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a(2)) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on N(tau)=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we include an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. C1 [Bazavov, A.; Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Bhattacharya, T.; Gupta, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cheng, M.; Soltz, R. A.; Vranas, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Christ, N. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [DeTar, C.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Heller, U. M.] Amer Phys Soc, Ridge, NY 11961 USA. [Ejiri, S.; Huebner, K.; Jung, C.; Karsch, F.; Miao, C.; Petreczky, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Karsch, F.; Laermann, E.; Schmidt, C.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. [Petreczky, P.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Soeldner, W.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Sugar, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Bazavov, A (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Heller, Urs M./0000-0002-2780-5584; Gupta, Rajan/0000-0003-1784-3058; Schmidt, Christian/0000-0002-9071-4757 FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC52-07NA27344, DE-FG02-92ER40699, DE-FG02-91ER-40628, DE-FG02-91ER-40661, DE-FG02-04ER-41298, DE-KA14-01-02]; NSF [PHY08-57333, PHY07-57035, PHY07-57333, PHY07-03296]; Bundesministerium fur Bildung und Forschung [06BI401]; Gesellschaft fur Schwerionenforschung; Deutsche Forschungsgemeinschaft [GRK 881] FX This work has been supported in part by contracts DE-AC02-98CH10886, DE-AC52-07NA27344, DE-FG02-92ER40699, DE-FG02-91ER-40628, DE-FG02-91ER-40661, DE-FG02-04ER-41298, DE-KA14-01-02 with the U.S. Department of Energy, and NSF grants PHY08-57333, PHY07-57035, PHY07-57333 and PHY07-03296, the Bundesministerium fur Bildung und Forschung under grant 06BI401, the Gesellschaft fur Schwerionenforschung under grant BILAER and the Deutsche Forschungsgemeinschaft under grant GRK 881. We wish to thank Dimitri Kusnezov of the NNSA for providing access to the BlueGene/L at Lawrence Livermore National Laboratory (LLNL) and the computer support staff for the BlueGene/L computers at LLNL and the New York Center for Computational Sciences (NYCCS), where the numerical simulations have been performed. Some portions of the calculations were also carried out with U.S. National Science Foundation Teragrid resources at the San Diego Supercomputer Center, the Texas Advanced Computing Center and the QCDOC at the RIKEN-BNL Research Center. NR 39 TC 377 Z9 380 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014504 DI 10.1103/PhysRevD.80.014504 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600046 ER PT J AU Bertone, G Jackson, CB Shaughnessy, G Tait, TMP Vallinotto, A AF Bertone, Gianfranco Jackson, C. B. Shaughnessy, Gabe Tait, Tim M. P. Vallinotto, Alberto TI WIMP forest: Indirect detection of a chiral square SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER ANNIHILATION; NEUTRALINO ANNIHILATION; GALACTIC-CENTER; MILKY-WAY; 2 PHOTONS; HALOS; MODEL; PARTICLE; CONTRACTION; DENSITY AB We consider the signals of indirect dark matter detection resulting from a theory of two universal extra dimensions compactified on a chiral square. Aside from the continuum emission, which is a generic prediction of most dark matter candidates, we find a series of prominent annihilation lines (a WIMP forest) that, after convolution with the angular resolution of current experiments, leads to a distinctive (2-bump plus continuum) spectrum, which may be visible in the near future with the Fermi Gamma-Ray Space Telescope (formerly known as GLAST). C1 [Bertone, Gianfranco] Inst Astrophys Paris, Paris, France. [Bertone, Gianfranco] Univ Paris 06, CNRS, UMR7095, F-75014 Paris, France. [Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Shaughnessy, Gabe; Tait, Tim M. P.] Northwestern Univ, Evanston, IL 60208 USA. [Vallinotto, Alberto] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Bertone, G (reprint author), Inst Astrophys Paris, Paris, France. FU Department of Energy [DE-AC02-06CH11357]; DOE; NASA FX The authors are grateful for conversations with Bogdan Dobrescu, Dan Hooper, Rakhi Mahbubani, Simona Murgia, and especially to Eduardo Ponton, and K. C. Kong (particularly for his publicly available chiral square MICROMEGAS model files). T. Tait is grateful to the SLAC theory group for their extraordinary generosity during his many visits. Research at Argonne National Laboratory is supported in part by the Department of Energy under Contract No. DE-AC02-06CH11357. A Vallinotto is supported by the DOE and NASA at Fermilab. NR 64 TC 49 Z9 49 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023512 DI 10.1103/PhysRevD.80.023512 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800028 ER PT J AU Chung, KY Chiow, SW Herrmann, S Chu, S Muller, H AF Chung, Keng-Yeow Chiow, Sheng-wey Herrmann, Sven Chu, Steven Mueller, Holger TI Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics SO PHYSICAL REVIEW D LA English DT Article ID FINE-STRUCTURE CONSTANT; CPT VIOLATION; RELATIVISTIC GRAVITY; PHOTON RECOIL; PARTICLES; ELECTRON; MODEL AB We present atom-interferometer tests of the local Lorentz invariance of post-Newtonian gravity. An experiment probing for anomalous vertical gravity on Earth, which has already been performed, uses the highest-resolution atomic gravimeter so far. The influence of Lorentz violation in electrodynamics is also taken into account, resulting in combined bounds on Lorentz violation in gravity and electrodynamics. Expressed within the standard model extension or Nordtvedt's anisotropic universe model, we limit 12 linear combinations of seven coefficients for Lorentz violation at the part per billion level, from which we derive limits on six coefficients (and seven when taking into account additional data from lunar laser ranging). We also discuss the use of horizontal interferometers, including atom-chip or guided-atom devices, which potentially allow the use of longer coherence times in order to achieve higher sensitivity. C1 [Chung, Keng-Yeow] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Chiow, Sheng-wey] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Herrmann, Sven] Univ Bremen Fallturm Hochschulring, ZARM, D-28359 Bremen, Germany. [Chu, Steven; Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Steven] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chung, KY (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. EM hm@berkeley.edu RI Mueller, Holger/E-3194-2015 NR 94 TC 61 Z9 63 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 016002 DI 10.1103/PhysRevD.80.016002 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600077 ER PT J AU Cirigliano, V Kitano, R Okada, Y Tuzon, P AF Cirigliano, Vincenzo Kitano, Ryuichiro Okada, Yasuhiro Tuzon, Paula TI Model discriminating power of mu -> e conversion in nuclei SO PHYSICAL REVIEW D LA English DT Article ID MUON-ELECTRON CONVERSION; LEPTON-FLAVOR; R-PARITY; MU(-)-E(-) CONVERSION; SIGMA-TERM; NUMBER; COUPLINGS; VIOLATION; MASSES; LIMIT AB We assess the model discriminating power of a combined phenomenological analysis of mu -> e gamma and mu -> e conversion on different target nuclei, including the current hadronic uncertainties. We find that the theoretical uncertainties can be largely reduced by using input from lattice QCD, and do not constitute a limiting factor in discriminating models where one or, at most, two underlying operators (dipole, scalar, vector) provide the dominant source of lepton flavor violation. Our results show that a realistic discrimination among underlying mechanisms requires a measurement of the ratio of conversion rates at the 5% level (two light nuclei) or at the 20% level (one light and one heavy nucleus). We also illustrate these main conclusions in the context of a supersymmetric model. C1 [Cirigliano, Vincenzo; Kitano, Ryuichiro; Tuzon, Paula] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kitano, Ryuichiro] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Okada, Yasuhiro] Grad Univ Adv Studies, Dept Particle & Nucl Phys, Tsukuba, Ibaraki 3050801, Japan. [Tuzon, Paula] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain. [Okada, Yasuhiro] KEK, Theory Grp, Tsukuba, Ibaraki 3050801, Japan. RP Cirigliano, V (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. RI Tuzon, Paula/L-3653-2014; OI Tuzon, Paula/0000-0003-1344-3751; Cirigliano, Vincenzo/0000-0002-9056-754X FU KEK theory group; Institute for Nuclear Theory at the University of Washington; Grant-in-Aid for Science Research, Ministry of Education, Culture, Sports, Science and Technology, Japan [16081211]; Grant-in-Aid for Science Research, Japan Society for the Promotion of Science [20244037]; theory group at LANL; Spanish Ministry of Science and Innovation [AP2006-04522]; EU [MRTN-CT-2006-035482]; MEC (Spain) [FPA2007-60323]; Spanish Consolider-Ingeino 2010 Programme CPAN [CSD2007-00042] FX We thank Satoshi Mihara for useful exchanges on the experimental aspects of mu-to-e conversion and Tetsuya Onogi for useful comments on the sigma term. V. C. thanks the KEK theory group for its hospitality and support, as well as the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for support during the completion of this work. Y.O. is supported in part by the Grant-in-Aid for Science Research, Ministry of Education, Culture, Sports, Science and Technology, Japan, No. 16081211 and by the Grant-in-Aid for Science Research, Japan Society for the Promotion of Science, No. 20244037. P. T. has been supported in part by the theory group at LANL (during her visit), by a grant from the Spanish Ministry of Science and Innovation (No. AP2006-04522), as well as by the EU under Grant No. MRTN-CT-2006-035482 (FLAVIAnet), by MEC (Spain) under Grant No. FPA2007-60323, and by the Spanish Consolider-Ingeino 2010 Programme CPAN (No. CSD2007-00042). NR 35 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 013002 DI 10.1103/PhysRevD.80.013002 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600006 ER PT J AU Dawson, JF Mihaila, B Cooper, F AF Dawson, John F. Mihaila, Bogdan Cooper, Fred TI Fermion particle production in semiclassical Boltzmann-Vlasov transport theory SO PHYSICAL REVIEW D LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; CENTRAL RAPIDITY REGION; STRONG ELECTRIC-FIELD; QUARK-GLUON PLASMA; FLUX-TUBE MODEL; PAIR PRODUCTION; ANTIQUARK PLASMA; OSCILLATIONS; EQUATIONS AB We present numerical solutions of the semiclassical Boltzmann-Vlasov equation for fermion particle-antiparticle production by strong electric fields in boost-invariant coordinates in (1+1) and (3+1) dimensional QED. We compare the Boltzmann-Vlasov results with those of recent quantum field theory calculations and find good agreement. We conclude that extending the Boltzmann-Vlasov approach to the case of QCD should allow us to do a thorough investigation of how backreaction affects recent results on the dependence of the transverse momentum distribution of quarks and antiquarks on a second Casimir invariant of color SU(3). C1 [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cooper, Fred] Natl Sci Fdn, Arlington, VA 22230 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Dawson, JF (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM john.dawson@unh.edu; bmihaila@lanl.gov; cooper@santafe.edu RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 22 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014011 DI 10.1103/PhysRevD.80.014011 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600028 ER PT J AU Essig, R Sehgal, N Strigari, LE AF Essig, Rouven Sehgal, Neelima Strigari, Louis E. TI Bounds on cross sections and lifetimes for dark matter annihilation and decay into charged leptons from gamma-ray observations of dwarf galaxies SO PHYSICAL REVIEW D LA English DT Article ID MILKY-WAY; SPHEROIDAL GALAXY; ELECTRONS; EMISSION; POSITRON; SATELLITES; SPECTRA; PAMELA AB We provide conservative bounds on the dark matter cross section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle phi. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion similar to 10 to 20 times lower than that of the local Galactic halo, then the cross sections for dark matter annihilating through phi's required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into tau's is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after 1 yr of observation. C1 [Essig, Rouven] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Sehgal, Neelima; Strigari, Louis E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Essig, R (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. OI Strigari, Louis/0000-0001-5672-6079 NR 96 TC 87 Z9 87 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023506 DI 10.1103/PhysRevD.80.023506 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800022 ER PT J AU Galli, S Melchiorri, A Smoot, GF Zahn, O AF Galli, Silvia Melchiorri, Alessandro Smoot, George F. Zahn, Oliver TI From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE BACKGROUND ANISOTROPIES; POWER SPECTRUM; DARK ENERGY; 2003 FLIGHT; RECOMBINATION; BOOMERANG AB We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the similar to 10% level, that can be improved to similar to 3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the similar to 1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements. C1 [Galli, Silvia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Melchiorri, Alessandro] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Galli, Silvia] Univ Paris Diderot, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Smoot, George F.; Zahn, Oliver] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Smoot, George F.; Zahn, Oliver] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. RP Galli, S (reprint author), Univ Roma La Sapienza, Dept Phys, Ple Aldo Moro 2, I-00185 Rome, Italy. EM galli@apc.univ-paris7.fr; alessandro.melchiorri@roma1.infn.it; gfsmoot@lbl.gov; zahn@berkeley.edu OI Melchiorri, Alessandro/0000-0001-5326-6003 NR 49 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023508 DI 10.1103/PhysRevD.80.023508 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800024 ER PT J AU Gao, JH Xiao, BW AF Gao, Jian-Hua Xiao, Bo-Wen TI Polarized deep inelastic and elastic scattering from gauge/string duality SO PHYSICAL REVIEW D LA English DT Article ID FORM-FACTORS; QCD AB In this paper, we investigate deep inelastic and elastic scattering on a polarized spin-112 hadron using gauge/string duality. This spin-12 hadron corresponds to a supergravity mode of the dilatino. The polarized deep inelastic structure functions are computed in the supergravity approximation at large t' Hooft coupling lambda and finite x with lambda(-1/2)< x < 1. Furthermore, we discuss the moments of all structure functions, and propose an interesting sum rule 01dxg(2)(x,q(2))=0 for the g(2) structure function which is known as the Burkhardt-Cottingham sum rule in QCD. In the end, the elastic scattering is studied and elastic form factors of the spin-12 hadron are calculated within the same framework. C1 [Gao, Jian-Hua] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Gao, Jian-Hua] Shandong Univ, Dept Phys, Jinan 250100, Shandong, Peoples R China. [Xiao, Bo-Wen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Gao, JH (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM gaojh79@ustc.edu.cn; bxiao@lbl.gov RI Gao, Jianhua/O-9550-2014 FU National Natural Science Foundation of China [10525523]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U. S. Department of Energy [DE-AC0205CH11231] FX We acknowledge inspiring discussions with S. Brodsky, V. Koch, Y. Kovchegov, A. Mueller, J. Qiu, G. Teramond, and F. Yuan. We would like to thank Y. Hatta for enormous communication and stimulating discussions during the preparation of this paper. J. G. acknowledges financial support by the National Natural Science Foundation of China under Grant No. 10525523. B. X. is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U. S. Department of Energy under Contract No. DE-AC0205CH11231. NR 45 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015025 DI 10.1103/PhysRevD.80.015025 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600073 ER PT J AU Golec-Biernat, K Stasto, AM AF Golec-Biernat, K. Stasto, A. M. TI F-L proton structure function from the unified DGLAP/BFKL approach SO PHYSICAL REVIEW D LA English DT Article ID INITIAL-STATE RADIATION; SMALL-X; QCD COHERENCE; LOW Q(2); MODEL; BFKL; RESUMMATION; EVOLUTION; APPROXIMATION; FACTORIZATION AB We compute the longitudinal proton structure function F-L from the k(T) factorization scheme, using the unified DGLAP/BFKL resummation approach at small x for the unintegrated gluon density. The differences between the k(T) factorization, collinear factorization, and dipole approaches are analyzed and discussed. The comparisons with the DESY collider HERA data are made and predictions for the proposed large hadron-electron collider are also provided. C1 [Golec-Biernat, K.; Stasto, A. M.] Inst Nucl Phys PAN, Krakow, Poland. [Golec-Biernat, K.] Rzeszow Univ, Inst Phys, Rzeszow, Poland. [Stasto, A. M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Stasto, A. M.] Brookhaven Natl Lab, RIKEN Ctr, Upton, NY 11973 USA. RP Golec-Biernat, K (reprint author), Inst Nucl Phys PAN, Krakow, Poland. EM golec@ifj.edu.pl; astasto@phys.psu.edu FU MNiSW [N202 249235]; Alfred P. Sloan Research Foundation FX This work is partially supported by the grant MNiSW no. N202 249235. A. M. S. gratefully acknowledges the support of the Alfred P. Sloan Research Foundation. NR 40 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014006 DI 10.1103/PhysRevD.80.014006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600023 ER PT J AU Joudaki, S Cooray, A Holz, DE AF Joudaki, Shahab Cooray, Asantha Holz, Daniel E. TI Weak lensing and dark energy: The impact of dark energy on nonlinear dark matter clustering SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; BARYON ACOUSTIC-OSCILLATION; SHEAR POWER SPECTRUM; DIGITAL SKY SURVEY; EQUATION-OF-STATE; COSMOLOGICAL PARAMETERS; COSMIC SHEAR; GALAXIES; CONSTRAINTS; TOMOGRAPHY AB We examine the influence of percent-level dark energy corrections to the nonlinear matter power spectrum on constraints of the dark energy equation of state from future weak lensing probes. We explicitly show that a poor approximation (off by greater than or similar to 10%) to the nonlinear corrections causes a greater than or similar to 1 sigma bias on the determination of the dark energy equation of state. Future weak lensing surveys must therefore incorporate dark energy modifications to the nonlinear matter power spectrum accurate to the percent-level, to avoid introducing significant bias in their measurements. For the WMAP5 cosmology, the more accurate power spectrum is more sensitive to dark energy properties, resulting in a factor of 2 improvement in dark energy equation of state constraints. We explore the complementary constraints on dark energy from future weak lensing and supernova surveys. A space-based, Joint Dark Energy Mission-like survey measures the equation of state in five independent redshift bins to similar to 10%, while this improves to similar to 5% for a wide-field ground-based survey like the Large Synoptic Survey Telescope. These constraints are contingent upon our ability to control weak lensing systematic uncertainties to the sub-percent level. C1 [Joudaki, Shahab; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Joudaki, S (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. NR 71 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023003 DI 10.1103/PhysRevD.80.023003 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800005 ER PT J AU Linder, EV Scherrer, RJ AF Linder, Eric V. Scherrer, Robert J. TI Aetherizing Lambda: Barotropic fluids as dark energy SO PHYSICAL REVIEW D LA English DT Article ID EQUATION-OF-STATE; K-ESSENCE; SCALAR FIELD; X-MATTER; COSMOLOGY; QUINTESSENCE; PERTURBATIONS; STATEFINDER; INFLATION; COMPONENT AB We examine the class of barotropic fluid models of dark energy, in which the pressure is an explicit function of the density, p=f(rho). Through general physical considerations we constrain the asymptotic past and future behaviors and show that this class is equivalent to the sum of a cosmological constant and a decelerating perfect fluid, or "aether," with w(AE)>= 0. Barotropic models give substantially disjoint predictions from quintessence, except in the limit of Lambda CDM. They are also interesting in that they simultaneously can ameliorate the coincidence problem and yet "predict" a value of w approximate to-1. C1 [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Scherrer, Robert J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Linder, EV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 61 TC 52 Z9 52 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023008 DI 10.1103/PhysRevD.80.023008 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800010 ER PT J AU Medina, AD Shah, NR Wagner, CEM AF Medina, Anibal D. Shah, Nausheen R. Wagner, Carlos E. M. TI Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric particle in the MSSM with enhanced SU(2) D-terms SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; MASS; PHYSICS AB The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described. C1 [Medina, Anibal D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Shah, Nausheen R.; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Shah, Nausheen R.; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Medina, AD (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. FU DOE [DE-FGO3-96ER40956]; U.C. Davis; U.S. DOE [DE-FG02-91ER40674]; Division of HEP [DE-AC02-06CH11357]; Bloomenthal Research FX We would like to thank P. Batra, M. Carena, A. Delgado, E. Ponton, and particularly T. Tait for useful discussions and comments. This work was supported in part by the DOE under Task TeV of Contract No. DE-FGO3-96ER40956. Work at U.C. Davis was supported in part by U.S. DOE Grant No. DE-FG02-91ER40674. Work at ANL is supported in part by the US DOE, Division of HEP, Contract No. DE-AC02-06CH11357. Work of N. R. Shah is supported by Bloomenthal Research. NR 49 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015001 DI 10.1103/PhysRevD.80.015001 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600049 ER PT J AU Mihaila, B Cooper, F Dawson, JF AF Mihaila, Bogdan Cooper, Fred Dawson, John F. TI Backreaction and particle production in (3+1)-dimensional QED SO PHYSICAL REVIEW D LA English DT Article ID GLUON DISTRIBUTION-FUNCTIONS; STRONG ELECTRIC-FIELD; HEAVY-ION COLLISIONS; FLUX-TUBE MODEL; PAIR PRODUCTION; LARGE NUCLEI; QUARK; PLASMA; DYNAMICS; BEHAVIOR AB We study the fermion pair production from a strong electric field in boost-invariant coordinates in (3+1) dimensions and exploit the cylindrical symmetry of the problem. This problem has been used previously as a toy model for populating the central-rapidity region of a heavy-ion collision (when we can replace the electric by a chromoelectric field). We derive and solve the renormalized equations for the dynamics of the mean electric field and current of the produced particles, when the field is taken to be a function only of the fluid proper time tau=t(2)-z(2). We determine the proper-time evolution of the comoving energy density and pressure of the ensuing plasma and the time evolution of suitable interpolating number operators. We find that unlike in 1+1 dimensions, the energy density epsilon closely follows the longitudinal pressure. The transverse-momentum distribution of fermion pairs at large momentum is quite different and larger than that expected from the constant field result. C1 [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cooper, Fred] Natl Sci Fdn, Arlington, VA 22230 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Mihaila, B (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM bmihaila@lanl.gov; cooper@santafe.edu; john.dawson@unh.edu RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 32 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014010 DI 10.1103/PhysRevD.80.014010 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600027 ER PT J AU Noronha, J Dumitru, A AF Noronha, Jorge Dumitru, Adrian TI Heavy quark potential as a function of shear viscosity at strong coupling SO PHYSICAL REVIEW D LA English DT Article ID YANG-MILLS THEORY; DE-SITTER SUPERGRAVITY; N GAUGE-THEORY; FIELD-THEORIES; CONSTANT DEPENDENCE; FINITE-TEMPERATURE; POLYAKOV LOOP; STRING THEORY; WILSON LOOPS; PLASMA AB We determine finite temperature corrections to the heavy-quark (static) potential as a function of the shear viscosity-to-entropy density ratio in a strongly coupled, large-N(c) conformal field theory dual to five-dimensional Gauss-Bonnet gravity. We find that these corrections are even smaller than those predicted by perturbative QCD at distances relevant for small bound states in a deconfined plasma. Obtaining the dominant temperature and viscosity dependence of quarkonium binding energies will require a theory where conformal invariance is broken in such a way that the free energy associated with a single heavy quark is not just a pure entropy contribution. C1 [Noronha, Jorge] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Dumitru, Adrian] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10016 USA. [Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10016 USA. [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Noronha, J (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Noronha, Jorge/M-8800-2014; Noronha, Jorge/E-5783-2013 FU US-DOE Nuclear Science [DE-FG02-93ER40764] FX J. N. acknowledges support from US-DOE Nuclear Science Grant No. DE-FG02-93ER40764. A. D. thanks R. Pisarski and M. Strickland for useful comments. J. N. thanks M. Gyulassy for interesting discussions. NR 76 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014007 DI 10.1103/PhysRevD.80.014007 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600024 ER PT J AU Ramalho, G Pena, MT AF Ramalho, G. Pena, M. T. TI Valence quark contribution for the gamma N ->Delta quadrupole transition extracted from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; HIGH-MOMENTUM-TRANSFER; DELTA(1232) RESONANCE; PI(0) ELECTROPRODUCTION; GAMMA-ASTERISK; NUCLEON; MODEL; DELTA; EXCITATION; ENERGY AB Starting with a covariant spectator quark model developed for the nucleon N and the Delta in the physical pion mass region, we extend the predictions of the reaction gamma N ->Delta to the lattice QCD regime. The quark model includes S and D waves in the quark-diquark wave functions. Within this framework, it is the D-wave part in the Delta wave function that generates nonzero valence contributions for the quadrupole form factors of the transition. Those contributions are however insufficient to explain the physical data, since the pion cloud contributions dominate. To separate the two effects, we apply the model to the lattice regime in a region where the pion cloud effects are negligible and adjust the D-state parameters directly to the lattice data. This process allows us to obtain a better determination of the D-state contributions. Finally, by adding a simple parametrization of the pion cloud, we establish the connection between the experimental data and the lattice data. C1 [Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates, LLC; U.S. DOE [DE-AC05-06OR23177]; Portuguese Fundacao para a Ciencia e Tecnologia [SFRH/BPD/26886/2006]; European Union FX G. R. wants to thank Jozef Dudek, Kostas Orginos, and Franz Gross for the helpful discussions. The authors thank Constantia Alexandrou for sharing details of the lattice data presented in Ref. [10] and Alfred Stadler for the review of the final text. This work was partially supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. G. R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under Grant No. SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 project "Study of strongly interacting matter''). NR 62 TC 32 Z9 32 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 013008 DI 10.1103/PhysRevD.80.013008 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600012 ER PT J AU Sturm, C Aoki, Y Christ, NH Izubuchi, T Sachrajda, CTC Soni, A AF Sturm, C. Aoki, Y. Christ, N. H. Izubuchi, T. Sachrajda, C. T. C. Soni, A. CA RBC Collaboration UKQCD Collaboration TI Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point SO PHYSICAL REVIEW D LA English DT Article ID DIMENSIONAL REGULARIZATION; ANOMALOUS DIMENSION; COUPLING-CONSTANT; QCD; (MS)OVER-BAR; LOOPS; ORDER; MASS; CURRENTS; FIELD AB We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Green's functions with the insertion of quark bilinear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for "symmetric." Conversion factors are derived, which connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation with substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably. C1 [Sturm, C.; Izubuchi, T.; Soni, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Aoki, Y.; Izubuchi, T.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Christ, N. H.; Sachrajda, C. T. C.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Izubuchi, T.] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan. [Sachrajda, C. T. C.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. RP Sturm, C (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RI Sturm, Christian/Q-2713-2015 OI Sturm, Christian/0000-0002-3137-4940 FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-92ER40699]; RIKEN BNL Research Center; Ministry of Education, Culture, Sports, Science and Technology [19740134, 20025010]; Japan Society for the Promotion of Science (JSPS); German Research Foundation (DFG), Japan-German; STFC [ST/G000557/1]; EU [MRTN-CT-2006-035482] FX We want to thank our colleagues in the RBC-UKQCD Collaborations, especially Peter Boyle, for discussions and encouragement. C. T. S. warmly thanks Norman Christ and Bob Mawhinney for their hospitality at Columbia University during the autumn term of 2008. This work was partially supported by U.S. DOE under Contract No. DE-AC02-98CH10886 (A. S., C. S. and T. I.) and in part by RIKEN BNL Research Center (T. I. and Y. A.). N. H. C was partially supported by the U.S. DOE under Contract No. DE-FG02-92ER40699. T. I. was also supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology No. 19740134 and No. 20025010, and by Japan Society for the Promotion of Science (JSPS) and German Research Foundation (DFG), Japan-German Joint Research Project 2008-2009. C. T. S. acknowledges support from STFC Grant No. ST/G000557/1 and EU Contract No. MRTN-CT-2006-035482 (Flavianet). NR 24 TC 45 Z9 45 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014501 DI 10.1103/PhysRevD.80.014501 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600043 ER PT J AU Bardhan, JP Eisenberg, RS Gillespie, D AF Bardhan, Jaydeep P. Eisenberg, Robert S. Gillespie, Dirk TI Discretization of the induced-charge boundary integral equation SO PHYSICAL REVIEW E LA English DT Article ID POISSON-BOLTZMANN EQUATION; MONTE-CARLO SIMULATIONS; ANALYTICAL MOLECULAR-SURFACE; ELEMENT METHOD; BROWNIAN DYNAMICS; ELECTROSTATIC INTERACTIONS; DIELECTRIC ENVIRONMENTS; ION PERMEATION; FREE-ENERGIES; CHANNEL AB Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces. C1 [Bardhan, Jaydeep P.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk] Rush Univ, Med Ctr, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA. [Eisenberg, Robert S.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Bardhan, JP (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jbardhan@alum.mit.edu OI Gillespie, Dirk/0000-0003-0802-5352 FU NIGMS NIH HHS [GM076013, R01 GM076013] NR 100 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011906 DI 10.1103/PhysRevE.80.011906 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300094 PM 19658728 ER PT J AU Belkin, M Snezhko, A Aranson, IS Kwok, WK AF Belkin, M. Snezhko, A. Aranson, I. S. Kwok, W. -K. TI Magnetically driven surface mixing SO PHYSICAL REVIEW E LA English DT Article ID VIBRATED GRANULAR LAYER; PATTERN-FORMATION AB Magnetic microparticles suspended on the surface of liquid and energized by vertical alternating magnetic field exhibit complex collective behavior. Various immobile and self-propelled self-assembled structures have been observed. Here, we report on experimental studies of mixing and surface diffusion processes in this system. We show that the pattern-induced surface flows have properties of quasi-two-dimensional turbulence. Correspondingly, the surface advection of tracer particle exhibits properties of Brownian diffusion. C1 [Belkin, M.; Snezhko, A.; Aranson, I. S.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Belkin, M.] IIT, Chicago, IL 60616 USA. RP Belkin, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Aranson, Igor/I-4060-2013 FU U. S. DOE [DE-AC02-06CH11357] FX This research was supported by U. S. DOE (Contract No. DE-AC02-06CH11357). NR 21 TC 8 Z9 8 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011310 DI 10.1103/PhysRevE.80.011310 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300067 PM 19658701 ER PT J AU Cortis, A Zoia, A AF Cortis, Andrea Zoia, Andrea TI Model of dispersive transport across sharp interfaces between porous materials SO PHYSICAL REVIEW E LA English DT Article ID DIMENSIONAL SOLUTE TRANSPORT; ANOMALOUS TRANSPORT; BOUNDARY-CONDITIONS; SOIL COLUMNS; MONTE-CARLO; MEDIA AB Recent laboratory experiments on solute migration in composite porous columns have shown an asymmetry in the solute arrival time upon reversal of the flow direction, which is not explained by current paradigms of transport. In this work, we propose a definition for the solute flux across sharp interfaces and explore the underlying microscopic particle dynamics by applying Monte Carlo simulation. Our results are consistent with previous experimental findings and explain the observed transport asymmetry. An interpretation of the proposed physical mechanism in terms of a flux rectification is also provided. The approach is quite general and can be extended to other situations involving transport across sharp interfaces. C1 [Cortis, Andrea] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zoia, Andrea] CEA Saclay, DEN DM2S SFME LSET, F-91191 Gif Sur Yvette, France. RP Cortis, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM acortis@lbl.gov FU (U. S.) Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the (U. S.) Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 9 Z9 9 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011122 DI 10.1103/PhysRevE.80.011122 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300034 PM 19658668 ER PT J AU Ferer, M Bromhal, GS Smith, DH AF Ferer, M. Bromhal, Grant S. Smith, Duane H. TI Miscible viscous fingering in three dimensions: Fractal-to-compact crossover and interfacial roughness SO PHYSICAL REVIEW E LA English DT Article ID PORE-LEVEL MODELS; POROUS-MEDIA; GROWING INTERFACES; DIFFUSION; FLOW; DISPLACEMENTS; SIMULATIONS; DYNAMICS AB Using our standard pore-level model, we have extended our earlier study of the crossover from fractal viscous fingering to compact /linear flow at a characteristic crossover time, tau, in three dimensions to systems with as many as a 10(6) pore bodies. These larger systems enable us to investigate the flows in the fully compact/well-past-crossover regime. The center of mass of the injected fluid exhibits basically the same behavior as found earlier but with an improved characteristic time. However, our earlier study of much smaller systems was unable to study the interfacial width in the important well-past-crossover regime, t >> tau. Now, we can study both the time evolution and roughness of the interfacial width. The interfacial width exhibits the same fractal-to-compact crossover as the center of mass, with the same characteristic time. In the fully compact regime, t >> tau, the interfacial width grows approximately linearly with time so that the standard growth exponent is approximately unity, beta=1.0 +/- 0.1. We find that neither is the interface self-affine nor is the roughness of the interface in the compact regime consistent with an effective long-range surface tension as assumed by various theories. In fact, similar to Levy flights, the height variations across the interface appear to be random with occasional large height variations. C1 [Ferer, M.; Smith, Duane H.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Ferer, M.; Bromhal, Grant S.; Smith, Duane H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA. RP Ferer, M (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. FU U.S. Department of Energy; Office of Fossil Energy FX M. F. acknowledges the support of the U.S. Department of Energy, Office of Fossil Energy. He also gratefully acknowledges helpful discussions with Alex Hansen and Thomas Ramstad. NR 27 TC 3 Z9 3 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011602 DI 10.1103/PhysRevE.80.011602 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300076 PM 19658710 ER PT J AU Li, CK Frenje, JA Petrasso, RD Seguin, FH Amendt, PA Landen, OL Town, RPJ Betti, R Knauer, JP Meyerhofer, DD Soures, JM AF Li, C. K. Frenje, J. A. Petrasso, R. D. Seguin, F. H. Amendt, P. A. Landen, O. L. Town, R. P. J. Betti, R. Knauer, J. P. Meyerhofer, D. D. Soures, J. M. TI Pressure-driven, resistive magnetohydrodynamic interchange instabilities in laser-produced high-energy-density plasmas SO PHYSICAL REVIEW E LA English DT Article AB Recent experiments using proton backlighting of laser-foil interactions provide unique opportunities for studying magnetized plasma instabilities in laser-produced high-energy-density plasmas. Time-gated proton radiograph images indicate that the outer structure of a magnetic field entrained in a hemispherical plasma bubble becomes distinctly asymmetric after the laser turns off. It is shown that this asymmetry is a consequence of pressure-driven, resistive magnetohydrodynamic (MHD) interchange instabilities. In contrast to the predictions made by ideal MHD theory, the increasing plasma resistivity after laser turn-off allows for greater low-mode destabilization (m > 1) from reduced stabilization by field-line bending. For laser-generated plasmas presented herein, a mode-number cutoff for stabilization of perturbations with m > similar to[8 pi beta(1+D(m)k(perpendicular to)(2) gamma(-1)(max))](1/2) is found in the linear growth regime. The growth is measured and is found to be in reasonable agreement with model predictions. C1 [Li, C. K.; Frenje, J. A.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Amendt, P. A.; Landen, O. L.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Soures, J. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn Phys & Astron, Rochester, NY 14623 USA. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM li@psfc.mit.edu FU U.S. DOE [DE-FG52-07NA28059, DEFG52-06N826203]; LLNL [B543881, LDRD-ER 898988]; LLE [414090-G]; Fusion Science Center at University of Rochester [412761-G] FX The work was performed at the LLE National Laser User's Facility (NLUF) and was supported in part by U.S. DOE (Grants No. DE-FG52-07NA28059 and No. DEFG52-06N826203), LLNL (Grants No. B543881 and No. LDRD-ER 898988), LLE (Grant No. 414090-G), and The Fusion Science Center at University of Rochester (Grant No. 412761-G). NR 25 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016407 DI 10.1103/PhysRevE.80.016407 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500068 PM 19658823 ER PT J AU Liu, DJ Chen, HT Lin, VSY Evans, JW AF Liu, Da-Jiang Chen, Hung-Ting Lin, Victor S. -Y. Evans, J. W. TI Statistical mechanical modeling of catalytic polymerization within surface-functionalized mesoporous materials SO PHYSICAL REVIEW E LA English DT Article ID POROUS-MEDIA; RANDOM-WALKS; DIFFUSION; CHANNELS; SILICA; CHAIN AB A discrete lattice model is developed to describe diffusion-mediated polymerization occurring within mesopores, where reaction is enhanced at catalytic sites distributed within the interior of the pores. Diffusive transport of monomers and polymers is one-dimensional, diffusion coefficients for the latter decreasing with polymer length. Kinetic Monte Carlo simulation is utilized to analyze model behavior focusing on a "clogging" regime, where the amount of polymer within the pores grows. We characterize the evolution of the overall and mean length of polymers, the mean number of polymers, as well as the polymer spatial and length distributions. C1 [Liu, Da-Jiang; Chen, Hung-Ting; Lin, Victor S. -Y.; Evans, J. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Chen, Hung-Ting; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Liu, DJ (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. NR 27 TC 2 Z9 2 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011801 DI 10.1103/PhysRevE.80.011801 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300086 PM 19658720 ER PT J AU Martin, JE Shea-Rohwer, L Solis, KJ AF Martin, James E. Shea-Rohwer, Lauren Solis, Kyle J. TI Strong intrinsic mixing in vortex magnetic fields SO PHYSICAL REVIEW E LA English DT Article ID CHAIN MODEL AB We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of similar to 55 degrees. Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads. C1 [Martin, James E.; Shea-Rohwer, Lauren; Solis, Kyle J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy [DE-AC04-94AL85000]; Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE) FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. This work was supported by the Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE). NR 17 TC 19 Z9 19 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016312 DI 10.1103/PhysRevE.80.016312 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500056 PM 19658811 ER PT J AU Neusius, T Sokolov, IM Smith, JC AF Neusius, Thomas Sokolov, Igor M. Smith, Jeremy C. TI Subdiffusion in time-averaged, confined random walks SO PHYSICAL REVIEW E LA English DT Article ID SINGLE-MOLECULE TRACKING; FOKKER-PLANCK EQUATIONS; ANOMALOUS DIFFUSION; FRACTIONAL DYNAMICS; MONTE-CARLO; MEMBRANE; CELL; TRANSPORT; PROTEINS; SYSTEMS AB Certain techniques characterizing diffusive processes, such as single-particle tracking or molecular dynamics simulation, provide time averages rather than ensemble averages. Whereas the ensemble-averaged mean-squared displacement (MSD) of an unbounded continuous time random walk (CTRW) with a broad distribution of waiting times exhibits subdiffusion, the time-averaged MSD, (delta(2)) over bar, does not. We demonstrate that, in contrast to the unbounded CTRW, in which (delta(2)) over bar is linear in the lag time Delta, the time-averaged MSD of the CTRW of a walker confined to a finite volume is sublinear in Delta, i.e., for long lag times (delta(2)) over bar similar to Delta(1-alpha). The present results permit the application of CTRW to interpret time-averaged experimental quantities. C1 [Neusius, Thomas; Smith, Jeremy C.] Univ Heidelberg, D-69120 Heidelberg, Germany. [Sokolov, Igor M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Neusius, T (reprint author), Univ Heidelberg, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU DOE Laboratory-Directed Research and Development; DFG [SFB555] FX J.C.S. acknowledges support from a DOE Laboratory-Directed Research and Development grant. I. M. S. thankfully acknowledges financial support by DFG within the SFB555 research program. NR 41 TC 46 Z9 47 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011109 DI 10.1103/PhysRevE.80.011109 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300021 PM 19658655 ER PT J AU Nilson, RH Griffiths, SK AF Nilson, Robert H. Griffiths, Stewart K. TI Hierarchical transport networks optimizing dynamic response of permeable energy-storage materials SO PHYSICAL REVIEW E LA English DT Article ID FLOW; GAS AB Channel widths and spacing in latticelike hierarchical transport networks are optimized to achieve maximum extraction of gas or electrical charge from nanoporous energy-storage materials during charge and discharge cycles of specified duration. To address a range of physics, the effective transport diffusivity is taken to vary as a power, m, of channel width. Optimal channel widths and spacing in all levels of the hierarchy are found to increase in a power-law manner with normalized system size, facilitating the derivation of closed-form approximations for the optimal dimensions. Characteristic response times and ratios of channel width to spacing are both shown to vary by the factor 2/m between successive levels of any optimal hierarchy. This leads to fractal-like self-similar geometry, but only for m=2. For this case of quadratic dependence of diffusivity on channel width, the introduction of transport channels permits increases in system size on the order of 10(4), 10(8), and 10(10), without any reduction in extraction efficiency, for hierarchies having 1, 2 and, 8 levels, respectively. However, we also find that for a given system size there is an optimum number of hierarchical levels that maximizes extraction efficiency. C1 [Nilson, Robert H.; Griffiths, Stewart K.] Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94550 USA. RP Nilson, RH (reprint author), Sandia Natl Labs, Phys & Engn Sci Ctr, POB 969, Livermore, CA 94550 USA. FU Engineering Sciences Research Foundation at Sandia National Laboratories; Sandia Corporation, a Lockheed Martin Co., for the U. S. DOE National Nuclear Security Administration [DE-AC0494AL85000] FX The authors appreciate support from the Engineering Sciences Research Foundation at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U. S. DOE National Nuclear Security Administration under Contract No. DE-AC0494AL85000. NR 18 TC 3 Z9 3 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016310 DI 10.1103/PhysRevE.80.016310 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500054 PM 19658809 ER PT J AU Palastro, JP Antonsen, TM AF Palastro, J. P. Antonsen, T. M. TI Interaction of an ultrashort laser pulse and relativistic electron beam in a corrugated plasma channel SO PHYSICAL REVIEW E LA English DT Article ID NATIONAL-IGNITION-FACILITY; ACCELERATION AB Copropagation of a laser pulse and a relativistic electron beam in a corrugated plasma channel has been proposed for the direct laser acceleration of electrons [Palastro et al., Phys. Rev. E 77, 036405 (2008)]. The corrugated plasma channel allows for the guiding of laser pulses composed of subluminal spatial harmonics. Phase matching between the electron beam and the spatial harmonics results in acceleration, but for high beam densities, the pulse energy can be rapidly depleted. This depletion may result in interaction times shorter than the waveguide length limited time or pulse length dephasing time. We present an analytic model and self-consistent simulations of the electron beam-laser pulse interaction. A linear dispersion relation is derived. The effect of the electron beam on the pulse after the occurrence of axial bunching is examined. Injection of axially modulated electron beams is also explored. In particular, we find that a properly phased electron beam can transfer energy to the laser pulse as an inverse process to acceleration. C1 [Palastro, J. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Antonsen, T. M.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Palastro, JP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Antonsen, Thomas/D-8791-2017 OI Antonsen, Thomas/0000-0002-2362-2430 NR 23 TC 15 Z9 15 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016409 DI 10.1103/PhysRevE.80.016409 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500070 PM 19658825 ER PT J AU Quinn, JC Bryant, PH Creveling, DR Klein, SR Abarbanel, HDI AF Quinn, John C. Bryant, Paul H. Creveling, Daniel R. Klein, Sallee R. Abarbanel, Henry D. I. TI Parameter and state estimation of experimental chaotic systems using synchronization SO PHYSICAL REVIEW E LA English DT Article ID TIME NONLINEAR-SYSTEMS; ADAPTIVE SYNCHRONIZATION; COLPITTS OSCILLATORS; DYNAMICAL-SYSTEMS; SERIES; IDENTIFICATION; UNCERTAIN; OBSERVERS; ALGORITHM; TRACKING AB We examine the use of synchronization as a mechanism for extracting parameter and state information from experimental systems. We focus on important aspects of this problem that have received little attention previously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an example system. We explore the impact of model imperfection on the ability to extract valid information from an experimental system. We compare two optimization methods: an initial value method and a constrained method. Each of these involves coupling the model equations to the experimental data in order to regularize the chaotic motions on the synchronization manifold. We explore both time-dependent and time-independent coupling and discuss the use of periodic impulse coupling. We also examine both optimized and fixed (or manually adjusted) coupling. For the case of an optimized time-dependent coupling function u(t) we find a robust structure which includes sharp peaks and intervals where it is zero. This structure shows a strong correlation with the location in phase space and appears to depend on noise, imperfections of the model, and the Lyapunov direction vectors. For time-independent coupling we find the counterintuitive result that often the optimal rms error in fitting the model to the data initially increases with coupling strength. Comparison of this result with that obtained using simulated data may provide one measure of model imperfection. The constrained method with time-dependent coupling appears to have benefits in synchronizing long data sets with minimal impact, while the initial value method with time-independent coupling tends to be substantially faster, more flexible, and easier to use. We also describe a method of coupling which is useful for sparse experimental data sets. Our use of the Colpitts oscillator allows us to explore in detail the case of a system with one positive Lyapunov exponent. The methods we explored are easily extended to driven systems such as neurons with time-dependent injected current. They are expected to be of value in nonchaotic systems as well. Software is available on request. C1 [Quinn, John C.; Klein, Sallee R.; Abarbanel, Henry D. I.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Bryant, Paul H.; Abarbanel, Henry D. I.] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA. [Creveling, Daniel R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Abarbanel, Henry D. I.] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA. RP Quinn, JC (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM jquinn@ucsd.edu; pbryant@ucsd.edu; drc@lanl.gov; habarbanel@ucsd.edu FU U.S. Office of Naval Research MURI [N00014-07-1-0741] FX This work was partially funded by the U.S. Office of Naval Research MURI grant (ONR Grant No. N00014-07-1-0741). We would like to thank Erik Lindberg of the Technical University of Denmark for useful discussions about the Colpitts oscillator. We would also like to thank Philip Gill and Elizabeth Wong for helpful discussions about SNOPT and SNCTRL software. NR 51 TC 27 Z9 27 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016201 DI 10.1103/PhysRevE.80.016201 PG 17 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500031 PM 19658786 ER PT J AU Ankenbrandt, C Bogacz, SA Bross, A Geer, S Johnstone, C Neuffer, D Popovic, M AF Ankenbrandt, C. Bogacz, S. A. Bross, A. Geer, S. Johnstone, C. Neuffer, D. Popovic, M. TI Low-energy neutrino factory design SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID MUON ACCELERATION; BEAM DYNAMICS AB The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The pi(+/-) decay to produce muons (mu(+/-)), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by similar to 1.4 X 10(21) mu(+) per year decaying in a long straight section of the storage ring, and a similar number of mu(-) decays. C1 [Ankenbrandt, C.