FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Phillips, CK Bell, RE Berry, LA Bonoli, PT Harvey, RW Hosea, JC Jaeger, EF LeBlanc, BP Ryan, PM Taylor, G Valeo, EJ Wilgen, JB Wilson, JR Wright, JC Yuh, H AF Phillips, C. K. Bell, R. E. Berry, L. A. Bonoli, P. T. Harvey, R. W. Hosea, J. C. Jaeger, E. F. LeBlanc, B. P. Ryan, P. M. Taylor, G. Valeo, E. J. Wilgen, J. B. Wilson, J. R. Wright, J. C. Yuh, H. CA NSTX Team TI Spectral effects on fast wave core heating and current drive SO NUCLEAR FUSION LA English DT Article ID PLASMA INTERACTIONS; NSTX; ANTENNA; HHFW AB Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L-mode and H-mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit radio frequency (rf) power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of HHFW CD were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations. C1 [Phillips, C. K.; Bell, R. E.; Hosea, J. C.; LeBlanc, B. P.; Taylor, G.; Valeo, E. J.; Wilson, J. R.] Princeton Univ, PPPL, Princeton, NJ 08540 USA. [Berry, L. A.; Jaeger, E. F.; Ryan, P. M.; Wilgen, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bonoli, P. T.; Wright, J. C.] MIT, PSFC, Cambridge, MA 02139 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08540 USA. RP Phillips, CK (reprint author), Princeton Univ, PPPL, Princeton, NJ 08540 USA. EM ckphillips@pppl.gov FU USDOE [DE-AC02-76CH03073] FX This work was supported by USDOE Contract No. DE-AC02-76CH03073. NR 27 TC 25 Z9 25 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2009 VL 49 IS 7 AR 075015 DI 10.1088/0029-5515/49/7/075015 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 469ZW UT WOS:000267942000015 ER PT J AU Umansky, MV Bulmer, RH Cohen, RH Rognlien, TD Ryutov, DD AF Umansky, M. V. Bulmer, R. H. Cohen, R. H. Rognlien, T. D. Ryutov, D. D. TI Analysis of geometric variations in high-power tokamak divertors SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; ITER; PLASMAS; PHYSICS AB Quantitative assessment of the performance of high-power tokamak divertors for a range of geometric variations is conducted using the MHD code Corsica (Crotinger et al 1997 Technical Report LLNL) and edge transport code UEDGE (Rognlien et al 1992 J. Nucl. Mater. 196-198 347). In a multi-parametric study the divertor performance is compared for a high-power tokamak with standard and snowflake (Ryutov 2007 Phys. Plasmas 14 064502) configurations for the same core plasma parameters. Divertor and edge quantities that are varied include x-point flux expansion, shape of target plates, and radiating impurity species and concentrations. For a range of studied cases, in the snowflake the peak heat load on the target plates is significantly reduced compared with the standard divertor due to larger plasma-wetted area and a larger fraction of power radiated in the edge. C1 [Umansky, M. V.; Bulmer, R. H.; Cohen, R. H.; Rognlien, T. D.; Ryutov, D. D.] LLNL, Livermore, CA 94550 USA. RP Umansky, MV (reprint author), LLNL, Livermore, CA 94550 USA. EM umansky1@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 29 TC 28 Z9 28 U1 1 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2009 VL 49 IS 7 AR 075005 DI 10.1088/0029-5515/49/7/075005 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 469ZW UT WOS:000267942000005 ER PT J AU Blazey, G Chakraborty, D Dyshkant, A Francis, K Hedin, D Hill, J Lima, G Powell, J Salcido, P Zutshi, V Demarteau, M Rubinov, P Pohlman, N AF Blazey, G. Chakraborty, D. Dyshkant, A. Francis, K. Hedin, D. Hill, J. Lima, G. Powell, J. Salcido, P. Zutshi, V. Demarteau, M. Rubinov, P. Pohlman, N. TI Directly coupled tiles as elements of a scintillator calorimeter with MPPC readout SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator; Calorimeter; Direct coupling; MPPC; Integrated readout layer AB We present results on the direct, i.e. fiberless coupling of scintillator tiles to Multi-pixel Photon Counters (MPPC). The fiberless option has the potential of simplifying the assembly and construction of a finely segmented scintillator-based calorimeter with MPPC readout. In this paper we show detailed studies on the response and uniformity of directly coupled tiles and describe our concept for an integrated readout layer (IRL). (C) 2009 Elsevier B.V. All rights reserved. C1 [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Francis, K.; Hedin, D.; Hill, J.; Lima, G.; Powell, J.; Salcido, P.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Demarteau, M.; Rubinov, P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Pohlman, N.] No Illinois Univ, Dept Engn, De Kalb, IL USA. RP Zutshi, V (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL USA. EM zutshi@fnal.gov OI Hedin, David/0000-0001-9984-215X; Blazey, Gerald/0000-0002-7435-5758 NR 3 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 277 EP 281 DI 10.1016/j.nima.2009.03.253 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000007 ER PT J AU Curioni, A Fleming, BT Jaskierny, W Kendziora, C Krider, J Pordes, S Soderberg, M Spitz, J Tope, T Wongjirad, T AF Curioni, A. Fleming, B. T. Jaskierny, W. Kendziora, C. Krider, J. Pordes, S. Soderberg, M. Spitz, J. Tope, T. Wongjirad, T. TI A regenerable filter for liquid argon purification SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Liquid argon; Purity; Neutrino; Oscillation; LArTPC ID TIME PROJECTION CHAMBER; DETECTOR AB A filter system for removing electronegative impurities from liquid argon is described. The active components of the filter are adsorbing molecular sieve and activated-copper-coated alumina granules. The system is capable of purifying liquid argon to an oxygen-equivalent impurity concentration of better than 30 parts per trillion, corresponding to an electron drift lifetime of at least 10 ms. Reduction reactions that occur at similar to 250 degrees C allow the filter material to be regenerated in situ through a simple procedure. In the following work we describe the filter design, performance, and regeneration process. (C) 2009 Elsevier B.V. All rights reserved. C1 [Curioni, A.; Fleming, B. T.; Soderberg, M.; Spitz, J.; Wongjirad, T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Tope, T.] Fermilab Natl Accelerator Lab, Particle Phys Div, Chicago, IL USA. RP Spitz, J (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. EM joshua.spitz@yale.edu OI Spitz, Joshua/0000-0002-6288-7028 FU Department of Energy; Advanced Detector Research Program; National Science Foundation FX The electronics and data-acquisition system for the TPC at FNAL were designed and built by D. Edmunds and P. Laurens of Michigan State University. The Yale group acknowledges essential help from N. Canci and F. Ameodo of LNGS, in the initial work on LAr purification; S. Centro, S. Ventura, B. Baibussinov and the ICARUS group at INFN Padova, for the readout electronics, software for DAQ and event display; L. Bartoszek of Bartoszek Engineering. This work is supported by the Department of Energy through FNAL and the Advanced Detector Research Program, and through the National Science Foundation. NR 16 TC 17 Z9 17 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 306 EP 311 DI 10.1016/j.nima.2009.04.020 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000011 ER PT J AU Battaglia, M Contarato, D Denes, P Doering, D Radmilovic, V AF Battaglia, Marco Contarato, Devis Denes, Peter Doering, Dionisio Radmilovic, Velimir TI CMOS pixel sensor response to low energy electrons in transmission electron microscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Monolithic active pixel sensor; Transmission electron microscopy ID SIMULATION; ILC AB This letter presents the results of a study of the response of a test CMOS sensor with a radiation tolerant pixel cell design to 80 and 100 keV electrons. The point spread function is measured to be (13.0 +/- 1.7) gm at 100 keV and (12.1 +/- 1.6) mu m at 80 keV, for 20 mu m pixels. Results agree well with values predicted by a Geant-4 and dedicated charge collection simulation. Published by Elsevier B.V. C1 [Battaglia, Marco; Contarato, Devis; Denes, Peter; Doering, Dionisio; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Battaglia, Marco] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Battaglia, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM MBattaglia@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX We wish to thank Thomas Duden, Rolf Erni and Zhongoon Lee. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 9 TC 9 Z9 9 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 350 EP 352 DI 10.1016/j.nima.2009.03.249 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000017 ER PT J AU Hong, J Allen, B Grindlay, J Chammas, N Barthelemy, S Baker, R Gehrels, N Nelson, KE Labov, S Collins, J Cook, WR McLean, R Harrison, F AF Hong, J. Allen, B. Grindlay, J. Chammas, N. Barthelemy, S. Baker, R. Gehrels, N. Nelson, K. E. Labov, S. Collins, J. Cook, W. R. McLean, R. Harrison, F. TI Building large area CZT imaging detectors for a wide-field hard X-ray telescope-ProtoEXIST1 SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE X-ray imaging; CZT AB We have constructed a moderately large area (32 cm(2)), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256 cm(2)) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2 cm x 2 cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512 cm(2)) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5 m(2) area) required in EXIST/HET. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Barthelemy, S.; Baker, R.; Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Nelson, K. E.; Labov, S.; Collins, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cook, W. R.; McLean, R.; Harrison, F.] CALTECH, Pasadena, CA 91125 USA. RP Hong, J (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jaesub@head.cfa.harvard.edu RI Gehrels, Neil/D-2971-2012 FU NASA APRA [NNG06WC12G]; US Department of Energy [DE-AC52-07NA27344] FX This work is supported in part by NASA APRA Grant NNG06WC12G. Portions of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 9 TC 18 Z9 21 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 364 EP 373 DI 10.1016/j.nima.2009.04.004 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000020 ER PT J AU Wang, ZH Morris, CL Makela, MF Bacon, JD Baer, EE Brockwell, MI Brooks, BJ Clark, DJ Green, JA Greene, SJ Hogan, GE Langan, R Murray, MM Pazuchanics, FE Phelps, MP Ramsey, JC Reimus, NP Roybal, JD Saltus, A Saltus, M Shimada, R Spaulding, RJ Wood, JG Wysocki, FJ AF Wang, Zhehui Morris, C. L. Makela, M. F. Bacon, J. D. Baer, E. E. Brockwell, M. I. Brooks, B. J. Clark, D. J. Green, J. A. Greene, S. J. Hogan, G. E. Langan, R. Murray, M. M. Pazuchanics, F. E. Phelps, M. P. Ramsey, J. C. Reimus, N. P. Roybal, J. D. Saltus, A. Saltus, M. Shimada, R. Spaulding, R. J. Wood, J. G. Wysocki, F. J. TI Inexpensive and practical sealed drift-tube neutron detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Sealed drift tubes; Neutron detection efficiency; Detector lifetime; Gain drift; Diurnal oscillation AB The design, construction, and performance of a type of sealed (3)He drift tubes for neutron detection are presented. Because the 3He pressure is in the 25-300 mbar range, the detector costs are not dominated by the (3)He gas. Intrinsic neutron detection efficiencies up to 5% have been observed by using high-density polyethylene moderation. Sensitive measurements of the detector lifetime are achieved by monitoring the full-energy peak of the (3)He(n, p)(3)H reaction as a function of time. The neutron peak position shows a 24-h cycle that may be explained by the physical adsorption of gases onto the wall. The estimated lifetimes of the detectors are sufficiently long and therefore, the design and the construction are robust and practical for applications such as fissile material detection. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wang, Zhehui; Morris, C. L.; Makela, M. F.; Bacon, J. D.; Baer, E. E.; Brockwell, M. I.; Brooks, B. J.; Clark, D. J.; Green, J. A.; Greene, S. J.; Hogan, G. E.; Langan, R.; Murray, M. M.; Pazuchanics, F. E.; Phelps, M. P.; Ramsey, J. C.; Reimus, N. P.; Roybal, J. D.; Shimada, R.; Spaulding, R. J.; Wood, J. G.; Wysocki, F. J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. [Saltus, A.; Saltus, M.] Decis Sci Corp, San Diego, CA 92123 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, Div Phys, Grp P-25 Mail Stop H846, Los Alamos, NM 87544 USA. EM zwang@lanl.gov OI Makela, Mark/0000-0003-0592-3683; Morris, Christopher/0000-0003-2141-0255 FU Defense Threat Reduction Agency (DTRA); Department of Defense and a CRADA agreement between LANL and Decision Sciences Corp FX This work has been supported in part by the Defense Threat Reduction Agency (DTRA) of the Department of Defense and a CRADA agreement between LANL and Decision Sciences Corp. NR 9 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2009 VL 605 IS 3 BP 430 EP 432 DI 10.1016/j.nima.2009.03.251 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 476HL UT WOS:000268430000026 ER PT J AU Ferrer, RM Azmy, YY AF Ferrer, R. M. Azmy, Y. Y. TI Error Analysis of the Nodal Integral Method for Solving the Neutron Diffusion Equation in Two-Dimensional Cartesian Geometry SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB An error analysis is performed for the nodal integral method (NIM) applied to the one-speed, steady-state neutron diffusion equation in two-dimensional Cartesian geometry. The geometric configuration of the problem employed in the analysis consists of a homogeneous-material unit square with Dirichlet boundary conditions on all four sides. The NIM equations comprise three sets of equations: (a) one neutron balance equation per computational cell, (b) one current continuity condition per internal x const computational cell edge, and (c) one current continuity condition per internal y = const computational cell edge. A Maximum Principle is proved for the solution of the NIM equations, followed by an error analysis achieved by applying the Maximum Principle to a carefully constructed mesh function driven by the truncation error or residual. The error analysis establishes the convergence of the NIM solution to the exact solution if the latter is twice differentiable. Furthermore, if the exact solution is four times differentiable, the NIM solution error is bounded by an 0(a 2) expression involving bounds on the exact solution's fourth partial derivatives, where a is half the scaled length of a computational cell. Numerical experiments are presented whose results successfully verify the conclusions of the error analysis. C1 [Ferrer, R. M.; Azmy, Y. Y.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. RP Ferrer, RM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM rodolfo.ferrer@inl.gov NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2009 VL 162 IS 3 BP 215 EP 233 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 465WX UT WOS:000267621400001 ER PT J AU Rosa, M Azmy, YY Morel, JE AF Rosa, Massimiliano Azmy, Yousry Y. Morel, Jim E. TI Properties of the S-N-Equivalent Integral Transport Operator in Slab Geometry and the Iterative Acceleration of Neutral Particle Transport Methods SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID DIFFUSION-SYNTHETIC ACCELERATION; ASYMPTOTIC SOLUTIONS; INHOMOGENEOUS-MEDIA; OPTICALLY THICK; REGIMES AB General expressions for the matrix elements of the discrete S-N-equivalent integral transport operator are derived in slab geometry. Their asymptotic behavior versus cell optical thickness is investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in the thick-cell limit for a highly scattering medium shows that the discretized integral transport operator approaches a tridiagonal matrix possessing a diffusion-like coupling stencil. It is further shown that this structure is approached at a fast exponential rate with increasing cell thickness when the arbitrarily high order transport method of the nodal type and zero-order spatial approximation (AHOT-NO) formalism is employed to effect the spatial discretization of the discrete ordinates transport operator. In the case of periodically heterogeneous slab configurations, the asymptotic behavior is realized by pushing apart the cells' optical thicknesses; i.e., the thick cells are made thicker while the thin cells are made thinner at a prescribed rate. We show that in this limit the discretized integral transport operator is approximated by a pentadiagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tridiagonal structure at a fast exponential rate bearing close resemblance to the diffusive operator. The results of the asymptotic analysis of the integral transport matrix are then used to gain insight into the excellent convergence properties of the adjacent-cell preconditioner (AP) acceleration scheme. Specifically, the AP operator exactly captures the asymptotic structure acquired by the integral transport matrix in the thick-cell limit for homogeneous slabs of pure-scatterer or partial-scatterer material, and for periodically heterogeneous slabs hosting purely scattering materials. In the above limits the integral transport matrix reduces to a diffusive structure consistent with the diffusive matrix template used to construct the AP. In the case of periodically heterogeneous slabs containing absorbing materials, the AP operator partially captures the asymptotic structure acquired by the integral transport matrix. The inexact agreement is due either to discrepancies in the equations for the boundary cells or to the nondiffusive structure acquired by the integral transport matrix. These findings shed light on the immediate convergence, i.e., convergence in two iterations, displayed by the AP acceleration scheme in the asymptotic limit for slabs hosting purely scattering materials, both in the homogeneous and periodically heterogeneous cases. For periodically heterogeneous slabs containing absorbing materials, immediate convergence is achieved by modifying the original recipe for constructing the AP so that the correct asymptotic structure of the integral transport matrix coincides with the AP operator in the asymptotic limit. C1 [Rosa, Massimiliano] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Azmy, Yousry Y.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Morel, Jim E.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Rosa, M (reprint author), Los Alamos Natl Lab, POB 1663,MS K784, Los Alamos, NM 87545 USA. EM maxrosa@lanl.gov FU U.S. Government [DE-AC52-06NA25396] FX This research was performed under U.S. Government contract DE-AC52-06NA25396 for Los Alamos National Laboratory, which is operated by Los Alamos National Security, LLC, for the U.S. Department of Energy. The first author performed this work in partial satisfaction of the requirements for the PhD degree at The Pennsylvania State University. NR 20 TC 2 Z9 2 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2009 VL 162 IS 3 BP 234 EP 252 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 465WX UT WOS:000267621400002 ER PT J AU Sanchez, R Bounds, J Hayes, D Grove, T Tovesson, F AF Sanchez, Rene Bounds, John Hayes, David Grove, Travis Tovesson, Fredrik TI Measurement of the Thermal Absorption Cross Section in Lucite Using Fermi Age Theory SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB The diffusion processes of neutrons in Lucite have been investigated. The mechanisms for these processes have been described as having two steps. In the first step, the fast neutrons collide with the nuclei of Lucite, losing energy until they reach thermal energies. In the second step of the diffusion process, the thermal neutrons continue to diffuse through the Lucite without any significant loss of energy until they are finally absorbed or leak out of the system. Experiments were performed to study these two processes and to estimate the absorption cross section in Lucite. The experiments yielded an average range of 63 +/- 0.1 cm for fast neutrons slowing down to thermal energies and a thermal absorption cross section in Lucite of 0.52 +/- 0.02 b. C1 [Sanchez, Rene; Bounds, John; Hayes, David; Grove, Travis; Tovesson, Fredrik] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sanchez, R (reprint author), Los Alamos Natl Lab, MS-B228, Los Alamos, NM 87545 USA. EM rsanchez@lanl.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2009 VL 162 IS 3 BP 253 EP 260 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 465WX UT WOS:000267621400003 ER PT J AU Brown, NR Oh, S Revankar, ST Vierow, K Rodriguez, S Cole, R Gauntt, R AF Brown, Nicholas R. Oh, Seungmin Revankar, Shripad T. Vierow, Karen Rodriguez, Salvador Cole, Randall, Jr. Gauntt, Randall TI SIMULATION OF SULFUR-IODINE THERMOCHEMICAL HYDROGEN PRODUCTION PLANT COUPLED TO HIGH-TEMPERATURE HEAT SOURCE SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div DE thermochemical hydrogen generation; sulfur-iodine cycle; HTGR ID CYCLE AB The sulfur-iodine (SI) cycle is one of the leading candidates in thermochemical processes for hydrogen production. In this paper a simplified model for the SI cycle is developed with chemical kinetics models of the three main SI reactions: the Bunsen reaction, sulfuric acid decomposition, and hydriodic acid decomposition. Each reaction was modeled with a single control volume reaction chamber. The simplified model uses basic heat and mass balance for each of the main three reactions. For sulfuric acid decomposition and hydriodic acid decomposition, reaction heat, latent heat, and sensible heat were considered Since the Bunsen reaction is exothermic and its overall energy contribution is small, its heat energy is neglected. However, the input and output streams from the Bunsen reaction are accounted for in balancing the total stream mass flow rates from the SI cycle. The heat transfer between the reactor coolant (in this case helium) and the chemical reaction chamber was modeled with transient energy balance equations. The steady-state and transient behavior of the coupled system is studied with the model, and the results of the study are presented. It was determined from the study that the hydriodic acid decomposition step is the rate-limiting step of the entire SI cycle. C1 [Brown, Nicholas R.; Oh, Seungmin; Revankar, Shripad T.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Vierow, Karen] Texas A&M Univ, Dept Nucl Engn, Zachry Engn Ctr 129, College Stn, TX 77843 USA. [Rodriguez, Salvador; Cole, Randall, Jr.; Gauntt, Randall] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Revankar, ST (reprint author), Purdue Univ, Sch Nucl Engn, 400 Cent Dr, W Lafayette, IN 47907 USA. EM shripad@ecn.purdue.edu NR 10 TC 5 Z9 5 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2009 VL 167 IS 1 BP 95 EP 106 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 463CN UT WOS:000267406300010 ER PT J AU Oh, CH Park, GC Davis, C AF Oh, Chang H. Park, Goon C. Davis, Cliff TI RCCS EXPERIMENTS AND VALIDATION FOR HIGH-TEMPERATURE GAS-COOLED REACTOR SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div DE experiment; reactor cavity cooling for HTGR; validation AB An air-cooled helical coil reactor cavity cooling system (RCCS) unit immersed in the water pool was proposed to overcome the disadvantages of the weak cooling ability of an air-cooled RCCS and the complex structure of a water-cooled RCCS for the high-temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool-type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool, and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RE-LAP5 code was validated using measured temperatures from the reactor vessel and cavity walls. C1 [Oh, Chang H.; Davis, Cliff] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Park, Goon C.] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea. RP Oh, CH (reprint author), Idaho Natl Lab, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM Chang.Oh@inl.gov NR 17 TC 0 Z9 0 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2009 VL 167 IS 1 BP 107 EP 117 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 463CN UT WOS:000267406300011 ER PT J AU Rempe, JL Knudson, DL Condie, KG Crepeau, JC Daw, JE Wilkins, SC AF Rempe, Joy L. Knudson, Darrell L. Condie, Keith G. Crepeau, John C. Daw, Joshua E. Wilkins, S. Curtis TI OPTIONS EXTENDING THE APPLICABILITY OF HIGH-TEMPERATURE IRRADIATION-RESISTANT THERMOCOUPLES SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 12th International Meeting on Nuclear Reactor Thermal Hydraulics CY OCT 04, 2007 CL Pittsburgh, PA SP Amer Nucl Soc, Pittsburgh Sect & Thermal Hydraul Div DE in-pile instrumentation; high-temperature thermocouples AB Several options have been identified that could further enhance the reliability and extend the applicability of high-temperature irradiation-resistant thermocouples (HTIR-TCs) developed by the Idaho National Laboratory (INL) for in-pile testing, allowing their use in temperature applications as high as 1800 degrees C. The INL and the University of Idaho (UI) investigated these options with the ultimate objective of providing recommendations for alternate thermocouple designs that are optimized for various applications. This paper reports results from INL/UI investigations. Results are reported from tests completed to evaluate the ductility, resolution, transient response, and stability of thermocouples made from specially formulated alloys of molybdenum and niobium, not considered in initial HTIR-TC development. In addition, this paper reports insights gained by comparing the performance of HTIR-TCs fabricated with various heat treatments and alternate geometries. C1 [Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Crepeau, John C.; Daw, Joshua E.] Univ Idaho, Idaho Falls, ID 83402 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 9 TC 6 Z9 6 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2009 VL 167 IS 1 BP 169 EP 177 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 463CN UT WOS:000267406300016 ER PT J AU Schultz, AK Zhang, M Bulla, I Leitner, T Korber, B Morgenstern, B Stanke, M AF Schultz, Anne-Kathrin Zhang, Ming Bulla, Ingo Leitner, Thomas Korber, Bette Morgenstern, Burkhard Stanke, Mario TI jpHMM: Improving the reliability of recombination prediction in HIV-1 SO NUCLEIC ACIDS RESEARCH LA English DT Article ID MULTIPLE ALIGNMENTS; SEQUENCES; GENOMES; TOPALI; VIRUS AB Previously, we developed jumping profile hidden Markov model (jpHMM), a new method to detect recombinations in HIV-1 genomes. The jpHMM predicts recombination breakpoints in a query sequence and assigns to each position of the sequence one of the major HIV-1 subtypes. Since incorrect subtype assignment or recombination prediction may lead to wrong conclusions in epidemiological or vaccine research, information about the reliability of the predicted parental subtypes and breakpoint positions is valuable. For this reason, we extended the output of jpHMM to include such information in terms of 'uncertainty' regions in the recombination prediction and an interval estimate of the breakpoint. Both types of information are computed based on the posterior probabilities of the subtypes at each query sequence position. Our results show that this extension strongly improves the reliability of the jpHMM recombination prediction. The jpHMM is available online at http://jphmm.gobics.de/. C1 [Schultz, Anne-Kathrin; Bulla, Ingo; Morgenstern, Burkhard; Stanke, Mario] Univ Gottingen, Abt Bioinformat, Inst Mikrobiol & Genet, D-37077 Gottingen, Germany. [Zhang, Ming; Leitner, Thomas; Korber, Bette] Los Alamos Natl Lab, T6, Los Alamos, NM 87545 USA. [Zhang, Ming] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Stanke, M (reprint author), Univ Gottingen, Abt Bioinformat, Inst Mikrobiol & Genet, Goldschmidtstr 1, D-37077 Gottingen, Germany. EM mstanke@gwdg.de RI Morgenstern, Burkhard/A-7486-2008; OI Korber, Bette/0000-0002-2026-5757; Schultz, Anne-Kathrin/0000-0002-0963-4275 FU DFG [STA 1009/4-1, STA 1009/5-1]; NIHDOE Interagency Agreement [Y1-AI-8309] FX DFG (grants STA 1009/4-1 and STA 1009/5-1); NIHDOE Interagency Agreement Y1-AI-8309. Funding for open access charge: Deptartment of Bioinformatics, Georg-August-Universitat Gottingen. NR 15 TC 49 Z9 49 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL 1 PY 2009 VL 37 BP W647 EP W651 DI 10.1093/nar/gkp371 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469IG UT WOS:000267889100111 PM 19443440 ER PT J AU Baboulin, M Dongarra, J Gratton, S Langou, J AF Baboulin, Marc Dongarra, Jack Gratton, Serge Langou, Julien TI Computing the conditioning of the components of a linear least-squares solution SO NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS LA English DT Article DE linear least squares; statistical linear least squares; parameter estimation; condition number; variance-covariance matrix; LAPACK; ScaLAPACK AB In this paper, we address the accuracy of the results for the overdetermined full rank linear least-squares problem. We recall theoretical results obtained in (SIAM J Matrix Anal. Appl. 2007; 29(2):413-433) on conditioning of the least-squares solution and the components of the solution when the matrix perturbations are measured in Frobenius or spectral norms. Then we define computable estimates for these condition numbers and we interpret them in terms of statistical quantities when the regression matrix and the right-hand side are perturbed. In particular, we show that in the classical linear statistical model, the ratio of the variance of one component of the solution by the variance of the fight-hand side is exactly the condition number of this solution component when only perturbations on the right-hand side are considered. We explain how to compute the variance-covariance matrix and the least-squares conditioning using the libraries LAPACK (LAPACK Users' Guide (3rd edn). SIAM: Philadelphia, 1999) and ScaLAPACK (ScaLAPACK Users' Guide. SIAM: Philadelphia, 1997) and we give the corresponding computational cost. Finally we present a small historical numerical example that was used by Laplace (Theorie Analytique des Probabilites. Mme Ve Courcier, 1820; 497-530) for computing the mass of Jupiter and a physical application if the area of space geodesy. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Baboulin, Marc] Univ Coimbra, Dept Math, Coimbra, Portugal. [Baboulin, Marc; Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Manchester, Lancs, England. [Gratton, Serge] Ctr Natl Etud Spatiales, F-31055 Toulouse, France. [Gratton, Serge] CERFACS, F-31057 Toulouse, France. [Langou, Julien] Univ Colorado, Dept Math & Stat Sci, Denver, CO 80202 USA. RP Baboulin, M (reprint author), Univ Coimbra, Dept Math, Coimbra, Portugal. EM baboulin@mat.uc.pt RI Langou, Julien/G-5788-2013; Dongarra, Jack/E-3987-2014 NR 24 TC 11 Z9 12 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1070-5325 J9 NUMER LINEAR ALGEBR JI Numer. Linear Algebr. Appl. PD JUL PY 2009 VL 16 IS 7 BP 517 EP 533 DI 10.1002/nla.627 PG 17 WC Mathematics, Applied; Mathematics SC Mathematics GA 470EY UT WOS:000267959200001 ER PT J AU Iannelli, M Kostova, T Milner, FA AF Iannelli, Mimmo Kostova, Tanya Milner, Fabio Augusto TI A Fourth-Order Method for Numerical Integration of Age- and Size-Structured Population Models SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE finite differences; quadratures; size-structured equations ID APPROXIMATION; EQUATIONS AB In many applications of age- and size-structured Population models, there is an interest in obtaining good approximations of total population numbers rather than of their densities. Therefore, it is reasonable in such cases to solve numerically not the PDE model equations themselves, but rather their integral equivalents. For this purpose quadrature formulae are used in place of the integrals. Because quadratures can be designed with any order of accuracy, one can obtain numerical approximations of the solutions with very fast convergence. In this article, we present a general framework and a specific example of a fourth-order method based on composite Newton-Cotes quadratures for a size-structured population model. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 918-930, 2009 C1 [Milner, Fabio Augusto] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. [Kostova, Tanya] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Iannelli, Mimmo] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy. RP Milner, FA (reprint author), Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA. EM milner@purdue.edu FU National Science Foundation [DMS-0314575] FX Contract grant sponsor: National Science Foundation; contract grant number: DMS-0314575 NR 15 TC 10 Z9 10 U1 0 U2 3 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0749-159X J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD JUL PY 2009 VL 25 IS 4 BP 918 EP 930 DI 10.1002/num.20381 PG 13 WC Mathematics, Applied SC Mathematics GA 458XY UT WOS:000267064100010 ER PT J AU Williams, PT Hoffman, KM AF Williams, Paul T. Hoffman, Kathryn M. TI Optimal Body Weight for the Prevention of Coronary Heart Disease in Normal-weight Physically Active Men SO OBESITY LA English DT Article ID MIDDLE-AGED MEN; MASS INDEX; FOLLOW-UP; CARDIOVASCULAR-DISEASE; RISK-FACTORS; MORTALITY; OBESITY; WOMEN; ADIPOSITY; RUNNERS AB Although 36% of US men are normal weight (BMI <25 kg/m(2)), the health benefits of greater leanness in normal-weight individuals are seldom acknowledged. To assess the optimal body weight with respect to minimizing coronary heart disease (CHD) risk, we applied Cox proportional hazard analyses of 20,525 nonsmoking, nondiabetic, normal-weight men followed prospectively for 7.7 years, including 20,301 who provided follow-up questionnaires. Two-hundred and forty two men reported coronary artery bypass graph (CABG) or percutaneous transluminal coronary angioplasty (PTCA) and 82 reported physician-diagnosed incident myocardial infarction (267 total). The National Death Index identified 40 additional ischemic heart disease deaths. In these normal-weight men, each kg/m(2) decrement in baseline BMI was associated with 11.2% lower risk for total CHD (P = 0.005), 13.2% lower risk for nonfatal CHD (P = 0.002), 19.0% lower risk for nonfatal myocardial infarction (P = 0.01), and 12.2% lower risk for PTCA or CABG (P = 0.007). Compared to men with BMI between 22.5 and 25 kg/m(2), those < 22.5 kg/m(2) had 24.1% lower total CHD risk (P = 0.01), 27.9% lower nonfatal CHD risk (P = 0.01), 37.8% lower nonfatal myocardial infarction risk (P = 0.05), and 27.8% lower PTCA or CABG risk (P = 0.02). In nonabdominally obese men (waist circumference < 102 cm), CHD risk declined linearly with declining waist circumference. CHD risk was unrelated to change in waist circumference between 18 years old and baseline except as it contributed to baseline circumference. These results suggest that the optimal BMI for minimizing CHD risk lies somewhere < 22.5 kg/m(2), as suggested from our previous analyses of incident diabetes, hypertension, and hypercholesterolemia in these men. C1 [Williams, Paul T.; Hoffman, Kathryn M.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA USA. RP Williams, PT (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA USA. EM ptwilliams@lbl.gov FU National Heart Lung and Blood Institute [HL45652, HL072110]; National Institute of Diabetes and Digestive and Kidney Diseases; Institute of Aging [AG032004]; Department of Energy [DE-AC0376SF00098] FX This work was supported in part by grants HL45652 and HL072110 from the National Heart Lung and Blood Institute, DK066738 from the National Institute of Diabetes and Digestive and Kidney Diseases, and AG032004 from the Institute of Aging, and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC0376SF00098 to the University of California). NR 39 TC 8 Z9 8 U1 2 U2 4 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1930-7381 J9 OBESITY JI Obesity PD JUL PY 2009 VL 17 IS 7 BP 1428 EP 1434 DI 10.1038/oby.2008.680 PG 7 WC Endocrinology & Metabolism; Nutrition & Dietetics SC Endocrinology & Metabolism; Nutrition & Dietetics GA 464CY UT WOS:000267483800022 PM 19553927 ER PT J AU Meyers, CA Schulz, AS AF Meyers, Carol A. Schulz, Andreas S. TI Integer equal flows SO OPERATIONS RESEARCH LETTERS LA English DT Article DE Network optimization; Equal flows; Computational complexity; Approximability ID NETWORK; ALGORITHMS AB The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R-1,R-..., R-l must carry equal flow. We show that this problem is effectively inapproximable, even if the cardinality of each set R-k is two. When e is fixed, it is solvable in polynomial time. (C) 2009 Elsevier B.V. All rights reserved. C1 [Meyers, Carol A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Schulz, Andreas S.] MIT, Cambridge, MA 02139 USA. RP Meyers, CA (reprint author), Lawrence Livermore Natl Lab, L-153,7000 East Ave, Livermore, CA 94550 USA. EM meyers14@llnl.gov; schulz@mit.edu FU LLNL [DE-AC52-07NA27344]; ONR [N00014-01208-1-0029]; [LLNL-JRNL-410584] FX The authors wish to thank Jim Orlin for several helpful discussions, including an observation that led to a strengthening of Theorem 3.2. The work of the first author was supported by LLNL under Contract DE-AC52-07NA27344; document number LLNL-JRNL-410584. The work of the second author was supported by ONR Grant N00014-01208-1-0029. NR 19 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6377 EI 1872-7468 J9 OPER RES LETT JI Oper. Res. Lett. PD JUL PY 2009 VL 37 IS 4 BP 245 EP 249 DI 10.1016/j.orl.2009.03.006 PG 5 WC Operations Research & Management Science SC Operations Research & Management Science GA 476HX UT WOS:000268431300004 ER PT J AU Lane, TW Pawate, A Lane, PD Lindquist, EA Kirton, ES Simmons, BA AF Lane, T. W. Pawate, A. Lane, P. D. Lindquist, E. A. Kirton, E. S. Simmons, B. A. TI DIGITAL TRANSCRIPTOMIC ANALYSIS OF SILICATE STARVATION INDUCED TRIACYLGLYCEROL FORMATION IN THE MARINE DIATOM THALASSIOSIRA PSEUDONANA. SO PHYCOLOGIA LA English DT Meeting Abstract C1 [Lane, T. W.; Pawate, A.; Lane, P. D.; Simmons, B. A.] Sandia Natl Labs, Livermore, CA 94551 USA. [Lindquist, E. A.; Kirton, E. S.] Joint Genome Inst, Walnut Creek, CA 94598 USA. EM twlane@sandia.gov RI Pawate, Ashtamurthy/B-6843-2008 OI Pawate, Ashtamurthy/0000-0002-0700-9871 NR 0 TC 0 Z9 0 U1 1 U2 3 PU INT PHYCOLOGICAL SOC PI LAWRENCE PA NEW BUSINESS OFFICE, PO BOX 1897, LAWRENCE, KS 66044-8897 USA SN 0031-8884 J9 PHYCOLOGIA JI Phycologia PD JUL PY 2009 VL 48 IS 4 MA 203 BP 71 EP 71 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 472JN UT WOS:000268126900204 ER PT J AU Wesolowski, DE Patta, YR Cima, MJ AF Wesolowski, D. E. Patta, Y. R. Cima, M. J. TI Conversion behavior comparison of TFA-MOD and non-fluorine solution-deposited YBCO films SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE High temperature superconductors; Densification; Coated conductors; Non-fluorine solution deposition ID DIPPING-PYROLYSIS PROCESS; SOL-GEL APPROACH; THIN-FILMS; METALORGANIC DEPOSITION; COATED CONDUCTORS; TRIFLUOROACETATE PRECURSORS; YBA2CU3O7-X FILMS; OXIDE-FILMS; KINETICS; GROWTH AB The densification behavior during conversion of YBa2Cu3O7-x (YBCO) films formed by the trifluoroacetate (TFA)-based metal-organic deposition (MOD) technique was compared to a non-fluorine oxycarbonatebased MOD process and nitrate-based polymer-assisted deposition (PAD). The critical current densities obtained in all processes exceeded 10(6) A/cm(2) in films at least 300 nm thick. Rapid densification of films was observed in all processes, beginning at 700 degrees C in the TFA and PAD processes and 650 degrees C in the oxycarbonate process. YBCO nucleation occurred shortly after densification began in all processes. Residual carbon measurements were performed using wavelength dispersive spectroscopy (WDS). Carbon persisted in films from all processes until after densification began, but it was reduced to background levels soon after YBCO nucleation. Film density and second phase morphology were controlled through adjustments to the ambient oxygen partial pressure. Morphological evidence of extensive transient liquid phase formation was observed in PAD films and is consistent with the densification and nucleation behavior. The common behavior between the PAD, oxycarbonate-MOD, and TFA-MOD processes suggests that a melt forms in all systems, but the extent of this melt varies. (c) 2009 Elsevier B.V. All rights reserved. C1 [Patta, Y. R.; Cima, M. J.] MIT, Cambridge, MA 02139 USA. [Wesolowski, D. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Patta, YR (reprint author), MIT, 77 Massachusetts Ave 12-011, Cambridge, MA 02139 USA. EM ypatta@mit.edu FU National Science Foundation [DMR 02-13282] FX This work made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award number DMR 02-13282. Special thanks to Nilanjan Chatterjee for the use of the Electron Microprobe Facility at MIT. This work was funded by Sumitomo Electric Industries. NR 37 TC 13 Z9 13 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD JUL 1 PY 2009 VL 469 IS 13 BP 766 EP 773 DI 10.1016/j.physc.2009.04.008 PG 8 WC Physics, Applied SC Physics GA 463DC UT WOS:000267408100018 ER PT J AU Lee, SY Teodorescu, R Wiegmann, P AF Lee, S. -Y. Teodorescu, R. Wiegmann, P. TI Shocks and finite-time singularities in Hele-Shaw flow SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Singular dynamics; Hydrodynamic instabilities; Stochastic growth ID INTERFACE DYNAMICS; PATTERN-FORMATION; LAPLACIAN GROWTH; BOUNDARY; SURFACE; FLUID AB Hele-Shaw flow at vanishing surface tension is ill-defined. in finite time, the flow develops cusp-like singularities. We show that this ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating into the Viscous fluid. The graph of shocks grows and branches. Velocity and pressure have finite discontinuities across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive weak solution in algebro-geometrical terms as an evolution of the Krichever-Boutroux complex curve. We study in detail the most generic (2, 3)-cusp singularity, which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions. Published by Elsevier B.V. C1 [Teodorescu, R.] Los Alamos Natl Lab, Ctr Nonlinear Studies & T4, Los Alamos, NM 87545 USA. [Lee, S. -Y.] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada. [Wiegmann, P.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Wiegmann, P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Teodorescu, R (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies & T4, Los Alamos, NM 87545 USA. EM razvan@lanl.gov NR 46 TC 8 Z9 8 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 J9 PHYSICA D JI Physica D PD JUL 1 PY 2009 VL 238 IS 14 BP 1113 EP 1128 DI 10.1016/j.physd.2009.03.016 PG 16 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 465JS UT WOS:000267580200002 ER PT J AU Holmstrom, E Bock, N Brannlund, J AF Holmstrom, Erik Bock, Nicolas Brannlund, Johan TI Modularity density of network community divisions SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Modularity; Modularity density; Network clusters; Network communities ID FINDING COMMUNITIES AB The problem of dividing a network into communities is extremely complex and grows very rapidly with the number of nodes and edges that are involved. In order to develop good algorithms to identify optimal community divisions it is extremely beneficial to identify properties that are similar for most networks. We introduce the concept of modularity density, the distribution of modularity Values as a function of the number of communities, and find strong indications that the general features of this modularity density are quite similar for different networks. The region of high modularity generally has very low probability density and Occurs where the number of communities is small. The properties and shape of the modularity density may give valuable information and aid in the search for efficient algorithms to find community divisions with high modularities. (C) 2009 Elsevier B.V. All rights reserved. C1 [Holmstrom, Erik] Univ Austral Chile, Inst Fis, Valdivia, Chile. [Holmstrom, Erik; Bock, Nicolas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Brannlund, Johan] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada. RP Holmstrom, E (reprint author), Univ Austral Chile, Inst Fis, Valdivia, Chile. EM erikh@lanl.gov RI Holmstrom, Erik/A-5308-2009 OI Holmstrom, Erik/0000-0002-1198-3861 NR 20 TC 3 Z9 3 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD JUL 1 PY 2009 VL 238 IS 14 BP 1161 EP 1167 DI 10.1016/j.physd.2009.03.015 PG 7 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 465JS UT WOS:000267580200006 ER PT J AU Liu, H Liu, YM Li, T Wang, SM Zhu, SN Zhang, X AF Liu, H. Liu, Y. M. Li, T. Wang, S. M. Zhu, S. N. Zhang, X. TI Coupled magnetic plasmons in metamaterials SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article ID SPLIT-RING RESONATORS; NEGATIVE REFRACTIVE-INDEX; MAGNETOINDUCTIVE WAVES; 2ND-HARMONIC GENERATION; DIFFRACTION LIMIT; HYBRIDIZATION; NANOPARTICLES; FREQUENCIES; DIMENSIONS; NANOWIRES AB Magnetic metamaterials consist of magnetic resonators smaller in size than their excitation wavelengths. Their unique electromagnetic properties were characterized by the effective media theory at the early stage. However, the effective media model does not take into account the interactions between magnetic elements; thus, the effective properties of bulk metamaterials are the result of the "averaged effect" of many uncoupled resonators. In recent years, it has been shown that the interaction between magnetic resonators could lead to some novel phenomena and interesting applications that do not exist in conventional uncoupled metamaterials. In this paper, we will give a review of recent developments in magnetic plasmonics arising from the coupling effect in metamaterials. For the system composed of several identical magnetic resonators, the coupling between these units produces multiple discrete resonance modes due to hybridization. In the case of a system comprising an infinite number of magnetic elements, these multiple discrete resonances can be extended to form a continuous frequency band by strong coupling. This kind of broadband and tunable magnetic metamaterial may have interesting applications. Many novel metamaterials and nanophotonic devices could be developed from coupled resonator systems in the future. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Liu, H.; Li, T.; Wang, S. M.; Zhu, S. N.] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Liu, Y. M.; Zhang, X.] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liu, H (reprint author), Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. EM liuhui@nju.edu.cn RI Wang, Shih-Yuan/C-3889-2009; Liu, Yongmin/F-5322-2010; Zhang, Xiang/F-6905-2011 OI Wang, Shih-Yuan/0000-0002-1212-3484; FU National Natural Science Foundation of China [10604029, 10704036, 10874081]; National Key Projects for Basic Researches of China [2009CB930501, 2006CB921804, 2004CB619003] FX This work is supported by the National Natural Science Foundation of China (No. 10604029, No. 10704036 and No. 10874081), and by the National Key Projects for Basic Researches of China (No. 2009CB930501, No. 2006CB921804 and No. 2004CB619003). NR 81 TC 62 Z9 66 U1 1 U2 37 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD JUL PY 2009 VL 246 IS 7 BP 1397 EP 1406 DI 10.1002/pssb.200844414 PG 10 WC Physics, Condensed Matter SC Physics GA 479KV UT WOS:000268659100001 ER PT J AU Ruhl, E Hitchcock, AP Bozek, JD Tyliszczak, T Kilcoyne, ALD McIlroy, DN Knop-Gericke, A Dowben, PA AF Ruehl, E. Hitchcock, A. P. Bozek, J. D. Tyliszczak, T. Kilcoyne, A. L. D. McIlroy, D. N. Knop-Gericke, A. Dowben, P. A. TI Fission processes following core level excitation in closo-1,2-orthocarborane SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; RICH NEUTRON DETECTORS; BORON-CARBIDE DIODE; COULOMB EXPLOSION; DOUBLE PHOTOIONIZATION; SYNCHROTRON-RADIATION; HETEROJUNCTION DIODES; IONIC FRAGMENTATION; CHARGE SEPARATION; MASS-SPECTROMETRY AB Time-of-flight mass analysis with multi-stop coincidence detection was used to study the multi-cation ionic fragmentation of the closo carborane cage molecule closo-1,2-orthocarborane (C(2)B(10)H(12)) following inner-shell excitation in or above the B Is regime. Electron ion coincidence spectra reveal the cationic products which are formed after core level excitation. Distinct changes in fragmentation pattern are observed as a function of excitation energy. Photoelectron-photoion-photoion coincidence (PEPIPICO) spectroscopy was used to study the dominant fission routes in the core level excitation regime. Series of ion pairs are identified, where asymmetric fission dominates, leading to ion pairs of different mass. Suitable fission and fragmentation mechanisms are discussed. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Ruehl, E.] Free Univ Berlin, D-14195 Berlin, Germany. [Hitchcock, A. P.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Bozek, J. D.] LCLS Project, Menlo Pk, CA 94025 USA. [Tyliszczak, T.; Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 91420 USA. [McIlroy, D. N.] Univ Idaho, Dept Phys, Moscow, ID 83844 USA. [Knop-Gericke, A.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Dowben, P. A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Dowben, P. A.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Ruhl, E (reprint author), Free Univ Berlin, Takustr 3, D-14195 Berlin, Germany. EM ruehl@chemie.fu-berlin.de RI Bozek, John/E-4689-2010; Bozek, John/E-9260-2010; Kilcoyne, David/I-1465-2013 OI Bozek, John/0000-0001-7486-7238; FU Natural Sciences and Engineering Research Council of Canada; National Science Foundation [CHE-0415421, CHE-0650453]; Deutsche Forschungsgemeinschaft [RU 420/8-1]; Fonds der Chemischen Industrie; DoE; BESSY FX This work was financially supported by the Natural Sciences and Engineering Research Council of Canada, the National Science Foundation through grant CHE-0415421 and CHE-0650453, the Deutsche Forschungsgemeinschaft through grant RU 420/8-1, and the Fonds der Chemischen Industrie. We thank the staff of the Advanced Light Source (funded by DoE) and BESSY for their assistance. We thank Dr. Walter Braun (BESSY and Helmholtz-Centre Berlin for Materials and Energy) for his continuous encouragement and support of our work during the last decades. NR 67 TC 3 Z9 3 U1 1 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD JUL PY 2009 VL 246 IS 7 BP 1496 EP 1503 DI 10.1002/pssb.200945126 PG 8 WC Physics, Condensed Matter SC Physics GA 479KV UT WOS:000268659100013 ER PT J AU Kurzweil, Y Head-Gordon, M AF Kurzweil, Yair Head-Gordon, Martin TI Improving approximate-optimized effective potentials by imposing exact conditions: Theory and applications to electronic statics and dynamics SO PHYSICAL REVIEW A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR CHAINS; SPECTROSCOPY; SYSTEMS AB We develop a method that can constrain any local exchange-correlation potential to preserve basic exact conditions. Using the method of Lagrange multipliers, we calculate for each set of given Kohn-Sham orbitals a constraint-preserving potential which is closest to the given exchange-correlation potential. The method is applicable to both the time-dependent (TD) and independent cases. The exact conditions that are enforced for the time-independent case are Galilean covariance, zero net force and torque, and Levy-Perdew virial theorem. For the time-dependent case we enforce translational covariance, zero net force, Levy-Perdew virial theorem, and energy balance. We test our method on the exchange (only) Krieger-Li-Iafrate (xKLI) approximate-optimized effective potential for both cases. For the time-independent case, we calculated the ground state properties of some hydrogen chains and small sodium clusters for some constrained xKLI potentials and Hartree-Fock (HF) exchange. The results (total energy, Kohn-Sham eigenvalues, polarizability, and hyperpolarizability) indicate that enforcing the exact conditions is not important for these cases. On the other hand, in the time-dependent case, constraining both energy balance and zero net force yields improved results relative to TDHF calculations. We explored the electron dynamics in small sodium clusters driven by cw laser pulses. For each laser pulse we compared calculations from TD constrained xKLI, TD partially constrained xKLI, and TDHF. We found that electron dynamics such as electron ionization and moment of inertia dynamics for the constrained xKLI are most similar to the TDHF results. Also, energy conservation is better by at least one order of magnitude with respect to the unconstrained xKLI. We also discuss the problems that arise in satisfying constraints in the TD case with a non-cw driving force. C1 [Kurzweil, Yair] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kurzweil, Y (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. NR 39 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 012509 DI 10.1103/PhysRevA.80.012509 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900087 ER PT J AU Rica, S Roberts, DC AF Rica, Sergio Roberts, David C. TI Induced interaction and crystallization of self-localized impurity fields in a Bose-Einstein condensate SO PHYSICAL REVIEW A LA English DT Article ID SUPERFLUID; TEMPERATURE; MIXTURES; CRYSTALS; BOSONS; SYSTEM AB We model the behavior of N classical impurity fields immersed in a larger Bose-Einstein condensate by N + 1 coupled nonlinear Schrodinger equations in one, two, and three space dimensions. We discuss the stability of the uniform miscible system and show the importance of surface tension for self-localization of the impurity fields. We derive analytically the attractive tail of the impurity-impurity interaction due to mediation by the underlying condensate. Assuming all impurity fields interact with the same strength, we explore numerically the resulting phase diagram, which contains four phases: (I) all fields are miscible; (II) the impurity fields are miscible with each other but phase separate from the condensate as a single bubble; (III) the localized impurity fields stay miscible with the condensate, but not with each other; and (IV) the impurity fields phase separate from the condensate and each other, forming a crystalline structure within a bubble. Thus, we show that a crystal can be constructed solely from superfluid components. Finally, we argue that the crystalline phases maintain their superfluid behavior, i.e., they possess a nonclassical rotational inertia, which - combined with lattice order-is a characteristic of supersolidity. C1 [Rica, Sergio] Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, UPMC Paris 06,CNRS, F-75005 Paris, France. [Rica, Sergio] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile. [Roberts, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roberts, David C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Rica, S (reprint author), Univ Paris Diderot, Lab Phys Stat, Ecole Normale Super, UPMC Paris 06,CNRS, 24 Rue Lhomond, F-75005 Paris, France. RI Rica, Sergio/G-9865-2011 FU Agence Nationale de la Recherche [ANR-08-SYSC-004] FX S. R. would like to thank the Center of Nonlinear Studies at Los Alamos National Laboratory for their hospitality where part of this work was done, and the Agence Nationale de la Recherche under Grant No. ANR-08-SYSC-004 (France). Similarly, D.C.R. is grateful to the Universidad de Chile and the Ecole Normale Superieure for facilitating collaboration on this work through their hospitality. NR 28 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013609 DI 10.1103/PhysRevA.80.013609 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900142 ER PT J AU Rohringer, N London, R AF Rohringer, Nina London, Richard TI Atomic inner-shell x-ray laser pumped by an x-ray free-electron laser SO PHYSICAL REVIEW A LA English DT Article ID RADIATION; COHERENT AB We discuss possibilities of pumping an atomic inner-shell x-ray laser with an x-ray free-electron laser (XFEL). Self-consistent gain calculations show that with the first available XFEL, the Linac Coherent Light Source at Stanford, it will become possible to produce subfemtosecond x-ray pulses at intensities reaching 6 X 10(16) W/cm(2). Small-signal gain calculations indicate that saturation of more than one lasing line is possible, resulting in temporally separated femtosecond x-ray pulses of different wavelengths. The presented lasing scheme creates broad capability for advancing the field of high-intensity ultrashort x-ray physics. C1 [Rohringer, Nina; London, Richard] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rohringer, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Rohringer, Nina/B-8030-2012; Rohringer, Nina/N-3238-2014 OI Rohringer, Nina/0000-0001-7905-3567 FU U. S. Department of Energy [DE-AC52-07NA27344]; LLNL FX Work supported by the U. S. Department of Energy under Contract No. DE-AC52-07NA27344; support from the Laboratory Directed Research and Development Program at LLNL is also acknowledged. NR 24 TC 21 Z9 21 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013809 DI 10.1103/PhysRevA.80.013809 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900162 ER PT J AU Tao, L McCurdy, CW Rescigno, TN AF Tao, Liang McCurdy, C. W. Rescigno, T. N. TI Grid-based methods for diatomic quantum scattering problems. II. Time-dependent treatment of single- and two-photon ionization of H-2(+) SO PHYSICAL REVIEW A LA English DT Article ID MULTIPHOTON IONIZATION AB The time-dependent Schrodinger equation for H-2(+) in a time-varying electromagnetic field is solved in the fixed-nuclei approximation using a previously developed finite-element discrete-variable representation in prolate spheroidal coordinates. Amplitudes for single-and two-photon ionization are obtained using the method of exterior complex scaling to effectively propagate the field-free solutions from the end of the radiation pulse to infinite times. Cross sections are presented for one- and two-photon ionization for both parallel and perpendicular polarizations of the photon field, as well as photoelectron angular distributions for two-photon ionization. C1 [Tao, Liang; McCurdy, C. W.; Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Tao, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences; NSF [PHY-0604628] FX This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences. C.W.M. acknowledges support from the NSF (Contract No. PHY-0604628). NR 11 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013402 DI 10.1103/PhysRevA.80.013402 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900115 ER PT J AU Zhang, M Gray, SK Rice, SA AF Zhang, Ming Gray, Stephen K. Rice, Stuart A. TI Quantum localization due to mirror plane symmetry SO PHYSICAL REVIEW A LA English DT Article ID FAST LYAPUNOV INDICATORS; PHASE-SPACE; INTRAMOLECULAR DYNAMICS; SYMPLECTIC INTEGRATORS; ORBITS; SCARS AB With suitably directed initial states, we show how the time-averaged density of an evolving wave packet localizes on a mirror plane. A classical analog of this behavior can sometimes be found with trajectories weighted according to a Wigner distribution of the initial quantum state. However, in the limit of strongly chaotic classical dynamics, no such classical analog exists and the quantum localization in the density tends to be stronger by a factor of 2. Two very different systems are used to illustrate this effect, one being a three-dimensional model for a lithium atom moving within a C(60) cage and the other being a two-dimensional double well problem. C1 [Zhang, Ming] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rice, Stuart A.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Rice, Stuart A.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Zhang, M (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. FU U. S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Joint Theory Institute; University of Chicago; Argonne National Laboratory FX We thank T. A. Witten and P. Guyot-Sionnest for helpful suggestions. The work at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We acknowledge support from the Joint Theory Institute, a University of Chicago and Argonne National Laboratory multidisciplinary research institution. NR 21 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 012107 DI 10.1103/PhysRevA.80.012107 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900038 ER PT J AU Zinner, NT Molmer, K Ozen, C Dean, DJ Langanke, K AF Zinner, N. T. Molmer, K. Oezen, C. Dean, D. J. Langanke, K. TI Shell-model Monte Carlo simulations of the BCS-BEC crossover in few-fermion systems SO PHYSICAL REVIEW A LA English DT Article ID GAS; ATOMS AB We study a trapped system of fermions with a zero-range two-body interaction using the shell- model Monte Carlo method, providing ab initio results for the low particle number limit where mean-field theory is not applicable. We present results for the N-body energies as function of interaction strength, particle number, and temperature. The subtle question of renormalization in a finite model space is addressed and the convergence of our method and its applicability across the BCS-BEC crossover is discussed. Our findings indicate that very good quantitative results can be obtained on the BCS side, whereas at unitarity and in the BEC regime the convergence is less clear. Comparison to N = 2 analytics at zero and finite temperature, and to other calculations in the literature for N > 2 show very good agreement. C1 [Zinner, N. T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Zinner, N. T.; Molmer, K.] Univ Aarhus, Dept Phys & Astron, Lundbeck Fdn Theoret Ctr Quantum Syst Res, DK-8000 Aarhus C, Denmark. [Oezen, C.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Oezen, C.; Langanke, K.] Helmholtzzentrum Schwerionenforsch, GSI Darmstadt, D-64259 Darmstadt, Germany. [Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Langanke, K.] Tech Univ Darmstadt, D-64289 Darmstadt, Germany. [Langanke, K.] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany. RP Zinner, NT (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM zinner@phys.au.dk RI Ozen, Cem/C-6868-2016; OI Ozen, Cem/0000-0001-6388-9175; Dean, David/0000-0002-5688-703X FU Hemholtz Alliance Institute EMMI FX We thank the Hemholtz Alliance Institute EMMI for support. NR 31 TC 16 Z9 16 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL PY 2009 VL 80 IS 1 AR 013613 DI 10.1103/PhysRevA.80.013613 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 478VP UT WOS:000268616900146 ER PT J AU Alloyeau, D Freitag, B Dag, S Wang, LW Kisielowski, C AF Alloyeau, D. Freitag, B. Dag, S. Wang, Lin W. Kisielowski, C. TI Atomic-resolution three-dimensional imaging of germanium self-interstitials near a surface: Aberration-corrected transmission electron microscopy SO PHYSICAL REVIEW B LA English DT Article DE elemental semiconductors; germanium; interstitials; transmission electron microscopy ID TOTAL-ENERGY CALCULATIONS; IRRADIATION-INDUCED DEFECTS; INTRINSIC POINT-DEFECTS; AUGMENTED-WAVE METHOD; AB-INITIO; MOLECULAR-DYNAMICS; BASIS-SET; SI; SEMICONDUCTORS; CRYSTALS AB We report the formation and direct observation of self-interstitials in surface proximity of an elemental semiconductor by exploiting subthreshold effects in a new generation of aberration-corrected transmission electron microscopes. We find that the germanium interstitial atoms reside close to hexagonal, tetragonal, and S-interstitial sites. Using phase-contrast microscopy, we demonstrate that the three-dimensional position of interstitial atoms can be determined from contrast analysis, with subnanometer precision along the electron-beam direction. Comparison with a first-principles study suggests a strong influence of the surface proximity or a positively charged interstitial. More generally, our investigation demonstrates that imaging of single atom can now be utilized to directly visualize single-defect formation and migration. These high-resolution electron microscopy studies are applicable to a wide range of materials since the reported noise level of the images even allows the detection of single-light atoms. C1 [Alloyeau, D.; Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Freitag, B.] FEI Co, NL-5600 KA Eindhoven, Netherlands. [Dag, S.; Wang, Lin W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Sci Comp Grp, Computat Res Div, Berkeley, CA 94720 USA. RP Alloyeau, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM alloyeau.damien@gmail.com; cfkisielowski@lbl.gov FU (U.S.) Department of Energy [AC0205CH11231, DE-AC02-05CH11231]; National Energy Research Scientific Computing Center FX We thank Frances Allen for her kind assistance in writing this manuscript. The authors acknowledge support from the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the (U.S.) Department of Energy, under Contract No. DE-AC0205CH11231. The TEAM project was supported by the (U.S.) Department of Energy, Office of Science, and Basic Energy Sciences. The detailed image analysis was supported by the Electron Microscopy of Soft Matter Program at Lawrence Berkeley National Laboratory and supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. The theoretical part of this work was supported by the DMSE/BES/SC of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. It uses the resources of the National Energy Research Scientific Computing Center. NR 38 TC 25 Z9 25 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014114 DI 10.1103/PhysRevB.80.014114 PG 6 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100040 ER PT J AU Aydiner, CC Bernier, JV Clausen, B Lienert, U Tome, CN Brown, DW AF Aydiner, C. C. Bernier, J. V. Clausen, B. Lienert, U. Tome, C. N. Brown, D. W. TI Evolution of stress in individual grains and twins in a magnesium alloy aggregate SO PHYSICAL REVIEW B LA English DT Article DE aggregates (materials); aggregation; grain size; internal stresses; magnesium alloys; shear deformation; synchrotron radiation; twinning; X-ray diffraction ID STRAIN EVOLUTION; DEFORMATION; BEHAVIOR; TEXTURE; METALS AB This is an in situ measurement of the full stress tensor and its evolution in a growing deformation twin and, simultaneously, in the grain where the twin forms. The combined information provides a detailed picture of the grain-twin interaction. The three-dimensional x-ray diffraction method using 80.7 keV synchrotron x rays allows us to in situ investigate a grain within the bulk of a magnesium alloy (AZ31) sample that is compressed to activate the {1012}<< 1011 >> tensile twin system. We observe that the stress state of the twin is drastically different from the one of the grain in which it is embedded. We analyze such result in terms of the shear transformation associated with twinning and the dimensional constraints imposed by the surrounding aggregate. C1 [Aydiner, C. C.; Tome, C. N.; Brown, D. W.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Bernier, J. V.] Lawrence Livermore Natl Lab, Engn Technol Div, Livermore, CA 94551 USA. [Clausen, B.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Lienert, U.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Aydiner, CC (reprint author), Bogazici Univ, Mech Eng Dept, TR-80815 Bebek, Turkey. EM can.aydiner@boun.edu.tr RI Tome, Carlos/D-5058-2013; Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; Aydiner, Cahit/0000-0001-8256-6742 FU Office of Basic Energy Science (DOE) [FWP 06SCPE401]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Office of Basic Energy Science (DOE) through Project No. FWP 06SCPE401. The authors are indebted to A. Jain and S. R. Agnew of University of Virginia for their help in sample preparation. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 20 TC 66 Z9 66 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024113 DI 10.1103/PhysRevB.80.024113 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500031 ER PT J AU Bud'ko, SL Nandi, S Ni, N Thaler, A Kreyssig, A Kracher, A Yan, JQ Goldman, AI Canfield, PC AF Bud'ko, S. L. Nandi, S. Ni, N. Thaler, A. Kreyssig, A. Kracher, A. Yan, J. -Q. Goldman, A. I. Canfield, P. C. TI Structural phase transition in Ba(Fe0.973Cr0.027)(2)As-2 single crystals SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; chromium compounds; electrical resistivity; Hall effect; iron compounds; magnetic susceptibility; magnetic transition temperature; space groups; thermodynamics; X-ray diffraction AB We present thermodynamic, structural, and transport measurements on Ba(Fe0.973Cr0.027)(2)As-2 single crystals. All measurements reveal sharp anomalies at similar to 112 K. Single crystal x-ray diffraction identifies the structural transition as a first order, from the high-temperature tetragonal I4/mmm to the low-temperature orthorhombic Fmmm structure, in contrast to an earlier report. C1 [Bud'ko, S. L.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bud'ko, SL (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU U. S. Department of Energy; Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the U. S. Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We thank R. J. McQueeney for useful comments. S. L. B. and P. C. C. both acknowledge M. T. C. Apoo for providing important insight into this problem. NR 22 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014522 DI 10.1103/PhysRevB.80.014522 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100113 ER PT J AU Chembrolu, V Strachan, JP Yu, XW Tulapurkar, AA Tyliszczak, T Katine, JA Carey, MJ Stohr, J Acremann, Y AF Chembrolu, V. Strachan, J. P. Yu, X. W. Tulapurkar, A. A. Tyliszczak, T. Katine, J. A. Carey, M. J. Stoehr, J. Acremann, Y. TI Time-resolved x-ray imaging of magnetization dynamics in spin-transfer torque devices SO PHYSICAL REVIEW B LA English DT Article DE magnetic switching; magnetic thin films; magnetisation reversal; nanoelectronics; spin polarised transport; spin valves; vortices; X-ray imaging; X-ray microscopy ID POLARIZED CURRENT; CO/CU/CO PILLARS; DRIVEN; MULTILAYER; NANOMAGNET; EXCITATION; DEPENDENCE; REVERSAL AB Time-resolved x-ray imaging techniques have recently demonstrated the capability to probe the magnetic switching of nanoscale devices. This technique has enabled, for example, the direct observation of the nonuniform intermediate states assumed by the magnetic free layer during reversal by a spin-polarized current. These experiments have shown an interesting size-dependent behavior associated with the motion of vortices to mediate the magnetization reversal which cannot be explained by the macrospin picture of spin-torque switching. In this paper we present both experimental and analytical results which show the origin of the complex switching behavior. We use time-resolved x-ray microscopy to further study the switching behavior of samples with 45 degrees angle between the free and polarizing magnetic layers. A model is developed in terms of a linearized Landau-Lifshitz-Gilbert equation showing that the initial dynamics is dominated by the balance between the Oersted field and thermal fluctuations. The spin torque amplifies this dynamics, leading to a strong sensitivity to sample size, angle, and temperature. The model is in good agreement with current and previous experimental observations. C1 [Chembrolu, V.; Strachan, J. P.; Yu, X. W.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chembrolu, V.; Strachan, J. P.; Yu, X. W.; Tulapurkar, A. A.; Stoehr, J.; Acremann, Y.] Stanford Linear Accelerator Ctr, SIMES Inst, Menlo Pk, CA 94025 USA. [Tyliszczak, T.] Adv Light Source, Berkeley, CA 94720 USA. [Katine, J. A.; Carey, M. J.] Hitachi Global Storage Technol San Jose Res Ctr, San Jose, CA 95120 USA. [Stoehr, J.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Acremann, Y.] Stanford Linear Accelerator Ctr, PULSE Inst, Menlo Pk, CA 94025 USA. RP Chembrolu, V (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. NR 28 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024417 DI 10.1103/PhysRevB.80.024417 PG 8 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500068 ER PT J AU Clavero, C Skuza, JR Choi, Y Haskel, D Sanchez-Hanke, C Loloee, R Zhernenkov, M Fitzsimmons, MR Lukaszew, RA AF Clavero, C. Skuza, J. R. Choi, Y. Haskel, D. Sanchez-Hanke, C. Loloee, R. Zhernenkov, M. Fitzsimmons, M. R. Lukaszew, R. A. TI Enhancement of induced V polarization due to rough interfaces in polycrystalline V/Fe/V trilayers SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; chemical interdiffusion; interface roughness; iron; magnetic circular dichroism; magnetic moments; magnetic multilayers; magnetic thin films; metallic thin films; reflectometry; sputter deposition; vanadium; X-ray scattering ID MAGNETIC SURFACE ANISOTROPY; X-RAY; NEUTRON-SCATTERING; FE/V MULTILAYERS; ULTRATHIN FILMS; THIN-FILMS; SUPERLATTICES; VANADIUM; INTERDIFFUSION; MOMENTS AB The effect of interface roughness on the induced polarization of V in polycrystalline V/Fe/V trilayers was investigated with x-ray magnetic circular dichroism, x-ray resonant magnetic scattering, and polarized neutron reflectometry. Trilayer samples were sputter deposited onto Si substrates at room temperature to minimize interdiffusion. The films were polycrystalline and exhibited an average 0.5 nm root-mean-square interfacial roughness at the Fe/V interfaces. The induced polarization found in V was constrained to the Fe/V interface extending approximately up to 2-3 monolayers into the V and exhibited antiferromagnetic alignment to the Fe layer. A magnetic moment for V ranging between -0.46 and -0.86 mu(B)/V atom is consistent with the neutron and resonant x-ray data. Notably, this value for structurally rough interfaces is significantly larger than that reported for samples with atomically flat Fe/V interfaces. C1 [Clavero, C.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Choi, Y.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sanchez-Hanke, C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Loloee, R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Zhernenkov, M.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Clavero, C (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. RI Skuza, Jonathan/E-9048-2010; Lujan Center, LANL/G-4896-2012; Clavero, Cesar/C-4391-2008; OI Skuza, Jonathan/0000-0002-9252-2708; Clavero, Cesar/0000-0001-6665-3141; Zhernenkov, Mikhail/0000-0003-3604-0672 FU NSF-DMR [0355171]; Research Corporation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC52-06NA25396, DE-AC-02-06CH11357] FX This work was supported by NSF-DMR (Grant No. 0355171) and the Research Corporation. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Science. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. Work at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357. The authors also wish to acknowledge fruitful discussions with Brian Kirby from the Center for Neutron Research at NIST. NR 39 TC 6 Z9 6 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024418 DI 10.1103/PhysRevB.80.024418 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500069 ER PT J AU Crooker, SA Garlid, ES Chantis, AN Smith, DL Reddy, KSM Hu, QO Kondo, T Palmstrom, CJ Crowell, PA AF Crooker, S. A. Garlid, E. S. Chantis, A. N. Smith, D. L. Reddy, K. S. M. Hu, Q. O. Kondo, T. Palmstrom, C. J. Crowell, P. A. TI Bias-controlled sensitivity of ferromagnet/semiconductor electrical spin detectors SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; SEMICONDUCTOR; INJECTION; DEVICES AB Using Fe/GaAs Schottky tunnel barriers as electrical spin detectors, we show that the magnitude and the sign of their spin-detection sensitivities can be widely tuned with the voltage bias applied across the Fe/GaAs interface. Experiments and theory establish that this tunability derives not just simply from the bias dependence of the tunneling conductances G(up arrow,down arrow) (a property of the interface), but also from the bias dependence of electric fields in the semiconductor which can dramatically enhance or suppress spin-detection sensitivities. Electrons in GaAs with fixed polarization can therefore be made to induce either positive or negative voltage changes at spin detectors, and some detector sensitivities can be enhanced over tenfold compared to the usual case of zero-bias spin detection. C1 [Crooker, S. A.; Chantis, A. N.; Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Garlid, E. S.; Hu, Q. O.; Kondo, T.; Crowell, P. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Reddy, K. S. M.; Palmstrom, C. J.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Palmstrom, C. J.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [Palmstrom, C. J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Crooker, SA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM crooker@lanl.gov OI Chantis, Athanasios/0000-0001-7933-0579; Reddy, Kotha Sai Madhukar/0000-0003-2385-7827 NR 23 TC 34 Z9 34 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 041305 DI 10.1103/PhysRevB.80.041305 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100011 ER PT J AU Dai, JH Zhu, JX Si, QM AF Dai, Jianhui Zhu, Jian-Xin Si, Qimiao TI f-spin physics of rare-earth iron pnictides: Influence of d-electron antiferromagnetic order on the heavy-fermion phase diagram SO PHYSICAL REVIEW B LA English DT Article DE Anderson model; antiferromagnetic materials; cerium compounds; frustration; heavy fermion superconductors; high-temperature superconductors; Kondo effect; magnetic moments; phase diagrams ID LAYERED SUPERCONDUCTOR; QUANTUM CRITICALITY; METALS AB Some of the high-T-c iron pnictides contain magnetic rare-earth elements, raising the question of how the existence and tunability of a d-electron antiferromagnetic order influences the heavy-fermion behavior of the f moments. With CeOFeP and CeOFeAs in mind as prototypes, we derive an extended Anderson lattice model appropriate for these quaternary systems. We show that the Kondo screening of the f moments are efficiently suppressed by the d-electron ordering. We also argue that, inside the d-electron ordered state (as in CeOFeAs), the f moments provide a rare realization of a quantum frustrated magnet with competing J(1)-J(2)-J(3) interactions in an effective square lattice. Implications for the heavy-fermion physics in broader contexts are also discussed. C1 [Dai, Jianhui] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Si, Qimiao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Dai, JH (reprint author), Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China. OI Zhu, Jianxin/0000-0001-7991-3918 FU NSF of China [IRT-0754, DMR-0706625]; Education Ministry of China; U.S. DOE [DE-AC52-06NA25396] FX We thank E. Abrahams, M. Aronson, G. H. Cao, X. H. Chen, X. Dai, C. Geibel, N. L. Wang, T. Xiang, Z. A. Xu, and H. Q. Yuan for useful discussions, and the U. S. DOE CINT at LANL for computational support. This work was supported by the NSF of China, the 973 Program, and the PCSIRT (Project No. IRT-0754) of Education Ministry of China (J.D.), by the NSF (Grant No. DMR-0706625) and the Robert A. Welch Foundation (Q.S.), and by the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396 (J.-X.Z.). NR 34 TC 14 Z9 14 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020505 DI 10.1103/PhysRevB.80.020505 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500017 ER PT J AU Duguet, T Unal, B de Weerd, MC Ledieu, J Ribeiro, RA Canfield, PC Deloudi, S Steurer, W Jenks, CJ Dubois, JM Fournee, V Thiel, PA AF Duguet, T. Uenal, B. de Weerd, M. C. Ledieu, J. Ribeiro, R. A. Canfield, P. C. Deloudi, S. Steurer, W. Jenks, C. J. Dubois, J. M. Fournee, V. Thiel, P. A. TI Twofold surface of the decagonal Al-Cu-Co quasicrystal SO PHYSICAL REVIEW B LA English DT Article DE aluminium alloys; cobalt alloys; copper alloys; electron diffraction; phasons; quasicrystals; scanning tunnelling microscopy; surface structure ID TRANSPORT-PROPERTIES; ELECTRONIC-STRUCTURE; PHASE; AL65CU15CO20; ALLOYS; MODEL; AL70CO15NI15; DIFFRACTION; GROWTH; LEED AB We have investigated the atomic structure of the twofold surface of the decagonal Al-Cu-Co quasicrystal using scanning tunneling microscopy and low-energy electron diffraction. We have found that most of the surface features can be interpreted using the bulk-structure model proposed by Deloudi and Steurer (S. Deloudi, Ph.D. thesis, ETH, Zuumlrich, 2008). The surface consists of terraces separated by steps of various heights. Step heights and steps sequences match with the thickness and the stacking sequence of blocks of layers separated by gaps in the model. These blocks of layers define possible surface terminations consisting of periodic atomic rows which are aperiodically stacked. These surface terminations are dense (similar to 10 at./nm(2)) and are of three types. The first two types are pure or almost pure Al while the third one contains 30-40 at. % of transition-metal atoms. Experimentally, we observe three different types of fine structures on terraces, which can be interpreted using the three possible types of bulk terminations. Terraces containing transition metals exhibit a strong bias dependency and present a doubling of the basic 0.42 nm periodicity, in agreement with the 0.84 nm superstructure of the bulk. In addition, a high density of interlayer phason defects is observed on this surface that could contribute to the stabilization of this system through configurational entropy associated with phason disorder. C1 [Duguet, T.; de Weerd, M. C.; Ledieu, J.; Dubois, J. M.; Fournee, V.] Nancy Univ, Inst Jean Lamour, CNRS,Ecole Mines, UMR 7198,UPV Metz, F-54042 Nancy, France. [Uenal, B.; Ribeiro, R. A.; Canfield, P. C.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Uenal, B.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Dept Chem & Mat Sci, Ames, IA 50011 USA. [Uenal, B.; Jenks, C. J.; Thiel, P. A.] Iowa State Univ, Dept Engn, Ames, IA 50011 USA. [Ribeiro, R. A.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Deloudi, S.; Steurer, W.] ETH, Crystallog Lab, CH-8093 Zurich, Switzerland. RP Duguet, T (reprint author), Nancy Univ, Inst Jean Lamour, CNRS,Ecole Mines, UMR 7198,UPV Metz, Parc Saurupt,CS14234, F-54042 Nancy, France. RI Ledieu, Julian/F-1430-2010; DUGUET, Thomas/B-6738-2011; Deloudi, Sofia/B-8812-2011; Canfield, Paul/H-2698-2014; Steurer, Walter/A-3278-2008; Ribeiro, Raquel/B-9041-2012; Steurer, Walter/B-6929-2008 OI Ribeiro, Raquel/0000-0001-6075-1701; Steurer, Walter/0000-0003-0211-7088 FU U.S. Department of Energy (USDOE) [DE-AC02-07CH11358]; European Network of Excellence on Complex Metallic Alloys (CMA) [NMP3-CT-2005-500145, ANR-05-NT03-41834] FX This work was partially supported by the Office of Science, Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy (USDOE) under Contract No. DE-AC02-07CH11358 through the Ames Laboratory. We also acknowledge the European Network of Excellence on Complex Metallic Alloys (CMA) (Contracts No. NMP3-CT-2005-500145 and No. ANR-05-NT03-41834) for financial support. We also thank Matt Kramer and Chris Henley for helpful discussions. NR 41 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024201 DI 10.1103/PhysRevB.80.024201 PG 9 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500038 ER PT J AU Dzero, M Schmalian, J Wolynes, PG AF Dzero, Maxim Schmalian, Joerg Wolynes, Peter G. TI Replica theory for fluctuations of the activation barriers in glassy systems SO PHYSICAL REVIEW B LA English DT Article DE amorphous state; entropy; fluctuations; glass transition; supercooling; surface tension; vitreous state ID SUPERCOOLED O-TERPHENYL; HARD-SPHERE GLASS; MEAN-FIELD THEORY; METASTABLE STATES; CONFIGURATIONAL ENTROPY; STRUCTURAL GLASSES; SPIN-GLASSES; HETEROGENEOUS DYNAMICS; FORMING LIQUIDS; LENGTH SCALE AB We consider the problem of slow activation dynamics in glassy systems undergoing a random first-order phase transition. Using an effective potential approach to supercooled liquids, we determine the spectrum of activation barriers for entropic droplets. We demonstrate that fluctuations of the configurational entropy and of the liquid glass surface tension are crucial to achieve an understanding of the barrier fluctuations in glassy systems and thus are ultimately responsible for the broad spectrum of excitations and heterogeneous dynamics in glasses. In particular we derive a relation between the length scale for dynamic heterogeneity and the related barrier fluctuations. Diluted entropic droplets are shown to have a Gaussian distribution of barriers, strongly suggesting that non-Gaussian behavior results from droplet-droplet interactions. C1 [Dzero, Maxim] Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA. [Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wolynes, Peter G.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Wolynes, Peter G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Dzero, M (reprint author), Rutgers State Univ, Ctr Mat Theory, Piscataway, NJ 08854 USA. RI Schmalian, Joerg/H-2313-2011 NR 63 TC 10 Z9 10 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024204 DI 10.1103/PhysRevB.80.024204 PG 15 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500041 ER PT J AU Fernando, GW Palandage, K Kocharian, AN Davenport, JW AF Fernando, G. W. Palandage, K. Kocharian, A. N. Davenport, J. W. TI Pairing in bipartite and nonbipartite repulsive Hubbard clusters: Octahedron SO PHYSICAL REVIEW B LA English DT Article DE Bose-Einstein condensation; colossal magnetoresistance; Coulomb blockade; ferromagnetism; high-temperature superconductors; Hubbard model ID PHASE-SEPARATION; MODEL; SUPERCONDUCTORS; FERROMAGNETISM; NANOCLUSTERS; THERMODYNAMICS; SYSTEMS; NARROW; STATE; BAND AB Pairing instabilities found from exact studies of repulsive Hubbard clusters with different topologies provide important insights into several many-body problems in condensed-matter physics. Electron charge and spin pairing instabilities in a multiparameter phase space, defined by temperature, magnetic field, and chemical potential, lead to properties that are remarkably similar to correlated inhomogeneous bulk (perovskite) systems such as the high-temperature superconductors and colossal-magnetoresistance materials. In particular, for small to moderate values of the on-site Coulomb repulsion U, the role of square-planar geometry is borne out for weak vertex coupling in an octahedron. These conditions are favorable to forming a Bose condensate in the region of instability near one hole off half filling while strong vertex coupling has a detrimental effect on such condensation. In addition, it is shown that magnetic flux can get trapped in stable minima at half-integral units of the flux quantum in hole-rich regions. For higher values of U, Nagaoka-type ferromagnetism is examined. C1 [Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Kocharian, A. N.] Santa Monica Coll, Santa Monica, CA 90405 USA. [Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Davenport, J. W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Fernando, GW (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. FU U. S. Department of Energy [DE-AC02-98CH10886] FX This research was supported in part by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 31 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014525 DI 10.1103/PhysRevB.80.014525 PG 7 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100116 ER PT J AU Fischer, G Dane, M Ernst, A Bruno, P Luders, M Szotek, Z Temmerman, W Hergert, W AF Fischer, Guntram Daene, Markus Ernst, Arthur Bruno, Patrick Lueders, Martin Szotek, Zdzislawa Temmerman, Walter Hergert, Wolfram TI Exchange coupling in transition metal monoxides: Electronic structure calculations SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; exchange interactions (electron); Heisenberg model; KKR calculations; lattice constants; manganese compounds; Neel temperature; spin waves; strongly correlated electron systems ID SELF-INTERACTION CORRECTION; MAGNETIC-STRUCTURES; NEEL TEMPERATURE; HIGH-PRESSURE; HYDROSTATIC PRESSURE; PHASE-STABILITY; NIO; MNO; COO; FEO AB An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d transition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force theorem. Based on these the corresponding Neacuteel temperatures T-N and spin-wave dispersions are calculated. The Neacuteel temperatures are obtained using mean-field approximation, random-phase approximation and Monte Carlo simulations. The pressure dependence of T-N is investigated using exchange constants calculated for different lattice constants. All the calculated results are compared to experimental data. C1 [Fischer, Guntram; Hergert, Wolfram] Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Germany. [Daene, Markus; Ernst, Arthur; Bruno, Patrick] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Daene, Markus] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bruno, Patrick] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. RP Fischer, G (reprint author), Univ Halle Wittenberg, Inst Phys, Von Seckendorff Pl 1, D-06120 Halle, Germany. RI Bruno, Patrick/C-9159-2009; Lueders, Martin/D-1622-2010; Ernst, Arthur/K-1836-2012; Dane, Markus/H-6731-2013 OI Bruno, Patrick/0000-0002-2574-1943; Dane, Markus/0000-0001-9301-8469 FU Deutsche Forschungsgesellschaft (DFG) [SFB 762]; U.S. Department of Energy [DE-AC05-00OR22725] FX We would like to thank Julie Staunton for helpful discussions and comments. This work was supported by the Deutsche Forschungsgesellschaft (DFG) under Grant No. SFB 762 "Functionality of Oxidic Interfaces." Calculations were performed at the John von Neumann Institute for Computing in Julich, Germany. Research at the Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 66 TC 50 Z9 50 U1 0 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014408 DI 10.1103/PhysRevB.80.014408 PG 11 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100063 ER PT J AU Goko, T Aczel, AA Baggio-Saitovitch, E Bud'ko, SL Canfield, PC Carlo, JP Chen, GF Dai, PC Hamann, AC Hu, WZ Kageyama, H Luke, GM Luo, JL Nachumi, B Ni, N Reznik, D Sanchez-Candela, DR Savici, AT Sikes, KJ Wang, NL Wiebe, CR Williams, TJ Yamamoto, T Yu, W Uemura, YJ AF Goko, T. Aczel, A. A. Baggio-Saitovitch, E. Bud'ko, S. L. Canfield, P. C. Carlo, J. P. Chen, G. F. Dai, Pengcheng Hamann, A. C. Hu, W. Z. Kageyama, H. Luke, G. M. Luo, J. L. Nachumi, B. Ni, N. Reznik, D. Sanchez-Candela, D. R. Savici, A. T. Sikes, K. J. Wang, N. L. Wiebe, C. R. Williams, T. J. Yamamoto, T. Yu, W. Uemura, Y. J. TI Superconducting state coexisting with a phase-separated static magnetic order in (Ba,K)Fe2As2, (Sr,Na)Fe2As2, and CaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; barium alloys; calcium alloys; iron alloys; magnetic susceptibility; muon probes; phase separation; potassium alloys; sodium alloys; strontium alloys; superconducting energy gap; superconducting materials; superconductivity ID LAYERED SUPERCONDUCTOR; SUPERFLUID DENSITY; MU-SR; DIAGRAM; SMFEASO1-XFX; CUPRATE AB By muon spin-relaxation measurements on single-crystal specimens, we show that superconductivity in the AFe(2)As(2) (A=Ca,Ba,Sr) systems, in both the cases of composition and pressure tunings, coexists with a strong static magnetic order in a partial volume fraction. The superfluid response from the remaining paramagnetic volume fraction of (Ba0.5K0.5)Fe2As2 exhibits a nearly linear variation in T at low temperatures, suggesting an anisotropic energy gap with line nodes and/or multigap effects. C1 [Goko, T.; Carlo, J. P.; Nachumi, B.; Sikes, K. J.; Uemura, Y. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Goko, T.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Goko, T.; Aczel, A. A.; Luke, G. M.; Williams, T. J.; Yu, W.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Baggio-Saitovitch, E.; Sanchez-Candela, D. R.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.; Ni, N.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Chen, G. F.; Hu, W. Z.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100080, Peoples R China. [Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hamann, A. C.; Reznik, D.] Forschungszentrum Karlsruhe, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Kageyama, H.; Yamamoto, T.] Kyoto Univ, Dept Chem, Kyoto 6068502, Japan. [Savici, A. T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Wiebe, C. R.] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. RP Uemura, YJ (reprint author), Columbia Univ, Dept Phys, New York, NY 10027 USA. EM tomo@lorentz.phys.columbia.edu RI Williams, Travis/A-5061-2016; Hu, Wanzheng/K-1171-2016; Kageyama, Hiroshi/A-4602-2010; Dai, Pengcheng /C-9171-2012; Yu, Weiqiang/E-9722-2012; Candela, Dalber/G-3636-2012; Savici, Andrei/F-2790-2013; Canfield, Paul/H-2698-2014; Saitovitch, Elisa/A-6769-2015; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; OI Williams, Travis/0000-0003-3212-2726; Dai, Pengcheng /0000-0002-6088-3170; Savici, Andrei/0000-0001-5127-8967; Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173 FU NSF [DMR-05-02706, 08-06846, DMR-07-56568, DMR-08-04173]; Florida state at FSU; DOE [DE-AC02-07CH11358]; NSERC; CIFAR (Canada); CBPF (Brazil); NSFC; CAS; 973 project of MOST (China); JSPS U. S.-Japan FX We acknowledge financial support from NSF under Grant Nos. DMR-05-02706 and 08-06846 (Material World Network) at Columbia, NSF under Grant No. DMR-07-56568 at UT Knoxville, NSF under Grant No. DMR-08-04173 and Florida state at FSU, DOE under Contract No. DE-AC02-07CH11358 at Ames, NSERC and CIFAR (Canada) at McMaster, CNPq on MWN-CIAM program at CBPF (Brazil), NSFC, CAS, and 973 project of MOST (China) at IOP, Beijing, and JSPS U. S.-Japan cooperative program at Kyoto University (Japan). NR 53 TC 90 Z9 92 U1 4 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024508 DI 10.1103/PhysRevB.80.024508 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500087 ER PT J AU Grigoriev, A Sichel, RJ Jo, JY Choudhury, S Chen, LQ Lee, HN Landahl, EC Adams, BW Dufresne, EM Evans, PG AF Grigoriev, Alexei Sichel, Rebecca J. Jo, Ji Young Choudhury, Samrat Chen, Long-Qing Lee, Ho Nyung Landahl, Eric C. Adams, Bernhard W. Dufresne, Eric M. Evans, Paul G. TI Stability of the unswitched polarization state of ultrathin epitaxial Pb(Zr,Ti)O-3 in large electric fields SO PHYSICAL REVIEW B LA English DT Article DE dielectric polarisation; electric domain walls; epitaxial layers; ferroelectric capacitors; ferroelectric thin films; lead compounds; nucleation; thin film capacitors; X-ray diffraction ID NUCLEATION; THICKNESS; FILMS AB The initial stage of polarization switching in ferroelectric thin films depends on phenomena that occur at characteristic time scales of tens to hundreds of nanoseconds, including the nucleation polarization domains and the propagation of domain walls. These long intrinsic times allow short-duration electric fields with magnitudes far above the low-frequency coercive electric field to be applied across capacitor devices without inducing switching. Using time-resolved x-ray microdiffraction, we have found that a series of 50 ns duration electric field pulses switches the polarization of a 35-nm-thick ferroelectric Pb(Zr,Ti)O-3 film only at electric fields greater than 1.5 MV/cm, a factor of three higher than the low-frequency coercive field. There is no switching in response to a large number of short pulses with amplitudes lower than 1.5 MV/cm, even when the total duration reaches several milliseconds. In comparison, a series of microsecond-duration pulses causes cumulative changes in the area of switched polarization and eventually switches the entire capacitor. The difference between long- and short-duration electric field pulses arises from effects linked to domain nucleation and charge transport in the ferroelectric film. A phase-field model shows that the shrinking of the switched domain in the interval between pulses is a less important effect. This opportunity to apply large fields for short times without inducing switching by domain-wall motion raises the possibility that future experiments could reach the intrinsic coercive field of ferroelectric layers and provides a way to study the properties of materials under high electric fields. C1 [Grigoriev, Alexei; Sichel, Rebecca J.; Jo, Ji Young; Choudhury, Samrat; Evans, Paul G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Grigoriev, Alexei; Sichel, Rebecca J.; Jo, Ji Young; Choudhury, Samrat; Evans, Paul G.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Landahl, Eric C.; Adams, Bernhard W.; Dufresne, Eric M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Grigoriev, A (reprint author), Univ Tulsa, Dept Phys & Engn Phys, Tulsa, OK 74104 USA. EM evans@engr.wisc.edu RI Choudhury, Samrat/B-4115-2009; Landahl, Eric/A-1742-2010; Evans, Paul/A-9260-2009; Lee, Ho Nyung/K-2820-2012; Chen, LongQing/I-7536-2012 OI Evans, Paul/0000-0003-0421-6792; Lee, Ho Nyung/0000-0002-2180-3975; Chen, LongQing/0000-0003-3359-3781 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-04ER46147]; Basic Energy Sciences [DE-FG02-04ER46147]; National Science Foundation [DMR-0705370]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC0206CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences through Contract No. DE-FG02-04ER46147, and by the National Science Foundation through Grant No. DMR-0705370. One of the authors (H.N.L.) was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH11357. NR 30 TC 9 Z9 9 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014110 DI 10.1103/PhysRevB.80.014110 PG 6 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100036 ER PT J AU Hoch, MJR Kuhns, PL Moulton, WG Lu, J Reyes, AP Mitchell, JF AF Hoch, M. J. R. Kuhns, P. L. Moulton, W. G. Lu, Jun Reyes, A. P. Mitchell, J. F. TI Non-Korringa nuclear relaxation in the ferromagnetic phase of the bilayered manganite La1.2Sr1.8Mn2O7 SO PHYSICAL REVIEW B LA English DT Article DE colossal magnetoresistance; electronic structure; ferromagnetic materials; hyperfine interactions; lanthanum compounds; magnetic polarons; magnetic thin films; nuclear magnetic resonance; spin-lattice relaxation; strontium compounds ID MAGNETORESISTANCE; CRYSTALS; STATE AB In contrast to ferromagnetic (FM) three-dimensional manganites, Mn-55 NMR spectra obtained for the FM phase of the colossal magnetoresistance bilayer manganite La1.2Sr1.8Mn2O7 show a broad distribution of hyperfine fields at Mn sites. The hyperfine distribution reflects variations in the electronic structure at the local level. Mn-55 spin-lattice relaxation rates have a surprisingly weak dependence both on temperature and on applied magnetic field. Significant departures of the relaxation rate from Korringa temperature dependence below 40 K provide evidence for nonFermi liquid behavior in this quasi-two-dimensional metal. At temperatures approaching T-C from below, in the range where colossal magnetoresistance appears, further anomalous and field-dependent behavior is found in the relaxation rate temperature dependence. The results provide evidence for changes in the electronic structure with temperature in this poorly metallic system. At low temperatures the changes are possibly linked to orbital ordering effects. In addition, statistical fluctuations in dopant concentration may play some role in inducing local variations in the electronic structure. Above 90 K the emergence of polarons is likely to be responsible for the observed decrease in the relaxation rate. C1 [Hoch, M. J. R.; Kuhns, P. L.; Moulton, W. G.; Lu, Jun; Reyes, A. P.] Florida State Univ, Natl High Magnet Field Lab, Tallahssee, FL 32310 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Hoch, MJR (reprint author), Florida State Univ, Natl High Magnet Field Lab, 1800 E Paul Dirac Dr, Tallahssee, FL 32310 USA. FU NSF [DMR-0084]; state of Florida; U.S. DOE, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX Financial support for the work at the NHMFL was provided through grants from the NSF (Grant No. DMR-0084) and by the state of Florida. The work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Helpful discussions with Pedro Schlottmann at Florida State University and Chris Leighton at the University of Minnesota are gratefully acknowledged. NR 37 TC 2 Z9 2 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024413 DI 10.1103/PhysRevB.80.024413 PG 8 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500064 ER PT J AU Horner, DA Lambert, F Kress, JD Collins, LA AF Horner, D. A. Lambert, F. Kress, J. D. Collins, L. A. TI Transport properties of lithium hydride from quantum molecular dynamics and orbital-free molecular dynamics SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; diffusion; lithium compounds; mixing; molecular dynamics method; viscosity ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; DENSE MATTER; COEFFICIENTS; PLANETS; METALS; STATES AB We have performed a systematic study of lithium hydride in the warm-dense-matter regime for a density range from one to four times ambient solid and for temperatures from 2 to 6 eV using both finite-temperature density-functional theory quantum molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD) with a focus on dynamical properties such as diffusion and viscosity. The validity of various mixing rules, especially those utilizing pressure, were checked for composite properties determined from QMD/OFMD simulations of the pure species against calculations on the fully interacting mixture. These rules produce pressures within about 10% of the full-mixture values but mutual-diffusion coefficients as different as 50%. We found very good agreement overall between the QMD, employing a three-electron pseudopotential, and the OFMD in the local-density approximation, especially at the higher temperatures and densities. C1 [Horner, D. A.; Kress, J. D.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lambert, F.] DIF, DAM, CEA, F-91297 Arpajon, France. RP Horner, DA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy [DE-AC52-06NA25396]; Centre de Calcul Recherche et Technologie in Bruyres-le-Chtel FX We wish to acknowledge useful conversations with Brad Holian. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Part of this work was supported by the Centre de Calcul Recherche et Technologie in Bruyres-le-Chtel. NR 31 TC 34 Z9 34 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024305 DI 10.1103/PhysRevB.80.024305 PG 10 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500048 ER PT J AU Hu, X Ting, CS Zhu, JX AF Hu, Xiang Ting, C. S. Zhu, Jian-Xin TI Vortex core states in a minimal two-band model for iron-based superconductors SO PHYSICAL REVIEW B LA English DT Article DE band structure; d-wave superconductivity; electronic density of states; exchange interactions (electron); Fermi level; flux-line lattice; iron compounds; localised states; resonant states; scanning tunnelling microscopy; spin density waves; tight-binding calculations ID HIGH-TEMPERATURE SUPERCONDUCTORS; LAYERED QUATERNARY COMPOUND; SPIN-DENSITY-WAVE; PHASE-DIAGRAM; CUPRATE SUPERCONDUCTORS; SMFEASO1-XFX; COEXISTENCE; MAGNETISM; D(X2-Y2); SYMMETRY AB The pairing symmetry is one of the major issues in the study of iron-based superconductors. We adopt a minimal two-band tight-binding model with various channels of pairing interaction, and derive a set of two-band Bogoliubov-de Gennes (BdG) equations. The BdG equations are implemented in real space and then solved self-consistently via exact diagonalization. In the uniform case, we find that the d(x)(2)-y(2)-wave pairing state is most favorable for a nearest-neighbor pairing interaction while the s(x)(2)y(2)-wave pairing state is most favorable for a next-nearest-neighbor pairing interaction, which is consistent with that reported by Seo [Phys. Rev. Lett. 101, 206404 (2008)]. We then proceed to study the local electronic structure around a magnetic vortex core for both d(x)(2)-y(2)-wave and s(x)(2)y(2)-wave pairing symmetry in the mixed state. It is found from the local density of states spectra and its spatial variation that the resonance core states near the Fermi energy for the d(x)(2)-y(2)-wave pairing symmetry are bound while those for the s(x)(2)y(2)-wave pairing symmetry can evolve from the localized states into extended ones with varying electron filling factor. Furthermore, by including an effective exchange interaction, the emergent antiferromagnetic spin-density-wave order can suppress the resonance core states, which provides one possible avenue to understand the absence of resonance peak as revealed by recent scanning tunneling microscopy experiment by Yin [Phys. Rev. Lett. 102, 097002 (2009)]. C1 [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hu, Xiang; Ting, C. S.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Hu, Xiang; Ting, C. S.] Univ Houston, Dept Phys, Houston, TX 77204 USA. RP Zhu, JX (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jxzhu@lanl.gov OI Zhu, Jianxin/0000-0001-7991-3918 FU U. S. DOE [1146, DE-AC52-06NA25396] FX We thank A. V. Balatsky, J. C. Davis, M. Graf, J. E. Hoffman, Jiangping Hu, V. Madhavan, Shuheng Pan, Qimiao Si, and Degang Zhang for helpful discussions. We also thank T. Zhou for discussion and collaboration on related project. One of the authors (X. H.) acknowledges the hospitality of Los Alamos National Laboratory (LANL), where this work was initiated. We acknowledge the U. S. DOE CINT at LANL for computational support. This work was supported by the Robert Welch Foundation Grant No. E-1146 at the University of Houston (X. H. and C. S. T.), by U. S. DOE at LANL under Contract No. DE-AC52-06NA25396, the U. S. DOE Office of Science, and the LANL LDRD Program (J. X. Z.). NR 85 TC 17 Z9 17 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014523 DI 10.1103/PhysRevB.80.014523 PG 8 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100114 ER PT J AU Huda, MN Yan, YF Walsh, A Wei, SH Al-Jassim, MM AF Huda, Muhammad N. Yan, Yanfa Walsh, Aron Wei, Su-Huai Al-Jassim, Mowafak M. TI Group-IIIA versus IIIB delafossites: Electronic structure study SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HYDROGEN-PRODUCTION; OPTICAL-PROPERTIES; THIN-FILMS; BASIS-SET; CUALO2; TRANSPARENT; WATER; CONDUCTIVITY AB First-principles density-functional theory calculations reveal significantly different behavior between group-IIIA and IIIB delafossites CuMO2. The group-IIIA delafossites have indirect band gaps with large differences between the direct and indirect band gaps. However, this difference is small for the group-IIIB delafossites: only 0.22 eV for CuScO2 and it diminishes further for CuYO2 and CuLaO2. Also, whereas group IIIA prefers rhombohedral stacking, group IIIB stabilizes in hexagonal structures. We further find that CuScO2 has the highest calculated fundamental band gap among all the delafossite oxides. In addition, CuLaO2 is found to have a direct band gap. These differences are explained by the different atomic configurations between the group-IIIA and IIIB elements. Our understanding of these delafossites provides general guidance for proper selection of delafossites for suitable applications in optoelectronic devices. C1 [Huda, Muhammad N.; Yan, Yanfa; Walsh, Aron; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM muhammad.huda@nrel.gov RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008 OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X FU U. S. Department of Energy [DE-AC36-08GO28308] FX M.N.H. gratefully acknowledges the fruitful discussions with Eric W. McFarland and John A. Turner. This work was supported by the U. S. Department of Energy under Contract No. DE-AC36-08GO28308. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 35 TC 45 Z9 45 U1 0 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035205 DI 10.1103/PhysRevB.80.035205 PG 7 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800070 ER PT J AU Hupalo, M Conrad, EH Tringides, MC AF Hupalo, M. Conrad, E. H. Tringides, M. C. TI Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study SO PHYSICAL REVIEW B LA English DT Article ID GRAPHITE; LAYERS AB The inability to grow large well-ordered ultra high vacuum (UHV) graphene with a specific number of layers on SiC(0001) is well known. The growth involves several competing processes (Si desorption, carbon diffusion, island nucleation, etc.) and because of the high temperatures, it has not been possible to identify the growth mechanism. Using scanning tunneling microscopy and a vicinal 6H-SiC(0001) sample, we determine that the Si desorption from steps is the main controlling process. Adjacent steps retract with different speeds and the released carbon produces large areas of bilayer graphene with characteristic "fingers" emanating from steps. If faster heating rates are used, the different Si desorption rates are avoided and single-layer graphene films extending over many microns are produced. C1 [Hupalo, M.; Tringides, M. C.] Iowa Sate Univ, US DOE, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. [Conrad, E. H.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. RP Hupalo, M (reprint author), Iowa Sate Univ, US DOE, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. FU Department of Energy-Basic Sciences [DE-AC02-07CH11358]; W. M. Keck Foundation and the National Science Foundation [0404084, 0521041, 0820382] FX We wish to thank A. Zangwill and D. Vvedensky for helpful discussions and a critical reading of the paper. Work at the Ames Laboratory was supported by the Department of Energy-Basic Sciences under Contract No. DE-AC02-07CH11358. Work at Georgia Tech was supported by a grant from the W. M. Keck Foundation and the National Science Foundation under Grants No. 0404084, No. 0521041, and No. 0820382. NR 21 TC 76 Z9 77 U1 4 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 041401 DI 10.1103/PhysRevB.80.041401 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100020 ER PT J AU Jimenez, E Camarero, J Sort, J Nogues, J Mikuszeit, N Garcia-Martin, JM Hoffmann, A Dieny, B Miranda, R AF Jimenez, E. Camarero, J. Sort, J. Nogues, J. Mikuszeit, N. Garcia-Martin, J. M. Hoffmann, A. Dieny, B. Miranda, R. TI Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; cobalt; exchange interactions (electron); ferromagnetic materials; frustration; iridium alloys; iron alloys; magnetic anisotropy; magnetic hysteresis; magnetic multilayers; magnetic structure; magnetic thin films; magnetisation reversal; manganese alloys; nickel alloys ID HYSTERESIS LOOPS; REVERSAL; NANOSTRUCTURES; DEPENDENCE; BILAYERS; FILMS AB Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials. C1 [Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain. [Jimenez, E.; Camarero, J.; Mikuszeit, N.; Miranda, R.] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain. [Camarero, J.; Miranda, R.] IMDEA Nanociencia, Madrid 28049, Spain. [Sort, J.] Univ Autonoma Barcelona, ICREA, Bellaterra 08193, Spain. [Sort, J.] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain. [Nogues, J.] Ctr Invest Nanociencia & Nanotecnol ICN CSIC, Bellaterra 08193, Spain. [Nogues, J.] ICREA, Bellaterra 08193, Spain. [Garcia-Martin, J. M.] CSIC, CNM, IMM, Tres Cantos 28760, Spain. [Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dieny, B.] INAC, CEA Grenoble, CEA CNRS UJF, SPINTEC,UMR 8191, F-38054 Grenoble 9, France. RP Jimenez, E (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Cantoblanco, E-28049 Madrid, Spain. EM julio.camarero@uam.es RI Hoffmann, Axel/A-8152-2009; Garcia-Martin, Jose Miguel/H-4434-2011; Nogues, Josep/D-7791-2012; Sort, Jordi/F-6582-2014; Camarero, Julio/C-4375-2014; Microelectronica de Madrid, Instituto de/D-5173-2013 OI Camarero De Diego, Julio/0000-0003-0078-7280; Hoffmann, Axel/0000-0002-1808-2767; Garcia-Martin, Jose Miguel/0000-0002-5908-8428; Nogues, Josep/0000-0003-4616-1371; Sort, Jordi/0000-0003-1213-3639; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045 NR 46 TC 66 Z9 66 U1 0 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014415 DI 10.1103/PhysRevB.80.014415 PG 7 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100070 ER PT J AU Kacmarcik, J Marcenat, C Klein, T Pribulova, Z van der Beek, CJ Konczykowski, M Budko, SL Tillman, M Ni, N Canfield, PC AF Kacmarcik, J. Marcenat, C. Klein, T. Pribulova, Z. van der Beek, C. J. Konczykowski, M. Budko, S. L. Tillman, M. Ni, N. Canfield, P. C. TI Strongly dissimilar vortex-liquid regimes in single-crystalline NdFeAs(O,F) and (Ba,K)Fe2As2: A comparative study SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; effective mass; Landau levels; magnetisation; mixed state; neodymium compounds; phase diagrams; potassium compounds; specific heat; superconducting critical field; superconducting materials ID HIGH-TEMPERATURE SUPERCONDUCTORS; MAGNETIC-FIELD; ANISOTROPIC SUPERCONDUCTORS; II SUPERCONDUCTORS; FLUCTUATIONS; SOLIDS; FILMS AB The extent of the vortex-liquid state in underdoped single crystals of the oxypnictide superconductors NdFeAs(O,F) and (Ba,K)Fe2As2 is investigated using specific heat (C-p) and Hall-probe magnetization experiments. In both materials, the vortex liquid lies entirely in the regime where the three-dimensional lowest Landau-level (3D-LLL) approximation is valid and both systems present a very small shift in the specific heat anomaly with increasing field. The irreversibility line, defined as the onset of diamagnetic response, is very rapidly shifted toward lower temperatures in NdFeAs(O,F) but remains close to the C-p anomaly in (Ba,K)Fe2As2. These measurements strongly suggest that a vortex-liquid phase occupies a large portion of the mixed-state phase diagram of NdFeAs(O,F) but not in (Ba,K)Fe2As2. This difference can be attributed to different Ginzburg numbers Gi, the latter being about 100 times larger in NdFeAs(O,F) than in (Ba,K)Fe2As2. The angular dependence of the upper critical field, derived from 3D-LLL scaling of the irreversibility lines, presents deviations from the standard 3D effective-mass model in both materials with an anisotropy being about three times smaller in (Ba,K)Fe2As2 (gamma similar to 2.5) than in Nd(F,O)FeAs (gamma similar to 7.5). C1 [Kacmarcik, J.; Marcenat, C.] CEA, Inst Nanosci & Cryogenie, SPSMS, LATEQS, F-38054 Grenoble 9, France. [Kacmarcik, J.; Pribulova, Z.] Ctr Low Temp Phys IEP SAS, Kosice 04353, Slovakia. [Kacmarcik, J.; Pribulova, Z.] FS UPJS, Kosice 04353, Slovakia. [Klein, T.; Pribulova, Z.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Klein, T.] Inst Univ France, F-38041 Grenoble 9, France. [Klein, T.] Univ Grenoble 1, F-38041 Grenoble 9, France. [van der Beek, C. J.; Konczykowski, M.] Ecole Polytech, CNRS, UMR7642, Solides Irradies Lab, F-91128 Palaiseau, France. [van der Beek, C. J.; Konczykowski, M.] CCEA DSM IRAMIS, F-91128 Palaiseau, France. [Budko, S. L.; Tillman, M.; Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Budko, S. L.; Tillman, M.; Ni, N.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kacmarcik, J (reprint author), CEA, Inst Nanosci & Cryogenie, SPSMS, LATEQS, 17 Rue Martyrs, F-38054 Grenoble 9, France. RI Canfield, Paul/H-2698-2014 FU Department of Energy; Basic Energy Sciences [DE-AC02-07CH11358]; Slovak Research and Development Agency [LPP-0101-06]; 6th Framework Programme [MTKD-CT-2005-03002]; ANRMICROMAG [BLAN07-2]; [26280] FX We are most obliged to V. Mosser of ITRON, Montrouge, for the development of the Hall sensors used in this study. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Z. P. thanks the Slovak Research and Development Agency under the Contract No. LPP-0101-06. C. M. and J. K. thank the 6th Framework Programme MCA Transfer of Knowledge project under ExtreM No. MTKD-CT-2005-03002. T. K., Z. P., and M. K. thank the ANRMICROMAG BLAN07-2 under Contract No. 26280 for financial support. NR 42 TC 19 Z9 19 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014515 DI 10.1103/PhysRevB.80.014515 PG 7 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100106 ER PT J AU Kantor, I Dubrovinsky, L McCammon, C Steinle-Neumann, G Kantor, A Skorodumova, N Pascarelli, S Aquilanti, G AF Kantor, I. Dubrovinsky, L. McCammon, C. Steinle-Neumann, G. Kantor, A. Skorodumova, N. Pascarelli, S. Aquilanti, G. TI Short-range order and Fe clustering in Mg1-xFexO under high pressure SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; high-pressure effects; high-temperature effects; iron; iron compounds; magnesium compounds; metal clusters; Mossbauer effect; short-range order; solid solutions ID ISOMER-SHIFT; SPIN-TRANSITION; MOSSBAUER-SPECTROSCOPY; LOWER MANTLE; FERRIC-IRON; FE-57; SPECTRA; FIELD; FERROPERICLASE; TEMPERATURE AB By combining high-pressure and high-temperature Moumlssbauer spectroscopic studies of (Mg,Fe)O with results of ab initio simulations, several important properties of this material were established. Under high pressure (Mg,Fe)O shows changes in the short-range order with the tendency to form iron clusters. These changes were found to be irreversible, implying sluggish kinetics of these processes at ambient conditions. The pressure-induced spin crossover is interpreted here as a gradual noncooperative transition. The onset and width of spin crossover depends, therefore, not only on pressure, temperature, and composition, but also on short-range order in the FeO-MgO solid solution. C1 [Kantor, I.; Dubrovinsky, L.; McCammon, C.; Steinle-Neumann, G.; Kantor, A.] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Skorodumova, N.] Uppsala Univ, Condensed Matter Theory Grp, S-75105 Uppsala, Sweden. [Pascarelli, S.; Aquilanti, G.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Kantor, I (reprint author), Univ Chicago, CARS, Argonne Natl Lab, Argonne, IL 60439 USA. EM kantor@cars.uchicago.edu RI McCammon, Catherine/B-4983-2010; Steinle-Neumann, Gerd/D-8805-2012 OI McCammon, Catherine/0000-0001-5680-9106; FU German Science Foundation (DFG); European Science Foundation FX We acknowledge the German Science Foundation (DFG) and the European Science Foundation (EuroMinSci project) for financial support of this study. NR 64 TC 24 Z9 24 U1 5 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014204 DI 10.1103/PhysRevB.80.014204 PG 12 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100051 ER PT J AU Kini, RN Kent, AJ Henini, M AF Kini, R. N. Kent, A. J. Henini, M. TI Phonon-assisted tunneling in a superlattice in an applied magnetic field SO PHYSICAL REVIEW B LA English DT Article ID GAAS/GA0.65AL0.35AS SUPERLATTICES; ELECTRIC-FIELD AB We have studied acoustic phonon-assisted tunneling in a weakly coupled GaAs/AlAs superlattice (SL) in a magnetic field. At zero magnetic field, the phonon-assisted tunnel current, delta I, exhibits maximum at a particular value of the Stark splitting, Delta(max), which depends on the spectral distribution of the nonequilibrium phonons. Applying the field (B <= 7 T) perpendicular to the SL growth direction, z, had no significant effect on the phonon-assisted tunneling current compared to B=0. However, in a magnetic field parallel to z, Delta(max) is proportional to B and weakly dependent on the phonon spectrum. This behavior, which we explain in terms of the momentum selection rules for phonon-assisted transitions in a magnetically quantized electron system, suggests that phonon amplification in the SL can be tuned by the magnetic field. C1 [Kini, R. N.; Kent, A. J.; Henini, M.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. RP Kini, RN (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM rajeev.kini@nrel.gov RI Kini, Rajeev/D-2342-2009; Henini, Mohamed/E-8520-2012; OI Kini, Rajeev/0000-0002-3305-9346; Henini, Mohamed/0000-0001-9414-8492; Kent, Anthony/0000-0002-2391-6869 FU Engineering and Physical Sciences Research Council of the U. K. FX The authors would like to thank B. Glavin for helpful discussions, and the Engineering and Physical Sciences Research Council of the U. K. for supporting this work. NR 15 TC 1 Z9 2 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035335 DI 10.1103/PhysRevB.80.035335 PG 5 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800107 ER PT J AU Kogan, VG Martin, C Prozorov, R AF Kogan, V. G. Martin, C. Prozorov, R. TI Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor SO PHYSICAL REVIEW B LA English DT Article DE free energy; impurities; magnesium compounds; silicon alloys; specific heat; superconducting energy gap; superfluidity; vanadium alloys ID STATE; MGB2; IMPURITIES; MODEL; GAP AB The two gaps in a two-band clean s-wave superconductor are evaluated self-consistently within the quasiclassical Eilenberger weak-coupling formalism with two in-band and one interband pairing potentials. Superfluid density, free energy, and specific heat are given in the form amenable for fitting the experimental data. Well-known two-band MgB(2) and V(3)Si superconductors are used to test the developed approach. The pairing potentials obtained from the fit of the superfluid density data in MgB(2) crystal were used to calculate temperature-dependent specific heat C(T). The calculated C(T) compares well with the experimental data. Advantages and validity of this, which we call the "gamma model," are discussed and compared with the commonly used empirical (and not self-consistent) "alpha model." Correlation between the sign of the interband coupling and the signs of the two order parameters is discussed. Suppression of the critical temperature by the interband scattering is evaluated and shown to be severe for the interband repulsion as compared to the attraction. The data on a strong T(c) suppression in MgB(2) crystals by impurities suggest that the order parameters on two effective bands of this material may have opposite signs, i.e., may have the s(+/-) structure similar to proposals for iron-based pnictide superconductors. C1 [Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM kogan@ameslab.gov; cmartin@ameslab.gov; prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX We thank R. T. Gordon and H. Kim for help with the experiments, J. Karpinski for MgB2, and D. K. Christen for V3Si single crystals, P. C. Canfield, A. Carrington, A. V. Chubukov, S. L. Bud'ko, A. J. Legett, I. I. Mazin, J. Schmalian, M. A. Tanatar, and Z. Tesanovic for interest and discussions. Work at the Ames Laboratory is supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support of Alfred P. Sloan Foundation. NR 29 TC 80 Z9 80 U1 2 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014507 DI 10.1103/PhysRevB.80.014507 PG 8 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100098 ER PT J AU Kong, BD Paul, S Nardelli, MB Kim, KW AF Kong, B. D. Paul, S. Nardelli, M. Buongiorno Kim, K. W. TI First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene SO PHYSICAL REVIEW B LA English DT Article ID PHONONS AB Using calculations from first principles, we investigate the lattice thermal conductivity of ideal monolayer and bilayer graphenes. Our result estimates that the intrinsic thermal conductivity of both materials is around 2200 W m(-1) K-1 at 300 K, a value close to the one observed theoretically and experimentally in graphite along the basal plane. It also illustrates the expected T-1 dependence at higher temperatures. The little variation between monolayer and bilayer thermal conductivities suggests that the number of layers may not affect significantly the in-plane thermal properties of these systems. The intrinsic thermal conductivity also appears to be nearly isotropic for graphene. C1 [Kong, B. D.; Kim, K. W.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. [Paul, S.; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Nardelli, M. Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Kong, BD (reprint author), N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. EM kwk@ncsu.edu RI Buongiorno Nardelli, Marco/C-9089-2009; KONG, BYOUNG DON/A-2186-2012 OI KONG, BYOUNG DON/0000-0003-4072-4399 FU NERC/NIST SWAN-NRI; DARPA/HRL CERA; U. S. Department of Energy [DE-AC0500OR22725] FX This work was supported, in part, by the NERC/NIST SWAN-NRI and the DARPA/HRL CERA programs. M. B. N. wishes to acknowledge partial support from the Office of Basic Energy Sciences, U. S. Department of Energy at Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with UT-Battelle, LLC. NR 20 TC 89 Z9 90 U1 8 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 033406 DI 10.1103/PhysRevB.80.033406 PG 4 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800027 ER PT J AU Lazarevic, N Popovic, ZV Hu, RW Petrovic, C AF Lazarevic, N. Popovic, Z. V. Hu, Rongwei Petrovic, C. TI Raman scattering study of the Fe1-xCoxSb2 and Fe1-xCrxSb2 (0 < x < 1) single crystals SO PHYSICAL REVIEW B LA English DT Article DE chromium compounds; cobalt compounds; iron compounds; Raman spectra; semiconductor doping; space groups; X-ray diffraction ID FESB2; GAP AB Polarized Raman scattering spectra of the Fe1-xCoxSb2 and Fe1-xCrxSb2 (0 < x < 1) single crystals are measured at room temperature in the 80-200 cm(-1) wavenumber range. All six Raman-active modes, predicted by factor-group analysis, are experimentally observed and assigned. We also analyzed energy and linewidth changes for all six Raman-active modes caused by doping. C1 [Lazarevic, N.; Popovic, Z. V.] Inst Phys, Ctr Solid State Phys & New Mat, Belgrade 11080, Serbia. [Hu, Rongwei; Petrovic, C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Hu, Rongwei] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Lazarevic, N (reprint author), Inst Phys, Ctr Solid State Phys & New Mat, Pregrevica 118, Belgrade 11080, Serbia. RI Lazarevic, Nenad/C-3254-2012; Hu, Rongwei/E-7128-2012; Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU Serbian Ministry of Science and Technological Development [141047]; U. S. Department of Energy by Brookhaven Science Associates [DE-Ac02-98CH10886] FX We thank Myron Strongin for help with the paper. This work was supported by the Serbian Ministry of Science and Technological Development under Project No. 141047. Part of this work was carried out at the Brookhaven National Laboratory which is operated for the Office of Basic Energy Sciences, U. S. Department of Energy by Brookhaven Science Associates (Grant No. DE-Ac02-98CH10886). NR 16 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014302 DI 10.1103/PhysRevB.80.014302 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100053 ER PT J AU Lee, H Park, E Park, T Sidorov, VA Ronning, F Bauer, ED Thompson, JD AF Lee, Hanoh Park, Eunsung Park, Tuson Sidorov, V. A. Ronning, F. Bauer, E. D. Thompson, J. D. TI Pressure-induced superconducting state of antiferromagnetic CaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; calcium compounds; electrical resistivity; fluctuations in superconductors; iron compounds; magnetic susceptibility; type II superconductors ID LAYERED QUATERNARY COMPOUND AB The antiferromagnet CaFe2As2 does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibility under quasihydrostatic pressure, however, we find that a substantial volume fraction of the sample is superconducting in a narrow pressure range where collapsed tetragonal and orthorhombic structures coexist. At higher pressures, the collapsed tetragonal structure is stabilized with the boundary between this structure and the phase of coexisting structures strongly dependent on pressure history. Fluctuations in magnetic degrees of freedom in the phase of coexisting structures appear to be important for superconductivity. C1 [Lee, Hanoh; Park, Tuson; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, Eunsung; Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Sidorov, V. A.] Vereshchagin Inst High Pressure Phys, Troitsk 142190, Russia. RP Lee, H (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; Mushiake, Maki/A-2925-2012; OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy/Office of Science; Los Alamos LDRD program; KOSEF [2009-0058687]; Korea government (MEST); Russian Foundation for Basic Research [09-02-00336] FX Work at Los Alamos was performed under the auspices of the U.S. Department of Energy/Office of Science and supported by the Los Alamos LDRD program. T. P. acknowledges support from KOSEF (Grant No. 2009-0058687) funded by the Korea government (MEST). V. A. S. acknowledges support from the Russian Foundation for Basic Research (Grant No. 09-02-00336). NR 43 TC 47 Z9 47 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024519 DI 10.1103/PhysRevB.80.024519 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500098 ER PT J AU Li, SL de la Cruz, C Huang, Q Chen, GF Xia, TL Luo, JL Wang, NL Dai, PC AF Li, Shiliang de la Cruz, Clarina Huang, Q. Chen, G. F. Xia, T. -L. Luo, J. L. Wang, N. L. Dai, Pengcheng TI Structural and magnetic phase transitions in Na1-delta FeAs SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; crystal structure; crystal symmetry; exchange interactions (electron); high-temperature superconductors; iron compounds; magnetic structure; neutron diffraction; sodium compounds; solid-state phase transformations ID SUPERCONDUCTIVITY; LIFEAS AB We use neutron scattering to study the spin and lattice structures of single crystal and powder samples of Na1-delta FeAs (T-c=23 K). Upon cooling from room temperature, the system goes through a series of phase transitions: first changing the crystal symmetry from tetragonal to orthorhombic at 49 K, then ordering antiferromagnetically with a spin structure similar to that of LaFeAsO and a small moment (0.09 +/- 0.04 mu(B)), and finally becoming superconducting below about 23 K. These results confirm that antiferromagnetic order is ubiquitous for the parent compounds of the iron arsenide superconductors and suggest that the separated structural and magnetic phase-transition temperatures are due to the reduction in the c-axis exchange coupling of the system. C1 [Li, Shiliang; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Li, Shiliang; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Li, Shiliang; de la Cruz, Clarina; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [de la Cruz, Clarina; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Huang, Q.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, G. F.; Xia, T. -L.] Remin Univ China, Dept Phys, Beijing 100872, Peoples R China. RP Li, SL (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100190, Peoples R China. EM slli@aphy.iphy.ac.cn; daip@ornl.gov RI Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012; dela Cruz, Clarina/C-2747-2013; Xia, Tian-Long/N-4467-2016 OI Dai, Pengcheng /0000-0002-6088-3170; dela Cruz, Clarina/0000-0003-4233-2145; FU U.S. NSF [DMR-0756568]; U.S. DOE BES [DE-FG02-05ER46202] FX We thank Jiangping Hu, J. A. Fernandez-Baca, Tao Xiang, and Zhong-Yi Lu for helpful discussions. This work is supported by the U.S. NSF (Contract No. DMR-0756568), by the U.S. DOE BES (Contract No. DE-FG02-05ER46202), and by the U. S. DOE, Division of Scientific User Facilities. The work in IOP is supported by the CAS and MOST. NR 26 TC 111 Z9 111 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020504 DI 10.1103/PhysRevB.80.020504 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500016 ER PT J AU Lin, H Bozin, ES Billinge, SJL Androulakis, J Malliakas, CD Lin, CH Kanatzidis, MG AF Lin, He Bozin, E. S. Billinge, S. J. L. Androulakis, J. Malliakas, C. D. Lin, C. H. Kanatzidis, M. G. TI Phase separation and nanostructuring in the thermoelectric material PbTe1-xSx studied using the atomic pair distribution function technique SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; PROFILE REFINEMENT; RIETVELD METHOD; PBTE; TEMPERATURE; TELLURIUM; SULPHUR; SPACE; PBS AB The average and local structures of the (PbTe)(1-x)(PbS)(x) system of thermoelectric materials has been studied using the Rietveld and atomic pair distribution function methods. Samples with 0.25 <= x are macroscopically phase separated. Phase separation was suppressed in a quenched x = 0.5 sample which, nonetheless, exhibited a partial spinodal decomposition. The promising thermoelectric material with x = 0.16 showed intermediate behavior. Combining TEM and bulk scattering data suggests that the sample is a mixture of PbTe-rich material and a partially spinodally decomposed phase similar to the quenched 50% sample. This confirms that, in the bulk, this sample is inhomogeneous on a nanometer length scale, which may account for its enhanced thermoelectric figure of merit. C1 [Lin, He] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Bozin, E. S.; Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Bozin, E. S.; Billinge, S. J. L.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Androulakis, J.; Malliakas, C. D.; Lin, C. H.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Lin, H (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM sb2896@columbia.edu RI Bozin, Emil/E-4679-2011 FU National Science Foundation (NSF) [DMR-0304391, DMR-0703940]; Office of Naval Research; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357, W-7405-Eng-82] FX We acknowledge Pavol Juhas, Ahmad Masadeh, Hyun-Jeong Kim, and Asel Sartbaeva for their valuable assistance with the data collection. Work in the Billinge group was supported in part by National Science Foundation (NSF) under Grants No. DMR-0304391 and No. DMR-0703940 and in the Kanatzidis group by the Office of Naval Research. Data were collected at the 6IDD beamline in the Midwest Universities Collaborative Access Team (MUCAT) sector at the APS. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. The MUCAT sector at the APS is supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, through the Ames Laboratory under Contract No. W-7405-Eng-82. NR 36 TC 12 Z9 12 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045204 DI 10.1103/PhysRevB.80.045204 PG 8 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100052 ER PT J AU Lin, WC Gai, Z Gao, L Shen, J Hsu, PJ Yen, HY Lin, MT AF Lin, Wen-Chin Gai, Zheng Gao, Lan Shen, Jian Hsu, Pin-Jui Yen, Hong-Yu Lin, Minn-Tsong TI Nanoscale magnetic configurations of supported Fe nanoparticle assemblies studied by scanning electron microscopy with spin analysis SO PHYSICAL REVIEW B LA English DT Article DE iron; magnetic domains; magnetic particles; magnetic thin films; nanoparticles; scanning electron microscopy ID THIN ALUMINA FILM; FORCE MICROSCOPY; ARRAYS; CO AB Microscopic magnetic behavior of supported nanoparticles is strongly correlated with their functionalities, especially in data storage and biological applications, but still needs to be clarified. We studied nanoscale magnetic configurations of Fe nanoparticle assemblies using scanning electron microscopy with polarization analysis. The flux closure domain configurations and the reduced magnetic correlation length (similar to 250 nm), relative to the conventional thin films, are determined. Quantitative analysis indicates the magnetic interaction energy to be 80-99 meV, close to the magnetic dipolar coupling energy. These direct observations evidence the aforereported simulations and will be valuable for fabricating magnetic nanoparticle assemblies with the desired magnetic properties. C1 [Lin, Wen-Chin] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. [Lin, Wen-Chin; Hsu, Pin-Jui; Yen, Hong-Yu; Lin, Minn-Tsong] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Gai, Zheng; Gao, Lan; Shen, Jian] Oak Ridge Natl Lab, Ctr Nanophase, Div Mat Sci, Oak Ridge, TN 37831 USA. [Gai, Zheng; Gao, Lan; Shen, Jian] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, Minn-Tsong] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. RP Lin, WC (reprint author), Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. EM wclin@ntnu.edu.tw; mtlin@phys.ntu.edu.tw RI Lin, Minn-Tsong/F-7937-2012; Lin, Wen-Chin/I-3912-2012; Gai, Zheng/B-5327-2012 OI Lin, Minn-Tsong/0000-0001-7735-4219; Gai, Zheng/0000-0002-6099-4559 FU National Science Council of Taiwan [NSC 96-2120-M-002-011, NSC 95-2112-M-002-051-MY3, NSC 96-2112-M-003-015-MY3]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the National Science Council of Taiwan under Grants No. NSC 96-2120-M-002-011, No. NSC 95-2112-M-002-051-MY3, and No. NSC 96-2112-M-003-015-MY3. A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 24 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024407 DI 10.1103/PhysRevB.80.024407 PG 5 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500058 ER PT J AU Ma, D Stoica, AD Wang, XL Lu, ZP Xu, M Kramer, M AF Ma, D. Stoica, A. D. Wang, X-L. Lu, Z. P. Xu, M. Kramer, M. TI Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability SO PHYSICAL REVIEW B LA English DT Article DE copper alloys; glass structure; metallic glasses; neutron diffraction; vitrification; X-ray diffraction; zirconium alloys ID PAIR DISTRIBUTION FUNCTION; MEDIUM-RANGE ORDER; X-RAY-DIFFRACTION; CU-ZR SYSTEM; MECHANICAL-PROPERTIES; NEUTRON-DIFFRACTION; SI ALLOYS; LIQUID; MODEL AB We have probed local atomic structure of Zr-Cu metallic glasses using time-of-flight neutron and synchrotron x-ray diffraction techniques with high resolution. Our results provide evidence for a scheme of efficient local atomic packing where atomic clusters encompass multiple types of atoms in the first coordination shell. We also demonstrate experimental evidence of a strong correlation between the number of unlike atom bonds and the glass-forming ability. Our findings may provide insights into a broad range of scientific problems where efficient space filling by packing spheres is essential. C1 [Ma, D.; Stoica, A. D.; Wang, X-L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Xu, M.; Kramer, M.] Ames Lab, Ames, IA 50011 USA. RP Ma, D (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM dongma@ornl.gov RI Wang, Xun-Li/C-9636-2010; Ma, Dong/G-5198-2011; Lu, Zhao-Ping/A-2718-2009; Stoica, Alexandru/K-3614-2013 OI Wang, Xun-Li/0000-0003-4060-8777; Ma, Dong/0000-0003-3154-2454; Stoica, Alexandru/0000-0001-5118-0134 FU U.S. Department of Energy [DE-AC0500OR22725]; National Natural Science Foundation of China [50725104]; 973 program [2007CB613903]; Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC0206CH11357] FX This research was supported by the Laboratory Directed Research and Development program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC0500OR22725. Z.P.L. acknowledges the financial support from National Natural Science Foundation of China under Grant No. 50725104 and the 973 program under Contract No. 2007CB613903. Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. The high-energy x ray work at the MUCAT sector of the APS was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC0206CH11357. NR 37 TC 44 Z9 46 U1 3 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014202 DI 10.1103/PhysRevB.80.014202 PG 6 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100049 ER PT J AU Martin, C Gordon, RT Tanatar, MA Kim, H Ni, N Bud'ko, SL Canfield, PC Luo, H Wen, HH Wang, Z Vorontsov, AB Kogan, VG Prozorov, R AF Martin, C. Gordon, R. T. Tanatar, M. A. Kim, H. Ni, N. Bud'ko, S. L. Canfield, P. C. Luo, H. Wen, H. H. Wang, Z. Vorontsov, A. B. Kogan, V. G. Prozorov, R. TI Nonexponential London penetration depth of external magnetic fields in superconducting Ba1-xKxFe2As2 single crystals SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; high-temperature superconductors; magnetic anisotropy; penetration depth (superconductivity); potassium compounds; superconducting critical field ID GAPS AB We have studied the in- and out-of-plane magnetic penetration depths in the hole-doped iron-based superconductor Ba1-xKxFe2As2 (T-c approximate to 30 K). Single crystals grown from different fluxes and by different groups showed nearly identical results. The in-plane London penetration depth lambda(ab) is not exponentially saturating at low temperature, as would be expected from a fully gapped superconductor. Instead, lambda(ab)(T) shows a power-law behavior, lambda proportional to T-n (n approximate to 2), down to T approximate to 0.02T(c), similar to the electron-doped Ba(Fe1-xCox)(2)As-2. The penetration depth anisotropy gamma(lambda)=lambda(c)(T)/lambda(ab)(T) increases upon cooling, opposite to the trend observed in the anisotropy of the upper critical field, gamma(xi)=H-c2(perpendicular to c)(0)/H-c2(c)(0). These are universal characteristics of both the electron- and hole-doped 122 systems, suggesting unconventional multigap superconductivity. The behavior of the in-plane superfluid density rho(ab)(T) is discussed in light of existing theoretical models proposed for the iron pnictide superconductors. C1 [Martin, C.; Gordon, R. T.; Tanatar, M. A.; Kim, H.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Kogan, V. G.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Martin, C.; Gordon, R. T.; Tanatar, M. A.; Kim, H.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Kogan, V. G.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Luo, H.; Wen, H. H.; Wang, Z.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Vorontsov, A. B.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Luo, Huiqian/F-4049-2012; Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014; Wang, Zhaosheng/G-5162-2016 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy, Basic Energy Sciences [DE-AC0207CH11358] FX We thank A. Chubukov, I. I. Mazin, J. Schmallian, and M. Vavilov for stimulating discussions and A. Carrington for discussions and sharing unpublished data. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC0207CH11358. M.A.T. acknowledges continuing cross appointment with the Institute of Surface Chemistry, National Ukrainian Academy of Sciences. NR 33 TC 72 Z9 72 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020501 DI 10.1103/PhysRevB.80.020501 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500013 ER PT J AU Meier, H Kharitonov, MY Efetov, KB AF Meier, Hendrik Kharitonov, Maxim Yu. Efetov, Konstantin B. TI Anomalous Hall effect in granular ferromagnetic metals and effects of weak localization SO PHYSICAL REVIEW B LA English DT Article ID BERRY-PHASE; CONDUCTIVITY; ABSENCE AB We theoretically investigate the anomalous Hall effect in a system of dense-packed ferromagnetic grains in the metallic regime. Using the formalism recently developed for the conventional Hall effect in granular metals, we calculate the residual anomalous Hall conductivity sigma(xy) and resistivity rho(xy) and weak localization corrections to them for both skew-scattering and side-jump mechanisms. We find that the scaling relation between rho(xy) and the longitudinal resistivity rho(xx) of the array does not hold, regardless of whether it is satisfied for the specific resistivities of the grain material or not. The weak localization corrections, however, are found to be in agreement with those for homogeneous metals. We discuss recent experimental data on the anomalous Hall effect in polycrystalline iron films in view of the obtained results. C1 [Meier, Hendrik; Kharitonov, Maxim Yu.; Efetov, Konstantin B.] Ruhr Univ Bochum, Inst Theoret Phys 3, D-44780 Bochum, Germany. [Kharitonov, Maxim Yu.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Meier, H (reprint author), Ruhr Univ Bochum, Inst Theoret Phys 3, D-44780 Bochum, Germany. RI Efetov, Konstantin/H-8852-2013 FU SFB FX Financial support of SFB Transregio 12 is greatly appreciated. NR 30 TC 12 Z9 12 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045122 DI 10.1103/PhysRevB.80.045122 PG 10 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100046 ER PT J AU Mlinar, V Zunger, A AF Mlinar, Vladan Zunger, Alex TI Spectral barcoding of quantum dots: Deciphering structural motifs from the excitonic spectra SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; NANOSTRUCTURES; SPECTROSCOPY; ENERGY AB Self-assembled semiconductor quantum dots (QDs) show in high-resolution single-dot spectra a multitude of sharp lines, resembling a barcode, due to various neutral and charged exciton complexes. Here we propose the "spectral barcoding" method that deciphers structural motifs of dots by using such barcode as input to an artificial-intelligence learning system. Thus, we invert the common practice of deducing spectra from structure by deducing structure from spectra. This approach (i) lays the foundation for building a much needed structure-spectra understanding for large nanostructures and (ii) can guide future design of desired optical features of QDs by controlling during growth only those structural motifs that decide given optical features. C1 [Mlinar, Vladan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Zunger, Alex/A-6733-2013 FU U.S. Department of Energy, Office of Science [DE-AC36-08GO28308] FX The authors thank P. A. Dalgarno and R. J. Warburton for their permission to reproduce measured emission spectra in Fig. 1(a) and R. J. Warburton for discussions and comments on the paper. This work was funded by the U.S. Department of Energy, Office of Science under NREL Contract No. DE-AC36-08GO28308. NR 34 TC 13 Z9 13 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035328 DI 10.1103/PhysRevB.80.035328 PG 7 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800100 ER PT J AU Muniz, RA Haas, S Levi, AFJ Grigorenko, I AF Muniz, Rodrigo A. Haas, Stephan Levi, A. F. J. Grigorenko, Ilya TI Plasmonic excitations in tight-binding nanostructures SO PHYSICAL REVIEW B LA English DT Article ID SMALL METALLIC PARTICLES AB We explore the collective electromagnetic response in atomic clusters of various sizes and geometries. Our aim is to understand, and hence to control, their dielectric response based on a fully quantum-mechanical description which captures accurately their relevant collective modes. The electronic energy levels and wave functions, calculated within the tight-binding model, are used to determine the nonlocal dielectric response function. It is found that the system shape, the electron filling, and the driving frequency of the external electric field strongly control the resonance properties of the collective excitations in the frequency and spatial domains. Furthermore, it is shown that one can design spatially localized collective excitations by properly tailoring the nanostructure geometry. C1 [Muniz, Rodrigo A.; Haas, Stephan] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Levi, A. F. J.] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA. [Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Theoret Div T11, Los Alamos, NM 87545 USA. [Grigorenko, Ilya] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Muniz, RA (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. EM rmuniz@usc.edu RI Grigorenko, Ilya/B-5616-2009; Levi, Anthony/B-4112-2009 FU Department of Energy [DE-FG0206ER46319] FX We would like to thank Gene Bickers, Richard Thompson, Vitaly Kresin, Aiichiro Nakano, and Yung-Ching Liang for useful conversations. We also acknowledge financial support by the Department of Energy (Grant No. DE-FG0206ER46319). The numerical computations were carried out on the University of Southern California high- performance computer cluster. NR 25 TC 10 Z9 11 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045413 DI 10.1103/PhysRevB.80.045413 PG 6 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100099 ER PT J AU Nagle, KP Seidler, GT Shirley, EL Fister, TT Bradley, JA Brown, FC AF Nagle, K. P. Seidler, G. T. Shirley, E. L. Fister, T. T. Bradley, J. A. Brown, F. C. TI Final-state symmetry of Na 1s core-shell excitons in NaCl and NaF SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-ABSORPTION; ELECTRON-HOLE INTERACTION; AB-INITIO CALCULATION; FAST CHARGED-PARTICLES; RAMAN-SCATTERING; PHOTOELECTRON-SPECTROSCOPY; OPTICAL-ABSORPTION; SODIUM-HALIDES; INELASTIC-COLLISIONS; BONDING CHANGES AB We report measurements of the Na 1s contribution to the nonresonant inelastic x-ray scattering (NRIXS) from NaCl and NaF. Prior x-ray absorption studies have observed two pre-edge excitons in both materials. The momentum-transfer dependence (q dependence) of the measured NRIXS cross section and of real-space full multiple scattering and Bethe-Salpeter calculations determine that the higher-energy core excitons are s type for each material. The lower-energy core excitons contribute at most weakly to the NRIXS signal and we propose that these may be surface core excitons, as have been observed in several other alkali halides. The analysis of the orbital angular momentum of these features leads to a discussion of the limited sensitivity of NRIXS measurements to d-type final states when investigating 1s initial states. In this case the s- and p-type final density of states can be characterized by measurements at a small number of momentum transfers. This is in contrast to the case of more complex initial states for which measurements at a large number of momentum transfers are needed to separate the rich admixture of accessible and contributing final-state symmetries. C1 [Nagle, K. P.; Seidler, G. T.; Fister, T. T.; Bradley, J. A.; Brown, F. C.] Univ Washington, Dept Phys, Seattle, WA 98105 USA. [Shirley, E. L.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. [Fister, T. T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA. EM seidler@phys.washington.edu FU U.S. Department of Energy, Basic Energy Sciences [DE-FGE03-97ER45628, W-31-109ENG-38, N0001405-1-0843, DE-FG03-97ER45629, DE-AC02-06CH11357]; Pacific Northwest National Laboratory; University of Washington; Natural Sciences and Engineering Research Council of Canada FX This research was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contracts No. DE-FGE03-97ER45628 and No. W-31-109ENG-38, Office of Naval Research under Grant No. N0001405-1-0843, and the Summer Research Institute program at the Pacific Northwest National Laboratory. The operation of Sector 20 PNC-CAT/XOR is supported by the U. S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-FG03-97ER45629, the University of Washington, and grants from the Natural Sciences and Engineering Research Council of Canada. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. We thank Arvo Kikas, Micah Prange, Joshua Kas, and John Rehr for useful discussions. NR 100 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045105 DI 10.1103/PhysRevB.80.045105 PG 9 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100029 ER PT J AU Ni, N Thaler, A Kracher, A Yan, JQ Bud'ko, SL Canfield, PC AF Ni, N. Thaler, A. Kracher, A. Yan, J. Q. Bud'ko, S. L. Canfield, P. C. TI Phase diagrams of Ba(Fe1-xMx)(2)As-2 single crystals (M=Rh and Pd) SO PHYSICAL REVIEW B LA English DT Article DE barium alloys; crystal structure; doping; electrical resistivity; iron alloys; magnetic transitions; magnetisation; palladium alloys; phase diagrams; rhodium alloys; superconducting materials; superconducting transition temperature; thermodynamics ID SUPERCONDUCTIVITY AB Single crystalline Ba(Fe1-xMx)(2)As-2 (M=Rh,Pd) series have been grown and characterized by structural, thermodynamic, and transport measurements. These measurements show that the structural/magnetic phase transitions, found in pure BaFe2As2 at 134 K, are suppressed monotonically by the doping and that superconductivity can be stabilized over a domelike region. Temperature-composition (T-x) phase diagrams based on electrical transport and magnetization measurements are constructed and compared to those of the Ba(Fe1-xMx)(2)As-2 (M=Co,Ni) series. Despite the generic difference between 3d and 4d shells and the specific, conspicuous differences in the changes to the unit cell parameters, the effects of Rh doping are exceptionally similar to the effects of Co doping and the effects of Pd doping are exceptionally similar to the effects of Ni doping. These data show that whereas the structural/antiferromagnetic phase-transition temperatures can be parameterized by x and the superconducting transition temperature can be parameterized by some combination of x and e, the number of extra electrons associated with the M doping, the transition temperatures of 3d- and 4d-doped BaFe2As2 cannot be simply parameterized by the changes in the unit-cell dimensions or their ratios. C1 [Ni, N.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Ni, N (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358.We would like to thank M. Tanatar, C. Martin, E. Colombier, E. D. Mun, M. E. Tillman, S. Kim, and X. Lin for help and useful discussions. NR 25 TC 120 Z9 122 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024511 DI 10.1103/PhysRevB.80.024511 PG 7 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500090 ER PT J AU Pantea, C Stroe, I Ledbetter, H Betts, JB Zhao, Y Daemen, LL Cynn, H Migliori, A AF Pantea, C. Stroe, I. Ledbetter, H. Betts, J. B. Zhao, Y. Daemen, L. L. Cynn, H. Migliori, A. TI Elastic constants of osmium between 5 and 300 K SO PHYSICAL REVIEW B LA English DT Article DE Debye temperature; elastic constants; Gruneisen coefficient; hardness; osmium; Poisson ratio ID TEMPERATURE-DEPENDENCE; BULK-MODULUS; ULTRASOUND; CRYSTALS; HARD AB Using two measurement methods, pulse-echo ultrasound and resonance ultrasound spectroscopy, we measured the elastic constants of both monocrystal and polycrystal osmium between 5 and 300 K. Our measurements help to resolve the current measurement-and-theory controversy concerning whether osmium's bulk modulus exceeds diamond's. It does not at any temperature (for osmium, we find a zero-temperature bulk modulus of 410 GPa and a 300 K value of 405 GPa, while diamond's value being 442 GPa). From the zero-temperature elastic constants, we extract a Debye temperature of 477 K. From Gruumlneisen's first rule, we extract a Gruumlneisen parameter of 2.1, agreeing well with handbook values. Osmium shows near elastic anisotropy and small elastic constant changes with temperature (for example, the bulk modulus increases only about 1.2% upon cooling through the studied temperature interval). In all cases, the C(ij)(T) measurements agree well with an Einstein-oscillator model. We consider especially the Poisson ratio, which is low and anisotropic (nu(12)=0.242, nu(13)=0.196) and suggests some covalent interatomic bonding, which may account for osmium's extreme high hardness and the departure of the 5d elements from Friedel's parabolic bulk-modulus/atomic-number model. C1 [Pantea, C.; Stroe, I.; Betts, J. B.; Zhao, Y.; Daemen, L. L.; Migliori, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ledbetter, H.] Univ Colorado, Boulder, CO 80309 USA. [Cynn, H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Pantea, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Pantea, Cristian/D-4108-2009; Stroe, Izabela/B-3790-2010; Lujan Center, LANL/G-4896-2012; OI Pantea, Cristian/0000-0002-0805-8923 NR 39 TC 18 Z9 18 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024112 DI 10.1103/PhysRevB.80.024112 PG 10 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500030 ER PT J AU Parshall, D Lokshin, KA Niedziela, J Christianson, AD Lumsden, MD Mook, HA Nagler, SE McGuire, MA Stone, MB Abernathy, DL Sefat, AS Sales, BC Mandrus, DG Egami, T AF Parshall, D. Lokshin, K. A. Niedziela, Jennifer Christianson, A. D. Lumsden, M. D. Mook, H. A. Nagler, S. E. McGuire, M. A. Stone, M. B. Abernathy, D. L. Sefat, A. S. Sales, B. C. Mandrus, D. G. Egami, T. TI Spin excitations in BaFe1.84Co0.16As2 superconductor observed by inelastic neutron scattering SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; Fermi surface; iron compounds; neutron diffraction; spin density waves; superconducting materials AB Superconductivity appears to compete against the spin-density wave in Fe pnictides. However, optimally cobalt-doped samples show a quasi-two-dimensional spin excitation centered at the (0.5, 0.5, L) wave vector, "the spin-resonance peak," which is strongly tied to the onset of superconductivity. By inelastic neutron scattering on single crystals we show the similarities and differences of the spin excitations in BaFe1.84Co0.16As2 with respect to the spin excitations in the high-temperature superconducting cuprates. As in the cuprates, the resonance occurs as an enhancement to a part of the spin-excitation spectrum, which extends to higher-energy transfer and higher temperature. However, unlike in the cuprates, the resonance peak in this compound is asymmetric in energy. C1 [Parshall, D.; Niedziela, Jennifer; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lokshin, K. A.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Niedziela, Jennifer; Christianson, A. D.; Lumsden, M. D.; Mook, H. A.; Nagler, S. E.; McGuire, M. A.; Stone, M. B.; Abernathy, D. L.; Sefat, A. S.; Sales, B. C.; Mandrus, D. G.; Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parshall, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI McGuire, Michael/B-5453-2009; Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; Mandrus, David/H-3090-2014; christianson, andrew/A-3277-2016; BL18, ARCS/A-3000-2012; Sefat, Athena/R-5457-2016; Lumsden, Mark/F-5366-2012 OI McGuire, Michael/0000-0003-1762-9406; Nagler, Stephen/0000-0002-7234-2339; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; christianson, andrew/0000-0003-3369-5884; Sefat, Athena/0000-0002-5596-3504; Lumsden, Mark/0000-0002-5472-9660 FU Department of Energy EPSCoR Implementation [DE-FG02-08ER46528]; Scientific User Facilities Division; Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy FX The authors are grateful to D. J. Singh, I. I. Mazin, T. Yildirim, N. Mannella, and D. J. Scalapino for stimulating and useful discussions. The work at the University of Tennessee was supported by the Department of Energy EPSCoR Implementation Grant No. DE-FG02-08ER46528. The work at the Oak Ridge National Laboratory was supported by the Scientific User Facilities Division and by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy. The ARCS data analysis was performed using the MSLICE program. NR 24 TC 12 Z9 12 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 012502 DI 10.1103/PhysRevB.80.012502 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100017 ER PT J AU Patel, U Xiao, ZL Gurevich, A Avci, S Hua, J Divan, R Welp, U Kwok, WK AF Patel, U. Xiao, Z. L. Gurevich, A. Avci, S. Hua, J. Divan, R. Welp, U. Kwok, W. K. TI Magnetoresistance oscillations in superconducting granular niobium nitride nanowires SO PHYSICAL REVIEW B LA English DT Article DE annealing; coherence length; granular materials; granular structure; magnetoresistance; nanotechnology; nanowires; niobium compounds; superconducting materials; superconducting transition temperature ID ONE-DIMENSIONAL SUPERCONDUCTOR; VORTEX LATTICE; THIN-FILMS; FIELD; TRANSITION; WIRES AB We report on magnetoresistance oscillations in superconducting NbN(x) nanowires synthesized through ammonia gas annealing of NbSe(3) precursor nanostructures. Even though the transverse dimensions of the nanowires are much larger than the superconducting coherence length, the voltage-current characteristics of these nanowires at low temperatures are reminiscent of one-dimensional superconductors where quantum phase slips are associated with the origin of dissipation. We show that both the magnetoresistance oscillations and voltage-current characteristics observed in this work result from the granular structure of our nanowires. C1 [Patel, U.; Xiao, Z. L.; Avci, S.; Hua, J.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Patel, U.; Xiao, Z. L.; Hua, J.; Welp, U.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gurevich, A.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Xiao, ZL (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM xiao@anl.gov RI Gurevich, Alex/A-4327-2008; Patel, Umeshkumar/A-8643-2013 OI Gurevich, Alex/0000-0003-0759-8941; Patel, Umeshkumar/0000-0002-8259-1646 FU U. S. Department of Energy [DE-FG02-06ER46334, DE-AC02-06CH11357]; National Science Foundation (NSF) [DMR-0605748] FX This material is based upon work supported by the U. S. Department of Energy under Grant No. DE-FG02-06ER46334 and under Contract No. DE-AC02-06CH11357. S. A. was supported by the National Science Foundation (NSF) under Grant No. DMR-0605748. The nanocontacting and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) and Electron Microscopy Center (EMC), respectively. NR 30 TC 13 Z9 13 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 012504 DI 10.1103/PhysRevB.80.012504 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100019 ER PT J AU Petit, L Svane, A Szotek, Z Temmerman, WM Stocks, GM AF Petit, L. Svane, A. Szotek, Z. Temmerman, W. M. Stocks, G. M. TI Ground-state electronic structure of actinide monocarbides and mononitrides SO PHYSICAL REVIEW B LA English DT Article ID SPIN-DENSITY APPROXIMATION; NACL-TYPE COMPOUNDS; MEAN-FIELD THEORY; URANIUM NITRIDE; CORRELATED ELECTRONS; LIGHT ACTINIDES; FERMI-SURFACE; 5F ELECTRONS; UN; UC AB The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U, Np, Pu, Am, Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f(7)), CmN (f(7)), and AmN (f(6)). The observed sudden increase in lattice parameter from PuN to AmN is found to be related to the localization transition. The calculated valence electron densities of states are in good agreement with photoemission data. C1 [Petit, L.; Svane, A.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Szotek, Z.; Temmerman, W. M.] SERC, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Stocks, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Petit, L (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM lpetit@phys.au.dk RI Petit, Leon/B-5255-2008; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Petit, Leon/0000-0001-6489-9922 FU Danish Center for Scientific Computing (DCSC); National Energy Research Scientific Computing Center (NERSC); U.S. Department of Energy FX This research used resources of the Danish Center for Scientific Computing (DCSC) and of the National Energy Research Scientific Computing Center (NERSC). Research supported in part (GMS) by the Division of Materials Science and Engineering, Office of Basic Energy Science, U.S. Department of Energy. NR 53 TC 40 Z9 40 U1 0 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045124 DI 10.1103/PhysRevB.80.045124 PG 8 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100048 ER PT J AU Popescu, V Bester, G Zunger, A AF Popescu, Voicu Bester, Gabriel Zunger, Alex TI Coexistence and coupling of zero-dimensional, two-dimensional, and continuum resonances in nanostructures SO PHYSICAL REVIEW B LA English DT Article ID INAS/GAAS QUANTUM DOTS; ELECTRONIC-STRUCTURE; INFRARED PHOTODETECTORS; STATES; TRANSITIONS; ENERGY; GAAS; SEMICONDUCTORS; SPECTROSCOPY; CRYSTALS AB Quantum dots (QDs) embedded in a matrix exhibit a coexistence of "zero-dimensional" (0D) bound electron and hole states on the dot with "three-dimensional" (3D) continuum states of the surrounding matrix. In epitaxial QDs one encounters also "two-dimensional" (2D) states of a quantum well-like supporting structure (wetting layer). This coexistence of 0D, 2D, and 3D states leads to interesting electronic consequences explored here using multiband atomistic pseudopotential calculations. We distinguish strained dots) InAs in GaAs (and strain-free dots) InAs in GaSb (finding crucial differences: in the former case "potential wings" appear in the electron confining potential in the vicinity of the dot. This results in the appearance of localized electronic states that lie above the threshold of the 3D continuum. Such resonances are "strain-induced localized states") SILSs (appearing in strained systems, whereas in strain-free systems the dot resonances in the continuum are the usual "virtual bound states" (VBSs). The SILSs were found to occur regardless of the thickness of the wetting layer and even in interdiffused dots, provided that the interdiffusion length is small compared to the QD size. Thus, the SILSs are well isolated from the environment by the protective potential wings, whereas the VBSs are strongly interacting. These features are seen in our calculated intraband as well as interband absorption spectra. Furthermore, we show that the local barrier created around the dot by these potential wings suppresses the 0D-2D (dot-wetting layer) hybridization of the electron states. Consequently, in contrast to findings of simple model calculations of envelope function, 0D-to-2D "crossed transitions" (bound hole-to-wetting layer electron) are practically absent because of their spatially indirect character. On the other hand, since no such barrier exists in the hole confining potential, a strong 0D-2D hybridization is present for the hole states. We show this to be the source for the strong 2D-to-0D crossed transitions determined experimentally. C1 [Popescu, Voicu; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bester, Gabriel] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Zunger, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Popescu, Voicu/A-9130-2010; Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013 OI Bester, Gabriel/0000-0003-2304-0817; FU U. S. Department of Energy; Office of Basic Energy Science,; Materials Science and Engineering Division [DE-AC36-08GO28308] FX This work was funded by the U. S. Department of Energy, Office of Basic Energy Science, Materials Science and Engineering Division under Contract No. DE-AC36-08GO28308 to NREL. G. B. would like to thank Robson Ferreira for fruitful discussions on the literature of virtual bound states. We also acknowledge Vladan Mlinar for discussions on interdiffusion and providing the In/Ga diffusion profiles. NR 52 TC 15 Z9 15 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045327 DI 10.1103/PhysRevB.80.045327 PG 12 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100086 ER PT J AU Rahman, R Park, SH Cole, JH Greentree, AD Muller, RP Klimeck, G Hollenberg, LCL AF Rahman, Rajib Park, Seung H. Cole, Jared H. Greentree, Andrew D. Muller, Richard P. Klimeck, Gerhard Hollenberg, Lloyd C. L. TI Atomistic simulations of adiabatic coherent electron transport in triple donor systems SO PHYSICAL REVIEW B LA English DT Article ID NEMO 3-D; QUANTUM DOTS; WAVE-GUIDES; ATOM; SEMICONDUCTORS; PASSAGE AB A solid-state analog of stimulated Raman adiabatic passage can be implemented in a triple-well solid-state system to coherently transport an electron across the wells with exponentially suppressed occupation in the central well at any point of time. Termed coherent-tunneling adiabatic passage (CTAP), this method provides a robust way to transfer quantum information encoded in the electronic spin across a chain of quantum dots or donors. Using large-scale atomistic tight-binding simulations involving over 3.5 x 10(6) atoms, we verify the existence of a CTAP pathway in a realistic solid-state system: gated triple donors in silicon. Realistic gate profiles from commercial tools were combined with tight-binding methods to simulate gate control of the donor to donor tunnel barriers in the presence of crosstalk. As CTAP is an adiabatic protocol, it can be analyzed by solving the time-independent problem at various stages of the pulse justifying the use of time-independent tight-binding methods to this problem. This work also involves the first atomistic treatment to translate the three-state-based quantum-optics type of modeling into a solid-state description beyond the ideal localization assumption. Our results show that a three-donor CTAP transfer, with interdonor spacing of 15 nm can occur on time scales greater than 23 ps, well within experimentally accessible regimes. The method not only provides a tool to guide future CTAP experiments but also illuminates the possibility of system engineering to enhance control and transfer times. C1 [Rahman, Rajib; Park, Seung H.; Klimeck, Gerhard] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. [Cole, Jared H.] Univ Karlsruhe, DFG, CFN, D-76128 Karlsruhe, Germany. [Cole, Jared H.] Univ Karlsruhe, Inst Theoret Festkorperphys, D-76128 Karlsruhe, Germany. [Cole, Jared H.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.] Univ Melbourne, Sch Phys, Ctr Quantum Comp Technol, Melbourne, Vic 3010, Australia. [Muller, Richard P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Klimeck, Gerhard] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Rahman, R (reprint author), Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA. EM rrahman@purdue.edu; lloydch@unimelb.edu.au RI Cole, Jared/G-2992-2010; Hollenberg, Lloyd/B-2296-2010; Greentree, Andrew/A-8503-2008; Klimeck, Gerhard/A-1414-2012; OI Cole, Jared/0000-0002-8943-6518; Greentree, Andrew/0000-0002-3505-9163; Klimeck, Gerhard/0000-0001-7128-773X; Rahman, Rajib/0000-0003-1649-823X NR 40 TC 20 Z9 20 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035302 DI 10.1103/PhysRevB.80.035302 PG 7 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800074 ER PT J AU Rossell, MD Erni, R Asta, M Radmilovic, V Dahmen, U AF Rossell, M. D. Erni, R. Asta, M. Radmilovic, V. Dahmen, U. TI Atomic-resolution imaging of lithium in Al3Li precipitates SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; aluminium alloys; electron beam effects; energy states; lithium alloys; precipitation; transmission electron microscopy; wave functions ID THRESHOLD DISPLACEMENT ENERGIES; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; POINT-DEFECT; BASIS-SET; ALLOYS; METALS AB Using an aberration-corrected transmission electron microscope, we report on imaging individual atomic columns of Li in the intermetallic compound Al3Li. The effect of electron energy on the imaging characteristic of Li is investigated by performing measurements at 80 kV employing a monochromated electron beam with an energy spread Delta E of 0.2 eV and at 300 kV with Delta E of 0.8 eV. These settings enable similar information transfer at both microscope operation conditions and allow a direct comparison between the 80 and the 300 kV measurements. Our experimental data show that the phase of the reconstructed exit-plane wave is highly sensitive to light atoms and that the displacement damage of light elements of low threshold recoil energy can be larger at 80 kV than at 300 kV. This behavior can be understood in terms of the relativistic elastic-scattering cross section between electrons and atoms. C1 [Rossell, M. D.; Erni, R.; Radmilovic, V.; Dahmen, U.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA. [Asta, M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Rossell, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Elect Microscopy, Berkeley, CA 94720 USA. RI Erni, Rolf/P-7435-2014; Rossell, Marta/E-9785-2017 OI Erni, Rolf/0000-0003-2391-5943; FU (U.S.) Department of Energy [DE-AC02-05CH11231, DE-FG02-06ER46282] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. This work was performed at the National Center for Electron Microscopy under the TEAM project, which is supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences. M. A. acknowledges funding from the Department of Energy, Office of Basic Energy Sciences under Grant No. DE-FG02-06ER46282. We acknowledge C. Kisielowski for help with the retrieval of the exit-plane waves and the statistical assessment of the Li signal. NR 27 TC 27 Z9 28 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024110 DI 10.1103/PhysRevB.80.024110 PG 6 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500028 ER PT J AU Sacchetti, F Orecchini, A Cunsolo, A Formisano, F Petrillo, C AF Sacchetti, F. Orecchini, A. Cunsolo, A. Formisano, F. Petrillo, C. TI Coherent neutron scattering study of confined water in nafion SO PHYSICAL REVIEW B LA English DT Article DE Brillouin spectra; damping; neutron diffraction; vibrational modes; water ID SUPERCOOLED WATER; IONOMER MEMBRANES; LIQUID WATER; HEAVY-WATER; DYNAMICS; TRANSPORT; MOLECULES; PRESSURE; PROTEINS; DRY AB The vibrational dynamics of water molecules confined inside the cavities of a nafion membrane has been investigated exploiting the experimental technique of Brillouin neutron scattering to cover two different kinematic regions. Despite the complexity of the experiments, the inelastic data show unambiguously that confined water still sustains collective modes, although the mode lifetime is affected by a larger damping than in bulk water. The collective-mode velocity (3040 m/s) is found to be much higher than the hydrodynamic value (1320 m/s), such as in the case of bulk water. The structure of the inelastic peaks is consistent with a complex picture where normal vibrational modes of a water droplet coexist with the collective excitation. In addition, no evidence of the second nondispersive excitation at similar or equal to 6 meV observed in bulk water is seen in the present experiment. Finally, the analysis of the inelastic integrated intensities suggests that the anomalous trend observed in bulk water at low-momentum transfers disappears under geometrical confinement. C1 [Sacchetti, F.; Orecchini, A.; Petrillo, C.] Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. [Sacchetti, F.; Orecchini, A.; Petrillo, C.] Univ Roma La Sapienza, CNR, INFM, CRS Soft, I-00185 Rome, Italy. [Formisano, F.] Inst Laue Langevin, CNR, INFM, CRS Soft,OGG, F-38042 Grenoble, France. [Cunsolo, A.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Sacchetti, F (reprint author), Univ Perugia, Dipartmento Fis, I-06123 Perugia, Italy. RI Cunsolo, Alessandro/C-7617-2013; Formisano, Ferdinando/G-8888-2013 NR 38 TC 7 Z9 7 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024306 DI 10.1103/PhysRevB.80.024306 PG 9 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500049 ER PT J AU Schreiber, DK Heinonen, OG Petford-Long, AK AF Schreiber, D. K. Heinonen, O. G. Petford-Long, A. K. TI Micromagnetic modeling of the magnetization dynamics in a circularly exchange-biased and exchange-coupled ferromagnetic multilayer SO PHYSICAL REVIEW B LA English DT Article ID MAGNETORESISTANCE; PERMALLOY; DOTS AB The magnetization dynamics of a magnetically coupled multilayer structure have been studied by analytical and numerical methods. The simulated multilayer is disk-shaped and consists of a circularly exchange-biased ferromagnetic permalloy (Py) layer coupled to an unbiased Py layer, each in a magnetic vortex configuration, separated by a thin nonmagnetic spacer. The sign and strength of the interlayer exchange coupling was varied, leading to either parallel or antiparallel vortex chiralities in the two Py layers. The magnetization dynamics after the application of an external magnetic field pulse normal to the plane of the disks were investigated. Both analytical and numerical models show two branches of frequency response of circularly symmetric eigenmodes for both parallel and antiparallel configurations. However, the upper branch mode in the antiparallel configuration is severely damped in the numerical simulations due to coupling with short-wavelength spin waves. The frequency of the modes can be tuned independently with interlayer exchange coupling strength and exchange-bias strength. The good agreement between the mode frequencies obtained from the analytical and numerical models confirms that the main driving forces for the eigenmodes are the magnetostatic field from the radial motion of the magnetization, and also the interlayer exchange coupling field. In addition, the vortex cores, which are neglected in the analytical model, are found to play no significant role in the dynamic response. C1 [Schreiber, D. K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Schreiber, D. K.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Heinonen, O. G.] Seagate Technol, Bloomington, MN 55435 USA. RP Schreiber, DK (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM danielschreiber2008@u.northwestern.edu RI Petford-Long, Amanda/P-6026-2014; OI Petford-Long, Amanda/0000-0002-3154-8090; Heinonen, Olle/0000-0002-3618-6092 FU U.S. Department of Energy Office of Science Laboratory [DEAC02-06CH11357] FX K. P. L. and D. K. S. acknowledge UChicago Argonne, LLC, operator of the Argonne National Laboratory ("Argonne"). Argonne, a U. S. Department of Energy Office of Science Laboratory, is operated under Contract No. DEAC02-06CH11357. NR 27 TC 7 Z9 7 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014411 DI 10.1103/PhysRevB.80.014411 PG 11 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100066 ER PT J AU Taylor, CD AF Taylor, Christopher D. TI Connections between the energy functional and interaction potentials for materials simulations SO PHYSICAL REVIEW B LA English DT Article DE band structure; copper; crystallography; density functional theory; phase diagrams; potential energy functions; uranium ID BOND-ORIENTATIONAL ORDER; EMBEDDED-ATOM METHOD; TIGHT-BINDING; SURFACES; METALS; MODEL; IMPURITIES; EFFICIENT; MOLECULES; COHESION AB In this work it is shown that the energy of a material can be expressed as a functional of the atomic density distribution function and that this energy can be approximated via the method of Taylor expansion. It is then shown that a matrix representation of the second-order term in the Taylor expansion of the energy functional provides a parameterizable expression for the energy that avoids the necessity of finding the as yet unknown functional forms connecting atomic positions to system energies. Using the basis of spherical harmonics {Y(lm)} it is shown that the matrix representation of the energy involves the computation of the Steinhardt bond-orientational order parameters, previously used to classify local crystallographic orderings in amorphous materials. It is also shown that these parameters coincide with the "embedding density" corrections utilized in the modified embedded atom method. By incorporating these bond-orientational order parameters into the Taylor expansion for the energy function, it is demonstrated that this method provides a means for reproducing the phase diagram of various metallic states of Cu and U. Consequently, the formalism introduced here is demonstrated to be systematically improvable via improvements in the underlying basis set of spherical harmonics. Finally, it is shown by reference to the body-centered cubic phase of U that extension to arbitrary crystallographic requires a further examination of the use of interatomic screening potentials that "dampen" the contributions of atoms other than first-nearest neighbors. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Technol Met MST 6, Los Alamos, NM 87545 USA. RP Taylor, CD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mat Technol Met MST 6, Los Alamos, NM 87545 USA. EM cdtaylor@lanl.gov OI Taylor, Christopher/0000-0002-0252-0988 FU Seaborg LDRD Post-Doctoral Program; U.S. Department of Energy [DE-AC52-06NA25396] FX The author is grateful to S. Lillard at Los Alamos National Laboratory for encouragement and assistance in funding this work, T. Lookman at Los Alamos National Laboratory for stimulating conversations regarding Landau theory, and M. Baskes, S. Valone, and R. Hoagland for discussions concerning the embedded atom method and interatomic potentials in general. Gratitude is also expressed toward the reviewers for their anonymous feedback and help in improving this manuscript. The author acknowledges the Seaborg LDRD Post-Doctoral Program for funding this work. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 38 TC 7 Z9 7 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024104 DI 10.1103/PhysRevB.80.024104 PG 10 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500022 ER PT J AU Teodorescu, V Winkler, R AF Teodorescu, V. Winkler, R. TI Spin angular impulse due to spin-dependent reflection off a barrier SO PHYSICAL REVIEW B LA English DT Article AB The spin-dependent elastic reflection of quasi-two-dimensional electrons from a lateral impenetrable barrier in the presence of band-structure spin-orbit coupling results in a spin angular impulse exerted on the electrons which is proportional to the nontrivial difference between the electrons' momentum and velocity. Even for an unpolarized incoming beam we find that the spin angular impulse is nonzero when averaged over all components of the reflected beam. We present a detailed analysis of the kinematics of this process. C1 [Teodorescu, V.; Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Teodorescu, V (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU DOE BES [DE-AC02-06CH11357] FX W. appreciates stimulating discussions with J. Heremans and U. Zulicke. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. NR 22 TC 12 Z9 12 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 041311 DI 10.1103/PhysRevB.80.041311 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100017 ER PT J AU Torikachvili, MS Bud'ko, SL Ni, N Canfield, PC Hannahs, ST AF Torikachvili, M. S. Bud'ko, S. L. Ni, N. Canfield, P. C. Hannahs, S. T. TI Effect of pressure on transport and magnetotransport properties in CaFe2As2 single crystals SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; high-temperature superconductors; iron compounds; magnetoresistance; phase diagrams; superconducting transitions ID QUANTUM LINEAR MAGNETORESISTANCE; TEMPERATURE-DEPENDENCE; MAGNETIC-PROPERTIES; ELASTIC-CONSTANTS; SUPERCONDUCTIVITY AB The effects of pressure generated in a liquid-medium clamp pressure cell on the in-plane and c-axis resistance, temperature-dependent Hall coefficient, and low-temperature magnetoresistance in CaFe2As2 are presented. The T-P phase diagram, including the observation of a complete superconducting transition in resistivity delineated in earlier studies is found to be highly reproducible. The Hall resistivity and low-temperature magnetoresistance are sensitive to different states/phases observed in CaFe2As2. Auxiliary measurements under uniaxial c-axis pressure are in general agreement with the liquid-medium clamp cell results with some difference in critical pressure values and pressure derivatives. The data may be viewed as supporting the potential importance of nonhydrostatic components of pressure in inducing superconductivity in CaFe2As2. C1 [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Bud'ko, S. L.; Ni, N.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Hannahs, S. T.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Torikachvili, MS (reprint author), San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. RI Canfield, Paul/H-2698-2014; Hannahs, Scott/B-1274-2008 OI Hannahs, Scott/0000-0002-5840-7714 FU U. S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; National Science Foundation [DMR-0306165, DMR-0805335]; NSF [DMR-0084173] FX Work at the Ames Laboratory was supported by the U. S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. M. S. T. gratefully acknowledges support of the National Science Foundation under Grants No. DMR-0306165 and No. DMR-0805335. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the U. S. DOE. NR 53 TC 38 Z9 38 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014521 DI 10.1103/PhysRevB.80.014521 PG 10 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100112 ER PT J AU Vannette, MD Yeninas, S Morosan, E Cava, RJ Prozorov, R AF Vannette, M. D. Yeninas, S. Morosan, E. Cava, R. J. Prozorov, R. TI Local-moment ferromagnetism and unusual magnetic domains in Fe1/4TaS2 crystals SO PHYSICAL REVIEW B LA English DT Article DE ferromagnetic materials; iron compounds; magnetic anisotropy; magnetic domains; magnetic susceptibility; tantalum compounds ID TUNNEL-DIODE OSCILLATOR; SUSCEPTIBILITY AB Single crystals of Fe1/4TaS2 have been studied by using magneto-optical (MO) imaging and radio-frequency magnetic susceptibility, chi. Real-time MO images reveal unusual slow dynamics of dendritic domain formation, the details of which are strongly dependent upon magnetic and thermal history. Measurements of chi(T) show well-defined local-moment ferromagnetic transition at T approximate to 155 K as well as thermal hysteresis for 50 < T < 60 K. This temperature range corresponds to the domain-formation temperature as determined by MO. Together these observations provide strong evidence for local-moment ferromagnetism in Fe1/4TaS2 crystals with large temperature-dependent magnetic anisotropy. C1 [Vannette, M. D.; Yeninas, S.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Vannette, M. D.; Yeninas, S.; Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Morosan, E.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358, DE-FG02-98ER45706] FX Work at the Ames Laboratory and Princeton University were supported by the Department of Energy, Office of Basic Energy Sciences, under Contracts No. DE-AC02-07CH11358 and No. DE-FG02-98ER45706, respectively. NR 13 TC 7 Z9 7 U1 5 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024421 DI 10.1103/PhysRevB.80.024421 PG 5 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500072 ER PT J AU Vantarakis, G Mathioudakis, C Kopidakis, G Wang, CZ Ho, KM Kelires, PC AF Vantarakis, G. Mathioudakis, C. Kopidakis, G. Wang, C. Z. Ho, K. M. Kelires, P. C. TI Interfacial disorder and optoelectronic properties of diamond nanocrystals SO PHYSICAL REVIEW B LA English DT Article ID TETRAHEDRAL AMORPHOUS-CARBON; ELECTRONIC-PROPERTIES; OPTICAL-PROPERTIES; DYNAMICS; SIMULATIONS; MODEL AB We present in this work a theoretical framework based on the tight-binding method, which is able to probe at a local atomic level the optoelectronic response of nanomaterial systems and link it to the associated disorder. We apply this methodology to carbon nanocomposites containing diamond nanocrystals. We find that significant structural and topological disorder exists at the interface between the nanodiamonds and the embedding amorphous carbon matrix. This can be quantitatively probed by extracting the Urbach energies from the optical parameters. Disorder in the nanocrystals appears in their outer shell near the interface and is manifested as bond length and angle distortions. Energetics and stability analysis show that nanodiamonds embedded in matrices with high density and high fraction of fourfold coordinated atoms are more stable. C1 [Vantarakis, G.; Kelires, P. C.] Cyprus Univ Technol, Dept Mech & Mat Sci Engn, CY-3603 Limassol, Cyprus. [Vantarakis, G.; Mathioudakis, C.; Kopidakis, G.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Crete, Greece. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kelires, P. C.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. RP Kelires, PC (reprint author), Cyprus Univ Technol, Dept Mech & Mat Sci Engn, POB 50329, CY-3603 Limassol, Cyprus. EM pantelis.kelires@cut.ac.cy NR 24 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045307 DI 10.1103/PhysRevB.80.045307 PG 7 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100066 ER PT J AU Wang, BN Koschny, T Soukoulis, CM AF Wang, Bingnan Koschny, Thomas Soukoulis, Costas M. TI Wide-angle and polarization-independent chiral metamaterial absorber SO PHYSICAL REVIEW B LA English DT Article ID NEGATIVE REFRACTIVE-INDEX AB We propose a resonant microwave absorber based on a chiral metamaterial. We show, with both numerical simulations and experimental measurements, that the absorber works well for a very wide range of incident angles for different polarizations. The proposed absorber has a compact size and the absorption is close to one for a wide range of incident angles and it is a good candidate for potential applications. C1 [Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Wang, BN (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; AFOSR [FA 9550-06-1-0337] FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by AFOSR under MURI under Grant No. FA 9550-06-1-0337. NR 29 TC 135 Z9 142 U1 12 U2 62 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 033108 DI 10.1103/PhysRevB.80.033108 PG 4 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800008 ER PT J AU Wang, F Kim, J Kim, YJ Gu, GD AF Wang, Fan Kim, Jungho Kim, Young-June Gu, G. D. TI Spin-glass behavior in LuFe2O4+delta SO PHYSICAL REVIEW B LA English DT Article DE ageing; lutetium compounds; magnetic susceptibility; magnetic transitions; magnetisation; specific heat; spin glasses ID STOICHIOMETRIC YFE2O4; MAGNETIC-FIELD; TEMPERATURE; TRANSITION; SYSTEM; DYNAMICS; FERROELECTRICITY; EQUILIBRIUM; GROWTH AB We have carried out a comprehensive investigation of magnetic properties of LuFe2O4+delta, measuring ac susceptibility, dc magnetization, and specific heat. A magnetic phase transition around 236 K is identified as a paramagnetic to ferrimagnetic transition in accordance with previous studies. Upon further cooling below this temperature, highly relaxational magnetic behavior is observed: the dc magnetization exhibits history and time dependence, and the real and the imaginary parts of the ac susceptibility show large frequency dependence. Dynamic scaling of the ac susceptibility data suggests that this low-temperature phase can be described as a spin-glass phase. We also discuss the magnetic field dependence of the spin-glass transition and aging, memory, and rejuvenation effect below the glass transition temperature around 229 K. C1 [Wang, Fan; Kim, Jungho; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Gu, G. D.] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA. RP Wang, F (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Kim, Young-June /G-7196-2011; Gu, Genda/D-5410-2013 OI Kim, Young-June /0000-0002-1172-8895; Gu, Genda/0000-0002-9886-3255 FU Natural Sciences and Engineering Research Council of Canada; Canadian Foundation for Innovation; Ontario Innovation Trust; Ontario Ministry of Research and Innovation; U.S. Department of Energy, Office of Science FX We would like to thank David Ellis, S. M. Shapiro, G. Xu, J. Brittain, A. Gershon, and H. Zhang for invaluable discussions. The work at University of Toronto was supported by Natural Sciences and Engineering Research Council of Canada, Canadian Foundation for Innovation, Ontario Innovation Trust, and Early Researcher Award by Ontario Ministry of Research and Innovation. The work at Brookhaven was supported by the U.S. Department of Energy, Office of Science. NR 42 TC 39 Z9 40 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024419 DI 10.1103/PhysRevB.80.024419 PG 7 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500070 ER PT J AU Wen, JS Xu, GY Gu, G Shapiro, SM AF Wen, Jinsheng Xu, Guangyong Gu, Genda Shapiro, S. M. TI Magnetic-field control of charge structures in the magnetically disordered phase of multiferroic LuFe2O4 SO PHYSICAL REVIEW B LA English DT Article DE charge-ordered states; ferroelectric materials; ferroelectricity; lutetium compounds; magnetoelectric effects; multiferroics; neutron diffraction ID FERROMAGNETIC PHASE; SYSTEM LUFE2O4; FERROELECTRICITY; LA0.5CA0.5MNO3 AB Using neutron diffraction, we have studied the magnetic-field effect on charge structures in the charge-ordered multiferroic material LuFe2O4. An external magnetic field is able to change the magnitude and correlation lengths of the charge valence order even before the magnetic order sets in. This affects the dielectric and ferroelectric properties of the material and induces a giant magnetoelectric effect. Our results suggest that the magnetoelectric coupling in LuFe2O4 is likely due to magnetic-field effect on local spins, in clear contrast to the case in most other known multiferroic systems where the bulk magnetic order is important. C1 [Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Shapiro, S. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Wen, Jinsheng] SUNY Stony Brook, Dept Mat Sci, Stony Brook, NY 11794 USA. RP Wen, JS (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Wen, Jinsheng/F-4209-2010; Xu, Guangyong/A-8707-2010 OI Wen, Jinsheng/0000-0001-5864-1466; Xu, Guangyong/0000-0003-1441-8275 FU U.S. Department of Energy [DE-AC02-98CH20886] FX We thank W. Ratcliff, C. L. Broholm, and J.M. Tranquada for discussions. Work at Brookhaven National Laboratory is supported by U.S. Department of Energy (Contract No. DE-AC02-98CH20886). NR 31 TC 27 Z9 27 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 020403 DI 10.1103/PhysRevB.80.020403 PG 4 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500006 ER PT J AU Wu, J Choi, J Scholl, A Doran, A Arenholz, E Wu, YZ Won, C Hwang, CY Qiu, ZQ AF Wu, J. Choi, J. Scholl, A. Doran, A. Arenholz, E. Wu, Y. Z. Won, C. Hwang, Chanyong Qiu, Z. Q. TI Element-specific study of the anomalous magnetic interlayer coupling across NiO spacer layer in Co/NiO/Fe/Ag(001) using XMCD and XMLD SO PHYSICAL REVIEW B LA English DT Article DE cobalt; ferromagnetic materials; interface magnetism; iron; magnetic circular dichroism; magnetic structure; magnetic thin films; molecular beam epitaxial growth; nickel compounds; silver; X-ray absorption spectra ID QUANTUM-WELL STATES; LARGE MAGNETORESISTANCE; TUNNELING JUNCTION; EXCHANGE BIAS; THIN-FILMS; SUPERLATTICES; TEMPERATURE; ANISOTROPY; DICHROISM AB Co/NiO/Fe trilayers are grown on Ag(001) substrate using molecular-beam epitaxy and investigated by element-specific magnetic domain images using x-ray magnetic circular dichroism and x-ray magnetic linear dichroism techniques. By comparing the Co, Fe, and NiO magnetic domain images, we identify that the anomalous Co-Fe interlayer coupling from a 90 degrees coupling to a collinear coupling with increasing the NiO film thickness is due to a transition from a collinear to 90 degrees coupling at the NiO/Fe interface while retaining a 90 degrees coupling at the Co/NiO interface. Uncompensated Ni spins are found at the Co/NiO interface but are absent at the NiO/Fe interface. No evidence of spiral NiO spin structure is found in this Co/NiO/Fe sandwich. C1 [Wu, J.; Choi, J.; Qiu, Z. Q.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Choi, J.] Korea Inst Sci & Technol, Seoul 136791, South Korea. [Scholl, A.; Doran, A.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Wu, Y. Z.] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Won, C.] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. [Hwang, Chanyong] Korea Res Inst Stand & Sci, Adv Technol Div, Taejon 305340, South Korea. RP Wu, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI wu, YiZheng/O-1547-2013; Wu, yizheng/P-2395-2014; Scholl, Andreas/K-4876-2012; Qiu, Zi Qiang/O-4421-2016 OI Wu, yizheng/0000-0002-9289-1271; Qiu, Zi Qiang/0000-0003-0680-0714 FU National Science Foundation [DMR-0803305]; U. S. Department of Energy [DE-AC02-05CH11231]; ICQS of Chinese Academy of Science; KICOS through Global Research Laboratory FX This work was supported by National Science Foundation under Grant No. DMR-0803305, U. S. Department of Energy under Grant No. DE-AC02-05CH11231, ICQS of Chinese Academy of Science, and KICOS through Global Research Laboratory project. NR 33 TC 11 Z9 12 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 012409 DI 10.1103/PhysRevB.80.012409 PG 4 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100014 ER PT J AU Yang, WL Sorini, AP Chen, CC Moritz, B Lee, WS Vernay, F Olalde-Velasco, P Denlinger, JD Delley, B Chu, JH Analytis, JG Fisher, IR Ren, ZA Yang, J Lu, W Zhao, ZX van den Brink, J Hussain, Z Shen, ZX Devereaux, TP AF Yang, W. L. Sorini, A. P. Chen, C-C. Moritz, B. Lee, W-S Vernay, F. Olalde-Velasco, P. Denlinger, J. D. Delley, B. Chu, J-H Analytis, J. G. Fisher, I. R. Ren, Z. A. Yang, J. Lu, W. Zhao, Z. X. van den Brink, J. Hussain, Z. Shen, Z-X Devereaux, T. P. TI Evidence for weak electronic correlations in iron pnictides SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; density functional theory; electron correlations; Fermi level; Hubbard model; lanthanum compounds; samarium compounds; superconducting materials; X-ray absorption spectra ID X-RAY-ABSORPTION; TRANSITION-METAL COMPOUNDS; SUM-RULES; SCATTERING; SPECTRA; FE AB Using x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS), charge dynamics at and near the Fe L edges is investigated in Fe-pnictide materials and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. The best agreement with experiment is obtained using Hubbard parameters U less than or similar to 2 eV and J approximate to 0.8 eV. C1 [Yang, W. L.; Olalde-Velasco, P.; Denlinger, J. D.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Sorini, A. P.; Chen, C-C.; Moritz, B.; Lee, W-S; Chu, J-H; Analytis, J. G.; Fisher, I. R.; van den Brink, J.; Shen, Z-X; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Chen, C-C.; Shen, Z-X] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Vernay, F.; Delley, B.] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland. [Olalde-Velasco, P.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Chu, J-H; Analytis, J. G.; Fisher, I. R.; Shen, Z-X] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chu, J-H; Analytis, J. G.; Fisher, I. R.; Shen, Z-X; Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Ren, Z. A.; Yang, J.; Lu, W.; Zhao, Z. X.] Chinese Acad Sci, Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China. [van den Brink, J.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. RP Yang, WL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RI van den Brink, Jeroen/E-5670-2011; yang, jie/F-4389-2012; Ren, Zhi An/C-1421-2009; Delley, Bernard/E-1336-2014; Yang, Wanli/D-7183-2011; Moritz, Brian/D-7505-2015 OI van den Brink, Jeroen/0000-0001-6594-9610; yang, jie/0000-0002-5549-6926; Delley, Bernard/0000-0002-7020-2869; Yang, Wanli/0000-0003-0666-8063; Moritz, Brian/0000-0002-3747-8484 FU Office of Science of the U. S. Department of Energy (DOE) [DE-AC02-76SF00515, DE-FG02-08ER4650, DE-AC02-05CH11231]; Stichting voor Fundamenteel Onderzoek der Materie (FOM); CONTACyT, Mexico FX The authors would like to acknowledge important discussions with J. Zaanen, I. Mazin, D. Reznik, J. J. Rehr, A. Baron, S. Johnston, Y.- D. Chuang, W. A. Harrison, S. Kumar, J.- H. Guo, and M. Golden. This work was supported by the Office of Science of the U. S. Department of Energy (DOE) under Contracts No. DE-AC02-76SF00515 and No. DE-FG02-08ER4650 (CMSN). This research used resources of the National Energy Research Scientific Computing Center, which is supported by DOE under Contract No. DE-AC02-05CH11231. This work was supported by the "Stichting voor Fundamenteel Onderzoek der Materie (FOM)." The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. P. O. would like to acknowledge the support from CONTACyT, Mexico. NR 57 TC 134 Z9 134 U1 3 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 1 AR 014508 DI 10.1103/PhysRevB.80.014508 PG 10 WC Physics, Condensed Matter SC Physics GA 478VR UT WOS:000268617100099 ER PT J AU Ye, HG Chen, GD Wu, YL Zhu, YZ Wei, SH AF Ye, Honggang Chen, Guangde Wu, Yelong Zhu, Youzhang Wei, Su-Huai TI Stability of a planar-defect structure of the wurtzite AlN (10(1)over-bar0) surface: Density functional study SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; THREADING DISLOCATIONS; ELECTRON-MICROSCOPY; NONPOLAR SURFACES; GAN; GROWTH; PSEUDOPOTENTIALS; SAPPHIRE AB The formation energy of a structure is usually increased by the appearance of a defect. A stoichiometric planar defect structure of the wurtzite AlN (10 (1) over bar0) surface, however, is found to be lower in energy than the ideally truncated surface by first-principles calculations. The intriguing phenomenon is directly attributed to the large scale surface relaxation induced by the defect structure and the intrinsic reason is pointed to the strong ionicity and small c/a (lattice constant ratio) of AlN. A suggested growth mode shows that the defect surface structure is compatible with the growth of the correct wurtzite AlN film on the (10 (1) over bar0) plane. C1 [Ye, Honggang; Chen, Guangde; Wu, Yelong; Zhu, Youzhang] Xi An Jiao Tong Univ, Nonequilibrium Condensed Matter & Quantum Engn L, Key Lab Minist Educ, Sch Sci, Xian 710049, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ye, HG (reprint author), Xi An Jiao Tong Univ, Nonequilibrium Condensed Matter & Quantum Engn L, Key Lab Minist Educ, Sch Sci, Xian 710049, Peoples R China. RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen, Guangde/D-4373-2011; chen, guangde/I-4260-2014 OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X; FU China National Natural Science Fund [10474078]; "Intelligent Information Processing and Computing Laboratory" of XJTU; U. S. DOE [DE-AC36-99GO10337] FX The authors gratefully acknowledge the financial support of China National Natural Science Fund (Grant No. 10474078) and the computing support of the "Intelligent Information Processing and Computing Laboratory" of XJTU. The work at NREL is supported by the U. S. DOE under Contract No. DE-AC36-99GO10337. NR 28 TC 8 Z9 8 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 033301 DI 10.1103/PhysRevB.80.033301 PG 4 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800015 ER PT J AU Ye, Z Hu, XH Li, M Ho, KM Cao, JR Miyawaki, M AF Ye, Zhuo Hu, Xinhua Li, Ming Ho, Kai-Ming Cao, Jiangrong Miyawaki, Mamoru TI Localized optical orbital approach to study localized states of light in photonic crystals SO PHYSICAL REVIEW B LA English DT Article ID WANNIER FUNCTIONS; DEVICE DESIGN; ENERGY-BANDS; WAVE-GUIDES; OPTIMIZATION; CIRCUITS; MODES AB A set of localized basis orbitals are presented to locally represent electromagnetic field in photonic crystals. These orbitals are different from the optical Wannier functions. They are the optical parallelism of quasiatomic orbitals in the context of electronic problems. We demonstrate the utility of these localized optical orbitals by recapturing eigenmodes in defected structures. Calculations for cavity modes and dispersion relations of waveguides agree well with the results from plane-wave expansion calculations. This approach also offers interesting physical insight to understand the state of light in ideal photonic crystals as well as defected structures. C1 [Ye, Zhuo; Hu, Xinhua; Li, Ming; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. [Ye, Zhuo; Hu, Xinhua; Li, Ming; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. [Cao, Jiangrong; Miyawaki, Mamoru] Canon Dev Amer Inc, Irvine, CA 92618 USA. RP Ye, Z (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. EM zye@iastate.edu; kmh@ameslab.gov RI Cao, Jiangrong/A-4725-2008; Hu, Xinhua/A-5930-2010; Ye, Zhuo/H-4027-2011; OI Hu, Xinhua/0000-0003-3153-7612; Ye, Zhuo/0000-0002-8958-5740 FU Department of Energy [DE-AC-02-05CH11231] FX Z. Y. thanks W. C. Lu, Y. Yao, and C. Z. Wang for discussions on QUAMBOs in Refs. 16 and 17. This work was supported by the Department of Energy under Project No. DE-AC-02-05CH11231. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. NR 30 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035111 DI 10.1103/PhysRevB.80.035111 PG 6 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800045 ER PT J AU Yi, M Lu, DH Analytis, JG Chu, JH Mo, SK He, RH Moore, RG Zhou, XJ Chen, GF Luo, JL Wang, NL Hussain, Z Singh, DJ Fisher, IR Shen, ZX AF Yi, M. Lu, D. H. Analytis, J. G. Chu, J. -H. Mo, S. -K. He, R. -H. Moore, R. G. Zhou, X. J. Chen, G. F. Luo, J. L. Wang, N. L. Hussain, Z. Singh, D. J. Fisher, I. R. Shen, Z. -X. TI Electronic structure of the BaFe2As2 family of iron-pnictide superconductors SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; Brillouin zones; cobalt compounds; doping profiles; Fermi level; high-temperature superconductors; iron compounds; paramagnetic materials; photoelectron spectra; potassium compounds ID SPIN-DENSITY-WAVE; ORDER; GAPS AB We use high-resolution angle-resolved photoemission to study the electronic structure of the BaFe2As2 pnictides. We observe two electron bands and two hole bands near the X point, (pi,pi) of the Brillouin zone, in the paramagnetic state for electron-doped Ba(Co0.06Fe0.94)(2)As-2, undoped BaFe2As2, and hole-doped Ba0.6K0.4Fe2As2. Among these bands, only the electron bands cross the Fermi level, forming two electron pockets around X while the hole bands approach but never reach the Fermi level. We show that the band structure of the BaFe2As2 family matches reasonably well with the prediction of local-density approximation calculations after a momentum-dependent shift and renormalization. Our finding resolves a number of inconsistencies regarding the electronic structure of pnictides. C1 [Yi, M.; Lu, D. H.; He, R. -H.; Moore, R. G.; Shen, Z. -X.] SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. [Yi, M.; Lu, D. H.; Mo, S. -K.; He, R. -H.; Moore, R. G.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Analytis, J. G.; Chu, J. -H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zhou, X. J.; Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yi, M (reprint author), SLAC Natl Accelerator Lab, SIMES, Menlo Pk, CA 94025 USA. EM zxshen@stanford.edu RI He, Ruihua/A-6975-2010; Yi, Ming/E-3145-2010; Singh, David/I-2416-2012; Mo, Sung-Kwan/F-3489-2013 OI Mo, Sung-Kwan/0000-0003-0711-8514 FU U.S. DOE, Office of Basic Energy Sciences [DE-AC02-05CH11231]; SSRL, Stanford University [DE-AC02-76SF00515]; ORNL; NSF FX We thank I. I. Mazin, Y. Yin, H. Yao, W. S. Lee, and B. Moritz for helpful discussions. This work is supported by the U.S. DOE, Office of Basic Energy Sciences at ALS (Grant No. DE-AC02-05CH11231), SSRL, Stanford University (Grant No. DE-AC02-76SF00515), and at ORNL. M. Y. thanks the NSF Graduate Research Fellowship for support. NR 21 TC 103 Z9 103 U1 0 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024515 DI 10.1103/PhysRevB.80.024515 PG 5 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500094 ER PT J AU Zhang, Y Ke, XZ Chen, CF Yang, J Kent, PRC AF Zhang, Yi Ke, Xuezhi Chen, Changfeng Yang, J. Kent, P. R. C. TI Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study SO PHYSICAL REVIEW B LA English DT Article DE anharmonic lattice modes; band structure; density functional theory; electronic structure; entropy; Gruneisen coefficient; IV-VI semiconductors; lead compounds; nanocomposites; permittivity; phonon dispersion relations; specific heat; spin-orbit interactions; thermal conductivity; thermoelectricity ID IV-VI-SEMICONDUCTORS; THERMOELECTRIC-MATERIALS; AB-INITIO; ELECTRONIC-STRUCTURE; STRUCTURAL-PROPERTIES; THERMAL-CONDUCTIVITY; LEAD CHALCOGENIDES; CRYSTAL DYNAMICS; HIGH-PRESSURE; MERIT AB The recent discoveries of novel nanocomposite and doped lead chalcogenide-based thermoelectric materials have attracted great interest. These materials exhibit low thermal conductivity which is closely related to their lattice dynamics and thermodynamic properties. In this paper, we report a systematic study of electronic structures and lattice dynamics of the lead chalcogenides PbX (X=Te, Se, and S) using first-principles density-functional-theory calculations and a direct force-constant method. We calculate the structural parameters, elastic moduli, electronic band structures, dielectric constants, and Born effective charges. Moreover, we determine phonon dispersions, phonon density of states, and phonon softening modes in these materials. Based on the results of these calculations, we further employ quasiharmonic approximation to calculate the heat capacity, internal energy, and vibrational entropy. The obtained results are in good agreement with experimental data. Lattice thermal conductivities are evaluated in terms of the Gruumlneisen parameters. The mode Gruumlneisen parameters are calculated to explain the anharmonicity in these materials. The effect of the spin-orbit interaction is found to be negligible in determining the thermodynamic properties of PbTe, PbSe, and PbS. C1 [Zhang, Yi; Ke, Xuezhi; Chen, Changfeng] Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. [Zhang, Yi; Ke, Xuezhi; Chen, Changfeng] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Ke, Xuezhi] E China Normal Univ, Dept Phys, Shanghai 200062, Peoples R China. [Yang, J.] GM R&D Ctr, Mat & Proc Lab, Warren, MI 48090 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Zhang, Y (reprint author), Univ Nevada, Dept Phys, Las Vegas, NV 89154 USA. RI Yang, Jihui/A-3109-2009; Zhang, Yi/C-9291-2011; Kent, Paul/A-6756-2008 OI Kent, Paul/0000-0001-5539-4017 FU DOE [DE-FC52-06NA26274, DE-FC26-04NT42278] FX This work was supported by DOE Cooperative Agreements No. DE-FC52-06NA26274 and No. DE-FC26-04NT42278; and by GM. This research used resources (Cray XT4) of the National Center for Computational Sciences (NCCS) and the Center for Nanophase Materials Sciences at ORNL, which are sponsored by the respective facilities divisions of the DOE Offices of Advanced Scientific Computing Research and Basic Energy Sciences. Y.Z. also acknowledges the useful discussion with Hong Sun of Shanghai Jiao Tong University and the assistance in accessing computer resource by Markus Eisenbach of NCCS. J.Y. would like to thank J.F. Herbst and M. W. Verbrugge for continuous support and encouragement. NR 52 TC 123 Z9 124 U1 22 U2 112 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 2 AR 024304 DI 10.1103/PhysRevB.80.024304 PG 12 WC Physics, Condensed Matter SC Physics GA 478VU UT WOS:000268617500047 ER PT J AU Zhang, Y Mascarenhas, A Wei, SH Wang, LW AF Zhang, Yong Mascarenhas, A. Wei, Su-Huai Wang, L. -W. TI Comparison of atomistic simulations and statistical theories for variable degree of long-range order in semiconductor alloys SO PHYSICAL REVIEW B LA English DT Article ID CRYSTALS AB A direct atomistic quantum-mechanical theory is used for a comprehensive investigation on the applicability of a statistical theory based on cluster expansion to the electronic band structure of a semiconductor alloy with variable degree of long-range order. This study reveals that the applicability of the statistical theory depends on the modulation of the relevant wave function within the alloyed sublattice. This finding can be generalized beyond the prototype system-CuPt-ordered Ga(x)In(1-x)P-to other alloys or other forms of long-range order and thus establishes a framework for understanding the effect of ordering in semiconductor alloys and the limitation of the cluster expansion approach for treating the electronic structure of alloys. C1 [Zhang, Yong; Mascarenhas, A.