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bogacz, S. A.] Ctr Adv Studies Accelerators, Jefferson Lab, Newport News, VA 23606 USA. [Ankenbrandt, C.] Muons Inc, Batavia, IL 60510 USA. RP Ankenbrandt, C (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU Fermi National Accelerator Laboratory; Fermi Research Association [DE-AC02-76CH03000]; U.S. Department of Energy FX This work is supported at the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Association, under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy. NR 47 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070101 DI 10.1103/PhysRevSTAB.12.070101 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200001 ER PT J AU Bruce, R Bocian, D Gilardoni, S Jowett, JM AF Bruce, R. Bocian, D. Gilardoni, S. Jowett, J. M. TI Beam losses from ultraperipheral nuclear collisions between Pb-208(82+) ions in the Large Hadron Collider and their alleviation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ELECTRON-CAPTURE; PAIR PRODUCTION; LHC CABLES; HEAVY-IONS; PHYSICS; IONIZATION; MAGNETS AB Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte Carlo shower simulation, and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb-208(82+) ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb-208(82+) operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect. C1 [Bruce, R.; Bocian, D.; Gilardoni, S.; Jowett, J. M.] CERN, Geneva, Switzerland. [Bocian, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bruce, R.] Lund Univ, MAXlab, S-22100 Lund, Sweden. [Bocian, D.] IFJ PAN, Krakow, Poland. RP Bruce, R (reprint author), CERN, Geneva, Switzerland. EM roderik.bruce@cern.ch FU U.S. Department of Energy [DE-AC-02-07CH11359] FX We would like to thank A. Ferrari for enlightening discussions, M. Giovannozzi for helpful advice and the LHC misalignment data, M. Magistris for the MB FLUKA model, and M. Aiba for providing rematching routines for the LHC optics. Other people we would like to thank for their help during the course of this work are R. W. Assmann, B. Dehning, J. B. Jeanneret, S. Russenschuck, B. Schroder, A. Siemko, G. I. Smirnov, D. Tommasini, J. Wenninger, and S. M. White. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC-02-07CH11359. NR 49 TC 24 Z9 24 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 071002 DI 10.1103/PhysRevSTAB.12.071002 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200009 ER PT J AU Bruner, N Genoni, T Madrid, E Welch, D Hahn, K Oliver, B AF Bruner, Nichelle Genoni, Thomas Madrid, Elizabeth Welch, Dale Hahn, Kelly Oliver, Bryan TI Excitation of voltage oscillations in an induction voltage adder SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID DIODE; FLOW AB The induction voltage adder is an accelerator architecture used in recent designs of pulsed-power driven x-ray radiographic systems such as Sandia National Laboratories' Radiographic Integrated Test Stand (RITS), the Atomic Weapons Establishment's planned Hydrus Facility, and the Naval Research Laboratory's Mercury. Each of these designs relies on magnetic insulation to prevent electron loss across the anode-cathode gap in the vicinity of the adder as well as in the coaxial transmission line. Particle-incell simulations of the RITS adder and transmission line show that, as magnetic insulation is being established during a pulse, some electron loss occurs across the gap. Sufficient delay in the cavity pulse timings provides an opportunity for high-momentum electrons to deeply penetrate the cavities of the adder cells where they can excite radio-frequency resonances. These oscillations may be amplified in subsequent gaps, resulting in oscillations in the output power. The specific modes supported by the RITS-6 accelerator and details of the mechanism by which they are excited are presented in this paper. C1 [Bruner, Nichelle; Genoni, Thomas; Madrid, Elizabeth; Welch, Dale] Voss Sci LLC, Albuquerque, NM 87108 USA. [Hahn, Kelly; Oliver, Bryan] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bruner, N (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. FU Sandia National Laboratories; U.S. Department of Energy; U.K. Ministry of Defense [DOA-8910]; United States Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX This work is supported by Sandia National Laboratories and the U.S. Department of Energy and the U.K. Ministry of Defense, under Contract No. DOA-8910 and AWE under PALD 760. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC0494AL85000. NR 17 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070401 DI 10.1103/PhysRevSTAB.12.070401 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200002 ER PT J AU Dowell, DH Schmerge, JF AF Dowell, David H. Schmerge, John F. TI Quantum efficiency and thermal emittance of metal photocathodes SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths with major advances occurring since the invention of the photocathode gun and the realization of emittance compensation. These state-of-the-art electron beams are now becoming limited by the intrinsic thermal emittance of the cathode. In both dc and rf photocathode guns details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance for metal cathodes using the Fermi-Dirac model for the electron distribution. We use a consistent theory to derive the quantum efficiency and thermal emittance, and compare our results to those of others. C1 [Dowell, David H.; Schmerge, John F.] SLAC, Menlo Pk, CA 94025 USA. RP Dowell, DH (reprint author), SLAC, Menlo Pk, CA 94025 USA. FU U.S. Department of Energy [DE-AC02-76SF00515] FX This paper has benefited from stimulating discussions with Klaus Floettmann (DESY), Sven Lederer (DESY), Kevin Jensen (NRL), John Smedley (BNL), Axel Brachmann (SLAC), and Dao Xiang (SLAC). This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. NR 26 TC 79 Z9 81 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 074201 DI 10.1103/PhysRevSTAB.12.074201 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200013 ER PT J AU Kumar, V Kim, KJ AF Kumar, Vinit Kim, Kwang-Je TI Electron beam requirements for Smith-Purcell backward wave oscillator with external focusing SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID FIELD AB Operation of the Smith-Purcell backward wave oscillator requires a flat electron beam. Without the electron beam focusing, the requirement leads to a very stringent criterion on vertical emittance. In this paper, we discuss a way to relax the criterion by introducing an external focusing. C1 [Kumar, Vinit] Raja Ramanna Ctr Adv Technol, Indore 452013, India. [Kim, Kwang-Je] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. RP Kumar, V (reprint author), Raja Ramanna Ctr Adv Technol, Indore 452013, India. NR 24 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070703 DI 10.1103/PhysRevSTAB.12.070703 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200006 ER PT J AU Lindberg, RR Kim, KJ AF Lindberg, R. R. Kim, K. -J. TI Mode growth and competition in the x-ray free-electron laser oscillator start-up from noise SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID SPECTRAL STRUCTURE; SIMULATION; RADIATION AB We describe the radiation properties of an x-ray free-electron laser (FEL) oscillator, beginning with its start-up from noise through saturation. We first decompose the initially chaotic undulator radiation into the growing longitudinal modes of the composite system consisting of the electron beam, the undulator, and the Bragg mirror resonator cavity. Because the radiation initially comprises several modes whose growth rates are comparable, we find that only after many oscillator passes is the output pulse dominantly characterized by the lowest-order Gaussian mode. We verify our analytic results with a novel, reduced one-dimensional FEL code (derived in the text), and with two-dimensional FEL simulations. Understanding the full longitudinal structure during the initial amplification will be critical in assessing the tolerances on the electron beam, undulator, and optical cavity required for robust operation. C1 [Lindberg, R. R.; Kim, K. -J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lindberg, RR (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM lindberg@aps.anl.gov FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors wish to thank W. M. Fawley for many useful discussions on FEL simulations, and Y. Shvyd'ko for his expertise with x-ray optics. This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-AC02-06CH11357. NR 22 TC 5 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070702 DI 10.1103/PhysRevSTAB.12.070702 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200005 ER PT J AU Barnes, M Abel, IG Dorland, W Ernst, DR Hammett, GW Ricci, P Rogers, BN Schekochihin, AA Tatsuno, T AF Barnes, M. Abel, I. G. Dorland, W. Ernst, D. R. Hammett, G. W. Ricci, P. Rogers, B. N. Schekochihin, A. A. Tatsuno, T. TI Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests SO PHYSICS OF PLASMAS LA English DT Article DE diffusion; plasma collision processes; plasma kinetic theory; plasma simulation ID ASTROPHYSICAL GYROKINETICS; NONLINEAR EVOLUTION; INTERCHANGE MODES; MAGNETIC-FIELD; PLASMA; TURBULENCE; TRANSPORT; TOKAMAK; EQUATIONS; DRIFT AB A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 [Kotschenreuther , Comput. Phys. Comm. 88, 128 (1995)] is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation. C1 [Barnes, M.; Dorland, W.; Tatsuno, T.] Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA. [Barnes, M.; Dorland, W.; Tatsuno, T.] Univ Maryland, CSCAMM, College Pk, MD 20742 USA. [Abel, I. G.; Schekochihin, A. A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England. [Abel, I. G.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Ernst, D. R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Hammett, G. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ricci, P.] Ecole Polytech Fed Lausanne, Assoc EURATOM Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. [Rogers, B. N.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. RP Barnes, M (reprint author), Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA. EM mabarnes@umd.edu; i.abel07@imperial.ac.uk RI Schekochihin, Alexander/C-2399-2009; Tatsuno, Tomo/A-3467-2011; Hammett, Gregory/D-1365-2011; Ernst, Darin/A-1487-2010; Barnes, Michael/F-4934-2011; Dorland, William/B-4403-2009 OI Hammett, Gregory/0000-0003-1495-6647; Ernst, Darin/0000-0002-9577-2809; Dorland, William/0000-0003-2915-724X NR 51 TC 35 Z9 35 U1 3 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072107 DI 10.1063/1.3155085 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200009 ER PT J AU Boerner, JJ Boyd, ID AF Boerner, Jeremiah J. Boyd, Iain D. TI Evaluation of models for numerical simulation of the non-neutral region of sheath plasma SO PHYSICS OF PLASMAS LA English DT Article DE plasma flow; plasma sheaths; plasma simulation; Poisson equation ID MAGNETIZED PLASMAS; ION COLLECTION AB Four different electron models are used to simulate the nonequilibrium plasma flow around a representative cylindrical Faraday probe geometry. Each model is implemented in a two-dimensional axisymmetric hybrid electron fluid and particle in cell method. The geometric shadowing model is derived from kinetic theory on the basis that physical obstruction of part of the velocity distribution leads to many of the expected sheath features. The Boltzmann electron fluid model relates the electron density to the plasma potential through the Boltzmann relation. The non-neutral detailed electron fluid model is derived from the electron conservation equations under the assumption of neutrality, and then modified to include non-neutral effects through the electrostatic Poisson equation. The Poisson-consistent detailed electron fluid model is also derived from the conservation equations and the electrostatic Poisson equation, but uses an alternative method that is inherently non-neutral from the outset. Simulations using the geometric shadowing and non-neutral detailed models do not yield satisfactory sheath structures, indicating that these models are not appropriate for sheath simulations. Simulations using the Boltzmann and Poisson-consistent models produce sheath structures that are in excellent agreement with the planar Bohm sheath solution near the centerline of the probe. The computational time requirement for the Poisson-consistent model is much higher than for the Boltzmann model and becomes prohibitive for larger domains. C1 [Boerner, Jeremiah J.; Boyd, Iain D.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. RP Boerner, JJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jjboern@sandia.gov NR 20 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 073502 DI 10.1063/1.3158559 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200056 ER PT J AU Bott, SC Haas, DM Eshaq, Y Ueda, U Beg, FN Hammer, DA Kusse, B Greenly, J Shelkovenko, TA Pikuz, SA Blesener, IC McBride, RD Douglass, JD Bell, K Knapp, P Chittenden, JP Lebedev, SV Bland, SN Hall, GN Vidal, FAS Marocchino, A Harvey-Thomson, A Haines, MG Palmer, JBA Esaulov, A Ampleford, DJ AF Bott, S. C. Haas, D. M. Eshaq, Y. Ueda, U. Beg, F. N. Hammer, D. A. Kusse, B. Greenly, J. Shelkovenko, T. A. Pikuz, S. A. Blesener, I. C. McBride, R. D. Douglass, J. D. Bell, K. Knapp, P. Chittenden, J. P. Lebedev, S. V. Bland, S. N. Hall, G. N. Vidal, F. A. Suzuki Marocchino, A. Harvey-Thomson, A. Haines, M. G. Palmer, J. B. A. Esaulov, A. Ampleford, D. J. TI Study of the effect of current rise time on the formation of the precursor column in cylindrical wire array Z pinches at 1 MA SO PHYSICS OF PLASMAS LA English DT Article DE aluminium; plasma X-ray sources; tungsten; Z pinch ID LABORATORY ASTROPHYSICS; IMPLOSION DYNAMICS; PLASMA FORMATION; JET DEFLECTION; SUPERNOVA 1987A; X-PINCHES; POWER; GENERATOR; PHASE; INSTABILITY AB The limited understanding of the mechanisms driving the mass ablation rate of cylindrical wires arrays is presently one of the major limitations in predicting array performance at the higher current levels required for inertial confinement fusion (ICF) ignition. Continued investigation of this phenomenon is crucial to realize the considerable potential for wire arrays to drive both ICF and inertial fusion energy, by enabling a predictive capability in computational modeling. We present the first study to directly compare the mass ablation rates of wire arrays as a function of the current rise rate. Formation of the precursor column is investigated on both the MAPGIE (1 MA, 250ns [Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)]) and COBRA (1 MA, 100ns [Greenly , Rev. Sci. Instrum. 79, 073501 (2008)]) generators, and results are used to infer the change in the effective ablation velocity induced by the rise rate of the drive current. Laser shadowography, gated extreme ultraviolet (XUV) imaging, and x-ray diodes are used to compare the dynamical behavior on the two generators, and X-pinch radiography and XUV spectroscopy provide density evolution and temperature measurements respectively. Results are compared to predictions from an analytical scaling model developed previously from MAGPIE data, based on a fixed ablation velocity. For COBRA the column formation time occurs at 116 +/- 5 ns and for Al arrays and 146 +/- 5 ns for W arrays, with Al column temperature in the range of 70-165 eV. These values lie close to model predictions, inferring only a small change in the ablation velocity is induced by the factor of 2.5 change in current rise time. Estimations suggest the effective ablation velocities for MAGPIE and COBRA experiments vary by a maximum of 30%. C1 [Bott, S. C.; Haas, D. M.; Eshaq, Y.; Ueda, U.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Hammer, D. A.; Kusse, B.; Greenly, J.; Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Douglass, J. D.; Bell, K.; Knapp, P.] Cornell Univ, Plasma Studies Lab, New York, NY 14853 USA. [Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Vidal, F. A. Suzuki; Marocchino, A.; Harvey-Thomson, A.; Haines, M. G.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Palmer, J. B. A.] AWE Plc, Aldermaston RG7 4PR, Berks, England. [Esaulov, A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Ampleford, D. J.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Bott, SC (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. RI Hall, Gareth/C-4179-2015; Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015; Marocchino, Alberto/E-3571-2016 OI Marocchino, Alberto/0000-0002-5287-8355 FU DOE Junior Faculty [DE-FG-05ER4842]; Center of Excellence for Pulsed Power Driven High Energy Density Physics; Cornell University; NNSA [DE-F03-02NA00057] FX This work was supported by the DOE Junior Faculty Under Grant No. DE-FG-05ER4842, and a grant from the Center of Excellence for Pulsed Power Driven High Energy Density Physics, Cornell University. Work at Imperial College London was sponsored by the NNSA under DOE Cooperative Agreement No. DE-F03-02NA00057. NR 83 TC 18 Z9 18 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072701 DI 10.1063/1.3159864 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200038 ER PT J AU Daughton, W Roytershteyn, V Albright, BJ Karimabadi, H Yin, L Bowers, KJ AF Daughton, W. Roytershteyn, V. Albright, B. J. Karimabadi, H. Yin, L. Bowers, Kevin J. TI Influence of Coulomb collisions on the structure of reconnection layers SO PHYSICS OF PLASMAS LA English DT Article DE Fokker-Planck equation; magnetic reconnection; Monte Carlo methods; plasma collision processes; plasma simulation; plasma transport processes ID MAGNETIC RECONNECTION; SIMULATION; CHALLENGE; EQUATION; FIELD; CODE AB The influence of Coulomb collisions on the structure of reconnection layers is examined in neutral sheet geometry using fully kinetic simulations with a Monte Carlo treatment of the Fokker-Planck operator. The algorithm is first carefully benchmarked against key predictions from transport theory, including the parallel and perpendicular resistivities as well as the thermal force. The results demonstrate that the collisionality is accurately specified, thus allowing the initial Lundquist number to be chosen as desired. For modest Lundquist numbers S less than or similar to 1000, the classic Sweet-Parker solution is recovered. Furthermore, a distinct transition to a faster kinetic regime is observed when the thickness of the resistive layer delta(SP) falls below the ion inertial length d(i). For higher Lundquist numbers S greater than or similar to 1000, plasmoids (secondary islands) are observed within the elongated resistive layers. These plasmoids give rise to a measurable increase in the reconnection rate and for certain cases induce a transition to kinetic regimes sooner than expected from the delta(SP)approximate to d(i) condition. During this transition, the reconnection electric field exceeds the runaway limit, leading to electron scale current layers in which the nonideal electric field is supported predominantly by off-diagonal components in the electron pressure tensor, along with a residual contribution from electron-ion momentum exchange. These weakly collisional electron layers are also unstable to the formation of new plasmoids. C1 [Daughton, W.; Roytershteyn, V.; Albright, B. J.; Yin, L.; Bowers, Kevin J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bowers, Kevin J.] DE Shaw Res LLC, New York, NY 10036 USA. RP Daughton, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RI Daughton, William/L-9661-2013; OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Roytershteyn, Vadim/0000-0003-1745-7587 NR 42 TC 37 Z9 37 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072117 DI 10.1063/1.3191718 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200019 ER PT J AU Krommes, JA Reiman, AH AF Krommes, John A. Reiman, Allan H. TI Plasma equilibrium in a magnetic field with stochastic regions SO PHYSICS OF PLASMAS LA English DT Article DE plasma toroidal confinement; plasma turbulence ID DIFFERENTIAL-EQUATIONS; TURBULENCE; TRANSPORT; STELLARATOR; SURFACES; TOKAMAK; PERTURBATIONS; SIMULATIONS; ISLANDS; SYSTEMS AB The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schluumlter currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory. An analytically tractable model, previously studied in the context of resonance-broadening theory, is applied with particular attention paid to the periodicity constraints required in toroidal configurations. It is shown that even a very weak radial diffusion of the magnetic field lines can have a significant effect on the equilibrium in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schluumlter currents. Implications for the numerical calculation of three-dimensional equilibria are discussed. C1 [Krommes, John A.; Reiman, Allan H.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM krommes@princeton.edu; reiman@pppl.gov NR 57 TC 6 Z9 6 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072308 DI 10.1063/1.3159607 PG 26 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200027 ER PT J AU Sheng, ZM Yu, LM Hao, GZ White, R AF Sheng, Zheng-Mao Yu, Limin Hao, Guangzhou White, Roscoe TI Nonlinear interaction between ions and multiple electrostatic waves SO PHYSICS OF PLASMAS LA English DT Article DE astrophysical plasma; plasma electrostatic waves; plasma heating; plasma magnetohydrodynamics; plasma nonlinear processes; plasma theory; solar corona ID COHERENT ACCELERATION; CYCLOTRON FREQUENCY; MAGNETIZED PLASMA; DYNAMICS AB The nonlinear interaction of ions with multiple electrostatic waves propagating perpendicularly across a uniform magnetic field is investigated both analytically and numerically. Applying a multiscale expansion method with the wave amplitude as the perturbation parameter, a general nonlinear resonance condition is analytically derived. Under this condition, it is confirmed that multiple waves even below the cyclotron frequency and small amplitude are capable of effectively producing acceleration or stochastic heating by numerical simulation. Compared to the single wave situation, the stochastic threshold for heating by multiple waves with frequencies satisfied with a nonlinear resonance condition is significantly reduced because the nonlinear interaction of ions with multiple waves leads more easily to overlapping of islands and spreading of the stochastic layer in phase space. The above result is helpful to understand the energization mechanism of ions in the solar corona. C1 [Sheng, Zheng-Mao; Yu, Limin; Hao, Guangzhou] Zhejiang Univ, Dept Phys, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China. [Sheng, Zheng-Mao; Yu, Limin; White, Roscoe] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sheng, ZM (reprint author), Zhejiang Univ, Dept Phys, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 FU National Natural Science Foundation of China [10675102, 40390150]; National Hi-Tech Inertial Confinement Fusion Committee of China FX Z.-M. S. would like to thank Professor Liu Chen and Professor J. Q. Dong for their useful discussions. Z.-M. S. and L. Y. thank the hospitality of PPPL, where this work was completed. This work is supported by the National Natural Science Foundation of China under Grant Nos. 10675102 and 40390150 and the National Hi-Tech Inertial Confinement Fusion Committee of China. NR 10 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072106 DI 10.1063/1.3157245 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200008 ER PT J AU Steinhauer, LC Intrator, TP AF Steinhauer, Loren C. Intrator, T. P. TI Equilibrium paradigm for field-reversed configurations and application to experiments SO PHYSICS OF PLASMAS LA English DT Article DE plasma transport processes; reversed field pinch ID MODE-STABILITY; CONFINEMENT; TRANSPORT; PLASMAS; PROFILE; FRX AB Fresh insights on field-reversed configurations (FRCs) are incorporated in a new paradigm for equilibria. In particular four new or unappreciated properties are accounted for: an empirically based scrape-off layer thickness; a new, more accurate axial force balance relation; viscous force regularity at the O-point; and the broken-surface effect. The new paradigm corrects glaring defects of previous models (rigid rotor, Hill's vortex). Further, the new paradigm is simple enough to be easily used as an interpretive tool despite the limited data suite in most experiments. It is applied to the newly enhanced FRC data compendium, a database of 69 records from 15 facilities. Several important observations and corrections on the previous understanding of FRCs follow, three of which stand out. (1) The traditional axial force balance ("average-beta" relation) gives an inaccurate scaling with the separatrix-to-wall radius ratio. (2) The improved equilibrium paradigm yields separatrix particle transport rates of 3-5 m(2)/s for "best confinement" examples; this is a factor of three lower than crude "bulk" estimates commonly used. (3) The transport compared to the Bohm rate shows a great deal of scatter (40% scatter/mean ratio), i.e., "Bohm" is not a useful representation for transport scaling. C1 [Steinhauer, Loren C.] Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA. [Intrator, T. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Steinhauer, LC (reprint author), Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA. FU U.S. Department of Energy [DE-FG03-98ER54480, DE-AC52-06NA25396] FX L. C. S. is grateful for useful discussions with R. D. Milroy and D. C. Barnes and T. P. I. acknowledges the FRXL team (S. Y. Zhang, R. M. Renneke, W. A. Waganaar, G. A. Wurden, and P. A. Sieck) for help and effort in acquiring the data over the past several years. This work was supported by U.S. Department of Energy, Grant No. DE-FG03-98ER54480 and Contract No. DE-AC52-06NA25396. NR 21 TC 9 Z9 11 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072501 DI 10.1063/1.3157253 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200031 ER PT J AU Wright, JC Bonoli, PT Schmidt, AE Phillips, CK Valeo, EJ Harvey, RW Brambilla, MA AF Wright, J. C. Bonoli, P. T. Schmidt, A. E. Phillips, C. K. Valeo, E. J. Harvey, R. W. Brambilla, M. A. TI An assessment of full wave effects on the propagation and absorption of lower hybrid waves SO PHYSICS OF PLASMAS LA English DT Article DE electromagnetic field theory; Fokker-Planck equation; plasma electromagnetic wave propagation; SCF calculations; Tokamak devices; wave propagation; WKB calculations ID LARMOR RADIUS MODELS; ION-CYCLOTRON RANGE; TOKAMAK PLASMAS; CURRENT DRIVE; TOROIDAL PLASMAS; NUMERICAL-SIMULATION; FREQUENCIES AB Lower hybrid (LH) waves ((ci) 4)Xyl was chemically synthesized and conjugated to a carrier protein. Two interesting antibodies were obtained, hereinafter named INRA-COU1 and INRA-COU2. The specificity of these monoclonal antibodies has been evaluated using competitive-inhibition assays with different oligosaccharides and phenolic compounds. INRA-COU1, recognized free p-coumaric acid or p-coumarate esters. INRA-COU1 did not react with any of the other hydroxycinnamic acids and related compounds found in plants. INRA-COU2, only recognizes esterified p-coumarate. These antibodies were used to study the localization of p-coumarates in the cell walls of grasses. Immunocytochemical analyses indicated noticeable amounts of p-coumarate in the cell walls of the aleurone layer of wheat grain, in the epiderm of cereal straw, and in the exoderm of wheat root. The use of these antibodies will contribute to a better understanding of the organisation and developmental dynamics of cell walls in Graminaceae. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Tranquet, Olivier; Saulnier, Luc; Guillon, Fabienne] INRA, Biopolymeres Interact Assemblages UR1268, F-44300 Nantes, France. [Utille, Jean-Pierre] CERMAV, CNRS, UPR 5301, F-3041 Grenoble, France. [Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Biochem, Enzyme Inst, Madison, WI 53726 USA. RP Tranquet, O (reprint author), INRA, Biopolymeres Interact Assemblages UR1268, F-44300 Nantes, France. EM tranquet@nantes.inra.fr NR 76 TC 11 Z9 11 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9422 J9 PHYTOCHEMISTRY JI Phytochemistry PD JUL-AUG PY 2009 VL 70 IS 11-12 BP 1366 EP 1373 DI 10.1016/j.phytochem.2009.06.019 PG 8 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 511PD UT WOS:000271177600004 PM 19712948 ER PT J AU Bickford, CP Mcdowell, NG Erhardt, EB Hanson, DT AF Bickford, Christopher P. Mcdowell, Nate G. Erhardt, Erik B. Hanson, David T. TI High-frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma SO PLANT CELL AND ENVIRONMENT LA English DT Article DE decarboxylation; Farquhar model; mesophyll conductance; p(i)/p(a) ID LEAF-RESPIRED CO2; LASER ABSORPTION-SPECTROSCOPY; MESOPHYLL CONDUCTANCE; ECOSYSTEM RESPIRATION; IN-VIVO; CARBOXYLASE OXYGENASE; TEMPERATURE RESPONSE; ILLUMINATED LEAVES; PARTIAL-PRESSURE; SPINACH LEAVES AB We present field observations of carbon isotope discrimination (Delta) and internal conductance of CO(2) (g(i)) collected using tunable diode laser spectroscopy (TDL). Delta ranged from 12.0 to 27.4 parts per thousand over diurnal periods with daily means from 16.3 +/- 0.2 parts per thousand during drought to 19.0 +/- 0.5 parts per thousand during monsoon conditions. We observed a large range in g(i), with most estimates between 0.04 and 4.0 mu mol m(-2) s(-1) Pa(-1). We tested the comprehensive Farquhar, O'Leary and Berry model of Delta (Delta(comp)), a simplified form of Delta(comp) (Delta(simple)) and a recently suggested amendment (Delta(revised)). Sensitivity analyses demonstrated that varying g(i) had a substantial effect on Delta(comp), resulting in mean differences between observed Delta (Delta(obs)) and Delta(comp) ranging from 0.04 to 9.6 parts per thousand. First-order regressions adequately described the relationship between Delta and the ratio of substomatal to atmospheric CO(2) partial pressure (p(i)/p(a)) on all 3 d, but second-order models better described the relationship in July and August. The three tested models each best predicted Delta(obs) on different days. In June, Delta(simple) outperformed Delta(comp) and Delta(revised), but incorporating g(i) and all non-photosynthetic fractionations improved model predictions in July and August. C1 [Bickford, Christopher P.; Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Erhardt, Erik B.] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Mcdowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Bickford, CP (reprint author), Univ New Mexico, Dept Biol, MSC03-2020, Albuquerque, NM 87131 USA. EM bickford@unm.edu RI Hanson, David/J-8034-2012; OI Erhardt, Erik/0000-0002-9817-4011 FU Institute of Geophysics and Planetary Physics at Los Alamos National Laborator [95566-001-05]; National Science Foundation [IOS-0719118] FX We thank H. Powers, K. Brown and C. Meyer for extensive technical support, and the Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory (project 95566-001-05), the National Science Foundation (IOS-0719118), UNM PIBBS and the UNM Biology Department Lynn A. Hertel Graduate Research Award for funding. We also thank Professor Graham Farquhar and two anonymous reviewers for their comments that improved the paper. NR 75 TC 27 Z9 27 U1 1 U2 17 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0140-7791 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD JUL PY 2009 VL 32 IS 7 BP 796 EP 810 DI 10.1111/j.1365-3040.2009.01959.x PG 15 WC Plant Sciences SC Plant Sciences GA 453HN UT WOS:000266601600004 PM 19220783 ER PT J AU Yu, XH Gou, JY Liu, CJ AF Yu, Xiao-Hong Gou, Jin-Ying Liu, Chang-Jun TI BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression SO PLANT MOLECULAR BIOLOGY LA English DT Article DE Acyl CoA-dependent acyltransfease; BAHD enzymes; Populus trichocarpa; Arabidopsis thaliana; Gene expression ID ACID N-MALONYLTRANSFERASE; SALVIA-SPLENDENS FLOWERS; CELL-WALL; 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID; ANTHOCYANIN ACYLTRANSFERASES; FUNCTIONAL-CHARACTERIZATION; PHENYLPROPANOID METABOLISM; SEQUENCE ALIGNMENT; MEMBRANE-PROTEINS; CLARKIA-BREWERI AB Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by "in silico" northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members' evolutionary relationships and gene functions implicated in plant growth, development and metabolism. C1 [Yu, Xiao-Hong; Gou, Jin-Ying; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov RI Gou, Jin-Ying/G-7628-2012 FU DOE -USDA joint Plant Feedstock Genomics [Bo-135]; Laboratory Directed Research and Development [LDRD-07-047]; Department of Energy FX Authors would like to thank Dr. Gray Tuskan in Oak Ridge National Laboratory for providing additional P. trichocarpa plantlets. This work was supported by the DOE -USDA joint Plant Feedstock Genomics program (Project no: Bo-135) and the Laboratory Directed Research and Development program (LDRD-07-047) of Brookhaven National Laboratory under contract with Department of Energy to C.J.L. NR 79 TC 34 Z9 38 U1 0 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-4412 J9 PLANT MOL BIOL JI Plant Mol.Biol. PD JUL PY 2009 VL 70 IS 4 BP 421 EP 442 DI 10.1007/s11103-009-9482-1 PG 22 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 457FP UT WOS:000266914200005 PM 19343509 ER PT J AU Bauer, AL Jackson, TL Jiang, Y AF Bauer, Amy L. Jackson, Trachette L. Jiang, Yi TI Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID TUMOR-INDUCED ANGIOGENESIS; COLLAGEN TYPE-I; ENDOTHELIAL-CELL; GROWTH-FACTOR; MECHANICAL-PROPERTIES; VEGF; MODEL; PROLIFERATION; INVASION; NETWORKS AB The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically. C1 [Bauer, Amy L.; Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Jackson, Trachette L.] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA. RP Bauer, AL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. EM jiang@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Alfred P. Sloan and the James S. McDonnell Foundation FX ALB and YJ acknowledge support from the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. TLJ was supported in part by the Alfred P. Sloan and the James S. McDonnell Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 62 TC 73 Z9 75 U1 2 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2009 VL 5 IS 7 AR e1000445 DI 10.1371/journal.pcbi.1000445 PG 18 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 486TD UT WOS:000269220100010 PM 19629173 ER PT J AU Gaudet, P Chisholm, R Berardini, T Dimmer, E Engel, SR Fey, P Hill, DP Howe, D Hu, JC Huntley, R Khodiyar, VK Kishore, R Li, D Lovering, RC McCarthy, F Ni, L Petri, V Siegele, DA Tweedie, S Van Auken, K Wood, V Basu, S Carbon, S Dolan, M Mungall, CJ Dolinski, K Thomas, P Ashburner, M Blake, JA Cherry, JM Lewis, SE AF Gaudet, Pascale Chisholm, Rex Berardini, Tanya Dimmer, Emily Engel, Stacia R. Fey, Petra Hill, David P. Howe, Doug Hu, James C. Huntley, Rachael Khodiyar, Varsha K. Kishore, Ranjana Li, Donghui Lovering, Ruth C. McCarthy, Fiona Ni, Li Petri, Victoria Siegele, Deborah A. Tweedie, Susan Van Auken, Kimberly Wood, Valerie Basu, Siddhartha Carbon, Seth Dolan, Mary Mungall, Christopher J. Dolinski, Kara Thomas, Paul Ashburner, Michael Blake, Judith A. Cherry, J. Michael Lewis, Suzanna E. CA Gene Ontology Consortium TI The Gene Ontology's Reference Genome Project: A Unified Framework for Functional Annotation across Species SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SEQUENCE; PANTHER AB The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content. C1 [Gaudet, Pascale; Chisholm, Rex; Fey, Petra; Basu, Siddhartha] Northwestern Univ, Chicago, IL 60611 USA. [Berardini, Tanya; Li, Donghui] Carnegie Inst, Dept Plant Biol, Stanford, CA USA. [Dimmer, Emily; Huntley, Rachael] UniProt, EBI, Hinxton, England. [Engel, Stacia R.; Cherry, J. Michael] Stanford Univ, Dept Genet, Stanford, CA 94305 USA. [Hill, David P.; Ni, Li; Dolan, Mary; Blake, Judith A.] Jackson Lab, Bar Harbor, ME 04609 USA. [Howe, Doug] Univ Oregon, Eugene, OR 97403 USA. [Hu, James C.; Siegele, Deborah A.] Texas A&M Univ, College Stn, TX USA. [Khodiyar, Varsha K.; Lovering, Ruth C.] UCL, Dept Med, London, England. [Kishore, Ranjana; Van Auken, Kimberly] CALTECH, Pasadena, CA 91125 USA. [McCarthy, Fiona] Mississippi State Univ, Starkville, MS USA. [Petri, Victoria] Med Coll Wisconsin, Milwaukee, WI 53226 USA. [Tweedie, Susan; Ashburner, Michael] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Wood, Valerie] Wellcome Trust Sanger Inst, Hinxton, England. [Carbon, Seth; Mungall, Christopher J.; Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dolinski, Kara] Princeton Univ, Princeton, NJ 08544 USA. [Thomas, Paul] SRI Int, Menlo Pk, CA 94025 USA. RP Gaudet, P (reprint author), Northwestern Univ, Chicago, IL 60611 USA. EM pgaudet@northwestern.edu RI Fey, Petra/O-5977-2015; Huntley, Rachael/R-1036-2016; OI Khodiyar, Varsha/0000-0002-2743-6918; Fey, Petra/0000-0002-4532-2703; Huntley, Rachael/0000-0001-6718-3559; Apweiler, Rolf/0000-0001-7078-200X; Engel, Stacia/0000-0001-5472-917X; Christie, Karen/0000-0001-5501-853X; Howe, Douglas/0000-0001-5831-7439; Wood, Valerie/0000-0001-6330-7526; Cherry, J. Michael/0000-0001-9163-5180; Lewis, Suzanna/0000-0002-8343-612X; Tweedie, Susan/0000-0003-1818-8243; Siegele, Deborah/0000-0001-8935-0696; Blake, Judith/0000-0001-8522-334X FU NIH-NHGRI P41 [HG002273, HG000330, HG001315, HG02223, HG002659-06]; USDA Cooperative State Research, Education and Extension Service [MISV-329140]; NIH [GM64426, HG00022, HD033745]; NIGMS [U24GM07790]; Medical Research Council [G0500293]; EMBL; British Heart Foundation [SP/07/007/23671]; National Heart, Lung, and Blood Institute [HL64541]; NSF [DBI-0417062] FX The Gene Ontology Consortium is supported by a NIH-NHGRI P41 grant, HG002273. Curation at the model organism databases is supported as follows: AgBase National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number MISV-329140; dictyBase, NIH grants GM64426 and HG00022; EcoliWiki, NIGMS U24GM07790 to EcoliHub; FlyBase, Medical Research Council grant G0500293; GOA, core EMBL funding, British Heart Foundation grant SP/07/007/23671; MGI, NIH-NHGRI P41 grant HG000330 and NIH grant HD033745; RGD, National Heart, Lung, and Blood Institute grant HL64541; SGD, NIH-NHGRI P41 grant HG001315; TAIR, NSF grant DBI-0417062; WormBase, US NIH-NHGRI P41 grant HG02223; ZFIN, NIH-NCRR P41 grant HG002659-06; UCL-based human cardiovascular GO team, British Heart Foundation grant SP/07/007/23671. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 21 TC 8 Z9 8 U1 1 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2009 VL 5 IS 7 AR e1000431 DI 10.1371/journal.pcbi.1000431 PG 8 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 486TD UT WOS:000269220100031 ER PT J AU Zou, C Lehti-Shiu, MD Thomashow, M Shiu, SH AF Zou, Cheng Lehti-Shiu, Melissa D. Thomashow, Michael Shiu, Shin-Han TI Evolution of Stress-Regulated Gene Expression in Duplicate Genes of Arabidopsis thaliana SO PLOS GENETICS LA English DT Article ID ANCESTRAL CHARACTER STATES; AMINO-ACID-SEQUENCES; FUNCTIONAL DIVERGENCE; GENOME DUPLICATION; PHYLOGENETIC UNCERTAINTY; BAYESIAN-INFERENCE; PLANT; YEAST; SUBFUNCTIONALIZATION; NEOFUNCTIONALIZATION AB Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is., 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments. C1 [Zou, Cheng; Lehti-Shiu, Melissa D.; Shiu, Shin-Han] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Zou, Cheng] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA. [Thomashow, Michael] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Zou, C (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM shius@msu.edu OI Shiu, Shin-Han/0000-0001-6470-235X FU National Science Foundation [DBI-0701709, DBI-0638591, MCB-0749634] FX This work is supported in part by National Science Foundation grants DBI-0701709 to MT and DBI-0638591 and MCB-0749634 to SHS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 77 TC 50 Z9 52 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD JUL PY 2009 VL 5 IS 7 AR e1000581 DI 10.1371/journal.pgen.1000581 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 486SZ UT WOS:000269219500005 PM 19649161 ER PT J AU Field, RV Grigoriu, M AF Field, R. V., Jr. Grigoriu, M. TI Model selection for a class of stochastic processes or random fields with bounded range SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE Decision theory; Probabilistic mechanics; Model selection; Random fields; Stochastic processes ID SIMULATION; DESIGN AB Methods are developed for finding an optimal model for a non-Gaussian stationary stochastic process or homogeneous random field under limited information. The available information consists of: (i) one or more finite length samples of the process or field; and (ii) knowledge that the process or field takes values in a bounded interval of the real line whose ends may or may not be known. The methods are developed and applied to the special case of non-Gaussian processes or fields belonging to the class of beta translation processes. Beta translation processes provide a flexible model for representing physical phenomena taking values in a bounded range, and are therefore useful for many applications. Numerical examples are presented to illustrate the utility of beta translation processes and the proposed methods for model selection. Published by Elsevier Ltd C1 [Field, R. V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grigoriu, M.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Field, RV (reprint author), Sandia Natl Labs, POB 5800,M-S 0346, Albuquerque, NM 87185 USA. EM rvfield@sandia.gov; mdg12@cornell.edu OI Field, Richard/0000-0002-2765-7032 FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 29 TC 6 Z9 7 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JUL PY 2009 VL 24 IS 3 BP 331 EP 342 DI 10.1016/j.probengmech.2008.08.003 PG 12 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 442CT UT WOS:000265818100008 ER PT J AU Grossman, Y Ligeti, Z Nir, Y AF Grossman, Yuval Ligeti, Zoltan Nir, Yosef TI Future Prospects of B Physics SO PROGRESS OF THEORETICAL PHYSICS LA English DT Article; Proceedings Paper CT Meeting on CP Violation and Flavor Mixing CY DEC 08, 2008 CL Stockholm Univ, Stockholm, SWEDEN HO Stockholm Univ ID EFFECTIVE-FIELD-THEORY; CP-VIOLATION; UNITARITY TRIANGLE; STANDARD MODEL; HEAVY MESONS; ANGLE-GAMMA; CKM MATRIX; DECAYS; ASYMMETRIES; QUARK AB In recent years, the CKM picture of flavor and CP violation has been confirmed, mainly due to B decay data. Yet, it is likely that there are small corrections to this picture. We expect to find new physics not much above the weak scale. This new physics could modify flavor changing processes compared to their SM expectations. Much larger B decay data sets, which are expected from LHCb and super-13-factories, will be used to search for these deviations with much improved sensitivity. The combination of low and high energy data will be particularly useful to probe the structure of new physics. C1 [Grossman, Yuval] Cornell Univ, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nir, Yosef] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. RP Grossman, Y (reprint author), Cornell Univ, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA. NR 102 TC 14 Z9 14 U1 0 U2 1 PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE PI KYOTO PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN SN 0033-068X J9 PROG THEOR PHYS JI Prog. Theor. Phys. PD JUL PY 2009 VL 122 IS 1 SI SI BP 125 EP 143 PG 19 WC Physics, Multidisciplinary SC Physics GA 486YX UT WOS:000269238100011 ER PT J AU Mackenzie, PB AF Mackenzie, Paul B. TI The CKM Matrix from Lattice QCD SO PROGRESS OF THEORETICAL PHYSICS LA English DT Article; Proceedings Paper CT Meeting on CP Violation and Flavor Mixing CY DEC 08, 2008 CL Stockholm Univ, Stockholm, SWEDEN HO Stockholm Univ ID KOBAYASHI-MASKAWA MATRIX; CP-VIOLATION; ELEMENTS; DECAYS AB Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analysing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Mackenzie, PB (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. NR 50 TC 1 Z9 1 U1 0 U2 1 PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE PI KYOTO PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN SN 0033-068X J9 PROG THEOR PHYS JI Prog. Theor. Phys. PD JUL PY 2009 VL 122 IS 1 SI SI BP 169 EP 184 PG 16 WC Physics, Multidisciplinary SC Physics GA 486YX UT WOS:000269238100013 ER PT J AU Blois, TM Bowie, JU AF Blois, Tracy M. Bowie, James U. TI G-protein-coupled receptor structures were not built in a day SO PROTEIN SCIENCE LA English DT Review DE membrane protein; crystallization; expression; bicells; lipid cubic phase ID X-RAY-STRUCTURE; CRYSTALLIZING MEMBRANE-PROTEINS; 2.3 ANGSTROM RESOLUTION; LIPIDIC CUBIC PHASES; CELL-FREE PRODUCTION; ESCHERICHIA-COLI; LACTOSE PERMEASE; FUSION PROTEINS; EXPRESSION; CHANNEL AB Among the most exciting recent developments in structural biology is the structure determination of G-protein-coupled receptors (GPCRs), which comprise the largest class of membrane proteins in mammalian cells and have enormous importance for disease and drug development. The GPCR structures are perhaps the most visible examples of a nascent revolution in membrane protein structure determination. Like other major milestones in science, however, such as the sequencing of the human genome, these achievements were built on a hidden foundation of technological developments. Here, we describe some of the methods that are fueling the membrane protein structure revolution and have enabled the determination of the current GPCR structures, along with new techniques that may lead to future structures. C1 [Blois, Tracy M.; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Boyer Hall,611 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu FU NIGMS NIH HHS [R01 GM075922-03, R01 GM063919, R01 GM063919-06, R01 GM063919-07, R01 GM063919-08, R01 GM075922, R01 GM075922-04, R01 GM075922-05, R01 GM081783, R01 GM081783-02, R01 GM081783-03] NR 69 TC 21 Z9 22 U1 1 U2 10 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2009 VL 18 IS 7 BP 1335 EP 1342 DI 10.1002/pro.165 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469FV UT WOS:000267882200001 PM 19536805 ER PT J AU Lee, J Kim, SH AF Lee, Jonas Kim, Sung-Hou TI Water polygons in high-resolution protein crystal structures SO PROTEIN SCIENCE LA English DT Article DE crystal structure; hydration structure; hydrogen bonding; interstitial water; protein data bank; water cluster; bulk water ID BOUND WATER; AMINO-ACID; HYDRATION; CRYSTALLOGRAPHY; MOLECULES; CLUSTERS; VOLUME; NMR AB We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 angstrom resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time-and space-averaged structures of "stable'' water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state. C1 [Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA. [Lee, Jonas; Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu NR 22 TC 14 Z9 15 U1 0 U2 6 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2009 VL 18 IS 7 BP 1370 EP 1376 DI 10.1002/pro.162 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469FV UT WOS:000267882200004 PM 19551896 ER PT J AU Wiltzius, JJW Sievers, SA Sawaya, MR Eisenberg, D AF Wiltzius, Jed J. W. Sievers, Stuart A. Sawaya, Michael R. Eisenberg, David TI Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process SO PROTEIN SCIENCE LA English DT Article DE IAPP; amylin; amyloid; aggregation; type II diabetes ID ISLET AMYLOID POLYPEPTIDE; GENE-RELATED PEPTIDE; TYPE-2 DIABETES-MELLITUS; ALPHA-HELICAL STATES; TRANSGENIC MICE; IN-VITRO; FIBRILLOGENESIS; SPECTROSCOPY; CYTOTOXICITY; GRANULE AB Islet Amyloid Polypeptide (IAPP or amylin) is a peptide hormone produced and stored in the beta-islet cells of the pancreas along with insulin. IAPP readily forms amyloid fibrils in vitro, and the deposition of fibrillar IAPP has been correlated with the pathology of type II diabetes. The mechanism of the conversion that IAPP undergoes from soluble to fibrillar forms has been unclear. By chaperoning IAPP through fusion to maltose binding protein, we find that IAPP can adopt a a-helical structure at residues 8-18 and 22-27 and that molecules of IAPP dimerize. Mutational analysis suggests that this dimerization is on the pathway to fibrillation. The structure suggests how IAPP may heterodimerize with insulin, which we confirmed by protein crosslinking. Taken together, these experiments suggest the helical dimerization of IAPP accelerates fibril formation and that insulin impedes fibrillation by blocking the IAPP dimerization interface. C1 [Wiltzius, Jed J. W.; Sievers, Stuart A.; Sawaya, Michael R.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Eisenberg, David/E-2447-2011; OI Sawaya, Michael/0000-0003-0874-9043 FU NIH; NSF; HHMI FX Grant sponsors: NIH; NSF; HHMI. NR 53 TC 91 Z9 94 U1 3 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2009 VL 18 IS 7 BP 1521 EP 1530 DI 10.1002/pro.145 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469FV UT WOS:000267882200016 PM 19475663 ER PT J AU Loeppky, JL Williams, BJ AF Loeppky, Jason L. Williams, Brian J. TI Design and Analysis for the Gaussian Process Model - Discussion SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Editorial Material C1 [Loeppky, Jason L.] Univ British Columbia Okanagan, Kelowna, BC, Canada. [Williams, Brian J.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Loeppky, JL (reprint author), Univ British Columbia Okanagan, Kelowna, BC, Canada. EM jason@stat.ubc.ca; brian@lanl.gov OI Williams, Brian/0000-0002-3465-4972 NR 14 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD JUL PY 2009 VL 25 IS 5 BP 535 EP 539 DI 10.1002/qre.1040 PG 5 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 477WO UT WOS:000268549800005 ER PT J AU Ntelekos, AA Smith, JA Donner, L Fast, JD Gustafson, WI Chapman, EG Krajewski, WF AF Ntelekos, Alexandros A. Smith, James A. Donner, Leo Fast, Jerome D. Gustafson, William I., Jr. Chapman, Elaine G. Krajewski, Witold F. TI The effects of aerosols on intense convective precipitation in the northeastern United States SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE mesoscale modelling; WRF-Chem; extreme events; flooding ID MESOSCALE MODEL MM5; CLOUD MODEL; AIR-POLLUTION; PART I; CUMULUS CLOUD; WRF MODEL; MICROPHYSICS; RAINFALL; IMPACTS; STORMS AB A fully coupled meteorology-chemistry-aerosol mesoscale model (WRF-Chem) is used to assess the effects of aerosols on intense convective precipitation over the northeastern United States. Numerical experiments are performed for three intense convective storm days and for two scenarios representing 'typical' and 'low' aerosol conditions. The results of the simulations. suggest that increasing concentrations of aerosols can lead to either enhancement or suppression of precipitation. Quantification of the aerosol effect is sensitive to the metric used due to a shift of rainfall accumulation distribution when realistic aerosol concentrations are included in the simulations. Maximum rainfall accumulation amounts and areas with rainfall accumulations exceeding specified thresholds provide robust metrics of the aerosol effect on convective precipitation. Storms developing over areas with medium to low aerosol concentrations showed a suppression effect on rainfall independent of the meteorological environment. Storms developing in areas of relatively high particulate concentrations showed enhancement of rainfall when there were simultaneous high values of convective available potential energy, relative humidity and wind shear. In these cases, elevated aerosol concentrations resulted in stronger updraughts and downdraughts and more coherent organization of convection. For the extreme case, maximum rainfall accumulation differences exceeded 40 mm. The modelling results suggest that areas of the northeastern US urban corridor that are close to or downwind of intense sources of aerosols, could be more favourable for rainfall enhancement due to aerosols for the aerosol concentrations typical of this area. Copyright (C) 2009 Royal Meteorological Society C1 [Ntelekos, Alexandros A.] Princeton Univ, Dept Civil & Environm Engn, CEE Equad, Princeton, NJ 08544 USA. [Donner, Leo] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Fast, Jerome D.; Gustafson, William I., Jr.; Chapman, Elaine G.] Pacific NW Natl Lab, Div Atmospher Sci & Global Change, Richland, WA 99352 USA. [Krajewski, Witold F.] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA USA. RP Ntelekos, AA (reprint author), Princeton Univ, Dept Civil & Environm Engn, CEE Equad, Princeton, NJ 08544 USA. EM ntelekos@alumni.princeton.edu RI Gustafson, William/A-7732-2008 OI Gustafson, William/0000-0001-9927-1393 NR 52 TC 46 Z9 49 U1 2 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JUL PY 2009 VL 135 IS 643 BP 1367 EP 1391 DI 10.1002/qj.476 PN B PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 506MI UT WOS:000270778500001 ER PT J AU Zeng, XP Tao, WK Zhang, MH Hou, AY Xie, SC Lang, S Li, XW Starr, DO Li, XF AF Zeng, Xiping Tao, Wei-Kuo Zhang, Minghua Hou, Arthur Y. Xie, Shaocheng Lang, Stephen Li, Xiaowen Starr, David O'C Li, Xiaofan TI A contribution by ice nuclei to global warming SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE TRMM; cloud-resolving model ID RESOLVING MODEL SIMULATIONS; CLOUD SYSTEMS; NUCLEATION PROCESSES; PROFILING ALGORITHM; CONVECTIVE CLOUD; WATER-VAPOR; MICROPHYSICS; PRECIPITATION; RADIATION; DYNAMICS AB Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, ten years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a cloud-resolving model to generate long-term cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the top of the atmosphere from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic CO(2). It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g. the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and can then be compared with observations. A general match in geographic and seasonal variations between the inferred and observed warming suggests that IN may have contributed positively to global warming over the past decades, especially in middle and high latitudes. Copyright (C) 2009 Royal Meteorological Society C1 [Zeng, Xiping; Tao, Wei-Kuo; Hou, Arthur Y.; Lang, Stephen; Li, Xiaowen; Starr, David O'C] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Zeng, Xiping; Li, Xiaowen] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, New York, NY USA. [Xie, Shaocheng] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. [Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Li, Xiaofan] NOAA, Natl Environm Satellite Data & Informat Serv, Camp Springs, MD USA. RP Zeng, XP (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, C423,Bldg 33,Mail Code 613-1, Greenbelt, MD 20771 USA. EM zeng@agnes.gsfc.nasa.gov RI Li, Xiaofan/F-5605-2010; Hou, Arthur/D-8578-2012; Xie, Shaocheng/D-2207-2013; Li, Xiaofan/G-2094-2014 OI Xie, Shaocheng/0000-0001-8931-5145; FU NASA Headquarters Atmospheric Dynamics and Thermodynamics Program; NASA Tropical Rainfall Measuring Mission (TRMM); Office of Science (BER); US Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Interagency Agreement [DE-AI02-04ER63755]; NASA; DOE Atmospheric Radiation Measurement Program; University of California Lawrence Livermore National Laboratory [W-7405-Eng-48] FX The authors acknowledge the NASA Ames Research Center and the NASA Goddard Space Flight Center for the enormous computer time used in this research. They greatly thank Drs. Richard Johnson and Paul Ciesielski for providing the large-scale forcing data derived from NAME, TOGA-COARE and SCSMEX/SESA. Special thanks are extended to Drs. Joanne Simpson, Warren Wiscombe and three anonymous reviewers for their kind comments and suggestions. NR 72 TC 21 Z9 26 U1 0 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JUL PY 2009 VL 135 IS 643 BP 1614 EP 1629 DI 10.1002/qj.449 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 506MI UT WOS:000270778500017 ER PT J AU Bandstra, ER Thompson, RW Nelson, GA Willey, JS Judex, S Cairns, MA Benton, ER Vazquez, ME Carson, JA Bateman, TA AF Bandstra, Eric R. Thompson, Raymond W. Nelson, Gregory A. Willey, Jeffrey S. Judex, Stefan Cairns, Mark A. Benton, Eric R. Vazquez, Marcelo E. Carson, James A. Bateman, Ted A. TI Musculoskeletal Changes in Mice from 20-50 cGy of Simulated Galactic Cosmic Rays SO RADIATION RESEARCH LA English DT Article ID DIGITORUM LONGUS MUSCLE; HIGH-DOSE IRRADIATION; SKELETAL-MUSCLE; IN-VIVO; CONTRACTILE PROPERTIES; GAMMA-IRRADIATION; BODY IRRADIATION; TRABECULAR BONE; SOLEUS MUSCLE; RADIATION AB On a mission to Mars, astronauts will be exposed to a complex mix of radiation from galactic cosmic rays. We have demonstrated a loss of bone mass from exposure to types of radiation relevant to space flight at doses of 1 and 2 Gy. The effects of space radiation on skeletal muscle, however, have not been investigated. To evaluate the effect of simulated galactic cosmic radiation on muscle fiber area and bone volume, we examined mice from a study in which brains were exposed to collimated iron-ion radiation. The collimator transmitted a complex mix of charged secondary particles to bone and muscle tissue that represented a low-fidelity simulation of the space radiation environment. Measured radiation doses of uncollimated secondary particles were 0.47 Gy at the proximal humerus, 0.24-0.31 Gy at the midbelly of the triceps brachii, and 0.18 Gy at the proximal tibia. Compared to nonirradiated controls, the proximal humerus of irradiated mice had a lower trabecular bone volume fraction, lower trabecular thickness, greater cortical porosity, and lower polar moment of inertia. The tibia showed no differences in any bone parameter. The triceps brachii of irradiated mice had fewer small-diameter fibers and more fibers containing central nuclei. These results demonstrate a negative effect on the skeletal muscle and bone systems of simulated galactic cosmic rays at a dose and LET range relevant to a Mars exploration mission. The presence of evidence of muscle remodeling highlights the need for further study. (C) 2009 by Radiation Research Society C1 [Bateman, Ted A.] Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29634 USA. [Thompson, Raymond W.; Cairns, Mark A.; Carson, James A.] Univ S Carolina, Dept Exercise Sci, Columbia, SC 29208 USA. [Nelson, Gregory A.] Loma Linda Univ & Med Ctr, Dept Radiat Med, Loma Linda, CA USA. [Judex, Stefan] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Benton, Eric R.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Vazquez, Marcelo E.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Bateman, TA (reprint author), Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29634 USA. EM bateman@clemson.edu OI Carson, James/0000-0003-3733-8796 FU NIAMS NIH HHS [R21 AR054889] NR 45 TC 15 Z9 15 U1 1 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2009 VL 172 IS 1 BP 21 EP 29 DI 10.1667/RR1509.1 PG 9 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 465WF UT WOS:000267619200003 PM 19580504 ER PT J AU Weber, TJ Opresko, LK Waisman, DM Newton, GJ Quesenberry, RD Bollinger, N Moore, RJ Smith, RD AF Weber, Thomas J. Opresko, Lee K. Waisman, David M. Newton, Greg J. Quesenberry, Ryan D. Bollinger, Nikki Moore, Ronald J. Smith, Richard D. TI Regulation of the Low-Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2 SO RADIATION RESEARCH LA English DT Article ID GAMMA-IRRADIATION; CELL-SURFACE; PLASMINOGEN-ACTIVATOR; MASS-SPECTROMETRY; INDUCED APOPTOSIS; II EXPRESSION; FACTOR-BETA; JB6 CELLS; IN-VITRO; PROTEIN AB Here we identify the release of annexin A2 into the culture medium in response to low-dose X-radiation exposure and establish functional linkages to an established paracrine factor-mediated anchorage-independent growth response. Using a standard bicameral coculture model, we demonstrate that annexin A2 is secreted into the medium by irradiated cells (seeded in upper chamber) and is capable of binding to nonirradiated neighboring cells (seeded in lower chamber). The paracrine factor-mediated anchorage-independent growth response to low-dose X irradiation is reduced when irradiated annexin A2-silenced (shRNA) JB6 cells are co-cultured with nonirradiated cells relative to co-culture with irradiated annexin A2-competent vector control cells. Consistent with this observation, purified bovine annexin A2 tetramer induces anchorage-independent growth. These observations suggest that annexin A2 regulates, in part, the radiation paracrine factor-specific anchorage-independent growth response in JB6 cells. (C) 2009 by Radiation Research Society C1 [Weber, Thomas J.; Opresko, Lee K.; Newton, Greg J.; Quesenberry, Ryan D.; Bollinger, Nikki; Moore, Ronald J.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Waisman, David M.] Dalhousie Univ, Dept Biochem & Mol Biol, Halifax, NS, Canada. RP Weber, TJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, 790 6th St,P7-56, Richland, WA 99354 USA. EM Thomas.Weber@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Waisman, David/0000-0002-5097-9662 NR 55 TC 7 Z9 7 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2009 VL 172 IS 1 BP 96 EP 105 DI 10.1667/RR1220.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 465WF UT WOS:000267619200010 PM 19580511 ER PT J AU Blakely, E Evans, T Oleinick, N Sedwick, D AF Blakely, Eleanor Evans, Thomas Oleinick, Nancy Sedwick, David TI Helen Harrington Evans (1924-2007) IN MEMORIAM SO RADIATION RESEARCH LA English DT Biographical-Item C1 [Blakely, Eleanor] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Oleinick, Nancy; Sedwick, David] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Blakely, E (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2009 VL 172 IS 1 BP 139 EP 140 DI 10.1667/RRXX13.1 PG 2 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 465WF UT WOS:000267619200015 ER PT J AU Davis, A Gift, JS Woodall, GM Narotsky, MG Foureman, GL AF Davis, Allen Gift, Jeff S. Woodall, George M. Narotsky, Michael G. Foureman, Gary L. TI The role of developmental toxicity studies in acute exposure assessments: Analysis of single-day vs. multiple-day exposure regimens SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Developmental toxicity; Butylbenzyl phthalate; Tributyltin; Benchmark dose; Risk assessment; Acute exposure; Single-day; Multiple-day ID BUTYL BENZYL PHTHALATE; TRIBUTYLTIN CHLORIDE; RATS; ENVIRONMENT; TERATOLOGY; SEDIMENT; ESTERS AB In accordance with most toxicity guidelines, developmental studies typically utilize repeated exposures, usually throughout gestation or during organogenesis in particular. However, it is known that developmental toxicity may occur in response to single exposures, especially during specific windows of susceptibility. An overview of the available literature gave sufficient evidence that for many agents, the same endpoints observed in repeated dose, multiple-day studies were also observed in single-day exposures, thus indicating the relevance of developmental toxicity to health assessments of acute exposures. Further, results of benchmark dose modeling of developmental endpoints indicated that for embryo lethality, single-day exposures required a two- to fourfold higher dose than the multiple-day exposures to produce the same level of response. For fused sternebrae, exposures on specific days produced equivalent levels of response at doses that were more similar to those utilized in the repeated exposures. Appreciable differences in biological half-life (and corresponding dose metrics) as well as specific windows of susceptibility may partially explain the observed multiple- vs. single-day exposure dose-response relationships. Our results highlight the need of a more thorough evaluation of outcomes from repeated dose developmental toxicity studies in regards to their importance to chronic and acute risk assessments. Published by Elsevier Inc. C1 [Davis, Allen; Gift, Jeff S.; Woodall, George M.; Foureman, Gary L.] US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA. [Davis, Allen] Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA. [Narotsky, Michael G.] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. RP Davis, A (reprint author), US EPA, Natl Ctr Environm Assessment, 109 TW Alexander Dr,Mail Code B243-01, Res Triangle Pk, NC 27711 USA. EM davis.allen@epa.gov RI Woodall, George/M-5658-2014 FU NCEA-CRISE Interagency Agreement; U.S. Environmental Protection Agency FX Partial funding was provided by the NCEA-CRISE Interagency Agreement. The information in this document has been subjected to review by the National Center for Environmental Assessment, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The research presented in this document was funded in part by the U.S. Environmental Protection Agency. NR 27 TC 3 Z9 3 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD JUL PY 2009 VL 54 IS 2 BP 134 EP 142 DI 10.1016/j.yrtph.2009.03.006 PG 9 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 457NW UT WOS:000266939500005 PM 19306903 ER PT J AU Gibson, JM AF Gibson, J. M. TI The birth of the blues: how physics underlies music SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID SCALES AB Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Gibson, JM (reprint author), Argonne Natl Lab, 9700 Cass Ave, Argonne, IL 60439 USA. EM jmgibson@aps.anl.gov RI Gibson, Murray/E-5855-2013 OI Gibson, Murray/0000-0002-0807-6224 FU Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Department of Energy under Contract DE-AC02-06CH11357. Thanks to Faye Gibson for the graphics. NR 22 TC 0 Z9 0 U1 3 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 J9 REP PROG PHYS JI Rep. Prog. Phys. PD JUL PY 2009 VL 72 IS 7 AR 076001 DI 10.1088/0034-4885/72/7/076001 PG 17 WC Physics, Multidisciplinary SC Physics GA 464NG UT WOS:000267511200001 ER PT J AU Cook, AR Shen, YZ AF Cook, Andrew R. Shen, Yuzhen TI Optical fiber-based single-shot picosecond transient absorption spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE CCD image sensors; high-speed optical techniques; measurement by laser beam; optical fibres; optical parametric amplifiers; radiolysis ID TIME-RESOLVED SPECTROSCOPY; STREAK CAMERA; REAL-TIME; ELECTRON AB A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving similar to 15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device (CCD) detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse radiolysis, the prototype bundle provides the ability to collect data with a time resolution limited only by the electron pulse width of 7-10 ps, over a total single-shot time window of similar to 1.5 ns. Tunable probe light is obtained from a titanium-sapphire laser and an optical parametric amplifier. Corrections are made to remove the fiber-to-fiber variations in signal magnitude due to the spatial overlap of the electron beam and probe image. High quality data can be collected over most of the sensitivity range of the CCD camera detectors. The single-shot instrument is valuable for measurement of samples that are only available in very limited quantities, are too viscous to flow, or are rigid. It is therefore excellent in applications, such as picosecond pulse radiolysis, where the thousands of pulses per kinetic trace typical in classical pump-probe experiments can damage the sample before useful results could be obtained. C1 [Cook, Andrew R.; Shen, Yuzhen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Cook, AR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM acook@bnl.gov OI Cook, Andrew/0000-0001-6633-3447 FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-98-CH10886] FX The authors would like to thank, in particular, Dr. John Miller for helpful discussions during the development of this experiment, as well as Dr. Jim Wishart, Dr. Sean McIlroy, Dr. Thomas Y. Tsang, and Dr. Peter Z. Takacs. This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, under Contract No. DE-AC02-98-CH10886. NR 24 TC 10 Z9 10 U1 3 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2009 VL 80 IS 7 AR 073106 DI 10.1063/1.3156048 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 478VD UT WOS:000268615700007 PM 19655942 ER PT J AU Hong, XG Newville, M Prakapenka, VB Rivers, ML Sutton, SR AF Hong, Xinguo Newville, Matthew Prakapenka, Vitali B. Rivers, Mark L. Sutton, Stephen R. TI High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE germanium compounds; glass; high-pressure effects; polymorphism; X-ray absorption spectra ID NEAR-EDGE STRUCTURE; FINE-STRUCTURE; SYNCHROTRON-RADIATION; HIGH-TEMPERATURE; DISPERSIVE MODE; COORDINATION CHANGES; EXAFS MEASUREMENTS; XANES SPECTRA; LIQUID; DIFFRACTION AB We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/- 3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures. C1 [Hong, Xinguo] Cornell Univ, Cornell High Energy Synchrotron Source, MacCHESS, Ithaca, NY 14853 USA. [Newville, Matthew; Prakapenka, Vitali B.; Rivers, Mark L.; Sutton, Stephen R.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Rivers, Mark L.; Sutton, Stephen R.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. RP Hong, XG (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM xhong@bnl.gov FU NSF-EAR [0229987]; NSF [EAR-0622171, DMR-0225180]; DOE [DE-FG02-94ER14466]; National Institutes of Health through its National Center for Research Resources [RR-01646] FX We would like to thank M. Szebenyi, X. M. Yu, and G. Shen for their support to this research. This work was supported by the NSF-EAR under Grant No. 0229987. The GSECARS sector was supported by the NSF (Earth Sciences Instrumentation and Facilities Program, EAR-0622171) and DOE (Geoscience Program, DE-FG02-94ER14466). Macromolecular Diffraction at CHESS (MacCHESS) facility was supported by Award No. RR-01646 from the National Institutes of Health through its National Center for Research Resources. CHESS is supported by NSF award DMR-0225180. NR 81 TC 20 Z9 20 U1 4 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2009 VL 80 IS 7 AR 073908 DI 10.1063/1.3186736 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 478VD UT WOS:000268615700031 PM 19655966 ER PT J AU Esarey, E Schroeder, CB Leemans, WP AF Esarey, E. Schroeder, C. B. Leemans, W. P. TI Physics of laser-driven plasma-based electron accelerators SO REVIEWS OF MODERN PHYSICS LA English DT Review DE electron accelerators; electron beams; optical self-focusing; particle beam bunching; plasma accelerators; plasma instability; plasma light propagation; plasma nonlinear waves; stimulated Raman scattering; wakefield accelerators ID HIGH-INTENSITY LASER; BEAT-WAVE ACCELERATOR; WAKE-FIELD ACCELERATION; STIMULATED COMPTON-SCATTERING; GAS-FILLED CAPILLARY; FEMTOSECOND X-RAYS; SHORT-PULSE LASERS; UNDERDENSE PLASMAS; WAKEFIELD ACCELERATOR; RAMAN-SCATTERING AB Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized. C1 [Esarey, E.; Schroeder, C. B.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Esarey, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. OI Schroeder, Carl/0000-0002-9610-0166 FU U.S. Department Energy [DE-AC0205CH11231] FX The authors acknowledge many contributions from past and present members of the LOASIS Program at Lawrence Berkeley National Laboratory, in particular, C. Geddes, E. Cormier-Michel, B. Shadwick, and Cs. Toth, and many insightful conversations with the researchers in the plasma-based accelerator community. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department Energy under Contract No. DE-AC0205CH11231. NR 306 TC 766 Z9 778 U1 36 U2 228 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL-SEP PY 2009 VL 81 IS 3 BP 1229 EP 1285 DI 10.1103/RevModPhys.81.1229 PG 57 WC Physics, Multidisciplinary SC Physics GA 500DW UT WOS:000270279000011 ER PT J AU Dhawan, A Gerhold, M Madison, A Fowlkes, J Russell, PE Vo-Dinh, T Leonard, DN AF Dhawan, Anuj Gerhold, Michael Madison, Andrew Fowlkes, Jason Russell, Phillip E. Vo-Dinh, Tuan Leonard, Donovan N. TI Fabrication of Nanodot Plasmonic Waveguide Structures Using FIB Milling and Electron Beam-Induced Deposition SO SCANNING LA English DT Article DE electron beam-induced deposition; surface plasmons; nanostructures; localized surface plasmon resonance; plasmonic waveguide ID PLATINUM; NANOSTRUCTURES; PT(PF3)(4); COPPER AB Fabrication of metallic Au nanopillars and linear arrays of Au-containing nanodots for plasmonic waveguides is reported in this article by two different processes-focused ion beam (FIB) milling of deposited thin films and electron beam-induced deposition (EBID) of metallic nanostructures from an organometallic precursor gas. Finite difference time domain (FDTD) modeling of electromagnetic fields around metallic nanostructures was used to predict the optimal size and spacing between nanostructures useful for plasmonic waveguides. Subsequently, a multi-step FIB fabrication method was developed for production of metallic nanorods and nanopillars of the size and geometry suggested by the results of the FDTD simulations. Nanostructure fabrication was carried out on planar substrates including Au-coated glass, quartz, and mica slides as well as cleaved 4-mode optical fibers. In the second fabrication process, EBID was utilized for the development of similar nanostructures on planar Indium Tin Oxide and Titanium-coated glass substrates. Each method allows formation of nanostructures such that the plasmon resonances associated with the nanostructures could be engineered and precisely controlled by controlling the nanostructure size and shape. Linear arrays of low aspect ratio nanodot structures ranging in diameter between 50-70 nm were fabricated using EBID. Preliminary dark field optical microscopy demonstrates differences in the plasmonic response of the fabricated structures. SCANNING 31: 139-146, 2009. (c) 2009 Wiley Periodicals, Inc. C1 [Dhawan, Anuj; Gerhold, Michael; Vo-Dinh, Tuan] Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA. [Dhawan, Anuj; Gerhold, Michael] USA, Res Off, Durham, NC USA. [Madison, Andrew; Russell, Phillip E.; Leonard, Donovan N.] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA. [Fowlkes, Jason] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Dhawan, A (reprint author), Duke Univ, Fitzpatrick Inst Photon, 3527 FCIEMAS, Durham, NC 27708 USA. EM anuj.dhawan@duke.edu FU U.S. Army Research Office; National Research Council (NRC); Scientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy FX Contract grant sponsors: U.S. Army Research Office and the National Research Council (NRC); Scientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy. NR 26 TC 17 Z9 17 U1 1 U2 32 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0161-0457 J9 SCANNING JI Scanning PD JUL-AUG PY 2009 VL 31 IS 4 BP 139 EP 146 DI 10.1002/sca.20152 PG 8 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 513RK UT WOS:000271340700001 PM 19670460 ER PT J AU Fu, EG Carter, J Martin, M Xie, G Zhang, X Wang, YQ Littleton, R Shao, L AF Fu, E. G. Carter, Jesse Martin, Michael Xie, Guoqiang Zhang, X. Wang, Y. Q. Littleton, Rick Shao, Lin TI Electron irradiation-induced structural transformation in metallic glasses SO SCRIPTA MATERIALIA LA English DT Article DE Metallic glasses; Recrystallization ID AMORPHOUS-ALLOYS; MECHANICAL-PROPERTIES; CRYSTALLIZATION; NANOCRYSTALLIZATION; SIMULATION; DIFFUSION; SI AB Microstructural evolution of Zr(55)Cu(30)Al(10)Ni(5) and Cu(50)Zr(45)Ti(5) metallic glasses under 200 keV electron irradiation has been studied in situ by transmission electron microscopy. Zr(55)Cu(30)Al(10)Ni(5), which has a wider supercooled liquid region, is found to be stable under electron irradiation and no crystallization is observed up to an irradiation fluence of 8.7 x 10(26) electrons m(-2). In contrast, nanometer size crystalline Cu(10)Zr(7) phases are formed in Cu(50)Zr(45)Ti(5) under electron irradiation. The partial crystallization is attributed to irradiation enhanced atomic mobility. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Carter, Jesse; Martin, Michael; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Fu, E. G.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Xie, Guoqiang] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Littleton, Rick] Texas A&M Univ, Microscopy & Imaging Ctr, College Stn, TX 77843 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, 129 Zachry,TAMU 3133, College Stn, TX 77843 USA. EM lshao@mailaps.org RI Xie, Guoqiang/A-8619-2011; Zhang, Xinghang/H-6764-2013 OI Zhang, Xinghang/0000-0002-8380-8667 FU DOE [DE-FC07-05ID14657]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was financially supported by the University Embryonic Technologies Program from Siemens Power Generation Emerging Technologies. L.S. acknowledges the support from the NRC Early Career Development Grant and the access to the user facilities at DOE-Center for Integrated Nanotechnologies (CINT). X.Z. acknowledges the support by DOE under grant number DE-FC07-05ID14657. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 29 TC 10 Z9 10 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2009 VL 61 IS 1 BP 40 EP 43 DI 10.1016/j.scriptamat.2009.03.001 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 447XK UT WOS:000266225100011 ER PT J AU Vo, NQ Averback, RS Bellon, P Caro, A AF Vo, Nhon Q. Averback, Robert S. Bellon, Pascal Caro, Alfredo TI Yield strength in nanocrystalline Cu during high strain rate deformation SO SCRIPTA MATERIALIA LA English DT Article DE Yield strength; Nanocrystalline; Molecular dynamics; Hall-Petch ID MOLECULAR-DYNAMICS; NANOPHASE METALS; MECHANISMS; BEHAVIOR; COPPER AB Molecular dynamics simulations are used to study the yield strength of thermally annealed nanocrystalline Cu samples. For strain rates of 1 x 10(10) and 1 x 10(9) s(-1), the observed yield strength scales with the fractional number of grain boundary (GB) atoms. This observation suggests a new scaling behavior for the onset of plasticity in nanocrystalline materials, controlled not by the grain size alone, but by a combination of both grain size and degree of GB relaxation, as measured by the GB volume. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Vo, Nhon Q.; Averback, Robert S.; Bellon, Pascal] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Caro, Alfredo] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Vo, NQ (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM nhonvo2@illinois.edu; averback@illinois.edu RI Vo, Nhon/E-4599-2010 NR 17 TC 22 Z9 23 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2009 VL 61 IS 1 BP 76 EP 79 DI 10.1016/j.scriptamat.2009.03.003 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 447XK UT WOS:000266225100020 ER PT J AU Clarke, AJ Speer, JG Matlock, DK Rizzo, FC Edmonds, DV Santofimia, MJ AF Clarke, A. J. Speer, J. G. Matlock, D. K. Rizzo, F. C. Edmonds, D. V. Santofimia, M. J. TI Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning SO SCRIPTA MATERIALIA LA English DT Article DE Quenching; Partitioning; Kinetics; Austenite; Martensite ID MARTENSITE-TRANSFORMATION; STEELS; BAINITE; FERRITE; PLATES AB The quenching and partitioning (Q&P) process is a two-stage heat-treatment procedure proposed for producing steel microstructures that contain carbon-enriched retained austenite. In Q&P processing, austenite stabilization is accomplished by carbon partitioning from supersaturated martensite. A quench temperature selection methodology was developed to predict an optimum process quench temperature; extension of this methodology to include carbon partitioning kinetics is developed here. The final austenite fraction is less sensitive to quench temperature than previously predicted, in agreement with experimental results. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Clarke, A. J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Speer, J. G.; Matlock, D. K.] Colorado Sch Mines, Adv Steel Proc & Prod Res Ctr, Golden, CO 80401 USA. [Rizzo, F. C.] Pontificia Univ Catolica Rio de Janeiro, Dept Mat Sci & Met, BR-22543900 Rio De Janeiro, Brazil. [Edmonds, D. V.] Univ Leeds, Sch Proc Environm & Mat Engn, Leeds LS2 9JT, W Yorkshire, England. [Santofimia, M. J.] Mat Innovat Inst M2i, NL-2628 CD Delft, Netherlands. [Santofimia, M. J.] Delft Univ Technol, Dept Mat Sci & Engn, NL-2628 CD Delft, Netherlands. RP Clarke, AJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G770, Los Alamos, NM 87545 USA. EM aclarke@lanl.gov RI Santofimia, Maria Jesus/C-3979-2013 OI Santofimia, Maria Jesus/0000-0002-1628-7611 FU Advanced Steel Processing and Products Research Center; National Science Foundation Industry/University Cooperative Research Center; NSF [0303510]; CNPq (Brazil); EPSRC (UK); U.S. Department of Energy [DE-AC52-06NA25396] FX The authors gratefully acknowledge the support of the Advanced Steel Processing and Products Research Center, a National Science Foundation Industry/University Cooperative Research Center, at the Colorado School of Mines and the Inter-American Materials Collaboration Program. Funding is acknowledged from NSF award No. 0303510 (US), CNPq (Brazil) and EPSRC (UK). AJC acknowledges support from the U.S. Department of Energy (contract DE-AC52-06NA25396) during the preparation of this manuscript. The authors also thank POSCO for providing the experimental material. Technical assistance and helpful discussions provided by K.D. Clarke, E.J. Pavlina and E. De Moor are also greatly acknowledged; the helpfulness of A.R. Martins is also greatly appreciated. M.K. Miller and K.F. Russell at Oak Ridge National Laboratory and K. He at the University of Leeds are also thanked for their help with related studies. NR 17 TC 49 Z9 61 U1 4 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2009 VL 61 IS 2 BP 149 EP 152 DI 10.1016/j.scriptamat.2009.03.021 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 456JF UT WOS:000266840800011 ER PT J AU Mintairov, AM Sun, K Merz, JL Yuen, H Bank, S Wistey, M Harris, JS Peake, G Egorov, A Ustinov, V Kudrawiec, R Misiewicz, J AF Mintairov, A. M. Sun, K. Merz, J. L. Yuen, H. Bank, S. Wistey, M. Harris, J. S. Peake, G. Egorov, A. Ustinov, V. Kudrawiec, R. Misiewicz, J. TI Atomic arrangement and emission properties of GaAs(In, Sb)N quantum wells SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID MOLECULAR-BEAM EPITAXY; OPTICAL-PROPERTIES; DILUTE NITRIDES; LASER-DIODES; ALLOYS; PHOTOLUMINESCENCE; NITROGEN; LOCALIZATION; SHIFT; SEMICONDUCTORS AB Fine structure related to different types of atomic arrangements (short-range order, phase separation and quantum dots) was observed in high-spatial-resolution low-temperature photoluminescence (PL) spectra of GaAsInN, GaAsSbN and GaAsInSbN quantum wells (QWs) containing similar to 1.5% N and emitting at 1.2-1.3 mu m. Using photoreflectance and temperature-dependent PL spectroscopy, we measured the activation energies and band-tail width of localized states, associated with different atomic arrangements, to be 5-66 meV. We found that the emission intensity in these GaAs(In, Sb) N QWs weakly depends on carrier localization and that it is limited at cryogenic temperatures by exciton scattering by N interstitials, while at room temperature it is limited by an intrinsic non-radiative recombination channel having activation energy of similar to 60 meV and capture time between 0.01 and 1 ps. C1 [Mintairov, A. M.; Sun, K.; Merz, J. L.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Yuen, H.; Bank, S.; Wistey, M.; Harris, J. S.] Stanford Univ, Stanford, CA 94305 USA. [Peake, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Egorov, A.; Ustinov, V.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Kudrawiec, R.; Misiewicz, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland. RP Mintairov, AM (reprint author), Univ Notre Dame, Notre Dame, IN 46556 USA. RI Ustinov, Viktor/J-3545-2013; Egorov, Anton/B-1267-2014 OI Egorov, Anton/0000-0002-0789-4241 FU NSF [DMR06-06406] FX We wish to thank Dmitri Yakovlev for providing timeresolved measurements, Thomas Kosel for transmission electron microscopy measurements and Alexander Efros for helpful discussions. This work has been partially supported by a subaward under NSF/DMR06-06406. NR 45 TC 15 Z9 15 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD JUL PY 2009 VL 24 IS 7 AR 075013 DI 10.1088/0268-1242/24/7/075013 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 463BG UT WOS:000267402800014 ER PT J AU Wang, R Tsow, F Zhang, XZ Peng, JH Forzani, ES Chen, YS Crittenden, JC Destaillats, H Tao, NJ AF Wang, Rui Tsow, Francis Zhang, Xuezhi Peng, Jhih-Hong Forzani, Erica S. Chen, Yongsheng Crittenden, John C. Destaillats, Hugo Tao, Nongjian TI Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor SO SENSORS LA English DT Article DE ozone; environmental; epidemiological; population; real-time; selective; sensitive; sensor; wearable; wireless ID POLLUTANTS; EXPOSURE; CHILDREN AB A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of similar to 2 pg/mm(2) and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring. C1 [Wang, Rui; Tsow, Francis; Forzani, Erica S.; Tao, Nongjian] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. [Wang, Rui; Tsow, Francis; Peng, Jhih-Hong; Forzani, Erica S.; Tao, Nongjian] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. [Zhang, Xuezhi; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. [Destaillats, Hugo] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. RP Chen, YS (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM yongsheng.chen@asu.edu; HDestaillats@asu.edu; njtao@asu.edu RI Destaillats, Hugo/B-7936-2013; Zhang, Xuezhi/D-2579-2012; Chen, Yongsheng/B-1541-2010 OI Zhang, Xuezhi/0000-0001-7751-1173; FU NIH/NIEHS [U01 ES016064-02] FX The authors thank project scientists Brenda Korte and Larry Nagahara at NIH, and others at Arizona State University for their help in providing useful discussions among other supports. This work was supported by the NIH/NIEHS under Grant U01 ES016064-02. NR 17 TC 7 Z9 7 U1 2 U2 27 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUL PY 2009 VL 9 IS 7 BP 5655 EP 5663 DI 10.3390/s90705655 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 474XB UT WOS:000268317000035 PM 22346720 ER PT J AU Mukundan, H Anderson, AS Grace, WK Grace, KM Hartman, N Martinez, JS Swanson, BI AF Mukundan, Harshini Anderson, Aaron S. Grace, W. Kevin Grace, Karen M. Hartman, Nile Martinez, Jennifer S. Swanson, Basil I. TI Waveguide-Based Biosensors for Pathogen Detection SO SENSORS LA English DT Review DE planar optical waveguides; biosensors; thin film; fluorescence; immunoassay; pathogen sensor ID SELF-ASSEMBLED MONOLAYERS; TRANSFER RADICAL POLYMERIZATION; POLY(ETHYLENE GLYCOL) FILMS; SILICON-BASED MICRODEVICES; HISTIDINE-TAGGED PROTEINS; SUPPORTED LIPID-BILAYERS; OPTICAL BIOSENSOR; OLIGO(ETHYLENE GLYCOL); NUCLEIC-ACIDS; THIN-FILMS AB Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave-the evanescent field-whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, "dirty" biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning's EPIC (R) (O) over cap, SRU Biosystems' BIND (TM), Zeptosense (R), etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing. C1 [Mukundan, Harshini; Anderson, Aaron S.; Grace, W. Kevin; Swanson, Basil I.] Los Alamos Natl Lab, Phys Chem & Appl Spect Chem Div, Los Alamos, NM 87545 USA. RP Swanson, BI (reprint author), Los Alamos Natl Lab, Phys Chem & Appl Spect Chem Div, POB 1663, Los Alamos, NM 87545 USA. EM basil@lanl.gov NR 74 TC 64 Z9 64 U1 4 U2 92 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUL PY 2009 VL 9 IS 7 BP 5783 EP 5809 DI 10.3390/s90705783 PG 27 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 474XB UT WOS:000268317000042 PM 22346727 ER PT J AU Roach, D AF Roach, D. TI Real time crack detection using mountable comparative vacuum monitoring sensors SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE Structural health monitoring (SHM); comparative vacuum monitorings; crack detection; probability of detection AB Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Roach, D (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dproach@sandia.gov NR 9 TC 33 Z9 42 U1 4 U2 10 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 317 EP 328 PG 12 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100002 ER PT J AU Fasel, TR Kennel, MB Todd, MD Clayton, EH Park, G AF Fasel, T. R. Kennel, M. B. Todd, M. D. Clayton, E. H. Park, G. TI Damage state evaluation of experimental and simulated bolted joints using chaotic ultrasonic waves SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE structural health monitoring; bolted joint; active sensing; guided waves; AR model; information theory ID SHEAR ADHESIVE JOINTS; LAMB WAVE; COHESIVE PROPERTIES; ACTIVE SENSORS; GUIDED-WAVES; PRELOAD LOSS; INTERROGATION; CONNECTIONS; PROPAGATION; SIGNALS AB Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine a physical experiment on a single-bolt aluminum lap joint as well as a three-dimensional physics-based simulation designed to model the behavior of guided ultrasonic waves through a similarly configured joint. A multiple bolt frame structure is also experimentally examined. In the physical experiment each signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the lap joint and sensed using an equivalent MFC patch on the opposite side of the joint. The model applies the waveform via direct nodal displacement and 'senses' the resulting displacement using an average of the nodal strain over an area equivalent to the MFC patch. A novel statistical classification feature isdeveloped from information theory concepts of cross-prediction and interdependence. This damage detection algorithm is used to evaluate multiple damage levels and locations. C1 [Fasel, T. R.; Kennel, M. B.; Todd, M. D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Clayton, E. H.] Quartus Engn, San Diego, CA 92131 USA. [Park, G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Todd, MD (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM mdt@ucsd.edu FU National Defense Science and Engineering Graduate Research Fellowship; UCSD/Los Alamos National Laboratory Engineering Institute for Structural Health Monitoring, Damage Prognosis, and Validated Simulations; Air Force Office of Scientific Research; Air Force Research Laboratory/Missile Defense Agency Joint SBIR FX The first author acknowledges partial support through a National Defense Science and Engineering Graduate Research Fellowship. This work was also partially supported through the UCSD/Los Alamos National Laboratory Engineering Institute for Structural Health Monitoring, Damage Prognosis, and Validated Simulations, the Air Force Office of Scientific Research (Dr. Victor Giurglutiu, Program Manager) and an Air Force Research Laboratory/Missile Defense Agency Joint SBIR contract (Mr. Brandon Arritt, Program Manager). NR 34 TC 10 Z9 10 U1 0 U2 9 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 329 EP 344 PG 16 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100003 ER PT J AU Overly, TG Jacobs, LD Farinholt, KM Park, G Farrar, CR Flynn, EB Todd, MD AF Overly, T. G. Jacobs, L. D. Farinholt, K. M. Park, G. Farrar, C. R. Flynn, E. B. Todd, M. D. TI Developing an integrated software solution for active-sensing SHM SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE structural health monitoring; active-sensing; damage detection; damage diagnostics ID DAMAGE IDENTIFICATION; LAMB WAVES; VALIDATION; SENSORS AB A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software. C1 [Overly, T. G.; Jacobs, L. D.; Farinholt, K. M.; Park, G.; Farrar, C. R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Flynn, E. B.; Todd, M. D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, POB 1663, Los Alamos, NM 87545 USA. EM gpark@lanl.gov RI Farrar, Charles/C-6954-2012 NR 21 TC 2 Z9 2 U1 0 U2 1 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 457 EP 468 PG 12 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100012 ER PT J AU Sheyka, M El-Kady, I Su, MF Taha, MMR AF Sheyka, M. El-Kady, I. Su, M. F. Taha, M. M. Reda TI Photonic sensors for micro-damage detection: A proof of concept using numerical simulation SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE structural health monitoring (SHM); micro-damage detection; photonic crystal (PhC); finite difference time domain (FDTD) ID CRYSTALS; SYSTEMS; MATRIX AB Damage detection has been proven to be a challenging task in structural health monitoring (SHM) due to the fact that damage cannot be measured. The difficulty associated with damage detection is related to electing a feature that is sensitive to damage occurrence and evolution. This difficulty increases as the damage size decreases limiting the ability to detect damage occurrence at the micron and submicron length scale. Damage detection at this length scale is of interest for sensitive structures such as aircrafts and nuclear facilities. In this paper a new photonic sensor based on photonic crystal (PhC) technology that can be synthesized at the nanoscale is introduced. PhCs are synthetic materials that are capable of controlling light propagation by creating a photonic bandgap where light is forbidden to propagate. The interesting feature of PhC is that its photonic signature is strongly tied to its microstructure periodicity. This study demonstrates that when a PhC sensor adhered to polymer substrate experiences micron or submicron damage, it will experience changes in its microstructural periodicity thereby creating a photonic signature that can be related to damage severity. This concept is validated here using a three-dimensional integrated numerical simulation. C1 [Sheyka, M.; Taha, M. M. Reda] Univ New Mexico, Dept Civil Eng, Albuquerque, NM 87131 USA. [El-Kady, I.; Su, M. F.] Univ New Mexico, Dept Elect Eng, Albuquerque, NM 87131 USA. [El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87151 USA. RP Taha, MMR (reprint author), Univ New Mexico, Dept Civil Eng, Albuquerque, NM 87131 USA. EM mrtaha@unm.edu RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Sandia Corporation; Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Defense Threat Reduction Agency (DTRA) FX Research described in this work has been funded by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors acknowledge this support. Funding to the first author by Defense Threat Reduction Agency (DTRA) through UNM strategic partnership program is strongly appreciated. NR 29 TC 0 Z9 0 U1 0 U2 0 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 483 EP 494 PG 12 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100014 ER PT J AU Malard, LM Mafra, DL Doorn, SK Pimenta, MA AF Malard, L. M. Mafra, D. L. Doorn, S. K. Pimenta, M. A. TI Resonance Raman scattering in graphene: Probing phonons and electrons SO SOLID STATE COMMUNICATIONS LA English DT Article; Proceedings Paper CT Graphene Week 2008 International Conference CY 2008 CL Trieste, ITALY SP ICTP, UNESCO DE Nanostructures; Electronic band structure; Optical properties ID BAND-STRUCTURE; BERRYS PHASE; GRAPHITE; SPECTROSCOPY; CARBON; FILMS; LAYER AB In this work, by using different laser excitation energies, we obtain important electronic and vibrational properties of mono- and bi-layergraphene. For monolayergraphene, we determine the phonon dispersion near the Dirac point for the in-plane transverse optical (iTO) mode. This result is compared with recent calculations that take into account electron-electron correlations for the phonon dispersion around the K point. For bilayer graphene we extract the Slonczewski-Weiss-McClure band parameters and compare them with recent infrared measurements. We also analyze the second-order feature in the Raman spectrum for trilayer graphene. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Malard, L. M.; Mafra, D. L.; Pimenta, M. A.] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. [Doorn, S. K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Malard, LM (reprint author), Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. EM lmalard@fisica.ufmg.br RI Pimenta, Marcos/F-2122-2010; Mafra, Daniela/F-7442-2012; Malard, Leandro/B-2292-2013; Medicina Molecular, Inct/J-8737-2013; OI , /0000-0003-2015-611X NR 31 TC 23 Z9 23 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD JUL PY 2009 VL 149 IS 27-28 BP 1136 EP 1139 DI 10.1016/j.ssc.2009.02.045 PG 4 WC Physics, Condensed Matter SC Physics GA 465HV UT WOS:000267574300019 ER PT J AU Ferguson, JW Dudley, TJ Sears, KC McIntyre, SM Gordon, MS Houk, RS AF Ferguson, Jill Wisnewski Dudley, Timothy J. Sears, Kyle C. McIntyre, Sally M. Gordon, Mark S. Houk, R. S. TI Polyatomic ions in inductively coupled plasma-mass spectrometry Part II: Origins of N2H+ and HxCO+ ions using experimental measurements combined with calculated energies and structures SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Polyatomic ions; Dissociation reaction; ICP-MS; N2H+; H2CO+ ID HIGH-RESOLUTION; ICP-MS; SPECTRAL INTERFERENCES; ELECTRON-TEMPERATURE; PROBE MEASUREMENTS; KINETIC ENERGIES; GAS-DYNAMICS; EXTRACTION; INTERFACE; DENSITY AB Several polyatomic ions in inductively coupled plasma-mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (T-gas) value. In our opinion, the resulting T-gas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N2H+ to N-2(+) leads to a calculated T-gas of 4550 to 4900 K, depending on the computational data used. The COH+ to CO+ system yields a similar temperature, which is not surprising considering the similar energies and structures of COH+ and N2H+. The dissociation of H2CO+ to HCO+ leads to a much lower T-gas (<1000 to 2000 K). Finally. the dissociation of H2COH+ to HCOH+ generates a T-gas value between those from the other HxCO+ ions studied here. All of these measured T-gas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO+ and COH+, and H2CO+ and HCOH+, which have virtually the same m/z values and need to be considered in the interpretation of results. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ferguson, Jill Wisnewski; Dudley, Timothy J.; Sears, Kyle C.; McIntyre, Sally M.; Gordon, Mark S.; Houk, R. S.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM rshouk@iastate.edu RI Ferguson, Jill/B-6910-2008; OI Dudley, Timothy/0000-0002-6635-7956 FU National Science Foundation [CHE-0309381]; Velmer A. and Mary K. Fassel Fellowship; Conoco Phillips Fellowship; U.S. Department of Energy, Office of Nuclear Nonproliferation [NA-22]; Office of Basic Energy Sciences; U.S. Department of Energy by Iowa State University [W-7405-Eng-82] FX This research was supported by the National Science Foundation (award no. CHE-0309381) through the Institute for Physical Research and Technology at ISU. JWF was also supported by the Velmer A. and Mary K. Fassel Fellowship, and SMM is supported by the Conoco Phillips Fellowship. The nebulizers used were provided by Elemental Scientific Inc. The ICP-MS device was obtained with funds provided by the U.S. Department of Energy, Office of Nuclear Nonproliferation (NA-22) and the Office of Basic Energy Sciences. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. W-7405-Eng-82. NR 39 TC 10 Z9 10 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD JUL PY 2009 VL 64 IS 7 BP 690 EP 696 DI 10.1016/j.sab.2009.06.008 PG 7 WC Spectroscopy SC Spectroscopy GA 489JA UT WOS:000269415200009 ER PT J AU Keller, CF AF Keller, Charles F. TI Global warming: a review of this mostly settled issue SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Review DE Climate; Climate change; Global warming; Climate modeling; Atmosphere; Ocean; Greenhouse gases; Carbon dioxide; Solar activity; Environment; Ecosystems ID TROPOSPHERIC TEMPERATURE TRENDS; LOW-CLOUD PROPERTIES; 11-YEAR SOLAR-CYCLE; SEA-LEVEL RISE; CLIMATE-CHANGE; EARTHS CLIMATE; BOREHOLE TEMPERATURES; LAST MILLENNIUM; AIR-TEMPERATURE; TIME-SERIES AB Global warming and attendant climate change have been controversial for at least a decade. This is largely because of its societal implications since the science is largely straightforward. With the recent publication of the Fourth Assessment Report of the United Nations' Intergovernmental Panel on Climate Change (Working Group 1) there has been renewed interest and controversy about how certain the scientific community is of its conclusions: that humans are influencing the climate and that global temperatures will continue to rise rapidly in this century. This review attempts to update what is known and in particular what advances have been made in the past 5 years or so. It does not attempt to be comprehensive. Rather it focuses on the most controversial issues, which are actually few in number. Is the surface temperature record accurate or is it biased by heat from cities, etc.? Is that record significantly different from past warmings such as the Medieval Warming Period? Are human greenhouse gases changing the climate more than the sun? Can we model climate and predict its future, or is it just too complex and chaotic? Are there any other changes in climate other than warming, and can they be attributed to the warming?. C1 [Keller, Charles F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Keller, Charles F.] Univ Calif, Inst Geophys & Planetary Phys, Los Alamos Branch, Los Alamos, NM USA. RP Keller, CF (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM alfanso@cybermesa.com FU UCSD FX The author is indebted to The University of California's Institute of Geophysics and Planetary Physics-branches at Los Alamos National Laboratory and at Scripps Institute of Oceanography, UCSD for supporting the author as a Cecil Greene Scholar during which time much of this information was brought together. He is also indebted to the following for helpful discussions and references suggested or supplied: Richard Alley, Tim Barnett, Jim Hansen, Phil Jones, David Keeling, Judith Lean, Mike MacCracken, Joel Norris, Michael Mann, Roger Pielke, V. Ramanathan, Ben Santer, Drew Schindell, Gavin Schmidt, Jeff Severinghaus, Tom Shankland, Richard Somerville, Brian Tinsley, Kevin Trenberth, Warren White, Tom Wigley, Guang Zhang, and my long suffering but thoughtful critic, Yvonne Keller. In addition there have been a rather larger number of people who have both helped and encouraged me to take on this project. To them I am also thankful. NR 135 TC 23 Z9 24 U1 6 U2 61 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 EI 1436-3259 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD JUL PY 2009 VL 23 IS 5 BP 643 EP 676 DI 10.1007/s00477-008-0253-3 PG 34 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 450IR UT WOS:000266394700010 ER PT J AU Weickum, G Eldred, MS Maute, K AF Weickum, G. Eldred, M. S. Maute, K. TI A multi-point reduced-order modeling approach of transient structural dynamics with application to robust design optimization SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION LA English DT Article DE Galerkin projection; Proper orthogonal decomposition; Design sensitivities; Stochastic analysis; Shape optimization ID PRECONDITIONED CONJUGATE-GRADIENT; PARTIAL-DIFFERENTIAL-EQUATIONS; COMBINED APPROXIMATIONS; SHAPE OPTIMIZATION; SENSITIVITY CALCULATIONS; COMPUTATIONAL ASPECTS; REANALYSIS APPROACH; REDUCTION; SYSTEMS; DERIVATIVES AB Predicting the transient response of structures by high-fidelity simulation models within design optimization and uncertainty quantification often leads to unacceptable computational cost. This paper presents a reduced-order modeling (ROM) framework for approximating the transient response of linear elastic structures over a range of design and random parameters. The full-order response is projected onto a lower-dimensional basis spanned by modes computed from a proper orthogonal decomposition (POD) of full-order model simulation results at multiple calibration points. The basis is further enriched by gradients of the POD modes with respect to the design/random parameters. A truncation strategy is proposed to compensate for the increase in basis vectors due to the proposed enrichment strategies. The accuracy, efficiency and robustness of the proposed framework are studied with a two-dimensional model problem. The numerical results suggest that the proposed ROM approach is well suited for large parameter changes and that the number of basis vectors needs to be increased only linearly with the number of design and random parameters to maintain a particular ROM performance. The application of the proposed ROM approach to robust shape optimization demonstrates significant savings in computational cost over using full-order models. C1 [Weickum, G.; Maute, K.] Univ Colorado, Ctr Aerosp Struct, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Eldred, M. S.] Sandia Natl Labs, Optimizat & Uncertainty Estimat Dept, Albuquerque, NM 87185 USA. RP Weickum, G (reprint author), Univ Colorado, Ctr Aerosp Struct, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. EM weickum@colorado.edu; maute@colorado.edu FU National Science Foundation [DMI-0300539, DMI-0348759]; Sandia Computer Science Research Institute (CSRI) FX The first and third authors acknowledge the support by the National Science Foundation under grants DMI-0300539 and DMI-0348759. All authors thank the Sandia Computer Science Research Institute (CSRI) for support of this collaborative work between Sandia National Laboratories and the University of Colorado. The opinions and conclusions presented are those of the authors and do not necessarily reflect the views of the sponsoring organizations. NR 74 TC 8 Z9 8 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1615-147X J9 STRUCT MULTIDISCIP O JI Struct. Multidiscip. Optim. PD JUL PY 2009 VL 38 IS 6 BP 599 EP 611 DI 10.1007/s00158-008-0309-5 PG 13 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mechanics SC Computer Science; Engineering; Mechanics GA 448IE UT WOS:000266255500005 ER PT J AU Brambilla, R Grilli, F Nguyen, DN Martini, L Sirois, F AF Brambilla, Roberto Grilli, Francesco Nguyen, Doan N. Martini, Luciano Sirois, Frederic TI AC losses in thin superconductors: the integral equation method applied to stacks and windings SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID TEMPERATURE; CONDUCTORS; TAPES; FILMS AB In this paper we present a method for computing transport current ac losses in interacting thin superconductors. The method solves the integral equations for the sheet current density distribution and is specifically developed for those configurations where the symmetry of the current density distributions allows writing the equation in a self-consistent form, without the need for using an auxiliary 2D model to describe the interaction between superconducting tapes. This results in very short computation times and therefore the model can be very useful for optimizing the design of superconducting devices. The method has been tested for different cases of practical applications and the ac loss results have been compared with those obtained with analytical models and with experiments. C1 [Brambilla, Roberto; Martini, Luciano] CESI Ric SpA, I-20134 Milan, Italy. [Grilli, Francesco; Sirois, Frederic] Ecole Polytech, Montreal, PQ H3C 3A7, Canada. [Grilli, Francesco] Forschungszentrum Karlsruhe, Inst Tech Phys, D-76344 Eggenstein Leopoldshafen, Germany. [Nguyen, Doan N.