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wang, L. -W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), UNC Charlotte, Dept Elect & Comp Engn, Charlotte, NC USA. EM yong.zhang@uncc.edu RI Zhang, Yong/D-3412-2013 FU DOE-OS-BES [AC36-08GO28308, DE-AC02-05CH11231]; NERSC FX This work was supported by the DOE-OS-BES under Contracts No. DE-AC36-08GO28308 to NREL and No. DE-AC02-05CH11231 to LBNL. The work used the computational resources of NERSC at LBNL. NR 13 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 4 AR 045206 DI 10.1103/PhysRevB.80.045206 PG 4 WC Physics, Condensed Matter SC Physics GA 478WA UT WOS:000268618100054 ER PT J AU Zhou, JF Koschny, T Kafesaki, M Soukoulis, CM AF Zhou, Jiangfeng Koschny, Thomas Kafesaki, Maria Soukoulis, Costas M. TI Negative refractive index response of weakly and strongly coupled optical metamaterials SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC RESPONSE; WAVELENGTHS; FREQUENCIES AB We present a detailed study of the retrieved optical parameters, electrical permittivity epsilon, magnetic permeability mu, and refractive index n of the coupled-fishnet metamaterial structures as a function of the separation between layers. For the weak-coupling case, the retrieved parameters are very close to the one-functional-layer results and converge relatively fast. For the strong-coupling case, the retrieved parameters are completely different from the one-unit fishnet results. We also demonstrate that the high value of the figure of merit [FOM = vertical bar Re(n)/Im(n)vertical bar] for the strongly coupled structures is due to the fact that the real part of the negative n moves away from the maximum of the imaginary part of n (close to the resonance), where the losses are high. C1 [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Zhou, JF (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342 NR 27 TC 76 Z9 76 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL PY 2009 VL 80 IS 3 AR 035109 DI 10.1103/PhysRevB.80.035109 PG 6 WC Physics, Condensed Matter SC Physics GA 478VX UT WOS:000268617800043 ER PT J AU Abdurashitov, JN Gavrin, VN Gorbachev, VV Gurkina, PP Ibragimova, TV Kalikhov, AV Khairnasov, NG Knodel, TV Mirmov, IN Shikhin, AA Veretenkin, EP Yants, VE Zatsepin, GT Bowles, TJ Elliott, SR Teasdale, WA Nico, JS Cleveland, BT Wilkerson, JF AF Abdurashitov, J. N. Gavrin, V. N. Gorbachev, V. V. Gurkina, P. P. Ibragimova, T. V. Kalikhov, A. V. Khairnasov, N. G. Knodel, T. V. Mirmov, I. N. Shikhin, A. A. Veretenkin, E. P. Yants, V. E. Zatsepin, G. T. Bowles, T. J. Elliott, S. R. Teasdale, W. A. Nico, J. S. Cleveland, B. T. Wilkerson, J. F. CA SAGE Collaboration TI Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002-2007 data-taking period SO PHYSICAL REVIEW C LA English DT Article ID SPIN-ISOSPIN RESPONSES; GE-71; DECAY; DETECTOR; GALLEX; AR-37; GA-71; FLUX AB The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keV of 65.4(-3.0)(+3.1) (stat) (+2.6)(-2.8) (syst) SNU. The weighted average of the results of all three Ga solar neutrino experiments, SAGE, Gallex, and GNO, is now 66.1 +/- 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced (37)Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior (51)Cr neutrino-source experiments with Ga, is 0.87 +/- 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in (71)Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63 SNU to 66 SNU with an uncertainty of about 4%, in good agreement with experiment. We derive the current value of the neutrino flux produced in the Sun by the proton-proton fusion reaction to be phi(circle dot)(pp)=(6.0 +/- 0.8)x10(10)/(cm(2) s), which agrees well with the pp flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time. C1 [Abdurashitov, J. N.; Gavrin, V. N.; Gorbachev, V. V.; Gurkina, P. P.; Ibragimova, T. V.; Kalikhov, A. V.; Khairnasov, N. G.; Knodel, T. V.; Mirmov, I. N.; Shikhin, A. A.; Veretenkin, E. P.; Yants, V. E.; Zatsepin, G. T.] Russian Acad Sci, Nucl Res Inst, RU-117312 Moscow, Russia. [Bowles, T. J.; Elliott, S. R.; Teasdale, W. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nico, J. S.] NIST, Gaithersburg, MD 20899 USA. [Cleveland, B. T.; Wilkerson, J. F.] Univ Washington, Seattle, WA 98195 USA. RP Cleveland, BT (reprint author), SNOLAB, POB 159, Lively, ON P3Y 1M3, Canada. EM bclevela@snolab.ca RI Abdurashitov, Dzhonrid/B-2206-2014; Yants, Viktor/C-1038-2014; OI Abdurashitov, Dzhonrid/0000-0002-1577-1364; Wilkerson, John/0000-0002-0342-0217 FU Russian Academy of Sciences; Ministry of Education and Science of the Russian Federation,; Division of Nuclear Physics of the US Department of Energy; US National Science Foundation; Russian Foundation [99-02-16110, 02-02-16776, 05-02-17199, 08-02-00146]; Russian Federation [00-1596632, NS-1782.2003, NS-5573.2006.2, NS-959.2008.2]; Presidium of the Russian Academy of Sciences; International Science and Technology Center [1431]; US Civilian Research and Development Foundation [CGP RP2-159, CGP RP2-2360-MO-02] FX SAGE is grateful to M. Baldo-Ceolin, W. Haxton, V. A. Kuzmin, V. A. Matveev, S. P. Mikheev, R. G. H. Robertson, V. A. Rubakov, A. Yu. Smirnov, A. Suzuki, A. N. Tavkhelidze, and our colleagues from the GALLEX and GNO Collaborations for their continued interest and for fruitful and stimulating discussions. We especially thank W. Hampel for vital comments on many aspects of our investigations. SAGE acknowledges the support of the Russian Academy of Sciences, the Ministry of Education and Science of the Russian Federation, the Division of Nuclear Physics of the US Department of Energy, and the US National Science Foundation. This work was partially funded by the Russian Foundation for Basic Research under grants 99-02-16110, 02-02-16776, 05-02-17199, and 08-02-00146; by the Program of the President of the Russian Federation under grants 00-1596632, NS-1782.2003, NS-5573.2006.2, and NS-959.2008.2; by the Program of Basic Research "Neutrino Physics" of the Presidium of the Russian Academy of Sciences; by the International Science and Technology Center under grant 1431; and by the US Civilian Research and Development Foundation under grants CGP RP2-159 and CGP RP2-2360-MO-02. NR 41 TC 252 Z9 253 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 015807 DI 10.1103/PhysRevC.80.015807 PG 16 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500074 ER PT J AU Alver, B Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bindel, R Busza, W Chai, Z Chetluru, V Garcia, E Gburek, T Gulbrandsen, K Hamblen, J Harnarine, I Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Kane, JL Kulinich, P Kuo, CM Li, W Lin, WT Loizides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Richardson, E Roland, C Roland, G Sagerer, J Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Szostak, A Tonjes, MB Trzupek, A van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, G Walters, P Wenger, E Willhelm, D Wolfs, FLH Wosiek, B Wozniak, K Wyngaardt, S Wyslouch, B AF Alver, B. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bindel, R. Busza, W. Chai, Z. Chetluru, V. Garcia, E. Gburek, T. Gulbrandsen, K. Hamblen, J. Harnarine, I. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Kane, J. L. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Loizides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Richardson, E. Roland, C. Roland, G. Sagerer, J. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Szostak, A. Tonjes, M. B. Trzupek, A. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. Walters, P. Wenger, E. Willhelm, D. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyngaardt, S. Wyslouch, B. CA PHOBOS Collaboration TI Scaling properties in bulk and p(T)-dependent particle production near midrapidity in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR COLLISIONS; PHOBOS; DETECTOR AB The centrality dependence of the midrapidity charged-particle multiplicity density (vertical bar eta vertical bar < 1) is presented for Au+Au and Cu+Cu collisions at RHIC over a broad range of collision energies. The multiplicity measured in the Cu+Cu system is found to be similar to that measured in the Au+Au system, for an equivalent N-part, with the observed factorization in energy and centrality still persistent in the smaller Cu+Cu system. The extent of the similarities observed for bulk particle production is tested by a comparative analysis of the inclusive transverse momentum distributions for Au+Au and Cu+Cu collisions near midrapidity. It is found that, within the uncertainties of the data, the ratio of yields between the various energies for both Au+Au and Cu+Cu systems are similar and constant with centrality, both in the bulk yields and as a function of p(T), up to at least 4 GeV/c. The effects of multiple nucleon collisions that strongly increase with centrality and energy appear to only play a minor role in bulk and intermediate transverse momentum particle production. C1 [Alver, B.; Ballintijn, M.; Busza, W.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G.; Wenger, E.; Wyslouch, B.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Back, B. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Dept CA, Upton, NY 11973 USA. [Betts, R. R.; Chetluru, V.; Garcia, E.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Nouicer, R.; Sagerer, J.; Smith, C. E.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Bindel, R.; Mignerey, A. C.; Richardson, E.; Tonjes, M. B.; Willhelm, D.] Univ Maryland, Dept Chem, College Pk, MD 20742 USA. [Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] Inst Nucl Phys PAN, Krakow, Poland. [Hamblen, J.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Dept Phys, Chungli 32054, Taiwan. RP Alver, B (reprint author), MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. RI Mignerey, Alice/D-6623-2011; OI Holzman, Burt/0000-0001-5235-6314 FU US DOE [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG0294ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, DE-AC02-06CH1135]; US NSF [9603486, 0072204, 0245011]; Polish MNiSW [N N202 282234]; NSC of Taiwan [NSC 89-2112-M-008-024]; Hungarian OTKA [F 049823] FX This work was partially supported by US DOE Grant Nos. DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG0294ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, and DE-AC02-06CH11357, by US NSF Grant Nos. 9603486, 0072204, and 0245011, by Polish MNiSW Grant No. N N202 282234 ( 2008-2010), by NSC of Taiwan Contract No. NSC 89-2112-M-008-024, and by Hungarian OTKA Grant No. F 049823. NR 18 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011901 DI 10.1103/PhysRevC.80.011901 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500011 ER PT J AU Bender, PC Hoffman, CR Wiedeking, M Allmond, JM Bernstein, LA Burke, JT Bleuel, DL Clark, RM Fallon, P Goldblum, BL Hinners, TA Jeppesen, HB Lee, S Lee, IY Lesher, SR Macchiavelli, AO McMahan, MA Morris, D Perry, M Phair, L Scielzo, ND Tabor, SL Tripathi, V Volya, A AF Bender, P. C. Hoffman, C. R. Wiedeking, M. Allmond, J. M. Bernstein, L. A. Burke, J. T. Bleuel, D. L. Clark, R. M. Fallon, P. Goldblum, B. L. Hinners, T. A. Jeppesen, H. B. Lee, Sangjin Lee, I-Y. Lesher, S. R. Macchiavelli, A. O. McMahan, M. A. Morris, D. Perry, M. Phair, L. Scielzo, N. D. Tabor, S. L. Tripathi, Vandana Volya, A. TI Approaching the "island of inversion": P-34 SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY; MASS; NUCLEI; CLOVER AB Yrast states in P-34 were investigated using the O-18(O-18,pn) reaction at energies of 20, 24, 25, 30, and 44 MeV at Florida State University and at Lawrence Berkeley National Laboratory. The level scheme was expanded, gamma-ray angular distributions were measured, and lifetimes were inferred with the Doppler-shift attenuation method by detecting decay protons in coincidence with one or more gamma rays. The results provide a clearer picture of the evolution of structure approaching the "island of inversion," particularly how the one- and two-particle-hole (ph) states fall in energy with increasing neutron number approaching inversion. However, the agreement of the lowest few states with pure sd shell model predictions shows that the level scheme of P-34 is not itself inverted. Rather, the accumulated evidence indicates that the 1-ph states start at 2.3 MeV. A good candidate for the lowest 2-ph state lies at 6236 keV, just below the neutron separation energy of 6291 keV. Shell model calculations made using a small modification of the WBP interaction reproduce the negative-parity, 1-ph states rather well. C1 [Bender, P. C.; Hoffman, C. R.; Hinners, T. A.; Lee, Sangjin; Morris, D.; Perry, M.; Tabor, S. L.; Tripathi, Vandana; Volya, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Wiedeking, M.; Clark, R. M.; Fallon, P.; Jeppesen, H. B.; Lee, I-Y.; Macchiavelli, A. O.; McMahan, M. A.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wiedeking, M.; Bernstein, L. A.; Burke, J. T.; Bleuel, D. L.; Lesher, S. R.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Allmond, J. M.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Bender, PC (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RI Volya, Alexander/I-9457-2012; Burke, Jason/I-4580-2012 OI Volya, Alexander/0000-0002-1765-6466; FU National Science Foundation [PHY-04-56463, PHY-0756474]; US Department of Energy [DE-AC02-05CH11231]; University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344.] FX This work was supported in part by the National Science Foundation through Grants PHY-04-56463 and PHY-0756474. Support for Lawrence Berkeley National Laboratory was provided by the US Department of Energy under Contract DE-AC02-05CH11231. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under Contracts W-7405-Eng-48 and DE-AC52-07NA27344. NR 20 TC 27 Z9 27 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014302 DI 10.1103/PhysRevC.80.014302 PG 9 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500016 ER PT J AU Brown, JR Bentley, MA Adrich, P Bazin, D Cook, JM Diget, CA Gade, A Glasmacher, T Lenzi, SM McDaniel, S Pritychenko, B Ratkiewicz, A Siwek, K Taylor, MJ Weisshaar, D AF Brown, J. R. Bentley, M. A. Adrich, P. Bazin, D. Cook, J. M. Diget, C. Aa. Gade, A. Glasmacher, T. Lenzi, S. M. McDaniel, S. Pritychenko, B. Ratkiewicz, A. Siwek, K. Taylor, M. J. Weisshaar, D. TI First gamma-ray spectroscopy of Fe-49 and Ni-53: Isospin-breaking effects at large proton excess SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; EXOTIC NUCLEI; SYMMETRY; ENERGIES; STATES; CR-49; V-49 AB Isospin-breaking effects have been studied for the first time in T=32 isobaric analog states. Gamma decays have been observed from T-z=-32 nuclei, Fe-49 and Ni-53, presented here in new level schemes, and mirror energy differences have been computed following observation of analog states in V-49 and Mn-53, respectively. Shell-model calculations in the fp shell are in good agreement with the data and reveal the importance of non-Coulomb isospin-breaking effects in T=32 isobaric analog states. A two-step fragmentation process was developed to allow access to highly proton-rich nuclei and to produce each member of a mirror pair via mirrored fragmentation of a Ni-56 secondary beam. This work represents the first study using this technique and demonstrates the power of this approach for future studies of isobaric analog states in very proton-rich systems. C1 [Brown, J. R.; Bentley, M. A.; Taylor, M. J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Adrich, P.; Bazin, D.; Cook, J. M.; Diget, C. Aa.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Siwek, K.; Weisshaar, D.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Lenzi, S. M.] Univ Padua, Dipartimento Fis, Padua, Italy. [Lenzi, S. M.] Ist Nazl Fis Nucl, Padua, Italy. [Pritychenko, B.] Natl Nucl Data Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Brown, JR (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM jb536@york.ac.uk RI Gade, Alexandra/A-6850-2008; Yan, XinLiang/E-4156-2010; Glasmacher, Thomas/C-4462-2008; Lenzi, Silvia/I-6750-2012; Glasmacher, Thomas/H-9673-2014; Taylor, Michael/N-1725-2015; Diget, Christian Aaen/D-8063-2016 OI Gade, Alexandra/0000-0001-8825-0976; Glasmacher, Thomas/0000-0001-9436-2448; Taylor, Michael/0000-0002-8718-3684; Diget, Christian Aaen/0000-0002-9778-8759 FU United Kingdom Science and Technologies Facilities Council; National Science Foundation [PHY-0606007] FX The authors thank the staff of the Coupled Cyclotron Facility at theNational Superconducting Cyclotron Laboratory for their help and support during this novel experiment. This work was supported by the United Kingdom Science and Technologies Facilities Council and partly by the National Science Foundation under Grant No. PHY-0606007. NR 31 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011306 DI 10.1103/PhysRevC.80.011306 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500007 ER PT J AU Chugunov, AI DeWitt, HE AF Chugunov, A. I. DeWitt, H. E. TI Nuclear fusion reaction rates for strongly coupled ionic mixtures SO PHYSICAL REVIEW C LA English DT Article ID THERMONUCLEAR REACTION-RATES; ACCRETING NEUTRON-STARS; DENSE STELLAR MATTER; MONTE-CARLO SIMULATIONS; PYCNONUCLEAR REACTIONS; THERMAL STATES; ENHANCEMENT; PLASMAS; DENSITIES; FLUIDS AB We analyze the effect of plasma screening on nuclear reaction rates in dense matter composed of atomic nuclei of one or two types. We perform semiclassical calculations of the Coulomb barrier penetrability taking into account a radial mean-field potential of plasma ions. The mean-field potential is extracted from the results of extensive Monte Carlo calculations of radial pair distribution functions of ions in binary ionic mixtures. We calculate the reaction rates in a wide range of plasma parameters and approximate these rates by an analytical expression that is expected to be applicable to multicomponent ion mixtures. Also, we analyze Gamow-peak energies of reacting ions in various nuclear burning regimes. For illustration, we study nuclear burning in (12)C-(16)O mixtures. C1 [Chugunov, A. I.] AF Ioffe Phys Tech Inst, RU-194021 St Petersburg, Russia. [DeWitt, H. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chugunov, AI (reprint author), AF Ioffe Phys Tech Inst, Politekhnicheskaya 26, RU-194021 St Petersburg, Russia. RI Chugunov, Andrey/E-2061-2014 FU Russian Foundation for Basic Research [08-02-00837]; State Program "Leading Scientific Schools of Russian Federation" [NSh 2600.2008.2]; US Department of Energy at the Lawrence Livermore National Laboratory [W-7405-ENG-48] FX We are grateful to D. G. Yakovlev for useful remarks. The work of AIC was partly supported by the Russian Foundation for Basic Research (Grant 08-02-00837) and by the State Program "Leading Scientific Schools of Russian Federation" (Grant NSh 2600.2008.2). The work of HED was performed under the auspices of the US Department of Energy at the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. NR 49 TC 9 Z9 9 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014611 DI 10.1103/PhysRevC.80.014611 PG 12 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500049 ER PT J AU Clark, RM Casten, RF Bettermann, L Winkler, R AF Clark, R. M. Casten, R. F. Bettermann, L. Winkler, R. TI Unified framework for understanding pair transfer between collective states in atomic nuclei SO PHYSICAL REVIEW C LA English DT Article ID INTERACTING-BOSON MODEL; T,P REACTION; PHASE-TRANSITIONS; GADOLINIUM NUCLEI; P,T REACTION; T REACTIONS; ISOTOPES; QUANTUM; SM AB A new interpretation of two-nucleon pair transfer in collective nuclei is presented. It differs from traditional models and unifies, within a consistent framework, the entire range of monopole pair-transfer phenomenology in collective nuclei. This includes the well-known examples of large cross sections to excited 0(+) states in phase transitional nuclei, and small ones in many other nuclei, but also predicts large cross sections elsewhere under particular circumstances. These predictions can be tested experimentally. C1 [Clark, R. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Casten, R. F.; Winkler, R.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Casten, R. F.; Bettermann, L.] Univ Cologne, Inst Nucl Phys, D-50937 Cologne, Germany. RP Clark, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU US DOE [DE-FG0291ER-40609, DE-CA02-05CH11231]; German DFG [J0391/3-2]; Mercator lecture grant at the University of Koln [142/112-1] FX We are grateful to R. Burcu Cakirli for the nuclear chart in Fig. 3. Work supported by US DOE Grant No. DE-FG0291ER-40609, US DOE Contract No. DE-CA02-05CH11231, the German DFG under Grant No. J0391/3-2 and through a Mercator lecture grant at the University of Koln, under Grant No. Ko. 142/112-1, and by the Flint Fund. NR 30 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011303 DI 10.1103/PhysRevC.80.011303 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500004 ER PT J AU Dalton, MM Adams, GS Ahmidouch, A Angelescu, T Arrington, J Asaturyan, R Baker, OK Benmouna, N Bertoncini, C Boeglin, WU Bosted, PE Breuer, H Christy, ME Connell, SH Cui, Y Danagoulian, S Day, D Dodario, T Dunne, JA Dutta, D El Khayari, N Ent, R Fenker, HC Frolov, VV Gan, L Gaskell, D Hafidi, K Hinton, W Holt, RJ Horn, T Huber, GM Hungerford, E Jiang, X Jones, MK Joo, K Kalantarians, N Kelly, JJ Keppel, CE Kubarovsky, V Li, Y Liang, Y Malace, S Markowitz, P McKee, P Meekins, DG Mkrtchyan, H Moziak, B Navasardyan, T Niculescu, G Niculescu, I Opper, AK Ostapenko, T Reimer, PE Reinhold, J Roche, J Rock, SE Schulte, E Segbefia, E Smith, C Smith, GR Stoler, P Tadevosyan, V Tang, L Tvaskis, V Ungaro, M Uzzle, A Vidakovic, S Villano, A Vulcan, WF Wang, M Warren, G Wesselmann, FR Wojtsekhowski, B Wood, SA Xu, C Yuan, L Zheng, X Zhu, H AF Dalton, M. M. Adams, G. S. Ahmidouch, A. Angelescu, T. Arrington, J. Asaturyan, R. Baker, O. K. Benmouna, N. Bertoncini, C. Boeglin, W. U. Bosted, P. E. Breuer, H. Christy, M. E. Connell, S. H. Cui, Y. Danagoulian, S. Day, D. Dodario, T. Dunne, J. A. Dutta, D. El Khayari, N. Ent, R. Fenker, H. C. Frolov, V. V. Gan, L. Gaskell, D. Hafidi, K. Hinton, W. Holt, R. J. Horn, T. Huber, G. M. Hungerford, E. Jiang, X. Jones, M. K. Joo, K. Kalantarians, N. Kelly, J. J. Keppel, C. E. Kubarovsky, V. Li, Y. Liang, Y. Malace, S. Markowitz, P. McKee, P. Meekins, D. G. Mkrtchyan, H. Moziak, B. Navasardyan, T. Niculescu, G. Niculescu, I. Opper, A. K. Ostapenko, T. Reimer, P. E. Reinhold, J. Roche, J. Rock, S. E. Schulte, E. Segbefia, E. Smith, C. Smith, G. R. Stoler, P. Tadevosyan, V. Tang, L. Tvaskis, V. Ungaro, M. Uzzle, A. Vidakovic, S. Villano, A. Vulcan, W. F. Wang, M. Warren, G. Wesselmann, F. R. Wojtsekhowski, B. Wood, S. A. Xu, C. Yuan, L. Zheng, X. Zhu, H. TI Electroproduction of eta mesons in the S-11(1535) resonance region at high momentum transfer SO PHYSICAL REVIEW C LA English DT Article ID FORM-FACTORS; QUARK-MODEL; PION-PHOTOPRODUCTION; EXCLUSIVE PROCESSES; NUCLEON RESONANCES; SIGMA-T; THRESHOLD; PROTON; TRANSITION; SCATTERING AB The differential cross section for the process p(e,e(')p)eta has been measured at Q(2 similar to)5.7 and 7.0(GeV/c)(2) for center-of-mass energies from threshold to 1.8 GeV, encompassing the S-11(1535) resonance, which dominates the channel. This is the highest momentum-transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A(1/2), for the production of the S-11(1535) resonance, is extracted from the data. Within the limited Q(2) now measured, this quantity appears to begin scaling as Q(-3)-a predicted, but not definitive, signal of the dominance of perturbative QCD at Q(2)similar to 5 (GeV/c)(2). C1 [Dalton, M. M.] Univ Witwatersrand, Johannesburg, South Africa. [Adams, G. S.; Kubarovsky, V.; Moziak, B.; Stoler, P.; Villano, A.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Ahmidouch, A.; Danagoulian, S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Angelescu, T.; Malace, S.] Univ Bucharest, Bucharest, Romania. [Arrington, J.; Hafidi, K.; Holt, R. J.; Reimer, P. E.; Schulte, E.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Baker, O. K.; Christy, M. E.; Hinton, W.; Keppel, C. E.; Li, Y.; Segbefia, E.; Tang, L.; Uzzle, A.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA. [Baker, O. K.; Bosted, P. E.; Ent, R.; Fenker, H. C.; Gaskell, D.; Hinton, W.; Jones, M. K.; Keppel, C. E.; Kubarovsky, V.; Meekins, D. G.; Roche, J.; Smith, G. R.; Tang, L.; Vulcan, W. F.; Warren, G.; Wojtsekhowski, B.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Benmouna, N.] George Washington Univ, Washington, DC 20052 USA. [Bertoncini, C.] Vassar Coll, Poughkeepsie, NY 12604 USA. [Boeglin, W. U.; Markowitz, P.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. [Breuer, H.; Horn, T.; Kelly, J. J.] Univ Maryland, College Pk, MD 20742 USA. [Connell, S. H.] Univ Johannesburg, Johannesburg, South Africa. [Cui, Y.; Dodario, T.; El Khayari, N.; Hungerford, E.; Kalantarians, N.] Univ Houston, Houston, TX 77204 USA. [Day, D.; McKee, P.; Niculescu, G.; Smith, C.; Wesselmann, F. R.; Zhu, H.] Univ Virginia, Charlottesville, VA 22901 USA. [Dunne, J. A.; Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Frolov, V. V.] LIGO Livingston Observ, Livingston, LA 70754 USA. [Gan, L.] Univ N Carolina, Wilmington, NC 28403 USA. [Huber, G. M.; Vidakovic, S.; Xu, C.] Univ Regina, Regina, SK S4S 0A2, Canada. [Jiang, X.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Joo, K.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Liang, Y.; Opper, A. K.] Ohio Univ, Athens, OH 45071 USA. [Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Ostapenko, T.] Gettysburg Coll, Gettysburg, PA 18103 USA. [Rock, S. E.; Wang, M.] Univ Massachusetts, Amherst, MA 01003 USA. [Tvaskis, V.] Natl Inst Subatomaire Fys, Amsterdam, Netherlands. RP Dalton, MM (reprint author), Univ Witwatersrand, Johannesburg, South Africa. EM dalton@jlab.org RI Holt, Roy/E-5803-2011; Arrington, John/D-1116-2012; Reimer, Paul/E-2223-2013; Day, Donal/C-5020-2015; Connell, Simon/F-2962-2015; Dalton, Mark/B-5380-2016 OI Arrington, John/0000-0002-0702-1328; Day, Donal/0000-0001-7126-8934; Connell, Simon/0000-0001-6000-7245; Dalton, Mark/0000-0001-9204-7559 FU US Department of Energy [DE-AC02-06CH11357, DEAC05-84ER40150]; US National Science Foundation; South African National Research Foundation FX We acknowledge the support of staff and management at Jefferson Lab. Thiswork is supported in part by research grants from theUS Department of Energy (including grant DE-AC02-06CH11357), the US National Science Foundation and the South African National Research Foundation. The Southeastern Universities Research Association operates the Thomas Jefferson National Accelerator Facility under the US Department of Energy contract DEAC05-84ER40150. NR 43 TC 21 Z9 21 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 015205 DI 10.1103/PhysRevC.80.015205 PG 34 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500064 ER PT J AU Gintautas, V Champagne, AE Kondev, FG Longland, R AF Gintautas, Vadas Champagne, Arthur E. Kondev, Filip G. Longland, Richard TI Thermal equilibration of Lu-176 via K mixing SO PHYSICAL REVIEW C LA English DT Article ID CAPTURE CROSS-SECTIONS; S-PROCESS; ASTROPHYSICAL CONSEQUENCES; STARS; SOLAR; NUCLEOSYNTHESIS; TRANSITIONS; ABUNDANCES; SCHEME; MASSES AB In astrophysical environments, the long-lived (T-1/2=37.6 Gyr) ground state of Lu-176 can communicate with a short-lived (T-1/2=3.664 h) isomeric level through thermal excitations. Thus, the lifetime of Lu-176 in an astrophysical environment can be quite different than in the laboratory. We examine the possibility that the rate of equilibration can be enhanced via K mixing of two levels near E-x=725 keV and estimate the relevant gamma-decay rates. We use this result to illustrate the effect of K mixing on the effective stellar half-life. We also present a network calculation that includes the equilibrating transitions allowed by K mixing. Even a small amount of K mixing will decrease the timescale for equilibration during an s-process triggered by the Ne-22 neutron source. C1 [Gintautas, Vadas; Champagne, Arthur E.; Longland, Richard] Univ N Carolina, Chapel Hill, NC 27599 USA. [Champagne, Arthur E.; Longland, Richard] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Kondev, Filip G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Gintautas, V (reprint author), Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. FU US DOE [DE-FG02- 97ER4104, DE-AC02-06CH11357] FX This work was supported in part by US DOE grant nos. DE-FG02- 97ER4104 and DE-AC02-06CH11357. We would like to thank G. D. Dracoulis, J. Engel, and P. Mohr for advice and useful discussions. One of the authors (A. E. C.) wishes to thank Argonne National Laboratory for their hospitality and another (R. L.) would like to thank J. Lattanzio for his assistance with the Monash stellar-structure code. The Los Alamos National Laboratory technical information release number is LA-UR 09-00440. NR 28 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 015806 DI 10.1103/PhysRevC.80.015806 PG 8 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500073 ER PT J AU Goodin, C Ramayya, AV Hamilton, JH Stone, NJ Daniel, AV Li, K Liu, SH Hwang, JK Luo, YX Rasmussen, JO Zhu, SJ AF Goodin, C. Ramayya, A. V. Hamilton, J. H. Stone, N. J. Daniel, A. V. Li, K. Liu, S. H. Hwang, J. K. Luo, Y. X. Rasmussen, J. O. Zhu, S. J. TI Single particle states in neutron-rich Zr-101, Mo-103,Mo-105,Mo-107, and Ru-109,Ru-111 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI AB The multipole mixing ratios of Delta I=1 transitions between levels in rotational bands built on single-particle states in odd neutron nuclei are dependent on the configurations of the states. In particular, the mixing ratio can be used to distinguish between several possible single-particle configurations if interpreted with the particle-axial-rotor model. This work features the first determination of the ground-state configurations of Ru-109,Ru-111. The single-particle structures of the ground states of Zr-101 and Mo-103,Mo-105,Mo-107 as well as excited states in Mo-103,Mo-107 are also investigated, with a new result found in Mo-107. C1 [Goodin, C.; Ramayya, A. V.; Hamilton, J. H.; Daniel, A. V.; Li, K.; Liu, S. H.; Hwang, J. K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daniel, A. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37830 USA. [Luo, Y. X.; Rasmussen, J. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Goodin, C (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. FU US Department of Energy [DE-FG05-88ER40407, W-7405-ENG48]; University of Tennessee; Vanderbilt University; US DOE [DE-FG05-87ER40311 and DE-FG0296ER40983] FX We thank V. Oberacker for assistance with calculations. The work at Vanderbilt University and Lawrence Berkeley National Laboratory are supported by US Department of Energy under Grant No. DE-FG05-88ER40407 and Contract No. W-7405-ENG48. The Joint Institute for Heavy Ion Research is supported by the University of Tennessee, Vanderbilt University, and the US DOE through Contract Nos. DE-FG05-87ER40311 and DE-FG0296ER40983 with University of Tennessee is gratefully acknowledged. NR 16 TC 10 Z9 10 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014318 DI 10.1103/PhysRevC.80.014318 PG 7 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500032 ER PT J AU Hutcheson, A Angell, C Becker, JA Crowell, AS Dashdorj, D Fallin, B Fotiades, N Howell, CR Karwowski, HJ Kawano, T Kelley, JH Kwan, E Macri, RA Nelson, RO Pedroni, RS Tonchev, AP Tornow, W AF Hutcheson, A. Angell, C. Becker, J. A. Crowell, A. S. Dashdorj, D. Fallin, B. Fotiades, N. Howell, C. R. Karwowski, H. J. Kawano, T. Kelley, J. H. Kwan, E. Macri, R. A. Nelson, R. O. Pedroni, R. S. Tonchev, A. P. Tornow, W. TI Cross sections for U-238(n,n(')gamma) and U-238(n,2n gamma) reactions at incident neutron energies between 5 and 14 MeV SO PHYSICAL REVIEW C LA English DT Article AB Precision measurements of U-238(n,n(')gamma) and U-238(n,2n gamma) partial cross sections have been performed at Triangle Universities Nuclear Laboratory (TUNL) to improve crucial data needed for testing nuclear reaction models in the actinide mass region. A pulsed and monoenergetic neutron beam was used in combination with high-resolution gamma-ray spectroscopy to obtain partial cross sections for incident neutron energies between 5 and 14 MeV. gamma-ray yields were measured with high-purity germanium clover and planar detectors. Measured partial cross-section data are compared with previous results using white and monoenergetic neutron beams and calculations from the GNASH and TALYS Hauser-Feshbach statistical-model codes. Present experimental results are in fair to good agreement with most of the existing data for the U-238(n,n(')gamma) reaction. However, significant discrepancies are observed for the U-238(n,2n gamma) reaction. C1 [Dashdorj, D.; Kelley, J. H.] N Carolina State Univ, Raleigh, NC 27695 USA. [Angell, C.; Karwowski, H. J.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Pedroni, R. S.] N Carolina Agr & Tech State Univ, Greensboro, NC 27411 USA. [Hutcheson, A.; Angell, C.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kwan, E.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Fotiades, N.; Kawano, T.; Nelson, R. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Becker, J. A.; Dashdorj, D.; Macri, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hutcheson, A.; Crowell, A. S.; Fallin, B.; Howell, C. R.; Kwan, E.; Tonchev, A. P.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. RP Hutcheson, A (reprint author), USN, Res Lab, Washington, DC 20375 USA. EM hutch@tunl.duke.edu FU National Nuclear Security Administration [DE-FG52-06NA26155]; US Department of Energy by Los Alamos National Security, LLC, Los Alamos National Laboratory [DE-AC52-06NA25396]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank C. K. Walker for valuable discussions. The research described in this work was supported by the National Nuclear Security Administration under the Stewardship Science Academic Alliance Program through US Department of Energy Grant No. DE-FG52-06NA26155. Portions of this work were performed under the auspices of the US Department of Energy by Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 21 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014603 DI 10.1103/PhysRevC.80.014603 PG 7 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500041 ER PT J AU Johansson, EK Rudolph, D Ragnarsson, I Andersson, LL Torres, DA Andreoiu, C Baktash, C Carpenter, MP Charity, RJ Chiara, CJ Ekman, J Fahlander, C Pechenaya, OL Reviol, W du Rietz, R Sarantites, DG Seweryniak, D Sobotka, LG Yu, CH Zhu, S AF Johansson, E. K. Rudolph, D. Ragnarsson, I. Andersson, L. -L. Torres, D. A. Andreoiu, C. Baktash, C. Carpenter, M. P. Charity, R. J. Chiara, C. J. Ekman, J. Fahlander, C. Pechenaya, O. L. Reviol, W. du Rietz, R. Sarantites, D. G. Seweryniak, D. Sobotka, L. G. Yu, C. H. Zhu, S. TI Thorough gamma-ray and particle decay investigations of Ni-58 SO PHYSICAL REVIEW C LA English DT Article ID PROMPT PROTON-DECAY; ROTATIONAL BANDS; HIGH-SPIN; SHELL-MODEL; CHANNEL-SELECTION; SPECTROSCOPY; GAMMASPHERE; STATES; COLLECTIVITY; TERMINATION AB The combined data from three fusion-evaporation reaction experiments have been utilized to investigate the semi-magic nucleus Ni-58(28)30. To detect gamma rays in coincidence with evaporated particles, the Ge-detector array Gammasphere was used in conjunction with the charged-particle detectors Microball and LuWuSiA (the Lund Washington University Silicon Array), and a neutron detector array. The results yield a significantly extended level scheme of Ni-58 comprising some 340 gamma-ray transitions and include a total of at least 14 discrete particle decays into excited states of the daughter nuclei Fe-54 and Co-57. The level scheme is compared with large-scale shell-model calculations and cranked Nilsson-Strutinsky calculations. C1 [Johansson, E. K.; Rudolph, D.; Andersson, L. -L.; Ekman, J.; Fahlander, C.; du Rietz, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. [Torres, D. A.] Univ Nacl Colombia, Dept Fis, Bogota, Colombia. [Andreoiu, C.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Baktash, C.; Yu, C. H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Carpenter, M. P.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Charity, R. J.; Chiara, C. J.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. RP Johansson, EK (reprint author), Lund Univ, Dept Phys, S-22100 Lund, Sweden. RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; du Rietz, Rickard/I-3794-2013; Carpenter, Michael/E-4287-2015 OI Rudolph, Dirk/0000-0003-1199-3055; du Rietz, Rickard/0000-0002-9884-9058; Carpenter, Michael/0000-0002-3237-5734 FU Swedish Research Council; US DOE [DE-AC-02-06CH11357] FX The authors thank the staff and the accelerator crew at LBNL and ANL, as well as D. P. Balamuth, M. Devlin, J. Eberth, A. Galindo-Uribarri, P. A. Hausladen, L. L. Riedinger, and T. Steinhardt for support during the experiments. This work is supported in part by the Swedish Research Council and the US DOE Grant DE-AC-02-06CH11357. NR 43 TC 13 Z9 13 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014321 DI 10.1103/PhysRevC.80.014321 PG 32 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500035 ER PT J AU Kay, BP Chiara, CJ Schiffer, JP Kondev, FG Zhu, S Carpenter, MP Janssens, RVF Lauritsen, T Lister, CJ McCutchan, EA Seweryniak, D Stefanescu, I AF Kay, B. P. Chiara, C. J. Schiffer, J. P. Kondev, F. G. Zhu, S. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Lister, C. J. McCutchan, E. A. Seweryniak, D. Stefanescu, I. TI Properties of excited states in Ge-77 SO PHYSICAL REVIEW C LA English DT Article ID ELASTIC-SCATTERING; ENERGY-DEPENDENCE; ISOTOPES; PB-208; O-16 AB The nucleus Ge-77 was studied through the Ge-76(C-13,C-12)Ge-77 reaction at a sub-Coulomb energy. The angular distributions of gamma rays depopulating excited states in Ge-77 were measured in order to constrain spin and parity assignments. Some of these assignments are of use in connection with neutrinoless double beta decay, where the population of states near the Fermi surface of Ge-76 was recently explored using transfer reactions. C1 [Kay, B. P.; Chiara, C. J.; Schiffer, J. P.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Stefanescu, I.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. RP Kay, BP (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Kay, Benjamin/F-3291-2011; Carpenter, Michael/E-4287-2015 OI Kay, Benjamin/0000-0002-7438-0208; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors would like to thank J.P. Greene for provision of the targets for this experiment. The work was supported by the US Department of Energy, Office of Nuclear Physics, under contract no. DE-AC02-06CH11357. NR 12 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 017301 DI 10.1103/PhysRevC.80.017301 PG 4 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500076 ER PT J AU Kondev, FG Dracoulis, GD Lane, GJ Ahmad, I Byrne, AP Carpenter, MP Chowdhury, P Janssens, RVF Kibedi, T Lauritsen, T Lister, CJ Seweryniak, D Tandel, SK Zhu, S AF Kondev, F. G. Dracoulis, G. D. Lane, G. J. Ahmad, I. Byrne, A. P. Carpenter, M. P. Chowdhury, P. Janssens, R. V. F. Kibedi, T. Lauritsen, T. Lister, C. J. Seweryniak, D. Tandel, S. K. Zhu, S. TI Multi-quasiparticle isomers in Lu-174 SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-GAMMA-COINCIDENCES; ODD-ODD LU-174; HIGH-K ISOMERS; QUADRUPOLE-MOMENTS; SPECTROSCOPY; COLLISIONS; NUCLEI; REGION; STATES; BEAM AB Four-, six-, and eight-quasiparticle isomers with K-pi=14(-), (21(+)) and (26(-)) have been identified in the deformed nucleus Lu-174, in addition to the previously reported K-pi=13(+), four-quasiparticle isomeric state. Analysis of alignments and in-band crossover-to-cascade branching ratios lead to the characterization of the configurations associated with the K-pi=14(-) and (21(+)) isomers. The excitation energies of the observed states are compared with results from multi-quasiparticle calculations that include effects of blocking and residual nucleon-nucleon interactions. Good agreement is found for medium-spin (I=13-14h) and the highest spin (I>20h) states observed, but there remain ambiguities in assigning configurations in the I=15-19h region. C1 [Kondev, F. G.; Ahmad, I.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Kibedi, T.] Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Byrne, A. P.] Australian Natl Univ, Dept Phys, The Faculties, Canberra, ACT 0200, Australia. [Chowdhury, P.; Tandel, S. K.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. RP Kondev, FG (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Kibedi, Tibor/E-8282-2010; Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Kibedi, Tibor/0000-0002-9205-7500; Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy; Office of Science; Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848]; ANSTO program for Access to Major Research Facilities [02/03-H-05]; Australian Research Council [DP0343027, DP0345844] FX The authors thank R. B. Turkentine for producing the targets, and S. J. Freeman and N. J. Hammond for assistance in the experiments. Thiswork is supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-94ER40848, the ANSTO program for Access to Major Research Facilities, Grant No. 02/ 03-H-05, and the Australian Research Council Discovery projects DP0343027 and DP0345844. NR 30 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014304 DI 10.1103/PhysRevC.80.014304 PG 9 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500018 ER PT J AU Lukyanov, S Mocko, M Andronenko, L Andronenko, M Bazin, D Famiano, MA Gade, A Lobastov, SP Lynch, WG Rogers, AM Tarasov, OB Tsang, MB Verde, G Wallace, MS Zegers, RGT AF Lukyanov, S. Mocko, M. Andronenko, L. Andronenko, M. Bazin, D. Famiano, M. A. Gade, A. Lobastov, S. P. Lynch, W. G. Rogers, A. M. Tarasov, O. B. Tsang, M. B. Verde, G. Wallace, M. S. Zegers, R. G. T. TI Projectile fragmentation of radioactive beams of Ni-68, Cu-69, and Zn-72 SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC HEAVY-IONS; CROSS-SECTIONS; SEPARATOR; FACILITY AB The fragment production cross sections of secondary neutron-rich beams of Ni-68, Cu-69, and Zn-72 isotopes at energies of about 95A MeV have been measured. We compare the measured cross sections to EPAX, an empirical parametrization of fragmentation cross sections. A reasonable agreement of the experimental data and EPAX predictions suggests that an EPAX parametrization used for stable beams seems to be valid for unstable neutron-rich ion beams. EPAX tends to overestimate the yields of neutron-rich isotopes. This problem is amplified when neutron-rich radioactive beams are employed, leading to overly optimistic estimates of the production of neutron-rich isotopes. C1 [Lukyanov, S.; Mocko, M.; Andronenko, L.; Andronenko, M.; Bazin, D.; Famiano, M. A.; Gade, A.; Lobastov, S. P.; Lynch, W. G.; Rogers, A. M.; Tarasov, O. B.; Tsang, M. B.; Verde, G.; Wallace, M. S.; Zegers, R. G. T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Lukyanov, S.; Lobastov, S. P.; Tarasov, O. B.] Joint Inst Nucl Res, Flerov Lab Nucl React, RU-141980 Dubna, Moscow Region, Russia. [Mocko, M.; Wallace, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mocko, M.; Lynch, W. G.; Rogers, A. M.; Tsang, M. B.; Zegers, R. G. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Andronenko, L.; Andronenko, M.] PNPI, RU-188300 Gatchina, Russia. [Famiano, M. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Verde, G.] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy. RP Lukyanov, S (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM lukyan@nrmail.jinr.ru RI Gade, Alexandra/A-6850-2008; Mocko, Michal/B-1794-2010; Lujan Center, LANL/G-4896-2012; Verde, Giuseppe/J-3609-2012; Zegers, Remco/A-6847-2008; Lynch, William/I-1447-2013 OI Gade, Alexandra/0000-0001-8825-0976; Lynch, William/0000-0003-4503-176X FU National Science Foundation [PHY-01-10253, PHY-0606007, INT-0218329, DEFG02-04ER41313]; Michigan State University FX Our sincere gratitude is extended to the staff members of the NSCL coupled cyclotron facility for their assistance in providing the beams for the experiment. This work is supported by the National Science Foundation under Grant Nos. PHY-01-10253, PHY-0606007, INT-0218329, and DEFG02-04ER41313. SL acknowledges partial support from Michigan State University during his stay at the NSCL. NR 17 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014609 DI 10.1103/PhysRevC.80.014609 PG 6 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500047 ER PT J AU Matejska-Minda, M Fornal, B Broda, R Carpenter, MP Janssens, RVF Krolas, W Lauritsen, T Mantica, PF Mazurek, K Pawlat, T Wrzesinski, J Zhu, S AF Matejska-Minda, M. Fornal, B. Broda, R. Carpenter, M. P. Janssens, R. V. F. Krolas, W. Lauritsen, T. Mantica, P. F. Mazurek, K. Pawlat, T. Wrzesinski, J. Zhu, S. TI Yrast structure of Zr-97 and beta decay of the 27/2(-) high-spin isomer in Y-97 SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION REACTIONS; NUCLEI; EXCITATIONS; OCTUPOLE; REGION AB The yrast structure of the neutron-rich nucleus Zr-97 has been studied using fission of targetlike products in the reaction of a Ca-48 beam on a thick U-238 target. The level scheme, known from previous studies up to an excitation energy and spin-parity of approximately 4619 keV and 23/2(-), has been extended by about 3 MeV and a few units of angular momentum. Two states fed in the beta decay of the 27/2(-) high-spin isomer in Y-97 were identified at 5570 and 5606 keV. The located level structure can be discussed in terms of shell-model configurations. C1 [Matejska-Minda, M.; Fornal, B.; Broda, R.; Krolas, W.; Mazurek, K.; Pawlat, T.; Wrzesinski, J.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Mantica, P. F.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RP Matejska-Minda, M (reprint author), Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC0206CH11357]; Polish Ministry of Science and Higher Education [NN202103333] FX This work is supported by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC0206CH11357. This work is supported by the Polish Ministry of Science and Higher Education under contract NN202103333. NR 20 TC 6 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 017302 DI 10.1103/PhysRevC.80.017302 PG 4 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500077 ER PT J AU Ollitrault, JY Poskanzer, AM Voloshin, SA AF Ollitrault, Jean-Yves Poskanzer, Arthur M. Voloshin, Sergei A. TI Effect of flow fluctuations and nonflow on elliptic flow methods SO PHYSICAL REVIEW C LA English DT Article ID RELATIVISTIC NUCLEAR COLLISIONS; ECCENTRICITY FLUCTUATIONS; ANISOTROPIC FLOW; COLLECTIVE FLOW AB We discuss how the different estimates of elliptic flow are influenced by flow fluctuations and nonflow effects. It is explained why the event-plane method yields estimates between the two-particle correlation methods and the multiparticle correlation methods. It is argued that nonflow effects and fluctuations cannot be disentangled without other assumptions. However, we provide equations where, with reasonable assumptions about fluctuations and nonflow, all measured values of elliptic flow converge to a unique mean v(2,PP) elliptic flow in the participant plane and, with a Gaussian assumption on eccentricity fluctuations, can be converted to the mean v(2,RP) in the reaction plane. Thus, the 20% spread in observed elliptic flow measurements from different analysis methods is no longer mysterious. C1 [Ollitrault, Jean-Yves] CNRS, URA2306, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France. [Poskanzer, Arthur M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Voloshin, Sergei A.] Wayne State Univ, Detroit, MI 48201 USA. RP Ollitrault, JY (reprint author), CNRS, URA2306, Inst Phys Theor Saclay, F-91191 Gif Sur Yvette, France. RI Ollitrault, Jean-Yves/B-3709-2010 OI Ollitrault, Jean-Yves/0000-0001-6037-7975 FU US Department of Energy [DE-AC02-05CH11231, DE-FG02-92ER40713] FX We thank the authors of Ref. [20] and Constantin Loizides for permission to use Fig. 1. For discussions we thank Hiroshi Masui, Aihong Tang, and Paul Sorensen. This work was supported in part by the HENP Divisions of the Office of Science of the US Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-FG02-92ER40713. NR 31 TC 94 Z9 95 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014904 DI 10.1103/PhysRevC.80.014904 PG 12 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500054 ER PT J AU Reviol, W Sarantites, DG Chiara, CJ Montero, M Janssens, RVF Carpenter, MP Khoo, TL Lauritsen, T Lister, CJ Seweryniak, D Zhu, S Pechenaya, OL Frauendorf, SG AF Reviol, W. Sarantites, D. G. Chiara, C. J. Montero, M. Janssens, R. V. F. Carpenter, M. P. Khoo, T. L. Lauritsen, T. Lister, C. J. Seweryniak, D. Zhu, S. Pechenaya, O. L. Frauendorf, S. G. TI Parity doubling in Th-219 and the onset of collectivity above N=126 SO PHYSICAL REVIEW C LA English DT Article ID GAMMASPHERE; NUCLEI; SPECTROSCOPY; STATES AB Excited states in Th-219 have been observed for the first time in an experiment using the Mg-26+Pt-198 reaction and evaporation-residue-gated gamma-ray spectroscopy. Two structures of interlinked alternating-parity levels with simplex quantum numbers s=+/- i are observed, reminiscent of similar sequences in heavier odd-mass isotopes, but only three mass units away from the N=126 neutron closed shell. The emergence of quadrupole-octupole collectivity in this mass region and the trend for parity-doublet bands are discussed. C1 [Reviol, W.; Sarantites, D. G.; Chiara, C. J.; Montero, M.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Chiara, C. J.; Janssens, R. V. F.; Carpenter, M. P.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Pechenaya, O. L.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Frauendorf, S. G.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Reviol, W (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-88ER-40406, DE-AC02-06CH11357, DE-FG02-95ER40934] FX The authors thank J. Elson (WU) and J. Rohrer (ANL) for technical support and J. P. Greene (ANL) for the preparation of the target. One of the authors (W. R.) acknowledges inspiring discussions with I. Y. Lee. This work was supported by the US Department of Energy, Office of Nuclear Physics, Grant Nos. DE-FG02-88ER-40406, DE-AC02-06CH11357, and DE-FG02-95ER40934. NR 18 TC 7 Z9 7 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011304 DI 10.1103/PhysRevC.80.011304 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500005 ER PT J AU Sheikh, JA Nazarewicz, W Pei, JC AF Sheikh, J. A. Nazarewicz, W. Pei, J. C. TI Systematic study of fission barriers of excited superheavy nuclei SO PHYSICAL REVIEW C LA English DT Article ID ROTATING NUCLEI; HOT NUCLEI; FINITE TEMPERATURES; EXCITATION-ENERGY; DEFORMATION SPACE; POTENTIAL-ENERGY; SELF-CONSISTENT; STABILITY; ELEMENTS; HEAVY AB A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock + BCS (FT-HF + BCS) formalism with the SkM(*) Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection-asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N=164 and spherical nuclei around N=184 that are strongly stabilized by ground-state shell effects. For the nuclei (240)Pu and (256)Fm, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies owing to the thermal quenching of static reflection asymmetric deformations. C1 [Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Pei, J. C.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. RP Sheikh, JA (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Pei, Junchen/E-3532-2010 FU National Nuclear Security Administration [DE-FG03-03NA00083]; US Department of Energy [DE-FG02-96ER40963]; Oak Ridge National Laboratory [DE-AC0500OR22725]; UNEDF SciDAC Collaboration [DE-FC02-07ER41457] FX Useful discussions with Arthur Kerman, Yuri Oganessian, and Andrzej Staszczak are gratefully acknowledged. Computational resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through Grant DE-FG03-03NA00083 and by the US Department of Energy under Contract Nos. DE-FG02-96ER40963 (university of Tennessee), DE-AC0500OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC02-07ER41457 (UNEDF SciDAC Collaboration). NR 54 TC 25 Z9 25 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 011302 DI 10.1103/PhysRevC.80.011302 PG 5 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500003 ER PT J AU Staszczak, A Baran, A Dobaczewski, J Nazarewicz, W AF Staszczak, A. Baran, A. Dobaczewski, J. Nazarewicz, W. TI Microscopic description of complex nuclear decay: Multimodal fission SO PHYSICAL REVIEW C LA English DT Article ID FOCK-BOGOLYUBOV EQUATIONS; HARMONIC-OSCILLATOR BASIS; SUPERHEAVY NUCLEI; HALF-LIVES; SYMMETRICAL FISSION; HEAVIEST ELEMENTS; FERMIUM ISOTOPES; SELF-CONSISTENT; BARRIERS; HEAVY AB Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes. C1 [Staszczak, A.; Baran, A.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Staszczak, A.; Baran, A.; Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Staszczak, A.; Baran, A.; Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. RP Staszczak, A (reprint author), Marie Curie Sklodowska Univ, Inst Phys, Pl M Curie Sklodowskiej 1, PL-20031 Lublin, Poland. FU National Nuclear Security Administration under the Stewardship Science Academic Alliances program through US Department of Energy Research [DE-FG03-03NA00083]; US Department of Energy [DEFG02- 96ER40963, DE-AC0500OR22725, DE-FC0209ER41583]; Polish Ministry of Science and Higher Education [N N 202 328234] FX This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through US Department of Energy Research Grant No. DE-FG03-03NA00083; by the US Department of Energy under Contract Nos. DEFG02- 96ER40963 (University of Tennessee), DE-AC0500OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC0209ER41583 (UNEDF SciDAC Collaboration); by the Polish Ministry of Science and Higher Education under Contract No. N N 202 328234; and by the Academy of Finland and University of Jyvaskyla within the FIDIPRO program. Computational resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 65 TC 56 Z9 56 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL PY 2009 VL 80 IS 1 AR 014309 DI 10.1103/PhysRevC.80.014309 PG 6 WC Physics, Nuclear SC Physics GA 478WE UT WOS:000268618500023 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martiacutenez, M Martiacutenez-Ballariacuten, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Aacutelvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B.-Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C.-S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martiacutenez, M. Martiacutenez-Ballariacuten, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for standard model Higgs boson production in association with a W boson using a neural network discriminant at CDF SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; UPGRADE; DETECTOR; PHYSICS; TEV AB We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp ->(WH)-H-+/--> l nu bb) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 fb(-1). We select events consistent with a signature of a single charged lepton (e(+/-)/mu(+/-)), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150 GeV/c(2), respectively. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martiacutenez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Aacutelvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Vet Med, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C.-S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martiacutenez-Ballariacuten, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B.-Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 35 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 012002 DI 10.1103/PhysRevD.80.012002 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600004 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Frisch, HJ Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Frisch, H. J. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Searching the inclusive l gamma E-T + b-quark signature for radiative top quark decay and non-standard-model processes SO PHYSICAL REVIEW D LA English DT Article ID CDF; DETECTOR; PHYSICS; CALORIMETER; PERFORMANCE; COLLISIONS; UPGRADE; TEV AB We compare the inclusive production of events containing a lepton (l), a photon (gamma), significant transverse momentum imbalance (E-T), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at root sp = 1.96 TeV corresponding to 1.9 fb(-1) of integrated luminosity taken with the CDF detector. We find 28 l gamma E-T events versus an expectation of 31.0(-3.5)(+4.1) events. If we further require events to contain at least three jets and large total transverse energy, the largest SM source is radiative top-quark pair production, t (r) over bar + gamma. In the data we observe 16 t (t) over bar gamma candidate events versus an expectation from SM sources of 11.2(-2.1)(+2.3) Assuming the difference between the observed number and the predicted non-top-quark total of 6.8(-2.0)(+2.2) is due to SM top- quark production, we estimate the t (t) over bart cross section to be 0.15 +/- 0.08 pb. C1 [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Brigliadori, L.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Frisch, H. J.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Ferrazza, C.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, H. S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, U. K.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Ciobanu, C. I.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, UMR7585,LPNHE, IN2P3, F-75252 Paris, France. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Ferrazza, C.; Garosi, P.; Giunta, M.; Introzzi, G.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Carosi, R.; Cavaliere, V.; Chung, Y. S.; de Barbaro, P.; Giannetti, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lami, S.; McFarland, K. S.; Ristori, L.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [De Cecco, S.; Hare, M.; Napier, A.; Rolli, S.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mathis, M.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; OI Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 38 TC 6 Z9 6 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 011102 DI 10.1103/PhysRevD.80.011102 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600002 ER PT J AU Aharmim, B Ahmed, SN Andersen, TC Anthony, AE Barros, N Beier, EW Bellerive, A Beltran, B Bergevin, M Biller, SD Boudjemline, K Boulay, MG Burritt, TH Cai, B Chan, YD Chen, M Chon, MC Cleveland, BT Cox-Mobrand, GA Currat, CA Dai, X Dalnoki-Veress, F Deng, H Detwiler, J Doe, PJ Dosanjh, RS Doucas, G Drouin, PL Duncan, FA Dunford, M Elliott, SR Evans, HC Ewan, GT Farine, J Fergani, H Fleurot, F Ford, RJ Formaggio, JA Gagnon, N Goon, JTM Graham, K Grant, DR Guillian, E Habib, S Hahn, RL Hallin, AL Hallman, ED Hargrove, CK Harvey, PJ Hazama, R Heeger, KM Heintzelman, WJ Heise, J Helmer, RL Hemingway, RJ Henning, R Hime, A Howard, C Howe, MA Huang, M Jamieson, B Jelley, NA Klein, JR Kos, M Kruger, A Kraus, C Krauss, CB Kutter, T Kyba, CCM Lange, R Law, J Lawson, IT Lesko, KT Leslie, JR Levine, I Loach, JC Luoma, S MacLellan, R Majerus, S Mak, HB Maneira, J Marino, AD Martin, R McCauley, N McDonald, AB McGee, S Mifflin, C Miller, ML Monreal, B Monroe, J Noble, AJ Oblath, NS Okada, CE O'Keeffe, HM Opachich, Y Gann, GDO Oser, SM Ott, RA Peeters, SJM Poon, AWP Prior, G Rielage, K Robertson, BC Robertson, RGH Rollin, E Schwendener, MH Secrest, JA Seibert, SR Simard, O Simpson, JJ Sinclair, D Skensved, P Smith, MWE Sonley, TJ Steiger, TD Stonehill, LC Tagg, N Tesic, G Tolich, N Tsui, T Van de Water, RG VanDevender, BA Virtue, CJ Waller, D Waltham, CE Tseung, HWC Wark, DL Watson, P Wendland, J West, N Wilkerson, JF Wilson, JR Wouters, JM Wright, A Yeh, M Zhang, F Zuber, K AF Aharmim, B. Ahmed, S. N. Andersen, T. C. Anthony, A. E. Barros, N. Beier, E. W. Bellerive, A. Beltran, B. Bergevin, M. Biller, S. D. Boudjemline, K. Boulay, M. G. Burritt, T. H. Cai, B. Chan, Y. D. Chen, M. Chon, M. C. Cleveland, B. T. Cox-Mobrand, G. A. Currat, C. A. Dai, X. Dalnoki-Veress, F. Deng, H. Detwiler, J. Doe, P. J. Dosanjh, R. S. Doucas, G. Drouin, P. -L. Duncan, F. A. Dunford, M. Elliott, S. R. Evans, H. C. Ewan, G. T. Farine, J. Fergani, H. Fleurot, F. Ford, R. J. Formaggio, J. A. Gagnon, N. Goon, J. T. M. Graham, K. Grant, D. R. Guillian, E. Habib, S. Hahn, R. L. Hallin, A. L. Hallman, E. D. Hargrove, C. K. Harvey, P. J. Hazama, R. Heeger, K. M. Heintzelman, W. J. Heise, J. Helmer, R. L. Hemingway, R. J. Henning, R. Hime, A. Howard, C. Howe, M. A. Huang, M. Jamieson, B. Jelley, N. A. Klein, J. R. Kos, M. Krueger, A. Kraus, C. Krauss, C. B. Kutter, T. Kyba, C. C. M. Lange, R. Law, J. Lawson, I. T. Lesko, K. T. Leslie, J. R. Levine, I. Loach, J. C. Luoma, S. MacLellan, R. Majerus, S. Mak, H. B. Maneira, J. Marino, A. D. Martin, R. McCauley, N. McDonald, A. B. McGee, S. Mifflin, C. Miller, M. L. Monreal, B. Monroe, J. Noble, A. J. Oblath, N. S. Okada, C. E. O'Keeffe, H. M. Opachich, Y. Gann, G. D. Orebi Oser, S. M. Ott, R. A. Peeters, S. J. M. Poon, A. W. P. Prior, G. Rielage, K. Robertson, B. C. Robertson, R. G. H. Rollin, E. Schwendener, M. H. Secrest, J. A. Seibert, S. R. Simard, O. Simpson, J. J. Sinclair, D. Skensved, P. Smith, M. W. E. Sonley, T. J. Steiger, T. D. Stonehill, L. C. Tagg, N. Tesic, G. Tolich, N. Tsui, T. Van de Water, R. G. VanDevender, B. A. Virtue, C. J. Waller, D. Waltham, C. E. Tseung, H. Wan Chan Wark, D. L. Watson, P. Wendland, J. West, N. Wilkerson, J. F. Wilson, J. R. Wouters, J. M. Wright, A. Yeh, M. Zhang, F. Zuber, K. TI Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory SO PHYSICAL REVIEW D LA English DT Article ID CURRENT CROSS-SECTION; PROPAGATION; KAMIOKANDE; DETECTOR; MACRO AB Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and unoscillated portion of the neutrino flux. A total of 514 muonlike events are measured between -1 < cos theta(zenith)< 0.4 in a total exposure of 2.30x10(14) cm(2) s. The measured flux normalization is 1.22 +/- 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos theta(zenith)> 0.4 is measured to be (3.31 +/- 0.01(stat)+/- 0.09(sys))x10(-10) mu/s/cm(2). C1 [Aharmim, B.; Farine, J.; Fleurot, F.; Hallman, E. D.; Huang, M.; Krueger, A.; Luoma, S.; Schwendener, M. H.; Virtue, C. J.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Beltran, B.; Habib, S.; Hallin, A. L.; Howard, C.; Krauss, C. B.; Okada, C. E.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada. [Heise, J.; Jamieson, B.; Oser, S. M.; Tsui, T.; Waltham, C. E.; Wendland, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hahn, R. L.; Lange, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bellerive, A.; Boudjemline, K.; Dai, X.; Dalnoki-Veress, F.; Dosanjh, R. S.; Drouin, P. -L.; Graham, K.; Grant, D. R.; Hargrove, C. K.; Hemingway, R. J.; Levine, I.; Mifflin, C.; Rollin, E.; Simard, O.; Sinclair, D.; Tesic, G.; Waller, D.; Watson, P.; Zhang, F.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. [Andersen, T. C.; Bergevin, M.; Chon, M. C.; Law, J.; Lawson, I. T.; Simpson, J. J.; Tagg, N.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Bergevin, M.; Chan, Y. D.; Currat, C. A.; Detwiler, J.; Gagnon, N.; Henning, R.; Lesko, K. T.; Loach, J. C.; Marino, A. D.; Okada, C. E.; Opachich, Y.; Poon, A. W. P.; Prior, G.; Tolich, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Bergevin, M.; Chan, Y. D.; Detwiler, J.; Gagnon, N.; Henning, R.; Lesko, K. T.; Loach, J. C.; Marino, A. D.; Okada, C. E.; Opachich, Y.; Poon, A. W. P.; Prior, G.; Tolich, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Barros, N.; Maneira, J.] Lab Instrumentacao & Fis Expt Particulas, P-1000149 Lisbon, Portugal. [Boulay, M. G.; Elliott, S. R.; Gagnon, N.; Heise, J.; Hime, A.; Rielage, K.; Seibert, S. R.; Smith, M. W. E.; Stonehill, L. C.; Van de Water, R. G.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goon, J. T. M.; Kutter, T.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Formaggio, J. A.; Miller, M. L.; Monreal, B.; Monroe, J.; Ott, R. A.; Sonley, T. J.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Biller, S. D.; Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Gagnon, N.; Jelley, N. A.; Loach, J. C.; Majerus, S.; McCauley, N.; O'Keeffe, H. M.; Gann, G. D. Orebi; Peeters, S. J. M.; Tagg, N.; Tseung, H. Wan Chan; West, N.; Wilson, J. R.; Zuber, K.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Beier, E. W.; Deng, H.; Dunford, M.; Heintzelman, W. J.; Klein, J. R.; Kyba, C. C. M.; McCauley, N.; Secrest, J. A.; Van de Water, R. G.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Ahmed, S. N.; Beltran, B.; Boulay, M. G.; Cai, B.; Chen, M.; Dai, X.; Duncan, F. A.; Evans, H. C.; Ewan, G. T.; Ford, R. J.; Guillian, E.; Habib, S.; Hallin, A. L.; Harvey, P. J.; Heise, J.; Howard, C.; Kos, M.; Kraus, C.; Krauss, C. B.; Leslie, J. R.; MacLellan, R.; Mak, H. B.; Martin, R.; McDonald, A. B.; Noble, A. J.; Robertson, B. C.; Skensved, P.; Wright, A.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Wark, D. L.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Duncan, F. A.; Ford, R. J.; Lawson, I. T.] SNOLAB, Sudbury, ON P3Y 1M3, Canada. [Anthony, A. E.; Huang, M.; Klein, J. R.; Seibert, S. R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Helmer, R. L.; Sinclair, D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Heeger, K. M.; Howe, M. A.; McGee, S.; Miller, M. L.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wilkerson, J. F.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Burritt, T. H.; Cox-Mobrand, G. A.; Detwiler, J.; Doe, P. J.; Elliott, S. R.; Formaggio, J. A.; Gagnon, N.; Hazama, R.; Heeger, K. M.; Howe, M. A.; McGee, S.; Miller, M. L.; Oblath, N. S.; Rielage, K.; Robertson, R. G. H.; Smith, M. W. E.; Steiger, T. D.; Stonehill, L. C.; Tolich, N.; VanDevender, B. A.; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Wark, D. L.