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Brambilla, R (reprint author), CESI Ric SpA, Via Rubattino 54, I-20134 Milan, Italy. EM francesco.grilli@itp.fzk.de RI Sirois, Frederic/F-3736-2010; Nguyen, Doan/F-3148-2010 OI Sirois, Frederic/0000-0003-0372-9449; FU Research Fund for the Italian Electrical System; Mathematics of Information Technology and Complex System (MITACS) network (Canada); US DOE Office of Electricity Delivery and Energy Reliability FX This work was supported partly by the Research Fund for the Italian Electrical System under the Contract Agreement between CESI Ricerca and the Ministry of Economic Development-General Directorate for Energy and Mining Resources stipulated on June 21, 2007 in compliance with the Decree no. 73 of June 18, 2007; partly by the Mathematics of Information Technology and Complex System (MITACS) network (Canada); and partly by the US DOE Office of Electricity Delivery and Energy Reliability. The authors would like to acknowledge Dr Oscar De Feo (Solianis Monitoring AG) for his help on mathematical techniques and their implementation. NR 23 TC 24 Z9 24 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2009 VL 22 IS 7 AR 075018 DI 10.1088/0953-2048/22/7/075018 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 461SL UT WOS:000267291300019 ER PT J AU Xiao, W Baskes, MI Cho, K AF Xiao, Wei Baskes, M. I. Cho, Kyeongjae TI MEAM study of carbon atom interaction with Ni nano particle SO SURFACE SCIENCE LA English DT Article DE Modified embedded atom method (MEAM); Carbon nanotube growth; Catalyst; Ni-C alloy; Adsorption energy ID CHEMICAL-VAPOR-DEPOSITION; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; LARGE-SCALE; NANOTUBES; GROWTH; NANOPARTICLES; HYDROCARBONS; IMPURITIES; NUCLEATION AB Carbon, Ni, and C-Ni alloy modified embedded atom method (MEAM) potentials were developed to study the initial process of carbon nanotube growth on Ni catalyst particles. The MEAM potentials were used to study the atomistic interaction between a carbon atom and a fcc Ni nano particle, both on the particle surfaces and inside the Ni nano particles. The result shows that surface carbon atom is more stable than those in the bulk and sub-surface interstitial positions. Carbon atoms are expected to diffuse from the bulk to the surface, and the single walled and double-walled carbon nanotubes would be more favorable to form on Ni nano particle catalyst. The carbon and Ni nano particle interaction calculation shows that the corner and the edge of the particle are the energetically more favorable sites for the carbon adatom. The carbon nanotube may grow from the corner and edge of the particle. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cho, Kyeongjae] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. [Cho, Kyeongjae] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. [Xiao, Wei] Wuhan Univ, Dept Phys, Wuhan 430072, Hubei, Peoples R China. [Baskes, M. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cho, K (reprint author), Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. EM kjcho@utdallas.edu FU Stanford University Global Climate and Energy Project (GCEP); Korea Institute for Advanced Study (KIAS); Chinese National Science Foundation [10704058] FX This work was supported by Stanford University Global Climate and Energy Project (GCEP) during 2005-2006. Korea Institute for Advanced Study (KIAS) has supported the meeting to prepare the manuscript. Partial work is done in Wuhan University and supported by Chinese National Science Foundation project 10704058. NR 40 TC 18 Z9 20 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP 1985 EP 1998 DI 10.1016/j.susc.2009.03.009 PG 14 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500004 ER PT J AU Dhaka, RS D'Souza, SW Maniraj, M Chakrabarti, A Schlagel, DL Lograsso, TA Barman, SR AF Dhaka, R. S. D'Souza, S. W. Maniraj, M. Chakrabarti, Aparna Schlagel, D. L. Lograsso, T. A. Barman, S. R. TI Photoemission study of the (100) surface of Ni2MnGa and Mn2NiGa ferromagnetic shape memory alloys SO SURFACE SCIENCE LA English DT Article DE Ferromagnetic shape memory alloy; Photoemission spectroscopy; Low energy electron diffraction ID NI-MN-GA; RAY PHOTOELECTRON-SPECTROSCOPY; FIELD-INDUCED STRAIN; SINGLE-CRYSTALS; PHASE; TRANSITION AB The (1 0 0) surface of Ni2MnGa and Mn2NiGa ferromagnetic shape memory alloys have been studied by photoelectron spectroscopy and low energy electron diffraction (LEED). It is shown that by sputtering and annealing, it is possible to obtain a clean, ordered and stoichiometric surface that shows a four-fold 1 x 1 LEED pattern at room temperature. For both Ni2MnGa and Mn2NiGa, the surface becomes Ni-rich and Mn deficient after sputtering. However, as the annealing temperature is increased Mn segregates to the surface and at sufficiently high annealing temperature the Mn deficiency caused by sputtering is compensated. The (1 0 0) surface of Ni2MnGa is found to have Mn-Ga termination. The valence band spectra of both Ni2MnGa and Mn2NiGa exhibits modifications with surface composition. For the stoichiometric surface, the origin of the spectral shape of the valence band is explained by calculations based on first principles density functional theory. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dhaka, R. S.; D'Souza, S. W.; Maniraj, M.; Barman, S. R.] UGC DAE Consortium Sci Res, Surface Phys Lab, Indore 452001, Madhya Pradesh, India. [Chakrabarti, Aparna] Raja Ramanna Ctr Adv Technol, Indore 452013, Madhya Pradesh, India. [Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Barman, SR (reprint author), UGC DAE Consortium Sci Res, Surface Phys Lab, Khandwa Rd, Indore 452001, Madhya Pradesh, India. EM barmansr@gmail.com RI Roy Barman, Sudipta/B-2026-2010; Chakrabarti, Aparna/B-2227-2010; Dhaka, Rajendra/F-9018-2011; Dhaka, Rajendra/C-2486-2013; M, MANIRAJ/C-2684-2011 FU D.S.T-Max-Planck Partner Group; Ramanna Fellowship Research Grant; US Department of Energy Contract [DE-AC02-07CH11358] FX P. Chaddah, V.C. Sahni, K. Horn, A. Gupta, and S.M. Oak are thanked for support and encouragement. Fundings from D.S.T-Max-Planck Partner Group project and Ramanna Fellowship Research Grant are acknowledged. DLS and TAL acknowledge the support of the US Department of Energy Contract No. DE-AC02-07CH11358. NR 41 TC 19 Z9 19 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP 1999 EP 2004 DI 10.1016/j.susc.2009.03.010 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500005 ER PT J AU Mugarza, A Shimizu, TK Ogletree, DF Salmeron, M AF Mugarza, Aitor Shimizu, Tomoko K. Ogletree, D. Frank Salmeron, Miquel TI Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes SO SURFACE SCIENCE LA English DT Article DE Scanning tunneling microscopy ID SCANNING TUNNELING MICROSCOPE; DISSOCIATIVE ADSORPTION; SINGLE-MOLECULE; SURFACE; MANIPULATION; DIFFUSION; STABILITY; COVERAGE; PD(111); CU(110) AB Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H2O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H2O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV. Published by Elsevier B.V. C1 [Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mugarza, Aitor] CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Spain. [Shimizu, Tomoko K.; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 67-2206, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Shimizu, Tomoko/A-6780-2010; mugarza, aitor/B-6871-2012; Ogletree, D Frank/D-9833-2016 OI mugarza, aitor/0000-0002-2698-885X; Ogletree, D Frank/0000-0002-8159-0182 FU US Department of Energy [DE-AC02-05CH11231]; Marie Curie Outgoing International Fellowship [514412] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The work of A.M. was financed by the Marie Curie Outgoing International Fellowship, Project No. 514412. NR 34 TC 13 Z9 13 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP 2030 EP 2036 DI 10.1016/j.susc.2009.03.026 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500009 ER PT J AU Miller, JB Gellman, AJ AF Miller, James B. Gellman, Andrew J. TI Structural evolution of sulfur overlayers on Pd(111) SO SURFACE SCIENCE LA English DT Article DE Palladium; Sulfur; Low energy ion scattering (LEIS) ID ELEVATED-TEMPERATURES; ADSORBATE STRUCTURE; HYDROGEN PERMEANCE; ALLOY MEMBRANES; SURFACE; PALLADIUM; ABSORPTION; ADSORPTION; 1ST-PRINCIPLES; PRESSURES AB Low energy ion scattering spectroscopy (LEISS) has been used to characterize the evolution of ordered structures of S on the Pd(1 1 1) surface during annealing. During exposure of the Pd(1 1 1) surface to 0.7 L H(2)S at 300 K-conditions that produce the S(root 3 x root 3)R30 overlayer-the intensity of the Pd LEIS signal decreases and a feature assigned to adsorbed S appears as the adsorbed layer forms. When the surface is held at 300 K after exposure to H2S is stopped, the LEIS Pd intensity partially recovers and the S signal weakens, presumably as surface S atoms assume their equilibrium positions in the S(root 3 x root 3)R30 overlayer. Subsequent annealing of the S(root 3 x root 3)R30 structure at 700 K causes it to convert into a S(root 7 x root 7)R19 overlayer, whose LEIS spectrum is identical to that of clean Pd(1 1 1). The absence of LEIS evidence for S atoms at the exposed surface of the S(root 7 x root 7)R79 overlayer is at odds with published models of a mixed Pd-S top layer. Despite the similarity of the LEIS spectra of Pd(1 1 1) and Pd(1 1 1)-S(root 7 x root 7)R19, their activities for dissociative hydrogen adsorption are very different-the former readily adsorbs hydrogen at 100 K, while the latter does not-suggesting that S exerts its influence on surface chemistry from subsurface locations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Miller, James B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Miller, JB (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM jbmiller@andrew.cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU National Energy Technology Laboratory [DE-AC2604NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in Computational and Basic Sciences under the RDS contract DE-AC2604NT41817. NR 25 TC 8 Z9 8 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP L82 EP L85 DI 10.1016/j.susc.2009.04.012 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500003 ER PT J AU Zhu, ZT Zhang, LF Smith, S Fong, H Sun, YG Gosztola, D AF Zhu, Zhengtao Zhang, Lifeng Smith, Steve Fong, Hao Sun, Yugang Gosztola, David TI Fluorescence studies of electrospun MEH-PPV/PEO nanofibers SO SYNTHETIC METALS LA English DT Article DE MEH-PPV; Fluorescence; Electrospinning; Nanofibers ID SCANNING OPTICAL MICROSCOPY; FIELD-EFFECT TRANSISTORS; LIGHT-EMITTING-DIODES; CONJUGATED POLYMER; INTERCHAIN INTERACTIONS; FILM MORPHOLOGY; PPV FILMS; FIBERS; BLENDS; PHOTOLUMINESCENCE AB We report a study of the fluorescence properties of the conjugated polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and polyethylene oxide (PEO) nanofibers. MEH-PPV/PEO nanofibers with different compositions have been fabricated by the electrospinning technique. The fluorescence spectra of the nanofibers show that the emission shoulder at similar to 630 nm blue-shifts similar to 45 nm, whereas the main emission peak around 590 nm blue-shifts similar to 15 nm with decreasing concentration of MEH-PPV in the nanofiber. in addition, confocal microscopic studies of a single MEH-PPV/PEO electrospun nanofiber indicate that the fluorescence spectra of the nanofiber do not show any polarization dependence. The results are discussed in terms of the aggregation of MEH-PPV in an inert matrix. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhu, Zhengtao; Zhang, Lifeng; Fong, Hao] S Dakota Sch Mines & Technol, Dept Chem, Rapid City, SD 57701 USA. [Smith, Steve] S Dakota Sch Mines & Technol, Nanosci & Nanoenigneering Program, Rapid City, SD 57701 USA. [Sun, Yugang; Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Zhu, ZT (reprint author), S Dakota Sch Mines & Technol, Dept Chem, 501 E St Joseph St, Rapid City, SD 57701 USA. EM Zhengtao.Zhu@sdsmt.edu; Hao.Fong@sdsmt.edu RI Zhu, Zhengtao/A-1633-2009; Gosztola, David/D-9320-2011; Sun, Yugang /A-3683-2010 OI Zhu, Zhengtao/0000-0002-9311-2110; Gosztola, David/0000-0003-2674-1379; Sun, Yugang /0000-0001-6351-6977 FU American Chemical Society Petroleum Research Fund [PRF 46993-GB10]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by American Chemical Society Petroleum Research Fund (Grant No. PRF 46993-GB10). Use of Center for Nanoscale Materials at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors are grateful to the "Nanoscience and Nanoengineering Ph.D. program" at the South Dakota School of Mines and Technology (SDSM&T). NR 34 TC 23 Z9 24 U1 5 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD JUL PY 2009 VL 159 IS 14 BP 1454 EP 1459 DI 10.1016/j.synthmet.2009.03.025 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 479GQ UT WOS:000268648100012 ER PT J AU Graven, HD Stephens, BB Guilderson, TP Campos, TL Schimel, DS Campbell, JE Keeling, RF AF Graven, Heather D. Stephens, Britton B. Guilderson, Thomas P. Campos, Teresa L. Schimel, David S. Campbell, J. Elliott Keeling, Ralph F. TI Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2 : CO ratios from airborne measurements of Delta C-14, CO2 and CO above Colorado, USA SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID ATMOSPHERIC TRANSPORT MODELS; CARBON-DIOXIDE; ANTHROPOGENIC CO2; COMPLEX TERRAIN; C-14; EXCHANGE; INVERSIONS; (CO2)-C-14; EMISSIONS; EUROPE AB Measurements of Delta C-14 in atmospheric CO2 are an effective method of separating CO2 additions from fossil fuel and biospheric sources or sinks of CO2. We illustrate this technique with vertical profiles of CO2 and Delta C-14 analysed in whole air flask samples collected above Colorado, USA in May and July 2004. Comparison of lower tropospheric composition to cleaner air at higher altitudes (>5 km) revealed considerable additions from respiration in the morning in both urban and rural locations. Afternoon concentrations were mainly governed by fossil fuel emissions and boundary layer depth, also showing net biospheric CO2 uptake in some cases. We estimate local industrial CO2: CO emission ratios using in situ measurements of CO concentration. Ratios are found to vary by 100% and average 57 mole CO2:1 mole CO, higher than expected from emissions inventories. Uncertainty in CO2 from different sources was +/- 1.1 to +/- 4.1 ppm for addition or uptake of -4.6 to 55.8 ppm, limited by Delta 14C measurement precision and uncertainty in background Delta C-14 and CO2 levels. C1 [Graven, Heather D.; Keeling, Ralph F.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Stephens, Britton B.; Campos, Teresa L.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Schimel, David S.] Natl Ecol Observ Network, Boulder, CO USA. [Campbell, J. Elliott] Univ Calif Merced, Coll Engn, Merced, CA USA. RP Graven, HD (reprint author), ETH, Inst Biogeochem & Pollutant Dynam, Zurich, Switzerland. EM heather.graven@env.ethz.ch RI Campbell, Elliott/B-8025-2008; Stephens, Britton/B-7962-2008; OI Stephens, Britton/0000-0002-1966-6182; Graven, Heather/0000-0003-3934-2502 FU National Science Foundation Award [EAR-0321918]; National Science Foundation; UC Office of the President; NASA ESS Fellowship; US Department of Energy by the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; NOAA's Office of Global Programs [NA05OAR4311166]; LLNL's Directed Research and Development programme [06-ERD-031]; US National Science Foundation [ATM-0632770]; Office of Science (BER); US Department of Energy [DE-FG02-04ER63898, -07ER64632] FX The Carbon in the Mountains experiment was funded by National Science Foundation Award EAR-0321918. The National Center for Atmospheric Research is sponsored by the National Science Foundation. H. D. G. received support from the UC Office of the President and a NASA ESS Fellowship. A portion of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Radiocarbon analyses were funded by grants from NOAA's Office of Global Programs (NA05OAR4311166) and LLNL's Directed Research and Development programme (06-ERD-031) to T. P. G. Alane Bollenbacher conducted CO2 and stable isotope analyses. Guy Emanuele assisted with CO2 extractions. Design and construction of the flask sampling apparatus was aided by NCAR Research Aviation Facility staff, David Moss, Bill Paplawsky and Adam Cox. Design and analysis work at the Scripps Institution of Oceanography was supported by the US National Science Foundation grants ATM-0632770 and the Office of Science (BER), US Department of Energy, through Contracts No. DE-FG02-04ER63898 and -07ER64632. This research was also presented in H.D.G.'s doctoral dissertation at the University of California, San Diego, USA, 2008. NR 46 TC 24 Z9 26 U1 0 U2 20 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD JUL PY 2009 VL 61 IS 3 BP 536 EP 546 DI 10.1111/j.1600-0889.2009.00421.x PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 454JM UT WOS:000266678200003 ER PT J AU Veltman, K McKone, TE Huijbregts, MAJ Hendriks, AJ AF Veltman, Karin McKone, Thomas E. Huijbregts, Mark A. J. Hendriks, A. Jan TI Bioaccumulation potential of air contaminants: Combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Bioaccumulation; Volatile organic compounds; Mammals; Human; Mechanistic model ID ECOLOGICAL RISK-ASSESSMENT; LIQUID/AIR PARTITION-COEFFICIENTS; PERSISTENT ORGANIC POLLUTANTS; GAS UPTAKE; INHALATION PHARMACOKINETICS; B6C3F1 MICE; IN-VITRO; ORGANOPHOSPHOROUS PESTICIDES; ENVIRONMENTAL CONTAMINANTS; PHYSIOLOGICAL-PARAMETERS AB In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult Mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity for lipid components ill tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (K-ba) and tissue-air partition coefficients (K-ta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 68% of the modeled inhalation and exhalation rate constants are within a factor of 2.1 from independent empirical values for humans, rats and mice, and 87% of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals. (c) 2009 Elsevier Inc. All rights reserved. C1 [Veltman, Karin; Huijbregts, Mark A. J.; Hendriks, A. Jan] Radboud Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands. [McKone, Thomas E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Veltman, K (reprint author), Norwegian Univ Sci & Technol NTNU, Ind Ecol Programme, Hogskoleringen 5, NO-7491 Trondheim, Norway. EM karin.veltman@ntnu.no RI Huijbregts, Mark/B-8971-2011; Hendriks, Aalbert Jan/C-6767-2013 NR 93 TC 9 Z9 10 U1 2 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUL 1 PY 2009 VL 238 IS 1 BP 47 EP 55 DI 10.1016/j.taap.2009.04.012 PG 9 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 458IF UT WOS:000267009800006 PM 19389415 ER PT J AU Levine, B Nozick, L Jones, D AF Levine, Brian Nozick, Linda Jones, Dean TI Estimating an origin-destination table for US imports of waterborne containerized freight SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE Origin-destination table; Containerized freight; Optimization; Gravity model ID COMMODITY TRANSPORTATION; MODELS AB Containerized freight imports into the US are growing at an average of 10% per year. This traffic is concentrated at a small number of US seaports. It is therefore important to have an accurate understanding of the flow of containers from their origin country through these seaports to their final destination. This paper develops an optimization model to estimate route flows and a corresponding multi-modal origin-destination table for containers by synthesizing data on international trade and railcar movements with a gravity model for the demand of container traffic. This analysis provides insights into the balance of rail and truck inland transportation from each port. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Levine, Brian; Nozick, Linda] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Jones, Dean] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nozick, L (reprint author), Cornell Univ, Sch Civil & Environm Engn, Hollister Hall, Ithaca, NY 14853 USA. EM BL76@cornell.edu; LKN3@cornell.edu; dajones@sandia.gov NR 17 TC 12 Z9 14 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD JUL PY 2009 VL 45 IS 4 BP 611 EP 626 DI 10.1016/j.tre.2008.11.001 PG 16 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA 458MB UT WOS:000267026700009 ER PT J AU Malone, JD Brigantic, R Muller, GA Gadgil, A Delp, W McMahon, BH Lee, R Kulesz, J Mihelic, FM AF Malone, John D. Brigantic, Robert Muller, George A. Gadgil, Ashok Delp, Woody McMahon, Benjamin H. Lee, Russell Kulesz, Jim Mihelic, F. Matthew TI US airport entry screening in response to pandemic influenza: Modeling and analysis SO TRAVEL MEDICINE AND INFECTIOUS DISEASE LA English DT Article DE Pandemic influenza; Airport screening; Influenza transmission AB Background: A stochastic discrete event simulation model was developed to assess the effectiveness of passenger screening for Pandemic Influenza (PI) at U.S. airport foreign entry. Methods: International passengers arriving at 18 U.S. airports from Asia, Europe, South America, and Canada were assigned to one of three states: not infected, infected with PI, infected with other respiratory illness. Passengers passed through layered screening then exited the model. 80% screening effectiveness was assumed for symptomatic passengers; 6% asymptomatic passengers. Results: In the first 100 days of a global pandemic, U.S. airport screening would evaluate over 17 M passengers with 800 K secondary screenings. 11,570 PI infected passengers (majority asymptomatic) would enter the U.S. undetected from all 18 airports. Foreign airport departure screening significantly decreased the false negative (infected/undetected) passengers. U.S. attack rates: no screening (26.9%-30.9%); screening (26.4%-30.6%); however airport screening results in 800 K-1.8 M less U.S. PI cases; 16 K-35 K less deaths (2% fatality rate). Antiviral medications for travel contact prophylaxis (10 contacts/PI passenger) were high - 8.8 M. False positives from all 18 airports: 100-200/day. Conclusions: Foreign shore exit screening greatly reduces numbers of PI infected passengers. U.S. airport screening identifies 50% infected individuals; efficacy is limited by the asymptomatic PI infected. Screening will not significantly delay arrival of PI via international air transport, but will reduce the rate of new US cases and subsequent deaths. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Malone, John D.] Uniformed Serv Univ Hlth Sci, Ctr Disaster & Humanitarian Assistance Med, Bethesda, MD 20814 USA. [Brigantic, Robert; Muller, George A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gadgil, Ashok; Delp, Woody] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McMahon, Benjamin H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lee, Russell; Kulesz, Jim; Mihelic, F. Matthew] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Malone, JD (reprint author), Uniformed Serv Univ Hlth Sci, Ctr Disaster & Humanitarian Assistance Med, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA. EM jdmalone@cdham.org OI Gadgil, Ashok/0000-0002-0357-9455 FU U.S. Department of Homeland Security [52157]; U.S. Department of Energy [DE-GM05-00RLO1831] FX This joint National Laboratory research project was conducted for the U.S. Department of Homeland Security under project number 52157. PNNL is a multi-program National Laboratory operated by Battelle for the U.S. Department of Energy under contract DE-GM05-00RLO1831. The work is the opinion of the authors and not the Department of Homeland Security, Department of Energy, or Department of Defense. NR 22 TC 20 Z9 20 U1 2 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1477-8939 J9 TRAVEL MED INFECT DI JI Travel Med. Infect. Dis. PD JUL PY 2009 VL 7 IS 4 SI SI BP 181 EP 191 DI 10.1016/j.tmaid.2009.02.006 PG 11 WC Public, Environmental & Occupational Health; Infectious Diseases SC Public, Environmental & Occupational Health; Infectious Diseases GA V17ND UT WOS:000207943000002 PM 19717097 ER PT J AU Zhang, B Tong, CF Yin, TM Zhang, XY Zhuge, QQ Huang, MR Wang, MX Wu, RL AF Zhang, Bo Tong, Chunfa Yin, Tongming Zhang, Xinye Zhuge, Qiang Huang, Minren Wang, Mingxiu Wu, Rongling TI Detection of quantitative trait loci influencing growth trajectories of adventitious roots in Populus using functional mapping SO TREE GENETICS & GENOMES LA English DT Article DE Adventitious root; Functional mapping; Legendre polynomial; Populus; QTL ID FRAGMENT LENGTH POLYMORPHISMS; GENETIC-LINKAGE MAPS; RAPD MARKERS; MICROSATELLITE MARKERS; POPLAR POPULUS; MOLECULAR-GENETICS; PLANT BIOLOGY; HYBRID POPLAR; FOREST TREE; NIGRA L. AB The capacity to root from cuttings is a key factor for the mass deployment of superior genotypes in clonal forestry. We studied the genetic basis of rooting capacity by mapping quantitative trait loci (QTLs) that control growth rate and form of root traits in a full-sib family of 93 hybrids derived from an interspecific cross between two Populus species, P. deltoides and P. euramericana. The hybrid family was typed for different marker systems (including SSRs, AFLPs, RAPDs, ISSRs, and SNPs), leading to the construction of two linkage maps based on the female P. deltoides (D map) and male P. euramericana (E map) with a pseudotestcross mapping strategy. The two maps were scanned by functional mapping to detect QTLs that control early growth trajectories of two rooting traits, maximal single-root length and the total number of roots per cutting, measured at five time points in water culture. Of the six QTLs detected for these two growth traits, only one is segregating in P. deltoides with poor rooting capacity, while the other five are segregating in P. euramericana showing good rooting capacity. Tests with functional mapping suggest different developmental patterns of the genetic effects of these root QTLs in time course. Five QTLs were detected to change their effects on root growth trajectories with time, whereas one detected to affect root growth consistently in time course. Knowledge about the genetic and developmental control mechanisms of root QTLs will have important implications for the genetic improvement of vegetative propagation traits in Populus. C1 [Zhang, Bo; Tong, Chunfa; Yin, Tongming; Zhang, Xinye; Zhuge, Qiang; Huang, Minren; Wang, Mingxiu; Wu, Rongling] Nanjing Forestry Univ, Key Lab Forest Genet & Biotechnol, Nanjing 210037, Jiangsu Prov, Peoples R China. [Yin, Tongming; Zhuge, Qiang; Huang, Minren; Wang, Mingxiu] Nanjing Forestry Univ, Jiangsu Key Lab Poplar Germplasm Enhancement & Va, Nanjing 210037, Jiangsu Prov, Peoples R China. [Yin, Tongming] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Wu, Rongling] Univ Florida, Dept Stat, Gainesville, FL 32611 USA. RP Zhang, B (reprint author), Nanjing Forestry Univ, Key Lab Forest Genet & Biotechnol, Longpan Rd 159, Nanjing 210037, Jiangsu Prov, Peoples R China. EM zhangbo@njfu.edu.cn FU National Natural Science Foundation of China [30671705, 30872051]; NSF [0540745] FX We thank the two anonymous reviewers for their constructive comments on this manuscript. This work was partially supported by the National Natural Science Foundation of China (grant nos. 30671705 and 30872051) and NSF grant (no. 0540745). NR 52 TC 19 Z9 22 U1 3 U2 25 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1614-2942 J9 TREE GENET GENOMES JI Tree Genet. Genomes PD JUL PY 2009 VL 5 IS 3 BP 539 EP 552 DI 10.1007/s11295-009-0207-z PG 14 WC Forestry; Genetics & Heredity; Horticulture SC Forestry; Genetics & Heredity; Agriculture GA 451RI UT WOS:000266487200014 ER PT J AU Doktycz, MJ Allison, DP AF Doktycz, Mitchel J. Allison, David P. TI PROCEEDINGS OF THE 10(TH) INTERNATIONAL SCANNING PROBE MICROSCOPY (ISPM) CONFERENCE SEATTLE, WASHINGTON, USA, JUNE 22-24, 2008 Preface SO ULTRAMICROSCOPY LA English DT Editorial Material C1 [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. [Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Allison, DP (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. EM allisond@utk.edu RI Doktycz, Mitchel/A-7499-2011 OI Doktycz, Mitchel/0000-0003-4856-8343 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2009 VL 109 IS 8 BP XI EP XI DI 10.1016/j.ultramic.2009.03.001e PG 1 WC Microscopy SC Microscopy GA 475JL UT WOS:000268354400001 ER PT J AU Jiang, CS Ptak, A Yan, B Moutinho, HR Li, JV Al-Jassim, MM AF Jiang, C. -S. Ptak, A. Yan, B. Moutinho, H. R. Li, J. V. Al-Jassim, M. M. TI Microelectrical characterizations of junctions in solar cell devices by scanning Kelvin probe force microscopy SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 10th International Scanning Probe Microscopy Conference (ISPM) CY JUN 22-24, 2008 CL Seattle, WA DE Atomic force microscopy; Microscopic methods; Specifically for solid interfaces and multilayers ID SILICON; SURFACTANT; BISMUTH; GROWTH AB Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (V(b)) to the device and taking the V(b)-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potential measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n-i-p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance. (c) 2009 Elsevier B.V. All rights reserved. C1 [Jiang, C. -S.; Ptak, A.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yan, B.] United Solar Ovon LLC, Troy, MI 48084 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM chun.sheng.jiang@nrel.gov RI jiang, chun-sheng/F-7839-2012; Li, Jian/B-1627-2016 NR 19 TC 7 Z9 7 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2009 VL 109 IS 8 BP 952 EP 957 DI 10.1016/j.ultramic.2009.03.048 PG 6 WC Microscopy SC Microscopy GA 475JL UT WOS:000268354400019 PM 19409706 ER PT J AU Kocharian, AN Fernando, GW Palandage, K Davenport, JW AF Kocharian, A. N. Fernando, G. W. Palandage, K. Davenport, J. W. TI Spin-charge separation and electron pairing instabilities in Hubbard nanoclusters SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 10th International Scanning Probe Microscopy Conference (ISPM) CY JUN 22-24, 2008 CL Seattle, WA DE High-T(c) superconductivity; Scanning tunneling microscopy; Coherent and incoherent pairing; Charge and spin pseudogaps; Spin-charge separation; Magnetism; Ultra-cold fermions ID PHASE-SEPARATION; GROUND-STATE; MODEL; SUPERCONDUCTIVITY; BI2SR2CACU2O8+DELTA; THERMODYNAMICS; FERROMAGNETISM; PSEUDOGAP; SYSTEMS; FIELD AB Electron charge and spin pairing instabilities in various cluster geometries for attractive and repulsive electrons are studied exactly under variation of interaction strength, electron doping and temperature. The exact diagonalization, level crossing degeneracies, spin-charge separation and separate condensation of paired electron charge and opposite spins yield intriguing insights into the origin of magnetism, ferroelectricity and superconductivity seen in inhomogeneous bulk nanomaterials and various phenomena in cold fermionic atoms in optical lattices. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases found recently in high-T(c) cuprates, manganites and multiferroic nanomaterials probed by scanning tunneling microscopy. Separate condensation of electron charge and spin degrees at various crossover temperatures offers a new route for superconductivity, different from the BCS scenario. The calculated phase diagrams resemble a number of inhomogeneous paired phases, superconductivity, ferromagnetism and ferroelectricity found in Nb and Co nanoparticles. The phase separation and electron pairing, monitored by electron doping and magnetic field surprisingly resemble incoherent electron pairing in the family of doped high-T(c) cuprates, ruthenocuprates, iron pnictides and spontaneous ferroelectricity in multiferroic materials. (C) Published by Elsevier B.V. C1 [Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. [Kocharian, A. N.] Santa Monica Coll, Santa Monica, CA 90405 USA. [Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Kocharian, AN (reprint author), Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. EM armen.kocharian@calstatela.edu NR 44 TC 3 Z9 3 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2009 VL 109 IS 8 BP 1066 EP 1073 DI 10.1016/j.ultramic.2009.03.032 PG 8 WC Microscopy SC Microscopy GA 475JL UT WOS:000268354400038 PM 19398274 ER PT J AU Moberly, JG Borch, T Sani, RK Spycher, NF Sengor, SS Ginn, TR Peyton, BM AF Moberly, James G. Borch, Thomas Sani, Rajesh K. Spycher, Nicolas F. Sengoer, S. Sevinc Ginn, Timothy R. Peyton, Brent M. TI Heavy Metal-Mineral Associations in Coeur d'Alene River Sediments: A Synchrotron-Based Analysis SO WATER AIR AND SOIL POLLUTION LA English DT Article DE Coeur d'Alene; Zinc; Lead; Sediment Characterization; XAS ID TRACE-ELEMENT GEOCHEMISTRY; MINING DISTRICT; PHASE ASSOCIATIONS; SURFACE WATERS; LAKE-SEDIMENTS; IDAHO; USA; ZN; LEAD; REDUCTION AB Nearly a century of mining activities upstream have contaminated Lake Coeur d'Alene and its tributaries with Pb, Zn, and other heavy metals. Heavy metal concentrations in sediments of the Coeur d'Alene watershed have been shown to be inversely proportional to the sediment size fraction; thus, analysis on a very small scale is essential to determine the mobility and stability of heavy metals in this environment. Micron-scale synchrotron-based methods were used to determine the association of heavy metals with solid phases in sediments of the Coeur d'Alene River. Bulk X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy, and synchrotron-based microfocused XRD combined with microfocused X-ray fluorescence mapping indicate the presence of crystalline Pb- and Zn-bearing mineral phases of dundasite [Pb(2)Al(4)(CO(3))(4)(OH)(8)center dot 3H(2)O], coronadite [PbMn(8)O(16)], stolzite [PbWO(4)], mattheddleite [Pb(10)(SiO(4))(3.5)(SO(4))(2)Cl(2)], bindheimite [Pb(2)Sb(2)O(7)], and smithsonite [ZnCO(3)]. Likely phases for Zn and Pb adsorption were ferrihydrite, diaspore [AlO(OH)], manganite [Mn((III))O(OH)], muscovite [KAl(2)(Si(3)Al)O(10)(OH,F)(2)], biotite [K(Fe,Mg)(3)AlSi(3)O(10)(F,OH)(2)], and montmorillonite [Na(0.3)(Al,Mg)(2)Si(4)O(10)(OH)(2)center dot 8H(2)O]. The large predominance of Fe and Mn (hydr)oxides over other sorbent minerals suggests that the metal sorption behavior is dominated by these (hydr)oxide phases. C1 [Moberly, James G.; Sani, Rajesh K.] Washington State Univ, Sch Chem & Bioengn, Pullman, WA 99164 USA. [Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. [Borch, Thomas] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Borch, Thomas] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA. [Spycher, Nicolas F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. [Sengoer, S. Sevinc; Ginn, Timothy R.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Sani, RK (reprint author), S Dakota Sch Mines & Technol, Chem & Biol Engn Dept, 501 E St Joseph St, Rapid City, SD 57701 USA. EM rajesh.sani@sdsmt.edu RI Spycher, Nicolas/E-6899-2010; Borch, Thomas/A-2288-2008; Peyton, Brent/G-5247-2015; OI Borch, Thomas/0000-0002-4251-1613; Peyton, Brent/0000-0003-0033-0651; Moberly, James/0000-0003-0950-0952 FU National Science Foundation [0628258]; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the National Science Foundation under Grant No. 0628258. The support of the WSU Center for Multiphase Environmental Research and the WSU School of Chemical and Bioengineering also contributed significantly to this research. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors greatly appreciate the help of Charles Knaack, Diane Johnson Cornelius, and Rick Conrey at WSU Geo Analytical Laboratories for sample analysis and counsel. Additional thanks to Peg Dirckx, Brandy Stewart, Lisa Kirk, and two anonymous reviewers for greatly improving the quality of the manuscript. NR 70 TC 16 Z9 16 U1 2 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD JUL PY 2009 VL 201 IS 1-4 BP 195 EP 208 DI 10.1007/s11270-008-9937-z PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 457LD UT WOS:000266928600017 ER PT J AU Jonkman, JM AF Jonkman, Jason M. TI Dynamics of Offshore Floating Wind Turbines-Model Development and Verification SO WIND ENERGY LA English DT Article DE offshore wind turbine; floating; model development; model verification; aero-hydro-servo-elastic analysis AB The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modelling the coupled dynamic response of offshore floating wind turbines and the verification of the simulation tool through model-to-model comparisons. The fully coupled time-domain aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address limitations of previous studies and has features required to perform loads analyses for a variety of rotor-nacelle assembly, tower, support platform and mooring system configurations. The developed hydrodynamics module accounts for linear hydrostatic restoring, non-linear viscous drag; the added-mass and damping contributions from linear wave radiation, including free-surface memory effects; and the incident-wove excitation from linear diffraction in regular or irregular seas. The developed mooring line module is quasi-static and accounts for the elastic stretching of an array of homogenous taut or slack catenary lines with seabed interaction. The hydrodynamics module, the moorings module, and the overall simulation tool were tested by comparing to results of other models, including frequency domain models. The favourable results of all the verification exercises provided confidence to perform more thorough analyses. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jonkman, JM (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jason.jonkman@nrel.gov FU US Department of Energy [DE-AC36-99-G010337]; Cooperative Research and Development Agreement [CRD-06-178] FX This work was performed at NREL in support of the US Department of Energy under contract number DE-AC36-99-G010337 and in support of a Cooperative Research and Development Agreement (CRD-06-178) with ITI Energy. NR 37 TC 94 Z9 101 U1 8 U2 52 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD JUL PY 2009 VL 12 IS 5 BP 459 EP 492 DI 10.1002/we.347 PG 34 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 477KQ UT WOS:000268518400004 ER PT J AU Sporty, J Lin, SJ Kato, M Ognibene, T Stewart, B Turteltaub, K Bench, G AF Sporty, Jennifer Lin, Su-Ju Kato, Michiko Ognibene, Ted Stewart, Benjamin Turteltaub, Ken Bench, Graham TI Quantitation of NAD(+) biosynthesis from the salvage pathway in Saccharomyces cerevisiae SO YEAST LA English DT Article DE calorie restriction; NAD; NADH; yeast; NPT1; QPT1; salvage; de novo; AMS ID ACCELERATOR MASS-SPECTROMETRY; NICOTINIC-ACID; CALORIE RESTRICTION; LIFE-SPAN; YEAST; SIR2; IDENTIFICATION; LEVEL; NADH; AMS AB Nicotinamide adenine dinucleotide (NAD(+)) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD(+) decomposition products. NAD(+) biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR). However, the relative contribution of each pathway to NAD(+) biosynthesis under both normal and CR conditions is not known. Here, we have performed lifespan, NAD(+) and NADH (the reduced form of NAD(+)) analyses on BY4742 wild-type, NAD(+) salvage pathway knockout (npt1 Delta) and NAD(+) de novo pathway knockout (qpt1 Delta) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR). We have utilized C-14 labelled nicotinic acid in the culture media combined with HPLC speciation and both UV and 14 C detection to quantitate the total amounts of NAD(+) and NADH and the amounts derived from the salvage pathway. We observed that wild-type and qpt1 Delta yeast exclusively utilized extracellular nicotinic acid for NAD(+) and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions, suggesting that the de novo pathway plays little role if a functional salvage pathway is present. We also observed that NAD(+) concentrations decreased in all three strains under CR. However, unlike the wild-type strain, NADH concentrations did not decrease and NAD(+): NADH ratios did not increase under CR for either knockout strain. Lifespan analyses revealed that CR resulted in a lifespan increase of approximately 25% for the wild-type and qpt1 Delta strains, while no increase in lifespan was observed for the npt1 Delta strain. In combination, these data suggest that having a functional salvage pathway is required for lifespan extension under CR. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Sporty, Jennifer; Ognibene, Ted; Stewart, Benjamin; Turteltaub, Ken; Bench, Graham] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Lin, Su-Ju; Kato, Michiko] Univ Calif Davis, Dept Microbiol, Davis, CA 95616 USA. RP Bench, G (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, L-397,7000 E Ave, Livermore, CA 94551 USA. EM bench1@llnl.gov FU US Department of Energy [DE-AC52-07NA27344]; National Institutes of Health, National Center for Research Resources, Biomedical Technology Program [P41 RR013461] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and was supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (P41 RR013461). NR 20 TC 12 Z9 13 U1 2 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0749-503X J9 YEAST JI Yeast PD JUL PY 2009 VL 26 IS 7 BP 363 EP 369 DI 10.1002/yea.1671 PG 7 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology GA 471DM UT WOS:000268035200001 PM 19399913 ER PT J AU Michalak, W Broitman, E Alvin, MA Gellman, AJ Miller, JB AF Michalak, W. Broitman, E. Alvin, M. A. Gellman, A. J. Miller, J. B. TI Interactions of SO2 and H2S with amorphous carbon films SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Activated carbon; Hydrogen sulfide; Sulfur dioxide; Sulfur adsorption; Thin carbon films ID MAGNETIC DATA-STORAGE; HYDROGEN-SULFIDE; ACTIVATED CARBON; SELECTIVE OXIDATION; ADSORPTION; SULFUR; REGENERATION; OVERCOATS; NITROGEN; CREATION AB There is significant interest in development of efficient catalyst-sorbents for the capture and conversion of sulfur-compounds such as H2S and SO2. In this work, ultra-high vacuum (UHV) techniques have been used to carefully prepare and thoroughly characterize amorphous carbon (a-C) thin films as models of activated carbon sorbents. Films with modified surface chemistries were prepared by oxidation of a sputter deposited carbon film (a-COx) and by sputter depositing carbon in the presence of N-2 (a-CNx) or methane (a-CHx). Temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to study H2S and SO2 surface chemistry on these films and on a highly oriented pyrolytic graphite (HOPG) reference-surface. The modification of the carbons with different heteroatoms influences both the strength of their interactions with SO2 and H2S and their capacities for sulfur-compound adsorption. (C) 2009 Elsevier B.V. All rights reserved. C1 [Michalak, W.; Alvin, M. A.; Gellman, A. J.; Miller, J. B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Michalak, W.; Broitman, E.; Gellman, A. J.; Miller, J. B.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Miller, JB (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM jbmiller@andrew.cmu.edu RI Gellman, Andrew/M-2487-2014; Broitman, Esteban/L-6950-2015 OI Gellman, Andrew/0000-0001-6618-7427; Broitman, Esteban/0000-0003-3277-1945 FU National Energy Technology Laboratory [DE-AC26-04NT41817.606.01.05, DE-AC26-04NT41817.630.01.10] FX The authors thank Radisav Vidic and Jason Monnell at the University of Pittsburgh for helpful discussions.; This technical effort was performed in support of the National Energy Technology Laboratory under the RDS contracts DE-AC26-04NT41817.606.01.05 and DE-AC26-04NT41817.630.01.10. NR 34 TC 6 Z9 6 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JUN 30 PY 2009 VL 362 IS 1-2 BP 8 EP 13 DI 10.1016/j.apcata.2009.04.008 PG 6 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 466QA UT WOS:000267676000002 ER PT J AU Vukovic, G Marinkovic, A Obradovic, M Radmilovic, V Colic, M Aleksic, R Uskokovic, PS AF Vukovic, Goran Marinkovic, Aleksandar Obradovic, Maja Radmilovic, Velimir Colic, Miodrag Aleksic, Radoslav Uskokovic, Petar S. TI Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes SO APPLIED SURFACE SCIENCE LA English DT Article DE Carbon nanotubes; Amino-functionalization; Cyclic voltammetry; Cytotoxicity ID DEOXYRIBONUCLEIC-ACID; COMPOSITE; CELLS; ELECTROCHEMISTRY; BIOCOMPATIBILITY; CHEMISTRY; OXIDATION AB Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N, N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 mu g ml(-1), were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 mu g ml(-1) reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vukovic, Goran; Marinkovic, Aleksandar; Aleksic, Radoslav; Uskokovic, Petar S.] Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia. [Obradovic, Maja] Univ Belgrade, Inst Chem Technol & Met, Belgrade 11001, Serbia. [Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Colic, Miodrag] Mil Med Acad, Inst Med Res, Belgrade 11002, Serbia. RP Uskokovic, PS (reprint author), Univ Belgrade, Fac Technol & Met, Karnegijeva 4, Belgrade 11120, Serbia. EM puskokovic@tmf.bg.ac.rs RI Obradovic, Maja/C-5999-2008 NR 46 TC 73 Z9 74 U1 7 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUN 30 PY 2009 VL 255 IS 18 BP 8067 EP 8075 DI 10.1016/j.apsusc.2009.05.016 PG 9 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 463YG UT WOS:000267469500039 ER PT J AU Jaisi, DP Dong, HL Plymale, AE Fredrickson, JK Zachara, JM Heald, S Liu, CX AF Jaisi, Deb P. Dong, Hailiang Plymale, Andrew E. Fredrickson, James K. Zachara, John M. Heald, Steve Liu, Chongxuan TI Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite SO CHEMICAL GEOLOGY LA English DT Article DE Iron; Microbial; Nontronite; Reduction; Reoxidation; Technetium ID RAY-ABSORPTION SPECTROSCOPY; SOLID-WATER INTERFACE; MICROBIAL REDUCTION; SHEWANELLA-PUTREFACIENS; DISSIMILATORY REDUCTION; REOXIDATION BEHAVIOR; BACTERIAL REDUCTION; STRUCTURAL FE(III); KINETIC-ANALYSIS; BIOGENIC FE(II) AB Tc-99 is formed mostly during nuclear reactions and is released into the environment during weapons testing and inadvertent waste disposal. The long half-life, high environmental mobility (as Tc(VII)O-4(-)) and its possible uptake into the food chain cause Tc-99 to be a significant environmental contaminant. In this study, we evaluated the role of Fe(II) in biologically reduced clay mineral, nontronite (NAu-2), in reducing Tc(VII) O-4(-) to poorly soluble Tc(IV) species as a function of pH and Fe(II) concentration. The rate of Tc(VII) reduction by Fe(II) in NAu-2 was higher at neutral pH (pH 7.0) than at acidic and basic pHs when Fe(II) concentration was low (<1 mmol/g). The effect of pH, however. was insignificant at higher Fe(II) concentrations. The reduction of Tc(VII) by Fe(II) associated with NAu-2 was also studied in the presence of common subsurface oxidants including iron and manganese oxides, nitrate, and oxygen, to evaluate the effect of these oxidants on the enhancement and inhibition of Tc(VII) reduction, and reoxidation of Tc(IV). Addition of iron oxides (goethite and hematite) to the Tc(VII)-NAu-2 system, where Tc(VII) reduction was ongoing, enhanced reduction of Tc(VII), apparently as a result of re-distribution of reactive Fe(II) from NAu-2 to more reactive goethite/hematite surfaces. Addition of manganese oxides stopped further Tc(VII) reduction, and in case of K+-birnessite, it reoxidized previously reduced Tc(IV). Nitrate neither enhanced reduction of Tc(VII) nor promoted reoxidation of Tc(IV). Approximately 11% of Tc(IV) was oxidized by oxygen. The rate and extent of Tc(IV) reoxidation was found to strongly depend on the nature of the oxidants and concentration of Fe (II). When the same oxidants were added to aged Tc reduction products (mainly NAu-2 and TcO2 center dot nH(2)O), the extent of Tc(IV) reoxidation decreased significantly relative to fresh Tc(IV) products. Increasing NAu-2 concentration also resulted in the decreased extent of Tc(IV) reoxidation. The results were attributed to the effect of NAu-2 aggregation that effectively retained Tc(IV) in the solid and decreased its vulnerability to reoxidation. Overall, our results implied that bioreduced clay minerals could play an important role in reducing Tc(VII) and in maintaining the long-term stability of reduced Tc(IV). (c) 2009 Elsevier B.V. All rights reserved. C1 [Jaisi, Deb P.; Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Plymale, Andrew E.; Fredrickson, James K.; Zachara, John M.; Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heald, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Dong, HL (reprint author), Miami Univ, Dept Geol, Oxford, OH 45056 USA. EM dongh@muohio.edu RI Liu, Chongxuan/C-5580-2009 NR 56 TC 53 Z9 55 U1 7 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD JUN 30 PY 2009 VL 264 IS 1-4 BP 127 EP 138 DI 10.1016/j.chemgeo.2009.02.018 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 462TQ UT WOS:000267379900011 ER PT J AU Kinman, WS Neal, CR Davidson, JP Font, L AF Kinman, William S. Neal, Clive R. Davidson, Jon P. Font, Laura TI The dynamics of Kerguelen Plateau magma evolution: New insights from major element, trace element and Sr isotope microanalysis of plagioclase hosted in Elan Bank basalts SO CHEMICAL GEOLOGY LA English DT Article DE Kerguelen; Laser ablation; Microanalysis; Large igneous province; Ocean Drilling Program ID SOUTHERN INDIAN-OCEAN; LARGE IGNEOUS PROVINCES; BROKEN RIDGE; ODP LEG-183; CONTINENTAL-CRUST; VOLCANO; CRYSTALLIZATION; CONSTRAINTS; DIFFUSION; SYSTEMS AB The Kerguelen Plateau and Broken Ridge in the southern Indian Ocean together represent one of the most voluminous large igneous provinces (LIPs) ever emplaced on Earth. A scientific objective of Ocean Drilling Program (ODP) Leg 183 was to constrain the post-melting magma evolution of Kerguelen Plateau magmas. In an effort to better understand this evolution, isotopic and trace element analysis of individual plagioclase crystals hosted within two Kerguelen Plateau basalts recovered from Elan Bank were undertaken. Previous whole-rock studies established that the two host basalts; investigated in this study are samples of crustally contaminated (lower group) and relatively uncontaminated (upper group) basalt. Plagioclase phenocrysts; from the uncontaminated basalt are dominantly normal zoned and exhibit a (87)Sr/(86)Sr(I) range of 0.704845-0.704985, which overlaps uncontaminated group whole-rock values previously reported. Plagioclase crystals from the contaminated basalt are dominantly reverse zoned and exhibit a (87)Sr/(86)Sr(I) range of 0.705510-0.705735, which all lie within contaminated group whole-rock values previously reported. There are no systematic within crystal core to rim variations in (87)Sr/(86)Sr(I) from either group, with the exception that contaminated group crystal rims have overall less radiogenic (87)Sr/(86)Sr(I) than other zones. These observations indicate that crustal assimilation occurred before the formation of Unit 10 plagioclase phenocrysts, which is supported by parent magma trace element abundance data inverted using carefully calculated partition coefficients. Trace element diffusion modeling indicates that the upper group basalt (Unit 4) experienced a more vigorous eruptive flux than the lower group basalt (Unit 10). We suggest that plagioclase phenocrysts in both the upper and lower group basalts originated from the shallowest section of what was likely a complex magma chamber system. We contend that the magmatic system contained regions of extensive plagioclase-dominated crystal mush. Crustal assimilation was not a significant ongoing process in this portion of the Elan Bank magmatic system. Both basalts exhibit compelling evidence for remobilization and partial resorption of crystalline debris (e.g., reverse zoned crystals, glomerocrysts). We suggest Unit 4 and 10 magmas ascended different sections of the Elan Bank magma system, where the Unit 10 magmas ascended a section of the magma system that penetrated a stranded fragment of continental crust. (c) 2009 Elsevier B.V. All rights reserved. C1 [Kinman, William S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Davidson, Jon P.; Font, Laura] Univ Durham, Dept Earth Sci, Durham DH1 3LE, England. [Kinman, William S.; Neal, Clive R.] Univ 6 Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [Font, Laura] Vrije Univ Amsterdam, IVA Earth Sci Petrol Dept, Amsterdam, Netherlands. RP Kinman, WS (reprint author), Los Alamos Natl Lab, Div Chem, MSJ514, Los Alamos, NM 87545 USA. EM wkinman@lanl.gov FU NSF [OCE-0452102] FX This research used samples provided by the Ocean Drilling Program (ODP). ODP was sponsored by the US National Science Foundation and participating countries under management of theJoint Oceanographic Institutions. We are indebted to the staff and crew of the RVJOIDES Resolution whose professionalism and cooperation allowed the collection of drill cores at Site 1137. A special thanks to Prof. Gerhard Worner for a thorough and tremendously useful review of this manuscript. Funding was provided to CRN by NSF for this work under OCE-0452102. Support from the University of Notre Dame to WSK is gratefully acknowledged. We also thank Prof. D. Graham Pearson, Dr. Geoff Nowell, Dr. Dan Morgan and Dr. Bruce Charlier for their direct and indirect efforts and support with this project NR 47 TC 4 Z9 7 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD JUN 30 PY 2009 VL 264 IS 1-4 BP 247 EP 265 DI 10.1016/j.chemgeo.2009.03.010 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 462TQ UT WOS:000267379900021 ER PT J AU Lord, OT Walter, MJ Dasgupta, R Walker, D Clark, SM AF Lord, O. T. Walter, M. J. Dasgupta, R. Walker, D. Clark, S. M. TI Melting in the Fe-C system to 70 GPa SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE carbon; core; iron carbide; light element ID CORE DENSITY DEFICIT; DIAMOND-ANVIL CELL; EARTHS OUTER CORE; X-RAY-DIFFRACTION; HIGH-PRESSURE; THERMAL-EXPANSION; CRYSTAL-STRUCTURE; MANTLE BOUNDARY; LIGHT-ELEMENTS; PHASE-DIAGRAM AB We determined high-pressure melting curves for Fe(3)C, Fe(7)C(3) and the Fe-Fe(3)C eutectic using laser-heated diamond anvil cell techniques. The principal criterion for melting is the observation of plateaus in the temperature vs. laser power function, which is an expected behavior at isobaric invariant points (e.g. congruent, eutectic, or peritectic melting) as increased power provides the latent heat of melting. We verified this technique by reproducing the melting curves of well-studied congruently melting compounds at high pressure (Fe, Pt, FeS, Pb), and by comparison with melting determinations made using thermocouple-based large-volume press techniques. The incongruent melting curve of Fe(3)C measured to 70 GPa has an apparent change in slope at similar to 8 GPa, which we attribute to stabilization of Fe(7)C(3) at the solidus and the creation of a P-Tinvariant point. We observe that Fe(7)C(3) Melts at higher temperatures than Fe(3)C between 14 and 52 GPa and has a steep P-T slope, and on this basis predicts an expanding field of Fe(7)C(3) + liquid with pressure. The Fe-Fe(3)C eutectic melting curve measured to 70 GPa agrees closely with multi-anvil data and thermodynamic calculations. We also measured the eutectic composition as a function of pressure using an in situ X-radiographic imaging technique, and find a rapid drop in carbon in the eutectic composition above about 20 GPa, generally consistent with previous thermodynamic calculations. and predict that the eutectic lies close to pure iron by similar to 50 GPa. We use these observations to extrapolate phase relations to core-relevant pressures. Convergence of the Fe(3)C and Fe-Fe(3)C eutectic melting curves indicate that Fe(3)C is replaced at the solidus by Fe(7)C(3) at similar to 120 GPa, forming another P-T invariant point and a new eutectic between Fe and Fe(7)C(3). Thus, Fe(3)C is unlikely to be an important crystallizing phase at core conditions. whereas Fe(7)C(3) could become an important crystallizing phase. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lord, O. T.; Walter, M. J.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. [Dasgupta, R.; Walker, D.] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA. [Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lord, OT (reprint author), Univ Bristol, Dept Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England. EM Oliver.Lord@bristol.ac.uk RI Dasgupta, Rajdeep/C-7252-2009; Lord, Oliver/D-4663-2014; Clark, Simon/B-2041-2013 OI Dasgupta, Rajdeep/0000-0001-5392-415X; Lord, Oliver/0000-0003-0563-1293; Clark, Simon/0000-0002-7488-3438 FU LDEO post-doctoral fellowship; NERC [NE/C511548/1]; NSF; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES; Consortium for Materials Properties Research in Earth Sciences [EAR 06-49658] FX We thank J. Knight at ALS for technical support during the imaging experiments. RD acknowledges support of LDEO post-doctoral fellowship. OTL acknowledges support of a NERC PhD studentship. This work was supported by NERC grant NE/C511548/1 to MJW and by NSF grants to DW. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658. NR 68 TC 93 Z9 99 U1 7 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 30 PY 2009 VL 284 IS 1-2 BP 157 EP 167 DI 10.1016/j.epsl.2009.04.017 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 476KK UT WOS:000268438900018 ER PT J AU Zhang, YX Zheng, HH Liu, G Battaglia, V AF Zhang, Yuxi Zheng, Honghe Liu, Gao Battaglia, Vince TI Synthesis and electrochemical studies of a layered spheric TiO2 through low temperature solvothermal method SO ELECTROCHIMICA ACTA LA English DT Article DE Lithium ion batteries; Solvothermal method; Anatase TiO2; Anode materials ID LITHIUM-ION BATTERIES; ANATASE NANOPARTICLES; ANODE MATERIALS; INTERCALATION; NANOWIRES; STORAGE; NANOTUBES; NANORODS; GROWTH AB This paper demonstrates a low temperature solvothermal method for the synthesis of a layered spheric TiO2. The crystal structure and morphology of the material were characterized by using X-ray diffraction (XRD) and scanning electron miscopy (SEM). Electrochemical performances of the TiO2 when used as anode material in lithium ion batteries were investigated by galvanostatic charge/discharge and cyclic voltammetry experiments. A discharge capacity of 179 m Ah g(-1) was obtained in the potential range between 3.0 and 1.5 V. No significant capacity decay was observed in the successive 30 cycles showing satisfactory cycling performance of the electrode. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, Yuxi; Zheng, Honghe] Henan Normal Univ, Coll Chem & Environm Sci, Xinxiang 453007, Peoples R China. [Zheng, Honghe; Liu, Gao; Battaglia, Vince] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zheng, HH (reprint author), Henan Normal Univ, Coll Chem & Environm Sci, Xinxiang 453007, Peoples R China. EM hhzheng@mail.com FU Natural Science Foundation of China [20573033]; Henan Province [04120001100] FX The authors are greatly indebted to the funding of Natural Science Foundation of China (NSFC, contract no. 20573033) and the young researcher program of Henan Province (04120001100), China. NR 24 TC 12 Z9 12 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD JUN 30 PY 2009 VL 54 IS 16 BP 4079 EP 4083 DI 10.1016/j.electacta.2009.02.044 PG 5 WC Electrochemistry SC Electrochemistry GA 453RO UT WOS:000266628900015 ER PT J AU Milewski, A Sultan, M Yan, E Becker, R Abdeldayem, A Soliman, F Gelil, KA AF Milewski, Adam Sultan, Mohamed Yan, Eugene Becker, Richard Abdeldayem, Ahmed Soliman, Farouk Gelil, Kamil Abdel TI A remote sensing solution for estimating runoff and recharge in arid environments SO JOURNAL OF HYDROLOGY LA English DT Article DE SWAT; Continuous rainfall-runoff model; Eastern Desert; Sinai peninsula; Remote sensing; GIs ID GROUNDWATER RECHARGE; UNGAUGED CATCHMENTS; TRANSMISSION LOSSES; EASTERN DESERT; SOIL-MOISTURE; RIVER-BASIN; MODEL; RAINFALL; WATER; BALANCE AB Efforts to understand and to quantify precipitation and its partitioning into runoff evapo-transpiration, and icecharge are often hampered by the absence or paucity of appropriate monitoring systems. We applied methodologies for rainfall-runoff and groundwater recharge computations that heavily rely on observations extracted from a wide-range of global remote sensing data sets (TRMM, SSM/l, Landsat TM, AVHRR, AMSR-E, and ASTER) using the arid Sinai Peninsula (SP; area: 61,000 km(2)) and the Eastern Desert (ED; area: 220,000 km(2)) of Egypt as our test sites. A two-fold exercise was conducted. Spatiotemporal remote sensing data (TRMM, AVHRR and AMSR-E) were extracted from global data sets over the test sites using RESDEM, the Remote Sensing Data Extraction Model, and were then used to identify and to verify precipitation events throughout the past 10 years (1998-2007). This was accomplished by using an automated cloud detection technique to identify clouds and to monitor their propagation prior to and throughout the identified precipitation events, and by examining changes in soil moisture (extracted from AMSR-E data) following the identification of clouds. For the investigated period, 246 of 327 events were verified in the SP, and 179 of 304 in the ED. A catchment-based, continuous, semi-distributed hydrologic model (Soil Water and Assessment Tool model; SWAT) was calibrated against observed runoff values from Wadi Girafi Watershed (area: 3350 km(2)) and then used to provide a continuous simulation (1998-2007) of the overland flow, channel flow, transmission losses, evaporation on bare soils and evapo-transpiration, and groundwater recharge for the major (area: 2014-22,030 km(2)) watersheds in the SP (Watir, El-Arish, Dahab, and Awag) and the ED (Qena, Hammamat, Asyuti, Tarfa, El-Quffa, El-Batur, Kharit, Hodein, and Allaqi) covering 48% and 51% of the total areas of the SP and the ED, respectively. For the investigated watersheds in the SP, the average annual precipitation, average annual runoff, and average annual recharge through transmission losses were found to be: 2955 x 10(6)m(3), 508 x 10(6)m(3) (17.1% total precipitation (TP)), and 463 x 10(6)m(3) (15.7% TP), respectively, whereas in the ED these values are: 807 x 10(6)m(3), 77.8 x 10(6)m(3) (9.6% TP), and 171 x 10(6)m(3) (21.2% TP), respectively. Results demonstrate the enhanced opportunities for groundwater development in the SP (compared to the ED) and highlight the potential for similar applications in and areas elsewhere. The adopted remote sensing-based, regionalization approach is not a substitute for traditional methodologies that rely on extensive field datasets from rain gauge and stream flow networks, yet could provide first-order estimates for rainfall, runoff, and recharge over large sectors of the and world lacking adequate coverage with spatial and temporal precipitation and field data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Milewski, Adam; Sultan, Mohamed; Becker, Richard] Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA. [Yan, Eugene] Argonne Natl Lab, Div Environm Sci, Chicago, IL USA. [Abdeldayem, Ahmed] Cairo Univ, Dept Hydraul & Engn, Cairo, Egypt. [Soliman, Farouk] Suez Canal Univ, Dept Geol, Ismailia, Egypt. [Gelil, Kamil Abdel] Natl Water Resource Ctr, Minist Water Resources & Irrigat, Cairo, Egypt. RP Sultan, M (reprint author), Western Michigan Univ, Dept Geosci, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA. EM mohamed.sultan@wmich.edu RI Becker, Richard/A-9120-2010; Milewski, Adam/C-7824-2011 OI Becker, Richard/0000-0003-2514-2040; FU United Nations Development Programme (UNDP); Global Environmental Facility (GEF) Internatioal Water Program; National Science Foundation (NSF) [OISE-0514307]; NATO Science For Peace Program [SFP982614]; Michigan University FX Funding was provided by the United Nations Development Programme (UNDP) and the Global Environmental Facility (GEF) Internatioal Water Program, the National Science Foundation (NSF) Science and Technology Grant (OISE-0514307), and the NATO Science For Peace Program (SFP982614) (Environmental Security Program), all awarded to Western Michigan University. We would also like to thank Dr. DeJeu and his research team for providing us with the processed AMSR-E data. NR 76 TC 43 Z9 43 U1 3 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JUN 30 PY 2009 VL 373 IS 1-2 BP 1 EP 14 DI 10.1016/j.jhydrol.2009.04.002 PG 14 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 471RB UT WOS:000268074900001 ER PT J AU Pluth, MD Fiedler, D Mugridge, JS Bergman, RG Raymond, KN AF Pluth, Michael D. Fiedler, Dorothea Mugridge, Jeffrey S. Bergman, Robert G. Raymond, Kenneth N. TI Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE host-guest chemistry; molecular recognition; guest encapsulation; amine protonation ID BASIC SOLUTION; ORTHOFORMATE HYDROLYSIS; NITROGEN INVERSION; HYDROGEN-BONDS; GUEST EXCHANGE; RECOGNITION; CATALYSIS; STABILIZATION; MECHANISM; SPECTROSCOPY AB Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen-bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly that are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines, and piperidines. Proton-bound homodimer formation is observed for N-alkylaziridines (R = methyl, isopropyl, tert-butyl), N-alkylazetidines (R = isopropyl, tert-butyl), and N-methylpyrrolidine. At high concentration, formation of a proton-bound homotrimer is observed in the case of N-methylaziridine. The homodimers stay intact inside the assembly over a large concentration range, thereby suggesting cooperative encapsulation. Both G3(MP2)B3 and G3B3 calculations of the proton-bound homodimers were used to investigate the enthalpy of the hydrogen bond in the proton-bound homodimers and suggest that the enthalpic gain upon formation of the proton-bound homodimers may drive guest encapsulation. C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu RI Pluth, Michael/A-7222-2012 OI Pluth, Michael/0000-0003-3604-653X FU U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX We thank Drs. Jamin Krinsky and Kathleen Durkin for assistance with calculations. This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences (U.S. Department of Energy) under contract DE-AC02-05CH11231 and National Science Foundation Predoctoral Fellowships ( to M. D. P. and J.S.M.). NR 41 TC 42 Z9 42 U1 4 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10438 EP 10443 DI 10.1073/pnas.0809806106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300011 PM 19181859 ER PT J AU Martos, V Bell, SC Santos, E Isacoff, EY Trauner, D de Mendoza, J AF Martos, Vera Bell, Sarah C. Santos, Eva Isacoff, Ehud Y. Trauner, Dirk de Mendoza, Javier TI Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electrophysiology; Kv1.x channels; ligand-protein surface interactions; molecular recognition; multivalent calix[4]arene ligands ID SHAKER K+ CHANNEL; REARRANGEMENTS; INACTIVATION; MODULATORS; STABILITY; DESIGN AB Potassium channels are among the core functional elements of life because they underpin essential cellular functions including excitability, homeostasis, and secretion. We present here a series of multivalent calix[4]arene ligands that bind to the surface of voltage-dependent potassium channels (K(v)1.x) in a reversible manner. Molecular modeling correctly predicts the best candidates with a conical C(4) symmetry for optimal binding, and the effects on channel function are assessed electrophysiologically. Reversible inhibition was observed, without noticeable damage of the oocytes, for tetraacylguanidinium or tetraarginine members of the series with small lower rim O-substituents. Apparent binding constants were in the low micromolar range and had Hill coefficients of 1, consistent with a single site of binding. Suppression of current amplitude was accompanied by a positive shift in the voltage dependence of gating and slowing of both voltage sensor motion and channel opening. These effects are in keeping with expectations for docking in the central pore and interaction with the pore domain "turret.'' C1 [Martos, Vera; Santos, Eva; de Mendoza, Javier] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain. [Martos, Vera; de Mendoza, Javier] Univ Autonoma Madrid, Dept Organ Chem, E-28049 Madrid, Spain. [Bell, Sarah C.; Trauner, Dirk] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.; Trauner, Dirk] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bell, Sarah C.; Isacoff, Ehud Y.] Univ Calif Berkeley, Chem Biol Grad Program, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Trauner, Dirk] Univ Munich, Dept Chem, D-81377 Munich, Germany. RP de Mendoza, J (reprint author), Inst Chem Res Catalonia ICIQ, Avinguda Paisos Catalans 16, Tarragona 43007, Spain. EM jmendoza@iciq.es FU Spanish Ministry of Science and Education (MEC) [CTQ2005-08948-C02-01/BQU]; Consolider Ingenio [CSD2006-0003]; Institute of Chemical Research of Catalonia (ICIQ) Foundation; National Institutes of Health [5R01NS035549]; MEC; ICIQ Foundation FX Thanks to Dr. Francesco Tombola for assistance with experimental design and data analysis and Drs. Maximilian Ulbrich and Harald Janovjak for help with data analysis. This work was supported by Spanish Ministry of Science and Education (MEC) Project CTQ2005-08948-C02-01/BQU, Consolider Ingenio 2010 Grant CSD2006-0003, the Institute of Chemical Research of Catalonia (ICIQ) Foundation, and National Institutes of Health Grant 5R01NS035549 ( to E.Y.I.). V. M. thanks MEC and the ICIQ Foundation for predoctoral fellowships. NR 27 TC 31 Z9 31 U1 2 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10482 EP 10486 DI 10.1073/pnas.0813396106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300019 PM 19435843 ER PT J AU Macfarlane, RJ Lee, B Hill, HD Senesi, AJ Seifert, S Mirkin, CA AF Macfarlane, Robert J. Lee, Byeongdu Hill, Haley D. Senesi, Andrew J. Seifert, Soenke Mirkin, Chad A. TI Assembly and organization processes in DNA-directed colloidal crystallization SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE DNA materials; SAXS; self assembly ID GOLD NANOPARTICLE ASSEMBLIES; CRYSTALS; NANOCRYSTALS; DIFFRACTION; LATTICE; PROTEIN AB We present an analysis of the key steps involved in the DNA-directed assembly of nanoparticles into crystallites and polycrystalline aggregates. Additionally, the rate of crystal growth as a function of increased DNA linker length, solution temperature, and self-complementary versus non-self-complementary DNA linker strands (1- versus 2-component systems) has been studied. The data show that the crystals grow via a 3-step process: an initial "random binding'' phase resulting in disordered DNA-AuNP aggregates, followed by localized reorganization and subsequent growth of crystalline domain size, where the resulting crystals are well-ordered at all subsequent stages of growth. C1 [Macfarlane, Robert J.; Hill, Haley D.; Senesi, Andrew J.; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Macfarlane, Robert J.; Hill, Haley D.; Senesi, Andrew J.; Mirkin, Chad A.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA. [Lee, Byeongdu; Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM chadnano@northwestern.edu RI Mirkin, Chad/E-3911-2010 FU National Science Foundation Nanoscience and Engineering Center; Air Force Office of Scientific Research; National Cancer Institute Center for Cancer Nanotechnology Excellence; National Institutes of Health Director's Pioneer Award; U.S. Department of Homeland Security Graduate Fellowship; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation Nanoscience and Engineering Center, the Air Force Office of Scientific Research, the National Cancer Institute Center for Cancer Nanotechnology Excellence, and a National Institutes of Health Director's Pioneer Award ( to C. A. M.) and a U.S. Department of Homeland Security Graduate Fellowship under the DHS Scholarship and Fellowship Program ( to H. D. H.). Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source. The DuPont-Northwestern-Dow Collaborative Access Team is supported by E. I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois. Use of the Advanced Photon Source was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 37 TC 77 Z9 77 U1 6 U2 71 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10493 EP 10498 DI 10.1073/pnas.0900630106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300021 PM 19549828 ER PT J AU Sinitsyn, NA Hengartner, N Nemenman, I AF Sinitsyn, N. A. Hengartner, Nicolas Nemenman, Ilya TI Adiabatic coarse-graining and simulations of stochastic biochemical networks SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID CHEMICAL-KINETICS; SYSTEMS AB We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical networks, which rests on elimination of fast chemical species without a loss of information about mesoscopic, non-Poissonian fluctuations of the slow ones. Our approach is similar to the Born-Oppenheimer approximation in quantum mechanics and follows from the stochastic path integral representation of the cumulant generating function of reaction events. In applications with a small number of chemical reactions, it produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, interpretable representation and can be used for high-accuracy, low-complexity coarse-grained numerical simulations. As an example, we derive the coarse-grained description for a chain of biochemical reactions and show that the coarse-grained and the microscopic simulations agree, but the former is 3 orders of magnitude faster. C1 [Sinitsyn, N. A.; Nemenman, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Sinitsyn, N. A.; Hengartner, Nicolas; Nemenman, Ilya] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Nemenman, I (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM ilya@menem.com RI Sinitsyn, nikolai/B-5617-2009; OI Nemenman, Ilya/0000-0003-3024-4244; Hengartner, Nicolas/0000-0002-4157-134X FU U. S. Department of Energy [DE-AC52-06NA25396] FX We thank F. Alexander, G. Bel, W. Hlavacek, B. Munsky, and M. Wall for useful discussions and the anonymous referees for their insightful comments. This work was supported in part by the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 22 TC 33 Z9 34 U1 0 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10546 EP 10551 DI 10.1073/pnas.0809340106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300030 PM 19525397 ER PT J AU Chiarelli, PA Liu, DG Watkins, EB Trouw, FR Majewski, J Casson, JL Tang, ZX Johal, MS Robinson, JM Wang, HL AF Chiarelli, Peter A. Liu, Ding-Guo Watkins, Erik B. Trouw, Frans R. Majewski, Jaroslaw Casson, Joanna L. Tang, Zhexiong Johal, Malkiat S. Robinson, Jeanne M. Wang, Hsing-Lin TI Molecular order in Langmuir-Blodgett assembled films of an azobenzene amphiphile SO THIN SOLID FILMS LA English DT Article DE Langmuir-Blodgett films; X-ray scattering; Structure properties; Interface ID 2ND-HARMONIC GENERATION; THIN-FILMS; NONLINEAR OPTICS; MONOLAYERS; MICROSTRUCTURE; SPECTROSCOPY; MONODENDRONS; ENHANCEMENT; MULTILAYERS; REFLECTION AB Alternating multilayers of amphiphile, 4-{4-[Methyl-(4-octadecylcarbamoyl-butyl)-amino]-phenylazo}-benzenesulfonic acid (S-azo-C(18)), and stearic acid were deposited on hydrophobized silica surfaces using the Langmuir-Blodgett technique. Ellipsometry, UV-visible spectroscopy, and second harmonic generation were used to characterize the films, demonstrating reproducible deposition and suggesting a well ordered film structure. Despite the appearance of order at the macroscopic level, neutron and X-ray scattering results unequivocally show that there is considerable disorder, with significant interpenetration between the stearic acid and S-azo-C(18) layers. These results suggest that molecular disorder in Langmuir-Blodgett deposited multilayer films may often go unrecognized mainly because the macroscopic probes based on these optical measurements are not adequate for determining the molecular level structural order. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chiarelli, Peter A.; Liu, Ding-Guo; Casson, Joanna L.; Tang, Zhexiong; Robinson, Jeanne M.; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Watkins, Erik B.; Trouw, Frans R.; Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Johal, Malkiat S.] Pomona Coll, Dept Chem, Claremont, CA 91711 USA. RP Robinson, JM (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM hwang@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Robinson, Jeanne/0000-0002-4251-7169 FU Los Alamos National Laboratory [W7405-ENG-36]; DOE Office of Basic Energy Science FX The work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory under the auspices of the United States Department of Energy and was supported by Los Alamos National Laboratory under DOE contract W7405-ENG-36, and by the DOE Office of Basic Energy Science. The neutron reflectometry experiments benefited from use of the SPEAR time-of-flight reflectometer at LANSCE, LANL. NR 31 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 30 PY 2009 VL 517 IS 16 BP 4638 EP 4643 DI 10.1016/j.tsf.2009.02.148 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 459NQ UT WOS:000267110200027 ER PT J AU Smith, JN Campbell, JA Busby-Hjerpe, AL Lee, S Poet, TS Barr, DB Timchalk, C AF Smith, Jordan Ned Campbell, James A. Busby-Hjerpe, Andrea L. Lee, Sookwang Poet, Torka S. Barr, Dana B. Timchalk, Charles TI Comparative chlorpyrifos pharmacokinetics via multiple routes of exposure and vehicles of administration in the adult rat SO TOXICOLOGY LA English DT Article DE Chlorpyrifos; 3,5,6-Trichloro-2-pyridinol; Pharmacokinetics; Trichloropyridinol ID ORGANOPHOSPHORUS INSECTICIDE CHLORPYRIFOS; DEVELOPMENTAL NEUROTOXICITY; CHOLINESTERASE INHIBITION; PHARMACODYNAMIC MODEL; ORAL CHLORPYRIFOS; BINARY-MIXTURE; IN-VITRO; BRAIN; LIVER; METABOLISM AB Chlorpyrifos (CPF) is a commonly used organophosphorus pesticide. A number of toxicity and mechanistic studies have been conducted in animals, where CPF has been administered via a variety of different exposure routes and dosing vehicles. This study compared chlorpyrifos (CPF) pharmacokinetics using oral, intravenous (IV), and subcutaneous (SC) exposure routes and corn oil, saline/Tween 20, and dimethyl sulfoxide (DMSO) as dosing vehicles. Two groups of rats were co-administered target doses (5 mg/kg) of CPF and isotopically labeled CPF (L-CPF). One group was exposed by both oral (CPF) and IV (L-CPF) routes using saline/Tween 20 vehicle; whereas, the second group was exposed by the SC route using two vehicles, corn oil (CPF) and DMSO (L-CPF). A third group was only administered CPF by the oral route in corn oil. For all treatments, blood and urine time course samples were collected and analyzed for 3,5,6-trichloro-2-pyridinol (TCPy), and isotopically labeled 3,5,6-trichloro-2-pyridinol (L-TCPy). Peak TCPy/L-TCPy concentrations in blood (20.2 mu mol/l), TCPy/L-TCPy blood AUC (94.9 mu mol/l h), and percent of dose excreted in urine (100%) were all highest in rats dosed orally with CPF in saline/Tween 20 and second highest in rats dosed orally with CPF in corn oil. Peak TCPy concentrations in blood were more rapidly obtained after oral administration of CPF in saline/Tween 20 compared to all other dosing scenarios (>1.5 h). These results indicate that orally administered CPF is more extensively metabolized than systemic exposures of CPF(SC and IV), and vehicle of administration also has an effect on absorption rates. Thus, equivalent doses via different routes and/or vehicles of administration could potentially lead to different body burdens of CPF, different rates of bioactivation to CPF-oxon, and different toxic responses. Simulations using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF are consistent with these possibilities. These results suggest that exposure route and dosing vehicle can substantially impact target tissue dosimetry. This is of particular importance when comparing studies that use varying exposure paradigms, which are then used for extrapolation of risk to humans. (C) 2009 Elsevier Ireland Ltd. All rights reserved. C1 [Smith, Jordan Ned; Campbell, James A.; Busby-Hjerpe, Andrea L.; Lee, Sookwang; Poet, Torka S.; Timchalk, Charles] Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA. [Barr, Dana B.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. RP Timchalk, C (reprint author), Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA. EM jordan.smith@pnl.gov; james.campbell@pnl.gov; andrea.busby@pnl.gov; sookwang.lee@pnl.gov; torka.poet@pnl.gov; dbarr@cdc.gov; charles.timchalk@pnl.gov RI Barr, Dana/E-6369-2011; Barr, Dana/E-2276-2013 FU Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health (CDC/NIOSH) [R01 OH008173, R01 OH003629, AGR05FED40077.02] FX This publication was supported by funding from Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health (CDC/NIOSH) grants R01 OH008173, R01 OH003629, and AGR05FED40077.02. Findings in this study were those of the authors, and do not necessarily reflect the official opinion of the CDC/NIOSH. NR 38 TC 25 Z9 30 U1 1 U2 22 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD JUN 30 PY 2009 VL 261 IS 1-2 BP 47 EP 58 DI 10.1016/j.tox.2009.04.041 PG 12 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 465KZ UT WOS:000267584800007 PM 19397948 ER PT J AU Chang, CY Pearton, SJ Lo, CF Ren, F Kravchenko, II Dabiran, AM Wowchak, AM Cui, B Chow, PP AF Chang, C. Y. Pearton, S. J. Lo, C. F. Ren, F. Kravchenko, I. I. Dabiran, A. M. Wowchak, A. M. Cui, B. Chow, P. P. TI Development of enhancement mode AlN/GaN high electron mobility transistors SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; gallium compounds; high electron mobility transistors; III-V semiconductors; plasma materials processing; semiconductor device metallisation; wide band gap semiconductors ID ALGAN/GAN HEMTS; GANHEMTS; PERFORMANCE; HFETS AB Enhancement mode AlN/GaN high electron mobility transistors (HEMTs) were fabricated from originally depletion-mode structures using oxygen plasma treatment on the gate area prior to the gate metallization. Starting with a depletion mode AlN/GaN HEMT, the threshold voltage of the HEMT could be shifted from -3.2 to 1 V depending on the oxygen plasma treatment time to partially convert the AlN barrier layer into Al oxide. The gate current was reduced and the current-voltage curves show metal-oxide semiconductor diodelike characteristics after oxygen plasma treatment. C1 [Chang, C. Y.; Pearton, S. J.] Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA. [Lo, C. F.; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Kravchenko, I. I.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Dabiran, A. M.; Wowchak, A. M.; Cui, B.; Chow, P. P.] SVT Associates Inc, Prairie, MN 55344 USA. RP Chang, CY (reprint author), Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA. EM spear@mse.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 NR 17 TC 27 Z9 29 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2009 VL 94 IS 26 AR 263505 DI 10.1063/1.3168648 PG 3 WC Physics, Applied SC Physics GA 466XB UT WOS:000267697300063 ER PT J AU Di, ZF Wang, YQ Nastasi, M Bisognin, G Berti, M Thompson, PE AF Di, Z. F. Wang, Y. Q. Nastasi, M. Bisognin, G. Berti, M. Thompson, P. E. TI Strain relaxation of SiGe in a Si/SiGe/Si heterostructure under proton irradiation SO APPLIED PHYSICS LETTERS LA English DT Article DE elemental semiconductors; Ge-Si alloys; high-temperature effects; nucleation; proton effects; semiconductor heterojunctions; silicon; vacancies (crystal) ID HYDROGEN; SILICON; SUPERLATTICES; IMPLANTATION; EXFOLIATION; DIFFUSION; MECHANISM; PRESSURE AB We have studied the mechanisms underlying strained layer relaxation by means of point defect interaction. During high temperature (300 degrees C) proton irradiation, vacancies generated in the vicinity of SiGe layer migrate and accumulate within the compressively strained SiGe layer. The accumulating vacancies are stabilized by hydrogen, which diffuses from the implanted region, thus allowing the nucleation and growth of hydrogen-vacancy (V-H) complexes. The formation of V-H complexes is accompanied by gradual strain relief in SiGe layer. Since the diffusion of both vacancies and hydrogen is limited by the irradiation temperature, strain relaxation of the SiGe layer is not realized during room temperature (20 degrees C) proton irradiation. The study supports the idea that the compressive stress in the SiGe layer induces the indiffusion of vacancies and H, and reveals the important role of point defects in the strain relaxation of the strained SiGe layer. C1 [Di, Z. F.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bisognin, G.; Berti, M.] Univ Padua, Dipartmento Fis, I-35131 Padua, Italy. [Bisognin, G.; Berti, M.] Univ Padua, INFM, CNR, MATIS, I-35131 Padua, Italy. [Thompson, P. E.] USN, Res Lab, Washington, DC 20375 USA. [Bisognin, G.] Unita Padova, CNISM, I-35131 Padua, Italy. RP Di, ZF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dizengfeng@hotmail.com RI di, zengfeng/B-1684-2010 NR 24 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2009 VL 94 IS 26 AR 264102 DI 10.1063/1.3167814 PG 3 WC Physics, Applied SC Physics GA 466XB UT WOS:000267697300068 ER PT J AU Kapadia, R Ko, H Chueh, YL Ho, JC Takahashi, T Zhang, ZX Javey, A AF Kapadia, Rehan Ko, Hyunhyub Chueh, Yu-Lun Ho, Johnny C. Takahashi, Toshitake Zhang, Zhenxing Javey, Ali TI Hybrid core-multishell nanowire forests for electrical connector applications SO APPLIED PHYSICS LETTERS LA English DT Article DE adhesion; electric connectors; electrical resistivity; elemental semiconductors; germanium; nanowires; semiconductor quantum wires; semiconductor-metal boundaries; silver; van der Waals forces ID CARBON; ADHESIVE; STRENGTH; ENERGY; MICRO AB Electrical connectors based on hybrid core-multishell nanowire forests that require low engagement forces are demonstrated. The physical binding and electrical connectivity of the nanowire electrical connectors arise from the van der Waals interactions between the conductive metallic shells of the engaged nanowire forests. Specifically, the nanofibrillar structure of the connectors causes an amplification of the contact area between the interpenetrating nanowire arrays, resulting in strong adhesion with relatively low interfacial resistance. The nanowire electrical connectors may enable the exploration of a wide range of applications involving reversible assembly of micro- and macroscale components with built-in electrical interfacing. C1 [Kapadia, Rehan] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94705 USA. Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94705 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kapadia, R (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94705 USA. EM ajavey@eecs.berkeley.edu RI Zhang, Zhenxing/A-8762-2008; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013; Ho, Johnny/K-5275-2012; Kapadia, Rehan/B-4100-2013; Javey, Ali/B-4818-2013 OI Zhang, Zhenxing/0000-0002-4946-0492; Chueh, Yu-Lun/0000-0002-0155-9987; Ho, Johnny/0000-0003-3000-8794; Kapadia, Rehan/0000-0002-7611-0551; FU DARPA [5710002393]; NSF Center of Integrated Nanomechanical Systems FX The authors would like to thank Professor Ron Fearing for insightful discussion. This work was supported by DARPA Contract No. 5710002393 DSO and NSF Center of Integrated Nanomechanical Systems. The nanowire synthesis part of this project was supported by a Laboratory Directed Research and Development grant from Lawrence Berkeley National Laboratory. R. K. and J. C. H. acknowledge NSF Graduate Fellowship and Intel Foundation Fellowship, respectively. NR 16 TC 17 Z9 17 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2009 VL 94 IS 26 AR 263110 DI 10.1063/1.3148365 PG 3 WC Physics, Applied SC Physics GA 466XB UT WOS:000267697300047 ER PT J AU Arsene, IC Bearden, IG Beavis, D Bekele, S Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Dalsgaard, HH Debbe, R Gaardhoje, JJ Hagel, K Ito, H Jipa, A Johnson, EB Jorgensen, CE Karabowicz, R Katrynska, N Kim, EJ Larsen, TM Lee, JH Lovhoiden, G Majka, Z Murray, MJ Natowitz, J Nielsen, BS Nygaard, C Pal, D Qviller, A Rami, F Ristea, C Ristea, O Rohrich, D Sanders, SJ Staszel, P Tveter, TS Videbaek, F Wada, R Yang, H Yin, Z Zgura, IS AF Arsene, I. C. Bearden, I. G. Beavis, D. Bekele, S. Besliu, C. Budick, B. Boggild, H. Chasman, C. Christensen, C. H. Christiansen, P. Dalsgaard, H. H. Debbe, R. Gaardhoje, J. J. Hagel, K. Ito, H. Jipa, A. Johnson, E. B. Jorgensen, C. E. Karabowicz, R. Katrynska, N. Kim, E. J. Larsen, T. M. Lee, J. H. Lovhoiden, G. Majka, Z. Murray, M. J. Natowitz, J. Nielsen, B. S. Nygaard, C. Pal, D. Qviller, A. Rami, F. Ristea, C. Ristea, O. Roehrich, D. Sanders, S. J. Staszel, P. Tveter, T. S. Videbaek, F. Wada, R. Yang, H. Yin, Z. Zgura, I. S. TI Nuclear stopping and rapidity loss in Au plus Au collisions a root S-NN=62.4 GeV SO PHYSICS LETTERS B LA English DT Article ID QUARK-GLUON PLASMA; BRAHMS EXPERIMENT; BARYON; COLLABORATION; PERSPECTIVE; MATTER; MODEL AB Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0 < y < 3.1 from 0-10% central Au + Au collisions at root S-NN = 62.4 GeV are presented. The rapidity densities, dN/dy, of protons, anti-protons and net-protons (N-p-N-(p) over bar) have been deduced from the spectra over a rapidity range wide enough to observe the expected maximum net-baryon density. From mid-rapidity to y = I the net-proton yield is roughly constant (dN/dy similar to 10), but rises to dN/dy similar to 25 at 2.3 < y < 3.1. The mean rapidity loss is 2.01 +/- 0.14 +/- 0.12 units from beam rapidity. The measured rapidity distributions are compared to model predictions. Systematics of net-baryon distributions and rapidity loss vs. collision energy are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Christiansen, P.; Dalsgaard, H. H.; Gaardhoje, J. J.; Jorgensen, C. E.; Larsen, T. M.; Nielsen, B. S.; Nygaard, C.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Beavis, D.; Chasman, C.; Debbe, R.; Ito, H.; Lee, J. H.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rami, F.] Inst Pluridisciplinaire Hubert Curien, IN2P3, CNRS, Strasbourg, France. [Rami, F.] Univ Strasbourg, Strasbourg, France. [Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Karabowicz, R.; Katrynska, N.; Majka, Z.; Staszel, P.] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland. [Budick, B.] NYU, New York, NY 10003 USA. [Hagel, K.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX USA. [Roehrich, D.; Yang, H.; Yin, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Besliu, C.; Jipa, A.; Ristea, O.] Univ Bucharest, Bucharest, Romania. [Bekele, S.; Johnson, E. B.; Kim, E. J.; Murray, M. J.; Pal, D.; Sanders, S. J.] Univ Kansas, Lawrence, KS 66045 USA. [Arsene, I. C.; Lovhoiden, G.; Qviller, A.; Tveter, T. S.] Univ Oslo, Dept Phys, Oslo, Norway. RP Dalsgaard, HH (reprint author), Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. EM canute@nbi.dk; videbaek@bnl.gov RI Christensen, Christian Holm/A-4901-2010; Christensen, Christian/D-6461-2012; Yang, Hongyan/J-9826-2014; Bearden, Ian/M-4504-2014 OI Christensen, Christian Holm/0000-0002-1850-0121; Christensen, Christian/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094 NR 24 TC 35 Z9 36 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 29 PY 2009 VL 677 IS 5 BP 267 EP 271 DI 10.1016/j.physletb.2009.05.049 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 467HS UT WOS:000267729900008 ER PT J AU Hornig, A Lee, C Ovanesyan, G AF Hornig, Andrew Lee, Christopher Ovanesyan, Grigory TI Infrared safety in factorized hard scattering cross-sections SO PHYSICS LETTERS B LA English DT Article DE Factorization; Soft collinear effective theory; Jets; Event shapes ID ENERGY; JETS AB The rules of soft-collinear effective theory can be used naively to write hard scattering cross-sections as convolutions of separate hard, jet, and soft functions. One condition required to guarantee the validity of such a factorization is the infrared safety of these functions in perturbation theory. Using e(+)e(-) angularity distributions as an example, we propose and illustrate an intuitive method to test this infrared safety at one loop. We look for regions of integration in the sum of Feymnan diagrams contributing to the jet and soft functions where the integrals become infrared divergent. Our analysis is independent of an explicit infrared regulator, clarifies how to distinguish infrared and ultraviolet singularities in pure dimensional regularization, and demonstrates the necessity of taking zero-bins into account to obtain infrared-safe jet functions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lee, Christopher] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Lee, C (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ahornig@berkeley.edu; clee@berkeley.edu; ovanesyan@berkeley.edu OI Lee, Christopher/0000-0003-2385-7536 NR 28 TC 12 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 29 PY 2009 VL 677 IS 5 BP 272 EP 277 DI 10.1016/j.physletb.2009.05.039 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 467HS UT WOS:000267729900009 ER PT J AU Bollen, J Van de Sompel, H Hagberg, A Chute, R AF Bollen, Johan Van de Sompel, Herbert Hagberg, Aric Chute, Ryan TI A Principal Component Analysis of 39 Scientific Impact Measures SO PLOS ONE LA English DT Article ID JOURNAL IMPACT; CITATION IMPACT; PAGERANK; INDEX AB Background: The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact. Methodology: We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data. Conclusions: Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution. RP Bollen, J (reprint author), Los Alamos Natl Lab, Res Lib, Digital Lib Res & Prototyping Team, Los Alamos, NM 87545 USA. EM jbollen@lanl.gov OI Van de Sompel, Herbert/0000-0002-0715-6126 NR 29 TC 147 Z9 150 U1 5 U2 68 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 29 PY 2009 VL 4 IS 6 AR e6022 DI 10.1371/journal.pone.0006022 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 463XB UT WOS:000267465900001 PM 19562078 ER PT J AU Florez, E Vines, F Rodriguez, JA Illas, F AF Florez, Elizabeth Vines, Francesc Rodriguez, Jose A. Illas, Francesc TI Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorbed layers; adsorption; density functional theory; diffusion; gold ID TRANSITION-METAL CARBIDES; GAS-SHIFT REACTION; TOTAL-ENERGY CALCULATIONS; TEMPERATURE CO OXIDATION; WAVE BASIS-SET; GOLD CATALYSTS; CHEMOSELECTIVE HYDROGENATION; SUBSTITUTED NITROAROMATICS; MOLECULAR-MECHANISM; NANOPARTICLES AB The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides. C1 [Florez, Elizabeth] Univ Chile, Dept Fis, Santiago, Chile. [Vines, Francesc] Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem, D-91058 Erlangen, Germany. [Vines, Francesc] Univ Erlangen Nurnberg, Interdisciplinary Ctr Interface Controlled Proc, D-91058 Erlangen, Germany. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. RP Florez, E (reprint author), Univ Chile, Dept Fis, Las Palmeras 3425 Nunoa, Santiago, Chile. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Florez, Elizabeth/0000-0002-8301-8550; Vines, Francesc/0000-0001-9987-8654 FU MICINN [FIS2008-02238]; Fondecyt [3080033]; Barcelona Supercomputing Center (BSC); Centre de Supercomputacio de Catalunya (CESCA); U.S. Department of Energy [DE-AC02-98CH10886]; National Synchrotron Light Source (NSLS); U.S. Department of Energy FX E. F. would like to thank Colciencias and the University of Antioquia for her scholarship. F. V. is grateful to Alexander von Humboldt Foundation for a Postdoctoral Fellowship and to the Spanish Ministry of Education and Science (MEC) for a predoctoral grant. Financial support has been provided by the MICINN under Grant No. FIS2008-02238 and by Fondecyt Grant No. 3080033. Computational time provided by the Barcelona Supercomputing Center (BSC) and Centre de Supercomputacio de Catalunya (CESCA) is gratefully acknowledged. The research carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division under Grant No. DE-AC02-98CH10886). The National Synchrotron Light Source (NSLS) is supported by the Divisions of Chemical and Materials Science of the U.S. Department of Energy. NR 63 TC 12 Z9 12 U1 0 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2009 VL 130 IS 24 AR 244706 DI 10.1063/1.3158620 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 465PX UT WOS:000267600400039 PM 19566173 ER PT J AU Yacovitch, TI Garand, E Neumark, DM AF Yacovitch, Tara I. Garand, Etienne Neumark, Daniel M. TI Slow photoelectron velocity-map imaging spectroscopy of the vinoxide anion SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electron affinity; excited states; Franck-Condon factors; free radicals; ground states; molecular electronic states; negative ions; organic compounds; photoelectron spectra; potential energy functions; vibrational states ID ACETALDEHYDE ENOLATE ANION; LASER-INDUCED FLUORESCENCE; CROSSED MOLECULAR-BEAM; FRANCK-CONDON FACTORS; NEGATIVE-IONS; POLYATOMIC-MOLECULES; ACETYL RADICALS; STATE; DYNAMICS; PHOTODETACHMENT AB High resolution photoelectron spectra of the vinoxide anion are obtained by slow electron velocity-map imaging. Transitions between the anion X approximate to (1)A(') ground electronic state and the radical X approximate to (2)A(') and A approximate to (2)A(') states are observed. This experiment yields a precise value of 1.8250 +/- 0.0012 eV for the adiabatic electron affinity and 0.996 +/- 0.003 eV for the A approximate to-X approximate to term energy of the vinoxy radical. Franck-Condon simulations of the X approximate to (2)A(')<- X approximate to (1)A(') transition are performed at varying levels of approximation. Full treatment with Duschinsky rotation is necessary to reproduce experimental results. Comparison of the experimental and simulated spectra leads to the assignment of previously unresolved transitions, notably between levels of a(') symmetry. C1 [Yacovitch, Tara I.; Garand, Etienne; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453 FU Air Force Office of Scientific Research [F49620-03-1-0085]; Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT); National Science and Engineering Research Council of Canada (NSERC) FX This work was supported by the Air Force Office of Scientific Research under Grant No. F49620-03-1-0085. T.I.Y. thanks the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) for a master's scholarship. E. G. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship. NR 52 TC 12 Z9 12 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2009 VL 130 IS 24 AR 244309 DI 10.1063/1.3157208 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 465PX UT WOS:000267600400021 PM 19566155 ER PT J AU Kollias, P Miller, MA Johnson, KL Jensen, MP Troyan, DT AF Kollias, Pavlos Miller, Mark A. Johnson, Karen L. Jensen, Michael P. Troyan, David T. TI Cloud, thermodynamic, and precipitation observations in West Africa during 2006 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TOP HEIGHT; TOGA-COARE; TROPICAL ATLANTIC; RADIATION BUDGET; NAURU-ISLAND; DRY AIR; PACIFIC; RADAR; STATISTICS; INTRUSION AB In 2006, the ARM Mobile Facility (AMF) completed a 1-year deployment at Niamey, Niger, Africa, in support of the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) field campaign, which is the subject of this special issue. Observations from the AMF instrumentation are used to analyze the relationship between clouds, precipitation, and the thermodynamic environment in this rarely observed region and to evaluate the cloud fields in the National Center for Environmental Prediction Global Forecast System (GFS) initialization product. The 1-year deployment period enabled measurements in the dry and wet (monsoon) seasons and through the transitions in May and September, respectively. Cirrus clouds in the 10- to 15-km layer with modest monthly cloud fraction and mean depth of similar to 1 km are ubiquitous through the observing period as observed in other regions of the tropics. The monsoon season from May to September is characterized by convective clouds of varying depth that produce precipitation of varying intensity, as indicated by cloud radar. Peak surface rainfall is observed during August, and the largest daily rainfall rates are observed during the period from July to September. The lifting condensation level (LCL) is observed to decrease as the monsoon season progresses, and a strong correlation between the height of the LCL and precipitation is demonstrated. Cooling of the lower troposphere is implicated as the probable cause of the lowering of the LCL. Conversely, the amount of convective available potential energy is found to be poorly correlated with precipitation. As in other tropical regions, the physical height at which the zero-degree isotherm is observed corresponds to gradients in the thermodynamic profiles and a gradient in the profile of cloud occurrence. Comparisons with the GFS initialization data, which are derived from a number of sources including satellites, show some systematic biases when compared to AMF measurements. There is general correspondence between the locations of clouds and the profile of vertical velocity diagnosed by the GFS initialization early in the monsoon season, but vague correspondence thereafter. The relative humidity in the GFS initialization is too large above 10 km and too small in the monsoon layer near the surface, and it seriously underestimates the amount of cloud below 10 km during August, which is the height of the West African monsoon in Niamey. C1 [Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2K6, Canada. [Miller, Mark A.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Johnson, Karen L.; Jensen, Michael P.; Troyan, David T.] Brookhaven Natl Lab, Dept Atmospher Sci, Upton, NY 11973 USA. RP Kollias, P (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, 805 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. EM pavlos.kollias@mcgill.ca NR 30 TC 14 Z9 14 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2009 VL 114 AR D00E08 DI 10.1029/2008JD010641 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 464FH UT WOS:000267490200001 ER PT J AU Tilmes, S Garcia, RR Kinnison, DE Gettelman, A Rasch, PJ AF Tilmes, Simone Garcia, Rolando R. Kinnison, Douglas E. Gettelman, Andrew Rasch, Philip J. TI Impact of geoengineered aerosols on the troposphere and stratosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE DEPLETION; SOUTHERN-HEMISPHERE; VOLCANIC AEROSOLS; SULFATE AEROSOLS; CLIMATE; MODEL; CIRCULATION; FORMULATION; SIMULATION; EVOLUTION AB A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020-2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth's climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates. C1 [Tilmes, Simone; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, Andrew] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tilmes, S (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80307 USA. EM tilmes@ucar.edu FU U.K. Meteorological Office; European Center for Medium-range Weather Forecasts FX We gratefully acknowledge the members of the HALOE team at NASA/Langley Research Center for their work in producing and making available the HALOE data set. Thanks are also owed to the U.K. Meteorological Office and the European Center for Medium-range Weather Forecasts for providing meteorological analyses. Further, we thank the WACCM team, especially Francis Vitt, StacyWalters, and Fabrizio Sassi, for assistance with regard to the WACCM3 model setup and analysis tools. We also thank Michael Mills and Brian Toon for helpful discussions on microphysical processes in connection with stratospheric sulfur injection. Finally, we are grateful to Steven Massie and John Orlando for their review of the original manuscript. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. NR 52 TC 62 Z9 62 U1 1 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2009 VL 114 AR D12305 DI 10.1029/2008JD011420 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 464FH UT WOS:000267490200003 ER PT J AU Lu, GH Ocola, LE Chen, JH AF Lu, Ganhua Ocola, Leonidas E. Chen, Junhong TI Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes SO ADVANCED MATERIALS LA English DT Article ID MINIARC PLASMA SOURCE; CHEMICAL SENSORS; NANOPARTICLES; NANOTECHNOLOGY; CONDUCTANCE; SENSITIVITY; SURFACE AB A new gas-sensing platform for low-concentration gases (NO(2), H(2), and CO) comprises discrete SnO(2) nanocrystals uniformly distributed on the surface of multiwalled carbon nanotubes (CNTs). The resulting hybrid nanostructures are highly sensitive, even at room temperature, because their gas sensing abilities rely on electron transfer between the nanocrystals and the CNTs. C1 [Lu, Ganhua; Chen, Junhong] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. [Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chen, JH (reprint author), Univ Wisconsin, Dept Mech Engn, 3200 N Cramer St, Milwaukee, WI 53211 USA. EM jhchen@uwm.edu RI Lu, Ganhua/B-4643-2010; OI Lu, Ganhua/0000-0003-3279-8427; Ocola, Leonidas/0000-0003-4990-1064 FU National Science Foundation [CMMI-0609059, CBET-0803142]; UWMRF; US Department of Energy [DE-AC02-06CH 11357] FX This work was financially supported by the National Science Foundation through grants CMMI-0609059 and CBET-0803142 and by the UWMRF through a catalyst grant. The authors thank M. Gajdardziska-Josifiovska for providing TEM access and D. Robertson for technical support with TEM analyses. The e-bearn lithography was performed at the Center for Nanoscale Materials of Argonne National Laboratory (ANL), and the SEM imaging was conducted at the Electron Microscopy Center of ANIL, both of which are supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH 11357. NR 39 TC 153 Z9 155 U1 12 U2 90 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 26 PY 2009 VL 21 IS 24 BP 2487 EP + DI 10.1002/adma.200803536 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 467EA UT WOS:000267719000002 ER PT J AU Jura, N Endres, NF Engel, K Deindl, S Das, R Lamers, MH Wemmer, DE Zhang, XW Kuriyan, J AF Jura, Natalia Endres, Nicholas F. Engel, Kate Deindl, Sebastian Das, Rahul Lamers, Meindert H. Wemmer, David E. Zhang, Xuewu Kuriyan, John TI Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment SO CELL LA English DT Article ID EPIDERMAL-GROWTH-FACTOR; TYROSINE KINASE; TRANSMEMBRANE DOMAIN; CRYSTAL-STRUCTURE; PLASMA-MEMBRANE; COILED-COIL; DIMERIZATION; INHIBITOR; MUTATIONS; LIGAND AB Signaling by the epidermal growth factor receptor requires an allosteric interaction between the kinase domains of two receptors, whereby one activates the other. We show that the intracellular juxtamembrane segment of the receptor, known to potentiate kinase activity, is able to dimerize the kinase domains. The C-terminal half of the juxtamembrane segment latches the activated kinase domain to the activator, and the N-terminal half of this segment further potentiates dimerization, most likely by forming an antiparallel helical dimer that engages the transmembrane helices of the activated receptor. Our data are consistent with a mechanism in which the extracellular domains block the intrinsic ability of the transmembrane and cytoplasmic domains to dimerize and activate, with ligand binding releasing this block. The formation of the activating juxtamembrane latch is prevented by the C-terminal tails in a structure of an inactive kinase domain dimer, suggesting how alternative C1 [Jura, Natalia; Endres, Nicholas F.; Engel, Kate; Deindl, Sebastian; Das, Rahul; Lamers, Meindert H.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Jura, Natalia; Endres, Nicholas F.; Engel, Kate; Deindl, Sebastian; Das, Rahul; Lamers, Meindert H.; Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA. [Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu OI Deindl, Sebastian/0000-0001-6807-8654 FU Howard Hughes Medical Institute; NCI NIH HHS [R01 CA096504-06, R01 CA096504, R01 CA96504-06]; NIGMS NIH HHS [GM 68933, P41 GM068933, P41 GM068933-05] NR 50 TC 262 Z9 264 U1 5 U2 40 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD JUN 26 PY 2009 VL 137 IS 7 BP 1293 EP 1307 DI 10.1016/j.cell.2009.04.025 PG 15 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 462RM UT WOS:000267373400022 PM 19563760 ER PT J AU Um, W Serne, RJ Last, GV Clayton, RE Glossbrenner, ET AF Um, Wooyong Serne, R. Jeffrey Last, George V. Clayton, Ray E. Glossbrenner, Ellwood T. TI The effect of gravel size fraction on the distribution coefficients of selected radionuclides SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Gravel fraction; Distribution coefficient (K(d)); Radionuclide; Adsorption; Mobility ID HANFORD SITE; AQUIFER SEDIMENTS; ADSORPTION; SORPTION; SAND; WASHINGTON; TRANSPORT AB This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient (K(d)) construct can be estimated from laboratory tests on sediments less than 2 mm size fraction. However, this common assumption can lead to inaccurate estimates of the mobility and sorption affinity of many radionuclides (e.g., Tc, U, and Np) on gravel dominated sediments at the Hanford Site and other locations. Laboratory batch sorption experiments showed that the distribution coefficients measured using only sediment less than 2 mm size fraction and correcting for inert gravel fraction were not in agreement with those obtained from the bulk sediments including gravel (larger than 2 mm size fraction), depending on the radionuclide. The least reactive radionuclide, Tc had K(d) values for bulk sediment with negligible deviations from the inert gravel corrected K(d) values measured on less than 2 mm size fraction. However, differences between measured K(d) values using sediment less than 2 mm size fraction and the K(d) values on the bulk sediment were significant for intermediately and strongly reactive radionuclides such as U and Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxide coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the K(d,<2 mm). and K(d,) (>2 mm) values to estimate the K(d) for the bulk sediment were found to best describe Kd values for radionuclides on the bulk sediment. Gravel correction factors should not be neglected to predict precisely the sorption capacity of the bulk sediments that contain more than 30% gravel. In addition, more detailed characterization of gravel surfaces should be conducted to identify whether higher reactive sorbents are present in the gravels. Published by Elsevier B.V. C1 [Um, Wooyong; Serne, R. Jeffrey; Last, George V.; Clayton, Ray E.; Glossbrenner, Ellwood T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Um, W (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Wooyong.um@pnl.gov FU Fluor Hanford Inc; The Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC006-76RLO 1830] FX This study was conducted in support of the Remediation Decision Support (RDS) Project with funding from Fluor Hanford Inc. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the U.S. Department of Energy under contracts DE-AC006-76RLO 1830. Eric Clayton, Steven Baum, and Chris Strickland in PNNL are also gratefully acknowledged for their help in the sample analyses. The authors also thank two anonymous reviewers for their helpful comments to improve this manuscript. NR 19 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD JUN 26 PY 2009 VL 107 IS 1-2 BP 82 EP 90 DI 10.1016/j.jconhyd.2009.04.003 PG 9 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 468RA UT WOS:000267836400007 PM 19442406 ER PT J AU Kehr, S Malinouski, M Finney, L Vogt, S Labunskyy, VM Kasaikina, MV Carlson, BA Zhou, Y Hatfield, DL Gladyshev, VN AF Kehr, Sebastian Malinouski, Mikalai Finney, Lydia Vogt, Stefan Labunskyy, Vyacheslav M. Kasaikina, Marina V. Carlson, Bradley A. Zhou, You Hatfield, Dolph L. Gladyshev, Vadim N. TI X-Ray Fluorescence Microscopy Reveals the Role of Selenium in Spermatogenesis SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE selenium; X-ray fluorescence microscopy; spermatogenesis; male reproduction; trace elements ID HYDROPEROXIDE GLUTATHIONE-PEROXIDASE; SPERM MATURATION; SELENOPROTEIN-P; DEVELOPMENTAL EXPRESSION; MITOCHONDRIAL CAPSULES; THIOREDOXIN REDUCTASE; MOUSE; SELENOCYSTEINE; PROTEIN; SUPPLEMENTATION AB Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular, and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and colocalized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.2 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Kehr, Sebastian; Malinouski, Mikalai; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Gladyshev, Vadim N.] Univ Nebraska, Redox Biol Ctr, Lincoln, NE 68588 USA. [Kehr, Sebastian; Malinouski, Mikalai; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Gladyshev, Vadim N.] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. [Finney, Lydia] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Finney, Lydia; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Carlson, Bradley A.; Hatfield, Dolph L.] NCI, Mol Biol Selenium Sect, Lab Canc Prevent, CCR,NIH, Bethesda, MD 20892 USA. [Zhou, You] Univ Nebraska, Ctr Biotechnol, Lincoln, NE 68588 USA. RP Gladyshev, VN (reprint author), Univ Nebraska, Redox Biol Ctr, Lincoln, NE 68588 USA. EM vgladyshev1@unl.edu RI Gladyshev, Vadim/A-9894-2013; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU National Institutes of Health [GM065204]; Intramural Research Program of the Center for Cancer Research; National Cancer Institute; National Institutes of Health; Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Wayne Vogl for helpful discussion. We also thank Marcus Conrad for providing tissues from nGPx4 and mGPx4 knockout mice and Raymond Burk and Kristina Hill for tissues from Sell? knockout mice. This study was supported by National Institutes of Health Grant GM065204 (to V.N.G.) and the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health (to D.L.H.). Use of the Advanced Photon Source was supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 44 TC 41 Z9 43 U1 0 U2 6 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUN 26 PY 2009 VL 389 IS 5 BP 808 EP 818 DI 10.1016/j.jmb.2009.04.024 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 466OL UT WOS:000267671700002 PM 19379757 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Potter, C da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Potter, C. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for the Standard Model Higgs Boson in Tau Final States SO PHYSICAL REVIEW LETTERS LA English DT Article ID EVENTS AB We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron pp collider. We select two final states: tau(+/-) plus missing transverse energy and b jets, and tau(+)tau(-) plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion, and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Ancu, Lucian Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012 OI Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Carrera, Edgar/0000-0002-0857-8507; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Dudko, Lev/0000-0002-4462-3192; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Novaes, Sergio/0000-0003-0471-8549 FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CFI, NSERC; BMBF and DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and West-Grid Project Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 22 TC 13 Z9 13 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 251801 DI 10.1103/PhysRevLett.102.251801 PG 7 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000012 ER PT J AU Cloet, IC Bentz, W Thomas, AW AF Cloet, I. C. Bentz, W. Thomas, A. W. TI Isovector EMC Effect and the NuTeV Anomaly SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXTENDED NJL MODEL; QUARK DISTRIBUTIONS; NUCLEAR-MATTER; PARTON DISTRIBUTIONS; NEUTRINO REACTIONS; DYNAMICAL MODEL; SUPERCONDUCTIVITY; ANALOGY AB A neutron or proton excess in nuclei leads to an isovector-vector mean field which, through its coupling to the quarks in a bound nucleon, implies a shift in the quark distributions with respect to the Bjorken scaling variable. We show that this result leads to an additional correction to the NuTeV measurement of sin(2)theta(W). The sign of this correction is largely model independent and acts to reduce their result. Explicit calculation in nuclear matter within a covariant and confining Nambu-Jona-Lasinio model predicts that this vector field correction may account for a substantial fraction of the NuTeV anomaly. We are therefore led to offer a new interpretation of the NuTeV measurement, namely, that it provides further evidence for the medium modification of the bound nucleon wave function. C1 [Cloet, I. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bentz, W.] Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Cloet, IC (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU U.S. Department of Energy [DEFG03-97ER4014, DE-AC05-06OR23177]; Japanese Ministry of Education, Culture, Sports, Science and Technology [C-19540306] FX I. C. thanks Jerry Miller for helpful discussions. This work was supported by the U.S. Department of Energy under Grant No. DEFG03-97ER4014 and by Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory and by the Grant in Aid for Scientific Research of the Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. C-19540306. NR 35 TC 54 Z9 54 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 252301 DI 10.1103/PhysRevLett.102.252301 PG 4 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000013 PM 19659069 ER PT J AU Dandrea, L Pederiva, F Gandolfi, S Kalos, MH AF Dandrea, L. Pederiva, F. Gandolfi, S. Kalos, M. H. TI Fermionic Shadow Wave Function Variational Calculations of the Vacancy Formation Energy in He-3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOLID HE-3; LIQUID-HE-4; HELIUM AB We present a novel technique well suited for studying the ground state of inhomogeneous fermionic matter in a wide range of different systems. The system is described using a fermionic shadow wave function, and the energy is computed by means of the variational Monte Carlo technique. The general form of the fermionic shadow wave function is useful for describing many-body systems with the coexistence of different phases as well in the presence of defects or impurities, but it requires overcoming a significant sign problem. As an application, we studied the energy to activate vacancies in solid He-3. C1 [Dandrea, L.; Pederiva, F.] Univ Trent, Dipartimento Fis, I-38050 Trento, Italy. [Dandrea, L.; Pederiva, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy. [Gandolfi, S.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Gandolfi, S.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Kalos, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Dandrea, L (reprint author), Univ Trent, Dipartimento Fis, Via Sommarive 14, I-38050 Trento, Italy. FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX We thank G. V. Chester for useful discussions, C. J. Umrigar for providing us with the Levemberg- Marquardt package used for the optimization of the wave function, and, in particular, we are indebted to F. Operetto for help with the optimization procedure. Calculations were partially performed on the BEN cluster at ECT* in Trento, under a grant for supercomputing projects, and partially on the HPC facility WIGLAF of the Department of Physics, University of Trento. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC5207NA27344. NR 18 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 255302 DI 10.1103/PhysRevLett.102.255302 PG 4 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000034 PM 19659090 ER PT J AU Pollmann, F Mukerjee, S Turner, AM Moore, JE AF Pollmann, Frank Mukerjee, Subroto Turner, Ari M. Moore, Joel E. TI Theory of Finite-Entanglement Scaling at One-Dimensional Quantum Critical Points SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE; SYSTEMS AB Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the 'central charge' of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)]. The parameter-free theory is checked against numerical scaling at several quantum critical points. C1 [Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M.; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mukerjee, Subroto; Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Pollmann, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Pollmann, Frank/L-5378-2013; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU DARPA OLE; Max Planck Foundation; DOE; NSF [DMR-0804413] FX The authors thank DARPA OLE and the Max Planck Foundation (F. P.), DOE (S. M.), and NSF DMR-0804413 (J. E. M.) for support. NR 27 TC 110 Z9 110 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 255701 DI 10.1103/PhysRevLett.102.255701 PG 4 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000040 PM 19659096 ER PT J AU Blanchette, CD Woo, YH Thomas, C Shen, N Sulchek, TA Hiddessen, AL AF Blanchette, Craig D. Woo, Youn-Hi Thomas, Cynthia Shen, Nan Sulchek, Todd A. Hiddessen, Amy L. TI Decoupling Internalization, Acidification and Phagosomal-Endosomal/lysosomal Fusion during Phagocytosis of InlA Coated Beads in Epithelial Cells SO PLOS ONE LA English DT Article AB Background: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomalendosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Methodology/Principal Findings: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. Conclusions/Significance: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e. g. pathogen-host systems. RP Blanchette, CD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hiddessen1@llnl.gov NR 50 TC 21 Z9 22 U1 0 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 26 PY 2009 VL 4 IS 6 AR e6056 DI 10.1371/journal.pone.0006056 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 463ID UT WOS:000267424600004 PM 19557127 ER PT J AU Pushp, A Parker, CV Pasupathy, AN Gomes, KK Ono, S Wen, JS Xu, ZJ Gu, G Yazdani, A AF Pushp, Aakash Parker, Colin V. Pasupathy, Abhay N. Gomes, Kenjiro K. Ono, Shimpei Wen, Jinsheng Xu, Zhijun Gu, Genda Yazdani, Ali TI Extending Universal Nodal Excitations Optimizes Superconductivity in Bi2Sr2CaCu2O8+delta SO SCIENCE LA English DT Article ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTORS; UNDERDOPED BI2212; MOTT INSULATOR; ENERGY GAPS; PSEUDOGAP AB Understanding the mechanism by which d wave superconductivity in the cuprates emerges and is optimized by doping the Mott insulator is one of the major outstanding problems in condensed-matter physics. Our high-resolution scanning tunneling microscopy measurements of the high-transition temperature (T-c) superconductor Bi2Sr2CaCu2O8+delta show that samples with different T-c values in the low doping regime follow a remarkably universal d wave low-energy excitation spectrum, indicating a doping-independent nodal gap. We demonstrate that T-c instead correlates with the fraction of the Fermi surface over which the samples exhibit the universal spectrum. Optimal T-c is achieved when all parts of the Fermi surface follow this universal behavior. Increasing the temperature above T-c turns the universal spectrum into an arc of gapless excitations, whereas overdoping breaks down the universal nodal behavior. C1 [Pushp, Aakash; Parker, Colin V.; Pasupathy, Abhay N.; Gomes, Kenjiro K.; Yazdani, Ali] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Pushp, Aakash; Parker, Colin V.; Pasupathy, Abhay N.; Gomes, Kenjiro K.; Yazdani, Ali] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Pushp, Aakash] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Ono, Shimpei] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Wen, Jinsheng; Xu, Zhijun; Gu, Genda] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yazdani, A (reprint author), Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. EM yazdani@princeton.edu RI Wen, Jinsheng/F-4209-2010; Pushp, Aakash/G-6626-2011; xu, zhijun/A-3264-2013 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015 FU U.S. Department of Energy (DOE) [DE-FG02-07ER46419, DE-AC02-98CH10886]; NSF through the Princeton Center for Complex Materials; NSF FX We gratefully acknowledge discussions with P. W. Anderson, N. P. Ong, M. R. Norman, and M. Randeria. The work at Princeton is supported by the U.S. Department of Energy (DOE) under contract DE-FG02-07ER46419 and NSF through the Princeton Center for Complex Materials and through an NSF-Instrumentation grant. The work in BNL is supported by DOE under contract DE-AC02-98CH10886. NR 29 TC 89 Z9 89 U1 4 U2 22 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 26 PY 2009 VL 324 IS 5935 BP 1689 EP 1693 DI 10.1126/science.1174338 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 462GE UT WOS:000267338200033 PM 19498107 ER PT J AU Maiti, A Dinh, LN Baumann, TF Maxwell, RS Saab, AP AF Maiti, A. Dinh, L. N. Baumann, T. F. Maxwell, R. S. Saab, A. P. TI Kinetics of hydrogen uptake by scavenger molecules - Insights from molecular modeling SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SPILLOVER; STORAGE; DPB AB Mixed aromatic-alkyne molecules have been designed to scavenge and remove hydrogen in unwanted situations. Such materials in powdered solid form are mixed with catalytic metal particles that dissociate H(2) molecules into H radicals. However, many details of the H uptake mechanism remain poorly understood. Here we report molecular modeling studies, using both classical force fields and first-principles density functional theory, aimed at providing enhanced understanding of the uptake kinetics. Such insights are important in improving the H scavenging efficiency of the present and next-generation materials, as well as to provide molecular-scale interpretation of supporting experiments. (C) 2009 Published by Elsevier B.V. C1 [Maiti, A.; Dinh, L. N.; Baumann, T. F.; Maxwell, R. S.; Saab, A. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM amaiti@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [06-SI-005] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by Project 06-SI-005 funded by the Laboratory Directed Research and Development Program at LLNL. NR 24 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 25 PY 2009 VL 475 IS 4-6 BP 223 EP 226 DI 10.1016/j.cplett.2009.05.047 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457QV UT WOS:000266948100012 ER PT J AU Papagno, M Rodriguez, AF Girit, CO Meyer, JC Zettl, A Pacile, D AF Papagno, M. Rodriguez, A. Fraile Girit, C. Oe Meyer, J. C. Zettl, A. Pacile, D. TI Polarization-dependent C K near-edge X-ray absorption fine-structure of graphene SO CHEMICAL PHYSICS LETTERS LA English DT Article ID GRAPHITE-INTERCALATION COMPOUNDS; ELECTRONIC-STRUCTURE; INTERLAYER STATES; BAND; SPECTROSCOPY; GAS AB We report the polarization-dependent C K photoabsorption spectra of single-and few-layer graphene (FLG) samples produced by micromechanical cleavage of highly ordered pyrolytic graphite (HOPG) on a SiO(2) substrate. We show that the unoccupied sigma density of states of graphene and FLG strongly reflects the one measured on bulk HOPG, demonstrating the two-dimensional character of sigma states as well as the very-weak interlayer couplings between planes. Moreover, our spectra taken with different polarization allow us to show the predicted hybrid nature of the interlayer state. (C) 2009 Elsevier B. V. All rights reserved. C1 [Papagno, M.; Pacile, D.] Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy. [Papagno, M.; Pacile, D.] Univ Calabria, Dip Fis, I-87036 Cosenza, Italy. [Rodriguez, A. Fraile] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Girit, C. Oe; Meyer, J. C.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Girit, C. Oe; Meyer, J. C.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Papagno, M (reprint author), CNR, Ist Struttura Mat, Basovizza, TS, Italy. EM marco.papagno@ism.cnr.it RI Fraile Rodriguez, Arantxa/A-2446-2009; Meyer, Jannik/H-8541-2012; Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016; OI Fraile Rodriguez, Arantxa/0000-0003-2722-0882; Meyer, Jannik/0000-0003-4023-0778; Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X; Pacile, Daniela/0000-0001-6219-3889; Papagno, Marco/0000-0003-2623-1563 FU European Commission [R113-CT-2004-506008] FX Part of this work was performed at the Swiss Light Source, Paul Scherrer Institut, Switzerland. This research project has been supported by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures. Contract No. R113-CT-2004-506008. NR 24 TC 23 Z9 24 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 25 PY 2009 VL 475 IS 4-6 BP 269 EP 271 DI 10.1016/j.cplett.2009.05.054 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457QV UT WOS:000266948100022 ER PT J AU Gorton, I Chavarria, D Nieplocha, J AF Gorton, Ian Chavarria, Daniel Nieplocha, Jarek TI Design and implementation of a high-performance CCA event service SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE components; common component architecture; event service ID MODEL AB Event services based on publish-subscribe architectures are well-established components of distributed computing applications. Recently, an event service has been proposed as part of the common component architecture (CCA) for high-performance computing (HPC) applications. In this paper we describe our implementation, experimental evaluation, and initial experience with a high-performance CCA event service that exploits efficient communications mechanisms commonly used on HPC platforms. We describe the CCA event service model and briefly discuss the possible implementation strategies of the model. We then present the design and implementation of the event service using the aggregate remote memory copy interface as an underlying communication layer for this mechanism. Two alternative implementations are presented and evaluated on a Cray XD-1 platform. The performance results demonstrate that event delivery latencies are low and that the event service is able to achieve high-throughput levels. Finally, we describe the use of the event service in an application for high-speed processing of data from a mass spectrometer and conclude by discussing some possible extensions to the event service for other HPC applications. Published in 2009 by John Wiley & Sons, Ltd. C1 [Gorton, Ian; Chavarria, Daniel; Nieplocha, Jarek] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gorton, I (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ian.gorton@pnl.gov RI Gorton, Ian/A-8247-2009 NR 19 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JUN 25 PY 2009 VL 21 IS 9 BP 1159 EP 1179 DI 10.1002/cpe.1382 PG 21 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 459YE UT WOS:000267148400003 ER PT J AU Wing, S Johnson, JR AF Wing, Simon Johnson, Jay R. TI Substorm entropies SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CENTRAL PLASMA SHEET; ION FLOW; MAGNETOSPHERIC PLASMA; GEOSYNCHRONOUS ORBIT; FLUX TUBES; CONVECTION; MODEL; TAIL; FIELD; MAGNETOTAIL AB The specific entropy (s = p/rho(gamma)) and total entropy (S = p(1/gamma)V) of the plasma sheet during substorms are investigated with DMSP observations using a method that assumes ion isotropy (as also assumed in the derivation of S = S = p(1/gamma)V) and empirical magnetic field models that capture the expected characteristics of substorm phases. Earthward reductions of S are found during quasi-steady periods (e.g., growth phase) as well as during the transition from growth to expansion phases. During quasi-steady periods, (1) S and flux tube content (N) decrease moderately at midtail, but more steeply at the inner edge of the plasma sheet, and (2) s appears roughly conserved in the X or convection direction, but closer to Earth, there is a duskward heat flux. Both 1 and 2 suggest that curvature/gradient drifts can play a significant role in the S and N losses. On the other hand, during the transition from growth to expansion phases, S is reduced by an order of magnitude earthward of 20 R-E, which can be attributed mainly to the reduction in V from the dipolarization after onset, but s is roughly conserved. This result is consistent with a mechanism that reduces the flux tube volume/content without significantly altering s. Recent magnetohydrodynamic/particle-in-cell simulations of magnetic reconnection indicate that s tends to be conserved except in the small dissipation region, but the change in the field line topology for a reconnected field line can lead to a reduction in S with the remainder contained in a plasmoid that forms tailward of the X line. C1 [Wing, Simon] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Johnson, Jay R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wing, S (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM simon.wing@jhuapl.edu FU NSF [ATM-0703445, ATM-0802715, ATM-0538513, ATM0411392, ATM0614012]; NASA [NNH04AB23I, NNH04AA73I, NNG06GE96G, NNX06AB87G, NNH07AF37I]; DOE [DE-AC02-76CH03073] FX Gordon Wilson has been helpful in our acquiring DMSP SSJ4 data, as has the World Data Center in Boulder, Colorado. Joe Borovsky has kindly and generously provided Figure 6. The authors thank Jesper Gjerloev for providing the substorm database and Michelle Thomsen for helpful discussions. Simon Wing gratefully acknowledges support from NSF grants ATM-0703445, ATM-0802715, and ATM-0538513 and NASA grant NNX06AB87G. Jay R. Johnson acknowledges support from NASA grants (NNH04AB23I, NNH04AA73I, NNG06GE96G, NNX06AB87G and NNH07AF37I), NSF grants (ATM0411392, ATM0614012, and ATM-0703445), and DOE contract DE-AC02-76CH03073. Finally, the authors would like to thank both referees for helpful comments. NR 57 TC 14 Z9 14 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 25 PY 2009 VL 114 AR A00D07 DI 10.1029/2008JA013989 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 464FX UT WOS:000267491800001 ER PT J AU Jiang, DE van Duin, ACT Goddard, WA Dai, S AF Jiang, De-en van Duin, Adri C. T. Goddard, William A., III Dai, Sheng TI Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MESOPOROUS CARBON MATERIALS; SYSTEMS; OXIDATION; MODELS AB Pyrolysis of phenolic resins leads to carbon formation. Simulating this resin-to-carbon process atomistically is a daunting task. In this paper, we attempt to model the initial stage of this process by using the ReaxFF reactive force field, which bridges quantum mechanical and molecular mechanical methods. We run molecular dynamics simulations to examine the evolution of small molecules at different temperatures. The main small-molecule products found include H2O, H-2, CO, and C2H2. We find multiple pathways leading to H2O formation, including a frequent channel via beta-H elimination, which has not been proposed before. We determine the reaction barrier for H2O formation from the reaction rates obtained at different temperatures. We also discuss the relevance of our simulations to previous experimental observations. This work represents a first attempt to model the resin-to-carbon proc ess atomistically. C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Goddard, William A., III] CALTECH, Div Chem & Chem Engn, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX The work was supported by Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 27 TC 47 Z9 49 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 25 PY 2009 VL 113 IS 25 BP 6891 EP 6894 DI 10.1021/jp902986u PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460RT UT WOS:000267205500007 PM 19496580 ER PT J AU Zheng, LX Satishkumar, BC Gao, PQ Zhang, Q AF Zheng, Lianxi Satishkumar, B. C. Gao, Pingqi Zhang, Qing TI Kinetics Studies of Ultralong Single-Walled Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; GROWTH; TEMPERATURE AB Single-walled carbon nanotubes (SWCNTs) were synthesized using ethanol CVD to study the nucleation kinetics of nanotube growth. By counting the number density of SWCNTs, i.e., the number of nanotubes per unit area on the substrate, the nucleation process of SWCNT growth was studied extensively within a wide range of growth temperatures. A nucleation energy about 2.8 eV was obtained from the Arrhenius-like temperature dependence of the number density of SWCNTs. The big difference between nucleation energy and diffusion energy implies the growth route for ultralong SWCNTs, and our approach may afford control over nanotube structure. The novel approach of studying the influence of "measure length" on activation energy may open an opportunity to understand the physics behind growth of nanotubes. C1 [Zheng, Lianxi] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore. [Satishkumar, B. C.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Gao, Pingqi; Zhang, Qing] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore. RP Zheng, LX (reprint author), Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore. EM Lxzheng@ntu.edu.sg RI Zhang , Qing/A-5073-2011; Gao, Pingqi/B-4813-2011; Zheng, Lianxi/A-3855-2011 OI Zhang , Qing/0000-0002-2655-4971; Zheng, Lianxi/0000-0003-4974-365X FU Singapore MOE tier [I RG26/08] FX One of the authors, L.Z. would like to thank the Singapore MOE tier I RG26/08 research fund for financial support. NR 21 TC 18 Z9 18 U1 3 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 25 PY 2009 VL 113 IS 25 BP 10896 EP 10900 DI 10.1021/jp901640d PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 460RV UT WOS:000267205700010 ER PT J AU Deng, XY Matranga, C AF Deng, Xingyi Matranga, Christopher TI Selective Growth of Fe2O3 Nanoparticles and Islands on Au(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; FISCHER-TROPSCH SYNTHESIS; LAYER-ASSISTED DEPOSITION; IRON-OXIDE FILMS; SURFACE-STRUCTURE; HETEROEPITAXIAL GROWTH; MOO3 NANOSTRUCTURES; EPITAXIAL-GROWTH; PT(111); ADSORPTION AB Selective growth of well-defined alpha-Fe2O3 structures was achieved on a Au(111) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Although oxidation of Fe particles on Au(111) with molecular O-2 at room temperature forms FeO, Fe2O3 is prepared by oxidation of Fe particles on Au(111) with NO2 at an elevated temperature, as verified by XPS, based on the binding energy (BE) value of the Fe 2p(3/2) (710.9 eV) peak and atomic ratio of O and Fe similar to 1.5:1. STM images reveal that Fe2O3 adopted ordered three-dimensional structures on Au(111). Although the general morphology of the Fe2O3 structures on Au(111) depends on the cove rage, varying from nanoparticles at low coverage to islands at high coverage, all of these Fe2O3 structures have nearly identical heights of 5-6 angstrom at all coverages. The surface structures of the Fe2O3 are all consistent with an O-terminated alpha-Fe2O3(0001), showing a hexagonal unit cell with a lattice constant of similar to 3 angstrom in atomically resolved STM images. C1 [Deng, Xingyi; Matranga, Christopher] US DOE, NETL, Pittsburgh, PA 15236 USA. [Deng, Xingyi] Parsons Project Serv Inc, South Pk, PA 15129 USA. RP Deng, XY (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA. EM Xingyi.Deng@netl.doe.gov RI Matranga, Christopher/E-4741-2015; OI Matranga, Christopher/0000-0001-7082-5938; Deng, Xingyi/0000-0001-9109-1443 FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX We thank Dr. Junseok Lee for his experimental assistance and discussions regarding our results. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Fischer-Tropsch catalysts for the Hydrogen from Coal Program under the RDS Contract DE-AC26-04NT41817. Reference in this work to any specific commercial product is to facilitate understanding and does not necessarily imply endorsement by the U.S. Department of Energy. NR 47 TC 19 Z9 19 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 25 PY 2009 VL 113 IS 25 BP 11104 EP 11109 DI 10.1021/jp9021954 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 460RV UT WOS:000267205700036 ER PT J AU Brown, DW Bourke, MAM Clausen, B Korzekwa, DR Korzekwa, RC McCabe, RJ Sisneros, TA Teter, DF AF Brown, D. W. Bourke, M. A. M. Clausen, B. Korzekwa, D. R. Korzekwa, R. C. McCabe, R. J. Sisneros, T. A. Teter, D. F. TI Temperature and direction dependence of internal strain and texture evolution during deformation of uranium SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Uranium; Deformation; Neutron diffraction; Internal stresses; Texture ID FINITE-ELEMENT ANALYSIS; RIETVELD REFINEMENT; NEUTRON-DIFFRACTION; MECHANICAL RESPONSE; RESIDUAL-STRESSES; ROD TEXTURE; ZIRCALOY-2; ZIRCONIUM AB Depleted uranium is of current programmatic interest at Los Alamos National Lab due to its high density and nuclear applications. At room temperature, depleted uranium displays an orthorhombic crystal structure with highly anisotropic mechanical and thermal properties. For instance, the coefficient of thermal expansion is roughly 20 x 10(-6) degrees C(-1) in the a and c directions, but near zero or slightly negative in the b direction. The innate anisotropy combined with thermo-mechanical processing during manufacture results in spatially varying residual stresses and crystallographic texture, which can cause distortion, and failure in completed parts, effectively wasting resources. This paper focuses on the development of residual stresses and textures during deformation at room and elevated temperatures with an eye on the future development of computational polycrystalline plasticity models based on the known micro-mechanical deformation mechanisms of the material. (C) 2009 Published by Elsevier B.V. C1 [Brown, D. W.; Bourke, M. A. M.; Clausen, B.; Korzekwa, D. R.; Korzekwa, R. C.; McCabe, R. J.; Sisneros, T. A.; Teter, D. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brown, DW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dbrown@lanl.gov RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; McCabe, Rodney /0000-0002-6684-7410 FU Office of Basic Energy Sciences (DOE); National Security LLC [DE-AC52-06NA25396] FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 27 TC 16 Z9 17 U1 2 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 25 PY 2009 VL 512 IS 1-2 BP 67 EP 75 DI 10.1016/j.msea.2009.02.004 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 452YL UT WOS:000266577000010 ER PT J AU Janssens, RVF AF Janssens, Robert V. F. TI NUCLEAR PHYSICS Unexpected doubly magic nucleus SO NATURE LA English DT Editorial Material ID NUMBERS C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Janssens, RVF (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM janssens@anl.gov NR 8 TC 32 Z9 33 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 25 PY 2009 VL 459 IS 7250 BP 1069 EP 1070 DI 10.1038/4591069a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 466BX UT WOS:000267636700031 PM 19553989 ER PT J AU Zhang, GJ Wang, RG De Jonghe, LC AF Zhang, Guojing Wang, Ruigang De Jonghe, Lutgard C. TI Crystallization and conductivity of 2CaO-La2O3-5P(2)O(5) glass-ceramic with Al2O3 addition SO SOLID STATE IONICS LA English DT Article DE Rare earth phosphates; Glass-ceramic; Conductivity ID TEMPERATURE PROTONIC CONDUCTION; LAP3O9; LAPO4 AB Al2O3 was added to a 2CaO-La2O3-5P(2)O(5) metaphosphate, to replace 10% of the Ca2+ ions by Al3+, forming a phosphate with the nominal composition 1.8CaO-0.1Al(2)O(3)-La2O3-5P(2)O(5). The effect of Al2O3 addition and heat treatment on the microstructure and conductivity of the resulting glass-ceramics was investigated by XRD, SEM, TEM, and AC impedance spectroscopy. Upon transformation from glass to glass-ceramic, conductivities increased significantly. The glasses were isochronally transformed at 700 and at 800 degrees C for 1 h or 5 h, in air, following heating at 3 or 10 degrees C/min. With Al2O3 addition, after a heat treatment at 700 degrees C, 100-300 nm nano-domains of LaP3O9 crystallized from the glass matrix. Annealing at 800 degrees C produced a further order of magnitude conductivity increase for the Al-free glass, but less so for the M-containing glass. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Guojing; Wang, Ruigang; De Jonghe, Lutgard C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [De Jonghe, Lutgard C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP De Jonghe, LC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM dejonghe@lbl.gov RI Wang, Ruigang/C-2769-2011 FU U. S. Department of Energy [DE-AC02-05CH11231]; Molecular Foundry; National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory FX This work was supported by the Director, Office of Science, Office of Basic Energy Science, Materials Sciences and Engineering Division, of the U. S. Department of Energy under contract No. DE-AC02-05CH11231. The authors acknowledge support of the Molecular Foundry and the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory, which is also supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 8 TC 1 Z9 1 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD JUN 25 PY 2009 VL 180 IS 14-16 BP 941 EP 945 DI 10.1016/j.ssi.2009.04.008 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 466PH UT WOS:000267674000006 ER PT J AU Sugita, S Yamaoka, K Ohno, M Tashiro, MS Nakagawa, YE Urata, Y Pal'shin, V Golenetskii, S Sakamoto, T Cummings, J Krimm, H Stamatikos, M Parsons, A Barthelmy, S Gehrels, N AF Sugita, Satoshi Yamaoka, Kazutaka Ohno, Masanori Tashiro, Makoto S. Nakagawa, Yujin E. Urata, Yuji Pal'shin, Valentin Golenetskii, Sergei Sakamoto, Takanori Cummings, Jay Krimm, Hans Stamatikos, Michael Parsons, Ann Barthelmy, Scott Gehrels, Neil TI Suzaku-WAM, Konus-Wind, and Swift-BAT Observations of Prompt Emission of the High-Redshift GRB 050904 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE gamma rays: observations; stars: individual (GRB 050904) ID GAMMA-RAY BURST; ALL-SKY MONITOR; PEAK ENERGY; LUMINOSITY RELATION; OPTICAL AFTERGLOW; COSMIC EXPLOSION; GRB-050904; ENERGETICS; SPECTRA; BRIGHT AB We present the results of the high-redshift GRB 050904 at z = 6.295 from joint spectral analysis among Swift-BAT, Konus-Wind, and Suzaku-WAM, covering a wide energy range of 15-5000 keV. The nu F-nu spectrum peak energy, E-peak, was measured at 314(-89)(+173) keV, corresponding to 2291(-634)(+1263) keV in the source frame, and the isotropic equivalent radiated energy, E-iso, was estimated to be 1.04(-0.17)(+0.21) x 10(54)erg. Both are among the highest values that have ever been measured. GRBs with such a high E-iso (similar to 10(54) erg) might be associated with prompt optical emission. The derived spectral and energetic parameters are consistent with the correlation between the rest-frame E-p,E-i and the E-iso (Amati relation), but not with the correlation between the intrinsic peak energy E-p,E-i and the collimation-corrected energy E-gamma (Ghirlanda relation), unless the density of the circumburst environment of this burst is much larger than the nominal value, as suggested by other wavelength observations. We also discuss the possibility that this burst is an outlier in the correlation between E-p,E-i and the peak luminosity L-p (Yonetoku relation). C1 [Sugita, Satoshi; Yamaoka, Kazutaka] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. [Sugita, Satoshi; Nakagawa, Yujin E.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Ohno, Masanori] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Tashiro, Makoto S.; Urata, Yuji] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Pal'shin, Valentin; Golenetskii, Sergei] AF Ioffe Phys Tech Inst, Expt Astrophys Lab, St Petersburg 194021, Russia. [Sakamoto, Takanori; Cummings, Jay; Krimm, Hans; Stamatikos, Michael; Parsons, Ann; Barthelmy, Scott; Gehrels, Neil] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sakamoto, Takanori; Stamatikos, Michael] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Cummings, Jay] Univ Maryland, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Krimm, Hans] Univ Space Res Assoc, Columbia, MD 21044 USA. [Urata, Yuji] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. RP Sugita, S (reprint author), Aoyama Gakuin Univ, Dept Math & Phys, 5-10-1 Fuchinobe, Kanagawa 2298558, Japan. EM sugita@phys.aoyama.ac.jp RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Parsons, Ann/I-6604-2012; Tashiro, Makoto/J-4562-2012; Pal'shin, Valentin/F-3973-2014; Golenetskii, Sergey/B-3818-2015; XRAY, SUZAKU/A-1808-2009 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) [19047001]; Special Postdoctoral Researchers Program in RIKEN; Russian Space Agency contract and RFBR [06-02-16070] FX We thank an anonymous referee for useful cornments and suggestions. This research has been supported in part by a Grant-in-Aid for Scientific Research (19047001 KY) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Y.E.N. is supported in part by the Special Postdoctoral Researchers Program in RIKEN. The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR grant 06-02-16070. NR 54 TC 12 Z9 12 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD JUN 25 PY 2009 VL 61 IS 3 BP 521 EP 527 DI 10.1093/pasj/61.3.521 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 475OI UT WOS:000268368900016 ER PT J AU Burkes, DE Hartmann, T Prabhakaran, R Jue, JF AF Burkes, Douglas E. Hartmann, Thomas Prabhakaran, Ramprashad Jue, Jan-Fong TI Microstructural characteristics of DU-xMo alloys with x=7-12 wt% SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Actinide alloys and compounds; Nuclear reactor materials; Microstructure; Metallography; X-ray diffraction ID URANIUM-MOLYBDENUM ALLOYS; IRRADIATION BEHAVIOR; PHASE; FUELS AB Microstructural, phase, and impurity analyses of six depleted uranium-molybdenum alloys were obtained using optical metallography, X-ray diffraction, and carbon/nitrogen/oxygen determination. Uranium-molybdenum alloy foils are currently under investigation for the conversion of high-power research reactors using high-enriched uranium fuel to accommodate the use of low-enriched uranium fuel. Understanding basic microstructural behavior of these foils is an important consideration in determining the impact of fabrication processes and in anticipating performance of the foils in a reactor. Average grain diameter decreased with increasing molybdenum content. Lattice parameter decreased with increasing molybdenum content, and no significant degree of phase decomposition or crystallographic ordering was caused by processing and post-processing conditions employed in this study. Impurity concentration, specifically carbon, inhibited the degree of microstructural recrystallization but did not appear to impact other microstructural traits, such as gamma-phase retention or lattice parameter. (c) 2008 Elsevier B.V. All rights reserved. C1 [Burkes, Douglas E.; Hartmann, Thomas; Prabhakaran, Ramprashad; Jue, Jan-Fong] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Hartmann, Thomas] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Prabhakaran, Ramprashad] Univ Idaho, Mat Sci & Engn Dept, Moscow, ID 83844 USA. RP Burkes, DE (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Douglas.Burkes@inl.gov NR 28 TC 12 Z9 12 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 24 PY 2009 VL 479 IS 1-2 BP 140 EP 147 DI 10.1016/j.jallcom.2008.12.063 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 458XR UT WOS:000267063300045 ER PT J AU Hu, YY Levin, EM Schmidt-Rohr, K AF Hu, Yan-Yan Levin, E. M. Schmidt-Rohr, Klaus TI Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHEMICAL-SHIFT ANISOTROPY; THERMOELECTRIC-MATERIALS; PULSES AB high-resolution magic-angle spinning NMR of high-Z spin-1/2 nuclei such as (125)Te, (207)Pb, (119)Sn, (113)Cd, and (195)Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90 degrees pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for Long pulses (comparable to the dwelt time in t(1)) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 gamma B(1), due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS. C1 [Hu, Yan-Yan; Levin, E. M.; Schmidt-Rohr, Klaus] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Hu, Yan-Yan; Schmidt-Rohr, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM srohr@iastate.edu RI Hu, Yan-Yan/A-1795-2015 OI Hu, Yan-Yan/0000-0003-0677-5897 FU U.S. Department of Energy - Basic Energy Sciences [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy - Basic Energy Sciences, Contract No. DE-AC02-07CH11358. NR 15 TC 13 Z9 13 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8390 EP + DI 10.1021/ja903334p PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000027 PM 19489580 ER PT J AU Zhao, YN Trewyn, BG Slowing, II Lin, VSY AF Zhao, Yannan Trewyn, Brian G. Slowing, Igor I. Lin, Victor S. -Y. TI Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHYSIOLOGICAL PH; ACID GEL; BIODISTRIBUTION; SENSORS; ISLETS; CELLS AB A boronic acid-functionalized mesoporous silica nanoparticle-based drug delivery system (BA-MSN) for glucose-responsive controlled release of both insulin and cyclic adenosine monophosphate (CAMP) was synthesized. Fluorescein isothiocyanate-labeled, gluconic acid-modified insulin (FITC-G-Ins) proteins were immobilized on the exterior surface of BA-MSN and also served as caps to encapsulate CAMP molecules inside the mesopores of BA-MSN. The release of both G-Ins and CAMP was triggered by the introduction of saccharides. The selectivity of FITC-G-Ins release toward a series of carbohydrate triggers was determined to be fructose > glucose > other saccharides. The unique feature of this double-release system is that the decrease of FITC-G-Ins release with cycles can be balanced by the release of CAMP from mesopores of MSN, which is regulated by the gatekeeper effect of FITC-G-Ins. In vitro controlled release of cAMP was studied at two pH conditions (pH 7.4 and 8.5). Furthermore, the cytotoxicity of cAMP-loaded G-Ins-MSN with four different cell tines was investigated by cell viability and proliferation studies. The cellular uptake properties of cAMP-loaded FITC-BA-MSN with and without G-Ins capping were investigated by flow cytometry and fluorescence confocal microscopy. We envision that this glucose-responsive MSN-based double-release system could lead to a new generation of self-regulated insulin-releasing devices. C1 [Zhao, Yannan; Trewyn, Brian G.; Slowing, Igor I.; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. EM vsylin@iastate.edu OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation [CHE-0809521] FX This research was supported by the U.S. National Science Foundation (CHE-0809521). NR 23 TC 421 Z9 426 U1 27 U2 361 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8398 EP + DI 10.1021/ja901831u PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000031 PM 19476380 ER PT J AU Mastroianni, AJ Claridge, SA Alivisatos, AP AF Mastroianni, Alexander J. Claridge, Shelley A. Alivisatos, A. Paul TI Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BUILDING-BLOCKS; NANOSTRUCTURES; NANOPARTICLE; MOLECULES; ORGANIZATION; OCTAHEDRON; TRIANGLES; LIGATION AB Nanostructures constructed from metal and semiconductor nanocrystals conjugated to and organized by DNA are an emerging class of materials with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small-angle X-ray scattering measurments from solutions of these pyramids, we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures. C1 [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy [DE-AC02-05CH11231]; NIH-NCI [5U54CA112970]; NSF-IGERT FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contact No. DE-AC02-05CH11231 and by NIH-NCI Grant No. 5U54CA112970. S.A.C. gratefully acknowledges an NSF-IGERT Predoctoral Fellowship. NR 27 TC 254 Z9 261 U1 11 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8455 EP 8459 DI 10.1021/ja808570g PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000041 PM 19331419 ER PT J AU Xiang, HJ Kang, J Wei, SH Kim, YH Curtis, C Blake, D AF Xiang, Hongjun Kang, Joongoo Wei, Su-Huai Kim, Yong-Hyun Curtis, Calvin Blake, Daniel TI Shape Control of Al Nanoclusters by Ligand Size SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ALUMINUM CLUSTER ANIONS; AUGMENTED-WAVE METHOD; GAS-PHASE; GALLIUM; ATOMS; AL-77 AB It is a challenge to synthesize clusters having a certain shape associated with a desirable property. In this study, we perform density functional calculations on ligand-protected Al(7) and Al(77) clusters. It is found that small ligands such as NH(2) Still prefer the compact structure of bare Al clusters. However, large ligands such as N(SiMe(3))(2) stabilize the experimentally observed shell-like structures due to the steric effect. This is different from the Ga(84) cluster case where small ligands can stabilize the experimental shell-like Ga(84) cluster. Our study suggests that the shape, and thus the properties, of clusters (for instance, C(3v) Al(7) cluster has a finite dipole moment in contrast to the centrosymmetric D(3d) cluster) can be controlled by using ligands with different sizes. C1 [Xiang, Hongjun; Kang, Joongoo; Wei, Su-Huai; Kim, Yong-Hyun; Curtis, Calvin; Blake, Daniel] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM hongjun_xiang@nrel.gov RI Xiang, Hongjun/A-4076-2008; Kim, Yong-Hyun/C-2045-2011; Xiang, Hongjun/I-4305-2016 OI Kim, Yong-Hyun/0000-0003-4255-2068; Xiang, Hongjun/0000-0002-9396-3214 FU DOE/NREU/LDRD program [DE-AC36-08GO28308]; Korea Science and Engineering Foundation (KOSEF); Korean government (MEST) [R31 2008-000-10071-0] FX This work was supported by the DOE/NREU/LDRD program, under Contract No. DE-AC36-08GO28308. We thank Dr. Xiaojun Wu for useful discussions. Y.H.K. was partly supported by Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant code: R31 2008-000-10071-0). NR 34 TC 19 Z9 20 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8522 EP 8526 DI 10.1021/ja900965w PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000048 PM 19473016 ER PT J AU Que, EL Gianolio, E Baker, SL Wong, AP Aime, S Chang, CJ AF Que, Emily L. Gianolio, Eliana Baker, Suzanne L. Wong, Audrey P. Aime, Silvio Chang, Christopher J. TI Copper-Responsive Magnetic Resonance Imaging Contrast Agents SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID AMYOTROPHIC-LATERAL-SCLEROSIS; PROTON RELAXATION TIMES; SPHERE WATER-MOLECULES; ON FLUORESCENT SENSOR; HIGH-RELAXIVITY; IN-VIVO; LANTHANIDE LUMINESCENCE; CEREBRAL MANIFESTATION; MACROCYCLIC GADOLINIUM; PARAMAGNETIC SOLUTIONS AB The design, synthesis, and evaluation of the Copper-Gad (CG) family, a new class of copper-activated magnetic resonance imaging (MRI) contrast agents, are presented. These indicators comprise a Gd(3+)-DO3A core coupled to various thioether-rich receptors for copper-induced relaxivity switching. In the absence of copper ions, inner-sphere water binding to the Gd(3+) chelate is restricted, resulting in low longitudinal relaxivity values (r(1) = 1.2-2.2 mM(-1) s(-1) measured at 60 MHz). Addition of Cu(+) to CG2, CG3, CG4, and CG5 and either Cu(+) or Cu(2+) to CG6 triggers marked enhancements in relaxivity (r(1) = 2.3-6.9 mM(-1) s(-1)). CG2 and CG3 exhibit the greatest turn-on responses, going from r(1) = 1.5 mM(-1) s(-1) in the absence of Cu(+) to r(1) = 6.9 mM(-1) s(-1) upon Cu(+) binding (a 360% increase). The CG sensors are highly selective for Cu(+) and/or Cu(2+) over competing metal ions at cellular concentrations, including Zn(2+) at 10-fold higher concentrations. (17)O NMR dysprosium-induced shift and nuclear magnetic relaxation dispersion measurements support a mechanism in which copper-induced changes in the coordination environment of the Gd(3+) core result in increases in q and r(1). T(1)-weighted phantom images establish that the CG sensors re capable of visualizing changes in copper levels by MRI at clinical field strengths. C1 [Que, Emily L.; Wong, Audrey P.