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. RP Aharmim, B (reprint author), Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. RI Heeger, Karsten/A-9533-2011; Hallin, Aksel/H-5881-2011; Kyba, Christopher/I-2014-2012; Dai, Xiongxin/I-3819-2013; Prior, Gersende/I-8191-2013; Maneira, Jose/D-8486-2011; Barros, Nuno/O-1921-2016; OI Heeger, Karsten/0000-0002-4623-7543; Kyba, Christopher/0000-0001-7014-1843; Maneira, Jose/0000-0002-3222-2738; Barros, Nuno/0000-0002-1192-0705; MARINO, ALYSIA/0000-0002-1709-538X; Wilkerson, John/0000-0002-0342-0217; Prior, Gersende/0000-0002-6058-1420; Jamieson, Blair/0000-0003-3589-9127; Rielage, Keith/0000-0002-7392-7152; Andersen, Thomas/0000-0003-1614-4124; Van de Water, Richard/0000-0002-1573-327X FU Canada: Natural Sciences and Engineering Research Council; Industry Canada; National Research Council; Northern Ontario Heritage Fund; Atomic Energy of Canada, Ltd.; Ontario Power Generation, High Performance Computing Virtual Laboratory; Canada Foundation for Innovation; US: Department of Energy; National Energy Research Scientific Computing Center; UK; Science and Technology Facilities Council; Portugal; Fundacao para a Ciencia e a Tecnologia FX This research was supported by: Canada: Natural Sciences and Engineering Research Council, Industry Canada, National Research Council, Northern Ontario Heritage Fund, Atomic Energy of Canada, Ltd., Ontario Power Generation, High Performance Computing Virtual Laboratory, Canada Foundation for Innovation; US: Department of Energy, National Energy Research Scientific Computing Center; UK: Science and Technology Facilities Council; Portugal: Fundacao para a Ciencia e a Tecnologia. We thank the SNO technical staff for their strong contributions. We thank Vale Inco for hosting this project. NR 52 TC 23 Z9 23 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 012001 DI 10.1103/PhysRevD.80.012001 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600003 ER PT J AU Albuquerque, IFM Carvalho, WR AF Albuquerque, Ivone F. M. Carvalho, Washington R., Jr. TI Detection of exotic massive hadrons in ultrahigh energy cosmic ray telescopes SO PHYSICAL REVIEW D LA English DT Article ID NUCLEUS COLLISIONS; UPPER LIMIT; SPECTRUM; SIMULATION; CASCADES; MODEL; LSP; EYE AB We investigate the detection of exotic massive strongly interacting hadrons (uhecrons) in ultrahigh energy cosmic ray telescopes. The conclusion is that experiments such as the Pierre Auger Observatory have the potential to detect these particles. It is shown that uhecron showers have clear distinctive features when compared to proton and nuclear showers. The simulation of uhecron air showers, and its detection and reconstruction by fluorescence telescopes, is described. We determine basic cuts in observables that will separate uhecrons from the cosmic ray bulk, assuming this is composed by protons. If these are composed by a heavier nucleus, the separation will be much improved. We also discuss photon induced showers. The complementarity between uhecron detection in accelerator experiments is discussed. C1 [Albuquerque, Ivone F. M.; Carvalho, Washington R., Jr.] Univ Sao Paulo, Inst Fis, BR-05314 Sao Paulo, Brazil. [Albuquerque, Ivone F. M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Albuquerque, IFM (reprint author), Univ Sao Paulo, Inst Fis, BR-05314 Sao Paulo, Brazil. RI Albuquerque, Ivone/H-4645-2012; Carvalho Jr., Washington/H-9855-2015 OI Albuquerque, Ivone/0000-0001-7328-0136; Carvalho Jr., Washington/0000-0002-2328-7628 NR 39 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023006 DI 10.1103/PhysRevD.80.023006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800008 ER PT J AU Albuquerque, IFM Klein, SR AF Albuquerque, Ivone F. M. Klein, Spencer R. TI Supersymmetric and Kaluza-Klein particles multiple scattering in the Earth SO PHYSICAL REVIEW D LA English DT Article AB Neutrino telescopes with cubic kilometer volumes have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering. C1 [Albuquerque, Ivone F. M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Albuquerque, Ivone F. M.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Klein, Spencer R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Albuquerque, IFM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. RI Albuquerque, Ivone/H-4645-2012 OI Albuquerque, Ivone/0000-0001-7328-0136 FU U.S. National Science Foundation [0653266]; U.S. Department of Energy [DE-AC-76SF00098, DE-AC02-07CH11359]; Brazilian National Counsel for Scientific Research (CNPq) FX This work was partially funded by the U.S. National Science Foundation under grant number 0653266, the U.S. Department of Energy under contract numbers DE-AC-76SF00098 and DE-AC02-07CH11359 and the Brazilian National Counsel for Scientific Research (CNPq). NR 13 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015015 DI 10.1103/PhysRevD.80.015015 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600063 ER PT J AU Aoki, S Bar, O Sharpe, SR AF Aoki, Sinya Baer, Oliver Sharpe, Stephen R. TI Vector and axial currents in Wilson chiral perturbation theory SO PHYSICAL REVIEW D LA English DT Article ID IMPROVED LATTICE QCD; NONPERTURBATIVE RENORMALIZATION; CONTINUUM-LIMIT; FERMION ACTION; ONE-LOOP; IMPROVEMENT; OPERATORS; SYMMETRY; QUARK AB We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory, the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two-flavor theory. Our result differs from previously published ones. C1 [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Baer, Oliver] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Sharpe, Stephen R.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. OI Baer, Oliver/0000-0002-7480-6467 FU Ministry of Education, Culture, Sports, Science and Technology [20340047, 20105001, 20105003]; Deutsche Forschungsgemeinschaft [SFB/TR 09]; U.S. Department of Energy FX O. B. acknowledges useful discussions with Johan Bijnens, Maarten Golterman and Rainer Sommer. We also thank Rainer Sommer for feedback on a first draft of this paper. This work is supported in part by the Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (Nos. 20340047, 20105001, 20105003), by the Deutsche Forschungsgemeinschaft (SFB/TR 09) and by the U.S. Department of Energy. NR 29 TC 7 Z9 7 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014506 DI 10.1103/PhysRevD.80.014506 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600048 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Cerutti, F Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Cerutti, F. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. del Amo Sanchez, P. Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Search for B-0 meson decays to pi(KSKS0)-K-0-K-0, eta(KSKS0)-K-0, and eta(KSKS0)-K-'-K-0 SO PHYSICAL REVIEW D LA English DT Article ID CP-VIOLATION AB We describe searches for B-0 meson decays to the charmless final states pi(KSKS0)-K-0-K-0, eta(KSKS0)-K-0, and eta(KSKS0)-K-'-K-0. The data sample corresponds to 467x10(6) BB pairs produced in e(+)e(-) annihilation and collected with the BABAR detector at the SLAC National Accelerator Laboratory. We find no significant signals and determine the 90% confidence level upper limits on the branching fractions, in units of 10(-7), B(B-0 ->pi(KSKS0)-K-0-K-0)< 9, B(B-0 ->eta(KSKS0)-K-0)< 10, and B(B-0 ->eta(KSKS0)-K-'-K-0)< 20. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Phys Expt, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Adametz, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Cerutti, F.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Cerutti, F.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [del Amo Sanchez, P.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Bettarini, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Smith, A. J. S.; Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Benitez, J. F.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Sevilla, M. Franco; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kocian, M. L.; Leith, D. W. G. S.; Lindquist, B.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Calderini, G.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015 OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633 FU DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 29 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 011101 DI 10.1103/PhysRevD.80.011101 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600001 ER PT J AU Bar-Shalom, S Oaknin, D Soni, A AF Bar-Shalom, Shaouly Oaknin, David Soni, Amarjit TI Extended Friedberg-Lee hidden symmetries, quark masses, and CP violation with four generations SO PHYSICAL REVIEW D LA English DT Article ID INVARIANT FORMULATION; 4TH GENERATION; DECAYS; FAMILIES; MATRICES; PHYSICS; MODEL AB Motivated in part by the several observed anomalies involving CP asymmetries of B and B(s) decays, we consider the standard model with a 4th sequential family (SM4) which seems to offer a rather simple resolution. We initially assume T-invariance by taking the up and down-quark 4x4 mass matrix to be real. Following Friedberg and Lee (FL), we then impose a hidden symmetry on the unobserved (hidden) up and down-quark SU(2) states. The hidden symmetry for four generations ensures the existence of two zero-mass eigenstates, which we take to be the (u,c) and (d,s) states in the up and down-quark sectors, respectively. Then, we simultaneously break T-invariance and the hidden symmetry by introducing two phase factors in each sector. This breaking mechanism generates the small quark masses m(u), m(c) and m(d), m(s), which, along with the orientation of the hidden symmetry, determine the size of CP-violation in the SM4. For illustration we choose a specific physical picture for the hidden symmetry and the breaking mechanism that reproduces the observed quark masses, mixing angles and CP-violation, and at the same time allows us to further obtain very interesting relations/predictions for the mixing angles of t and t('). For example, with this choice we get V(td)similar to(V(cb)/V(cd)-V(ts)/V(us))+O(lambda(2)) and V(t)(')b similar to V(t)(')d center dot(V(cb)/V(cd)), V(tb)(')similar to V(t)(')d center dot(V(ts)/V(us)), implying that V(t)(')d > V(t)(')b, V(tb)('). We furthermore find that the Cabibbo angle is related to the orientation of the hidden symmetry and that the key CP-violating quantity of our model at high energies, J(SM4)equivalent to Im(V(tb)V(t)(')b(star)V(t)(')b(')V(tb)('star)), which is the high-energy analogue of the Jarlskog invariant of the SM, is proportional to the light-quark masses and the measured Cabibbo-Kobayashi-Maskawa quark-mixing matrix angles: |J(SM4)|similar to A(3)lambda(5)x(m(u)/m(t)+m(c)/m(t)(')-m(d)/m(b)+m(s)/m(b)('))similar to 10(-5), where A similar to 0.81 and lambda=0.2257 are the Wolfenstein parameters. Other choices for the orientation of the hidden symmetry and/or the breaking mechanism may lead to different physical outcomes. A general solution, obtained numerically, will be presented in a forthcoming paper. C1 [Bar-Shalom, Shaouly; Oaknin, David] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Soni, Amarjit] Brookhaven Natl Lab, Theory Grp, Upton, NY 11973 USA. RP Bar-Shalom, S (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. EM shaouly@physics.technion.ac.il; d1306av@gmail.com; soni@bnl.gov FU U. S. DOE [DE-AC02-98CH10886] FX We thank Gad Eilam for discussions. The work of AS is supported in part by the U. S. DOE Contract No. DE-AC02-98CH10886. NR 36 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015011 DI 10.1103/PhysRevD.80.015011 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600059 ER PT J AU Bazavov, A Bhattacharya, T Cheng, M Christ, NH Detar, C Ejiri, S Gottlieb, S Gupta, R Heller, UM Huebner, K Jung, C Karsch, F Laermann, E Levkova, L Miao, C Mawhinney, RD Petreczky, P Schmidt, C Soltz, RA Soeldner, W Sugar, R Toussaint, D Vranas, P AF Bazavov, A. Bhattacharya, T. Cheng, M. Christ, N. H. DeTar, C. Ejiri, S. Gottlieb, Steven Gupta, R. Heller, U. M. Huebner, K. Jung, C. Karsch, F. Laermann, E. Levkova, L. Miao, C. Mawhinney, R. D. Petreczky, P. Schmidt, C. Soltz, R. A. Soeldner, W. Sugar, R. Toussaint, D. Vranas, P. TI Equation of state and QCD transition at finite temperature SO PHYSICAL REVIEW D LA English DT Article ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; THERMODYNAMICS; COLLABORATION; PERSPECTIVE; MATTER AB We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent N(tau)=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a(2)) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on N(tau)=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we include an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. C1 [Bazavov, A.; Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Bhattacharya, T.; Gupta, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Cheng, M.; Soltz, R. A.; Vranas, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Christ, N. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [DeTar, C.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Heller, U. M.] Amer Phys Soc, Ridge, NY 11961 USA. [Ejiri, S.; Huebner, K.; Jung, C.; Karsch, F.; Miao, C.; Petreczky, P.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Karsch, F.; Laermann, E.; Schmidt, C.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. [Petreczky, P.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Soeldner, W.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Sugar, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Bazavov, A (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Heller, Urs M./0000-0002-2780-5584; Gupta, Rajan/0000-0003-1784-3058; Schmidt, Christian/0000-0002-9071-4757 FU U.S. Department of Energy [DE-AC02-98CH10886, DE-AC52-07NA27344, DE-FG02-92ER40699, DE-FG02-91ER-40628, DE-FG02-91ER-40661, DE-FG02-04ER-41298, DE-KA14-01-02]; NSF [PHY08-57333, PHY07-57035, PHY07-57333, PHY07-03296]; Bundesministerium fur Bildung und Forschung [06BI401]; Gesellschaft fur Schwerionenforschung; Deutsche Forschungsgemeinschaft [GRK 881] FX This work has been supported in part by contracts DE-AC02-98CH10886, DE-AC52-07NA27344, DE-FG02-92ER40699, DE-FG02-91ER-40628, DE-FG02-91ER-40661, DE-FG02-04ER-41298, DE-KA14-01-02 with the U.S. Department of Energy, and NSF grants PHY08-57333, PHY07-57035, PHY07-57333 and PHY07-03296, the Bundesministerium fur Bildung und Forschung under grant 06BI401, the Gesellschaft fur Schwerionenforschung under grant BILAER and the Deutsche Forschungsgemeinschaft under grant GRK 881. We wish to thank Dimitri Kusnezov of the NNSA for providing access to the BlueGene/L at Lawrence Livermore National Laboratory (LLNL) and the computer support staff for the BlueGene/L computers at LLNL and the New York Center for Computational Sciences (NYCCS), where the numerical simulations have been performed. Some portions of the calculations were also carried out with U.S. National Science Foundation Teragrid resources at the San Diego Supercomputer Center, the Texas Advanced Computing Center and the QCDOC at the RIKEN-BNL Research Center. NR 39 TC 377 Z9 380 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014504 DI 10.1103/PhysRevD.80.014504 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600046 ER PT J AU Bertone, G Jackson, CB Shaughnessy, G Tait, TMP Vallinotto, A AF Bertone, Gianfranco Jackson, C. B. Shaughnessy, Gabe Tait, Tim M. P. Vallinotto, Alberto TI WIMP forest: Indirect detection of a chiral square SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER ANNIHILATION; NEUTRALINO ANNIHILATION; GALACTIC-CENTER; MILKY-WAY; 2 PHOTONS; HALOS; MODEL; PARTICLE; CONTRACTION; DENSITY AB We consider the signals of indirect dark matter detection resulting from a theory of two universal extra dimensions compactified on a chiral square. Aside from the continuum emission, which is a generic prediction of most dark matter candidates, we find a series of prominent annihilation lines (a WIMP forest) that, after convolution with the angular resolution of current experiments, leads to a distinctive (2-bump plus continuum) spectrum, which may be visible in the near future with the Fermi Gamma-Ray Space Telescope (formerly known as GLAST). C1 [Bertone, Gianfranco] Inst Astrophys Paris, Paris, France. [Bertone, Gianfranco] Univ Paris 06, CNRS, UMR7095, F-75014 Paris, France. [Jackson, C. B.; Shaughnessy, Gabe; Tait, Tim M. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Shaughnessy, Gabe; Tait, Tim M. P.] Northwestern Univ, Evanston, IL 60208 USA. [Vallinotto, Alberto] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Bertone, G (reprint author), Inst Astrophys Paris, Paris, France. FU Department of Energy [DE-AC02-06CH11357]; DOE; NASA FX The authors are grateful for conversations with Bogdan Dobrescu, Dan Hooper, Rakhi Mahbubani, Simona Murgia, and especially to Eduardo Ponton, and K. C. Kong (particularly for his publicly available chiral square MICROMEGAS model files). T. Tait is grateful to the SLAC theory group for their extraordinary generosity during his many visits. Research at Argonne National Laboratory is supported in part by the Department of Energy under Contract No. DE-AC02-06CH11357. A Vallinotto is supported by the DOE and NASA at Fermilab. NR 64 TC 49 Z9 49 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023512 DI 10.1103/PhysRevD.80.023512 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800028 ER PT J AU Chung, KY Chiow, SW Herrmann, S Chu, S Muller, H AF Chung, Keng-Yeow Chiow, Sheng-wey Herrmann, Sven Chu, Steven Mueller, Holger TI Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics SO PHYSICAL REVIEW D LA English DT Article ID FINE-STRUCTURE CONSTANT; CPT VIOLATION; RELATIVISTIC GRAVITY; PHOTON RECOIL; PARTICLES; ELECTRON; MODEL AB We present atom-interferometer tests of the local Lorentz invariance of post-Newtonian gravity. An experiment probing for anomalous vertical gravity on Earth, which has already been performed, uses the highest-resolution atomic gravimeter so far. The influence of Lorentz violation in electrodynamics is also taken into account, resulting in combined bounds on Lorentz violation in gravity and electrodynamics. Expressed within the standard model extension or Nordtvedt's anisotropic universe model, we limit 12 linear combinations of seven coefficients for Lorentz violation at the part per billion level, from which we derive limits on six coefficients (and seven when taking into account additional data from lunar laser ranging). We also discuss the use of horizontal interferometers, including atom-chip or guided-atom devices, which potentially allow the use of longer coherence times in order to achieve higher sensitivity. C1 [Chung, Keng-Yeow] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Chiow, Sheng-wey] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Herrmann, Sven] Univ Bremen Fallturm Hochschulring, ZARM, D-28359 Bremen, Germany. [Chu, Steven; Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Steven] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chung, KY (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. EM hm@berkeley.edu RI Mueller, Holger/E-3194-2015 NR 94 TC 61 Z9 63 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 016002 DI 10.1103/PhysRevD.80.016002 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600077 ER PT J AU Cirigliano, V Kitano, R Okada, Y Tuzon, P AF Cirigliano, Vincenzo Kitano, Ryuichiro Okada, Yasuhiro Tuzon, Paula TI Model discriminating power of mu -> e conversion in nuclei SO PHYSICAL REVIEW D LA English DT Article ID MUON-ELECTRON CONVERSION; LEPTON-FLAVOR; R-PARITY; MU(-)-E(-) CONVERSION; SIGMA-TERM; NUMBER; COUPLINGS; VIOLATION; MASSES; LIMIT AB We assess the model discriminating power of a combined phenomenological analysis of mu -> e gamma and mu -> e conversion on different target nuclei, including the current hadronic uncertainties. We find that the theoretical uncertainties can be largely reduced by using input from lattice QCD, and do not constitute a limiting factor in discriminating models where one or, at most, two underlying operators (dipole, scalar, vector) provide the dominant source of lepton flavor violation. Our results show that a realistic discrimination among underlying mechanisms requires a measurement of the ratio of conversion rates at the 5% level (two light nuclei) or at the 20% level (one light and one heavy nucleus). We also illustrate these main conclusions in the context of a supersymmetric model. C1 [Cirigliano, Vincenzo; Kitano, Ryuichiro; Tuzon, Paula] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kitano, Ryuichiro] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Okada, Yasuhiro] Grad Univ Adv Studies, Dept Particle & Nucl Phys, Tsukuba, Ibaraki 3050801, Japan. [Tuzon, Paula] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain. [Okada, Yasuhiro] KEK, Theory Grp, Tsukuba, Ibaraki 3050801, Japan. RP Cirigliano, V (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. RI Tuzon, Paula/L-3653-2014; OI Tuzon, Paula/0000-0003-1344-3751; Cirigliano, Vincenzo/0000-0002-9056-754X FU KEK theory group; Institute for Nuclear Theory at the University of Washington; Grant-in-Aid for Science Research, Ministry of Education, Culture, Sports, Science and Technology, Japan [16081211]; Grant-in-Aid for Science Research, Japan Society for the Promotion of Science [20244037]; theory group at LANL; Spanish Ministry of Science and Innovation [AP2006-04522]; EU [MRTN-CT-2006-035482]; MEC (Spain) [FPA2007-60323]; Spanish Consolider-Ingeino 2010 Programme CPAN [CSD2007-00042] FX We thank Satoshi Mihara for useful exchanges on the experimental aspects of mu-to-e conversion and Tetsuya Onogi for useful comments on the sigma term. V. C. thanks the KEK theory group for its hospitality and support, as well as the Institute for Nuclear Theory at the University of Washington for its hospitality and the Department of Energy for support during the completion of this work. Y.O. is supported in part by the Grant-in-Aid for Science Research, Ministry of Education, Culture, Sports, Science and Technology, Japan, No. 16081211 and by the Grant-in-Aid for Science Research, Japan Society for the Promotion of Science, No. 20244037. P. T. has been supported in part by the theory group at LANL (during her visit), by a grant from the Spanish Ministry of Science and Innovation (No. AP2006-04522), as well as by the EU under Grant No. MRTN-CT-2006-035482 (FLAVIAnet), by MEC (Spain) under Grant No. FPA2007-60323, and by the Spanish Consolider-Ingeino 2010 Programme CPAN (No. CSD2007-00042). NR 35 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 013002 DI 10.1103/PhysRevD.80.013002 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600006 ER PT J AU Dawson, JF Mihaila, B Cooper, F AF Dawson, John F. Mihaila, Bogdan Cooper, Fred TI Fermion particle production in semiclassical Boltzmann-Vlasov transport theory SO PHYSICAL REVIEW D LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; CENTRAL RAPIDITY REGION; STRONG ELECTRIC-FIELD; QUARK-GLUON PLASMA; FLUX-TUBE MODEL; PAIR PRODUCTION; ANTIQUARK PLASMA; OSCILLATIONS; EQUATIONS AB We present numerical solutions of the semiclassical Boltzmann-Vlasov equation for fermion particle-antiparticle production by strong electric fields in boost-invariant coordinates in (1+1) and (3+1) dimensional QED. We compare the Boltzmann-Vlasov results with those of recent quantum field theory calculations and find good agreement. We conclude that extending the Boltzmann-Vlasov approach to the case of QCD should allow us to do a thorough investigation of how backreaction affects recent results on the dependence of the transverse momentum distribution of quarks and antiquarks on a second Casimir invariant of color SU(3). C1 [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cooper, Fred] Natl Sci Fdn, Arlington, VA 22230 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Dawson, JF (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. EM john.dawson@unh.edu; bmihaila@lanl.gov; cooper@santafe.edu RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 22 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014011 DI 10.1103/PhysRevD.80.014011 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600028 ER PT J AU Essig, R Sehgal, N Strigari, LE AF Essig, Rouven Sehgal, Neelima Strigari, Louis E. TI Bounds on cross sections and lifetimes for dark matter annihilation and decay into charged leptons from gamma-ray observations of dwarf galaxies SO PHYSICAL REVIEW D LA English DT Article ID MILKY-WAY; SPHEROIDAL GALAXY; ELECTRONS; EMISSION; POSITRON; SATELLITES; SPECTRA; PAMELA AB We provide conservative bounds on the dark matter cross section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle phi. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion similar to 10 to 20 times lower than that of the local Galactic halo, then the cross sections for dark matter annihilating through phi's required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into tau's is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after 1 yr of observation. C1 [Essig, Rouven] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Sehgal, Neelima; Strigari, Louis E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RP Essig, R (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. OI Strigari, Louis/0000-0001-5672-6079 NR 96 TC 87 Z9 87 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023506 DI 10.1103/PhysRevD.80.023506 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800022 ER PT J AU Galli, S Melchiorri, A Smoot, GF Zahn, O AF Galli, Silvia Melchiorri, Alessandro Smoot, George F. Zahn, Oliver TI From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE BACKGROUND ANISOTROPIES; POWER SPECTRUM; DARK ENERGY; 2003 FLIGHT; RECOMBINATION; BOOMERANG AB We present new constraints on cosmic variations of Newton's gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from big bang nucleosynthesis. We found that current CMB data provide constraints at the similar to 10% level, that can be improved to similar to 3% by including big bang nucleosynthesis data. We show that future data expected from the Planck satellite could constrain G at the similar to 1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements. C1 [Galli, Silvia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Melchiorri, Alessandro] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Galli, Silvia] Univ Paris Diderot, Lab Astroparticule & Cosmol APC, F-75205 Paris 13, France. [Smoot, George F.; Zahn, Oliver] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Smoot, George F.; Zahn, Oliver] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. RP Galli, S (reprint author), Univ Roma La Sapienza, Dept Phys, Ple Aldo Moro 2, I-00185 Rome, Italy. EM galli@apc.univ-paris7.fr; alessandro.melchiorri@roma1.infn.it; gfsmoot@lbl.gov; zahn@berkeley.edu OI Melchiorri, Alessandro/0000-0001-5326-6003 NR 49 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023508 DI 10.1103/PhysRevD.80.023508 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800024 ER PT J AU Gao, JH Xiao, BW AF Gao, Jian-Hua Xiao, Bo-Wen TI Polarized deep inelastic and elastic scattering from gauge/string duality SO PHYSICAL REVIEW D LA English DT Article ID FORM-FACTORS; QCD AB In this paper, we investigate deep inelastic and elastic scattering on a polarized spin-112 hadron using gauge/string duality. This spin-12 hadron corresponds to a supergravity mode of the dilatino. The polarized deep inelastic structure functions are computed in the supergravity approximation at large t' Hooft coupling lambda and finite x with lambda(-1/2)< x < 1. Furthermore, we discuss the moments of all structure functions, and propose an interesting sum rule 01dxg(2)(x,q(2))=0 for the g(2) structure function which is known as the Burkhardt-Cottingham sum rule in QCD. In the end, the elastic scattering is studied and elastic form factors of the spin-12 hadron are calculated within the same framework. C1 [Gao, Jian-Hua] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Gao, Jian-Hua] Shandong Univ, Dept Phys, Jinan 250100, Shandong, Peoples R China. [Xiao, Bo-Wen] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Gao, JH (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM gaojh79@ustc.edu.cn; bxiao@lbl.gov RI Gao, Jianhua/O-9550-2014 FU National Natural Science Foundation of China [10525523]; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U. S. Department of Energy [DE-AC0205CH11231] FX We acknowledge inspiring discussions with S. Brodsky, V. Koch, Y. Kovchegov, A. Mueller, J. Qiu, G. Teramond, and F. Yuan. We would like to thank Y. Hatta for enormous communication and stimulating discussions during the preparation of this paper. J. G. acknowledges financial support by the National Natural Science Foundation of China under Grant No. 10525523. B. X. is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the U. S. Department of Energy under Contract No. DE-AC0205CH11231. NR 45 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015025 DI 10.1103/PhysRevD.80.015025 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600073 ER PT J AU Golec-Biernat, K Stasto, AM AF Golec-Biernat, K. Stasto, A. M. TI F-L proton structure function from the unified DGLAP/BFKL approach SO PHYSICAL REVIEW D LA English DT Article ID INITIAL-STATE RADIATION; SMALL-X; QCD COHERENCE; LOW Q(2); MODEL; BFKL; RESUMMATION; EVOLUTION; APPROXIMATION; FACTORIZATION AB We compute the longitudinal proton structure function F-L from the k(T) factorization scheme, using the unified DGLAP/BFKL resummation approach at small x for the unintegrated gluon density. The differences between the k(T) factorization, collinear factorization, and dipole approaches are analyzed and discussed. The comparisons with the DESY collider HERA data are made and predictions for the proposed large hadron-electron collider are also provided. C1 [Golec-Biernat, K.; Stasto, A. M.] Inst Nucl Phys PAN, Krakow, Poland. [Golec-Biernat, K.] Rzeszow Univ, Inst Phys, Rzeszow, Poland. [Stasto, A. M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Stasto, A. M.] Brookhaven Natl Lab, RIKEN Ctr, Upton, NY 11973 USA. RP Golec-Biernat, K (reprint author), Inst Nucl Phys PAN, Krakow, Poland. EM golec@ifj.edu.pl; astasto@phys.psu.edu FU MNiSW [N202 249235]; Alfred P. Sloan Research Foundation FX This work is partially supported by the grant MNiSW no. N202 249235. A. M. S. gratefully acknowledges the support of the Alfred P. Sloan Research Foundation. NR 40 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014006 DI 10.1103/PhysRevD.80.014006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600023 ER PT J AU Joudaki, S Cooray, A Holz, DE AF Joudaki, Shahab Cooray, Asantha Holz, Daniel E. TI Weak lensing and dark energy: The impact of dark energy on nonlinear dark matter clustering SO PHYSICAL REVIEW D LA English DT Article ID LARGE-SCALE STRUCTURE; BARYON ACOUSTIC-OSCILLATION; SHEAR POWER SPECTRUM; DIGITAL SKY SURVEY; EQUATION-OF-STATE; COSMOLOGICAL PARAMETERS; COSMIC SHEAR; GALAXIES; CONSTRAINTS; TOMOGRAPHY AB We examine the influence of percent-level dark energy corrections to the nonlinear matter power spectrum on constraints of the dark energy equation of state from future weak lensing probes. We explicitly show that a poor approximation (off by greater than or similar to 10%) to the nonlinear corrections causes a greater than or similar to 1 sigma bias on the determination of the dark energy equation of state. Future weak lensing surveys must therefore incorporate dark energy modifications to the nonlinear matter power spectrum accurate to the percent-level, to avoid introducing significant bias in their measurements. For the WMAP5 cosmology, the more accurate power spectrum is more sensitive to dark energy properties, resulting in a factor of 2 improvement in dark energy equation of state constraints. We explore the complementary constraints on dark energy from future weak lensing and supernova surveys. A space-based, Joint Dark Energy Mission-like survey measures the equation of state in five independent redshift bins to similar to 10%, while this improves to similar to 5% for a wide-field ground-based survey like the Large Synoptic Survey Telescope. These constraints are contingent upon our ability to control weak lensing systematic uncertainties to the sub-percent level. C1 [Joudaki, Shahab; Cooray, Asantha] Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. [Holz, Daniel E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Joudaki, S (reprint author), Univ Calif Irvine, Dept Phys & Astron, Ctr Cosmol, Irvine, CA 92697 USA. NR 71 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023003 DI 10.1103/PhysRevD.80.023003 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800005 ER PT J AU Linder, EV Scherrer, RJ AF Linder, Eric V. Scherrer, Robert J. TI Aetherizing Lambda: Barotropic fluids as dark energy SO PHYSICAL REVIEW D LA English DT Article ID EQUATION-OF-STATE; K-ESSENCE; SCALAR FIELD; X-MATTER; COSMOLOGY; QUINTESSENCE; PERTURBATIONS; STATEFINDER; INFLATION; COMPONENT AB We examine the class of barotropic fluid models of dark energy, in which the pressure is an explicit function of the density, p=f(rho). Through general physical considerations we constrain the asymptotic past and future behaviors and show that this class is equivalent to the sum of a cosmological constant and a decelerating perfect fluid, or "aether," with w(AE)>= 0. Barotropic models give substantially disjoint predictions from quintessence, except in the limit of Lambda CDM. They are also interesting in that they simultaneously can ameliorate the coincidence problem and yet "predict" a value of w approximate to-1. C1 [Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Scherrer, Robert J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Linder, EV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 61 TC 52 Z9 52 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 2 AR 023008 DI 10.1103/PhysRevD.80.023008 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WH UT WOS:000268618800010 ER PT J AU Medina, AD Shah, NR Wagner, CEM AF Medina, Anibal D. Shah, Nausheen R. Wagner, Carlos E. M. TI Heavy Higgs boson with a light sneutrino next-to-lightest supersymmetric particle in the MSSM with enhanced SU(2) D-terms SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; MASS; PHYSICS AB The minimal supersymmetric extension of the standard model provides a solution to the hierarchy problem and leads to the presence of a light Higgs. A Higgs boson with mass above the present experimental bound may only be obtained for relatively heavy third generation squarks, requiring a precise, somewhat unnatural balance between different contributions to the effective Higgs mass parameter. It was recently noticed that somewhat heavier Higgs bosons, which are naturally beyond the CERN LEP bound, may be obtained by enhanced weak SU(2) D-terms. Such contributions appear in models with an enhanced electroweak gauge symmetry, provided the supersymmetry breaking masses associated with the scalars responsible for the breakdown of the enhanced gauge symmetry group to the standard model one are larger than the enhanced symmetry breaking scale. In this article we emphasize that the enhanced SU(2) D-terms will not only raise the Higgs boson mass but also affect the spectrum of the nonstandard Higgs bosons, sleptons, and squarks, which therefore provide a natural contribution to the T parameter, compensating for the negative one coming from the heavy Higgs boson. The sleptons and nonstandard Higgs bosons of these models, in particular, may act in a way similar to the so-called inert Higgs doublet. The phenomenological properties of these models are emphasized, and possible cosmological implications as well as collider signatures are described. C1 [Medina, Anibal D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Shah, Nausheen R.; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Shah, Nausheen R.; Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Medina, AD (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. FU DOE [DE-FGO3-96ER40956]; U.C. Davis; U.S. DOE [DE-FG02-91ER40674]; Division of HEP [DE-AC02-06CH11357]; Bloomenthal Research FX We would like to thank P. Batra, M. Carena, A. Delgado, E. Ponton, and particularly T. Tait for useful discussions and comments. This work was supported in part by the DOE under Task TeV of Contract No. DE-FGO3-96ER40956. Work at U.C. Davis was supported in part by U.S. DOE Grant No. DE-FG02-91ER40674. Work at ANL is supported in part by the US DOE, Division of HEP, Contract No. DE-AC02-06CH11357. Work of N. R. Shah is supported by Bloomenthal Research. NR 49 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 015001 DI 10.1103/PhysRevD.80.015001 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600049 ER PT J AU Mihaila, B Cooper, F Dawson, JF AF Mihaila, Bogdan Cooper, Fred Dawson, John F. TI Backreaction and particle production in (3+1)-dimensional QED SO PHYSICAL REVIEW D LA English DT Article ID GLUON DISTRIBUTION-FUNCTIONS; STRONG ELECTRIC-FIELD; HEAVY-ION COLLISIONS; FLUX-TUBE MODEL; PAIR PRODUCTION; LARGE NUCLEI; QUARK; PLASMA; DYNAMICS; BEHAVIOR AB We study the fermion pair production from a strong electric field in boost-invariant coordinates in (3+1) dimensions and exploit the cylindrical symmetry of the problem. This problem has been used previously as a toy model for populating the central-rapidity region of a heavy-ion collision (when we can replace the electric by a chromoelectric field). We derive and solve the renormalized equations for the dynamics of the mean electric field and current of the produced particles, when the field is taken to be a function only of the fluid proper time tau=t(2)-z(2). We determine the proper-time evolution of the comoving energy density and pressure of the ensuing plasma and the time evolution of suitable interpolating number operators. We find that unlike in 1+1 dimensions, the energy density epsilon closely follows the longitudinal pressure. The transverse-momentum distribution of fermion pairs at large momentum is quite different and larger than that expected from the constant field result. C1 [Mihaila, Bogdan] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Cooper, Fred] Natl Sci Fdn, Arlington, VA 22230 USA. [Cooper, Fred] Santa Fe Inst, Santa Fe, NM 87501 USA. [Cooper, Fred] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Dawson, John F.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. RP Mihaila, B (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM bmihaila@lanl.gov; cooper@santafe.edu; john.dawson@unh.edu RI Mihaila, Bogdan/D-8795-2013 OI Mihaila, Bogdan/0000-0002-1489-8814 NR 32 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014010 DI 10.1103/PhysRevD.80.014010 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600027 ER PT J AU Noronha, J Dumitru, A AF Noronha, Jorge Dumitru, Adrian TI Heavy quark potential as a function of shear viscosity at strong coupling SO PHYSICAL REVIEW D LA English DT Article ID YANG-MILLS THEORY; DE-SITTER SUPERGRAVITY; N GAUGE-THEORY; FIELD-THEORIES; CONSTANT DEPENDENCE; FINITE-TEMPERATURE; POLYAKOV LOOP; STRING THEORY; WILSON LOOPS; PLASMA AB We determine finite temperature corrections to the heavy-quark (static) potential as a function of the shear viscosity-to-entropy density ratio in a strongly coupled, large-N(c) conformal field theory dual to five-dimensional Gauss-Bonnet gravity. We find that these corrections are even smaller than those predicted by perturbative QCD at distances relevant for small bound states in a deconfined plasma. Obtaining the dominant temperature and viscosity dependence of quarkonium binding energies will require a theory where conformal invariance is broken in such a way that the free energy associated with a single heavy quark is not just a pure entropy contribution. C1 [Noronha, Jorge] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Dumitru, Adrian] CUNY Bernard M Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10016 USA. [Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10016 USA. [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Noronha, J (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RI Noronha, Jorge/M-8800-2014; Noronha, Jorge/E-5783-2013 FU US-DOE Nuclear Science [DE-FG02-93ER40764] FX J. N. acknowledges support from US-DOE Nuclear Science Grant No. DE-FG02-93ER40764. A. D. thanks R. Pisarski and M. Strickland for useful comments. J. N. thanks M. Gyulassy for interesting discussions. NR 76 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014007 DI 10.1103/PhysRevD.80.014007 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600024 ER PT J AU Ramalho, G Pena, MT AF Ramalho, G. Pena, M. T. TI Valence quark contribution for the gamma N ->Delta quadrupole transition extracted from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; HIGH-MOMENTUM-TRANSFER; DELTA(1232) RESONANCE; PI(0) ELECTROPRODUCTION; GAMMA-ASTERISK; NUCLEON; MODEL; DELTA; EXCITATION; ENERGY AB Starting with a covariant spectator quark model developed for the nucleon N and the Delta in the physical pion mass region, we extend the predictions of the reaction gamma N ->Delta to the lattice QCD regime. The quark model includes S and D waves in the quark-diquark wave functions. Within this framework, it is the D-wave part in the Delta wave function that generates nonzero valence contributions for the quadrupole form factors of the transition. Those contributions are however insufficient to explain the physical data, since the pion cloud contributions dominate. To separate the two effects, we apply the model to the lattice regime in a region where the pion cloud effects are negligible and adjust the D-state parameters directly to the lattice data. This process allows us to obtain a better determination of the D-state contributions. Finally, by adding a simple parametrization of the pion cloud, we establish the connection between the experimental data and the lattice data. C1 [Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. RP Ramalho, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X FU Jefferson Science Associates, LLC; U.S. DOE [DE-AC05-06OR23177]; Portuguese Fundacao para a Ciencia e Tecnologia [SFRH/BPD/26886/2006]; European Union FX G. R. wants to thank Jozef Dudek, Kostas Orginos, and Franz Gross for the helpful discussions. The authors thank Constantia Alexandrou for sharing details of the lattice data presented in Ref. [10] and Alfred Stadler for the review of the final text. This work was partially supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. G. R. was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under Grant No. SFRH/BPD/26886/2006. This work has been supported in part by the European Union (HadronPhysics2 project "Study of strongly interacting matter''). NR 62 TC 32 Z9 32 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 013008 DI 10.1103/PhysRevD.80.013008 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600012 ER PT J AU Sturm, C Aoki, Y Christ, NH Izubuchi, T Sachrajda, CTC Soni, A AF Sturm, C. Aoki, Y. Christ, N. H. Izubuchi, T. Sachrajda, C. T. C. Soni, A. CA RBC Collaboration UKQCD Collaboration TI Renormalization of quark bilinear operators in a momentum-subtraction scheme with a nonexceptional subtraction point SO PHYSICAL REVIEW D LA English DT Article ID DIMENSIONAL REGULARIZATION; ANOMALOUS DIMENSION; COUPLING-CONSTANT; QCD; (MS)OVER-BAR; LOOPS; ORDER; MASS; CURRENTS; FIELD AB We extend the Rome-Southampton regularization independent momentum-subtraction renormalization scheme (RI/MOM) for bilinear operators to one with a nonexceptional, symmetric subtraction point. Two-point Green's functions with the insertion of quark bilinear operators are computed with scalar, pseudoscalar, vector, axial-vector and tensor operators at one-loop order in perturbative QCD. We call this new scheme RI/SMOM, where the S stands for "symmetric." Conversion factors are derived, which connect the RI/SMOM scheme and the MS scheme and can be used to convert results obtained in lattice calculations into the MS scheme. Such a symmetric subtraction point involves nonexceptional momenta implying a lattice calculation with substantially suppressed contamination from infrared effects. Further, we find that the size of the one-loop corrections for these infrared improved kinematics is substantially decreased in the case of the pseudoscalar and scalar operator, suggesting a much better behaved perturbative series. Therefore it should allow us to reduce the error in the determination of the quark mass appreciably. C1 [Sturm, C.; Izubuchi, T.; Soni, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Aoki, Y.; Izubuchi, T.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Christ, N. H.; Sachrajda, C. T. C.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Izubuchi, T.] Kanazawa Univ, Inst Theoret Phys, Kanazawa, Ishikawa 9201192, Japan. [Sachrajda, C. T. C.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. RP Sturm, C (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RI Sturm, Christian/Q-2713-2015 OI Sturm, Christian/0000-0002-3137-4940 FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-92ER40699]; RIKEN BNL Research Center; Ministry of Education, Culture, Sports, Science and Technology [19740134, 20025010]; Japan Society for the Promotion of Science (JSPS); German Research Foundation (DFG), Japan-German; STFC [ST/G000557/1]; EU [MRTN-CT-2006-035482] FX We want to thank our colleagues in the RBC-UKQCD Collaborations, especially Peter Boyle, for discussions and encouragement. C. T. S. warmly thanks Norman Christ and Bob Mawhinney for their hospitality at Columbia University during the autumn term of 2008. This work was partially supported by U.S. DOE under Contract No. DE-AC02-98CH10886 (A. S., C. S. and T. I.) and in part by RIKEN BNL Research Center (T. I. and Y. A.). N. H. C was partially supported by the U.S. DOE under Contract No. DE-FG02-92ER40699. T. I. was also supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology No. 19740134 and No. 20025010, and by Japan Society for the Promotion of Science (JSPS) and German Research Foundation (DFG), Japan-German Joint Research Project 2008-2009. C. T. S. acknowledges support from STFC Grant No. ST/G000557/1 and EU Contract No. MRTN-CT-2006-035482 (Flavianet). NR 24 TC 45 Z9 45 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL PY 2009 VL 80 IS 1 AR 014501 DI 10.1103/PhysRevD.80.014501 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 478WF UT WOS:000268618600043 ER PT J AU Bardhan, JP Eisenberg, RS Gillespie, D AF Bardhan, Jaydeep P. Eisenberg, Robert S. Gillespie, Dirk TI Discretization of the induced-charge boundary integral equation SO PHYSICAL REVIEW E LA English DT Article ID POISSON-BOLTZMANN EQUATION; MONTE-CARLO SIMULATIONS; ANALYTICAL MOLECULAR-SURFACE; ELEMENT METHOD; BROWNIAN DYNAMICS; ELECTROSTATIC INTERACTIONS; DIELECTRIC ENVIRONMENTS; ION PERMEATION; FREE-ENERGIES; CHANNEL AB Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces. C1 [Bardhan, Jaydeep P.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Bardhan, Jaydeep P.; Eisenberg, Robert S.; Gillespie, Dirk] Rush Univ, Med Ctr, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA. [Eisenberg, Robert S.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Bardhan, JP (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jbardhan@alum.mit.edu OI Gillespie, Dirk/0000-0003-0802-5352 FU NIGMS NIH HHS [GM076013, R01 GM076013] NR 100 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011906 DI 10.1103/PhysRevE.80.011906 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300094 PM 19658728 ER PT J AU Belkin, M Snezhko, A Aranson, IS Kwok, WK AF Belkin, M. Snezhko, A. Aranson, I. S. Kwok, W. -K. TI Magnetically driven surface mixing SO PHYSICAL REVIEW E LA English DT Article ID VIBRATED GRANULAR LAYER; PATTERN-FORMATION AB Magnetic microparticles suspended on the surface of liquid and energized by vertical alternating magnetic field exhibit complex collective behavior. Various immobile and self-propelled self-assembled structures have been observed. Here, we report on experimental studies of mixing and surface diffusion processes in this system. We show that the pattern-induced surface flows have properties of quasi-two-dimensional turbulence. Correspondingly, the surface advection of tracer particle exhibits properties of Brownian diffusion. C1 [Belkin, M.; Snezhko, A.; Aranson, I. S.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Belkin, M.] IIT, Chicago, IL 60616 USA. RP Belkin, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Aranson, Igor/I-4060-2013 FU U. S. DOE [DE-AC02-06CH11357] FX This research was supported by U. S. DOE (Contract No. DE-AC02-06CH11357). NR 21 TC 8 Z9 8 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011310 DI 10.1103/PhysRevE.80.011310 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300067 PM 19658701 ER PT J AU Cortis, A Zoia, A AF Cortis, Andrea Zoia, Andrea TI Model of dispersive transport across sharp interfaces between porous materials SO PHYSICAL REVIEW E LA English DT Article ID DIMENSIONAL SOLUTE TRANSPORT; ANOMALOUS TRANSPORT; BOUNDARY-CONDITIONS; SOIL COLUMNS; MONTE-CARLO; MEDIA AB Recent laboratory experiments on solute migration in composite porous columns have shown an asymmetry in the solute arrival time upon reversal of the flow direction, which is not explained by current paradigms of transport. In this work, we propose a definition for the solute flux across sharp interfaces and explore the underlying microscopic particle dynamics by applying Monte Carlo simulation. Our results are consistent with previous experimental findings and explain the observed transport asymmetry. An interpretation of the proposed physical mechanism in terms of a flux rectification is also provided. The approach is quite general and can be extended to other situations involving transport across sharp interfaces. C1 [Cortis, Andrea] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zoia, Andrea] CEA Saclay, DEN DM2S SFME LSET, F-91191 Gif Sur Yvette, France. RP Cortis, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM acortis@lbl.gov FU (U. S.) Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the (U. S.) Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 9 Z9 9 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011122 DI 10.1103/PhysRevE.80.011122 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300034 PM 19658668 ER PT J AU Ferer, M Bromhal, GS Smith, DH AF Ferer, M. Bromhal, Grant S. Smith, Duane H. TI Miscible viscous fingering in three dimensions: Fractal-to-compact crossover and interfacial roughness SO PHYSICAL REVIEW E LA English DT Article ID PORE-LEVEL MODELS; POROUS-MEDIA; GROWING INTERFACES; DIFFUSION; FLOW; DISPLACEMENTS; SIMULATIONS; DYNAMICS AB Using our standard pore-level model, we have extended our earlier study of the crossover from fractal viscous fingering to compact /linear flow at a characteristic crossover time, tau, in three dimensions to systems with as many as a 10(6) pore bodies. These larger systems enable us to investigate the flows in the fully compact/well-past-crossover regime. The center of mass of the injected fluid exhibits basically the same behavior as found earlier but with an improved characteristic time. However, our earlier study of much smaller systems was unable to study the interfacial width in the important well-past-crossover regime, t >> tau. Now, we can study both the time evolution and roughness of the interfacial width. The interfacial width exhibits the same fractal-to-compact crossover as the center of mass, with the same characteristic time. In the fully compact regime, t >> tau, the interfacial width grows approximately linearly with time so that the standard growth exponent is approximately unity, beta=1.0 +/- 0.1. We find that neither is the interface self-affine nor is the roughness of the interface in the compact regime consistent with an effective long-range surface tension as assumed by various theories. In fact, similar to Levy flights, the height variations across the interface appear to be random with occasional large height variations. C1 [Ferer, M.; Smith, Duane H.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Ferer, M.; Bromhal, Grant S.; Smith, Duane H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA. RP Ferer, M (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. FU U.S. Department of Energy; Office of Fossil Energy FX M. F. acknowledges the support of the U.S. Department of Energy, Office of Fossil Energy. He also gratefully acknowledges helpful discussions with Alex Hansen and Thomas Ramstad. NR 27 TC 3 Z9 3 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011602 DI 10.1103/PhysRevE.80.011602 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300076 PM 19658710 ER PT J AU Li, CK Frenje, JA Petrasso, RD Seguin, FH Amendt, PA Landen, OL Town, RPJ Betti, R Knauer, JP Meyerhofer, DD Soures, JM AF Li, C. K. Frenje, J. A. Petrasso, R. D. Seguin, F. H. Amendt, P. A. Landen, O. L. Town, R. P. J. Betti, R. Knauer, J. P. Meyerhofer, D. D. Soures, J. M. TI Pressure-driven, resistive magnetohydrodynamic interchange instabilities in laser-produced high-energy-density plasmas SO PHYSICAL REVIEW E LA English DT Article AB Recent experiments using proton backlighting of laser-foil interactions provide unique opportunities for studying magnetized plasma instabilities in laser-produced high-energy-density plasmas. Time-gated proton radiograph images indicate that the outer structure of a magnetic field entrained in a hemispherical plasma bubble becomes distinctly asymmetric after the laser turns off. It is shown that this asymmetry is a consequence of pressure-driven, resistive magnetohydrodynamic (MHD) interchange instabilities. In contrast to the predictions made by ideal MHD theory, the increasing plasma resistivity after laser turn-off allows for greater low-mode destabilization (m > 1) from reduced stabilization by field-line bending. For laser-generated plasmas presented herein, a mode-number cutoff for stabilization of perturbations with m > similar to[8 pi beta(1+D(m)k(perpendicular to)(2) gamma(-1)(max))](1/2) is found in the linear growth regime. The growth is measured and is found to be in reasonable agreement with model predictions. C1 [Li, C. K.; Frenje, J. A.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Amendt, P. A.; Landen, O. L.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Soures, J. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn Phys & Astron, Rochester, NY 14623 USA. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM li@psfc.mit.edu FU U.S. DOE [DE-FG52-07NA28059, DEFG52-06N826203]; LLNL [B543881, LDRD-ER 898988]; LLE [414090-G]; Fusion Science Center at University of Rochester [412761-G] FX The work was performed at the LLE National Laser User's Facility (NLUF) and was supported in part by U.S. DOE (Grants No. DE-FG52-07NA28059 and No. DEFG52-06N826203), LLNL (Grants No. B543881 and No. LDRD-ER 898988), LLE (Grant No. 414090-G), and The Fusion Science Center at University of Rochester (Grant No. 412761-G). NR 25 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016407 DI 10.1103/PhysRevE.80.016407 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500068 PM 19658823 ER PT J AU Liu, DJ Chen, HT Lin, VSY Evans, JW AF Liu, Da-Jiang Chen, Hung-Ting Lin, Victor S. -Y. Evans, J. W. TI Statistical mechanical modeling of catalytic polymerization within surface-functionalized mesoporous materials SO PHYSICAL REVIEW E LA English DT Article ID POROUS-MEDIA; RANDOM-WALKS; DIFFUSION; CHANNELS; SILICA; CHAIN AB A discrete lattice model is developed to describe diffusion-mediated polymerization occurring within mesopores, where reaction is enhanced at catalytic sites distributed within the interior of the pores. Diffusive transport of monomers and polymers is one-dimensional, diffusion coefficients for the latter decreasing with polymer length. Kinetic Monte Carlo simulation is utilized to analyze model behavior focusing on a "clogging" regime, where the amount of polymer within the pores grows. We characterize the evolution of the overall and mean length of polymers, the mean number of polymers, as well as the polymer spatial and length distributions. C1 [Liu, Da-Jiang; Chen, Hung-Ting; Lin, Victor S. -Y.; Evans, J. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Chen, Hung-Ting; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Liu, DJ (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. NR 27 TC 2 Z9 2 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011801 DI 10.1103/PhysRevE.80.011801 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300086 PM 19658720 ER PT J AU Martin, JE Shea-Rohwer, L Solis, KJ AF Martin, James E. Shea-Rohwer, Lauren Solis, Kyle J. TI Strong intrinsic mixing in vortex magnetic fields SO PHYSICAL REVIEW E LA English DT Article ID CHAIN MODEL AB We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of similar to 55 degrees. Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads. C1 [Martin, James E.; Shea-Rohwer, Lauren; Solis, Kyle J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Martin, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy [DE-AC04-94AL85000]; Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE) FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. This work was supported by the Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE). NR 17 TC 19 Z9 19 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016312 DI 10.1103/PhysRevE.80.016312 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500056 PM 19658811 ER PT J AU Neusius, T Sokolov, IM Smith, JC AF Neusius, Thomas Sokolov, Igor M. Smith, Jeremy C. TI Subdiffusion in time-averaged, confined random walks SO PHYSICAL REVIEW E LA English DT Article ID SINGLE-MOLECULE TRACKING; FOKKER-PLANCK EQUATIONS; ANOMALOUS DIFFUSION; FRACTIONAL DYNAMICS; MONTE-CARLO; MEMBRANE; CELL; TRANSPORT; PROTEINS; SYSTEMS AB Certain techniques characterizing diffusive processes, such as single-particle tracking or molecular dynamics simulation, provide time averages rather than ensemble averages. Whereas the ensemble-averaged mean-squared displacement (MSD) of an unbounded continuous time random walk (CTRW) with a broad distribution of waiting times exhibits subdiffusion, the time-averaged MSD, (delta(2)) over bar, does not. We demonstrate that, in contrast to the unbounded CTRW, in which (delta(2)) over bar is linear in the lag time Delta, the time-averaged MSD of the CTRW of a walker confined to a finite volume is sublinear in Delta, i.e., for long lag times (delta(2)) over bar similar to Delta(1-alpha). The present results permit the application of CTRW to interpret time-averaged experimental quantities. C1 [Neusius, Thomas; Smith, Jeremy C.] Univ Heidelberg, D-69120 Heidelberg, Germany. [Sokolov, Igor M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Neusius, T (reprint author), Univ Heidelberg, Neuenheimer Feld 368, D-69120 Heidelberg, Germany. RI smith, jeremy/B-7287-2012 OI smith, jeremy/0000-0002-2978-3227 FU DOE Laboratory-Directed Research and Development; DFG [SFB555] FX J.C.S. acknowledges support from a DOE Laboratory-Directed Research and Development grant. I. M. S. thankfully acknowledges financial support by DFG within the SFB555 research program. NR 41 TC 46 Z9 47 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 011109 DI 10.1103/PhysRevE.80.011109 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VJ UT WOS:000268616300021 PM 19658655 ER PT J AU Nilson, RH Griffiths, SK AF Nilson, Robert H. Griffiths, Stewart K. TI Hierarchical transport networks optimizing dynamic response of permeable energy-storage materials SO PHYSICAL REVIEW E LA English DT Article ID FLOW; GAS AB Channel widths and spacing in latticelike hierarchical transport networks are optimized to achieve maximum extraction of gas or electrical charge from nanoporous energy-storage materials during charge and discharge cycles of specified duration. To address a range of physics, the effective transport diffusivity is taken to vary as a power, m, of channel width. Optimal channel widths and spacing in all levels of the hierarchy are found to increase in a power-law manner with normalized system size, facilitating the derivation of closed-form approximations for the optimal dimensions. Characteristic response times and ratios of channel width to spacing are both shown to vary by the factor 2/m between successive levels of any optimal hierarchy. This leads to fractal-like self-similar geometry, but only for m=2. For this case of quadratic dependence of diffusivity on channel width, the introduction of transport channels permits increases in system size on the order of 10(4), 10(8), and 10(10), without any reduction in extraction efficiency, for hierarchies having 1, 2 and, 8 levels, respectively. However, we also find that for a given system size there is an optimum number of hierarchical levels that maximizes extraction efficiency. C1 [Nilson, Robert H.; Griffiths, Stewart K.] Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94550 USA. RP Nilson, RH (reprint author), Sandia Natl Labs, Phys & Engn Sci Ctr, POB 969, Livermore, CA 94550 USA. FU Engineering Sciences Research Foundation at Sandia National Laboratories; Sandia Corporation, a Lockheed Martin Co., for the U. S. DOE National Nuclear Security Administration [DE-AC0494AL85000] FX The authors appreciate support from the Engineering Sciences Research Foundation at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U. S. DOE National Nuclear Security Administration under Contract No. DE-AC0494AL85000. NR 18 TC 3 Z9 3 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016310 DI 10.1103/PhysRevE.80.016310 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500054 PM 19658809 ER PT J AU Palastro, JP Antonsen, TM AF Palastro, J. P. Antonsen, T. M. TI Interaction of an ultrashort laser pulse and relativistic electron beam in a corrugated plasma channel SO PHYSICAL REVIEW E LA English DT Article ID NATIONAL-IGNITION-FACILITY; ACCELERATION AB Copropagation of a laser pulse and a relativistic electron beam in a corrugated plasma channel has been proposed for the direct laser acceleration of electrons [Palastro et al., Phys. Rev. E 77, 036405 (2008)]. The corrugated plasma channel allows for the guiding of laser pulses composed of subluminal spatial harmonics. Phase matching between the electron beam and the spatial harmonics results in acceleration, but for high beam densities, the pulse energy can be rapidly depleted. This depletion may result in interaction times shorter than the waveguide length limited time or pulse length dephasing time. We present an analytic model and self-consistent simulations of the electron beam-laser pulse interaction. A linear dispersion relation is derived. The effect of the electron beam on the pulse after the occurrence of axial bunching is examined. Injection of axially modulated electron beams is also explored. In particular, we find that a properly phased electron beam can transfer energy to the laser pulse as an inverse process to acceleration. C1 [Palastro, J. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Antonsen, T. M.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Palastro, JP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Antonsen, Thomas/D-8791-2017 OI Antonsen, Thomas/0000-0002-2362-2430 NR 23 TC 15 Z9 15 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016409 DI 10.1103/PhysRevE.80.016409 PG 15 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500070 PM 19658825 ER PT J AU Quinn, JC Bryant, PH Creveling, DR Klein, SR Abarbanel, HDI AF Quinn, John C. Bryant, Paul H. Creveling, Daniel R. Klein, Sallee R. Abarbanel, Henry D. I. TI Parameter and state estimation of experimental chaotic systems using synchronization SO PHYSICAL REVIEW E LA English DT Article ID TIME NONLINEAR-SYSTEMS; ADAPTIVE SYNCHRONIZATION; COLPITTS OSCILLATORS; DYNAMICAL-SYSTEMS; SERIES; IDENTIFICATION; UNCERTAIN; OBSERVERS; ALGORITHM; TRACKING AB We examine the use of synchronization as a mechanism for extracting parameter and state information from experimental systems. We focus on important aspects of this problem that have received little attention previously and we explore them using experiments and simulations with the chaotic Colpitts oscillator as an example system. We explore the impact of model imperfection on the ability to extract valid information from an experimental system. We compare two optimization methods: an initial value method and a constrained method. Each of these involves coupling the model equations to the experimental data in order to regularize the chaotic motions on the synchronization manifold. We explore both time-dependent and time-independent coupling and discuss the use of periodic impulse coupling. We also examine both optimized and fixed (or manually adjusted) coupling. For the case of an optimized time-dependent coupling function u(t) we find a robust structure which includes sharp peaks and intervals where it is zero. This structure shows a strong correlation with the location in phase space and appears to depend on noise, imperfections of the model, and the Lyapunov direction vectors. For time-independent coupling we find the counterintuitive result that often the optimal rms error in fitting the model to the data initially increases with coupling strength. Comparison of this result with that obtained using simulated data may provide one measure of model imperfection. The constrained method with time-dependent coupling appears to have benefits in synchronizing long data sets with minimal impact, while the initial value method with time-independent coupling tends to be substantially faster, more flexible, and easier to use. We also describe a method of coupling which is useful for sparse experimental data sets. Our use of the Colpitts oscillator allows us to explore in detail the case of a system with one positive Lyapunov exponent. The methods we explored are easily extended to driven systems such as neurons with time-dependent injected current. They are expected to be of value in nonchaotic systems as well. Software is available on request. C1 [Quinn, John C.; Klein, Sallee R.; Abarbanel, Henry D. I.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Bryant, Paul H.; Abarbanel, Henry D. I.] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA. [Creveling, Daniel R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Abarbanel, Henry D. I.] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA. RP Quinn, JC (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM jquinn@ucsd.edu; pbryant@ucsd.edu; drc@lanl.gov; habarbanel@ucsd.edu FU U.S. Office of Naval Research MURI [N00014-07-1-0741] FX This work was partially funded by the U.S. Office of Naval Research MURI grant (ONR Grant No. N00014-07-1-0741). We would like to thank Erik Lindberg of the Technical University of Denmark for useful discussions about the Colpitts oscillator. We would also like to thank Philip Gill and Elizabeth Wong for helpful discussions about SNOPT and SNCTRL software. NR 51 TC 27 Z9 27 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL PY 2009 VL 80 IS 1 AR 016201 DI 10.1103/PhysRevE.80.016201 PG 17 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 478VL UT WOS:000268616500031 PM 19658786 ER PT J AU Ankenbrandt, C Bogacz, SA Bross, A Geer, S Johnstone, C Neuffer, D Popovic, M AF Ankenbrandt, C. Bogacz, S. A. Bross, A. Geer, S. Johnstone, C. Neuffer, D. Popovic, M. TI Low-energy neutrino factory design SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID MUON ACCELERATION; BEAM DYNAMICS AB The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The pi(+/-) decay to produce muons (mu(+/-)), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by similar to 1.4 X 10(21) mu(+) per year decaying in a long straight section of the storage ring, and a similar number of mu(-) decays. C1 [Ankenbrandt, C.; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bogacz, S. A.] Ctr Adv Studies Accelerators, Jefferson Lab, Newport News, VA 23606 USA. [Ankenbrandt, C.] Muons Inc, Batavia, IL 60510 USA. RP Ankenbrandt, C (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU Fermi National Accelerator Laboratory; Fermi Research Association [DE-AC02-76CH03000]; U.S. Department of Energy FX This work is supported at the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Association, under Contract No. DE-AC02-76CH03000 with the U.S. Department of Energy. NR 47 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070101 DI 10.1103/PhysRevSTAB.12.070101 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200001 ER PT J AU Bruce, R Bocian, D Gilardoni, S Jowett, JM AF Bruce, R. Bocian, D. Gilardoni, S. Jowett, J. M. TI Beam losses from ultraperipheral nuclear collisions between Pb-208(82+) ions in the Large Hadron Collider and their alleviation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ELECTRON-CAPTURE; PAIR PRODUCTION; LHC CABLES; HEAVY-IONS; PHYSICS; IONIZATION; MAGNETS AB Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte Carlo shower simulation, and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb-208(82+) ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb-208(82+) operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect. C1 [Bruce, R.; Bocian, D.; Gilardoni, S.; Jowett, J. M.] CERN, Geneva, Switzerland. [Bocian, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bruce, R.] Lund Univ, MAXlab, S-22100 Lund, Sweden. [Bocian, D.] IFJ PAN, Krakow, Poland. RP Bruce, R (reprint author), CERN, Geneva, Switzerland. EM roderik.bruce@cern.ch FU U.S. Department of Energy [DE-AC-02-07CH11359] FX We would like to thank A. Ferrari for enlightening discussions, M. Giovannozzi for helpful advice and the LHC misalignment data, M. Magistris for the MB FLUKA model, and M. Aiba for providing rematching routines for the LHC optics. Other people we would like to thank for their help during the course of this work are R. W. Assmann, B. Dehning, J. B. Jeanneret, S. Russenschuck, B. Schroder, A. Siemko, G. I. Smirnov, D. Tommasini, J. Wenninger, and S. M. White. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC-02-07CH11359. NR 49 TC 24 Z9 24 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 071002 DI 10.1103/PhysRevSTAB.12.071002 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200009 ER PT J AU Bruner, N Genoni, T Madrid, E Welch, D Hahn, K Oliver, B AF Bruner, Nichelle Genoni, Thomas Madrid, Elizabeth Welch, Dale Hahn, Kelly Oliver, Bryan TI Excitation of voltage oscillations in an induction voltage adder SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID DIODE; FLOW AB The induction voltage adder is an accelerator architecture used in recent designs of pulsed-power driven x-ray radiographic systems such as Sandia National Laboratories' Radiographic Integrated Test Stand (RITS), the Atomic Weapons Establishment's planned Hydrus Facility, and the Naval Research Laboratory's Mercury. Each of these designs relies on magnetic insulation to prevent electron loss across the anode-cathode gap in the vicinity of the adder as well as in the coaxial transmission line. Particle-incell simulations of the RITS adder and transmission line show that, as magnetic insulation is being established during a pulse, some electron loss occurs across the gap. Sufficient delay in the cavity pulse timings provides an opportunity for high-momentum electrons to deeply penetrate the cavities of the adder cells where they can excite radio-frequency resonances. These oscillations may be amplified in subsequent gaps, resulting in oscillations in the output power. The specific modes supported by the RITS-6 accelerator and details of the mechanism by which they are excited are presented in this paper. C1 [Bruner, Nichelle; Genoni, Thomas; Madrid, Elizabeth; Welch, Dale] Voss Sci LLC, Albuquerque, NM 87108 USA. [Hahn, Kelly; Oliver, Bryan] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bruner, N (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. FU Sandia National Laboratories; U.S. Department of Energy; U.K. Ministry of Defense [DOA-8910]; United States Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX This work is supported by Sandia National Laboratories and the U.S. Department of Energy and the U.K. Ministry of Defense, under Contract No. DOA-8910 and AWE under PALD 760. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC0494AL85000. NR 17 TC 8 Z9 8 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070401 DI 10.1103/PhysRevSTAB.12.070401 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200002 ER PT J AU Dowell, DH Schmerge, JF AF Dowell, David H. Schmerge, John F. TI Quantum efficiency and thermal emittance of metal photocathodes SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths with major advances occurring since the invention of the photocathode gun and the realization of emittance compensation. These state-of-the-art electron beams are now becoming limited by the intrinsic thermal emittance of the cathode. In both dc and rf photocathode guns details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance for metal cathodes using the Fermi-Dirac model for the electron distribution. We use a consistent theory to derive the quantum efficiency and thermal emittance, and compare our results to those of others. C1 [Dowell, David H.; Schmerge, John F.] SLAC, Menlo Pk, CA 94025 USA. RP Dowell, DH (reprint author), SLAC, Menlo Pk, CA 94025 USA. FU U.S. Department of Energy [DE-AC02-76SF00515] FX This paper has benefited from stimulating discussions with Klaus Floettmann (DESY), Sven Lederer (DESY), Kevin Jensen (NRL), John Smedley (BNL), Axel Brachmann (SLAC), and Dao Xiang (SLAC). This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. NR 26 TC 79 Z9 81 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 074201 DI 10.1103/PhysRevSTAB.12.074201 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200013 ER PT J AU Kumar, V Kim, KJ AF Kumar, Vinit Kim, Kwang-Je TI Electron beam requirements for Smith-Purcell backward wave oscillator with external focusing SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID FIELD AB Operation of the Smith-Purcell backward wave oscillator requires a flat electron beam. Without the electron beam focusing, the requirement leads to a very stringent criterion on vertical emittance. In this paper, we discuss a way to relax the criterion by introducing an external focusing. C1 [Kumar, Vinit] Raja Ramanna Ctr Adv Technol, Indore 452013, India. [Kim, Kwang-Je] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. RP Kumar, V (reprint author), Raja Ramanna Ctr Adv Technol, Indore 452013, India. NR 24 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070703 DI 10.1103/PhysRevSTAB.12.070703 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200006 ER PT J AU Lindberg, RR Kim, KJ AF Lindberg, R. R. Kim, K. -J. TI Mode growth and competition in the x-ray free-electron laser oscillator start-up from noise SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID SPECTRAL STRUCTURE; SIMULATION; RADIATION AB We describe the radiation properties of an x-ray free-electron laser (FEL) oscillator, beginning with its start-up from noise through saturation. We first decompose the initially chaotic undulator radiation into the growing longitudinal modes of the composite system consisting of the electron beam, the undulator, and the Bragg mirror resonator cavity. Because the radiation initially comprises several modes whose growth rates are comparable, we find that only after many oscillator passes is the output pulse dominantly characterized by the lowest-order Gaussian mode. We verify our analytic results with a novel, reduced one-dimensional FEL code (derived in the text), and with two-dimensional FEL simulations. Understanding the full longitudinal structure during the initial amplification will be critical in assessing the tolerances on the electron beam, undulator, and optical cavity required for robust operation. C1 [Lindberg, R. R.; Kim, K. -J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lindberg, RR (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM lindberg@aps.anl.gov FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors wish to thank W. M. Fawley for many useful discussions on FEL simulations, and Y. Shvyd'ko for his expertise with x-ray optics. This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Contract No. DE-AC02-06CH11357. NR 22 TC 5 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL PY 2009 VL 12 IS 7 AR 070702 DI 10.1103/PhysRevSTAB.12.070702 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 487UM UT WOS:000269302200005 ER PT J AU Barnes, M Abel, IG Dorland, W Ernst, DR Hammett, GW Ricci, P Rogers, BN Schekochihin, AA Tatsuno, T AF Barnes, M. Abel, I. G. Dorland, W. Ernst, D. R. Hammett, G. W. Ricci, P. Rogers, B. N. Schekochihin, A. A. Tatsuno, T. TI Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests SO PHYSICS OF PLASMAS LA English DT Article DE diffusion; plasma collision processes; plasma kinetic theory; plasma simulation ID ASTROPHYSICAL GYROKINETICS; NONLINEAR EVOLUTION; INTERCHANGE MODES; MAGNETIC-FIELD; PLASMA; TURBULENCE; TRANSPORT; TOKAMAK; EQUATIONS; DRIFT AB A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 [Kotschenreuther , Comput. Phys. Comm. 88, 128 (1995)] is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation. C1 [Barnes, M.; Dorland, W.; Tatsuno, T.] Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA. [Barnes, M.; Dorland, W.; Tatsuno, T.] Univ Maryland, CSCAMM, College Pk, MD 20742 USA. [Abel, I. G.; Schekochihin, A. A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England. [Abel, I. G.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Ernst, D. R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Hammett, G. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ricci, P.] Ecole Polytech Fed Lausanne, Assoc EURATOM Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. [Rogers, B. N.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. RP Barnes, M (reprint author), Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA. EM mabarnes@umd.edu; i.abel07@imperial.ac.uk RI Schekochihin, Alexander/C-2399-2009; Tatsuno, Tomo/A-3467-2011; Hammett, Gregory/D-1365-2011; Ernst, Darin/A-1487-2010; Barnes, Michael/F-4934-2011; Dorland, William/B-4403-2009 OI Hammett, Gregory/0000-0003-1495-6647; Ernst, Darin/0000-0002-9577-2809; Dorland, William/0000-0003-2915-724X NR 51 TC 35 Z9 35 U1 3 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072107 DI 10.1063/1.3155085 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200009 ER PT J AU Boerner, JJ Boyd, ID AF Boerner, Jeremiah J. Boyd, Iain D. TI Evaluation of models for numerical simulation of the non-neutral region of sheath plasma SO PHYSICS OF PLASMAS LA English DT Article DE plasma flow; plasma sheaths; plasma simulation; Poisson equation ID MAGNETIZED PLASMAS; ION COLLECTION AB Four different electron models are used to simulate the nonequilibrium plasma flow around a representative cylindrical Faraday probe geometry. Each model is implemented in a two-dimensional axisymmetric hybrid electron fluid and particle in cell method. The geometric shadowing model is derived from kinetic theory on the basis that physical obstruction of part of the velocity distribution leads to many of the expected sheath features. The Boltzmann electron fluid model relates the electron density to the plasma potential through the Boltzmann relation. The non-neutral detailed electron fluid model is derived from the electron conservation equations under the assumption of neutrality, and then modified to include non-neutral effects through the electrostatic Poisson equation. The Poisson-consistent detailed electron fluid model is also derived from the conservation equations and the electrostatic Poisson equation, but uses an alternative method that is inherently non-neutral from the outset. Simulations using the geometric shadowing and non-neutral detailed models do not yield satisfactory sheath structures, indicating that these models are not appropriate for sheath simulations. Simulations using the Boltzmann and Poisson-consistent models produce sheath structures that are in excellent agreement with the planar Bohm sheath solution near the centerline of the probe. The computational time requirement for the Poisson-consistent model is much higher than for the Boltzmann model and becomes prohibitive for larger domains. C1 [Boerner, Jeremiah J.; Boyd, Iain D.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. RP Boerner, JJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jjboern@sandia.gov NR 20 TC 1 Z9 1 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 073502 DI 10.1063/1.3158559 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200056 ER PT J AU Bott, SC Haas, DM Eshaq, Y Ueda, U Beg, FN Hammer, DA Kusse, B Greenly, J Shelkovenko, TA Pikuz, SA Blesener, IC McBride, RD Douglass, JD Bell, K Knapp, P Chittenden, JP Lebedev, SV Bland, SN Hall, GN Vidal, FAS Marocchino, A Harvey-Thomson, A Haines, MG Palmer, JBA Esaulov, A Ampleford, DJ AF Bott, S. C. Haas, D. M. Eshaq, Y. Ueda, U. Beg, F. N. Hammer, D. A. Kusse, B. Greenly, J. Shelkovenko, T. A. Pikuz, S. A. Blesener, I. C. McBride, R. D. Douglass, J. D. Bell, K. Knapp, P. Chittenden, J. P. Lebedev, S. V. Bland, S. N. Hall, G. N. Vidal, F. A. Suzuki Marocchino, A. Harvey-Thomson, A. Haines, M. G. Palmer, J. B. A. Esaulov, A. Ampleford, D. J. TI Study of the effect of current rise time on the formation of the precursor column in cylindrical wire array Z pinches at 1 MA SO PHYSICS OF PLASMAS LA English DT Article DE aluminium; plasma X-ray sources; tungsten; Z pinch ID LABORATORY ASTROPHYSICS; IMPLOSION DYNAMICS; PLASMA FORMATION; JET DEFLECTION; SUPERNOVA 1987A; X-PINCHES; POWER; GENERATOR; PHASE; INSTABILITY AB The limited understanding of the mechanisms driving the mass ablation rate of cylindrical wires arrays is presently one of the major limitations in predicting array performance at the higher current levels required for inertial confinement fusion (ICF) ignition. Continued investigation of this phenomenon is crucial to realize the considerable potential for wire arrays to drive both ICF and inertial fusion energy, by enabling a predictive capability in computational modeling. We present the first study to directly compare the mass ablation rates of wire arrays as a function of the current rise rate. Formation of the precursor column is investigated on both the MAPGIE (1 MA, 250ns [Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)]) and COBRA (1 MA, 100ns [Greenly , Rev. Sci. Instrum. 79, 073501 (2008)]) generators, and results are used to infer the change in the effective ablation velocity induced by the rise rate of the drive current. Laser shadowography, gated extreme ultraviolet (XUV) imaging, and x-ray diodes are used to compare the dynamical behavior on the two generators, and X-pinch radiography and XUV spectroscopy provide density evolution and temperature measurements respectively. Results are compared to predictions from an analytical scaling model developed previously from MAGPIE data, based on a fixed ablation velocity. For COBRA the column formation time occurs at 116 +/- 5 ns and for Al arrays and 146 +/- 5 ns for W arrays, with Al column temperature in the range of 70-165 eV. These values lie close to model predictions, inferring only a small change in the ablation velocity is induced by the factor of 2.5 change in current rise time. Estimations suggest the effective ablation velocities for MAGPIE and COBRA experiments vary by a maximum of 30%. C1 [Bott, S. C.; Haas, D. M.; Eshaq, Y.; Ueda, U.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Hammer, D. A.; Kusse, B.; Greenly, J.; Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Douglass, J. D.; Bell, K.; Knapp, P.] Cornell Univ, Plasma Studies Lab, New York, NY 14853 USA. [Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Vidal, F. A. Suzuki; Marocchino, A.; Harvey-Thomson, A.; Haines, M. G.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Palmer, J. B. A.] AWE Plc, Aldermaston RG7 4PR, Berks, England. [Esaulov, A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Ampleford, D. J.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Bott, SC (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. RI Hall, Gareth/C-4179-2015; Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015; Marocchino, Alberto/E-3571-2016 OI Marocchino, Alberto/0000-0002-5287-8355 FU DOE Junior Faculty [DE-FG-05ER4842]; Center of Excellence for Pulsed Power Driven High Energy Density Physics; Cornell University; NNSA [DE-F03-02NA00057] FX This work was supported by the DOE Junior Faculty Under Grant No. DE-FG-05ER4842, and a grant from the Center of Excellence for Pulsed Power Driven High Energy Density Physics, Cornell University. Work at Imperial College London was sponsored by the NNSA under DOE Cooperative Agreement No. DE-F03-02NA00057. NR 83 TC 18 Z9 18 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072701 DI 10.1063/1.3159864 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200038 ER PT J AU Daughton, W Roytershteyn, V Albright, BJ Karimabadi, H Yin, L Bowers, KJ AF Daughton, W. Roytershteyn, V. Albright, B. J. Karimabadi, H. Yin, L. Bowers, Kevin J. TI Influence of Coulomb collisions on the structure of reconnection layers SO PHYSICS OF PLASMAS LA English DT Article DE Fokker-Planck equation; magnetic reconnection; Monte Carlo methods; plasma collision processes; plasma simulation; plasma transport processes ID MAGNETIC RECONNECTION; SIMULATION; CHALLENGE; EQUATION; FIELD; CODE AB The influence of Coulomb collisions on the structure of reconnection layers is examined in neutral sheet geometry using fully kinetic simulations with a Monte Carlo treatment of the Fokker-Planck operator. The algorithm is first carefully benchmarked against key predictions from transport theory, including the parallel and perpendicular resistivities as well as the thermal force. The results demonstrate that the collisionality is accurately specified, thus allowing the initial Lundquist number to be chosen as desired. For modest Lundquist numbers S less than or similar to 1000, the classic Sweet-Parker solution is recovered. Furthermore, a distinct transition to a faster kinetic regime is observed when the thickness of the resistive layer delta(SP) falls below the ion inertial length d(i). For higher Lundquist numbers S greater than or similar to 1000, plasmoids (secondary islands) are observed within the elongated resistive layers. These plasmoids give rise to a measurable increase in the reconnection rate and for certain cases induce a transition to kinetic regimes sooner than expected from the delta(SP)approximate to d(i) condition. During this transition, the reconnection electric field exceeds the runaway limit, leading to electron scale current layers in which the nonideal electric field is supported predominantly by off-diagonal components in the electron pressure tensor, along with a residual contribution from electron-ion momentum exchange. These weakly collisional electron layers are also unstable to the formation of new plasmoids. C1 [Daughton, W.; Roytershteyn, V.; Albright, B. J.; Yin, L.; Bowers, Kevin J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bowers, Kevin J.] DE Shaw Res LLC, New York, NY 10036 USA. RP Daughton, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RI Daughton, William/L-9661-2013; OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Roytershteyn, Vadim/0000-0003-1745-7587 NR 42 TC 37 Z9 37 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072117 DI 10.1063/1.3191718 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200019 ER PT J AU Krommes, JA Reiman, AH AF Krommes, John A. Reiman, Allan H. TI Plasma equilibrium in a magnetic field with stochastic regions SO PHYSICS OF PLASMAS LA English DT Article DE plasma toroidal confinement; plasma turbulence ID DIFFERENTIAL-EQUATIONS; TURBULENCE; TRANSPORT; STELLARATOR; SURFACES; TOKAMAK; PERTURBATIONS; SIMULATIONS; ISLANDS; SYSTEMS AB The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schluumlter currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory. An analytically tractable model, previously studied in the context of resonance-broadening theory, is applied with particular attention paid to the periodicity constraints required in toroidal configurations. It is shown that even a very weak radial diffusion of the magnetic field lines can have a significant effect on the equilibrium in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schluumlter currents. Implications for the numerical calculation of three-dimensional equilibria are discussed. C1 [Krommes, John A.; Reiman, Allan H.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM krommes@princeton.edu; reiman@pppl.gov NR 57 TC 6 Z9 6 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072308 DI 10.1063/1.3159607 PG 26 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200027 ER PT J AU Sheng, ZM Yu, LM Hao, GZ White, R AF Sheng, Zheng-Mao Yu, Limin Hao, Guangzhou White, Roscoe TI Nonlinear interaction between ions and multiple electrostatic waves SO PHYSICS OF PLASMAS LA English DT Article DE astrophysical plasma; plasma electrostatic waves; plasma heating; plasma magnetohydrodynamics; plasma nonlinear processes; plasma theory; solar corona ID COHERENT ACCELERATION; CYCLOTRON FREQUENCY; MAGNETIZED PLASMA; DYNAMICS AB The nonlinear interaction of ions with multiple electrostatic waves propagating perpendicularly across a uniform magnetic field is investigated both analytically and numerically. Applying a multiscale expansion method with the wave amplitude as the perturbation parameter, a general nonlinear resonance condition is analytically derived. Under this condition, it is confirmed that multiple waves even below the cyclotron frequency and small amplitude are capable of effectively producing acceleration or stochastic heating by numerical simulation. Compared to the single wave situation, the stochastic threshold for heating by multiple waves with frequencies satisfied with a nonlinear resonance condition is significantly reduced because the nonlinear interaction of ions with multiple waves leads more easily to overlapping of islands and spreading of the stochastic layer in phase space. The above result is helpful to understand the energization mechanism of ions in the solar corona. C1 [Sheng, Zheng-Mao; Yu, Limin; Hao, Guangzhou] Zhejiang Univ, Dept Phys, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China. [Sheng, Zheng-Mao; Yu, Limin; White, Roscoe] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sheng, ZM (reprint author), Zhejiang Univ, Dept Phys, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 FU National Natural Science Foundation of China [10675102, 40390150]; National Hi-Tech Inertial Confinement Fusion Committee of China FX Z.-M. S. would like to thank Professor Liu Chen and Professor J. Q. Dong for their useful discussions. Z.-M. S. and L. Y. thank the hospitality of PPPL, where this work was completed. This work is supported by the National Natural Science Foundation of China under Grant Nos. 10675102 and 40390150 and the National Hi-Tech Inertial Confinement Fusion Committee of China. NR 10 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072106 DI 10.1063/1.3157245 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200008 ER PT J AU Steinhauer, LC Intrator, TP AF Steinhauer, Loren C. Intrator, T. P. TI Equilibrium paradigm for field-reversed configurations and application to experiments SO PHYSICS OF PLASMAS LA English DT Article DE plasma transport processes; reversed field pinch ID MODE-STABILITY; CONFINEMENT; TRANSPORT; PLASMAS; PROFILE; FRX AB Fresh insights on field-reversed configurations (FRCs) are incorporated in a new paradigm for equilibria. In particular four new or unappreciated properties are accounted for: an empirically based scrape-off layer thickness; a new, more accurate axial force balance relation; viscous force regularity at the O-point; and the broken-surface effect. The new paradigm corrects glaring defects of previous models (rigid rotor, Hill's vortex). Further, the new paradigm is simple enough to be easily used as an interpretive tool despite the limited data suite in most experiments. It is applied to the newly enhanced FRC data compendium, a database of 69 records from 15 facilities. Several important observations and corrections on the previous understanding of FRCs follow, three of which stand out. (1) The traditional axial force balance ("average-beta" relation) gives an inaccurate scaling with the separatrix-to-wall radius ratio. (2) The improved equilibrium paradigm yields separatrix particle transport rates of 3-5 m(2)/s for "best confinement" examples; this is a factor of three lower than crude "bulk" estimates commonly used. (3) The transport compared to the Bohm rate shows a great deal of scatter (40% scatter/mean ratio), i.e., "Bohm" is not a useful representation for transport scaling. C1 [Steinhauer, Loren C.] Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA. [Intrator, T. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Steinhauer, LC (reprint author), Univ Washington, Redmond Plasma Phys Lab, Redmond, WA 98052 USA. FU U.S. Department of Energy [DE-FG03-98ER54480, DE-AC52-06NA25396] FX L. C. S. is grateful for useful discussions with R. D. Milroy and D. C. Barnes and T. P. I. acknowledges the FRXL team (S. Y. Zhang, R. M. Renneke, W. A. Waganaar, G. A. Wurden, and P. A. Sieck) for help and effort in acquiring the data over the past several years. This work was supported by U.S. Department of Energy, Grant No. DE-FG03-98ER54480 and Contract No. DE-AC52-06NA25396. NR 21 TC 9 Z9 11 U1 2 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2009 VL 16 IS 7 AR 072501 DI 10.1063/1.3157253 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 478UZ UT WOS:000268615200031 ER PT J AU Wright, JC Bonoli, PT Schmidt, AE Phillips, CK Valeo, EJ Harvey, RW Brambilla, MA AF Wright, J. C. Bonoli, P. T. Schmidt, A. E. Phillips, C. K. Valeo, E. J. Harvey, R. W. Brambilla, M. A. TI An assessment of full wave effects on the propagation and absorption of lower hybrid waves SO PHYSICS OF PLASMAS LA English DT Article DE electromagnetic field theory; Fokker-Planck equation; plasma electromagnetic wave propagation; SCF calculations; Tokamak devices; wave propagation; WKB calculations ID LARMOR RADIUS MODELS; ION-CYCLOTRON RANGE; TOKAMAK PLASMAS; CURRENT DRIVE; TOROIDAL PLASMAS; NUMERICAL-SIMULATION; FREQUENCIES AB Lower hybrid (LH) waves ((ci) 4)Xyl was chemically synthesized and conjugated to a carrier protein. Two interesting antibodies were obtained, hereinafter named INRA-COU1 and INRA-COU2. The specificity of these monoclonal antibodies has been evaluated using competitive-inhibition assays with different oligosaccharides and phenolic compounds. INRA-COU1, recognized free p-coumaric acid or p-coumarate esters. INRA-COU1 did not react with any of the other hydroxycinnamic acids and related compounds found in plants. INRA-COU2, only recognizes esterified p-coumarate. These antibodies were used to study the localization of p-coumarates in the cell walls of grasses. Immunocytochemical analyses indicated noticeable amounts of p-coumarate in the cell walls of the aleurone layer of wheat grain, in the epiderm of cereal straw, and in the exoderm of wheat root. The use of these antibodies will contribute to a better understanding of the organisation and developmental dynamics of cell walls in Graminaceae. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Tranquet, Olivier; Saulnier, Luc; Guillon, Fabienne] INRA, Biopolymeres Interact Assemblages UR1268, F-44300 Nantes, France. [Utille, Jean-Pierre] CERMAV, CNRS, UPR 5301, F-3041 Grenoble, France. [Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Biochem, Enzyme Inst, Madison, WI 53726 USA. RP Tranquet, O (reprint author), INRA, Biopolymeres Interact Assemblages UR1268, F-44300 Nantes, France. EM tranquet@nantes.inra.fr NR 76 TC 11 Z9 11 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9422 J9 PHYTOCHEMISTRY JI Phytochemistry PD JUL-AUG PY 2009 VL 70 IS 11-12 BP 1366 EP 1373 DI 10.1016/j.phytochem.2009.06.019 PG 8 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 511PD UT WOS:000271177600004 PM 19712948 ER PT J AU Bickford, CP Mcdowell, NG Erhardt, EB Hanson, DT AF Bickford, Christopher P. Mcdowell, Nate G. Erhardt, Erik B. Hanson, David T. TI High-frequency field measurements of diurnal carbon isotope discrimination and internal conductance in a semi-arid species, Juniperus monosperma SO PLANT CELL AND ENVIRONMENT LA English DT Article DE decarboxylation; Farquhar model; mesophyll conductance; p(i)/p(a) ID LEAF-RESPIRED CO2; LASER ABSORPTION-SPECTROSCOPY; MESOPHYLL CONDUCTANCE; ECOSYSTEM RESPIRATION; IN-VIVO; CARBOXYLASE OXYGENASE; TEMPERATURE RESPONSE; ILLUMINATED LEAVES; PARTIAL-PRESSURE; SPINACH LEAVES AB We present field observations of carbon isotope discrimination (Delta) and internal conductance of CO(2) (g(i)) collected using tunable diode laser spectroscopy (TDL). Delta ranged from 12.0 to 27.4 parts per thousand over diurnal periods with daily means from 16.3 +/- 0.2 parts per thousand during drought to 19.0 +/- 0.5 parts per thousand during monsoon conditions. We observed a large range in g(i), with most estimates between 0.04 and 4.0 mu mol m(-2) s(-1) Pa(-1). We tested the comprehensive Farquhar, O'Leary and Berry model of Delta (Delta(comp)), a simplified form of Delta(comp) (Delta(simple)) and a recently suggested amendment (Delta(revised)). Sensitivity analyses demonstrated that varying g(i) had a substantial effect on Delta(comp), resulting in mean differences between observed Delta (Delta(obs)) and Delta(comp) ranging from 0.04 to 9.6 parts per thousand. First-order regressions adequately described the relationship between Delta and the ratio of substomatal to atmospheric CO(2) partial pressure (p(i)/p(a)) on all 3 d, but second-order models better described the relationship in July and August. The three tested models each best predicted Delta(obs) on different days. In June, Delta(simple) outperformed Delta(comp) and Delta(revised), but incorporating g(i) and all non-photosynthetic fractionations improved model predictions in July and August. C1 [Bickford, Christopher P.; Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Erhardt, Erik B.] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA. [Mcdowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Bickford, CP (reprint author), Univ New Mexico, Dept Biol, MSC03-2020, Albuquerque, NM 87131 USA. EM bickford@unm.edu RI Hanson, David/J-8034-2012; OI Erhardt, Erik/0000-0002-9817-4011 FU Institute of Geophysics and Planetary Physics at Los Alamos National Laborator [95566-001-05]; National Science Foundation [IOS-0719118] FX We thank H. Powers, K. Brown and C. Meyer for extensive technical support, and the Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory (project 95566-001-05), the National Science Foundation (IOS-0719118), UNM PIBBS and the UNM Biology Department Lynn A. Hertel Graduate Research Award for funding. We also thank Professor Graham Farquhar and two anonymous reviewers for their comments that improved the paper. NR 75 TC 27 Z9 27 U1 1 U2 17 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0140-7791 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD JUL PY 2009 VL 32 IS 7 BP 796 EP 810 DI 10.1111/j.1365-3040.2009.01959.x PG 15 WC Plant Sciences SC Plant Sciences GA 453HN UT WOS:000266601600004 PM 19220783 ER PT J AU Yu, XH Gou, JY Liu, CJ AF Yu, Xiao-Hong Gou, Jin-Ying Liu, Chang-Jun TI BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression SO PLANT MOLECULAR BIOLOGY LA English DT Article DE Acyl CoA-dependent acyltransfease; BAHD enzymes; Populus trichocarpa; Arabidopsis thaliana; Gene expression ID ACID N-MALONYLTRANSFERASE; SALVIA-SPLENDENS FLOWERS; CELL-WALL; 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID; ANTHOCYANIN ACYLTRANSFERASES; FUNCTIONAL-CHARACTERIZATION; PHENYLPROPANOID METABOLISM; SEQUENCE ALIGNMENT; MEMBRANE-PROTEINS; CLARKIA-BREWERI AB Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by "in silico" northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members' evolutionary relationships and gene functions implicated in plant growth, development and metabolism. C1 [Yu, Xiao-Hong; Gou, Jin-Ying; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM cliu@bnl.gov RI Gou, Jin-Ying/G-7628-2012 FU DOE -USDA joint Plant Feedstock Genomics [Bo-135]; Laboratory Directed Research and Development [LDRD-07-047]; Department of Energy FX Authors would like to thank Dr. Gray Tuskan in Oak Ridge National Laboratory for providing additional P. trichocarpa plantlets. This work was supported by the DOE -USDA joint Plant Feedstock Genomics program (Project no: Bo-135) and the Laboratory Directed Research and Development program (LDRD-07-047) of Brookhaven National Laboratory under contract with Department of Energy to C.J.L. NR 79 TC 34 Z9 38 U1 0 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-4412 J9 PLANT MOL BIOL JI Plant Mol.Biol. PD JUL PY 2009 VL 70 IS 4 BP 421 EP 442 DI 10.1007/s11103-009-9482-1 PG 22 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 457FP UT WOS:000266914200005 PM 19343509 ER PT J AU Bauer, AL Jackson, TL Jiang, Y AF Bauer, Amy L. Jackson, Trachette L. Jiang, Yi TI Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID TUMOR-INDUCED ANGIOGENESIS; COLLAGEN TYPE-I; ENDOTHELIAL-CELL; GROWTH-FACTOR; MECHANICAL-PROPERTIES; VEGF; MODEL; PROLIFERATION; INVASION; NETWORKS AB The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically. C1 [Bauer, Amy L.; Jiang, Yi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Jackson, Trachette L.] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA. RP Bauer, AL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. EM jiang@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; Alfred P. Sloan and the James S. McDonnell Foundation FX ALB and YJ acknowledge support from the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. TLJ was supported in part by the Alfred P. Sloan and the James S. McDonnell Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 62 TC 73 Z9 75 U1 2 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2009 VL 5 IS 7 AR e1000445 DI 10.1371/journal.pcbi.1000445 PG 18 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 486TD UT WOS:000269220100010 PM 19629173 ER PT J AU Gaudet, P Chisholm, R Berardini, T Dimmer, E Engel, SR Fey, P Hill, DP Howe, D Hu, JC Huntley, R Khodiyar, VK Kishore, R Li, D Lovering, RC McCarthy, F Ni, L Petri, V Siegele, DA Tweedie, S Van Auken, K Wood, V Basu, S Carbon, S Dolan, M Mungall, CJ Dolinski, K Thomas, P Ashburner, M Blake, JA Cherry, JM Lewis, SE AF Gaudet, Pascale Chisholm, Rex Berardini, Tanya Dimmer, Emily Engel, Stacia R. Fey, Petra Hill, David P. Howe, Doug Hu, James C. Huntley, Rachael Khodiyar, Varsha K. Kishore, Ranjana Li, Donghui Lovering, Ruth C. McCarthy, Fiona Ni, Li Petri, Victoria Siegele, Deborah A. Tweedie, Susan Van Auken, Kimberly Wood, Valerie Basu, Siddhartha Carbon, Seth Dolan, Mary Mungall, Christopher J. Dolinski, Kara Thomas, Paul Ashburner, Michael Blake, Judith A. Cherry, J. Michael Lewis, Suzanna E. CA Gene Ontology Consortium TI The Gene Ontology's Reference Genome Project: A Unified Framework for Functional Annotation across Species SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SEQUENCE; PANTHER AB The Gene Ontology (GO) is a collaborative effort that provides structured vocabularies for annotating the molecular function, biological role, and cellular location of gene products in a highly systematic way and in a species-neutral manner with the aim of unifying the representation of gene function across different organisms. Each contributing member of the GO Consortium independently associates GO terms to gene products from the organism(s) they are annotating. Here we introduce the Reference Genome project, which brings together those independent efforts into a unified framework based on the evolutionary relationships between genes in these different organisms. The Reference Genome project has two primary goals: to increase the depth and breadth of annotations for genes in each of the organisms in the project, and to create data sets and tools that enable other genome annotation efforts to infer GO annotations for homologous genes in their organisms. In addition, the project has several important incidental benefits, such as increasing annotation consistency across genome databases, and providing important improvements to the GO's logical structure and biological content. C1 [Gaudet, Pascale; Chisholm, Rex; Fey, Petra; Basu, Siddhartha] Northwestern Univ, Chicago, IL 60611 USA. [Berardini, Tanya; Li, Donghui] Carnegie Inst, Dept Plant Biol, Stanford, CA USA. [Dimmer, Emily; Huntley, Rachael] UniProt, EBI, Hinxton, England. [Engel, Stacia R.; Cherry, J. Michael] Stanford Univ, Dept Genet, Stanford, CA 94305 USA. [Hill, David P.; Ni, Li; Dolan, Mary; Blake, Judith A.] Jackson Lab, Bar Harbor, ME 04609 USA. [Howe, Doug] Univ Oregon, Eugene, OR 97403 USA. [Hu, James C.; Siegele, Deborah A.] Texas A&M Univ, College Stn, TX USA. [Khodiyar, Varsha K.; Lovering, Ruth C.] UCL, Dept Med, London, England. [Kishore, Ranjana; Van Auken, Kimberly] CALTECH, Pasadena, CA 91125 USA. [McCarthy, Fiona] Mississippi State Univ, Starkville, MS USA. [Petri, Victoria] Med Coll Wisconsin, Milwaukee, WI 53226 USA. [Tweedie, Susan; Ashburner, Michael] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Wood, Valerie] Wellcome Trust Sanger Inst, Hinxton, England. [Carbon, Seth; Mungall, Christopher J.; Lewis, Suzanna E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dolinski, Kara] Princeton Univ, Princeton, NJ 08544 USA. [Thomas, Paul] SRI Int, Menlo Pk, CA 94025 USA. RP Gaudet, P (reprint author), Northwestern Univ, Chicago, IL 60611 USA. EM pgaudet@northwestern.edu RI Fey, Petra/O-5977-2015; Huntley, Rachael/R-1036-2016; OI Khodiyar, Varsha/0000-0002-2743-6918; Fey, Petra/0000-0002-4532-2703; Huntley, Rachael/0000-0001-6718-3559; Apweiler, Rolf/0000-0001-7078-200X; Engel, Stacia/0000-0001-5472-917X; Christie, Karen/0000-0001-5501-853X; Howe, Douglas/0000-0001-5831-7439; Wood, Valerie/0000-0001-6330-7526; Cherry, J. Michael/0000-0001-9163-5180; Lewis, Suzanna/0000-0002-8343-612X; Tweedie, Susan/0000-0003-1818-8243; Siegele, Deborah/0000-0001-8935-0696; Blake, Judith/0000-0001-8522-334X FU NIH-NHGRI P41 [HG002273, HG000330, HG001315, HG02223, HG002659-06]; USDA Cooperative State Research, Education and Extension Service [MISV-329140]; NIH [GM64426, HG00022, HD033745]; NIGMS [U24GM07790]; Medical Research Council [G0500293]; EMBL; British Heart Foundation [SP/07/007/23671]; National Heart, Lung, and Blood Institute [HL64541]; NSF [DBI-0417062] FX The Gene Ontology Consortium is supported by a NIH-NHGRI P41 grant, HG002273. Curation at the model organism databases is supported as follows: AgBase National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number MISV-329140; dictyBase, NIH grants GM64426 and HG00022; EcoliWiki, NIGMS U24GM07790 to EcoliHub; FlyBase, Medical Research Council grant G0500293; GOA, core EMBL funding, British Heart Foundation grant SP/07/007/23671; MGI, NIH-NHGRI P41 grant HG000330 and NIH grant HD033745; RGD, National Heart, Lung, and Blood Institute grant HL64541; SGD, NIH-NHGRI P41 grant HG001315; TAIR, NSF grant DBI-0417062; WormBase, US NIH-NHGRI P41 grant HG02223; ZFIN, NIH-NCRR P41 grant HG002659-06; UCL-based human cardiovascular GO team, British Heart Foundation grant SP/07/007/23671. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 21 TC 8 Z9 8 U1 1 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JUL PY 2009 VL 5 IS 7 AR e1000431 DI 10.1371/journal.pcbi.1000431 PG 8 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 486TD UT WOS:000269220100031 ER PT J AU Zou, C Lehti-Shiu, MD Thomashow, M Shiu, SH AF Zou, Cheng Lehti-Shiu, Melissa D. Thomashow, Michael Shiu, Shin-Han TI Evolution of Stress-Regulated Gene Expression in Duplicate Genes of Arabidopsis thaliana SO PLOS GENETICS LA English DT Article ID ANCESTRAL CHARACTER STATES; AMINO-ACID-SEQUENCES; FUNCTIONAL DIVERGENCE; GENOME DUPLICATION; PHYLOGENETIC UNCERTAINTY; BAYESIAN-INFERENCE; PLANT; YEAST; SUBFUNCTIONALIZATION; NEOFUNCTIONALIZATION AB Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is., 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments. C1 [Zou, Cheng; Lehti-Shiu, Melissa D.; Shiu, Shin-Han] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Zou, Cheng] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA. [Thomashow, Michael] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Zou, C (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM shius@msu.edu OI Shiu, Shin-Han/0000-0001-6470-235X FU National Science Foundation [DBI-0701709, DBI-0638591, MCB-0749634] FX This work is supported in part by National Science Foundation grants DBI-0701709 to MT and DBI-0638591 and MCB-0749634 to SHS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 77 TC 50 Z9 52 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD JUL PY 2009 VL 5 IS 7 AR e1000581 DI 10.1371/journal.pgen.1000581 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 486SZ UT WOS:000269219500005 PM 19649161 ER PT J AU Field, RV Grigoriu, M AF Field, R. V., Jr. Grigoriu, M. TI Model selection for a class of stochastic processes or random fields with bounded range SO PROBABILISTIC ENGINEERING MECHANICS LA English DT Article DE Decision theory; Probabilistic mechanics; Model selection; Random fields; Stochastic processes ID SIMULATION; DESIGN AB Methods are developed for finding an optimal model for a non-Gaussian stationary stochastic process or homogeneous random field under limited information. The available information consists of: (i) one or more finite length samples of the process or field; and (ii) knowledge that the process or field takes values in a bounded interval of the real line whose ends may or may not be known. The methods are developed and applied to the special case of non-Gaussian processes or fields belonging to the class of beta translation processes. Beta translation processes provide a flexible model for representing physical phenomena taking values in a bounded range, and are therefore useful for many applications. Numerical examples are presented to illustrate the utility of beta translation processes and the proposed methods for model selection. Published by Elsevier Ltd C1 [Field, R. V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grigoriu, M.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Field, RV (reprint author), Sandia Natl Labs, POB 5800,M-S 0346, Albuquerque, NM 87185 USA. EM rvfield@sandia.gov; mdg12@cornell.edu OI Field, Richard/0000-0002-2765-7032 FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 29 TC 6 Z9 7 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-8920 J9 PROBABILIST ENG MECH JI Probab. Eng. Eng. Mech. PD JUL PY 2009 VL 24 IS 3 BP 331 EP 342 DI 10.1016/j.probengmech.2008.08.003 PG 12 WC Engineering, Mechanical; Mechanics; Statistics & Probability SC Engineering; Mechanics; Mathematics GA 442CT UT WOS:000265818100008 ER PT J AU Grossman, Y Ligeti, Z Nir, Y AF Grossman, Yuval Ligeti, Zoltan Nir, Yosef TI Future Prospects of B Physics SO PROGRESS OF THEORETICAL PHYSICS LA English DT Article; Proceedings Paper CT Meeting on CP Violation and Flavor Mixing CY DEC 08, 2008 CL Stockholm Univ, Stockholm, SWEDEN HO Stockholm Univ ID EFFECTIVE-FIELD-THEORY; CP-VIOLATION; UNITARITY TRIANGLE; STANDARD MODEL; HEAVY MESONS; ANGLE-GAMMA; CKM MATRIX; DECAYS; ASYMMETRIES; QUARK AB In recent years, the CKM picture of flavor and CP violation has been confirmed, mainly due to B decay data. Yet, it is likely that there are small corrections to this picture. We expect to find new physics not much above the weak scale. This new physics could modify flavor changing processes compared to their SM expectations. Much larger B decay data sets, which are expected from LHCb and super-13-factories, will be used to search for these deviations with much improved sensitivity. The combination of low and high energy data will be particularly useful to probe the structure of new physics. C1 [Grossman, Yuval] Cornell Univ, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nir, Yosef] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. RP Grossman, Y (reprint author), Cornell Univ, Newman Lab Elementary Particle Phys, Ithaca, NY 14853 USA. NR 102 TC 14 Z9 14 U1 0 U2 1 PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE PI KYOTO PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN SN 0033-068X J9 PROG THEOR PHYS JI Prog. Theor. Phys. PD JUL PY 2009 VL 122 IS 1 SI SI BP 125 EP 143 PG 19 WC Physics, Multidisciplinary SC Physics GA 486YX UT WOS:000269238100011 ER PT J AU Mackenzie, PB AF Mackenzie, Paul B. TI The CKM Matrix from Lattice QCD SO PROGRESS OF THEORETICAL PHYSICS LA English DT Article; Proceedings Paper CT Meeting on CP Violation and Flavor Mixing CY DEC 08, 2008 CL Stockholm Univ, Stockholm, SWEDEN HO Stockholm Univ ID KOBAYASHI-MASKAWA MATRIX; CP-VIOLATION; ELEMENTS; DECAYS AB Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analysing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Mackenzie, PB (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. NR 50 TC 1 Z9 1 U1 0 U2 1 PU PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE PI KYOTO PA C/O KYOTO UNIV, YUKAWA HALL, KYOTO, 606-8502, JAPAN SN 0033-068X J9 PROG THEOR PHYS JI Prog. Theor. Phys. PD JUL PY 2009 VL 122 IS 1 SI SI BP 169 EP 184 PG 16 WC Physics, Multidisciplinary SC Physics GA 486YX UT WOS:000269238100013 ER PT J AU Blois, TM Bowie, JU AF Blois, Tracy M. Bowie, James U. TI G-protein-coupled receptor structures were not built in a day SO PROTEIN SCIENCE LA English DT Review DE membrane protein; crystallization; expression; bicells; lipid cubic phase ID X-RAY-STRUCTURE; CRYSTALLIZING MEMBRANE-PROTEINS; 2.3 ANGSTROM RESOLUTION; LIPIDIC CUBIC PHASES; CELL-FREE PRODUCTION; ESCHERICHIA-COLI; LACTOSE PERMEASE; FUSION PROTEINS; EXPRESSION; CHANNEL AB Among the most exciting recent developments in structural biology is the structure determination of G-protein-coupled receptors (GPCRs), which comprise the largest class of membrane proteins in mammalian cells and have enormous importance for disease and drug development. The GPCR structures are perhaps the most visible examples of a nascent revolution in membrane protein structure determination. Like other major milestones in science, however, such as the sequencing of the human genome, these achievements were built on a hidden foundation of technological developments. Here, we describe some of the methods that are fueling the membrane protein structure revolution and have enabled the determination of the current GPCR structures, along with new techniques that may lead to future structures. C1 [Blois, Tracy M.; Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Boyer Hall,611 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu FU NIGMS NIH HHS [R01 GM075922-03, R01 GM063919, R01 GM063919-06, R01 GM063919-07, R01 GM063919-08, R01 GM075922, R01 GM075922-04, R01 GM075922-05, R01 GM081783, R01 GM081783-02, R01 GM081783-03] NR 69 TC 21 Z9 22 U1 1 U2 10 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2009 VL 18 IS 7 BP 1335 EP 1342 DI 10.1002/pro.165 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469FV UT WOS:000267882200001 PM 19536805 ER PT J AU Lee, J Kim, SH AF Lee, Jonas Kim, Sung-Hou TI Water polygons in high-resolution protein crystal structures SO PROTEIN SCIENCE LA English DT Article DE crystal structure; hydration structure; hydrogen bonding; interstitial water; protein data bank; water cluster; bulk water ID BOUND WATER; AMINO-ACID; HYDRATION; CRYSTALLOGRAPHY; MOLECULES; CLUSTERS; VOLUME; NMR AB We have analyzed the interstitial water (ISW) structures in 1500 protein crystal structures deposited in the Protein Data Bank that have greater than 1.5 angstrom resolution with less than 90% sequence similarity with each other. We observed varieties of polygonal water structures composed of three to eight water molecules. These polygons may represent the time-and space-averaged structures of "stable'' water oligomers present in liquid water, and their presence as well as relative population may be relevant in understanding physical properties of liquid water at a given temperature. On an average, 13% of ISWs are localized enough to be visible by X-ray diffraction. Of those, averages of 78% are water molecules in the first water layer on the protein surface. Of the localized ISWs beyond the first layer, almost half of them form water polygons such as trigons, tetragons, as well as expected pentagons, hexagons, higher polygons, partial dodecahedrons, and disordered networks. Most of the octagons and nanogons are formed by fusion of smaller polygons. The trigons are most commonly observed. We suggest that our observation provides an experimental basis for including these water polygon structures in correlating and predicting various water properties in liquid state. C1 [Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA. [Lee, Jonas; Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu NR 22 TC 14 Z9 15 U1 0 U2 6 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2009 VL 18 IS 7 BP 1370 EP 1376 DI 10.1002/pro.162 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469FV UT WOS:000267882200004 PM 19551896 ER PT J AU Wiltzius, JJW Sievers, SA Sawaya, MR Eisenberg, D AF Wiltzius, Jed J. W. Sievers, Stuart A. Sawaya, Michael R. Eisenberg, David TI Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process SO PROTEIN SCIENCE LA English DT Article DE IAPP; amylin; amyloid; aggregation; type II diabetes ID ISLET AMYLOID POLYPEPTIDE; GENE-RELATED PEPTIDE; TYPE-2 DIABETES-MELLITUS; ALPHA-HELICAL STATES; TRANSGENIC MICE; IN-VITRO; FIBRILLOGENESIS; SPECTROSCOPY; CYTOTOXICITY; GRANULE AB Islet Amyloid Polypeptide (IAPP or amylin) is a peptide hormone produced and stored in the beta-islet cells of the pancreas along with insulin. IAPP readily forms amyloid fibrils in vitro, and the deposition of fibrillar IAPP has been correlated with the pathology of type II diabetes. The mechanism of the conversion that IAPP undergoes from soluble to fibrillar forms has been unclear. By chaperoning IAPP through fusion to maltose binding protein, we find that IAPP can adopt a a-helical structure at residues 8-18 and 22-27 and that molecules of IAPP dimerize. Mutational analysis suggests that this dimerization is on the pathway to fibrillation. The structure suggests how IAPP may heterodimerize with insulin, which we confirmed by protein crosslinking. Taken together, these experiments suggest the helical dimerization of IAPP accelerates fibril formation and that insulin impedes fibrillation by blocking the IAPP dimerization interface. C1 [Wiltzius, Jed J. W.; Sievers, Stuart A.; Sawaya, Michael R.; Eisenberg, David] Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI Eisenberg, David/E-2447-2011; OI Sawaya, Michael/0000-0003-0874-9043 FU NIH; NSF; HHMI FX Grant sponsors: NIH; NSF; HHMI. NR 53 TC 91 Z9 94 U1 3 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2009 VL 18 IS 7 BP 1521 EP 1530 DI 10.1002/pro.145 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 469FV UT WOS:000267882200016 PM 19475663 ER PT J AU Loeppky, JL Williams, BJ AF Loeppky, Jason L. Williams, Brian J. TI Design and Analysis for the Gaussian Process Model - Discussion SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Editorial Material C1 [Loeppky, Jason L.] Univ British Columbia Okanagan, Kelowna, BC, Canada. [Williams, Brian J.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Loeppky, JL (reprint author), Univ British Columbia Okanagan, Kelowna, BC, Canada. EM jason@stat.ubc.ca; brian@lanl.gov OI Williams, Brian/0000-0002-3465-4972 NR 14 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD JUL PY 2009 VL 25 IS 5 BP 535 EP 539 DI 10.1002/qre.1040 PG 5 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 477WO UT WOS:000268549800005 ER PT J AU Ntelekos, AA Smith, JA Donner, L Fast, JD Gustafson, WI Chapman, EG Krajewski, WF AF Ntelekos, Alexandros A. Smith, James A. Donner, Leo Fast, Jerome D. Gustafson, William I., Jr. Chapman, Elaine G. Krajewski, Witold F. TI The effects of aerosols on intense convective precipitation in the northeastern United States SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE mesoscale modelling; WRF-Chem; extreme events; flooding ID MESOSCALE MODEL MM5; CLOUD MODEL; AIR-POLLUTION; PART I; CUMULUS CLOUD; WRF MODEL; MICROPHYSICS; RAINFALL; IMPACTS; STORMS AB A fully coupled meteorology-chemistry-aerosol mesoscale model (WRF-Chem) is used to assess the effects of aerosols on intense convective precipitation over the northeastern United States. Numerical experiments are performed for three intense convective storm days and for two scenarios representing 'typical' and 'low' aerosol conditions. The results of the simulations. suggest that increasing concentrations of aerosols can lead to either enhancement or suppression of precipitation. Quantification of the aerosol effect is sensitive to the metric used due to a shift of rainfall accumulation distribution when realistic aerosol concentrations are included in the simulations. Maximum rainfall accumulation amounts and areas with rainfall accumulations exceeding specified thresholds provide robust metrics of the aerosol effect on convective precipitation. Storms developing over areas with medium to low aerosol concentrations showed a suppression effect on rainfall independent of the meteorological environment. Storms developing in areas of relatively high particulate concentrations showed enhancement of rainfall when there were simultaneous high values of convective available potential energy, relative humidity and wind shear. In these cases, elevated aerosol concentrations resulted in stronger updraughts and downdraughts and more coherent organization of convection. For the extreme case, maximum rainfall accumulation differences exceeded 40 mm. The modelling results suggest that areas of the northeastern US urban corridor that are close to or downwind of intense sources of aerosols, could be more favourable for rainfall enhancement due to aerosols for the aerosol concentrations typical of this area. Copyright (C) 2009 Royal Meteorological Society C1 [Ntelekos, Alexandros A.] Princeton Univ, Dept Civil & Environm Engn, CEE Equad, Princeton, NJ 08544 USA. [Donner, Leo] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Fast, Jerome D.; Gustafson, William I., Jr.; Chapman, Elaine G.] Pacific NW Natl Lab, Div Atmospher Sci & Global Change, Richland, WA 99352 USA. [Krajewski, Witold F.] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA USA. RP Ntelekos, AA (reprint author), Princeton Univ, Dept Civil & Environm Engn, CEE Equad, Princeton, NJ 08544 USA. EM ntelekos@alumni.princeton.edu RI Gustafson, William/A-7732-2008 OI Gustafson, William/0000-0001-9927-1393 NR 52 TC 46 Z9 49 U1 2 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JUL PY 2009 VL 135 IS 643 BP 1367 EP 1391 DI 10.1002/qj.476 PN B PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 506MI UT WOS:000270778500001 ER PT J AU Zeng, XP Tao, WK Zhang, MH Hou, AY Xie, SC Lang, S Li, XW Starr, DO Li, XF AF Zeng, Xiping Tao, Wei-Kuo Zhang, Minghua Hou, Arthur Y. Xie, Shaocheng Lang, Stephen Li, Xiaowen Starr, David O'C Li, Xiaofan TI A contribution by ice nuclei to global warming SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE TRMM; cloud-resolving model ID RESOLVING MODEL SIMULATIONS; CLOUD SYSTEMS; NUCLEATION PROCESSES; PROFILING ALGORITHM; CONVECTIVE CLOUD; WATER-VAPOR; MICROPHYSICS; PRECIPITATION; RADIATION; DYNAMICS AB Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, ten years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a cloud-resolving model to generate long-term cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the top of the atmosphere from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic CO(2). It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g. the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and can then be compared with observations. A general match in geographic and seasonal variations between the inferred and observed warming suggests that IN may have contributed positively to global warming over the past decades, especially in middle and high latitudes. Copyright (C) 2009 Royal Meteorological Society C1 [Zeng, Xiping; Tao, Wei-Kuo; Hou, Arthur Y.; Lang, Stephen; Li, Xiaowen; Starr, David O'C] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Zeng, Xiping; Li, Xiaowen] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, New York, NY USA. [Xie, Shaocheng] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. [Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Li, Xiaofan] NOAA, Natl Environm Satellite Data & Informat Serv, Camp Springs, MD USA. RP Zeng, XP (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, C423,Bldg 33,Mail Code 613-1, Greenbelt, MD 20771 USA. EM zeng@agnes.gsfc.nasa.gov RI Li, Xiaofan/F-5605-2010; Hou, Arthur/D-8578-2012; Xie, Shaocheng/D-2207-2013; Li, Xiaofan/G-2094-2014 OI Xie, Shaocheng/0000-0001-8931-5145; FU NASA Headquarters Atmospheric Dynamics and Thermodynamics Program; NASA Tropical Rainfall Measuring Mission (TRMM); Office of Science (BER); US Department of Energy/Atmospheric Radiation Measurement (DOE/ARM) Interagency Agreement [DE-AI02-04ER63755]; NASA; DOE Atmospheric Radiation Measurement Program; University of California Lawrence Livermore National Laboratory [W-7405-Eng-48] FX The authors acknowledge the NASA Ames Research Center and the NASA Goddard Space Flight Center for the enormous computer time used in this research. They greatly thank Drs. Richard Johnson and Paul Ciesielski for providing the large-scale forcing data derived from NAME, TOGA-COARE and SCSMEX/SESA. Special thanks are extended to Drs. Joanne Simpson, Warren Wiscombe and three anonymous reviewers for their kind comments and suggestions. NR 72 TC 21 Z9 26 U1 0 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0035-9009 J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JUL PY 2009 VL 135 IS 643 BP 1614 EP 1629 DI 10.1002/qj.449 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 506MI UT WOS:000270778500017 ER PT J AU Bandstra, ER Thompson, RW Nelson, GA Willey, JS Judex, S Cairns, MA Benton, ER Vazquez, ME Carson, JA Bateman, TA AF Bandstra, Eric R. Thompson, Raymond W. Nelson, Gregory A. Willey, Jeffrey S. Judex, Stefan Cairns, Mark A. Benton, Eric R. Vazquez, Marcelo E. Carson, James A. Bateman, Ted A. TI Musculoskeletal Changes in Mice from 20-50 cGy of Simulated Galactic Cosmic Rays SO RADIATION RESEARCH LA English DT Article ID DIGITORUM LONGUS MUSCLE; HIGH-DOSE IRRADIATION; SKELETAL-MUSCLE; IN-VIVO; CONTRACTILE PROPERTIES; GAMMA-IRRADIATION; BODY IRRADIATION; TRABECULAR BONE; SOLEUS MUSCLE; RADIATION AB On a mission to Mars, astronauts will be exposed to a complex mix of radiation from galactic cosmic rays. We have demonstrated a loss of bone mass from exposure to types of radiation relevant to space flight at doses of 1 and 2 Gy. The effects of space radiation on skeletal muscle, however, have not been investigated. To evaluate the effect of simulated galactic cosmic radiation on muscle fiber area and bone volume, we examined mice from a study in which brains were exposed to collimated iron-ion radiation. The collimator transmitted a complex mix of charged secondary particles to bone and muscle tissue that represented a low-fidelity simulation of the space radiation environment. Measured radiation doses of uncollimated secondary particles were 0.47 Gy at the proximal humerus, 0.24-0.31 Gy at the midbelly of the triceps brachii, and 0.18 Gy at the proximal tibia. Compared to nonirradiated controls, the proximal humerus of irradiated mice had a lower trabecular bone volume fraction, lower trabecular thickness, greater cortical porosity, and lower polar moment of inertia. The tibia showed no differences in any bone parameter. The triceps brachii of irradiated mice had fewer small-diameter fibers and more fibers containing central nuclei. These results demonstrate a negative effect on the skeletal muscle and bone systems of simulated galactic cosmic rays at a dose and LET range relevant to a Mars exploration mission. The presence of evidence of muscle remodeling highlights the need for further study. (C) 2009 by Radiation Research Society C1 [Bateman, Ted A.] Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29634 USA. [Thompson, Raymond W.; Cairns, Mark A.; Carson, James A.] Univ S Carolina, Dept Exercise Sci, Columbia, SC 29208 USA. [Nelson, Gregory A.] Loma Linda Univ & Med Ctr, Dept Radiat Med, Loma Linda, CA USA. [Judex, Stefan] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Benton, Eric R.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Vazquez, Marcelo E.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Bateman, TA (reprint author), Clemson Univ, Rhodes Res Ctr 501, Dept Bioengn, Clemson, SC 29634 USA. EM bateman@clemson.edu OI Carson, James/0000-0003-3733-8796 FU NIAMS NIH HHS [R21 AR054889] NR 45 TC 15 Z9 15 U1 1 U2 3 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2009 VL 172 IS 1 BP 21 EP 29 DI 10.1667/RR1509.1 PG 9 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 465WF UT WOS:000267619200003 PM 19580504 ER PT J AU Weber, TJ Opresko, LK Waisman, DM Newton, GJ Quesenberry, RD Bollinger, N Moore, RJ Smith, RD AF Weber, Thomas J. Opresko, Lee K. Waisman, David M. Newton, Greg J. Quesenberry, Ryan D. Bollinger, Nikki Moore, Ronald J. Smith, Richard D. TI Regulation of the Low-Dose Radiation Paracrine-Specific Anchorage-Independent Growth Response by Annexin A2 SO RADIATION RESEARCH LA English DT Article ID GAMMA-IRRADIATION; CELL-SURFACE; PLASMINOGEN-ACTIVATOR; MASS-SPECTROMETRY; INDUCED APOPTOSIS; II EXPRESSION; FACTOR-BETA; JB6 CELLS; IN-VITRO; PROTEIN AB Here we identify the release of annexin A2 into the culture medium in response to low-dose X-radiation exposure and establish functional linkages to an established paracrine factor-mediated anchorage-independent growth response. Using a standard bicameral coculture model, we demonstrate that annexin A2 is secreted into the medium by irradiated cells (seeded in upper chamber) and is capable of binding to nonirradiated neighboring cells (seeded in lower chamber). The paracrine factor-mediated anchorage-independent growth response to low-dose X irradiation is reduced when irradiated annexin A2-silenced (shRNA) JB6 cells are co-cultured with nonirradiated cells relative to co-culture with irradiated annexin A2-competent vector control cells. Consistent with this observation, purified bovine annexin A2 tetramer induces anchorage-independent growth. These observations suggest that annexin A2 regulates, in part, the radiation paracrine factor-specific anchorage-independent growth response in JB6 cells. (C) 2009 by Radiation Research Society C1 [Weber, Thomas J.; Opresko, Lee K.; Newton, Greg J.; Quesenberry, Ryan D.; Bollinger, Nikki; Moore, Ronald J.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Waisman, David M.] Dalhousie Univ, Dept Biochem & Mol Biol, Halifax, NS, Canada. RP Weber, TJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, 790 6th St,P7-56, Richland, WA 99354 USA. EM Thomas.Weber@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Waisman, David/0000-0002-5097-9662 NR 55 TC 7 Z9 7 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2009 VL 172 IS 1 BP 96 EP 105 DI 10.1667/RR1220.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 465WF UT WOS:000267619200010 PM 19580511 ER PT J AU Blakely, E Evans, T Oleinick, N Sedwick, D AF Blakely, Eleanor Evans, Thomas Oleinick, Nancy Sedwick, David TI Helen Harrington Evans (1924-2007) IN MEMORIAM SO RADIATION RESEARCH LA English DT Biographical-Item C1 [Blakely, Eleanor] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Oleinick, Nancy; Sedwick, David] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Blakely, E (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD JUL PY 2009 VL 172 IS 1 BP 139 EP 140 DI 10.1667/RRXX13.1 PG 2 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 465WF UT WOS:000267619200015 ER PT J AU Davis, A Gift, JS Woodall, GM Narotsky, MG Foureman, GL AF Davis, Allen Gift, Jeff S. Woodall, George M. Narotsky, Michael G. Foureman, Gary L. TI The role of developmental toxicity studies in acute exposure assessments: Analysis of single-day vs. multiple-day exposure regimens SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Developmental toxicity; Butylbenzyl phthalate; Tributyltin; Benchmark dose; Risk assessment; Acute exposure; Single-day; Multiple-day ID BUTYL BENZYL PHTHALATE; TRIBUTYLTIN CHLORIDE; RATS; ENVIRONMENT; TERATOLOGY; SEDIMENT; ESTERS AB In accordance with most toxicity guidelines, developmental studies typically utilize repeated exposures, usually throughout gestation or during organogenesis in particular. However, it is known that developmental toxicity may occur in response to single exposures, especially during specific windows of susceptibility. An overview of the available literature gave sufficient evidence that for many agents, the same endpoints observed in repeated dose, multiple-day studies were also observed in single-day exposures, thus indicating the relevance of developmental toxicity to health assessments of acute exposures. Further, results of benchmark dose modeling of developmental endpoints indicated that for embryo lethality, single-day exposures required a two- to fourfold higher dose than the multiple-day exposures to produce the same level of response. For fused sternebrae, exposures on specific days produced equivalent levels of response at doses that were more similar to those utilized in the repeated exposures. Appreciable differences in biological half-life (and corresponding dose metrics) as well as specific windows of susceptibility may partially explain the observed multiple- vs. single-day exposure dose-response relationships. Our results highlight the need of a more thorough evaluation of outcomes from repeated dose developmental toxicity studies in regards to their importance to chronic and acute risk assessments. Published by Elsevier Inc. C1 [Davis, Allen; Gift, Jeff S.; Woodall, George M.; Foureman, Gary L.] US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA. [Davis, Allen] Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA. [Narotsky, Michael G.] US EPA, Natl Hlth & Environm Effects Res Lab, Res Triangle Pk, NC 27711 USA. RP Davis, A (reprint author), US EPA, Natl Ctr Environm Assessment, 109 TW Alexander Dr,Mail Code B243-01, Res Triangle Pk, NC 27711 USA. EM davis.allen@epa.gov RI Woodall, George/M-5658-2014 FU NCEA-CRISE Interagency Agreement; U.S. Environmental Protection Agency FX Partial funding was provided by the NCEA-CRISE Interagency Agreement. The information in this document has been subjected to review by the National Center for Environmental Assessment, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The research presented in this document was funded in part by the U.S. Environmental Protection Agency. NR 27 TC 3 Z9 3 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD JUL PY 2009 VL 54 IS 2 BP 134 EP 142 DI 10.1016/j.yrtph.2009.03.006 PG 9 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 457NW UT WOS:000266939500005 PM 19306903 ER PT J AU Gibson, JM AF Gibson, J. M. TI The birth of the blues: how physics underlies music SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID SCALES AB Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Gibson, JM (reprint author), Argonne Natl Lab, 9700 Cass Ave, Argonne, IL 60439 USA. EM jmgibson@aps.anl.gov RI Gibson, Murray/E-5855-2013 OI Gibson, Murray/0000-0002-0807-6224 FU Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Department of Energy under Contract DE-AC02-06CH11357. Thanks to Faye Gibson for the graphics. NR 22 TC 0 Z9 0 U1 3 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 J9 REP PROG PHYS JI Rep. Prog. Phys. PD JUL PY 2009 VL 72 IS 7 AR 076001 DI 10.1088/0034-4885/72/7/076001 PG 17 WC Physics, Multidisciplinary SC Physics GA 464NG UT WOS:000267511200001 ER PT J AU Cook, AR Shen, YZ AF Cook, Andrew R. Shen, Yuzhen TI Optical fiber-based single-shot picosecond transient absorption spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE CCD image sensors; high-speed optical techniques; measurement by laser beam; optical fibres; optical parametric amplifiers; radiolysis ID TIME-RESOLVED SPECTROSCOPY; STREAK CAMERA; REAL-TIME; ELECTRON AB A new type of single-shot transient absorption apparatus is described based on a bundle of optical fibers. The bundle contains 100 fibers of different lengths, each successively giving similar to 15 ps longer optical delay. Data are collected by imaging light from the exit of the bundle into a sample where it is overlapped with an electron pulse or laser excitation pulse, followed by imaging onto a charge coupled device (CCD) detector where the intensity of light from each fiber is measured simultaneously. Application to both ultrafast pump-probe spectroscopy and pulse radiolysis is demonstrated. For pulse radiolysis, the prototype bundle provides the ability to collect data with a time resolution limited only by the electron pulse width of 7-10 ps, over a total single-shot time window of similar to 1.5 ns. Tunable probe light is obtained from a titanium-sapphire laser and an optical parametric amplifier. Corrections are made to remove the fiber-to-fiber variations in signal magnitude due to the spatial overlap of the electron beam and probe image. High quality data can be collected over most of the sensitivity range of the CCD camera detectors. The single-shot instrument is valuable for measurement of samples that are only available in very limited quantities, are too viscous to flow, or are rigid. It is therefore excellent in applications, such as picosecond pulse radiolysis, where the thousands of pulses per kinetic trace typical in classical pump-probe experiments can damage the sample before useful results could be obtained. C1 [Cook, Andrew R.; Shen, Yuzhen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Cook, AR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM acook@bnl.gov OI Cook, Andrew/0000-0001-6633-3447 FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-98-CH10886] FX The authors would like to thank, in particular, Dr. John Miller for helpful discussions during the development of this experiment, as well as Dr. Jim Wishart, Dr. Sean McIlroy, Dr. Thomas Y. Tsang, and Dr. Peter Z. Takacs. This work was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, under Contract No. DE-AC02-98-CH10886. NR 24 TC 10 Z9 10 U1 3 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2009 VL 80 IS 7 AR 073106 DI 10.1063/1.3156048 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 478VD UT WOS:000268615700007 PM 19655942 ER PT J AU Hong, XG Newville, M Prakapenka, VB Rivers, ML Sutton, SR AF Hong, Xinguo Newville, Matthew Prakapenka, Vitali B. Rivers, Mark L. Sutton, Stephen R. TI High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE germanium compounds; glass; high-pressure effects; polymorphism; X-ray absorption spectra ID NEAR-EDGE STRUCTURE; FINE-STRUCTURE; SYNCHROTRON-RADIATION; HIGH-TEMPERATURE; DISPERSIVE MODE; COORDINATION CHANGES; EXAFS MEASUREMENTS; XANES SPECTRA; LIQUID; DIFFRACTION AB We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within +/- 3 degrees relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO2 recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO2 glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO2 glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures. C1 [Hong, Xinguo] Cornell Univ, Cornell High Energy Synchrotron Source, MacCHESS, Ithaca, NY 14853 USA. [Newville, Matthew; Prakapenka, Vitali B.; Rivers, Mark L.; Sutton, Stephen R.