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Baker, Suzanne L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Funct Imaging, Berkeley, CA 94720 USA. [Gianolio, Eliana; Aime, Silvio] Univ Turin, Ctr Mol Biotechnol, I-10125 Turin, Italy. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu FU University of California, Berkeley, the Dreyfus, Beckman, Packard; Sloan Foundations; Hellman Faculty Fund (UC Berkeley); National Institute of General Medical Sciences [79465]; Howard Hughes Medical Institute; Branch Graduate Fellowship from UC Berkeley FX We thank the University of California, Berkeley, the Dreyfus, Beckman, Packard, and Sloan Foundations, the Hellman Faculty Fund (UC Berkeley), the National Institute of General Medical Sciences (NIH GM 79465), and the Howard Hughes Medical Institute for funding this work. We thank Ms. Christine Yin for preliminary synthetic studies. E.L.Q. acknowledges a Branch Graduate Fellowship from UC Berkeley. NR 115 TC 88 Z9 91 U1 9 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8527 EP 8536 DI 10.1021/ja900884j PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000049 PM 19489557 ER PT J AU Norris, AL Serpersu, EH AF Norris, Adrianne L. Serpersu, Engin H. TI NMR Detected Hydrogen-Deuterium Exchange Reveals Differential Dynamics of Antibiotic- and Nucleotide-Bound Aminoglycoside Phosphotransferase 3 '-IIIa SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INTRINSICALLY UNSTRUCTURED PROTEINS; KINASE APH(3')-IIIA; RESISTANCE ENZYME; MODIFYING ENZYMES; LIGAND-BINDING; MECHANISM; OVEREXPRESSION; PURIFICATION; FLEXIBILITY; PROTECTION AB In this work, hydrogen-deuterium exchange detected by NMR spectroscopy is used to determine the dynamic properties of the aminoglycoside phosphotransferase 3 '-IIIa (APH), a protein of intense interest due to its involvement in conferring antibiotic resistance to both Gram negative and Gram positive microorganisms. This represents the first characterization of dynamic properties of an aminoglycoside-modifying enzyme. Herein we describe in vitro dynamics of apo, binary, and ternary complexes of APH with kanamycin A, neomycin B, and metal-nucleotide. Regions of APH in different complexes that are superimposable in crystal structures show remarkably different dynamic behavior. A complete exchange of backbone amides is observed within the first 15 h of exposure to D(2)O in the apo form of this 31 kDa protein. Binding of aminoglycosides to the enzyme induces significant protection against exchange, and similar to 30% of the amides remain unexchanged up to 95 h after exposure to D(2)O. Our data also indicate that neomycin creates greater solvent protection and overall enhanced structural stability to APH than kanamycin. Surprisingly, nucleotide binding to the enzyme-aminoglycoside complex increases solvent accessibility of a number of amides and is responsible for destabilization of a nearby beta-sheet, thus providing a rational explanation for previously observed global thermodynamic parameters. Our data also provide a molecular basis for broad substrate selectivity of APH. C1 [Norris, Adrianne L.; Serpersu, Engin H.] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Univ Tennessee, Grad Sch Genom Sci & Technol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. EM Serpersu@utk.edu FU National Science Foundation [01110741]; Center of Excellence for Structural Biology at the University of Tennessee FX This research was partly supported by a Grant from the National Science Foundation (MCB 01110741 to EHS) and the Center of Excellence for Structural Biology at the University of Tennessee. We thank Can Ozen for purification of isotopically labeled APH. We also thank Dr. Elias Fernandez for critical reading of the manuscript. NR 39 TC 14 Z9 15 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8587 EP 8594 DI 10.1021/ja901685h PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000056 PM 19463004 ER PT J AU Rodriguez, JA Liu, P Takahashi, Y Nakamura, K Vines, F Illas, F AF Rodriguez, Jose A. Liu, Ping Takahashi, Yoshiro Nakamura, Kenichi Vines, Francesc Illas, Francesc TI Desulfurization of Thiophene on Au/TiC(001): Au-C Interactions and Charge Polarization SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL CARBIDES; GAS SHIFT REACTION; GOLD NANOPARTICLES; ATOMIC OXYGEN; HYDROTREATING CATALYSTS; MOLECULAR-MECHANISM; MOLYBDENUM CARBIDE; MGO(001) SURFACE; SULFUR-DIOXIDE; OXIDE SURFACES AB Photoemission and first-principles DF calculations were used to study the interaction of thiophene with TiC(001) and Au/TiC(001) surfaces. The adsorption strength of thiophene on TiC(001) is weak, and the molecule desorbs at temperatures below 200 K. The molecule binds to Ti centers of TiC(001) through its sulfur atom with negligible structural perturbations. In spite of the very poor desulfurization performance of TiC(001) or Au(111), a Au/TiC(001) system displays a hydrodesulfurization activity higher than that of conventional Ni/MoS(x) catalysts. The Au <-> TiC(001) interactions induce a polarization of electron density around Au which substantially increases the chemical reactivity of this metal. Au nanoparticles drastically increase the hydrodesulfurization activity of TiC(001) by enhancing the bonding energy of thiophene and by helping in the dissociation of H(2) to produce the hydrogen necessary for the hydrogenolysis of C-S bonds and the removal of sulfur. H(2) spontaneously dissociates on small two-dimensional clusters of gold in contact with TiC(001). On these systems, the adsorption energy of thiophene is 0.45-0.65 eV larger than that on TiC(001) or Au(111). Thiophene binds in a eta(5) configuration with a large elongation (similar to 0.2 angstrom) of the C-S bonds. C1 [Rodriguez, Jose A.; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Takahashi, Yoshiro; Nakamura, Kenichi] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Vines, Francesc; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Vines, Francesc; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Vines, Francesc/0000-0001-9987-8654 FU U.S. Department of Energy, Chemical Sciences Division; Generalitat de Catalunya; Spanish Ministry of Education and Science; Universitat de Barcelona; Nippon Foundation for Materials Science; Spanish MICINN [FIS2008-02238/FIS] FX The authors are grateful to B. Roldan-Cuenya (University of Central Florida) and J. Gomes (Universidade do Porto) for thought-provoking discussions about the properties of Au/TiC. Many thanks to T. Jirsak (BNL) for his help with the operation of the U7A beamline and the photoemission experiments at the NSLS. The research carried out at BNL was supported by the U.S. Department of Energy, Chemical Sciences Division. J.A.R. acknowledges the support of the Generalitat de Catalunya in a visit to the Universitat de Barcelona. F.V. thanks the Spanish Ministry of Education and Science and Universitat de Barcelona for supporting his predoctoral research. K.N. is grateful to the Nippon Foundation for Materials Science for grants that made possible part of this work. and F.I. acknowledges financial support from Spanish MICINN Grant FIS2008-02238/FIS. Computational time at the Center for Functional Nanomaterials at BNL and the Marenostrum Supercomputer of the Barcelona Supercomputing Center is gratefully acknowledged. NR 78 TC 52 Z9 52 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8595 EP 8602 DI 10.1021/ja901522a PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000057 PM 19530731 ER PT J AU Dai, JC Gupta, S Gourdon, O Kim, HJ Corbett, JD AF Dai, Jing-Cao Gupta, Shalabh Gourdon, Olivier Kim, Hyun-Jeong Corbett, John D. TI BaHg2Tl2. An Unusual Polar Intermetallic Phase with Strong Differentiation between the Neighboring Elements Mercury and Thallium SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METALLIC ZINTL PHASE; ELECTRONIC-STRUCTURE; STRUCTURAL CHEMISTRY; GOLD SUBSTITUTION; EXAMPLES; CLUSTERS; SOLIDS; RB; CS AB High yields of the novel BaHg2Tl2 are achieved from reactions of the appropriate cast alloys at similar to 400 degrees C. (Isotypic SrHg2Tl2 also exists.) The tetragonal barium structure (P4(2)/mnm, a = 10.606 angstrom, c = 5.159 angstrom) was refined from both single-crystal X-ray and neutron powder diffraction data in order to ensure the atom site assignments although distances and calculated atom site population also support the results. The Hg and Tl network atoms are distinctive in their functions and bonding. Parallel chains of Hg hexagons and of Tl tetrahedra along care constructed from polyhedra that share opposed like edges, and these are in turn interconnected by Hg-Tl bonds. Overall, the number of Tl-Tl bonds per cell exceeds the Hg-Hg type by 20:12, but these are similar to 1:2 each in bonding according to their average -ICOHP values (related to overlap populations). Barium is bound within a close 15-atom polyhedron, 12 atoms of which are the more electronegative Hg. LMTO-ASA calculations show that scalar relativistic effects are particularly important for Hg 5d-6s mixing in Hg-Hg and Hg-Tl bonding, whereas relatively separate Tl 6s and 6p states are more important in Tl-Tl interactions. The 6p states of Hg and Tl and 5d of Ba define a dominant conduction band around E-F, and the phase is metallic and Pauli-like paramagnetic. The thallium characteristics here are close to those in numerous alkali-metal-Ti cluster systems. Other active metal-mercury phases that have been studied theoretically are all distinctly electron-richer and more reduced, and without appreciable net 5d, 6s contributions to Hg-Hg bonding. C1 [Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D.] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. [Gourdon, Olivier] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kim, Hyun-Jeong] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Corbett, JD (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. EM jcorbett@iastate.edu RI Lujan Center, LANL/G-4896-2012; Gupta, Shalabh/H-6214-2012; Dai, Jing-Cao/G-8427-2012 FU Office of Basic Energy Sciences (BES), Materials Sciences Division, U.S. Department of Energy (DOE) [DE-AC02-07CH11358, DE-AC52-06NA25396]; Ames Laboratory; Iowa State University; NPDF at the Lujan Center at Los Alamos Neutron Science Center; BES FX The authors are indebted to Gordon J. Miller for his interest and helpful insights and to Serge Bud'kov for the magnetic susceptibility data. This research was supported by the Office of Basic Energy Sciences (BES), Materials Sciences Division, U.S. Department of Energy (DOE) and performed primarily in the Ames Laboratory, which is operated for DOE by Iowa State University under Contract No. DE-AC02-07CH11358. This work also benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, also funded by BES. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 39 TC 14 Z9 14 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8677 EP 8682 DI 10.1021/ja901865d PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000067 PM 19459627 ER PT J AU Ovchinnikov, OS Jesse, S Kalinin, SV AF Ovchinnikov, Oleg S. Jesse, S. Kalinin, S. V. TI Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry SO NANOTECHNOLOGY LA English DT Article AB An adaptive scanning method in scanning probe microscopy (SPM) is developed for studies of surfaces with a highly-non-uniform information density such as nanowires or interfaces in disordered media. In path-engineered SPM, the surface is pre-scanned to locate features, and a secondary scan is acquired with the pixel density concentrated in the vicinity of the objects of interest. Here, we demonstrate this approach for piezoresponse force microscopy, and develop approaches for fractal and self-affine characterization of domain interfaces. The relationship between the variational roughness, structure factor, and correlation functions is established and resolution effects on these parameters are determined. C1 [Ovchinnikov, Oleg S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ovchinnikov, OS (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM sjesse@ornl.gov; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 NR 16 TC 7 Z9 7 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 24 PY 2009 VL 20 IS 25 AR 255701 DI 10.1088/0957-4484/20/25/255701 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 453NR UT WOS:000266618000015 PM 19491461 ER PT J AU Loginova, E Bartelt, NC Feibelman, PJ McCarty, KF AF Loginova, E. Bartelt, N. C. Feibelman, P. J. McCarty, K. F. TI Factors influencing graphene growth on metal surfaces SO NEW JOURNAL OF PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; EPITAXIAL GRAPHENE; CARBON; TRANSITION; GRAPHITE; DECOMPOSITION; ADSORPTION; IR(111); SEGREGATION AB Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces. C1 [Loginova, E.; Bartelt, N. C.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA USA. [Feibelman, P. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA USA. EM mccarty@sandia.gov RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012 OI McCarty, Kevin/0000-0002-8601-079X; NR 51 TC 156 Z9 157 U1 16 U2 186 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUN 24 PY 2009 VL 11 AR 063046 DI 10.1088/1367-2630/11/6/063046 PG 20 WC Physics, Multidisciplinary SC Physics GA 464RH UT WOS:000267523100003 ER PT J AU Virkar, A Mannsfeld, S Oh, JH Toney, MF Tan, YH Liu, GY Scott, JC Miller, R Bao, Z AF Virkar, Ajay Mannsfeld, Stefan Oh, Joon Hak Toney, Michael F. Tan, Yih Horng Liu, Gang-yu Scott, J. Campbell Miller, Robert Bao, Zhenan TI The Role of OTS Density on Pentacene and C-60 Nucleation, Thin Film Growth, and Transistor Performance SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; ORGANIC SEMICONDUCTORS; MOBILITY; CRYSTAL; MORPHOLOGY; MOLECULES AB In organic thin film transistors (OTFTs), charge transport occurs in the first few monolayers of the semiconductor near the semiconductor/dielectric interface. Previous work has investigated the roles of dielectric surface energy, roughness, and chemical functionality on performance. However, large discrepancies in performance, even with apparently identical surface treatments, indicate that additional surface parameters must be identified and controlled in order to optimize OTETs. Here, a crystalline, dense octadecylsilane (OTS) surface modification layer is found that promotes two-dimensional semiconductor growth. Higher mobility is consistently achieved for films deposited on crystalline OTS compared to on disordered OTS, with mobilities as high as 5.3 and 2.3 cm(2)V(-1) s(-1) for C-60 and pentacene, respectively. This is a significant step toward morphological control of organic semiconductors which is directly linked to their thin film carrier transport. C1 [Virkar, Ajay; Mannsfeld, Stefan; Oh, Joon Hak; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Tan, Yih Horng; Liu, Gang-yu] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Scott, J. Campbell; Miller, Robert] IBM Almaden Res Ctr, San Jose, CA 95120 USA. RP Virkar, A (reprint author), Stanford Univ, Dept Chem Engn, 381 N S Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Oh, Joon Hak/F-1454-2010 OI Oh, Joon Hak/0000-0003-0481-6069 FU Stanford Center for Polymeric Interfaces and Macromolecular Assemblies; NSF DMR Solid State Chemistry; Air Force Office of Scientific Research; Stanford School of Engineering; Sloan Research Fellowship FX Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The authors acknowledge helpful discussion with Y. Ito, R. Stoltenberg, R. Lowe, M. Wang, M. Roberts, and C. Reese. Y. H. T acknowledge University of California, Davis, provided 2007 Summer Graduate Student Researcher Award. This work was partially supported by the Stanford Center for Polymeric Interfaces and Macromolecular Assemblies (NSF-Center MRSEC), NSF DMR Solid State Chemistry, Air Force Office of Scientific Research, the Stanford School of Engineering, and a Sloan Research Fellowship. Supporting Information is available online at Wiley InterScience or from the author. NR 39 TC 152 Z9 152 U1 8 U2 91 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 23 PY 2009 VL 19 IS 12 BP 1962 EP 1970 DI 10.1002/adfm.200801727 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 464MT UT WOS:000267509900015 ER PT J AU Levkin, PA Svec, F Frechet, JMJ AF Levkin, Pavel A. Svec, Frantisek Frechet, Jean M. J. TI Porous Polymer Coatings: a Versatile Approach to Superhydrophobic Surfaces SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LENGTH SCALES; TRANSPARENT; FILMS; DESIGN; LOTUS; WATER; FABRICATION; TOPOGRAPHY; ROUGHNESS; CHEMISTRY AB Here, a facile and inexpensive approach to superhydrophobic polymer coatings is presented. The method involves the in situ polymerization of common monomers in the presence of a porogenic solvent to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The method is applicable to a variety of substrates and is not limited to small areas or flat surfaces. The polymerized material can be ground into a superhydrophobic powder, which, once applied to a surface, renders it superhydrophobic. The morphology of the porous polymer structure can be efficiently controlled by composition of the polymerization mixture, while surface chemistry can be adjusted by photografting. Morphology control is used to reduce the globule size of the porous architecture from micro down to nanoscale thereby affording a transparent material. The influence of both surface chemistry as well as the length scale of surface roughness on the superhydrophobicity is discussed. C1 [Levkin, Pavel A.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Levkin, PA (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Levkin, Pavel/E-5804-2011; OI Levkin, Pavel/0000-0002-5975-948X; Frechet, Jean /0000-0001-6419-0163 FU National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health [EB-006133]; Director, Office of Science, Office of Basic Energy Sciences; Division of Materials Sciences and Engineering; US Department of Energy [DE-AC02-05CH11231] FX Support of this research by a grant of the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (EB-006133) is gratefully acknowledged. Characterization work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Supporting Information is available online from Wiley InterScience or from the author. NR 27 TC 154 Z9 161 U1 4 U2 114 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 23 PY 2009 VL 19 IS 12 BP 1993 EP 1998 DI 10.1002/adfm.200801916 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 464MT UT WOS:000267509900019 PM 20160978 ER PT J AU Messman, JM Lokitz, BS Pickel, JM Kilbey, SM AF Messman, Jamie M. Lokitz, Bradley S. Pickel, Joseph M. Kilbey, S. Michael, II TI Highly Tailorable Materials based on 2-Vinyl-4,4-dimethyl Azlactone: (Co)Polymerization, Synthetic Manipulation and Characterization SO MACROMOLECULES LA English DT Article ID RADICAL POLYMERIZATION; POLYMERS; IMMOBILIZATION; CHEMISTRY; PRECURSOR; BRUSHES AB Through rigorous spectroscopic characterizations, including in situ, real-time monitoring, and size-exclusion chromatography (SEC) we describe the functionalization of polymers and copolymers based on vinyl dimethyl azlactone (VDMA), as well as modification of the VDMA monomer using efficient ring-opening strategies. Specifically, we demonstrate modification of VDMA-based materials by "pegylation", base-catalyzed ring-opening hydrolysis, and nucleophilic addition of short alkyl chains, fluorescent markers, and motifs used to specifically bind proteins. All of these functionalizations take advantage of the susceptibility of the pendant azlactone ring of VDMA to undergo nucleophilic attack. Polymers as well Lis copolymers incorporating vinyl pyrrolidone were synthesized by conventional free radical polymerization and thoroughly characterized by FTIR, (1)H NMR, (13)C NMR, SEC, thermogravimetric analysis and differential scanning calorimetry prior to modification. The variety of conjugations and ease of transformations enabled by use of the reactive yet hydrolytically stable VDMA-based materials inspires a broad range of applications for these soft materials. C1 [Messman, Jamie M.; Pickel, Joseph M.; Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. [Lokitz, Bradley S.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Messman, JM (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM messmanjm@ornl.gov RI Lokitz, Bradley/Q-2430-2015; OI Lokitz, Bradley/0000-0002-1229-6078; Pickel, Joseph/0000-0001-9828-1565 FU Division of Scientific User Facilities; U.S. Department of Energy; ORNL's Laboratory Directed Research and Development Program [D07-138] FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy, and enabled through CNMS User Project 2005-024. A portion of this research was supported by ORNL's Laboratory Directed Research and Development Program, Project No. D07-138. NR 21 TC 33 Z9 33 U1 5 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 23 PY 2009 VL 42 IS 12 BP 3933 EP 3941 DI 10.1021/ma900316t PG 9 WC Polymer Science SC Polymer Science GA 458TW UT WOS:000267048200021 ER PT J AU Duan, YX Thunga, M Schlegel, R Sehneider, K Rettler, E Weidisch, R Siesler, HW Stamm, M Mays, JW Hadjichristidis, N AF Duan, Yongxin Thunga, Mahendra Schlegel, Ralf Sehneider, Konrad Rettler, Erik Weidisch, Roland Siesler, Heinz W. Stamm, Manfred Mays, Jimmy W. Hadjichristidis, Nikos TI Morphology and Deformation Mechanisms and Tensile Properties of Tetrafunctional Multigraft Copolymers SO MACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; POLY(STYRENE-BLOCK-BUTADIENE-BLOCK-STYRENE) TRIBLOCK COPOLYMER; BLOCK-COPOLYMERS; CYLINDRICAL MORPHOLOGY; MOLECULAR-ORIENTATION; BRANCH-POINTS; BEHAVIOR; POLYSTYRENE; SPECTROSCOPY; ARCHITECTURE AB Morphology and deformation mechanisms and tensile properties of tetrafunctional multigraft (MG) polystrene-g-polyisoprene (PS-g-PI) copolymers were investigated dependent on PS volume fraction and number of branch points. The combination of various methods such as TEM, real time synchrotron SAXS, rheo-optical FTIR, and tensile tests provides comprehensive information at different dimension levels. TEM and SAXS studies revealed that the number of branch points has no obvious influence on the microphase-separated morphology of tetrafunction MG copolymers with 16 wt % PS. But for tetrafunctional MG copolymers with 25 wt % PS, the size and integrity of PS microdomains decrease with increasing number of branch point. The deformation mechanisms of MG copolymers are highly related to the morphology. Dependent on the microphase-separated morphology and integrity of the PS phase, the strain-induced orientation of the PS phase is at different size scales. Polarized FT-IR spectra analysis reveals that, for all investigated MG copolymers, the PI phase shows strain-induced orientation along SD at molecular scale. The proportion of the PI block effectively bridging PS domains controls the tensile properties of the MG copolymers at high strain, while the stress-strain behavior in the low-mediate strain region is controlled by the continuity of PS microdomains. The special molecular architecture, which leads to the higher effective functionality of PS domains and the higher possibility for an individual PI backbone being tethered with a large number of PS domains, is proposed to be the origin of the superelasticity for MG copolymers. C1 [Duan, Yongxin; Thunga, Mahendra; Schlegel, Ralf; Weidisch, Roland] Univ Jena, Inst Mat Sci & Technol, D-07743 Jena, Germany. [Duan, Yongxin; Thunga, Mahendra; Sehneider, Konrad; Weidisch, Roland] Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany. [Rettler, Erik; Siesler, Heinz W.; Stamm, Manfred] Univ Duisburg Essen, Dept Phys Chem, D-45117 Essen, Germany. [Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hadjichristidis, Nikos] Univ Athens, Dept Chem, GR-10680 Athens, Greece. [Duan, Yongxin] Qingdao Univ Sci & Technol, Minist Educ, Key Lab Rubber Plast, Qingdao 266042, Peoples R China. RP Weidisch, R (reprint author), Univ Jena, Inst Mat Sci & Technol, Lobdergraben 32, D-07743 Jena, Germany. EM roland.weidisch@uni-jena.de RI Thunga, Mahendra/D-4638-2013; Umlauf, Ursula/D-3356-2014 OI Thunga, Mahendra/0000-0002-4856-242X; FU Alexander von Humboldt foundation; Division of Materials Science and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy [DE-ACo5-00OR22725] FX Y. X. Duan is grateful to the Alexander von Humboldt foundation for kindly providing the fellowship in Germany which made it possible for her to perform this study. J. Mays acknowledges Support through the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DE-ACo5-00OR22725). NR 39 TC 23 Z9 23 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 23 PY 2009 VL 42 IS 12 BP 4155 EP 4164 DI 10.1021/ma900414h PG 10 WC Polymer Science SC Polymer Science GA 458TW UT WOS:000267048200049 ER PT J AU Ho, CC Lee, YH Dai, CA Segalman, RA Su, WF AF Ho, Chun-Chih Lee, Yi-Huan Dai, Chi-An Segalman, Rachel A. Su, Wei-Fang TI Synthesis and Self-Assembly of Poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(methyl methacrylate) Rod-Coil Block Copolymers SO MACROMOLECULES LA English DT Article ID DIBLOCK COPOLYMERS; CLICK CHEMISTRY; PHASE-BEHAVIOR; 1,3-DIPOLAR CYCLOADDITIONS; FUNCTIONALIZED POLYMERS; ANIONIC-POLYMERIZATION; CRYSTALLINE-STRUCTURE; TRIBLOCK COPOLYMERS; MATERIALS SCIENCE; THIN-FILMS AB A series of poly(diethylhexyloxy-p-phenylenevinylene-e-methyl methacrylate) (DEH-PPV-b-PMMA) polymers with narrow polydispersity (PDI < 1.1) were synthesized using Siegrist polycondensation and anionic polymerizations followed by "click" chemistry. Alkyne-terminated-DEH-PPV and azidoterminated PMMA were synthesized first, and then the two functionalized polymers underwent 1,3-cycloaddition reaction to obtain copolymers. Both the conversion of the end-functionalization of the homopolymers and the yield of the "click" reaction were higher than 98% as determined by (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies reveal the details of copolymer morphology. The DEH-PPV-b-PMMA system presented here has higher block segregation strength than many previously studied rod-coil block copolymers yet still shows experimentally accessible phase transitions with respect to temperature. As a result, this molecule offers new insight into the competition between rod-rod and rod-coil interactions that occurs in the system. The DEH-PPV rods are organized as a monolayer that is inclined with the lamellar normal (smectic C) for the copolymers containing low volume fraction of PMMA coil (< 54%). However, as the coil fraction increases, the strips containing DEH-PPV pack into hexagonal lattice. In contrast to previous work which demonstrated similar morphologies, the sequence of reversible liquid crystalline and microphase phase transitions is altered as a result of the increased block segregation. Upon heating, the low coil fraction copolymers exhibit a series of clear transitions of smectic-lamellar to amorphous-lamellar to disordered structures. In high coil fraction copolymers, the transitions between smectic-hexagonal to amorphous-hexagonal and smectic-hexagonal to disorder structures could not be clearly differentiated. The order-to-disorder temperature (ODT) decreases slowly with increasing coil fraction while the smectic-to-isotropic transition (SI) temperature stays relatively unchanged. The steady SI temperature suggests that the strong rod-rod interaction keeps the liquid crystalline rod in the nanodomain structure regardless of the amount of coil segment in the copolymers. C1 [Ho, Chun-Chih; Su, Wei-Fang] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan. [Lee, Yi-Huan; Dai, Chi-An] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 106, Taiwan. [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA. RP Su, WF (reprint author), Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan. EM suwf@ntu.edu.tw RI Ho, Chun-Chih/C-2614-2009; Su, Wei-Fang/C-2646-2009; OI Segalman, Rachel/0000-0002-4292-5103 NR 72 TC 54 Z9 54 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 23 PY 2009 VL 42 IS 12 BP 4208 EP 4219 DI 10.1021/ma802551v PG 12 WC Polymer Science SC Polymer Science GA 458TW UT WOS:000267048200055 ER PT J AU Huang, JY Ding, F Yakobson, BI Lu, P Qi, L Li, J AF Huang, Jian Yu Ding, Feng Yakobson, Boris I. Lu, Ping Qi, Liang Li, Ju TI In situ observation of graphene sublimation and multi-layer edge reconstructions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE flat fullerene; fractal sublimation; graphene bilayer edge; in situ electron microscopy; fractional nanotube ID CARBON NANOTUBES; CRYSTALS; SHEETS AB We induced sublimation of suspended few-layer graphene by in situ Joule-heating inside a transmission electron microscope. The graphene sublimation fronts consisted of mostly {1100} zigzag edges. Under appropriate conditions, a fractal-like "coastline'' morphology was observed. Extensive multiple-layer reconstructions at the graphene edges led to the formation of unique carbon nanostructures, such as sp(2)-bonded bilayer edges (BLEs) and nanotubes connected to BLEs. Flat fullerenes/nanopods and nanotubes tunneling multiple layers of graphene sheets were also observed. Remarkably, >99% of the graphene edges observed during sublimation are BLEs rather than monolayer edges (MLEs), indicating that BLEs are the stable edges in graphene at high temperatures. We reproduced the "coastline'' sublimation morphologies by kinetic Monte Carlo (kMC) simulations. The simulation revealed geometrical and topological features unique to quasi-2-dimensional (2D) graphene sublimation and reconstructions. These reconstructions were enabled by bending, which cannot occur in first-order phase transformations of 3D bulk materials. These results indicate that substrate of multiple-layer graphene can offer unique opportunities for tailoring carbon-based nanostructures and engineering novel nano-devices with complex topologies. C1 [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Ding, Feng] Hong Kong Polytech Univ, Inst Text & Clothing, Kowloon, Hong Kong, Peoples R China. [Ding, Feng; Yakobson, Boris I.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Ding, Feng; Yakobson, Boris I.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Qi, Liang; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Huang, JY (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov; biy@rice.edu; liju@seas.upenn.edu RI Li, Ju/A-2993-2008; Qi, Liang/A-3851-2010; Ding, Feng/D-5938-2011; Huang, Jianyu/C-5183-2008 OI Li, Ju/0000-0002-7841-8058; Qi, Liang/0000-0002-0201-9333; Ding, Feng/0000-0001-9153-9279; FU Sandia Corporation; Lockheed-Martin Company; U. S. Department of Energy [DE-AC04-94AL85000]; National Science Foundation [CMMI-0728069]; Air Force Office of Scientific Research; Honda Research Institute U. S. A., Department of Energy [DOE-DE-FG02-06ER46330]; Office of Naval Research [N00014-05-1-0504] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. This work was supported by National Science Foundation Grant CMMI-0728069, the Air Force Office of Scientific Research, Honda Research Institute U. S. A., Department of Energy Contract DOE-DE-FG02-06ER46330, and Office of Naval Research Contract N00014-05-1-0504 ( to L. Q. and J. L.). NR 31 TC 126 Z9 127 U1 7 U2 70 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 23 PY 2009 VL 106 IS 25 BP 10103 EP 10108 DI 10.1073/pnas.0905193106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 461SQ UT WOS:000267292200008 PM 19515820 ER PT J AU Chroneos, A Jiang, C Grimes, RW Schwingenschlogl, U Bracht, H AF Chroneos, A. Jiang, C. Grimes, R. W. Schwingenschloegl, U. Bracht, H. TI Defect interactions in Sn1-xGex random alloys SO APPLIED PHYSICS LETTERS LA English DT Article DE band structure; germanium alloys; lattice constants; tin alloys; vacancies (crystal) ID ATOMIC-SCALE SIMULATIONS; VACANCY COMPLEXES; GERMANIUM; SILICON; SEMICONDUCTORS AB Sn1-xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1-xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard's Law are consistent with experimental results. C1 [Chroneos, A.; Grimes, R. W.; Schwingenschloegl, U.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. [Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. [Schwingenschloegl, U.] KAUST, PCSE Div, Jeddah 21534, Saudi Arabia. [Jiang, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Chroneos, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. EM alexander.chroneos@imperial.ac.uk RI Jiang, Chao/A-2546-2011; OI Chroneos, Alex/0000-0002-2558-495X NR 26 TC 48 Z9 48 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 252104 DI 10.1063/1.3159468 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700035 ER PT J AU Folkman, CM Baek, SH Jang, HW Eom, CB Nelson, CT Pan, XQ Li, YL Chen, LQ Kumar, A Gopalan, V Streiffer, SK AF Folkman, C. M. Baek, S. H. Jang, H. W. Eom, C. B. Nelson, C. T. Pan, X. Q. Li, Y. L. Chen, L. Q. Kumar, A. Gopalan, V. Streiffer, S. K. TI Stripe domain structure in epitaxial (001) BiFeO3 thin films on orthorhombic TbScO3 substrate SO APPLIED PHYSICS LETTERS LA English DT Article DE bismuth compounds; dielectric polarisation; electric domains; epitaxial layers; ferroelasticity; ferroelectric thin films; nucleation; terbium compounds ID RHOMBOHEDRAL FERROELECTRIC-FILMS AB We have analyzed the ferroelastic and ferroelectric domain structure of high crystalline quality (001) BiFeO3 films on orthorhombic (110) TbScO3 substrates. Two domains were present in stripes separated by (010) vertical boundaries, with spontaneous polarizations in adjacent domains rotated by 109 degrees. The striped morphology was caused by nucleation of only two ferroelastic domains on the low symmetry GdFeO3-type substrate. Domain engineering through substrate symmetry is an important finding for rhombohedral ferroelectric epitaxial thin films. The stripe pattern with vertical walls may be useful for extracting domain wall contributions to magnetism and electrical transport properties of BiFeO3 materials. C1 [Folkman, C. M.; Baek, S. H.; Jang, H. W.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Li, Y. L.; Chen, L. Q.; Kumar, A.; Gopalan, V.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Nelson, C. T.; Pan, X. Q.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM eom@engr.wisc.edu RI Kumar, Amit/C-9662-2012; Baek, Seung-Hyub/B-9189-2013; Eom, Chang-Beom/I-5567-2014; Jang, Ho Won/D-9866-2011 OI Kumar, Amit/0000-0002-1194-5531; Jang, Ho Won/0000-0002-6952-7359 NR 13 TC 40 Z9 40 U1 5 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 251911 DI 10.1063/1.3152009 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700029 ER PT J AU Grigorenko, I Rabitz, H AF Grigorenko, Ilya Rabitz, Herschel TI Optimal control of the local electromagnetic response of nanostructured materials: Optimal detectors and quantum disguises. SO APPLIED PHYSICS LETTERS LA English DT Article DE electron traps; nanostructured materials AB We consider the problem of optimization of an effective trapping potential in a nanostructure with a quasi-one-dimensional geometry. The optimization is performed to achieve certain target optical properties of the system. We formulate and solve the optimization problem for a nanostructure that serves either as a single molecule detector or as a "quantum disguise" for a single molecule. C1 [Grigorenko, Ilya] Los Alamos Natl Lab, Theoret Div T1, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Grigorenko, I (reprint author), Los Alamos Natl Lab, Theoret Div T1, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM ilya@lanl.gov RI Grigorenko, Ilya/B-5616-2009 FU ARO; NSF FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. H. R. also acknowledges support from ARO and NSF. NR 12 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 253107 DI 10.1063/1.3159879 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700061 ER PT J AU Huda, MN Yan, YF Walsh, A Wei, SH Al-Jassim, MM AF Huda, Muhammad N. Yan, Yanfa Walsh, Aron Wei, Su-Huai Al-Jassim, Mowafak M. TI Symmetry-breaking-induced enhancement of visible light absorption in delafossite alloys SO APPLIED PHYSICS LETTERS LA English DT Article DE copper compounds; density functional theory; energy gap; optical constants; spontaneous symmetry breaking; visible spectra ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; HYDROGEN GENERATION; SEMICONDUCTORS; METALS AB Through density functional theory calculations, we demonstrate that enhancement of optical absorption and optimization of the fundamental band gap for Cu delafossites can be achieved through alloying group IIIA and IIIB delafossites. These alloys significantly improved the flexibility in designing delafossite-based photoelectrodes for application in photoelectrochemical decomposition of water by visible spectra of solar light. C1 [Huda, Muhammad N.; Yan, Yanfa; Walsh, Aron; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM suhuai_wei@nrel.gov RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008 OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X FU U.S. Department of Energy [DE-AC36-08GO28308]; National Energy Research Scientific Computing Center; Office of Science of the U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 18 TC 13 Z9 13 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 251907 DI 10.1063/1.3157840 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700025 ER PT J AU Kan, EJ Xiang, HJ Yang, JL Whangbo, MH AF Kan, Erjun Xiang, Hongjun Yang, Jinlong Whangbo, Myung-Hwan TI Magnetism of semiconductor-based magnetic tunnel junctions under electric field from first principles SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; antiferromagnetic materials; cobalt compounds; density functional theory; ferromagnetic materials; ferromagnetic-antiferromagnetic transitions; gallium compounds; III-V semiconductors; II-VI semiconductors; interface magnetism; magnetic tunnelling; manganese compounds; semimagnetic semiconductors; wide band gap semiconductors; zinc compounds AB Semiconductor magnetic tunnel junctions (MTJs), composed of diluted magnetic semiconductors (DMSs) sandwiching a semiconductor barrier, have potential applications in spintronics but their development has been slow due to the difficulty of controlling the magnetism of DMSs. In terms of density functional calculations for model semiconductor MTJs, (Zn,Co)O/ZnO/(Zn,Co)O and (Ga,Mn)N/GaN/(Ga,Mn)N, we show that the magnetic coupling between the transition metal ions in each DMS electrode of such semiconductor MTJs can be switched from ferromagnetic to antiferromagnetic, or vice versa, under the application of external electric field across the junctions. Our results suggest a possible avenue for the application of semiconductor MTJs. C1 [Kan, Erjun; Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Xiang, Hongjun] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Whangbo, MH (reprint author), N Carolina State Univ, Dept Chem, Box 8204, Raleigh, NC 27695 USA. EM mike_whangbo@ncsu.edu RI Xiang, Hongjun/A-4076-2008; Kan, Erjun/A-4322-2009; Yang, Jinlong/D-3465-2009; Xiang, Hongjun/I-4305-2016 OI Kan, Erjun/0000-0003-0433-4190; Yang, Jinlong/0000-0002-5651-5340; Xiang, Hongjun/0000-0002-9396-3214 NR 29 TC 1 Z9 2 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 252102 DI 10.1063/1.3157273 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700033 ER PT J AU Shin, J Goyal, A Jesse, S Kim, DH AF Shin, Junsoo Goyal, Amit Jesse, Stephen Kim, Dae Ho TI Single-crystal-like, c-axis oriented BaTiO3 thin films with high-performance on flexible metal templates for ferroelectric applications SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; crystal symmetry; dielectric hysteresis; dielectric polarisation; electric domains; epitaxial layers; ferroelectric switching; ferroelectric thin films; laser ablation; piezoelectric thin films; space groups; X-ray diffraction ID ENHANCEMENT; CAPACITORS AB Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of similar to 11.5 mu C/cm(2). Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices. C1 [Shin, Junsoo; Goyal, Amit; Jesse, Stephen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kim, Dae Ho] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. RP Shin, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM goyala@ornl.gov RI Kim, Dae Ho/B-4670-2012; Jesse, Stephen/D-3975-2016 OI Jesse, Stephen/0000-0002-1168-8483 NR 26 TC 16 Z9 16 U1 5 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 252903 DI 10.1063/1.3158955 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700050 ER PT J AU Wu, YL Chen, GD Ye, HG Zhu, YZ Wei, SH AF Wu, Yelong Chen, Guangde Ye, Honggang Zhu, Youzhang Wei, Su-Huai TI Origin of the phase transition of AlN, GaN, and ZnO nanowires SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; aluminium compounds; gallium compounds; III-V semiconductors; II-VI semiconductors; ionisation potential; nanofabrication; nanowires; phase diagrams; solid-state phase transformations; wide band gap semiconductors; zinc compounds ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SEMICONDUCTORS; BLUE AB The stabilities of AlN, GaN, and ZnO nanowires/nanorods with different structures and sizes are investigated using first-principles calculations. We found a structure transformation from the graphitelike phase to wurtzite phase as the diameter and length of the nanowire increases. We show that this is due to the competition between the bond energy, the Coulomb energy, and the energy originating from the dipole field of the wurtzite structure. A mechanism of growing uniform nanowires using a graphitelike structure as a precursor is proposed through analyzing the phase diagram of these materials. C1 [Wu, Yelong; Chen, Guangde; Ye, Honggang; Zhu, Youzhang] Xi An Jiao Tong Univ, Minist Educ, Nonequilibrium Condensed Matter & Quantum Engn La, Key Lab,Sch Sci, Xian 710049, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wu, YL (reprint author), Xi An Jiao Tong Univ, Minist Educ, Nonequilibrium Condensed Matter & Quantum Engn La, Key Lab,Sch Sci, Xian 710049, Peoples R China. EM suhuai.wei@nrel.gov RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen, Guangde/D-4373-2011; chen, guangde/I-4260-2014 OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X; FU China National Natural Science Fund [10474078]; U.S. DOE [DE-36-AC08GO28308] FX We gratefully acknowledge the financial support of China National Natural Science Fund (Grant No. 10474078) and the computing support of "National High Performance Computing Center (Xi'an)." The work at NREL is supported by the U.S. DOE under Grant No. DE-36-AC08GO28308. NR 18 TC 17 Z9 17 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 253101 DI 10.1063/1.3159816 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700055 ER PT J AU Yang, ZH Lam, CH DiMasi, E Bouet, N Jordan-Sweet, J Tsui, OKC AF Yang, Zhaohui Lam, Chi-Hang DiMasi, Elaine Bouet, Nathalie Jordan-Sweet, Jean Tsui, Ophelia K. C. TI Method to measure the viscosity of nanometer liquid films from the surface fluctuations SO APPLIED PHYSICS LETTERS LA English DT Article DE capillary waves; glass transition; liquid films; nanotechnology; polymer solutions; viscosity; viscosity measurement ID THIN POLYMER-FILMS; GLASS-TRANSITION AB We describe a method to measure the viscosity of polystyrene liquid films with thicknesses similar to 5 and similar to 80 nm spin-cast on oxide-coated silicon. In this method, temporal evolution of the film surface is monitored and modeled according to the dynamics of the surface capillary waves. Viscosities obtained from the similar to 80 nm films display an excellent agreement with those of the bulk polymer, but those from the similar to 5 nm films are up to 10(6) times reduced. By modeling the data to the Vogel-Fulcher-Tammann relation, we find that the observations are consistent with the thickness dependence of the glass transition temperature previously reported of these films. C1 [Yang, Zhaohui; Bouet, Nathalie; Tsui, Ophelia K. C.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Lam, Chi-Hang] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China. [DiMasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Jordan-Sweet, Jean] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Tsui, OKC (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM okctsui@bu.edu RI Lam, Chi-Hang/A-4626-2009; Yang, Zhaohui/B-9331-2013; OI Lam, Chi-Hang/0000-0002-0476-1857; Bouet, Nathalie/0000-0002-5816-9429; Tsui, Ophelia K. C./0000-0001-5987-2733 FU NSF [DMR-0706096]; ACS Petroleum Research Fund [47882-AC5]; U.S. Department of Energy [DE-AC02-98CH10886] FX We thank Professor K. F. Ludwig for critical reading of this paper and Dr. Y. Fujii for useful discussions. Funding supports of NSF (Grant No. DMR-0706096) and ACS Petroleum Research Fund (Grant No. 47882-AC5) are acknowledged. NSLS is supported by the U.S. Department of Energy Contract No. DE-AC02-98CH10886. NR 14 TC 14 Z9 14 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 251906 DI 10.1063/1.3158956 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700024 ER PT J AU Konidaris, KF Papaefstathiou, GS Aromi, G Teat, SJ Manessi-Zoupa, E Escuer, A Perlepes, SP AF Konidaris, Konstantis F. Papaefstathiou, Giannis S. Aromi, Guillem Teat, Simon J. Manessi-Zoupa, Evy Escuer, Albert Perlepes, Spyros P. TI A three-dimensional copper(II) coordination polymer featuring the 2,3-dioxyquinoxalinate(-2) ligand: Preparation, structural characterization and magnetic study SO POLYHEDRON LA English DT Article; Proceedings Paper CT 11th International Conference on Molecule-Based Magnets (ICMM 2008) CY SEP 21-24, 2008 CL Florence, ITALY DE Coordination polymers; Copper(II) polymers; Crystal structure; 1,4-Dihydro-2,3-quinoxalinedione; 2,3-Dioxyquinoxalinate(-2) metal complexes; Magnetochemistry ID METAL-ORGANIC FRAMEWORKS; IN-SITU FORMATION; SOLID-STATE; MOLECULAR-STRUCTURE; DONOR LIGANDS; NETS; CHEMISTRY; CRYSTAL; 1,4-DIHYDRO-2,3-QUINOXALINEDIONE; NETWORKS AB The synthesis, single-crystal X-ray structure and magnetic properties of [Cu(3)l(2)Cl(2)(DMF)(4)](n) (1), where L(2-) is the 2,3-dioxyquinoxalinate(-2) ligand, are reported. The complex was prepared by the reaction of CuCl(2) and 1,4-dihydro-2,3-quinoxalinedione (H(2)L') under basic conditions using either solvothermal or normal laboratory techniques. Compound 1 is a 3D coordination polymer with an (8(2).10)-a, lig (LiGe) topology, containing the ligand in a novel 3.1111 (Harris notation) coordination mode. Variable-temperature and variable-field magnetic studies reveal that the ligand L(2-) propagates weak anti ferromagnetic exchange interactions through its "quinoxaline" part. IR data are discussed in terms of the structural features of 1 and the coordination mode of L(2-). (C) 2008 Elsevier Ltd. All rights reserved. C1 [Konidaris, Konstantis F.; Manessi-Zoupa, Evy; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece. [Papaefstathiou, Giannis S.] Univ Athens, Dept Chem, Inorgan Chem Lab, Panepistimiopolis 15771, Zografou, Greece. [Aromi, Guillem; Escuer, Albert] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Aromi, Guillem; Escuer, Albert] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Spain. [Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Manessi-Zoupa, E (reprint author), Univ Patras, Dept Chem, Patras 26504, Greece. EM emane@upatras.gr; albert.escuer@qi.ub.es; perlepes@patreas.upatras.gr RI Escuer, Albert/L-4706-2014; Aromi, Guillem/I-2483-2015; Papaefstathiou, Giannis/M-9890-2013; OI Escuer, Albert/0000-0002-6274-6866; Aromi, Guillem/0000-0002-0997-9484; Papaefstathiou, Giannis/0000-0001-5514-6371; Konidaris, Konstantis/0000-0002-7366-5682 NR 38 TC 6 Z9 6 U1 3 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUN 22 PY 2009 VL 28 IS 9-10 BP 1646 EP 1651 DI 10.1016/j.poly.2008.10.043 PG 6 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 465JQ UT WOS:000267580000011 ER PT J AU Fishman, RS Okamoto, S Reboredo, FA AF Fishman, Randy S. Okamoto, Satoshi Reboredo, Fernando A. TI Spin-orbit coupling and Jahn-Teller distortion in bimetallic oxalates SO POLYHEDRON LA English DT Article; Proceedings Paper CT 11th International Conference on Molecule-Based Magnets (ICMM 2008) CY SEP 21-24, 2008 CL Florence, ITALY DE Jahn-Teller distortion; Spin-orbit interaction; Crystal fields; Bimetallic oxalates ID MIXED-VALENCY; MAGNETIC-PROPERTIES; HONEYCOMB LATTICE; ORGANIC CATION; PSEUDOPOTENTIALS; TRANSITIONS; FERRIMAGNET; COMPLEXES; SYSTEM; MN AB The C3-symmetric crystal-field potential in the Fe(II)Fe(III) bimetallic oxalates splits the L = 2 Fe(II) multiplet into two doublets and one singlet. In compounds that exhibit magnetic compensation, one of the doublets lies lowest in energy and carries an average orbital angular momentum L-z(cf) that exceeds a threshold value of roughly 0.25. In a range of L-z(cf), a Jahn-Teller (JT) distortion enhances the splitting of the low-lying doublet and breaks the C-3 symmetry of the bimetallic planes around the ferrimagnetic transition temperature. Due to the competition with the spin-orbit coupling, the JT distortion disappears at low temperatures in Compounds that display magnetic compensation. A comparison with recent measurements provides compelling evidence for this inverse, low-temperature JT transition. The size of the JT distortion is estimated using first-principles calculations, which suggest that the long-range ordering of smaller, non-C-3-symmetric organic cations can eliminate magnetic compensation. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Fishman, Randy S.; Okamoto, Satoshi; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM fishmanrs@ornl.gov RI Reboredo, Fernando/B-8391-2009; Okamoto, Satoshi/G-5390-2011; Fishman, Randy/C-8639-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; NR 31 TC 5 Z9 5 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUN 22 PY 2009 VL 28 IS 9-10 SI SI BP 1740 EP 1745 DI 10.1016/j.poly.2008.11.007 PG 6 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 465JQ UT WOS:000267580000029 ER PT J AU Bonhommeau, D Valero, R Truhlar, DG Jasper, AW AF Bonhommeau, David Valero, Rosendo Truhlar, Donald G. Jasper, Ahren W. TI Coupled-surface investigation of the photodissociation of NH3((A)over-tilde): Effect of exciting the symmetric and antisymmetric stretching modes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ammonia; excited states; free radical reactions; ground states; molecule-photon collisions; photochemistry; photodissociation; potential energy surfaces; translational states; vibrational states ID ZERO-POINT ENERGY; CLASSICAL TRAJECTORY SIMULATIONS; FORBIDDEN ELECTRONIC-TRANSITIONS; INITIAL VIBRATIONAL-STATE; JET-COOLED AMMONIA; MOLECULAR-DYNAMICS; PREDISSOCIATION DYNAMICS; 193.3 NM; NH3; ND3 AB Using previously developed potential energy surfaces and their couplings, non-Born-Oppenheimer trajectory methods are used to study the state-selected photodissociation of ammonia, prepared with up to six quanta of vibrational excitation in the symmetric (nu(1)) or antisymmetric (nu(3)) stretching modes of NH3((A) over tilde). The predicted dynamics is mainly electronically nonadiabatic (that is, it produces ground electronic state amino radicals). The small probability of forming the excited-state amino radical is found, for low excitations, to increase with total energy and to be independent of whether the symmetric or antisymmetric stretch is excited; however some selectivity with respect to exciting the antisymmetric stretch is found when more than one quantum of excitation is added to the stretches, and more than 50% of the amino radical are found to be electronically excited when six quanta are placed in the antisymmetric stretch. These results are in contrast to the mechanism inferred in recent experimental work, where excitation of the antisymmetric stretch by a single quantum was found to produce significant amounts of excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both theory and experiment predict a broad range of translational energies for the departing H atoms when the symmetric stretch is excited, but the present simulations do not reproduce the experimental translational energy profiles when the antisymmetric stretch is excited. The sensitivity of the predicted results to several aspects of the calculation is considered in detail, and the analysis leads to insight into the nature of the dynamics that is responsible for mode selectivity. C1 [Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Bonhommeau, D (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM truhlar@umn.edu RI Jasper, Ahren/A-5292-2011; Valero, Rosendo/J-3724-2013; Truhlar, Donald/G-7076-2015 OI Valero, Rosendo/0000-0002-4617-0721; Truhlar, Donald/0000-0002-7742-7294 FU National Science Foundation [CHE07-04974]; United States Department of Energy [DE-AC04-94-AL85000]; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX We are grateful to Zhen Hua Li for helpful assistance and to Hua Guo for helpful discussions. This work was supported in part by the National Science Foundation through Grant No. CHE07-04974 and in part by the United States Department of Energy Grant No. DE-AC04-94-AL85000, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. NR 64 TC 25 Z9 25 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234303 DI 10.1063/1.3132222 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200024 PM 19548723 ER PT J AU Griffin, GB Ehrler, OT Kammrath, A Young, RM Cheshnovsky, O Neumark, DM AF Griffin, Graham B. Ehrler, Oli T. Kammrath, Aster Young, Ryan M. Cheshnovsky, Ori Neumark, Daniel M. TI Auger recombination and excited state relaxation dynamics in Hg-n(-) (n=9-20) anion clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atomic clusters; Auger effect; electron-electron scattering; electron-hole recombination; excited states; mercury (metal); negative ions ID SEMICONDUCTOR QUANTUM DOTS; MERCURY CLUSTERS; INTRABAND EXCITATION; PHOTOELECTRON; TRANSITION; GENERATION; RESOLUTION; ELECTRON AB Using femtosecond time-resolved photoelectron imaging, electron-hole pairs are created in size-selected Hg-n(-) anion clusters (n=9-20), and the subsequent decay dynamics are measured. These clusters eject electrons via Auger decay on time scales of 100-600 fs. There is an abrupt increase in the Auger decay time for clusters larger than Hg-12(-), coinciding with the onset of the transition from van der Waals to covalent bonding in mercury clusters. Our results also show evidence for subpicosecond excited state relaxation attributed to inelastic electron-electron and electron-hole scattering as well as hole-induced contraction of the cluster. C1 [Griffin, Graham B.; Ehrler, Oli T.; Young, Ryan M.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kammrath, Aster] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Cheshnovsky, Ori] Tel Aviv Univ, Sch Chem, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; Ehrler, Oli/B-6215-2008 OI Neumark, Daniel/0000-0002-3762-9473; FU National Science Foundation [CHE-0649647]; States-Israel Binational Science Foundation (BSF), Jerusalem, Israel [2000-333, 2004-401]; Alexander von Humboldt Foundation (Germany; Feodor-Lynen fellowship FX This research was supported by the National Science Foundation under Grant No. CHE-0649647. Additional support was provided by the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, under Grant Nos. 2000-333 and 2004-401. O. T. E. is grateful to the Alexander von Humboldt Foundation (Germany) for the award of a Feodor-Lynen fellowship. NR 32 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 231103 DI 10.1063/1.3149562 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200003 PM 19548702 ER PT J AU Ishizaki, A Fleming, GR AF Ishizaki, Akihito Fleming, Graham R. TI On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE energy level crossing; molecular electronic states; molecule-photon collisions; nonradiative transitions; photosynthesis; quantum theory; solvent effects ID PHOTOSYNTHETIC ANTENNA COMPLEXES; PRIMARY CHARGE SEPARATION; REACTION CENTERS; VARIATIONAL CALCULATION; CHLOROBIUM-TEPIDUM; 2-LEVEL SYSTEM; RELAXATION; SPECTROSCOPY; BACTERIA; COHERENCE AB The observation of long-lived electronic coherence in photosynthetic excitation energy transfer (EET) by Engel [Nature (London) 446, 782 (2007)] raises questions about the role of the protein environment in protecting this coherence and the significance of the quantum coherence in light harvesting efficiency. In this paper we explore the applicability of the Redfield equation in its full form, in the secular approximation and with neglect of the imaginary part of the relaxation terms for the study of these phenomena. We find that none of the methods can give a reliable picture of the role of the environment in photosynthetic EET. In particular the popular secular approximation (or the corresponding Lindblad equation) produces anomalous behavior in the incoherent transfer region leading to overestimation of the contribution of environment-assisted transfer. The full Redfield expression on the other hand produces environment-independent dynamics in the large reorganization energy region. A companion paper presents an improved approach, which corrects these deficiencies [A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009)]. C1 [Ishizaki, Akihito] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ishizaki, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Ishizaki, Akihito/A-7069-2010 OI Ishizaki, Akihito/0000-0002-0246-4461 FU Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-05CH11231]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC03-76SF000098]; JSPS Postdoctoral Fellowship for Research Abroad FX We thank Dr. Yuan-Chung Cheng for critical reading of the manuscript and valuable comments. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC03-76SF000098. A. I. appreciates the support of the JSPS Postdoctoral Fellowship for Research Abroad. NR 61 TC 226 Z9 227 U1 10 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234110 DI 10.1063/1.3155214 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200015 PM 19548714 ER PT J AU Ishizaki, A Fleming, GR AF Ishizaki, Akihito Fleming, Graham R. TI Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE dipole coupling; excited states; fluorescence; Markov processes; nonradiative transitions; quantum theory; radiative lifetimes; wave functions ID 2-LEVEL SYSTEM; VARIATIONAL CALCULATION; CHLOROBIUM-TEPIDUM; REDFIELD EQUATION; ANTENNA COMPLEXES; PHASE RELAXATION; NOISE BATH; SPECTROSCOPY; PROTEIN; BACTERIOCHLOROPHYLL AB A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Foumlrster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Foumlrster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores. C1 [Ishizaki, Akihito] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ishizaki, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Ishizaki, Akihito/A-7069-2010 OI Ishizaki, Akihito/0000-0002-0246-4461 FU U. S. Department of Energy [DE-AC02-05CH1123, DE-AC03-76SF000098]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences; JSPS Postdoctoral Fellowship for Research Abroad FX We thank Dr. Yuan-Chung Cheng for valuable comments. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC03-76SF000098. A. I. appreciates the support of the JSPS Postdoctoral Fellowship for Research Abroad. NR 57 TC 308 Z9 308 U1 8 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234111 DI 10.1063/1.3155372 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200016 PM 19548715 ER PT J AU Xu, ZJ Meakin, P AF Xu, Zhijie Meakin, Paul TI A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE confined flow; flow simulation ID DENSE COLLOIDAL SUSPENSIONS; COMPUTER-SIMULATION; SOLIDIFICATION; CONVECTION; GROWTH AB Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries. C1 [Xu, Zhijie; Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Meakin, Paul] Univ Oslo, N-0316 Oslo, Norway. [Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2027 Kjeller, Norway. RP Xu, ZJ (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. EM zhijie.xu@inl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 FU U. S. Department of Energy, Office of Science Scientific Discovery; Battelle Energy Alliance [DE-AC07-05ID14517] FX This work was supported by the U. S. Department of Energy, Office of Science Scientific Discovery through Advanced Computing Program. The Idaho National Laboratory is operated for the U. S. Department of Energy by the Battelle Energy Alliance under Contract No. DE-AC07-05ID14517. NR 40 TC 13 Z9 14 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234103 DI 10.1063/1.3152634 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200008 PM 19548707 ER PT J AU Zhang, Y Donev, A Weisgraber, T Alder, BJ Graham, MD de Pablo, JJ AF Zhang, Yu Donev, Aleksandar Weisgraber, Todd Alder, Berni J. Graham, Michael D. de Pablo, Juan J. TI Tethered DNA dynamics in shear flow SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biological fluid dynamics; Brownian motion; DNA; fluctuations; lattice Boltzmann methods; molecular dynamics method; shear flow; stochastic processes ID DRIVEN MOLECULAR-DYNAMICS; NONSPHERICAL HARD PARTICLES; IMMERSED BOUNDARY METHOD; SINGLE-POLYMER DYNAMICS; LATTICE BOLTZMANN; HYDRODYNAMIC INTERACTIONS; STOCHASTIC SIMULATIONS; ELONGATIONAL FLOW; INDUCED MIGRATION; CHAIN POLYMERS AB We study the cyclic dynamics of a single polymer tethered to a hard wall in shear flow using Brownian dynamics, the lattice Boltzmann method, and a recent stochastic event-driven molecular dynamics algorithm. We focus on the dynamics of the free end (last bead) of the tethered chain and we examine the cross-correlation function and power spectral density of the chain extensions in the flow and gradient directions as a function of chain length N and dimensionless shear rate Wi. Extensive simulation results suggest a classical fluctuation-dissipation stochastic process and question the existence of periodicity of the cyclic dynamics, as previously claimed. We support our numerical findings with a simple analytical calculation for a harmonic dimer in shear flow. C1 [Zhang, Yu; Graham, Michael D.; de Pablo, Juan J.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Donev, Aleksandar; Weisgraber, Todd; Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Zhang, Y (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM depablo@engr.wisc.edu RI Graham, Michael/A-8356-2009 OI Graham, Michael/0000-0003-4983-4949 NR 63 TC 27 Z9 27 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234902 DI 10.1063/1.3149860 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200052 PM 19548751 ER PT J AU Schawinski, K Lintott, C Thomas, D Sarzi, M Andreescu, D Bamford, SP Kaviraj, S Khochfar, S Land, K Murray, P Nichol, RC Raddick, MJ Slosar, A Szalay, A VandenBerg, J Yi, SK AF Schawinski, Kevin Lintott, Chris Thomas, Daniel Sarzi, Marc Andreescu, Dan Bamford, Steven P. Kaviraj, Sugata Khochfar, Sadegh Land, Kate Murray, Phil Nichol, Robert C. Raddick, M. Jordan Slosar, Anze Szalay, Alex VandenBerg, Jan Yi, Sukyoung K. TI Galaxy Zoo: a sample of blue early-type galaxies at low redshift SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: formation; galaxies: fundamental parameters; galaxies: starburst ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; COLOR-MAGNITUDE RELATION; ELLIPTIC GALAXIES; HOST GALAXIES; VELOCITY DISPERSIONS; STELLAR POPULATIONS; SAURON PROJECT; RADIO GALAXIES AB We report the discovery of a population of nearby, blue early-type galaxies with high star formation rates (0.5 < SFR < 50 M(circle dot) yr(-1)). They are identified by their visual morphology as provided by Galaxy Zoo for Sloan Digital Sky Survey Data Release 6 and their u - r colour. We select a volume-limited sample in the redshift range 0.02 < z < 0.05, corresponding to luminosities of approximately L* and above and with u - r colours significantly bluer than the red sequence. We confirm the early-type morphology of the objects in this sample and investigate their environmental dependence and star formation properties. Blue early-type galaxies tend to live in lower density environments than 'normal' red sequence early-types and make up 5.7 +/- 0.4 per cent of the low-redshift early-type galaxy population. We find that such blue early-type galaxies are virtually absent at high velocity dispersions above 200 km s(-1). Our analysis uses emission line diagnostic diagrams and we find that similar to 25 per cent of them are actively star forming, while another similar to 25 per cent host both star formation and an active galactic nucleus (AGN). Another similar to 12 per cent are AGN. The remaining 38 per cent show no strong emission lines. When present and uncontaminated by an AGN contribution, the star formation is generally intense. We consider star formation rates derived from Ha, u band and infrared luminosities, and radial colour profiles, and conclude that the star formation is spatially extended. Of those objects that are not currently undergoing star formation must have ceased doing so recently in order to account for their blue optical colours. The gas-phase metallicity of the actively star-forming blue early-types galaxies is supersolar in all cases. We discuss the place of these objects in the context of galaxy formation. Acatalogue of all 204 blue early-type galaxies in our sample, including star formation rates, emission line classification is provided. C1 [Schawinski, Kevin] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Schawinski, Kevin] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Schawinski, Kevin; Lintott, Chris; Kaviraj, Sugata; Khochfar, Sadegh; Land, Kate] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Thomas, Daniel; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Sarzi, Marc] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Andreescu, Dan] LinkLab, Bronx, NY 10471 USA. [Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Khochfar, Sadegh] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Down, North Ireland. [Raddick, M. Jordan; Szalay, Alex; VandenBerg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Yi, Sukyoung K.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. RP Schawinski, K (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA. EM kevins@astro.ox.ac.uk RI Bamford, Steven/E-8702-2010; OI Bamford, Steven/0000-0001-7821-7195; Schawinski, Kevin/0000-0001-5464-0888 FU Henry Skynner Junior Research Fellowship; STFC; Leverhulme Early-Career Fellowship; Worcester College, Oxford; Basic Research Program of the Korea Science and Engineering Foundation [R01-2006-000-10716-0]; Korean government [KRF-C00156]; Alfred P. Sloan Foundation FX We would like to thank Adrienne Slyz and Julien Devrient for helpful comments and suggestions. We also thank Alice Sheppard and Edd Edmondson for their help in administering the Galaxy Zoo forum. KS is supported by the Henry Skynner Junior Research Fellowship at Balliol College Oxford. CL acknowledges support from the STFC Science in Society Programme. S. Kaviraj acknowledges a Leverhulme Early-Career Fellowship, a BIPAC fellowship and a Research Fellowship from Worcester College, Oxford. This work was supported by grant No. R01-2006-000-10716-0 from the Basic Research Program of the Korea Science and Engineering Foundation to SKY. This work was supported by the Korea Research Foundation Grant funded by the Korean government ( KRF-C00156) to SKY. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, theMax Planck Society and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/ NR 67 TC 72 Z9 73 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2009 VL 396 IS 2 BP 818 EP 829 DI 10.1111/j.1365-2966.2009.14793.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 457JR UT WOS:000266924800016 ER PT J AU Ren, F Hall, BD Case, ED Timm, EJ Trejo, RM Meisner, RA Lara-Curzio, E AF Ren, F. Hall, B. D. Case, E. D. Timm, E. J. Trejo, R. M. Meisner, R. A. Lara-Curzio, E. TI Temperature-dependent thermal expansion of cast and hot-pressed LAST (Pb-Sb-Ag-Te) thermoelectric materials SO PHILOSOPHICAL MAGAZINE LA English DT Article DE semiconductor; thermomechanical analysis; powder diffraction; thermal expansion ID SOLID-SOLUTIONS; LEAD TELLURIDE; AGPBMSBTE2+M; PERFORMANCE; EFFICIENCY; POWDERS; SYSTEM; GROWTH AB The thermal expansion for two compositions of east and hot-presged LAST (Pb-Sb-Ag-Te) n-type thermoelectric materials has been measured between room temperature and 673 K via thermomechanical analysis (TMA). In addition, using high-temperature X-ray diffraction (HT-XRD), the thermal expansion Cor both cast and licit-pressed LAST materials was determined from the temperature-dependent lattice parameters measured between room temperature and 623 K. The TMA and HT-XRD determined values of the coefficient of thermal expansion (CTE) for the LAST compositions ranged between 20 x 10(-6) K-1 and 24 x 10(-6) K-1, which is comparable to the CTE values for other thermoelectric materials including PbTe and Bi2Te3. The CTE of the LAST specimens with a higher Ag content (Ag0.86Pb19Sb1.0Te20) exhibited a higher CTE value than that of the LAST material with a lower Ag content (Ag0.43Pb18Sb1.2Te20). In addition, a peak in the temperature-dependent CTE was observed between room temperature and approximately 450 K. For both the cast and hot-pressed LAST with the Ag0.86Pb19Sb1.0Te20 composition, whereas the CTE of the Ag0.86Pb19Sb1.0Te20 Specimen increased monotonically with temperature. C1 [Ren, F.; Hall, B. D.; Case, E. D.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Timm, E. J.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Trejo, R. M.; Lara-Curzio, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Meisner, R. A.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Ren, F (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM renf@ornl.gov RI Ren, Fei/E-7706-2011 FU U.S. Department of Energy [DE-FC26-04NT42281, DE-AC05-00OR22725]; Office of Naval Research MURI [N000140310789]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies; High Temperature Materials Laboratory; Oak Ridge National Laboratory; UT-Battelle; LLC FX The authors acknowledge the financial assistance of the U.S. Department of Energy Grant DE-FC26-04NT42281 and Office of Naval Research MURI Grant number N000140310789. The research work at the High Temperature Materials Laboratory was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. One of the authors (F. Ren) would like to acknowledge the financial support from the Higher Education Research Experience program sponsored by the Oak Ridge National Laboratory during his tenure at the High Temperature Materials Laboratory.; The authors would like to thank Dr. Andrew Payzant at the Materials Science and Technology Division of the Oak Ridge National Laboratory for his technical assistance and helpful discussion with respect to the high temperature x-ray experiments. One of the authors (F. Ren) would like to acknowledge the help from Mr. Takayuki Kobayashi (Visiting scholar, Department of Chemical Engineering and Materials Science, Michigan State University) for his assistance in translating ref. [24] to English. NR 31 TC 7 Z9 7 U1 1 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD JUN 21 PY 2009 VL 89 IS 18 BP 1439 EP 1455 DI 10.1080/14786430903002376 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 478IL UT WOS:000268580900001 ER PT J AU Yu, S Brown, HM Huang, XW Zhou, XD Amonette, JE Zhang, ZC AF Yu Su Brown, Heather M. Huang, Xiwen Zhou, Xiao-dong Amonette, James E. Zhang, Z. Conrad TI Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE 5-Hydroxymethylfurfural; HMF; Ionic liquid; 1-Alkyl-3-methylimidazolium chloride; 1-Ethyl-3-methyl-imidazolium chloride; Glucose; Cellobiose; Maltose; Cellulose conversion; Paired metal chlorides; CuCl(2); CrCl(2) ID LIGNOCELLULOSIC BIOMASS; IONIC LIQUIDS; HYDROLYSIS; FUELS; ACID AB The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl(2) and CrCl(2)) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80-120 degrees C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 +/- 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions. (C) 2009 Published by Elsevier B.V. C1 [Yu Su; Brown, Heather M.; Huang, Xiwen; Zhou, Xiao-dong; Amonette, James E.; Zhang, Z. Conrad] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Zhang, ZC (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA. EM conrad.zhang@kior.com FU Pacific Northwest National Lab (PNNL) [DE-AC06-76RL01830] FX We thank John L. Fulton, Sarah D. Burton, and Guosheng Li for helpful discussions. We also want to express our deep gratitude to the late Professor J.M. White and to Dr. M.R. Thompson of the Pacific Northwest National Lab (PNNL) for their support and for inspiring discussions. This work was supported by the Laboratory Directed Research and Development Program at the PNNL, a multiprogram national laboratory operated by Battelle for the U.S. DOE under contract no. DE-AC06-76RL01830. Part of the research described in this paper was performed at the Environmental Molecular Science Laboratory, a national scientific user facility located at PNNL. NR 15 TC 36 Z9 43 U1 7 U2 123 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JUN 20 PY 2009 VL 361 IS 1-2 BP 117 EP 122 DI 10.1016/j.apcata.2009.04.002 PG 6 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 459HR UT WOS:000267092800016 ER PT J AU Naulleau, PP AF Naulleau, Patrick P. TI Correlation method for the measure of mask-induced line-edge roughness in extreme ultraviolet lithography SO APPLIED OPTICS LA English DT Article AB As critical dimensions for leading-edge semiconductor devices shrink, the line-edge roughness (LER) requirements are pushing well into the single digit nanometer regime. At these scales many new sources of LER must be considered. In the case of extreme ultraviolet (EUV) lithography, modeling has shown the lithographic mask to be a source of significant concern. Here we present a correlation-based methodology for experimentally measuring the magnitude of mask contributors to printed LER. The method is applied to recent printing results from a 0.3 numerical aperture ELTV microfield exposure tool. The measurements demonstrate that such effects are indeed present and of significant magnitude. The method is also used to explore the effects of illumination coherence and defocus and has been used to verify model-based predictions of mask-induced LER. (C) 2009 Optical Society of America C1 Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA. RP Naulleau, PP (reprint author), Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA. EM pnaulleau@lbl.gov FU DOE FX The author is greatly indebted to Paul Denham, Bryan Hoef, Gideon Jones, and Lorie Mae Bacleaan for expert support with the exposure tool, and to the entire CXRO staff for enabling this research. The author is also grateful to Warren Montgomery, Chawon Koh, Stefan Wurm, and Brian Rice of SEMATECH for BMET support. This work was supported by SEMATECH and carried out at Lawrence Berkeley National Laboratory's Advanced Light Source, which is supported by the DOE, Office of Science, Basic Energy Sciences. NR 8 TC 14 Z9 15 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 20 PY 2009 VL 48 IS 18 BP 3302 EP 3307 DI 10.1364/AO.48.003302 PG 6 WC Optics SC Optics GA 475HX UT WOS:000268350300004 PM 19543335 ER PT J AU Yoo, J Weinberg, DH Tinker, JL Zheng, Z Warren, MS AF Yoo, Jaiyul Weinberg, David H. Tinker, Jeremy L. Zheng, Zheng Warren, Michael S. TI EXTENDING RECOVERY OF THE PRIMORDIAL MATTER POWER SPECTRUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; dark matter; galaxies: halos; large-scale structure of universe ID HALO OCCUPATION DISTRIBUTION; DIGITAL SKY SURVEY; REDSHIFT-SPACE DISTORTIONS; LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; COLD DARK-MATTER; COSMOLOGICAL PARAMETERS; FOURIER-ANALYSIS; ANALYTIC MODEL; MASS FUNCTION AB The shape of the primordial matter power spectrum encodes critical information on cosmological parameters. At large scales, in the linear regime, the observable galaxy power spectrum P(obs)(k) is expected to follow the shape of the linear matter power spectrum P(lin)(k), but on smaller scales the effects of nonlinearity and galaxy bias make the ratio P(obs)(k)/P(lin)(k) scale dependent. We develop a method that can extend the dynamic range of the primordial matter power spectrum recovery, taking full advantage of precision measurements on quasi-linear scales, by incorporating additional constraints on the galaxy halo occupation distribution (HOD) from the projected galaxy correlation function w(p) (r(p)). We devise an analytic model to calculate observable galaxy power spectrum P(obs)(k) in real space and redshift space, given P(lin)(k) and HOD parameters, and we demonstrate its accuracy at the few percent level with tests against a suite of populated N-body simulations. Once HOD parameters are determined by fitting w(p) (r(p)) measurements for a given cosmological model, galaxy bias is completely specified, and our analytic model predicts both the shape and normalization of P(obs)(k). Applying our method to the main galaxy redshift samples from the Sloan Digital Sky Survey (SDSS), we find that the real-space galaxy power spectrum follows the shape of the nonlinear matter power spectrum at the 1%-2% level up to k = 0.2 h Mpc(-1) and that current observational uncertainties in HOD parameters leave only few percent uncertainties in our scale-dependent bias predictions up to k = 0.5 h Mpc(-1). These uncertainties can be marginalized over in deriving cosmological parameter constraints, and they can be reduced by higher precision w(p) (r(p)) measurements. When we apply our method to the SDSS luminous red galaxy (LRG) samples, we find that the linear bias approximation is accurate to 5% at k <= 0.08 h Mpc(-1), but the strong scale dependence of LRG bias prevents the use of linear theory at k >= 0.08 h Mpc(-1). Our HOD model prediction is in good agreement with the recent SDSS LRG power spectrum measurements at all measured scales (k <= 0.2 h Mpc(-1)), naturally explaining the observed shape of P(obs)(k) in the quasi-linear regime. The phenomenological "Q-model" prescription is a poor description of galaxy bias for the LRG samples, and it can lead to biased cosmological parameter estimates when measurements at k >= 0.1 h Mpc(-1) are included in the analysis. We quantify the potential bias and constraints on cosmological parameters that arise from applying linear theory and Q-model fitting, and we demonstrate the utility of HOD modeling of high-precision measurements of P(obs)(k) on quasi-linear scales, which will be obtainable from the final SDSS data set. C1 [Yoo, Jaiyul] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Yoo, Jaiyul; Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Tinker, Jeremy L.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Zheng, Zheng] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Warren, Michael S.] Los Alamos Natl Lab, Div Theoret Astrophys, Los Alamos, NM 87543 USA. RP Yoo, J (reprint author), Harvard Univ, Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jyoo@cfa.harvard.edu; dhw@astronomy.ohio-state.edu; tinker@cfcp.uchicago.edu; zhengz@ias.edu; msw@lanl.gov OI Warren, Michael/0000-0002-1218-7904 FU Ohio State University; NSF [AST-0707985, AST-0239759]; Chandra award [GO5-6120B]; Institute for Advanced Study through a John Bahcall Fellowship FX We are grateful to Max Tegmark for kindly providing his no-defog measurements used in our Figure 13. J.Y. has been supported by the Harvard College Observatory through a Donald H. Menzel Fellowship and by the Graduate School of The Ohio State University through a Presidential Fellowship. D. W. acknowledges support from NSF Grant AST-0707985. J.T. was supported by the Chandra award GO5-6120B and National Science Foundation ( NSF) under grant AST-0239759. Z.Z. gratefully acknowledges support from the Institute for Advanced Study through a John Bahcall Fellowship. NR 84 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 967 EP 985 DI 10.1088/0004-637X/698/2/967 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400001 ER PT J AU Urrutia, T Becker, RH White, RL Glikman, E Lacy, M Hodge, J Gregg, MD AF Urrutia, Tanya Becker, Robert H. White, Richard L. Glikman, Eilat Lacy, Mark Hodge, Jacqueline Gregg, Michael D. TI THE FIRST-2MASS RED QUASAR SURVEY. II. AN ANOMALOUSLY HIGH FRACTION OF LoBALs IN SEARCHES FOR DUST-REDDENED QUASARS SO ASTROPHYSICAL JOURNAL LA English DT Review DE galaxies: active; galaxies: evolution; quasars: absorption lines; quasars: general ID ACTIVE GALACTIC NUCLEI; BROAD-ABSORPTION-LINE; DIGITAL-SKY-SURVEY; ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; SUPERMASSIVE BLACK-HOLES; HUBBLE-SPACE-TELESCOPE; RADIO-LOUD QUASARS; DEEP FIELD-SOUTH; 3RD DATA RELEASE AB We present results on a survey to find extremely dust-reddened Type 1 quasars. Combining the FIRST radio survey, the 2MASS Infrared Survey and the Sloan Digital Sky Survey, we have selected a candidate list of 122 potential red quasars. With more than 80% spectroscopically identified objects, well over 50% are classified as dust-reddened Type 1 quasars, whose reddenings (E(B-V)) range from approximately 0.1 to 1.5 mag. They lie well off the color selection windows usually used to detect quasars and many fall within the stellar locus, which would have made it impossible to find these objects with traditional color selection techniques. The reddenings found are much more consistent with obscuration happening in the host galaxy rather than stemming from the dust torus. We find an unusually high fraction of broad absorption line (BAL) quasars at high redshift, all but one of them belonging to the low-ionization BAL (LoBAL) class and many also showing absorption in the metastable Fe II line (FeLoBAL). The discovery of further examples of dust-reddened LoBAL quasars provides more support for the hypothesis that BAL quasars (at least LoBAL quasars) represent an early stage in the lifetime of the quasar. The fact that we see such a high fraction of BALs could indicate that the quasar is in a young phase in which quasar feedback from the BAL winds is suppressing star formation in the host galaxy. C1 [Urrutia, Tanya; Lacy, Mark] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Urrutia, Tanya; Becker, Robert H.; Hodge, Jacqueline; Gregg, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Urrutia, Tanya; Becker, Robert H.; Gregg, Michael D.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Glikman, Eilat] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Urrutia, T (reprint author), CALTECH, Spitzer Sci Ctr, MS 314-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM bob@igpp.ucllnl.org; rlw@stsci.edu; eilatg@astro.caltech.edu; mlacy@ipac.caltech.edu; hodge@physics.ucdavis.edu; gregg@igpp.ucllnl.org RI White, Richard/A-8143-2012; OI Urrutia, Tanya/0000-0001-6746-9936 FU US Department of Energy [DE-AC52-07NA27344] FX The authors wish to thank Bryn Feldman for help with the first selections of this catalog and for help in carrying out the observations at Lick 3 m telescope. We are also thankful for the helpful comments from an anonymous referee on this paper. This work was partly performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. NR 110 TC 60 Z9 60 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 1095 EP 1109 DI 10.1088/0004-637X/698/2/1095 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400011 ER PT J AU Carrigan, RA AF Carrigan, Richard A., Jr. TI IRAS-BASED WHOLE-SKY UPPER LIMIT ON DYSON SPHERES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; extraterrestrial intelligence; infrared: stars; stars: carbon; stars: fundamental parameters ID MASER SOURCES; CARBON STARS; OUTER DISK; GALAXY; SEARCH; IDENTIFICATION; CLASSIFICATION; CANDIDATES; SPECTRA AB A Dyson sphere is a hypothetical construct of a star purposely shrouded by a cloak of broken-up planetary material to better utilize all of the stellar energy. A clean Dyson sphere identification would give a significant signature for intelligence at work. A search for Dyson spheres has been carried out using the 250,000 source database of the IRAS infrared satellite which covered 96% of the sky. The search has used the Calgary database for the IRAS Low Resolution Spectrometer (LRS) to look for fits to blackbody spectra. Searches have been conducted for both pure (fully cloaked) and partial Dyson spheres in the blackbody temperature region 100K <= T <= 600 K. When other stellar signatures that resemble a Dyson sphere are used to eliminate sources that mimic Dyson spheres very few candidates remain and even these are ambiguous. Upper limits are presented for both pure and partial Dyson spheres. The sensitivity of the LRS was enough to find Dyson spheres with the luminosity of the Sun out to 300 pc, a reach that encompasses a million solar-type stars. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Carrigan, RA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM carrigan@fnal.gov NR 26 TC 16 Z9 16 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 2075 EP 2086 DI 10.1088/0004-637X/698/2/2075 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400089 ER PT J AU Abdo, AA Allen, BT Aune, T Berley, D Casanova, S Chen, C Dingus, BL Ellsworth, RW Fleysher, L Fleysher, R Gonzalez, MM Goodman, JA Hoffman, CM Hopper, B Huntemeyer, PH Kolterman, BE Lansdell, CP Linnemann, JT McEnery, JE Mincer, AI Nemethy, P Noyes, D Pretz, J Ryan, JM Parkinson, PMS Shoup, A Sinnis, G Smith, AJ Sullivan, GW Vasileiou, V Walker, GP Williams, DA Yodh, GB AF Abdo, A. A. Allen, B. T. Aune, T. Berley, D. Casanova, S. Chen, C. Dingus, B. L. Ellsworth, R. W. Fleysher, L. Fleysher, R. Gonzalez, M. M. Goodman, J. A. Hoffman, C. M. Hopper, B. Huentemeyer, P. H. Kolterman, B. E. Lansdell, C. P. Linnemann, J. T. McEnery, J. E. Mincer, A. I. Nemethy, P. Noyes, D. Pretz, J. Ryan, J. M. Parkinson, P. M. Saz Shoup, A. Sinnis, G. Smith, A. J. Sullivan, G. W. Vasileiou, V. Walker, G. P. Williams, D. A. Yodh, G. B. TI THE LARGE-SCALE COSMIC-RAY ANISOTROPY AS OBSERVED WITH MILAGRO SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; Galaxy: halo; ISM: magnetic fields; solar neighborhood; Sun: activity; supernova remnants ID GALACTIC PLANE; INTENSITY AB Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 +/- 0.02 stat. +/- 0.09 sys.) x 10(-3) in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years. C1 [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Abdo, A. A.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Allen, B. T.; Chen, C.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Aune, T.; Parkinson, P. M. Saz; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Berley, D.; Goodman, J. A.; Hopper, B.; Lansdell, C. P.; Noyes, D.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Casanova, S.; Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Pretz, J.; Sinnis, G.; Walker, G. P.] Los Alamos Natl Lab, Grp P 23, Los Alamos, NM 87545 USA. [Ellsworth, R. W.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] NYU, Dept Phys, New York, NY 10003 USA. [Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Linnemann, J. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [McEnery, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ryan, J. M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Shoup, A.] Ohio State Univ, Lima, OH 45804 USA. RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. RI McEnery, Julie/D-6612-2012; Casanova, Sabrina/J-8935-2013; OI Casanova, Sabrina/0000-0002-6144-9122; Mincer, Allen/0000-0002-6307-1418 FU National Science Foundation [PHY-0245234, PHY-0302000, PHY-0400424, PHY-0504201, PHY-0601080, ATM-0002744]; US Department of Energy; Los Alamos National Laboratory; University of California; Institute of Geophysics and Planetary Physics FX We acknowledge Scott Delay and Michael Schneider for their dedicated efforts in the construction and maintenance of the Milagro experiment. This work has been supported by the National Science Foundation (under grants PHY-0245234, -0302000, -0400424, -0504201, -0601080, and ATM-0002744) the US Department of Energy (Office of High-Energy Physics and Office of Nuclear Physics), Los Alamos National Laboratory, the University of California, and the Institute of Geophysics and Planetary Physics. NR 22 TC 108 Z9 109 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 2121 EP 2130 DI 10.1088/0004-637X/698/2/2121 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400093 ER PT J AU Ryutov, DD Drake, RP Kane, J Liang, E Remington, BA Wood-Vasey, WM AF Ryutov, D. D. Drake, R. P. Kane, J. Liang, E. Remington, B. A. Wood-Vasey, W. M. TI SIMILARITY CRITERIA FOR THE LABORATORY SIMULATION OF SUPERNOVA HYDRODYNAMICS (vol 518, pg 821, 1999) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Ryutov, D. D.; Drake, R. P.; Kane, J.; Liang, E.; Remington, B. A.; Wood-Vasey, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. OI Drake, R Paul/0000-0002-5450-9844 NR 1 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 2144 EP 2144 DI 10.1088/0004-637X/698/2/2144 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400095 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Bautista, M Beilicke, M Benbow, W Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cannon, A Celik, O Cesarini, A Chow, YC Ciupik, L Cogan, P Colin, P Cui, W Daniel, MK Dickherber, R Duke, C Dwarkadas, VV Ergin, T Fegan, SJ Finley, JP Finnegan, G Fortin, P Fortson, L Furniss, A Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Ong, RA Otte, AN Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Toner, JA Valcarcel, L Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Bautista, M. Beilicke, M. Benbow, W. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cannon, A. Celik, O. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Colin, P. Cui, W. Daniel, M. K. Dickherber, R. Duke, C. Dwarkadas, V. V. Ergin, T. Fegan, S. J. Finley, J. P. Finnegan, G. Fortin, P. Fortson, L. Furniss, A. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Toner, J. A. Valcarcel, L. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. TI OBSERVATION OF EXTENDED VERY HIGH ENERGY EMISSION FROM THE SUPERNOVA REMNANT IC 443 WITH VERITAS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: observations; ISM: individual (IC 443=VER J0616.9+2230, = MAGIC J0616+225) ID GAMMA-RAY EMISSION; XMM-NEWTON OBSERVATIONS; MOLECULAR CLOUDS; MAGIC TELESCOPE; COSMIC-RAYS; IC-443; NEBULA; PULSAR; DISCOVERY; RADIATION AB We present evidence that the very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hr during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 6(h)16(m)51(s)+22 degrees 30'11 '' (J2000)+/- 0 degrees.03(stat)+/- 0 degrees.08(sys), with an intrinsic extension of 0 degrees.16 +/- 0 degrees.03(stat)+/- 0 degrees.04(sys). The VHE spectrum is well fit by a power law (dN/dE = N(0) x(E/TeV)(-Gamma)) with a photon index of 2.99 +/- 0.38(stat)+/- 0.3(sys) and an integral flux above 300 GeV of (4.63 +/- 0.90(stat)+/- 0.93(sys)) x 10(-12) cm(-2) s(-1). These results are discussed in the context of existing models for gamma-ray production in IC 443. C1 [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Acciari, V. A.; Benbow, W.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Celik, O.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bautista, M.; Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Valcarcel, L.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Daniel, M. K.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Colin, P.; Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Fortin, P.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Humensky, TB (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM humensky@uchicago.edu RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010; OI Cesarini, Andrea/0000-0002-8611-8610; Cui, Wei/0000-0002-6324-5772; Daniel, Michael/0000-0002-8053-7910; Ward, John E/0000-0003-1973-0794; Otte, Adam Nepomuk/0000-0002-5955-6383; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU US Department of Energy; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC FX This research is supported by grants from the US Department of Energy, the US National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. Some of the simulations used in this work have been performed on the Joint Fermilab-KICP Supercomputing Cluster. NR 42 TC 66 Z9 66 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2009 VL 698 IS 2 BP L133 EP L137 DI 10.1088/0004-637X/698/2/L133 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 458VB UT WOS:000267052600014 ER PT J AU Acciari, VA Aliu, E Arlen, T Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Cesarini, A Chow, YC Ciupik, L Cogan, P Dickherber, R Duke, C Ergin, T Falcone, A Fegan, SJ Finley, JP Finnegan, G Fortin, P Fortson, L Furniss, A Gibbs, K Gillanders, GH Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Millis, J Moriarty, P Mukherjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Petry, D Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, S Theiling, M Toner, JA Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M AF Acciari, V. A. Aliu, E. Arlen, T. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Dickherber, R. Duke, C. Ergin, T. Falcone, A. Fegan, S. J. Finley, J. P. Finnegan, G. Fortin, P. Fortson, L. Furniss, A. Gibbs, K. Gillanders, G. H. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Millis, J. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Petry, D. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. Theiling, M. Toner, J. A. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. TI EVIDENCE FOR LONG-TERM GAMMA-RAY AND X-RAY VARIABILITY FROM THE UNIDENTIFIED TeV SOURCE HESS J0632+057 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; binaries: general; gamma rays: observations; stars: individual (HESS J0632+057, MWC 148) ID BINARY; DISCOVERY; EMISSION; TELESCOPE; CATALOG; STARS AB HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I + 61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hr in 2006, 2008, and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The nondetection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with the Swift X-Ray Telescope reveal a factor of 1.8 +/- 0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the object as a gamma-ray emitting binary. C1 [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Acciari, V. A.; Benbow, W.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finley, J. P.; Sembroski, G. H.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Finnegan, G.; Hui, C. M.; Kieda, D.; LeBohec, S.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Humensky, T. B.; Swordy, S.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.; Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Maier, G (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. EM gernot.maier@mcgill.ca OI Millis, John/0000-0002-2069-9838; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU U. S. Department of Energy; U. S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC FX This research is supported by grants from the U. S. Department of Energy, the U. S. National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the U. K. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. We acknowledge the efforts of the Swift team for providing the UVOT/XRT observations. NR 27 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2009 VL 698 IS 2 BP L94 EP L97 DI 10.1088/0004-637X/698/2/L94 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 458VB UT WOS:000267052600005 ER PT J AU Barad, MF Colella, P Schladow, SG AF Barad, Michael F. Colella, Phillip Schladow, S. Geoffrey TI An adaptive cut-cell method for environmental fluid mechanics SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE embedded boundary; adaptive mesh refinement; variable-density incompressible flows; projection method; environmental fluid mechanics; finite-volume method ID NAVIER-STOKES EQUATIONS; EMBEDDED BOUNDARY METHOD; INCOMPRESSIBLE 2-PHASE FLOWS; HYPERBOLIC CONSERVATION-LAWS; 2ND-ORDER PROJECTION METHOD; IRREGULAR DOMAINS; POISSONS-EQUATION; HEAT-EQUATION; NUMERICAL-SIMULATION; MESH REFINEMENT AB In this work we present a numerical method for solving the incompressible Navier-Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable-density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded-boundary (or cut-cell) method for complex geometry with block-structured adaptive mesh refinement (AMR) while maintaining conservation and second-order accuracy. The accurate simulation of variable-density fluids necessitates special care in formulating projection methods. This variable-density formulation is well known for incompressible flows in unit-aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addressess the intersection of these issues. The methodology is based on a second-order-accurate projection method with high-order-accurate Godunov finite-differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite-volume AMR discretizations are based on two-way flux matching at refinement boundaries to obtain a conservative method that is second-order accurate in solution error. The control volumes are formed by the intersection of the irregular embeeded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint-block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two- and three-dimensional numerical examples to illustrate the accuracy of the method. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barad, Michael F.; Schladow, S. Geoffrey] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Barad, MF (reprint author), Stanford Univ, Environm Fluid Mech Lab, Stanford, CA 94305 USA. EM barad@stanford.edu FU National Science Foundation MSPRF; Department of Energy CSGF; U.S. Department of Energy Office of Advanced Scientific Computing [DE-AC02-05CH11231]; U.S. Environmental Protection Agency's Coastal Intensive Sites Network Program [R826940-01-0]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX MFB acknowledges the support of the National Science Foundation MSPRF program and the Department of Energy CSGF program. PC acknowledges support by the U.S. Department of Energy Office of Advanced Scientific Computing under contract No. DE-AC02-05CH11231. SGS acknowledges the U.S. Environmental Protection Agency's Coastal Intensive Sites Network Program (Grant no. R826940-01-0). We thank Caroline Gatti-Bono, Dan Graves, Terry Ligocki, Dan Martin, Peter Schwartz, David Serafini, Chip Smith, Ted Sternberg, David Trebotich, and Brian Van Straalen without their efforts this work would not have been possible. Thanks also to Professor Oliver Fringer. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. This research also used resources at the Stanford Center for Computational Earth & Environmental Science. NR 79 TC 13 Z9 13 U1 3 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JUN 20 PY 2009 VL 60 IS 5 BP 473 EP 514 DI 10.1002/fld.1893 PG 42 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 444RB UT WOS:000265997000001 ER PT J AU Li, QM Lin, Y Creighton, JR Figiel, JJ Wang, GT AF Li, Qiming Lin, Yong Creighton, J. Randall Figiel, Jeffrey J. Wang, George T. TI Nanowire-Templated Lateral Epitaxilal Growth of Low-Dislocation Density Nonpolar a-Plane GaN on r-Plane Sapphire SO ADVANCED MATERIALS LA English DT Article ID LIGHT-EMITTING-DIODES; MISMATCHED SEMICONDUCTOR-MATERIALS; CHEMICAL-VAPOR-DEPOSITION; GALLIUM NITRIDE; IN-SITU; OVERGROWTH; NANOHETEROEPITAXY; HETEROEPITAXY; REDUCTION; SUBSTRATE AB Coalescence of a vertically aligned GaN nanowire array on r-plane sapphire, a technique called nanowire-templated lateral epitaxial growth, is used to grow low-dislocation density a-plane GaN. The resulting film is connected to the lattice-mismatched substrate by nanowires, which facilitates dramatic strain relaxation and leads to a significant reduction in defects. C1 [Li, Qiming; Lin, Yong; Creighton, J. Randall; Figiel, Jeffrey J.; Wang, George T.] Sandia Natl Labs, Adv Mat Dept, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, Adv Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov RI Wang, George/C-9401-2009 OI Wang, George/0000-0001-9007-0173 FU DOE Basic Energy Sciences; DOE EERE National Energy Technology Laboratory; Sandia's Laboratory Directed Research and Development program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AI85000] FX This research is supported by DOE Basic Energy Sciences, DOE EERE National Energy Technology Laboratory, and Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94AI85000. NR 31 TC 34 Z9 35 U1 2 U2 48 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 19 PY 2009 VL 21 IS 23 BP 2416 EP + DI 10.1002/adma.200802532 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 465GN UT WOS:000267570800010 ER PT J AU Avraham, O Hadas, Y Vald, L Zisman, S Schejter, A Visel, A Klar, A AF Avraham, Oshri Hadas, Yoav Vald, Lilach Zisman, Sophie Schejter, Adi Visel, Axel Klar, Avihu TI Transcriptional control of axonal guidance and sorting in dorsal interneurons by the Lim-HD proteins Lhx9 and Lhx1 SO NEURAL DEVELOPMENT LA English DT Article ID SPINAL-CORD INTERNEURONS; MOTOR-NEURON; COMMISSURAL AXONS; FLOOR PLATE; NERVOUS-SYSTEM; HOMEOBOX GENES; IDENTITY; SPECIFICATION; PROJECTIONS; GENERATION AB Background: Lim-HD proteins control crucial aspects of neuronal differentiation, including subtype identity and axonal guidance. The Lim-HD proteins Lhx2/9 and Lhx1/5 are expressed in the dorsal spinal interneuron populations dI1 and dI2, respectively. While they are not required for cell fate acquisition, their role in patterning the axonal trajectory of dI1 and dI2 neurons remains incompletely understood. Results: Using newly identified dI1-and dI2-specific enhancers to trace axonal trajectories originating from these interneurons, we found that each population is subdivided into several distinct groups according to their axonal pathways. dI1 neurons project axons rostrally, either ipsior contra-laterally, while dI2 are mostly commissural neurons that project their axons rostrally and caudally. The longitudinal axonal tracks of each neuronal population self-fasciculate to form dI1-and dI2-specific bundles. The dI1 bundles are spatially located ventral relative to dI2 bundles. To examine the functional contribution of Lim-HD proteins to establishment of dI axonal projections, the Lim-HD code of dI neurons was altered by cell-specific ectopic expression. Expression of Lhx1 in dI1 neurons caused a repression of Lhx2/9 and imposed caudal projection to the caudal commissural dI1 neurons. Complementarily, when expressed in dI2 neurons, Lhx9 repressed Lhx1/5 and triggered a bias toward rostral projection in otherwise caudally projecting dI2 neurons, and ventral shift of the longitudinal axonal fascicule. Conclusion: The Lim-HD proteins Lhx9 and Lhx1 serve as a binary switch in controlling the rostral versus caudal longitudinal turning of the caudal commissural axons. Lhx1 determines caudal turning and Lhx9 triggers rostral turning. C1 [Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Zisman, Sophie; Schejter, Adi; Klar, Avihu] Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Med Neurobiol, IMRIC, IL-91010 Jerusalem, Israel. [Visel, Axel] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Klar, A (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Med Neurobiol, IMRIC, IL-91010 Jerusalem, Israel. EM oshria@ekmd.huji.ac.il; yoavh@ekmd.huji.ac.il; lilachvald@gmail.com; sophie.zisman@mail.huji.ac.il; aschejter@gmail.com; avisel@lbl.gov; avihu@cc.huji.ac.il RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU Israel Science Foundation; DFG (German Research Foundation); National Human Genome Research Institute; National Institute for Neurological Disorders and Stroke FX The authors thank Thomas Jessell for Isl1, the Lhx1/5 monoclonal antibody, and Lhx2/9 and Lhx1/5 rabbit antibodies and the Lhx2 and Lhx9 chick genes, Artur Kania for chick Lhx1 gene, and Len Pennacchio for help with initial characterization of enhancers in mice. We are also grateful to Artur Kania and Sara Wilson for comments on the manuscript. This work was supported by grants to AK from the Israel Science Foundation, and DFG (German Research Foundation). AV was supported by grants from the National Human Genome Research Institute and from the National Institute for Neurological Disorders and Stroke. NR 44 TC 42 Z9 42 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1749-8104 J9 NEURAL DEV JI Neural Dev. PD JUN 19 PY 2009 VL 4 AR 21 DI 10.1186/1749-8104-4-21 PG 22 WC Developmental Biology; Neurosciences SC Developmental Biology; Neurosciences & Neurology GA 475DY UT WOS:000268339800001 PM 19545367 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Cuenca Almenar, C Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M L