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Rivers, Mark L.; Sutton, Stephen R.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. RP Hong, XG (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM xhong@bnl.gov FU NSF-EAR [0229987]; NSF [EAR-0622171, DMR-0225180]; DOE [DE-FG02-94ER14466]; National Institutes of Health through its National Center for Research Resources [RR-01646] FX We would like to thank M. Szebenyi, X. M. Yu, and G. Shen for their support to this research. This work was supported by the NSF-EAR under Grant No. 0229987. The GSECARS sector was supported by the NSF (Earth Sciences Instrumentation and Facilities Program, EAR-0622171) and DOE (Geoscience Program, DE-FG02-94ER14466). Macromolecular Diffraction at CHESS (MacCHESS) facility was supported by Award No. RR-01646 from the National Institutes of Health through its National Center for Research Resources. CHESS is supported by NSF award DMR-0225180. NR 81 TC 20 Z9 20 U1 4 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2009 VL 80 IS 7 AR 073908 DI 10.1063/1.3186736 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 478VD UT WOS:000268615700031 PM 19655966 ER PT J AU Esarey, E Schroeder, CB Leemans, WP AF Esarey, E. Schroeder, C. B. Leemans, W. P. TI Physics of laser-driven plasma-based electron accelerators SO REVIEWS OF MODERN PHYSICS LA English DT Review DE electron accelerators; electron beams; optical self-focusing; particle beam bunching; plasma accelerators; plasma instability; plasma light propagation; plasma nonlinear waves; stimulated Raman scattering; wakefield accelerators ID HIGH-INTENSITY LASER; BEAT-WAVE ACCELERATOR; WAKE-FIELD ACCELERATION; STIMULATED COMPTON-SCATTERING; GAS-FILLED CAPILLARY; FEMTOSECOND X-RAYS; SHORT-PULSE LASERS; UNDERDENSE PLASMAS; WAKEFIELD ACCELERATOR; RAMAN-SCATTERING AB Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized. C1 [Esarey, E.; Schroeder, C. B.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Esarey, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. OI Schroeder, Carl/0000-0002-9610-0166 FU U.S. Department Energy [DE-AC0205CH11231] FX The authors acknowledge many contributions from past and present members of the LOASIS Program at Lawrence Berkeley National Laboratory, in particular, C. Geddes, E. Cormier-Michel, B. Shadwick, and Cs. Toth, and many insightful conversations with the researchers in the plasma-based accelerator community. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department Energy under Contract No. DE-AC0205CH11231. NR 306 TC 766 Z9 778 U1 36 U2 228 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL-SEP PY 2009 VL 81 IS 3 BP 1229 EP 1285 DI 10.1103/RevModPhys.81.1229 PG 57 WC Physics, Multidisciplinary SC Physics GA 500DW UT WOS:000270279000011 ER PT J AU Dhawan, A Gerhold, M Madison, A Fowlkes, J Russell, PE Vo-Dinh, T Leonard, DN AF Dhawan, Anuj Gerhold, Michael Madison, Andrew Fowlkes, Jason Russell, Phillip E. Vo-Dinh, Tuan Leonard, Donovan N. TI Fabrication of Nanodot Plasmonic Waveguide Structures Using FIB Milling and Electron Beam-Induced Deposition SO SCANNING LA English DT Article DE electron beam-induced deposition; surface plasmons; nanostructures; localized surface plasmon resonance; plasmonic waveguide ID PLATINUM; NANOSTRUCTURES; PT(PF3)(4); COPPER AB Fabrication of metallic Au nanopillars and linear arrays of Au-containing nanodots for plasmonic waveguides is reported in this article by two different processes-focused ion beam (FIB) milling of deposited thin films and electron beam-induced deposition (EBID) of metallic nanostructures from an organometallic precursor gas. Finite difference time domain (FDTD) modeling of electromagnetic fields around metallic nanostructures was used to predict the optimal size and spacing between nanostructures useful for plasmonic waveguides. Subsequently, a multi-step FIB fabrication method was developed for production of metallic nanorods and nanopillars of the size and geometry suggested by the results of the FDTD simulations. Nanostructure fabrication was carried out on planar substrates including Au-coated glass, quartz, and mica slides as well as cleaved 4-mode optical fibers. In the second fabrication process, EBID was utilized for the development of similar nanostructures on planar Indium Tin Oxide and Titanium-coated glass substrates. Each method allows formation of nanostructures such that the plasmon resonances associated with the nanostructures could be engineered and precisely controlled by controlling the nanostructure size and shape. Linear arrays of low aspect ratio nanodot structures ranging in diameter between 50-70 nm were fabricated using EBID. Preliminary dark field optical microscopy demonstrates differences in the plasmonic response of the fabricated structures. SCANNING 31: 139-146, 2009. (c) 2009 Wiley Periodicals, Inc. C1 [Dhawan, Anuj; Gerhold, Michael; Vo-Dinh, Tuan] Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA. [Dhawan, Anuj; Gerhold, Michael] USA, Res Off, Durham, NC USA. [Madison, Andrew; Russell, Phillip E.; Leonard, Donovan N.] Appalachian State Univ, Dept Phys & Astron, Boone, NC 28608 USA. [Fowlkes, Jason] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Dhawan, A (reprint author), Duke Univ, Fitzpatrick Inst Photon, 3527 FCIEMAS, Durham, NC 27708 USA. EM anuj.dhawan@duke.edu FU U.S. Army Research Office; National Research Council (NRC); Scientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy FX Contract grant sponsors: U.S. Army Research Office and the National Research Council (NRC); Scientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy. NR 26 TC 17 Z9 17 U1 1 U2 32 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0161-0457 J9 SCANNING JI Scanning PD JUL-AUG PY 2009 VL 31 IS 4 BP 139 EP 146 DI 10.1002/sca.20152 PG 8 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 513RK UT WOS:000271340700001 PM 19670460 ER PT J AU Fu, EG Carter, J Martin, M Xie, G Zhang, X Wang, YQ Littleton, R Shao, L AF Fu, E. G. Carter, Jesse Martin, Michael Xie, Guoqiang Zhang, X. Wang, Y. Q. Littleton, Rick Shao, Lin TI Electron irradiation-induced structural transformation in metallic glasses SO SCRIPTA MATERIALIA LA English DT Article DE Metallic glasses; Recrystallization ID AMORPHOUS-ALLOYS; MECHANICAL-PROPERTIES; CRYSTALLIZATION; NANOCRYSTALLIZATION; SIMULATION; DIFFUSION; SI AB Microstructural evolution of Zr(55)Cu(30)Al(10)Ni(5) and Cu(50)Zr(45)Ti(5) metallic glasses under 200 keV electron irradiation has been studied in situ by transmission electron microscopy. Zr(55)Cu(30)Al(10)Ni(5), which has a wider supercooled liquid region, is found to be stable under electron irradiation and no crystallization is observed up to an irradiation fluence of 8.7 x 10(26) electrons m(-2). In contrast, nanometer size crystalline Cu(10)Zr(7) phases are formed in Cu(50)Zr(45)Ti(5) under electron irradiation. The partial crystallization is attributed to irradiation enhanced atomic mobility. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Carter, Jesse; Martin, Michael; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Fu, E. G.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Xie, Guoqiang] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Wang, Y. Q.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Littleton, Rick] Texas A&M Univ, Microscopy & Imaging Ctr, College Stn, TX 77843 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, 129 Zachry,TAMU 3133, College Stn, TX 77843 USA. EM lshao@mailaps.org RI Xie, Guoqiang/A-8619-2011; Zhang, Xinghang/H-6764-2013 OI Zhang, Xinghang/0000-0002-8380-8667 FU DOE [DE-FC07-05ID14657]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was financially supported by the University Embryonic Technologies Program from Siemens Power Generation Emerging Technologies. L.S. acknowledges the support from the NRC Early Career Development Grant and the access to the user facilities at DOE-Center for Integrated Nanotechnologies (CINT). X.Z. acknowledges the support by DOE under grant number DE-FC07-05ID14657. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 29 TC 10 Z9 10 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2009 VL 61 IS 1 BP 40 EP 43 DI 10.1016/j.scriptamat.2009.03.001 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 447XK UT WOS:000266225100011 ER PT J AU Vo, NQ Averback, RS Bellon, P Caro, A AF Vo, Nhon Q. Averback, Robert S. Bellon, Pascal Caro, Alfredo TI Yield strength in nanocrystalline Cu during high strain rate deformation SO SCRIPTA MATERIALIA LA English DT Article DE Yield strength; Nanocrystalline; Molecular dynamics; Hall-Petch ID MOLECULAR-DYNAMICS; NANOPHASE METALS; MECHANISMS; BEHAVIOR; COPPER AB Molecular dynamics simulations are used to study the yield strength of thermally annealed nanocrystalline Cu samples. For strain rates of 1 x 10(10) and 1 x 10(9) s(-1), the observed yield strength scales with the fractional number of grain boundary (GB) atoms. This observation suggests a new scaling behavior for the onset of plasticity in nanocrystalline materials, controlled not by the grain size alone, but by a combination of both grain size and degree of GB relaxation, as measured by the GB volume. (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Vo, Nhon Q.; Averback, Robert S.; Bellon, Pascal] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Caro, Alfredo] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP Vo, NQ (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM nhonvo2@illinois.edu; averback@illinois.edu RI Vo, Nhon/E-4599-2010 NR 17 TC 22 Z9 23 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2009 VL 61 IS 1 BP 76 EP 79 DI 10.1016/j.scriptamat.2009.03.003 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 447XK UT WOS:000266225100020 ER PT J AU Clarke, AJ Speer, JG Matlock, DK Rizzo, FC Edmonds, DV Santofimia, MJ AF Clarke, A. J. Speer, J. G. Matlock, D. K. Rizzo, F. C. Edmonds, D. V. Santofimia, M. J. TI Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning SO SCRIPTA MATERIALIA LA English DT Article DE Quenching; Partitioning; Kinetics; Austenite; Martensite ID MARTENSITE-TRANSFORMATION; STEELS; BAINITE; FERRITE; PLATES AB The quenching and partitioning (Q&P) process is a two-stage heat-treatment procedure proposed for producing steel microstructures that contain carbon-enriched retained austenite. In Q&P processing, austenite stabilization is accomplished by carbon partitioning from supersaturated martensite. A quench temperature selection methodology was developed to predict an optimum process quench temperature; extension of this methodology to include carbon partitioning kinetics is developed here. The final austenite fraction is less sensitive to quench temperature than previously predicted, in agreement with experimental results. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Clarke, A. J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Speer, J. G.; Matlock, D. K.] Colorado Sch Mines, Adv Steel Proc & Prod Res Ctr, Golden, CO 80401 USA. [Rizzo, F. C.] Pontificia Univ Catolica Rio de Janeiro, Dept Mat Sci & Met, BR-22543900 Rio De Janeiro, Brazil. [Edmonds, D. V.] Univ Leeds, Sch Proc Environm & Mat Engn, Leeds LS2 9JT, W Yorkshire, England. [Santofimia, M. J.] Mat Innovat Inst M2i, NL-2628 CD Delft, Netherlands. [Santofimia, M. J.] Delft Univ Technol, Dept Mat Sci & Engn, NL-2628 CD Delft, Netherlands. RP Clarke, AJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Mail Stop G770, Los Alamos, NM 87545 USA. EM aclarke@lanl.gov RI Santofimia, Maria Jesus/C-3979-2013 OI Santofimia, Maria Jesus/0000-0002-1628-7611 FU Advanced Steel Processing and Products Research Center; National Science Foundation Industry/University Cooperative Research Center; NSF [0303510]; CNPq (Brazil); EPSRC (UK); U.S. Department of Energy [DE-AC52-06NA25396] FX The authors gratefully acknowledge the support of the Advanced Steel Processing and Products Research Center, a National Science Foundation Industry/University Cooperative Research Center, at the Colorado School of Mines and the Inter-American Materials Collaboration Program. Funding is acknowledged from NSF award No. 0303510 (US), CNPq (Brazil) and EPSRC (UK). AJC acknowledges support from the U.S. Department of Energy (contract DE-AC52-06NA25396) during the preparation of this manuscript. The authors also thank POSCO for providing the experimental material. Technical assistance and helpful discussions provided by K.D. Clarke, E.J. Pavlina and E. De Moor are also greatly acknowledged; the helpfulness of A.R. Martins is also greatly appreciated. M.K. Miller and K.F. Russell at Oak Ridge National Laboratory and K. He at the University of Leeds are also thanked for their help with related studies. NR 17 TC 49 Z9 61 U1 4 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2009 VL 61 IS 2 BP 149 EP 152 DI 10.1016/j.scriptamat.2009.03.021 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 456JF UT WOS:000266840800011 ER PT J AU Mintairov, AM Sun, K Merz, JL Yuen, H Bank, S Wistey, M Harris, JS Peake, G Egorov, A Ustinov, V Kudrawiec, R Misiewicz, J AF Mintairov, A. M. Sun, K. Merz, J. L. Yuen, H. Bank, S. Wistey, M. Harris, J. S. Peake, G. Egorov, A. Ustinov, V. Kudrawiec, R. Misiewicz, J. TI Atomic arrangement and emission properties of GaAs(In, Sb)N quantum wells SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID MOLECULAR-BEAM EPITAXY; OPTICAL-PROPERTIES; DILUTE NITRIDES; LASER-DIODES; ALLOYS; PHOTOLUMINESCENCE; NITROGEN; LOCALIZATION; SHIFT; SEMICONDUCTORS AB Fine structure related to different types of atomic arrangements (short-range order, phase separation and quantum dots) was observed in high-spatial-resolution low-temperature photoluminescence (PL) spectra of GaAsInN, GaAsSbN and GaAsInSbN quantum wells (QWs) containing similar to 1.5% N and emitting at 1.2-1.3 mu m. Using photoreflectance and temperature-dependent PL spectroscopy, we measured the activation energies and band-tail width of localized states, associated with different atomic arrangements, to be 5-66 meV. We found that the emission intensity in these GaAs(In, Sb) N QWs weakly depends on carrier localization and that it is limited at cryogenic temperatures by exciton scattering by N interstitials, while at room temperature it is limited by an intrinsic non-radiative recombination channel having activation energy of similar to 60 meV and capture time between 0.01 and 1 ps. C1 [Mintairov, A. M.; Sun, K.; Merz, J. L.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Yuen, H.; Bank, S.; Wistey, M.; Harris, J. S.] Stanford Univ, Stanford, CA 94305 USA. [Peake, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Egorov, A.; Ustinov, V.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Kudrawiec, R.; Misiewicz, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland. RP Mintairov, AM (reprint author), Univ Notre Dame, Notre Dame, IN 46556 USA. RI Ustinov, Viktor/J-3545-2013; Egorov, Anton/B-1267-2014 OI Egorov, Anton/0000-0002-0789-4241 FU NSF [DMR06-06406] FX We wish to thank Dmitri Yakovlev for providing timeresolved measurements, Thomas Kosel for transmission electron microscopy measurements and Alexander Efros for helpful discussions. This work has been partially supported by a subaward under NSF/DMR06-06406. NR 45 TC 15 Z9 15 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD JUL PY 2009 VL 24 IS 7 AR 075013 DI 10.1088/0268-1242/24/7/075013 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 463BG UT WOS:000267402800014 ER PT J AU Wang, R Tsow, F Zhang, XZ Peng, JH Forzani, ES Chen, YS Crittenden, JC Destaillats, H Tao, NJ AF Wang, Rui Tsow, Francis Zhang, Xuezhi Peng, Jhih-Hong Forzani, Erica S. Chen, Yongsheng Crittenden, John C. Destaillats, Hugo Tao, Nongjian TI Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor SO SENSORS LA English DT Article DE ozone; environmental; epidemiological; population; real-time; selective; sensitive; sensor; wearable; wireless ID POLLUTANTS; EXPOSURE; CHILDREN AB A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of similar to 2 pg/mm(2) and response time of 1 second, the sensor coated with a polymer sensing material can detect ppb-level ozone in air. The sensor is integrated into a miniaturized wearable device containing a detection circuit, filtration, battery and wireless communication chip, which is ideal for personal and microenvironmental chemical exposure monitoring. C1 [Wang, Rui; Tsow, Francis; Forzani, Erica S.; Tao, Nongjian] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. [Wang, Rui; Tsow, Francis; Peng, Jhih-Hong; Forzani, Erica S.; Tao, Nongjian] Arizona State Univ, Dept Elect Engn, Tempe, AZ 85287 USA. [Zhang, Xuezhi; Chen, Yongsheng; Crittenden, John C.; Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. [Destaillats, Hugo] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. RP Chen, YS (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM yongsheng.chen@asu.edu; HDestaillats@asu.edu; njtao@asu.edu RI Destaillats, Hugo/B-7936-2013; Zhang, Xuezhi/D-2579-2012; Chen, Yongsheng/B-1541-2010 OI Zhang, Xuezhi/0000-0001-7751-1173; FU NIH/NIEHS [U01 ES016064-02] FX The authors thank project scientists Brenda Korte and Larry Nagahara at NIH, and others at Arizona State University for their help in providing useful discussions among other supports. This work was supported by the NIH/NIEHS under Grant U01 ES016064-02. NR 17 TC 7 Z9 7 U1 2 U2 27 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUL PY 2009 VL 9 IS 7 BP 5655 EP 5663 DI 10.3390/s90705655 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 474XB UT WOS:000268317000035 PM 22346720 ER PT J AU Mukundan, H Anderson, AS Grace, WK Grace, KM Hartman, N Martinez, JS Swanson, BI AF Mukundan, Harshini Anderson, Aaron S. Grace, W. Kevin Grace, Karen M. Hartman, Nile Martinez, Jennifer S. Swanson, Basil I. TI Waveguide-Based Biosensors for Pathogen Detection SO SENSORS LA English DT Review DE planar optical waveguides; biosensors; thin film; fluorescence; immunoassay; pathogen sensor ID SELF-ASSEMBLED MONOLAYERS; TRANSFER RADICAL POLYMERIZATION; POLY(ETHYLENE GLYCOL) FILMS; SILICON-BASED MICRODEVICES; HISTIDINE-TAGGED PROTEINS; SUPPORTED LIPID-BILAYERS; OPTICAL BIOSENSOR; OLIGO(ETHYLENE GLYCOL); NUCLEIC-ACIDS; THIN-FILMS AB Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic) are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave-the evanescent field-whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, "dirty" biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning's EPIC (R) (O) over cap, SRU Biosystems' BIND (TM), Zeptosense (R), etc.) and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing. C1 [Mukundan, Harshini; Anderson, Aaron S.; Grace, W. Kevin; Swanson, Basil I.] Los Alamos Natl Lab, Phys Chem & Appl Spect Chem Div, Los Alamos, NM 87545 USA. RP Swanson, BI (reprint author), Los Alamos Natl Lab, Phys Chem & Appl Spect Chem Div, POB 1663, Los Alamos, NM 87545 USA. EM basil@lanl.gov NR 74 TC 64 Z9 64 U1 4 U2 92 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUL PY 2009 VL 9 IS 7 BP 5783 EP 5809 DI 10.3390/s90705783 PG 27 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 474XB UT WOS:000268317000042 PM 22346727 ER PT J AU Roach, D AF Roach, D. TI Real time crack detection using mountable comparative vacuum monitoring sensors SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE Structural health monitoring (SHM); comparative vacuum monitorings; crack detection; probability of detection AB Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Roach, D (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dproach@sandia.gov NR 9 TC 33 Z9 42 U1 4 U2 10 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 317 EP 328 PG 12 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100002 ER PT J AU Fasel, TR Kennel, MB Todd, MD Clayton, EH Park, G AF Fasel, T. R. Kennel, M. B. Todd, M. D. Clayton, E. H. Park, G. TI Damage state evaluation of experimental and simulated bolted joints using chaotic ultrasonic waves SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE structural health monitoring; bolted joint; active sensing; guided waves; AR model; information theory ID SHEAR ADHESIVE JOINTS; LAMB WAVE; COHESIVE PROPERTIES; ACTIVE SENSORS; GUIDED-WAVES; PRELOAD LOSS; INTERROGATION; CONNECTIONS; PROPAGATION; SIGNALS AB Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine a physical experiment on a single-bolt aluminum lap joint as well as a three-dimensional physics-based simulation designed to model the behavior of guided ultrasonic waves through a similarly configured joint. A multiple bolt frame structure is also experimentally examined. In the physical experiment each signal is imparted to the structure through a macro-fiber composite (MFC) patch on one side of the lap joint and sensed using an equivalent MFC patch on the opposite side of the joint. The model applies the waveform via direct nodal displacement and 'senses' the resulting displacement using an average of the nodal strain over an area equivalent to the MFC patch. A novel statistical classification feature isdeveloped from information theory concepts of cross-prediction and interdependence. This damage detection algorithm is used to evaluate multiple damage levels and locations. C1 [Fasel, T. R.; Kennel, M. B.; Todd, M. D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Clayton, E. H.] Quartus Engn, San Diego, CA 92131 USA. [Park, G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Todd, MD (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM mdt@ucsd.edu FU National Defense Science and Engineering Graduate Research Fellowship; UCSD/Los Alamos National Laboratory Engineering Institute for Structural Health Monitoring, Damage Prognosis, and Validated Simulations; Air Force Office of Scientific Research; Air Force Research Laboratory/Missile Defense Agency Joint SBIR FX The first author acknowledges partial support through a National Defense Science and Engineering Graduate Research Fellowship. This work was also partially supported through the UCSD/Los Alamos National Laboratory Engineering Institute for Structural Health Monitoring, Damage Prognosis, and Validated Simulations, the Air Force Office of Scientific Research (Dr. Victor Giurglutiu, Program Manager) and an Air Force Research Laboratory/Missile Defense Agency Joint SBIR contract (Mr. Brandon Arritt, Program Manager). NR 34 TC 10 Z9 10 U1 0 U2 9 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 329 EP 344 PG 16 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100003 ER PT J AU Overly, TG Jacobs, LD Farinholt, KM Park, G Farrar, CR Flynn, EB Todd, MD AF Overly, T. G. Jacobs, L. D. Farinholt, K. M. Park, G. Farrar, C. R. Flynn, E. B. Todd, M. D. TI Developing an integrated software solution for active-sensing SHM SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE structural health monitoring; active-sensing; damage detection; damage diagnostics ID DAMAGE IDENTIFICATION; LAMB WAVES; VALIDATION; SENSORS AB A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software. C1 [Overly, T. G.; Jacobs, L. D.; Farinholt, K. M.; Park, G.; Farrar, C. R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Flynn, E. B.; Todd, M. D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, POB 1663, Los Alamos, NM 87545 USA. EM gpark@lanl.gov RI Farrar, Charles/C-6954-2012 NR 21 TC 2 Z9 2 U1 0 U2 1 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 457 EP 468 PG 12 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100012 ER PT J AU Sheyka, M El-Kady, I Su, MF Taha, MMR AF Sheyka, M. El-Kady, I. Su, M. F. Taha, M. M. Reda TI Photonic sensors for micro-damage detection: A proof of concept using numerical simulation SO SMART STRUCTURES AND SYSTEMS LA English DT Article DE structural health monitoring (SHM); micro-damage detection; photonic crystal (PhC); finite difference time domain (FDTD) ID CRYSTALS; SYSTEMS; MATRIX AB Damage detection has been proven to be a challenging task in structural health monitoring (SHM) due to the fact that damage cannot be measured. The difficulty associated with damage detection is related to electing a feature that is sensitive to damage occurrence and evolution. This difficulty increases as the damage size decreases limiting the ability to detect damage occurrence at the micron and submicron length scale. Damage detection at this length scale is of interest for sensitive structures such as aircrafts and nuclear facilities. In this paper a new photonic sensor based on photonic crystal (PhC) technology that can be synthesized at the nanoscale is introduced. PhCs are synthetic materials that are capable of controlling light propagation by creating a photonic bandgap where light is forbidden to propagate. The interesting feature of PhC is that its photonic signature is strongly tied to its microstructure periodicity. This study demonstrates that when a PhC sensor adhered to polymer substrate experiences micron or submicron damage, it will experience changes in its microstructural periodicity thereby creating a photonic signature that can be related to damage severity. This concept is validated here using a three-dimensional integrated numerical simulation. C1 [Sheyka, M.; Taha, M. M. Reda] Univ New Mexico, Dept Civil Eng, Albuquerque, NM 87131 USA. [El-Kady, I.; Su, M. F.] Univ New Mexico, Dept Elect Eng, Albuquerque, NM 87131 USA. [El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87151 USA. RP Taha, MMR (reprint author), Univ New Mexico, Dept Civil Eng, Albuquerque, NM 87131 USA. EM mrtaha@unm.edu RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Sandia Corporation; Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Defense Threat Reduction Agency (DTRA) FX Research described in this work has been funded by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors acknowledge this support. Funding to the first author by Defense Threat Reduction Agency (DTRA) through UNM strategic partnership program is strongly appreciated. NR 29 TC 0 Z9 0 U1 0 U2 0 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 1738-1584 J9 SMART STRUCT SYST JI Smart. Struct. Syst. PD JUL PY 2009 VL 5 IS 4 BP 483 EP 494 PG 12 WC Engineering, Civil; Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 473NN UT WOS:000268214100014 ER PT J AU Malard, LM Mafra, DL Doorn, SK Pimenta, MA AF Malard, L. M. Mafra, D. L. Doorn, S. K. Pimenta, M. A. TI Resonance Raman scattering in graphene: Probing phonons and electrons SO SOLID STATE COMMUNICATIONS LA English DT Article; Proceedings Paper CT Graphene Week 2008 International Conference CY 2008 CL Trieste, ITALY SP ICTP, UNESCO DE Nanostructures; Electronic band structure; Optical properties ID BAND-STRUCTURE; BERRYS PHASE; GRAPHITE; SPECTROSCOPY; CARBON; FILMS; LAYER AB In this work, by using different laser excitation energies, we obtain important electronic and vibrational properties of mono- and bi-layergraphene. For monolayergraphene, we determine the phonon dispersion near the Dirac point for the in-plane transverse optical (iTO) mode. This result is compared with recent calculations that take into account electron-electron correlations for the phonon dispersion around the K point. For bilayer graphene we extract the Slonczewski-Weiss-McClure band parameters and compare them with recent infrared measurements. We also analyze the second-order feature in the Raman spectrum for trilayer graphene. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Malard, L. M.; Mafra, D. L.; Pimenta, M. A.] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. [Doorn, S. K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Malard, LM (reprint author), Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. EM lmalard@fisica.ufmg.br RI Pimenta, Marcos/F-2122-2010; Mafra, Daniela/F-7442-2012; Malard, Leandro/B-2292-2013; Medicina Molecular, Inct/J-8737-2013; OI , /0000-0003-2015-611X NR 31 TC 23 Z9 23 U1 2 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD JUL PY 2009 VL 149 IS 27-28 BP 1136 EP 1139 DI 10.1016/j.ssc.2009.02.045 PG 4 WC Physics, Condensed Matter SC Physics GA 465HV UT WOS:000267574300019 ER PT J AU Ferguson, JW Dudley, TJ Sears, KC McIntyre, SM Gordon, MS Houk, RS AF Ferguson, Jill Wisnewski Dudley, Timothy J. Sears, Kyle C. McIntyre, Sally M. Gordon, Mark S. Houk, R. S. TI Polyatomic ions in inductively coupled plasma-mass spectrometry Part II: Origins of N2H+ and HxCO+ ions using experimental measurements combined with calculated energies and structures SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Polyatomic ions; Dissociation reaction; ICP-MS; N2H+; H2CO+ ID HIGH-RESOLUTION; ICP-MS; SPECTRAL INTERFERENCES; ELECTRON-TEMPERATURE; PROBE MEASUREMENTS; KINETIC ENERGIES; GAS-DYNAMICS; EXTRACTION; INTERFACE; DENSITY AB Several polyatomic ions in inductively coupled plasma-mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (T-gas) value. In our opinion, the resulting T-gas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N2H+ to N-2(+) leads to a calculated T-gas of 4550 to 4900 K, depending on the computational data used. The COH+ to CO+ system yields a similar temperature, which is not surprising considering the similar energies and structures of COH+ and N2H+. The dissociation of H2CO+ to HCO+ leads to a much lower T-gas (<1000 to 2000 K). Finally. the dissociation of H2COH+ to HCOH+ generates a T-gas value between those from the other HxCO+ ions studied here. All of these measured T-gas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO+ and COH+, and H2CO+ and HCOH+, which have virtually the same m/z values and need to be considered in the interpretation of results. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ferguson, Jill Wisnewski; Dudley, Timothy J.; Sears, Kyle C.; McIntyre, Sally M.; Gordon, Mark S.; Houk, R. S.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. EM rshouk@iastate.edu RI Ferguson, Jill/B-6910-2008; OI Dudley, Timothy/0000-0002-6635-7956 FU National Science Foundation [CHE-0309381]; Velmer A. and Mary K. Fassel Fellowship; Conoco Phillips Fellowship; U.S. Department of Energy, Office of Nuclear Nonproliferation [NA-22]; Office of Basic Energy Sciences; U.S. Department of Energy by Iowa State University [W-7405-Eng-82] FX This research was supported by the National Science Foundation (award no. CHE-0309381) through the Institute for Physical Research and Technology at ISU. JWF was also supported by the Velmer A. and Mary K. Fassel Fellowship, and SMM is supported by the Conoco Phillips Fellowship. The nebulizers used were provided by Elemental Scientific Inc. The ICP-MS device was obtained with funds provided by the U.S. Department of Energy, Office of Nuclear Nonproliferation (NA-22) and the Office of Basic Energy Sciences. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. W-7405-Eng-82. NR 39 TC 10 Z9 10 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD JUL PY 2009 VL 64 IS 7 BP 690 EP 696 DI 10.1016/j.sab.2009.06.008 PG 7 WC Spectroscopy SC Spectroscopy GA 489JA UT WOS:000269415200009 ER PT J AU Keller, CF AF Keller, Charles F. TI Global warming: a review of this mostly settled issue SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Review DE Climate; Climate change; Global warming; Climate modeling; Atmosphere; Ocean; Greenhouse gases; Carbon dioxide; Solar activity; Environment; Ecosystems ID TROPOSPHERIC TEMPERATURE TRENDS; LOW-CLOUD PROPERTIES; 11-YEAR SOLAR-CYCLE; SEA-LEVEL RISE; CLIMATE-CHANGE; EARTHS CLIMATE; BOREHOLE TEMPERATURES; LAST MILLENNIUM; AIR-TEMPERATURE; TIME-SERIES AB Global warming and attendant climate change have been controversial for at least a decade. This is largely because of its societal implications since the science is largely straightforward. With the recent publication of the Fourth Assessment Report of the United Nations' Intergovernmental Panel on Climate Change (Working Group 1) there has been renewed interest and controversy about how certain the scientific community is of its conclusions: that humans are influencing the climate and that global temperatures will continue to rise rapidly in this century. This review attempts to update what is known and in particular what advances have been made in the past 5 years or so. It does not attempt to be comprehensive. Rather it focuses on the most controversial issues, which are actually few in number. Is the surface temperature record accurate or is it biased by heat from cities, etc.? Is that record significantly different from past warmings such as the Medieval Warming Period? Are human greenhouse gases changing the climate more than the sun? Can we model climate and predict its future, or is it just too complex and chaotic? Are there any other changes in climate other than warming, and can they be attributed to the warming?. C1 [Keller, Charles F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Keller, Charles F.] Univ Calif, Inst Geophys & Planetary Phys, Los Alamos Branch, Los Alamos, NM USA. RP Keller, CF (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM alfanso@cybermesa.com FU UCSD FX The author is indebted to The University of California's Institute of Geophysics and Planetary Physics-branches at Los Alamos National Laboratory and at Scripps Institute of Oceanography, UCSD for supporting the author as a Cecil Greene Scholar during which time much of this information was brought together. He is also indebted to the following for helpful discussions and references suggested or supplied: Richard Alley, Tim Barnett, Jim Hansen, Phil Jones, David Keeling, Judith Lean, Mike MacCracken, Joel Norris, Michael Mann, Roger Pielke, V. Ramanathan, Ben Santer, Drew Schindell, Gavin Schmidt, Jeff Severinghaus, Tom Shankland, Richard Somerville, Brian Tinsley, Kevin Trenberth, Warren White, Tom Wigley, Guang Zhang, and my long suffering but thoughtful critic, Yvonne Keller. In addition there have been a rather larger number of people who have both helped and encouraged me to take on this project. To them I am also thankful. NR 135 TC 23 Z9 24 U1 6 U2 61 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 EI 1436-3259 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD JUL PY 2009 VL 23 IS 5 BP 643 EP 676 DI 10.1007/s00477-008-0253-3 PG 34 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 450IR UT WOS:000266394700010 ER PT J AU Weickum, G Eldred, MS Maute, K AF Weickum, G. Eldred, M. S. Maute, K. TI A multi-point reduced-order modeling approach of transient structural dynamics with application to robust design optimization SO STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION LA English DT Article DE Galerkin projection; Proper orthogonal decomposition; Design sensitivities; Stochastic analysis; Shape optimization ID PRECONDITIONED CONJUGATE-GRADIENT; PARTIAL-DIFFERENTIAL-EQUATIONS; COMBINED APPROXIMATIONS; SHAPE OPTIMIZATION; SENSITIVITY CALCULATIONS; COMPUTATIONAL ASPECTS; REANALYSIS APPROACH; REDUCTION; SYSTEMS; DERIVATIVES AB Predicting the transient response of structures by high-fidelity simulation models within design optimization and uncertainty quantification often leads to unacceptable computational cost. This paper presents a reduced-order modeling (ROM) framework for approximating the transient response of linear elastic structures over a range of design and random parameters. The full-order response is projected onto a lower-dimensional basis spanned by modes computed from a proper orthogonal decomposition (POD) of full-order model simulation results at multiple calibration points. The basis is further enriched by gradients of the POD modes with respect to the design/random parameters. A truncation strategy is proposed to compensate for the increase in basis vectors due to the proposed enrichment strategies. The accuracy, efficiency and robustness of the proposed framework are studied with a two-dimensional model problem. The numerical results suggest that the proposed ROM approach is well suited for large parameter changes and that the number of basis vectors needs to be increased only linearly with the number of design and random parameters to maintain a particular ROM performance. The application of the proposed ROM approach to robust shape optimization demonstrates significant savings in computational cost over using full-order models. C1 [Weickum, G.; Maute, K.] Univ Colorado, Ctr Aerosp Struct, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Eldred, M. S.] Sandia Natl Labs, Optimizat & Uncertainty Estimat Dept, Albuquerque, NM 87185 USA. RP Weickum, G (reprint author), Univ Colorado, Ctr Aerosp Struct, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. EM weickum@colorado.edu; maute@colorado.edu FU National Science Foundation [DMI-0300539, DMI-0348759]; Sandia Computer Science Research Institute (CSRI) FX The first and third authors acknowledge the support by the National Science Foundation under grants DMI-0300539 and DMI-0348759. All authors thank the Sandia Computer Science Research Institute (CSRI) for support of this collaborative work between Sandia National Laboratories and the University of Colorado. The opinions and conclusions presented are those of the authors and do not necessarily reflect the views of the sponsoring organizations. NR 74 TC 8 Z9 8 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1615-147X J9 STRUCT MULTIDISCIP O JI Struct. Multidiscip. Optim. PD JUL PY 2009 VL 38 IS 6 BP 599 EP 611 DI 10.1007/s00158-008-0309-5 PG 13 WC Computer Science, Interdisciplinary Applications; Engineering, Multidisciplinary; Mechanics SC Computer Science; Engineering; Mechanics GA 448IE UT WOS:000266255500005 ER PT J AU Brambilla, R Grilli, F Nguyen, DN Martini, L Sirois, F AF Brambilla, Roberto Grilli, Francesco Nguyen, Doan N. Martini, Luciano Sirois, Frederic TI AC losses in thin superconductors: the integral equation method applied to stacks and windings SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID TEMPERATURE; CONDUCTORS; TAPES; FILMS AB In this paper we present a method for computing transport current ac losses in interacting thin superconductors. The method solves the integral equations for the sheet current density distribution and is specifically developed for those configurations where the symmetry of the current density distributions allows writing the equation in a self-consistent form, without the need for using an auxiliary 2D model to describe the interaction between superconducting tapes. This results in very short computation times and therefore the model can be very useful for optimizing the design of superconducting devices. The method has been tested for different cases of practical applications and the ac loss results have been compared with those obtained with analytical models and with experiments. C1 [Brambilla, Roberto; Martini, Luciano] CESI Ric SpA, I-20134 Milan, Italy. [Grilli, Francesco; Sirois, Frederic] Ecole Polytech, Montreal, PQ H3C 3A7, Canada. [Grilli, Francesco] Forschungszentrum Karlsruhe, Inst Tech Phys, D-76344 Eggenstein Leopoldshafen, Germany. [Nguyen, Doan N.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Brambilla, R (reprint author), CESI Ric SpA, Via Rubattino 54, I-20134 Milan, Italy. EM francesco.grilli@itp.fzk.de RI Sirois, Frederic/F-3736-2010; Nguyen, Doan/F-3148-2010 OI Sirois, Frederic/0000-0003-0372-9449; FU Research Fund for the Italian Electrical System; Mathematics of Information Technology and Complex System (MITACS) network (Canada); US DOE Office of Electricity Delivery and Energy Reliability FX This work was supported partly by the Research Fund for the Italian Electrical System under the Contract Agreement between CESI Ricerca and the Ministry of Economic Development-General Directorate for Energy and Mining Resources stipulated on June 21, 2007 in compliance with the Decree no. 73 of June 18, 2007; partly by the Mathematics of Information Technology and Complex System (MITACS) network (Canada); and partly by the US DOE Office of Electricity Delivery and Energy Reliability. The authors would like to acknowledge Dr Oscar De Feo (Solianis Monitoring AG) for his help on mathematical techniques and their implementation. NR 23 TC 24 Z9 24 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2009 VL 22 IS 7 AR 075018 DI 10.1088/0953-2048/22/7/075018 PG 10 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 461SL UT WOS:000267291300019 ER PT J AU Xiao, W Baskes, MI Cho, K AF Xiao, Wei Baskes, M. I. Cho, Kyeongjae TI MEAM study of carbon atom interaction with Ni nano particle SO SURFACE SCIENCE LA English DT Article DE Modified embedded atom method (MEAM); Carbon nanotube growth; Catalyst; Ni-C alloy; Adsorption energy ID CHEMICAL-VAPOR-DEPOSITION; AUGMENTED-WAVE METHOD; MOLECULAR-DYNAMICS; LARGE-SCALE; NANOTUBES; GROWTH; NANOPARTICLES; HYDROCARBONS; IMPURITIES; NUCLEATION AB Carbon, Ni, and C-Ni alloy modified embedded atom method (MEAM) potentials were developed to study the initial process of carbon nanotube growth on Ni catalyst particles. The MEAM potentials were used to study the atomistic interaction between a carbon atom and a fcc Ni nano particle, both on the particle surfaces and inside the Ni nano particles. The result shows that surface carbon atom is more stable than those in the bulk and sub-surface interstitial positions. Carbon atoms are expected to diffuse from the bulk to the surface, and the single walled and double-walled carbon nanotubes would be more favorable to form on Ni nano particle catalyst. The carbon and Ni nano particle interaction calculation shows that the corner and the edge of the particle are the energetically more favorable sites for the carbon adatom. The carbon nanotube may grow from the corner and edge of the particle. (C) 2009 Elsevier B.V. All rights reserved. C1 [Cho, Kyeongjae] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. [Cho, Kyeongjae] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. [Xiao, Wei] Wuhan Univ, Dept Phys, Wuhan 430072, Hubei, Peoples R China. [Baskes, M. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cho, K (reprint author), Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. EM kjcho@utdallas.edu FU Stanford University Global Climate and Energy Project (GCEP); Korea Institute for Advanced Study (KIAS); Chinese National Science Foundation [10704058] FX This work was supported by Stanford University Global Climate and Energy Project (GCEP) during 2005-2006. Korea Institute for Advanced Study (KIAS) has supported the meeting to prepare the manuscript. Partial work is done in Wuhan University and supported by Chinese National Science Foundation project 10704058. NR 40 TC 18 Z9 20 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP 1985 EP 1998 DI 10.1016/j.susc.2009.03.009 PG 14 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500004 ER PT J AU Dhaka, RS D'Souza, SW Maniraj, M Chakrabarti, A Schlagel, DL Lograsso, TA Barman, SR AF Dhaka, R. S. D'Souza, S. W. Maniraj, M. Chakrabarti, Aparna Schlagel, D. L. Lograsso, T. A. Barman, S. R. TI Photoemission study of the (100) surface of Ni2MnGa and Mn2NiGa ferromagnetic shape memory alloys SO SURFACE SCIENCE LA English DT Article DE Ferromagnetic shape memory alloy; Photoemission spectroscopy; Low energy electron diffraction ID NI-MN-GA; RAY PHOTOELECTRON-SPECTROSCOPY; FIELD-INDUCED STRAIN; SINGLE-CRYSTALS; PHASE; TRANSITION AB The (1 0 0) surface of Ni2MnGa and Mn2NiGa ferromagnetic shape memory alloys have been studied by photoelectron spectroscopy and low energy electron diffraction (LEED). It is shown that by sputtering and annealing, it is possible to obtain a clean, ordered and stoichiometric surface that shows a four-fold 1 x 1 LEED pattern at room temperature. For both Ni2MnGa and Mn2NiGa, the surface becomes Ni-rich and Mn deficient after sputtering. However, as the annealing temperature is increased Mn segregates to the surface and at sufficiently high annealing temperature the Mn deficiency caused by sputtering is compensated. The (1 0 0) surface of Ni2MnGa is found to have Mn-Ga termination. The valence band spectra of both Ni2MnGa and Mn2NiGa exhibits modifications with surface composition. For the stoichiometric surface, the origin of the spectral shape of the valence band is explained by calculations based on first principles density functional theory. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dhaka, R. S.; D'Souza, S. W.; Maniraj, M.; Barman, S. R.] UGC DAE Consortium Sci Res, Surface Phys Lab, Indore 452001, Madhya Pradesh, India. [Chakrabarti, Aparna] Raja Ramanna Ctr Adv Technol, Indore 452013, Madhya Pradesh, India. [Schlagel, D. L.; Lograsso, T. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Barman, SR (reprint author), UGC DAE Consortium Sci Res, Surface Phys Lab, Khandwa Rd, Indore 452001, Madhya Pradesh, India. EM barmansr@gmail.com RI Roy Barman, Sudipta/B-2026-2010; Chakrabarti, Aparna/B-2227-2010; Dhaka, Rajendra/F-9018-2011; Dhaka, Rajendra/C-2486-2013; M, MANIRAJ/C-2684-2011 FU D.S.T-Max-Planck Partner Group; Ramanna Fellowship Research Grant; US Department of Energy Contract [DE-AC02-07CH11358] FX P. Chaddah, V.C. Sahni, K. Horn, A. Gupta, and S.M. Oak are thanked for support and encouragement. Fundings from D.S.T-Max-Planck Partner Group project and Ramanna Fellowship Research Grant are acknowledged. DLS and TAL acknowledge the support of the US Department of Energy Contract No. DE-AC02-07CH11358. NR 41 TC 19 Z9 19 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP 1999 EP 2004 DI 10.1016/j.susc.2009.03.010 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500005 ER PT J AU Mugarza, A Shimizu, TK Ogletree, DF Salmeron, M AF Mugarza, Aitor Shimizu, Tomoko K. Ogletree, D. Frank Salmeron, Miquel TI Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes SO SURFACE SCIENCE LA English DT Article DE Scanning tunneling microscopy ID SCANNING TUNNELING MICROSCOPE; DISSOCIATIVE ADSORPTION; SINGLE-MOLECULE; SURFACE; MANIPULATION; DIFFUSION; STABILITY; COVERAGE; PD(111); CU(110) AB Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H2O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H2O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV. Published by Elsevier B.V. C1 [Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mugarza, Aitor] CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Spain. [Shimizu, Tomoko K.; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 67-2206, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Shimizu, Tomoko/A-6780-2010; mugarza, aitor/B-6871-2012; Ogletree, D Frank/D-9833-2016 OI mugarza, aitor/0000-0002-2698-885X; Ogletree, D Frank/0000-0002-8159-0182 FU US Department of Energy [DE-AC02-05CH11231]; Marie Curie Outgoing International Fellowship [514412] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The work of A.M. was financed by the Marie Curie Outgoing International Fellowship, Project No. 514412. NR 34 TC 13 Z9 13 U1 1 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP 2030 EP 2036 DI 10.1016/j.susc.2009.03.026 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500009 ER PT J AU Miller, JB Gellman, AJ AF Miller, James B. Gellman, Andrew J. TI Structural evolution of sulfur overlayers on Pd(111) SO SURFACE SCIENCE LA English DT Article DE Palladium; Sulfur; Low energy ion scattering (LEIS) ID ELEVATED-TEMPERATURES; ADSORBATE STRUCTURE; HYDROGEN PERMEANCE; ALLOY MEMBRANES; SURFACE; PALLADIUM; ABSORPTION; ADSORPTION; 1ST-PRINCIPLES; PRESSURES AB Low energy ion scattering spectroscopy (LEISS) has been used to characterize the evolution of ordered structures of S on the Pd(1 1 1) surface during annealing. During exposure of the Pd(1 1 1) surface to 0.7 L H(2)S at 300 K-conditions that produce the S(root 3 x root 3)R30 overlayer-the intensity of the Pd LEIS signal decreases and a feature assigned to adsorbed S appears as the adsorbed layer forms. When the surface is held at 300 K after exposure to H2S is stopped, the LEIS Pd intensity partially recovers and the S signal weakens, presumably as surface S atoms assume their equilibrium positions in the S(root 3 x root 3)R30 overlayer. Subsequent annealing of the S(root 3 x root 3)R30 structure at 700 K causes it to convert into a S(root 7 x root 7)R19 overlayer, whose LEIS spectrum is identical to that of clean Pd(1 1 1). The absence of LEIS evidence for S atoms at the exposed surface of the S(root 7 x root 7)R79 overlayer is at odds with published models of a mixed Pd-S top layer. Despite the similarity of the LEIS spectra of Pd(1 1 1) and Pd(1 1 1)-S(root 7 x root 7)R19, their activities for dissociative hydrogen adsorption are very different-the former readily adsorbs hydrogen at 100 K, while the latter does not-suggesting that S exerts its influence on surface chemistry from subsurface locations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Miller, James B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Miller, JB (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM jbmiller@andrew.cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU National Energy Technology Laboratory [DE-AC2604NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in Computational and Basic Sciences under the RDS contract DE-AC2604NT41817. NR 25 TC 8 Z9 8 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 1 PY 2009 VL 603 IS 13 BP L82 EP L85 DI 10.1016/j.susc.2009.04.012 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 459EL UT WOS:000267083500003 ER PT J AU Zhu, ZT Zhang, LF Smith, S Fong, H Sun, YG Gosztola, D AF Zhu, Zhengtao Zhang, Lifeng Smith, Steve Fong, Hao Sun, Yugang Gosztola, David TI Fluorescence studies of electrospun MEH-PPV/PEO nanofibers SO SYNTHETIC METALS LA English DT Article DE MEH-PPV; Fluorescence; Electrospinning; Nanofibers ID SCANNING OPTICAL MICROSCOPY; FIELD-EFFECT TRANSISTORS; LIGHT-EMITTING-DIODES; CONJUGATED POLYMER; INTERCHAIN INTERACTIONS; FILM MORPHOLOGY; PPV FILMS; FIBERS; BLENDS; PHOTOLUMINESCENCE AB We report a study of the fluorescence properties of the conjugated polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and polyethylene oxide (PEO) nanofibers. MEH-PPV/PEO nanofibers with different compositions have been fabricated by the electrospinning technique. The fluorescence spectra of the nanofibers show that the emission shoulder at similar to 630 nm blue-shifts similar to 45 nm, whereas the main emission peak around 590 nm blue-shifts similar to 15 nm with decreasing concentration of MEH-PPV in the nanofiber. in addition, confocal microscopic studies of a single MEH-PPV/PEO electrospun nanofiber indicate that the fluorescence spectra of the nanofiber do not show any polarization dependence. The results are discussed in terms of the aggregation of MEH-PPV in an inert matrix. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhu, Zhengtao; Zhang, Lifeng; Fong, Hao] S Dakota Sch Mines & Technol, Dept Chem, Rapid City, SD 57701 USA. [Smith, Steve] S Dakota Sch Mines & Technol, Nanosci & Nanoenigneering Program, Rapid City, SD 57701 USA. [Sun, Yugang; Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Zhu, ZT (reprint author), S Dakota Sch Mines & Technol, Dept Chem, 501 E St Joseph St, Rapid City, SD 57701 USA. EM Zhengtao.Zhu@sdsmt.edu; Hao.Fong@sdsmt.edu RI Zhu, Zhengtao/A-1633-2009; Gosztola, David/D-9320-2011; Sun, Yugang /A-3683-2010 OI Zhu, Zhengtao/0000-0002-9311-2110; Gosztola, David/0000-0003-2674-1379; Sun, Yugang /0000-0001-6351-6977 FU American Chemical Society Petroleum Research Fund [PRF 46993-GB10]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by American Chemical Society Petroleum Research Fund (Grant No. PRF 46993-GB10). Use of Center for Nanoscale Materials at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors are grateful to the "Nanoscience and Nanoengineering Ph.D. program" at the South Dakota School of Mines and Technology (SDSM&T). NR 34 TC 23 Z9 24 U1 5 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD JUL PY 2009 VL 159 IS 14 BP 1454 EP 1459 DI 10.1016/j.synthmet.2009.03.025 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 479GQ UT WOS:000268648100012 ER PT J AU Graven, HD Stephens, BB Guilderson, TP Campos, TL Schimel, DS Campbell, JE Keeling, RF AF Graven, Heather D. Stephens, Britton B. Guilderson, Thomas P. Campos, Teresa L. Schimel, David S. Campbell, J. Elliott Keeling, Ralph F. TI Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2 : CO ratios from airborne measurements of Delta C-14, CO2 and CO above Colorado, USA SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID ATMOSPHERIC TRANSPORT MODELS; CARBON-DIOXIDE; ANTHROPOGENIC CO2; COMPLEX TERRAIN; C-14; EXCHANGE; INVERSIONS; (CO2)-C-14; EMISSIONS; EUROPE AB Measurements of Delta C-14 in atmospheric CO2 are an effective method of separating CO2 additions from fossil fuel and biospheric sources or sinks of CO2. We illustrate this technique with vertical profiles of CO2 and Delta C-14 analysed in whole air flask samples collected above Colorado, USA in May and July 2004. Comparison of lower tropospheric composition to cleaner air at higher altitudes (>5 km) revealed considerable additions from respiration in the morning in both urban and rural locations. Afternoon concentrations were mainly governed by fossil fuel emissions and boundary layer depth, also showing net biospheric CO2 uptake in some cases. We estimate local industrial CO2: CO emission ratios using in situ measurements of CO concentration. Ratios are found to vary by 100% and average 57 mole CO2:1 mole CO, higher than expected from emissions inventories. Uncertainty in CO2 from different sources was +/- 1.1 to +/- 4.1 ppm for addition or uptake of -4.6 to 55.8 ppm, limited by Delta 14C measurement precision and uncertainty in background Delta C-14 and CO2 levels. C1 [Graven, Heather D.; Keeling, Ralph F.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Stephens, Britton B.; Campos, Teresa L.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Schimel, David S.] Natl Ecol Observ Network, Boulder, CO USA. [Campbell, J. Elliott] Univ Calif Merced, Coll Engn, Merced, CA USA. RP Graven, HD (reprint author), ETH, Inst Biogeochem & Pollutant Dynam, Zurich, Switzerland. EM heather.graven@env.ethz.ch RI Campbell, Elliott/B-8025-2008; Stephens, Britton/B-7962-2008; OI Stephens, Britton/0000-0002-1966-6182; Graven, Heather/0000-0003-3934-2502 FU National Science Foundation Award [EAR-0321918]; National Science Foundation; UC Office of the President; NASA ESS Fellowship; US Department of Energy by the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; NOAA's Office of Global Programs [NA05OAR4311166]; LLNL's Directed Research and Development programme [06-ERD-031]; US National Science Foundation [ATM-0632770]; Office of Science (BER); US Department of Energy [DE-FG02-04ER63898, -07ER64632] FX The Carbon in the Mountains experiment was funded by National Science Foundation Award EAR-0321918. The National Center for Atmospheric Research is sponsored by the National Science Foundation. H. D. G. received support from the UC Office of the President and a NASA ESS Fellowship. A portion of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Radiocarbon analyses were funded by grants from NOAA's Office of Global Programs (NA05OAR4311166) and LLNL's Directed Research and Development programme (06-ERD-031) to T. P. G. Alane Bollenbacher conducted CO2 and stable isotope analyses. Guy Emanuele assisted with CO2 extractions. Design and construction of the flask sampling apparatus was aided by NCAR Research Aviation Facility staff, David Moss, Bill Paplawsky and Adam Cox. Design and analysis work at the Scripps Institution of Oceanography was supported by the US National Science Foundation grants ATM-0632770 and the Office of Science (BER), US Department of Energy, through Contracts No. DE-FG02-04ER63898 and -07ER64632. This research was also presented in H.D.G.'s doctoral dissertation at the University of California, San Diego, USA, 2008. NR 46 TC 24 Z9 26 U1 0 U2 20 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD JUL PY 2009 VL 61 IS 3 BP 536 EP 546 DI 10.1111/j.1600-0889.2009.00421.x PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 454JM UT WOS:000266678200003 ER PT J AU Veltman, K McKone, TE Huijbregts, MAJ Hendriks, AJ AF Veltman, Karin McKone, Thomas E. Huijbregts, Mark A. J. Hendriks, A. Jan TI Bioaccumulation potential of air contaminants: Combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Bioaccumulation; Volatile organic compounds; Mammals; Human; Mechanistic model ID ECOLOGICAL RISK-ASSESSMENT; LIQUID/AIR PARTITION-COEFFICIENTS; PERSISTENT ORGANIC POLLUTANTS; GAS UPTAKE; INHALATION PHARMACOKINETICS; B6C3F1 MICE; IN-VITRO; ORGANOPHOSPHOROUS PESTICIDES; ENVIRONMENTAL CONTAMINANTS; PHYSIOLOGICAL-PARAMETERS AB In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult Mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity for lipid components ill tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (K-ba) and tissue-air partition coefficients (K-ta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 68% of the modeled inhalation and exhalation rate constants are within a factor of 2.1 from independent empirical values for humans, rats and mice, and 87% of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals. (c) 2009 Elsevier Inc. All rights reserved. C1 [Veltman, Karin; Huijbregts, Mark A. J.; Hendriks, A. Jan] Radboud Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands. [McKone, Thomas E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Veltman, K (reprint author), Norwegian Univ Sci & Technol NTNU, Ind Ecol Programme, Hogskoleringen 5, NO-7491 Trondheim, Norway. EM karin.veltman@ntnu.no RI Huijbregts, Mark/B-8971-2011; Hendriks, Aalbert Jan/C-6767-2013 NR 93 TC 9 Z9 10 U1 2 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUL 1 PY 2009 VL 238 IS 1 BP 47 EP 55 DI 10.1016/j.taap.2009.04.012 PG 9 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 458IF UT WOS:000267009800006 PM 19389415 ER PT J AU Levine, B Nozick, L Jones, D AF Levine, Brian Nozick, Linda Jones, Dean TI Estimating an origin-destination table for US imports of waterborne containerized freight SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE Origin-destination table; Containerized freight; Optimization; Gravity model ID COMMODITY TRANSPORTATION; MODELS AB Containerized freight imports into the US are growing at an average of 10% per year. This traffic is concentrated at a small number of US seaports. It is therefore important to have an accurate understanding of the flow of containers from their origin country through these seaports to their final destination. This paper develops an optimization model to estimate route flows and a corresponding multi-modal origin-destination table for containers by synthesizing data on international trade and railcar movements with a gravity model for the demand of container traffic. This analysis provides insights into the balance of rail and truck inland transportation from each port. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Levine, Brian; Nozick, Linda] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Jones, Dean] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nozick, L (reprint author), Cornell Univ, Sch Civil & Environm Engn, Hollister Hall, Ithaca, NY 14853 USA. EM BL76@cornell.edu; LKN3@cornell.edu; dajones@sandia.gov NR 17 TC 12 Z9 14 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD JUL PY 2009 VL 45 IS 4 BP 611 EP 626 DI 10.1016/j.tre.2008.11.001 PG 16 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA 458MB UT WOS:000267026700009 ER PT J AU Malone, JD Brigantic, R Muller, GA Gadgil, A Delp, W McMahon, BH Lee, R Kulesz, J Mihelic, FM AF Malone, John D. Brigantic, Robert Muller, George A. Gadgil, Ashok Delp, Woody McMahon, Benjamin H. Lee, Russell Kulesz, Jim Mihelic, F. Matthew TI US airport entry screening in response to pandemic influenza: Modeling and analysis SO TRAVEL MEDICINE AND INFECTIOUS DISEASE LA English DT Article DE Pandemic influenza; Airport screening; Influenza transmission AB Background: A stochastic discrete event simulation model was developed to assess the effectiveness of passenger screening for Pandemic Influenza (PI) at U.S. airport foreign entry. Methods: International passengers arriving at 18 U.S. airports from Asia, Europe, South America, and Canada were assigned to one of three states: not infected, infected with PI, infected with other respiratory illness. Passengers passed through layered screening then exited the model. 80% screening effectiveness was assumed for symptomatic passengers; 6% asymptomatic passengers. Results: In the first 100 days of a global pandemic, U.S. airport screening would evaluate over 17 M passengers with 800 K secondary screenings. 11,570 PI infected passengers (majority asymptomatic) would enter the U.S. undetected from all 18 airports. Foreign airport departure screening significantly decreased the false negative (infected/undetected) passengers. U.S. attack rates: no screening (26.9%-30.9%); screening (26.4%-30.6%); however airport screening results in 800 K-1.8 M less U.S. PI cases; 16 K-35 K less deaths (2% fatality rate). Antiviral medications for travel contact prophylaxis (10 contacts/PI passenger) were high - 8.8 M. False positives from all 18 airports: 100-200/day. Conclusions: Foreign shore exit screening greatly reduces numbers of PI infected passengers. U.S. airport screening identifies 50% infected individuals; efficacy is limited by the asymptomatic PI infected. Screening will not significantly delay arrival of PI via international air transport, but will reduce the rate of new US cases and subsequent deaths. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Malone, John D.] Uniformed Serv Univ Hlth Sci, Ctr Disaster & Humanitarian Assistance Med, Bethesda, MD 20814 USA. [Brigantic, Robert; Muller, George A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gadgil, Ashok; Delp, Woody] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McMahon, Benjamin H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lee, Russell; Kulesz, Jim; Mihelic, F. Matthew] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Malone, JD (reprint author), Uniformed Serv Univ Hlth Sci, Ctr Disaster & Humanitarian Assistance Med, 4301 Jones Bridge Rd, Bethesda, MD 20814 USA. EM jdmalone@cdham.org OI Gadgil, Ashok/0000-0002-0357-9455 FU U.S. Department of Homeland Security [52157]; U.S. Department of Energy [DE-GM05-00RLO1831] FX This joint National Laboratory research project was conducted for the U.S. Department of Homeland Security under project number 52157. PNNL is a multi-program National Laboratory operated by Battelle for the U.S. Department of Energy under contract DE-GM05-00RLO1831. The work is the opinion of the authors and not the Department of Homeland Security, Department of Energy, or Department of Defense. NR 22 TC 20 Z9 20 U1 2 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1477-8939 J9 TRAVEL MED INFECT DI JI Travel Med. Infect. Dis. PD JUL PY 2009 VL 7 IS 4 SI SI BP 181 EP 191 DI 10.1016/j.tmaid.2009.02.006 PG 11 WC Public, Environmental & Occupational Health; Infectious Diseases SC Public, Environmental & Occupational Health; Infectious Diseases GA V17ND UT WOS:000207943000002 PM 19717097 ER PT J AU Zhang, B Tong, CF Yin, TM Zhang, XY Zhuge, QQ Huang, MR Wang, MX Wu, RL AF Zhang, Bo Tong, Chunfa Yin, Tongming Zhang, Xinye Zhuge, Qiang Huang, Minren Wang, Mingxiu Wu, Rongling TI Detection of quantitative trait loci influencing growth trajectories of adventitious roots in Populus using functional mapping SO TREE GENETICS & GENOMES LA English DT Article DE Adventitious root; Functional mapping; Legendre polynomial; Populus; QTL ID FRAGMENT LENGTH POLYMORPHISMS; GENETIC-LINKAGE MAPS; RAPD MARKERS; MICROSATELLITE MARKERS; POPLAR POPULUS; MOLECULAR-GENETICS; PLANT BIOLOGY; HYBRID POPLAR; FOREST TREE; NIGRA L. AB The capacity to root from cuttings is a key factor for the mass deployment of superior genotypes in clonal forestry. We studied the genetic basis of rooting capacity by mapping quantitative trait loci (QTLs) that control growth rate and form of root traits in a full-sib family of 93 hybrids derived from an interspecific cross between two Populus species, P. deltoides and P. euramericana. The hybrid family was typed for different marker systems (including SSRs, AFLPs, RAPDs, ISSRs, and SNPs), leading to the construction of two linkage maps based on the female P. deltoides (D map) and male P. euramericana (E map) with a pseudotestcross mapping strategy. The two maps were scanned by functional mapping to detect QTLs that control early growth trajectories of two rooting traits, maximal single-root length and the total number of roots per cutting, measured at five time points in water culture. Of the six QTLs detected for these two growth traits, only one is segregating in P. deltoides with poor rooting capacity, while the other five are segregating in P. euramericana showing good rooting capacity. Tests with functional mapping suggest different developmental patterns of the genetic effects of these root QTLs in time course. Five QTLs were detected to change their effects on root growth trajectories with time, whereas one detected to affect root growth consistently in time course. Knowledge about the genetic and developmental control mechanisms of root QTLs will have important implications for the genetic improvement of vegetative propagation traits in Populus. C1 [Zhang, Bo; Tong, Chunfa; Yin, Tongming; Zhang, Xinye; Zhuge, Qiang; Huang, Minren; Wang, Mingxiu; Wu, Rongling] Nanjing Forestry Univ, Key Lab Forest Genet & Biotechnol, Nanjing 210037, Jiangsu Prov, Peoples R China. [Yin, Tongming; Zhuge, Qiang; Huang, Minren; Wang, Mingxiu] Nanjing Forestry Univ, Jiangsu Key Lab Poplar Germplasm Enhancement & Va, Nanjing 210037, Jiangsu Prov, Peoples R China. [Yin, Tongming] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Wu, Rongling] Univ Florida, Dept Stat, Gainesville, FL 32611 USA. RP Zhang, B (reprint author), Nanjing Forestry Univ, Key Lab Forest Genet & Biotechnol, Longpan Rd 159, Nanjing 210037, Jiangsu Prov, Peoples R China. EM zhangbo@njfu.edu.cn FU National Natural Science Foundation of China [30671705, 30872051]; NSF [0540745] FX We thank the two anonymous reviewers for their constructive comments on this manuscript. This work was partially supported by the National Natural Science Foundation of China (grant nos. 30671705 and 30872051) and NSF grant (no. 0540745). NR 52 TC 19 Z9 22 U1 3 U2 25 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1614-2942 J9 TREE GENET GENOMES JI Tree Genet. Genomes PD JUL PY 2009 VL 5 IS 3 BP 539 EP 552 DI 10.1007/s11295-009-0207-z PG 14 WC Forestry; Genetics & Heredity; Horticulture SC Forestry; Genetics & Heredity; Agriculture GA 451RI UT WOS:000266487200014 ER PT J AU Doktycz, MJ Allison, DP AF Doktycz, Mitchel J. Allison, David P. TI PROCEEDINGS OF THE 10(TH) INTERNATIONAL SCANNING PROBE MICROSCOPY (ISPM) CONFERENCE SEATTLE, WASHINGTON, USA, JUNE 22-24, 2008 Preface SO ULTRAMICROSCOPY LA English DT Editorial Material C1 [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. [Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Allison, DP (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. EM allisond@utk.edu RI Doktycz, Mitchel/A-7499-2011 OI Doktycz, Mitchel/0000-0003-4856-8343 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2009 VL 109 IS 8 BP XI EP XI DI 10.1016/j.ultramic.2009.03.001e PG 1 WC Microscopy SC Microscopy GA 475JL UT WOS:000268354400001 ER PT J AU Jiang, CS Ptak, A Yan, B Moutinho, HR Li, JV Al-Jassim, MM AF Jiang, C. -S. Ptak, A. Yan, B. Moutinho, H. R. Li, J. V. Al-Jassim, M. M. TI Microelectrical characterizations of junctions in solar cell devices by scanning Kelvin probe force microscopy SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 10th International Scanning Probe Microscopy Conference (ISPM) CY JUN 22-24, 2008 CL Seattle, WA DE Atomic force microscopy; Microscopic methods; Specifically for solid interfaces and multilayers ID SILICON; SURFACTANT; BISMUTH; GROWTH AB Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (V(b)) to the device and taking the V(b)-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potential measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n-i-p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance. (c) 2009 Elsevier B.V. All rights reserved. C1 [Jiang, C. -S.; Ptak, A.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yan, B.] United Solar Ovon LLC, Troy, MI 48084 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM chun.sheng.jiang@nrel.gov RI jiang, chun-sheng/F-7839-2012; Li, Jian/B-1627-2016 NR 19 TC 7 Z9 7 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2009 VL 109 IS 8 BP 952 EP 957 DI 10.1016/j.ultramic.2009.03.048 PG 6 WC Microscopy SC Microscopy GA 475JL UT WOS:000268354400019 PM 19409706 ER PT J AU Kocharian, AN Fernando, GW Palandage, K Davenport, JW AF Kocharian, A. N. Fernando, G. W. Palandage, K. Davenport, J. W. TI Spin-charge separation and electron pairing instabilities in Hubbard nanoclusters SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 10th International Scanning Probe Microscopy Conference (ISPM) CY JUN 22-24, 2008 CL Seattle, WA DE High-T(c) superconductivity; Scanning tunneling microscopy; Coherent and incoherent pairing; Charge and spin pseudogaps; Spin-charge separation; Magnetism; Ultra-cold fermions ID PHASE-SEPARATION; GROUND-STATE; MODEL; SUPERCONDUCTIVITY; BI2SR2CACU2O8+DELTA; THERMODYNAMICS; FERROMAGNETISM; PSEUDOGAP; SYSTEMS; FIELD AB Electron charge and spin pairing instabilities in various cluster geometries for attractive and repulsive electrons are studied exactly under variation of interaction strength, electron doping and temperature. The exact diagonalization, level crossing degeneracies, spin-charge separation and separate condensation of paired electron charge and opposite spins yield intriguing insights into the origin of magnetism, ferroelectricity and superconductivity seen in inhomogeneous bulk nanomaterials and various phenomena in cold fermionic atoms in optical lattices. Phase diagrams resemble a number of inhomogeneous, coherent and incoherent nanoscale phases found recently in high-T(c) cuprates, manganites and multiferroic nanomaterials probed by scanning tunneling microscopy. Separate condensation of electron charge and spin degrees at various crossover temperatures offers a new route for superconductivity, different from the BCS scenario. The calculated phase diagrams resemble a number of inhomogeneous paired phases, superconductivity, ferromagnetism and ferroelectricity found in Nb and Co nanoparticles. The phase separation and electron pairing, monitored by electron doping and magnetic field surprisingly resemble incoherent electron pairing in the family of doped high-T(c) cuprates, ruthenocuprates, iron pnictides and spontaneous ferroelectricity in multiferroic materials. (C) Published by Elsevier B.V. C1 [Kocharian, A. N.] Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. [Kocharian, A. N.] Santa Monica Coll, Santa Monica, CA 90405 USA. [Fernando, G. W.; Palandage, K.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Davenport, J. W.] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. RP Kocharian, AN (reprint author), Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA. EM armen.kocharian@calstatela.edu NR 44 TC 3 Z9 3 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JUL PY 2009 VL 109 IS 8 BP 1066 EP 1073 DI 10.1016/j.ultramic.2009.03.032 PG 8 WC Microscopy SC Microscopy GA 475JL UT WOS:000268354400038 PM 19398274 ER PT J AU Moberly, JG Borch, T Sani, RK Spycher, NF Sengor, SS Ginn, TR Peyton, BM AF Moberly, James G. Borch, Thomas Sani, Rajesh K. Spycher, Nicolas F. Sengoer, S. Sevinc Ginn, Timothy R. Peyton, Brent M. TI Heavy Metal-Mineral Associations in Coeur d'Alene River Sediments: A Synchrotron-Based Analysis SO WATER AIR AND SOIL POLLUTION LA English DT Article DE Coeur d'Alene; Zinc; Lead; Sediment Characterization; XAS ID TRACE-ELEMENT GEOCHEMISTRY; MINING DISTRICT; PHASE ASSOCIATIONS; SURFACE WATERS; LAKE-SEDIMENTS; IDAHO; USA; ZN; LEAD; REDUCTION AB Nearly a century of mining activities upstream have contaminated Lake Coeur d'Alene and its tributaries with Pb, Zn, and other heavy metals. Heavy metal concentrations in sediments of the Coeur d'Alene watershed have been shown to be inversely proportional to the sediment size fraction; thus, analysis on a very small scale is essential to determine the mobility and stability of heavy metals in this environment. Micron-scale synchrotron-based methods were used to determine the association of heavy metals with solid phases in sediments of the Coeur d'Alene River. Bulk X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy, and synchrotron-based microfocused XRD combined with microfocused X-ray fluorescence mapping indicate the presence of crystalline Pb- and Zn-bearing mineral phases of dundasite [Pb(2)Al(4)(CO(3))(4)(OH)(8)center dot 3H(2)O], coronadite [PbMn(8)O(16)], stolzite [PbWO(4)], mattheddleite [Pb(10)(SiO(4))(3.5)(SO(4))(2)Cl(2)], bindheimite [Pb(2)Sb(2)O(7)], and smithsonite [ZnCO(3)]. Likely phases for Zn and Pb adsorption were ferrihydrite, diaspore [AlO(OH)], manganite [Mn((III))O(OH)], muscovite [KAl(2)(Si(3)Al)O(10)(OH,F)(2)], biotite [K(Fe,Mg)(3)AlSi(3)O(10)(F,OH)(2)], and montmorillonite [Na(0.3)(Al,Mg)(2)Si(4)O(10)(OH)(2)center dot 8H(2)O]. The large predominance of Fe and Mn (hydr)oxides over other sorbent minerals suggests that the metal sorption behavior is dominated by these (hydr)oxide phases. C1 [Moberly, James G.; Sani, Rajesh K.] Washington State Univ, Sch Chem & Bioengn, Pullman, WA 99164 USA. [Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. [Borch, Thomas] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Borch, Thomas] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA. [Spycher, Nicolas F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. [Sengoer, S. Sevinc; Ginn, Timothy R.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Sani, RK (reprint author), S Dakota Sch Mines & Technol, Chem & Biol Engn Dept, 501 E St Joseph St, Rapid City, SD 57701 USA. EM rajesh.sani@sdsmt.edu RI Spycher, Nicolas/E-6899-2010; Borch, Thomas/A-2288-2008; Peyton, Brent/G-5247-2015; OI Borch, Thomas/0000-0002-4251-1613; Peyton, Brent/0000-0003-0033-0651; Moberly, James/0000-0003-0950-0952 FU National Science Foundation [0628258]; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the National Science Foundation under Grant No. 0628258. The support of the WSU Center for Multiphase Environmental Research and the WSU School of Chemical and Bioengineering also contributed significantly to this research. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors greatly appreciate the help of Charles Knaack, Diane Johnson Cornelius, and Rick Conrey at WSU Geo Analytical Laboratories for sample analysis and counsel. Additional thanks to Peg Dirckx, Brandy Stewart, Lisa Kirk, and two anonymous reviewers for greatly improving the quality of the manuscript. NR 70 TC 16 Z9 16 U1 2 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0049-6979 J9 WATER AIR SOIL POLL JI Water Air Soil Pollut. PD JUL PY 2009 VL 201 IS 1-4 BP 195 EP 208 DI 10.1007/s11270-008-9937-z PG 14 WC Environmental Sciences; Meteorology & Atmospheric Sciences; Water Resources SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences; Water Resources GA 457LD UT WOS:000266928600017 ER PT J AU Jonkman, JM AF Jonkman, Jason M. TI Dynamics of Offshore Floating Wind Turbines-Model Development and Verification SO WIND ENERGY LA English DT Article DE offshore wind turbine; floating; model development; model verification; aero-hydro-servo-elastic analysis AB The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modelling the coupled dynamic response of offshore floating wind turbines and the verification of the simulation tool through model-to-model comparisons. The fully coupled time-domain aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address limitations of previous studies and has features required to perform loads analyses for a variety of rotor-nacelle assembly, tower, support platform and mooring system configurations. The developed hydrodynamics module accounts for linear hydrostatic restoring, non-linear viscous drag; the added-mass and damping contributions from linear wave radiation, including free-surface memory effects; and the incident-wove excitation from linear diffraction in regular or irregular seas. The developed mooring line module is quasi-static and accounts for the elastic stretching of an array of homogenous taut or slack catenary lines with seabed interaction. The hydrodynamics module, the moorings module, and the overall simulation tool were tested by comparing to results of other models, including frequency domain models. The favourable results of all the verification exercises provided confidence to perform more thorough analyses. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jonkman, JM (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jason.jonkman@nrel.gov FU US Department of Energy [DE-AC36-99-G010337]; Cooperative Research and Development Agreement [CRD-06-178] FX This work was performed at NREL in support of the US Department of Energy under contract number DE-AC36-99-G010337 and in support of a Cooperative Research and Development Agreement (CRD-06-178) with ITI Energy. NR 37 TC 94 Z9 101 U1 8 U2 52 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD JUL PY 2009 VL 12 IS 5 BP 459 EP 492 DI 10.1002/we.347 PG 34 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 477KQ UT WOS:000268518400004 ER PT J AU Sporty, J Lin, SJ Kato, M Ognibene, T Stewart, B Turteltaub, K Bench, G AF Sporty, Jennifer Lin, Su-Ju Kato, Michiko Ognibene, Ted Stewart, Benjamin Turteltaub, Ken Bench, Graham TI Quantitation of NAD(+) biosynthesis from the salvage pathway in Saccharomyces cerevisiae SO YEAST LA English DT Article DE calorie restriction; NAD; NADH; yeast; NPT1; QPT1; salvage; de novo; AMS ID ACCELERATOR MASS-SPECTROMETRY; NICOTINIC-ACID; CALORIE RESTRICTION; LIFE-SPAN; YEAST; SIR2; IDENTIFICATION; LEVEL; NADH; AMS AB Nicotinamide adenine dinucleotide (NAD(+)) is synthesized via two major pathways in prokaryotic and eukaryotic systems: the de novo biosynthesis pathway from tryptophan precursors, or the salvage biosynthesis pathway from either extracellular nicotinic acid or various intracellular NAD(+) decomposition products. NAD(+) biosynthesis via the salvage pathway has been linked to an increase in yeast replicative lifespan under calorie restriction (CR). However, the relative contribution of each pathway to NAD(+) biosynthesis under both normal and CR conditions is not known. Here, we have performed lifespan, NAD(+) and NADH (the reduced form of NAD(+)) analyses on BY4742 wild-type, NAD(+) salvage pathway knockout (npt1 Delta) and NAD(+) de novo pathway knockout (qpt1 Delta) yeast strains cultured in media containing either 2% glucose (normal growth) or 0.5% glucose (CR). We have utilized C-14 labelled nicotinic acid in the culture media combined with HPLC speciation and both UV and 14 C detection to quantitate the total amounts of NAD(+) and NADH and the amounts derived from the salvage pathway. We observed that wild-type and qpt1 Delta yeast exclusively utilized extracellular nicotinic acid for NAD(+) and NADH biosynthesis under both the 2% and 0.5% glucose growth conditions, suggesting that the de novo pathway plays little role if a functional salvage pathway is present. We also observed that NAD(+) concentrations decreased in all three strains under CR. However, unlike the wild-type strain, NADH concentrations did not decrease and NAD(+): NADH ratios did not increase under CR for either knockout strain. Lifespan analyses revealed that CR resulted in a lifespan increase of approximately 25% for the wild-type and qpt1 Delta strains, while no increase in lifespan was observed for the npt1 Delta strain. In combination, these data suggest that having a functional salvage pathway is required for lifespan extension under CR. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Sporty, Jennifer; Ognibene, Ted; Stewart, Benjamin; Turteltaub, Ken; Bench, Graham] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Lin, Su-Ju; Kato, Michiko] Univ Calif Davis, Dept Microbiol, Davis, CA 95616 USA. RP Bench, G (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, L-397,7000 E Ave, Livermore, CA 94551 USA. EM bench1@llnl.gov FU US Department of Energy [DE-AC52-07NA27344]; National Institutes of Health, National Center for Research Resources, Biomedical Technology Program [P41 RR013461] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and was supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (P41 RR013461). NR 20 TC 12 Z9 13 U1 2 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0749-503X J9 YEAST JI Yeast PD JUL PY 2009 VL 26 IS 7 BP 363 EP 369 DI 10.1002/yea.1671 PG 7 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology GA 471DM UT WOS:000268035200001 PM 19399913 ER PT J AU Michalak, W Broitman, E Alvin, MA Gellman, AJ Miller, JB AF Michalak, W. Broitman, E. Alvin, M. A. Gellman, A. J. Miller, J. B. TI Interactions of SO2 and H2S with amorphous carbon films SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Activated carbon; Hydrogen sulfide; Sulfur dioxide; Sulfur adsorption; Thin carbon films ID MAGNETIC DATA-STORAGE; HYDROGEN-SULFIDE; ACTIVATED CARBON; SELECTIVE OXIDATION; ADSORPTION; SULFUR; REGENERATION; OVERCOATS; NITROGEN; CREATION AB There is significant interest in development of efficient catalyst-sorbents for the capture and conversion of sulfur-compounds such as H2S and SO2. In this work, ultra-high vacuum (UHV) techniques have been used to carefully prepare and thoroughly characterize amorphous carbon (a-C) thin films as models of activated carbon sorbents. Films with modified surface chemistries were prepared by oxidation of a sputter deposited carbon film (a-COx) and by sputter depositing carbon in the presence of N-2 (a-CNx) or methane (a-CHx). Temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to study H2S and SO2 surface chemistry on these films and on a highly oriented pyrolytic graphite (HOPG) reference-surface. The modification of the carbons with different heteroatoms influences both the strength of their interactions with SO2 and H2S and their capacities for sulfur-compound adsorption. (C) 2009 Elsevier B.V. All rights reserved. C1 [Michalak, W.; Alvin, M. A.; Gellman, A. J.; Miller, J. B.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Michalak, W.; Broitman, E.; Gellman, A. J.; Miller, J. B.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Miller, JB (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM jbmiller@andrew.cmu.edu RI Gellman, Andrew/M-2487-2014; Broitman, Esteban/L-6950-2015 OI Gellman, Andrew/0000-0001-6618-7427; Broitman, Esteban/0000-0003-3277-1945 FU National Energy Technology Laboratory [DE-AC26-04NT41817.606.01.05, DE-AC26-04NT41817.630.01.10] FX The authors thank Radisav Vidic and Jason Monnell at the University of Pittsburgh for helpful discussions.; This technical effort was performed in support of the National Energy Technology Laboratory under the RDS contracts DE-AC26-04NT41817.606.01.05 and DE-AC26-04NT41817.630.01.10. NR 34 TC 6 Z9 6 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JUN 30 PY 2009 VL 362 IS 1-2 BP 8 EP 13 DI 10.1016/j.apcata.2009.04.008 PG 6 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 466QA UT WOS:000267676000002 ER PT J AU Vukovic, G Marinkovic, A Obradovic, M Radmilovic, V Colic, M Aleksic, R Uskokovic, PS AF Vukovic, Goran Marinkovic, Aleksandar Obradovic, Maja Radmilovic, Velimir Colic, Miodrag Aleksic, Radoslav Uskokovic, Petar S. TI Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes SO APPLIED SURFACE SCIENCE LA English DT Article DE Carbon nanotubes; Amino-functionalization; Cyclic voltammetry; Cytotoxicity ID DEOXYRIBONUCLEIC-ACID; COMPOSITE; CELLS; ELECTROCHEMISTRY; BIOCOMPATIBILITY; CHEMISTRY; OXIDATION AB Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N, N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 mu g ml(-1), were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 mu g ml(-1) reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vukovic, Goran; Marinkovic, Aleksandar; Aleksic, Radoslav; Uskokovic, Petar S.] Univ Belgrade, Fac Technol & Met, Belgrade 11120, Serbia. [Obradovic, Maja] Univ Belgrade, Inst Chem Technol & Met, Belgrade 11001, Serbia. [Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Colic, Miodrag] Mil Med Acad, Inst Med Res, Belgrade 11002, Serbia. RP Uskokovic, PS (reprint author), Univ Belgrade, Fac Technol & Met, Karnegijeva 4, Belgrade 11120, Serbia. EM puskokovic@tmf.bg.ac.rs RI Obradovic, Maja/C-5999-2008 NR 46 TC 73 Z9 74 U1 7 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUN 30 PY 2009 VL 255 IS 18 BP 8067 EP 8075 DI 10.1016/j.apsusc.2009.05.016 PG 9 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 463YG UT WOS:000267469500039 ER PT J AU Jaisi, DP Dong, HL Plymale, AE Fredrickson, JK Zachara, JM Heald, S Liu, CX AF Jaisi, Deb P. Dong, Hailiang Plymale, Andrew E. Fredrickson, James K. Zachara, John M. Heald, Steve Liu, Chongxuan TI Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite SO CHEMICAL GEOLOGY LA English DT Article DE Iron; Microbial; Nontronite; Reduction; Reoxidation; Technetium ID RAY-ABSORPTION SPECTROSCOPY; SOLID-WATER INTERFACE; MICROBIAL REDUCTION; SHEWANELLA-PUTREFACIENS; DISSIMILATORY REDUCTION; REOXIDATION BEHAVIOR; BACTERIAL REDUCTION; STRUCTURAL FE(III); KINETIC-ANALYSIS; BIOGENIC FE(II) AB Tc-99 is formed mostly during nuclear reactions and is released into the environment during weapons testing and inadvertent waste disposal. The long half-life, high environmental mobility (as Tc(VII)O-4(-)) and its possible uptake into the food chain cause Tc-99 to be a significant environmental contaminant. In this study, we evaluated the role of Fe(II) in biologically reduced clay mineral, nontronite (NAu-2), in reducing Tc(VII) O-4(-) to poorly soluble Tc(IV) species as a function of pH and Fe(II) concentration. The rate of Tc(VII) reduction by Fe(II) in NAu-2 was higher at neutral pH (pH 7.0) than at acidic and basic pHs when Fe(II) concentration was low (<1 mmol/g). The effect of pH, however. was insignificant at higher Fe(II) concentrations. The reduction of Tc(VII) by Fe(II) associated with NAu-2 was also studied in the presence of common subsurface oxidants including iron and manganese oxides, nitrate, and oxygen, to evaluate the effect of these oxidants on the enhancement and inhibition of Tc(VII) reduction, and reoxidation of Tc(IV). Addition of iron oxides (goethite and hematite) to the Tc(VII)-NAu-2 system, where Tc(VII) reduction was ongoing, enhanced reduction of Tc(VII), apparently as a result of re-distribution of reactive Fe(II) from NAu-2 to more reactive goethite/hematite surfaces. Addition of manganese oxides stopped further Tc(VII) reduction, and in case of K+-birnessite, it reoxidized previously reduced Tc(IV). Nitrate neither enhanced reduction of Tc(VII) nor promoted reoxidation of Tc(IV). Approximately 11% of Tc(IV) was oxidized by oxygen. The rate and extent of Tc(IV) reoxidation was found to strongly depend on the nature of the oxidants and concentration of Fe (II). When the same oxidants were added to aged Tc reduction products (mainly NAu-2 and TcO2 center dot nH(2)O), the extent of Tc(IV) reoxidation decreased significantly relative to fresh Tc(IV) products. Increasing NAu-2 concentration also resulted in the decreased extent of Tc(IV) reoxidation. The results were attributed to the effect of NAu-2 aggregation that effectively retained Tc(IV) in the solid and decreased its vulnerability to reoxidation. Overall, our results implied that bioreduced clay minerals could play an important role in reducing Tc(VII) and in maintaining the long-term stability of reduced Tc(IV). (c) 2009 Elsevier B.V. All rights reserved. C1 [Jaisi, Deb P.; Dong, Hailiang] Miami Univ, Dept Geol, Oxford, OH 45056 USA. [Plymale, Andrew E.; Fredrickson, James K.; Zachara, John M.; Liu, Chongxuan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Heald, Steve] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Dong, HL (reprint author), Miami Univ, Dept Geol, Oxford, OH 45056 USA. EM dongh@muohio.edu RI Liu, Chongxuan/C-5580-2009 NR 56 TC 53 Z9 55 U1 7 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD JUN 30 PY 2009 VL 264 IS 1-4 BP 127 EP 138 DI 10.1016/j.chemgeo.2009.02.018 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 462TQ UT WOS:000267379900011 ER PT J AU Kinman, WS Neal, CR Davidson, JP Font, L AF Kinman, William S. Neal, Clive R. Davidson, Jon P. Font, Laura TI The dynamics of Kerguelen Plateau magma evolution: New insights from major element, trace element and Sr isotope microanalysis of plagioclase hosted in Elan Bank basalts SO CHEMICAL GEOLOGY LA English DT Article DE Kerguelen; Laser ablation; Microanalysis; Large igneous province; Ocean Drilling Program ID SOUTHERN INDIAN-OCEAN; LARGE IGNEOUS PROVINCES; BROKEN RIDGE; ODP LEG-183; CONTINENTAL-CRUST; VOLCANO; CRYSTALLIZATION; CONSTRAINTS; DIFFUSION; SYSTEMS AB The Kerguelen Plateau and Broken Ridge in the southern Indian Ocean together represent one of the most voluminous large igneous provinces (LIPs) ever emplaced on Earth. A scientific objective of Ocean Drilling Program (ODP) Leg 183 was to constrain the post-melting magma evolution of Kerguelen Plateau magmas. In an effort to better understand this evolution, isotopic and trace element analysis of individual plagioclase crystals hosted within two Kerguelen Plateau basalts recovered from Elan Bank were undertaken. Previous whole-rock studies established that the two host basalts; investigated in this study are samples of crustally contaminated (lower group) and relatively uncontaminated (upper group) basalt. Plagioclase phenocrysts; from the uncontaminated basalt are dominantly normal zoned and exhibit a (87)Sr/(86)Sr(I) range of 0.704845-0.704985, which overlaps uncontaminated group whole-rock values previously reported. Plagioclase crystals from the contaminated basalt are dominantly reverse zoned and exhibit a (87)Sr/(86)Sr(I) range of 0.705510-0.705735, which all lie within contaminated group whole-rock values previously reported. There are no systematic within crystal core to rim variations in (87)Sr/(86)Sr(I) from either group, with the exception that contaminated group crystal rims have overall less radiogenic (87)Sr/(86)Sr(I) than other zones. These observations indicate that crustal assimilation occurred before the formation of Unit 10 plagioclase phenocrysts, which is supported by parent magma trace element abundance data inverted using carefully calculated partition coefficients. Trace element diffusion modeling indicates that the upper group basalt (Unit 4) experienced a more vigorous eruptive flux than the lower group basalt (Unit 10). We suggest that plagioclase phenocrysts in both the upper and lower group basalts originated from the shallowest section of what was likely a complex magma chamber system. We contend that the magmatic system contained regions of extensive plagioclase-dominated crystal mush. Crustal assimilation was not a significant ongoing process in this portion of the Elan Bank magmatic system. Both basalts exhibit compelling evidence for remobilization and partial resorption of crystalline debris (e.g., reverse zoned crystals, glomerocrysts). We suggest Unit 4 and 10 magmas ascended different sections of the Elan Bank magma system, where the Unit 10 magmas ascended a section of the magma system that penetrated a stranded fragment of continental crust. (c) 2009 Elsevier B.V. All rights reserved. C1 [Kinman, William S.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Davidson, Jon P.; Font, Laura] Univ Durham, Dept Earth Sci, Durham DH1 3LE, England. [Kinman, William S.; Neal, Clive R.] Univ 6 Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [Font, Laura] Vrije Univ Amsterdam, IVA Earth Sci Petrol Dept, Amsterdam, Netherlands. RP Kinman, WS (reprint author), Los Alamos Natl Lab, Div Chem, MSJ514, Los Alamos, NM 87545 USA. EM wkinman@lanl.gov FU NSF [OCE-0452102] FX This research used samples provided by the Ocean Drilling Program (ODP). ODP was sponsored by the US National Science Foundation and participating countries under management of theJoint Oceanographic Institutions. We are indebted to the staff and crew of the RVJOIDES Resolution whose professionalism and cooperation allowed the collection of drill cores at Site 1137. A special thanks to Prof. Gerhard Worner for a thorough and tremendously useful review of this manuscript. Funding was provided to CRN by NSF for this work under OCE-0452102. Support from the University of Notre Dame to WSK is gratefully acknowledged. We also thank Prof. D. Graham Pearson, Dr. Geoff Nowell, Dr. Dan Morgan and Dr. Bruce Charlier for their direct and indirect efforts and support with this project NR 47 TC 4 Z9 7 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 J9 CHEM GEOL JI Chem. Geol. PD JUN 30 PY 2009 VL 264 IS 1-4 BP 247 EP 265 DI 10.1016/j.chemgeo.2009.03.010 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 462TQ UT WOS:000267379900021 ER PT J AU Lord, OT Walter, MJ Dasgupta, R Walker, D Clark, SM AF Lord, O. T. Walter, M. J. Dasgupta, R. Walker, D. Clark, S. M. TI Melting in the Fe-C system to 70 GPa SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE carbon; core; iron carbide; light element ID CORE DENSITY DEFICIT; DIAMOND-ANVIL CELL; EARTHS OUTER CORE; X-RAY-DIFFRACTION; HIGH-PRESSURE; THERMAL-EXPANSION; CRYSTAL-STRUCTURE; MANTLE BOUNDARY; LIGHT-ELEMENTS; PHASE-DIAGRAM AB We determined high-pressure melting curves for Fe(3)C, Fe(7)C(3) and the Fe-Fe(3)C eutectic using laser-heated diamond anvil cell techniques. The principal criterion for melting is the observation of plateaus in the temperature vs. laser power function, which is an expected behavior at isobaric invariant points (e.g. congruent, eutectic, or peritectic melting) as increased power provides the latent heat of melting. We verified this technique by reproducing the melting curves of well-studied congruently melting compounds at high pressure (Fe, Pt, FeS, Pb), and by comparison with melting determinations made using thermocouple-based large-volume press techniques. The incongruent melting curve of Fe(3)C measured to 70 GPa has an apparent change in slope at similar to 8 GPa, which we attribute to stabilization of Fe(7)C(3) at the solidus and the creation of a P-Tinvariant point. We observe that Fe(7)C(3) Melts at higher temperatures than Fe(3)C between 14 and 52 GPa and has a steep P-T slope, and on this basis predicts an expanding field of Fe(7)C(3) + liquid with pressure. The Fe-Fe(3)C eutectic melting curve measured to 70 GPa agrees closely with multi-anvil data and thermodynamic calculations. We also measured the eutectic composition as a function of pressure using an in situ X-radiographic imaging technique, and find a rapid drop in carbon in the eutectic composition above about 20 GPa, generally consistent with previous thermodynamic calculations. and predict that the eutectic lies close to pure iron by similar to 50 GPa. We use these observations to extrapolate phase relations to core-relevant pressures. Convergence of the Fe(3)C and Fe-Fe(3)C eutectic melting curves indicate that Fe(3)C is replaced at the solidus by Fe(7)C(3) at similar to 120 GPa, forming another P-T invariant point and a new eutectic between Fe and Fe(7)C(3). Thus, Fe(3)C is unlikely to be an important crystallizing phase at core conditions. whereas Fe(7)C(3) could become an important crystallizing phase. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lord, O. T.; Walter, M. J.] Univ Bristol, Dept Earth Sci, Bristol BS8 1RJ, Avon, England. [Dasgupta, R.; Walker, D.] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA. [Clark, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Lord, OT (reprint author), Univ Bristol, Dept Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England. EM Oliver.Lord@bristol.ac.uk RI Dasgupta, Rajdeep/C-7252-2009; Lord, Oliver/D-4663-2014; Clark, Simon/B-2041-2013 OI Dasgupta, Rajdeep/0000-0001-5392-415X; Lord, Oliver/0000-0003-0563-1293; Clark, Simon/0000-0002-7488-3438 FU LDEO post-doctoral fellowship; NERC [NE/C511548/1]; NSF; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES; Consortium for Materials Properties Research in Earth Sciences [EAR 06-49658] FX We thank J. Knight at ALS for technical support during the imaging experiments. RD acknowledges support of LDEO post-doctoral fellowship. OTL acknowledges support of a NERC PhD studentship. This work was supported by NERC grant NE/C511548/1 to MJW and by NSF grants to DW. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658. NR 68 TC 93 Z9 99 U1 7 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUN 30 PY 2009 VL 284 IS 1-2 BP 157 EP 167 DI 10.1016/j.epsl.2009.04.017 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 476KK UT WOS:000268438900018 ER PT J AU Zhang, YX Zheng, HH Liu, G Battaglia, V AF Zhang, Yuxi Zheng, Honghe Liu, Gao Battaglia, Vince TI Synthesis and electrochemical studies of a layered spheric TiO2 through low temperature solvothermal method SO ELECTROCHIMICA ACTA LA English DT Article DE Lithium ion batteries; Solvothermal method; Anatase TiO2; Anode materials ID LITHIUM-ION BATTERIES; ANATASE NANOPARTICLES; ANODE MATERIALS; INTERCALATION; NANOWIRES; STORAGE; NANOTUBES; NANORODS; GROWTH AB This paper demonstrates a low temperature solvothermal method for the synthesis of a layered spheric TiO2. The crystal structure and morphology of the material were characterized by using X-ray diffraction (XRD) and scanning electron miscopy (SEM). Electrochemical performances of the TiO2 when used as anode material in lithium ion batteries were investigated by galvanostatic charge/discharge and cyclic voltammetry experiments. A discharge capacity of 179 m Ah g(-1) was obtained in the potential range between 3.0 and 1.5 V. No significant capacity decay was observed in the successive 30 cycles showing satisfactory cycling performance of the electrode. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, Yuxi; Zheng, Honghe] Henan Normal Univ, Coll Chem & Environm Sci, Xinxiang 453007, Peoples R China. [Zheng, Honghe; Liu, Gao; Battaglia, Vince] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zheng, HH (reprint author), Henan Normal Univ, Coll Chem & Environm Sci, Xinxiang 453007, Peoples R China. EM hhzheng@mail.com FU Natural Science Foundation of China [20573033]; Henan Province [04120001100] FX The authors are greatly indebted to the funding of Natural Science Foundation of China (NSFC, contract no. 20573033) and the young researcher program of Henan Province (04120001100), China. NR 24 TC 12 Z9 12 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD JUN 30 PY 2009 VL 54 IS 16 BP 4079 EP 4083 DI 10.1016/j.electacta.2009.02.044 PG 5 WC Electrochemistry SC Electrochemistry GA 453RO UT WOS:000266628900015 ER PT J AU Milewski, A Sultan, M Yan, E Becker, R Abdeldayem, A Soliman, F Gelil, KA AF Milewski, Adam Sultan, Mohamed Yan, Eugene Becker, Richard Abdeldayem, Ahmed Soliman, Farouk Gelil, Kamil Abdel TI A remote sensing solution for estimating runoff and recharge in arid environments SO JOURNAL OF HYDROLOGY LA English DT Article DE SWAT; Continuous rainfall-runoff model; Eastern Desert; Sinai peninsula; Remote sensing; GIs ID GROUNDWATER RECHARGE; UNGAUGED CATCHMENTS; TRANSMISSION LOSSES; EASTERN DESERT; SOIL-MOISTURE; RIVER-BASIN; MODEL; RAINFALL; WATER; BALANCE AB Efforts to understand and to quantify precipitation and its partitioning into runoff evapo-transpiration, and icecharge are often hampered by the absence or paucity of appropriate monitoring systems. We applied methodologies for rainfall-runoff and groundwater recharge computations that heavily rely on observations extracted from a wide-range of global remote sensing data sets (TRMM, SSM/l, Landsat TM, AVHRR, AMSR-E, and ASTER) using the arid Sinai Peninsula (SP; area: 61,000 km(2)) and the Eastern Desert (ED; area: 220,000 km(2)) of Egypt as our test sites. A two-fold exercise was conducted. Spatiotemporal remote sensing data (TRMM, AVHRR and AMSR-E) were extracted from global data sets over the test sites using RESDEM, the Remote Sensing Data Extraction Model, and were then used to identify and to verify precipitation events throughout the past 10 years (1998-2007). This was accomplished by using an automated cloud detection technique to identify clouds and to monitor their propagation prior to and throughout the identified precipitation events, and by examining changes in soil moisture (extracted from AMSR-E data) following the identification of clouds. For the investigated period, 246 of 327 events were verified in the SP, and 179 of 304 in the ED. A catchment-based, continuous, semi-distributed hydrologic model (Soil Water and Assessment Tool model; SWAT) was calibrated against observed runoff values from Wadi Girafi Watershed (area: 3350 km(2)) and then used to provide a continuous simulation (1998-2007) of the overland flow, channel flow, transmission losses, evaporation on bare soils and evapo-transpiration, and groundwater recharge for the major (area: 2014-22,030 km(2)) watersheds in the SP (Watir, El-Arish, Dahab, and Awag) and the ED (Qena, Hammamat, Asyuti, Tarfa, El-Quffa, El-Batur, Kharit, Hodein, and Allaqi) covering 48% and 51% of the total areas of the SP and the ED, respectively. For the investigated watersheds in the SP, the average annual precipitation, average annual runoff, and average annual recharge through transmission losses were found to be: 2955 x 10(6)m(3), 508 x 10(6)m(3) (17.1% total precipitation (TP)), and 463 x 10(6)m(3) (15.7% TP), respectively, whereas in the ED these values are: 807 x 10(6)m(3), 77.8 x 10(6)m(3) (9.6% TP), and 171 x 10(6)m(3) (21.2% TP), respectively. Results demonstrate the enhanced opportunities for groundwater development in the SP (compared to the ED) and highlight the potential for similar applications in and areas elsewhere. The adopted remote sensing-based, regionalization approach is not a substitute for traditional methodologies that rely on extensive field datasets from rain gauge and stream flow networks, yet could provide first-order estimates for rainfall, runoff, and recharge over large sectors of the and world lacking adequate coverage with spatial and temporal precipitation and field data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Milewski, Adam; Sultan, Mohamed; Becker, Richard] Western Michigan Univ, Dept Geosci, Kalamazoo, MI 49008 USA. [Yan, Eugene] Argonne Natl Lab, Div Environm Sci, Chicago, IL USA. [Abdeldayem, Ahmed] Cairo Univ, Dept Hydraul & Engn, Cairo, Egypt. [Soliman, Farouk] Suez Canal Univ, Dept Geol, Ismailia, Egypt. [Gelil, Kamil Abdel] Natl Water Resource Ctr, Minist Water Resources & Irrigat, Cairo, Egypt. RP Sultan, M (reprint author), Western Michigan Univ, Dept Geosci, 1903 W Michigan Ave, Kalamazoo, MI 49008 USA. EM mohamed.sultan@wmich.edu RI Becker, Richard/A-9120-2010; Milewski, Adam/C-7824-2011 OI Becker, Richard/0000-0003-2514-2040; FU United Nations Development Programme (UNDP); Global Environmental Facility (GEF) Internatioal Water Program; National Science Foundation (NSF) [OISE-0514307]; NATO Science For Peace Program [SFP982614]; Michigan University FX Funding was provided by the United Nations Development Programme (UNDP) and the Global Environmental Facility (GEF) Internatioal Water Program, the National Science Foundation (NSF) Science and Technology Grant (OISE-0514307), and the NATO Science For Peace Program (SFP982614) (Environmental Security Program), all awarded to Western Michigan University. We would also like to thank Dr. DeJeu and his research team for providing us with the processed AMSR-E data. NR 76 TC 43 Z9 43 U1 3 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JUN 30 PY 2009 VL 373 IS 1-2 BP 1 EP 14 DI 10.1016/j.jhydrol.2009.04.002 PG 14 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 471RB UT WOS:000268074900001 ER PT J AU Pluth, MD Fiedler, D Mugridge, JS Bergman, RG Raymond, KN AF Pluth, Michael D. Fiedler, Dorothea Mugridge, Jeffrey S. Bergman, Robert G. Raymond, Kenneth N. TI Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE host-guest chemistry; molecular recognition; guest encapsulation; amine protonation ID BASIC SOLUTION; ORTHOFORMATE HYDROLYSIS; NITROGEN INVERSION; HYDROGEN-BONDS; GUEST EXCHANGE; RECOGNITION; CATALYSIS; STABILIZATION; MECHANISM; SPECTROSCOPY AB Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen-bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly that are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines, and piperidines. Proton-bound homodimer formation is observed for N-alkylaziridines (R = methyl, isopropyl, tert-butyl), N-alkylazetidines (R = isopropyl, tert-butyl), and N-methylpyrrolidine. At high concentration, formation of a proton-bound homotrimer is observed in the case of N-methylaziridine. The homodimers stay intact inside the assembly over a large concentration range, thereby suggesting cooperative encapsulation. Both G3(MP2)B3 and G3B3 calculations of the proton-bound homodimers were used to investigate the enthalpy of the hydrogen bond in the proton-bound homodimers and suggest that the enthalpic gain upon formation of the proton-bound homodimers may drive guest encapsulation. C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu RI Pluth, Michael/A-7222-2012 OI Pluth, Michael/0000-0003-3604-653X FU U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX We thank Drs. Jamin Krinsky and Kathleen Durkin for assistance with calculations. This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, Office of Basic Energy Sciences (U.S. Department of Energy) under contract DE-AC02-05CH11231 and National Science Foundation Predoctoral Fellowships ( to M. D. P. and J.S.M.). NR 41 TC 42 Z9 42 U1 4 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10438 EP 10443 DI 10.1073/pnas.0809806106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300011 PM 19181859 ER PT J AU Martos, V Bell, SC Santos, E Isacoff, EY Trauner, D de Mendoza, J AF Martos, Vera Bell, Sarah C. Santos, Eva Isacoff, Ehud Y. Trauner, Dirk de Mendoza, Javier TI Calix[4]arene-based conical-shaped ligands for voltage-dependent potassium channels SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electrophysiology; Kv1.x channels; ligand-protein surface interactions; molecular recognition; multivalent calix[4]arene ligands ID SHAKER K+ CHANNEL; REARRANGEMENTS; INACTIVATION; MODULATORS; STABILITY; DESIGN AB Potassium channels are among the core functional elements of life because they underpin essential cellular functions including excitability, homeostasis, and secretion. We present here a series of multivalent calix[4]arene ligands that bind to the surface of voltage-dependent potassium channels (K(v)1.x) in a reversible manner. Molecular modeling correctly predicts the best candidates with a conical C(4) symmetry for optimal binding, and the effects on channel function are assessed electrophysiologically. Reversible inhibition was observed, without noticeable damage of the oocytes, for tetraacylguanidinium or tetraarginine members of the series with small lower rim O-substituents. Apparent binding constants were in the low micromolar range and had Hill coefficients of 1, consistent with a single site of binding. Suppression of current amplitude was accompanied by a positive shift in the voltage dependence of gating and slowing of both voltage sensor motion and channel opening. These effects are in keeping with expectations for docking in the central pore and interaction with the pore domain "turret.'' C1 [Martos, Vera; Santos, Eva; de Mendoza, Javier] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain. [Martos, Vera; de Mendoza, Javier] Univ Autonoma Madrid, Dept Organ Chem, E-28049 Madrid, Spain. [Bell, Sarah C.; Trauner, Dirk] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.; Trauner, Dirk] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bell, Sarah C.; Isacoff, Ehud Y.] Univ Calif Berkeley, Chem Biol Grad Program, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Trauner, Dirk] Univ Munich, Dept Chem, D-81377 Munich, Germany. RP de Mendoza, J (reprint author), Inst Chem Res Catalonia ICIQ, Avinguda Paisos Catalans 16, Tarragona 43007, Spain. EM jmendoza@iciq.es FU Spanish Ministry of Science and Education (MEC) [CTQ2005-08948-C02-01/BQU]; Consolider Ingenio [CSD2006-0003]; Institute of Chemical Research of Catalonia (ICIQ) Foundation; National Institutes of Health [5R01NS035549]; MEC; ICIQ Foundation FX Thanks to Dr. Francesco Tombola for assistance with experimental design and data analysis and Drs. Maximilian Ulbrich and Harald Janovjak for help with data analysis. This work was supported by Spanish Ministry of Science and Education (MEC) Project CTQ2005-08948-C02-01/BQU, Consolider Ingenio 2010 Grant CSD2006-0003, the Institute of Chemical Research of Catalonia (ICIQ) Foundation, and National Institutes of Health Grant 5R01NS035549 ( to E.Y.I.). V. M. thanks MEC and the ICIQ Foundation for predoctoral fellowships. NR 27 TC 31 Z9 31 U1 2 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10482 EP 10486 DI 10.1073/pnas.0813396106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300019 PM 19435843 ER PT J AU Macfarlane, RJ Lee, B Hill, HD Senesi, AJ Seifert, S Mirkin, CA AF Macfarlane, Robert J. Lee, Byeongdu Hill, Haley D. Senesi, Andrew J. Seifert, Soenke Mirkin, Chad A. TI Assembly and organization processes in DNA-directed colloidal crystallization SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE DNA materials; SAXS; self assembly ID GOLD NANOPARTICLE ASSEMBLIES; CRYSTALS; NANOCRYSTALS; DIFFRACTION; LATTICE; PROTEIN AB We present an analysis of the key steps involved in the DNA-directed assembly of nanoparticles into crystallites and polycrystalline aggregates. Additionally, the rate of crystal growth as a function of increased DNA linker length, solution temperature, and self-complementary versus non-self-complementary DNA linker strands (1- versus 2-component systems) has been studied. The data show that the crystals grow via a 3-step process: an initial "random binding'' phase resulting in disordered DNA-AuNP aggregates, followed by localized reorganization and subsequent growth of crystalline domain size, where the resulting crystals are well-ordered at all subsequent stages of growth. C1 [Macfarlane, Robert J.; Hill, Haley D.; Senesi, Andrew J.; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Macfarlane, Robert J.; Hill, Haley D.; Senesi, Andrew J.; Mirkin, Chad A.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA. [Lee, Byeongdu; Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Mirkin, CA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM chadnano@northwestern.edu RI Mirkin, Chad/E-3911-2010 FU National Science Foundation Nanoscience and Engineering Center; Air Force Office of Scientific Research; National Cancer Institute Center for Cancer Nanotechnology Excellence; National Institutes of Health Director's Pioneer Award; U.S. Department of Homeland Security Graduate Fellowship; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation Nanoscience and Engineering Center, the Air Force Office of Scientific Research, the National Cancer Institute Center for Cancer Nanotechnology Excellence, and a National Institutes of Health Director's Pioneer Award ( to C. A. M.) and a U.S. Department of Homeland Security Graduate Fellowship under the DHS Scholarship and Fellowship Program ( to H. D. H.). Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source. The DuPont-Northwestern-Dow Collaborative Access Team is supported by E. I. DuPont de Nemours & Co., The Dow Chemical Company, and the State of Illinois. Use of the Advanced Photon Source was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 37 TC 77 Z9 77 U1 6 U2 71 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10493 EP 10498 DI 10.1073/pnas.0900630106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300021 PM 19549828 ER PT J AU Sinitsyn, NA Hengartner, N Nemenman, I AF Sinitsyn, N. A. Hengartner, Nicolas Nemenman, Ilya TI Adiabatic coarse-graining and simulations of stochastic biochemical networks SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID CHEMICAL-KINETICS; SYSTEMS AB We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical networks, which rests on elimination of fast chemical species without a loss of information about mesoscopic, non-Poissonian fluctuations of the slow ones. Our approach is similar to the Born-Oppenheimer approximation in quantum mechanics and follows from the stochastic path integral representation of the cumulant generating function of reaction events. In applications with a small number of chemical reactions, it produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, interpretable representation and can be used for high-accuracy, low-complexity coarse-grained numerical simulations. As an example, we derive the coarse-grained description for a chain of biochemical reactions and show that the coarse-grained and the microscopic simulations agree, but the former is 3 orders of magnitude faster. C1 [Sinitsyn, N. A.; Nemenman, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Sinitsyn, N. A.; Hengartner, Nicolas; Nemenman, Ilya] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Nemenman, I (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM ilya@menem.com RI Sinitsyn, nikolai/B-5617-2009; OI Nemenman, Ilya/0000-0003-3024-4244; Hengartner, Nicolas/0000-0002-4157-134X FU U. S. Department of Energy [DE-AC52-06NA25396] FX We thank F. Alexander, G. Bel, W. Hlavacek, B. Munsky, and M. Wall for useful discussions and the anonymous referees for their insightful comments. This work was supported in part by the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 22 TC 33 Z9 34 U1 0 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 30 PY 2009 VL 106 IS 26 BP 10546 EP 10551 DI 10.1073/pnas.0809340106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 465EI UT WOS:000267564300030 PM 19525397 ER PT J AU Chiarelli, PA Liu, DG Watkins, EB Trouw, FR Majewski, J Casson, JL Tang, ZX Johal, MS Robinson, JM Wang, HL AF Chiarelli, Peter A. Liu, Ding-Guo Watkins, Erik B. Trouw, Frans R. Majewski, Jaroslaw Casson, Joanna L. Tang, Zhexiong Johal, Malkiat S. Robinson, Jeanne M. Wang, Hsing-Lin TI Molecular order in Langmuir-Blodgett assembled films of an azobenzene amphiphile SO THIN SOLID FILMS LA English DT Article DE Langmuir-Blodgett films; X-ray scattering; Structure properties; Interface ID 2ND-HARMONIC GENERATION; THIN-FILMS; NONLINEAR OPTICS; MONOLAYERS; MICROSTRUCTURE; SPECTROSCOPY; MONODENDRONS; ENHANCEMENT; MULTILAYERS; REFLECTION AB Alternating multilayers of amphiphile, 4-{4-[Methyl-(4-octadecylcarbamoyl-butyl)-amino]-phenylazo}-benzenesulfonic acid (S-azo-C(18)), and stearic acid were deposited on hydrophobized silica surfaces using the Langmuir-Blodgett technique. Ellipsometry, UV-visible spectroscopy, and second harmonic generation were used to characterize the films, demonstrating reproducible deposition and suggesting a well ordered film structure. Despite the appearance of order at the macroscopic level, neutron and X-ray scattering results unequivocally show that there is considerable disorder, with significant interpenetration between the stearic acid and S-azo-C(18) layers. These results suggest that molecular disorder in Langmuir-Blodgett deposited multilayer films may often go unrecognized mainly because the macroscopic probes based on these optical measurements are not adequate for determining the molecular level structural order. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chiarelli, Peter A.; Liu, Ding-Guo; Casson, Joanna L.; Tang, Zhexiong; Robinson, Jeanne M.; Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Watkins, Erik B.; Trouw, Frans R.; Majewski, Jaroslaw] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Johal, Malkiat S.] Pomona Coll, Dept Chem, Claremont, CA 91711 USA. RP Robinson, JM (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM hwang@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Robinson, Jeanne/0000-0002-4251-7169 FU Los Alamos National Laboratory [W7405-ENG-36]; DOE Office of Basic Energy Science FX The work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory under the auspices of the United States Department of Energy and was supported by Los Alamos National Laboratory under DOE contract W7405-ENG-36, and by the DOE Office of Basic Energy Science. The neutron reflectometry experiments benefited from use of the SPEAR time-of-flight reflectometer at LANSCE, LANL. NR 31 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 30 PY 2009 VL 517 IS 16 BP 4638 EP 4643 DI 10.1016/j.tsf.2009.02.148 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 459NQ UT WOS:000267110200027 ER PT J AU Smith, JN Campbell, JA Busby-Hjerpe, AL Lee, S Poet, TS Barr, DB Timchalk, C AF Smith, Jordan Ned Campbell, James A. Busby-Hjerpe, Andrea L. Lee, Sookwang Poet, Torka S. Barr, Dana B. Timchalk, Charles TI Comparative chlorpyrifos pharmacokinetics via multiple routes of exposure and vehicles of administration in the adult rat SO TOXICOLOGY LA English DT Article DE Chlorpyrifos; 3,5,6-Trichloro-2-pyridinol; Pharmacokinetics; Trichloropyridinol ID ORGANOPHOSPHORUS INSECTICIDE CHLORPYRIFOS; DEVELOPMENTAL NEUROTOXICITY; CHOLINESTERASE INHIBITION; PHARMACODYNAMIC MODEL; ORAL CHLORPYRIFOS; BINARY-MIXTURE; IN-VITRO; BRAIN; LIVER; METABOLISM AB Chlorpyrifos (CPF) is a commonly used organophosphorus pesticide. A number of toxicity and mechanistic studies have been conducted in animals, where CPF has been administered via a variety of different exposure routes and dosing vehicles. This study compared chlorpyrifos (CPF) pharmacokinetics using oral, intravenous (IV), and subcutaneous (SC) exposure routes and corn oil, saline/Tween 20, and dimethyl sulfoxide (DMSO) as dosing vehicles. Two groups of rats were co-administered target doses (5 mg/kg) of CPF and isotopically labeled CPF (L-CPF). One group was exposed by both oral (CPF) and IV (L-CPF) routes using saline/Tween 20 vehicle; whereas, the second group was exposed by the SC route using two vehicles, corn oil (CPF) and DMSO (L-CPF). A third group was only administered CPF by the oral route in corn oil. For all treatments, blood and urine time course samples were collected and analyzed for 3,5,6-trichloro-2-pyridinol (TCPy), and isotopically labeled 3,5,6-trichloro-2-pyridinol (L-TCPy). Peak TCPy/L-TCPy concentrations in blood (20.2 mu mol/l), TCPy/L-TCPy blood AUC (94.9 mu mol/l h), and percent of dose excreted in urine (100%) were all highest in rats dosed orally with CPF in saline/Tween 20 and second highest in rats dosed orally with CPF in corn oil. Peak TCPy concentrations in blood were more rapidly obtained after oral administration of CPF in saline/Tween 20 compared to all other dosing scenarios (>1.5 h). These results indicate that orally administered CPF is more extensively metabolized than systemic exposures of CPF(SC and IV), and vehicle of administration also has an effect on absorption rates. Thus, equivalent doses via different routes and/or vehicles of administration could potentially lead to different body burdens of CPF, different rates of bioactivation to CPF-oxon, and different toxic responses. Simulations using a physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for CPF are consistent with these possibilities. These results suggest that exposure route and dosing vehicle can substantially impact target tissue dosimetry. This is of particular importance when comparing studies that use varying exposure paradigms, which are then used for extrapolation of risk to humans. (C) 2009 Elsevier Ireland Ltd. All rights reserved. C1 [Smith, Jordan Ned; Campbell, James A.; Busby-Hjerpe, Andrea L.; Lee, Sookwang; Poet, Torka S.; Timchalk, Charles] Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA. [Barr, Dana B.] Ctr Dis Control & Prevent, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. RP Timchalk, C (reprint author), Battelle Mem Inst, Pacific NW Div, Richland, WA 99354 USA. EM jordan.smith@pnl.gov; james.campbell@pnl.gov; andrea.busby@pnl.gov; sookwang.lee@pnl.gov; torka.poet@pnl.gov; dbarr@cdc.gov; charles.timchalk@pnl.gov RI Barr, Dana/E-6369-2011; Barr, Dana/E-2276-2013 FU Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health (CDC/NIOSH) [R01 OH008173, R01 OH003629, AGR05FED40077.02] FX This publication was supported by funding from Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health (CDC/NIOSH) grants R01 OH008173, R01 OH003629, and AGR05FED40077.02. Findings in this study were those of the authors, and do not necessarily reflect the official opinion of the CDC/NIOSH. NR 38 TC 25 Z9 30 U1 1 U2 22 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD JUN 30 PY 2009 VL 261 IS 1-2 BP 47 EP 58 DI 10.1016/j.tox.2009.04.041 PG 12 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 465KZ UT WOS:000267584800007 PM 19397948 ER PT J AU Chang, CY Pearton, SJ Lo, CF Ren, F Kravchenko, II Dabiran, AM Wowchak, AM Cui, B Chow, PP AF Chang, C. Y. Pearton, S. J. Lo, C. F. Ren, F. Kravchenko, I. I. Dabiran, A. M. Wowchak, A. M. Cui, B. Chow, P. P. TI Development of enhancement mode AlN/GaN high electron mobility transistors SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; gallium compounds; high electron mobility transistors; III-V semiconductors; plasma materials processing; semiconductor device metallisation; wide band gap semiconductors ID ALGAN/GAN HEMTS; GANHEMTS; PERFORMANCE; HFETS AB Enhancement mode AlN/GaN high electron mobility transistors (HEMTs) were fabricated from originally depletion-mode structures using oxygen plasma treatment on the gate area prior to the gate metallization. Starting with a depletion mode AlN/GaN HEMT, the threshold voltage of the HEMT could be shifted from -3.2 to 1 V depending on the oxygen plasma treatment time to partially convert the AlN barrier layer into Al oxide. The gate current was reduced and the current-voltage curves show metal-oxide semiconductor diodelike characteristics after oxygen plasma treatment. C1 [Chang, C. Y.; Pearton, S. J.] Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA. [Lo, C. F.; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Kravchenko, I. I.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Dabiran, A. M.; Wowchak, A. M.; Cui, B.; Chow, P. P.] SVT Associates Inc, Prairie, MN 55344 USA. RP Chang, CY (reprint author), Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA. EM spear@mse.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 NR 17 TC 27 Z9 29 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2009 VL 94 IS 26 AR 263505 DI 10.1063/1.3168648 PG 3 WC Physics, Applied SC Physics GA 466XB UT WOS:000267697300063 ER PT J AU Di, ZF Wang, YQ Nastasi, M Bisognin, G Berti, M Thompson, PE AF Di, Z. F. Wang, Y. Q. Nastasi, M. Bisognin, G. Berti, M. Thompson, P. E. TI Strain relaxation of SiGe in a Si/SiGe/Si heterostructure under proton irradiation SO APPLIED PHYSICS LETTERS LA English DT Article DE elemental semiconductors; Ge-Si alloys; high-temperature effects; nucleation; proton effects; semiconductor heterojunctions; silicon; vacancies (crystal) ID HYDROGEN; SILICON; SUPERLATTICES; IMPLANTATION; EXFOLIATION; DIFFUSION; MECHANISM; PRESSURE AB We have studied the mechanisms underlying strained layer relaxation by means of point defect interaction. During high temperature (300 degrees C) proton irradiation, vacancies generated in the vicinity of SiGe layer migrate and accumulate within the compressively strained SiGe layer. The accumulating vacancies are stabilized by hydrogen, which diffuses from the implanted region, thus allowing the nucleation and growth of hydrogen-vacancy (V-H) complexes. The formation of V-H complexes is accompanied by gradual strain relief in SiGe layer. Since the diffusion of both vacancies and hydrogen is limited by the irradiation temperature, strain relaxation of the SiGe layer is not realized during room temperature (20 degrees C) proton irradiation. The study supports the idea that the compressive stress in the SiGe layer induces the indiffusion of vacancies and H, and reveals the important role of point defects in the strain relaxation of the strained SiGe layer. C1 [Di, Z. F.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bisognin, G.; Berti, M.] Univ Padua, Dipartmento Fis, I-35131 Padua, Italy. [Bisognin, G.; Berti, M.] Univ Padua, INFM, CNR, MATIS, I-35131 Padua, Italy. [Thompson, P. E.] USN, Res Lab, Washington, DC 20375 USA. [Bisognin, G.] Unita Padova, CNISM, I-35131 Padua, Italy. RP Di, ZF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dizengfeng@hotmail.com RI di, zengfeng/B-1684-2010 NR 24 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2009 VL 94 IS 26 AR 264102 DI 10.1063/1.3167814 PG 3 WC Physics, Applied SC Physics GA 466XB UT WOS:000267697300068 ER PT J AU Kapadia, R Ko, H Chueh, YL Ho, JC Takahashi, T Zhang, ZX Javey, A AF Kapadia, Rehan Ko, Hyunhyub Chueh, Yu-Lun Ho, Johnny C. Takahashi, Toshitake Zhang, Zhenxing Javey, Ali TI Hybrid core-multishell nanowire forests for electrical connector applications SO APPLIED PHYSICS LETTERS LA English DT Article DE adhesion; electric connectors; electrical resistivity; elemental semiconductors; germanium; nanowires; semiconductor quantum wires; semiconductor-metal boundaries; silver; van der Waals forces ID CARBON; ADHESIVE; STRENGTH; ENERGY; MICRO AB Electrical connectors based on hybrid core-multishell nanowire forests that require low engagement forces are demonstrated. The physical binding and electrical connectivity of the nanowire electrical connectors arise from the van der Waals interactions between the conductive metallic shells of the engaged nanowire forests. Specifically, the nanofibrillar structure of the connectors causes an amplification of the contact area between the interpenetrating nanowire arrays, resulting in strong adhesion with relatively low interfacial resistance. The nanowire electrical connectors may enable the exploration of a wide range of applications involving reversible assembly of micro- and macroscale components with built-in electrical interfacing. C1 [Kapadia, Rehan] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94705 USA. Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94705 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kapadia, R (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94705 USA. EM ajavey@eecs.berkeley.edu RI Zhang, Zhenxing/A-8762-2008; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013; Ho, Johnny/K-5275-2012; Kapadia, Rehan/B-4100-2013; Javey, Ali/B-4818-2013 OI Zhang, Zhenxing/0000-0002-4946-0492; Chueh, Yu-Lun/0000-0002-0155-9987; Ho, Johnny/0000-0003-3000-8794; Kapadia, Rehan/0000-0002-7611-0551; FU DARPA [5710002393]; NSF Center of Integrated Nanomechanical Systems FX The authors would like to thank Professor Ron Fearing for insightful discussion. This work was supported by DARPA Contract No. 5710002393 DSO and NSF Center of Integrated Nanomechanical Systems. The nanowire synthesis part of this project was supported by a Laboratory Directed Research and Development grant from Lawrence Berkeley National Laboratory. R. K. and J. C. H. acknowledge NSF Graduate Fellowship and Intel Foundation Fellowship, respectively. NR 16 TC 17 Z9 17 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 29 PY 2009 VL 94 IS 26 AR 263110 DI 10.1063/1.3148365 PG 3 WC Physics, Applied SC Physics GA 466XB UT WOS:000267697300047 ER PT J AU Arsene, IC Bearden, IG Beavis, D Bekele, S Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Dalsgaard, HH Debbe, R Gaardhoje, JJ Hagel, K Ito, H Jipa, A Johnson, EB Jorgensen, CE Karabowicz, R Katrynska, N Kim, EJ Larsen, TM Lee, JH Lovhoiden, G Majka, Z Murray, MJ Natowitz, J Nielsen, BS Nygaard, C Pal, D Qviller, A Rami, F Ristea, C Ristea, O Rohrich, D Sanders, SJ Staszel, P Tveter, TS Videbaek, F Wada, R Yang, H Yin, Z Zgura, IS AF Arsene, I. C. Bearden, I. G. Beavis, D. Bekele, S. Besliu, C. Budick, B. Boggild, H. Chasman, C. Christensen, C. H. Christiansen, P. Dalsgaard, H. H. Debbe, R. Gaardhoje, J. J. Hagel, K. Ito, H. Jipa, A. Johnson, E. B. Jorgensen, C. E. Karabowicz, R. Katrynska, N. Kim, E. J. Larsen, T. M. Lee, J. H. Lovhoiden, G. Majka, Z. Murray, M. J. Natowitz, J. Nielsen, B. S. Nygaard, C. Pal, D. Qviller, A. Rami, F. Ristea, C. Ristea, O. Roehrich, D. Sanders, S. J. Staszel, P. Tveter, T. S. Videbaek, F. Wada, R. Yang, H. Yin, Z. Zgura, I. S. TI Nuclear stopping and rapidity loss in Au plus Au collisions a root S-NN=62.4 GeV SO PHYSICS LETTERS B LA English DT Article ID QUARK-GLUON PLASMA; BRAHMS EXPERIMENT; BARYON; COLLABORATION; PERSPECTIVE; MATTER; MODEL AB Transverse momentum spectra of protons and anti-protons measured in the rapidity range 0 < y < 3.1 from 0-10% central Au + Au collisions at root S-NN = 62.4 GeV are presented. The rapidity densities, dN/dy, of protons, anti-protons and net-protons (N-p-N-(p) over bar) have been deduced from the spectra over a rapidity range wide enough to observe the expected maximum net-baryon density. From mid-rapidity to y = I the net-proton yield is roughly constant (dN/dy similar to 10), but rises to dN/dy similar to 25 at 2.3 < y < 3.1. The mean rapidity loss is 2.01 +/- 0.14 +/- 0.12 units from beam rapidity. The measured rapidity distributions are compared to model predictions. Systematics of net-baryon distributions and rapidity loss vs. collision energy are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Christiansen, P.; Dalsgaard, H. H.; Gaardhoje, J. J.; Jorgensen, C. E.; Larsen, T. M.; Nielsen, B. S.; Nygaard, C.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Beavis, D.; Chasman, C.; Debbe, R.; Ito, H.; Lee, J. H.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rami, F.] Inst Pluridisciplinaire Hubert Curien, IN2P3, CNRS, Strasbourg, France. [Rami, F.] Univ Strasbourg, Strasbourg, France. [Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Karabowicz, R.; Katrynska, N.; Majka, Z.; Staszel, P.] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland. [Budick, B.] NYU, New York, NY 10003 USA. [Hagel, K.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX USA. [Roehrich, D.; Yang, H.; Yin, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Besliu, C.; Jipa, A.; Ristea, O.] Univ Bucharest, Bucharest, Romania. [Bekele, S.; Johnson, E. B.; Kim, E. J.; Murray, M. J.; Pal, D.; Sanders, S. J.] Univ Kansas, Lawrence, KS 66045 USA. [Arsene, I. C.; Lovhoiden, G.; Qviller, A.; Tveter, T. S.] Univ Oslo, Dept Phys, Oslo, Norway. RP Dalsgaard, HH (reprint author), Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. EM canute@nbi.dk; videbaek@bnl.gov RI Christensen, Christian Holm/A-4901-2010; Christensen, Christian/D-6461-2012; Yang, Hongyan/J-9826-2014; Bearden, Ian/M-4504-2014 OI Christensen, Christian Holm/0000-0002-1850-0121; Christensen, Christian/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094 NR 24 TC 35 Z9 36 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 29 PY 2009 VL 677 IS 5 BP 267 EP 271 DI 10.1016/j.physletb.2009.05.049 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 467HS UT WOS:000267729900008 ER PT J AU Hornig, A Lee, C Ovanesyan, G AF Hornig, Andrew Lee, Christopher Ovanesyan, Grigory TI Infrared safety in factorized hard scattering cross-sections SO PHYSICS LETTERS B LA English DT Article DE Factorization; Soft collinear effective theory; Jets; Event shapes ID ENERGY; JETS AB The rules of soft-collinear effective theory can be used naively to write hard scattering cross-sections as convolutions of separate hard, jet, and soft functions. One condition required to guarantee the validity of such a factorization is the infrared safety of these functions in perturbation theory. Using e(+)e(-) angularity distributions as an example, we propose and illustrate an intuitive method to test this infrared safety at one loop. We look for regions of integration in the sum of Feymnan diagrams contributing to the jet and soft functions where the integrals become infrared divergent. Our analysis is independent of an explicit infrared regulator, clarifies how to distinguish infrared and ultraviolet singularities in pure dimensional regularization, and demonstrates the necessity of taking zero-bins into account to obtain infrared-safe jet functions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lee, Christopher] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Lee, C (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ahornig@berkeley.edu; clee@berkeley.edu; ovanesyan@berkeley.edu OI Lee, Christopher/0000-0003-2385-7536 NR 28 TC 12 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JUN 29 PY 2009 VL 677 IS 5 BP 272 EP 277 DI 10.1016/j.physletb.2009.05.039 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 467HS UT WOS:000267729900009 ER PT J AU Bollen, J Van de Sompel, H Hagberg, A Chute, R AF Bollen, Johan Van de Sompel, Herbert Hagberg, Aric Chute, Ryan TI A Principal Component Analysis of 39 Scientific Impact Measures SO PLOS ONE LA English DT Article ID JOURNAL IMPACT; CITATION IMPACT; PAGERANK; INDEX AB Background: The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact. Methodology: We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data. Conclusions: Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution. RP Bollen, J (reprint author), Los Alamos Natl Lab, Res Lib, Digital Lib Res & Prototyping Team, Los Alamos, NM 87545 USA. EM jbollen@lanl.gov OI Van de Sompel, Herbert/0000-0002-0715-6126 NR 29 TC 147 Z9 150 U1 5 U2 68 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 29 PY 2009 VL 4 IS 6 AR e6022 DI 10.1371/journal.pone.0006022 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 463XB UT WOS:000267465900001 PM 19562078 ER PT J AU Florez, E Vines, F Rodriguez, JA Illas, F AF Florez, Elizabeth Vines, Francesc Rodriguez, Jose A. Illas, Francesc TI Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorbed layers; adsorption; density functional theory; diffusion; gold ID TRANSITION-METAL CARBIDES; GAS-SHIFT REACTION; TOTAL-ENERGY CALCULATIONS; TEMPERATURE CO OXIDATION; WAVE BASIS-SET; GOLD CATALYSTS; CHEMOSELECTIVE HYDROGENATION; SUBSTITUTED NITROAROMATICS; MOLECULAR-MECHANISM; NANOPARTICLES AB The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides. C1 [Florez, Elizabeth] Univ Chile, Dept Fis, Santiago, Chile. [Vines, Francesc] Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem, D-91058 Erlangen, Germany. [Vines, Francesc] Univ Erlangen Nurnberg, Interdisciplinary Ctr Interface Controlled Proc, D-91058 Erlangen, Germany. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. RP Florez, E (reprint author), Univ Chile, Dept Fis, Las Palmeras 3425 Nunoa, Santiago, Chile. EM francesc.illas@ub.edu RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Florez, Elizabeth/0000-0002-8301-8550; Vines, Francesc/0000-0001-9987-8654 FU MICINN [FIS2008-02238]; Fondecyt [3080033]; Barcelona Supercomputing Center (BSC); Centre de Supercomputacio de Catalunya (CESCA); U.S. Department of Energy [DE-AC02-98CH10886]; National Synchrotron Light Source (NSLS); U.S. Department of Energy FX E. F. would like to thank Colciencias and the University of Antioquia for her scholarship. F. V. is grateful to Alexander von Humboldt Foundation for a Postdoctoral Fellowship and to the Spanish Ministry of Education and Science (MEC) for a predoctoral grant. Financial support has been provided by the MICINN under Grant No. FIS2008-02238 and by Fondecyt Grant No. 3080033. Computational time provided by the Barcelona Supercomputing Center (BSC) and Centre de Supercomputacio de Catalunya (CESCA) is gratefully acknowledged. The research carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division under Grant No. DE-AC02-98CH10886). The National Synchrotron Light Source (NSLS) is supported by the Divisions of Chemical and Materials Science of the U.S. Department of Energy. NR 63 TC 12 Z9 12 U1 0 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2009 VL 130 IS 24 AR 244706 DI 10.1063/1.3158620 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 465PX UT WOS:000267600400039 PM 19566173 ER PT J AU Yacovitch, TI Garand, E Neumark, DM AF Yacovitch, Tara I. Garand, Etienne Neumark, Daniel M. TI Slow photoelectron velocity-map imaging spectroscopy of the vinoxide anion SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electron affinity; excited states; Franck-Condon factors; free radicals; ground states; molecular electronic states; negative ions; organic compounds; photoelectron spectra; potential energy functions; vibrational states ID ACETALDEHYDE ENOLATE ANION; LASER-INDUCED FLUORESCENCE; CROSSED MOLECULAR-BEAM; FRANCK-CONDON FACTORS; NEGATIVE-IONS; POLYATOMIC-MOLECULES; ACETYL RADICALS; STATE; DYNAMICS; PHOTODETACHMENT AB High resolution photoelectron spectra of the vinoxide anion are obtained by slow electron velocity-map imaging. Transitions between the anion X approximate to (1)A(') ground electronic state and the radical X approximate to (2)A(') and A approximate to (2)A(') states are observed. This experiment yields a precise value of 1.8250 +/- 0.0012 eV for the adiabatic electron affinity and 0.996 +/- 0.003 eV for the A approximate to-X approximate to term energy of the vinoxy radical. Franck-Condon simulations of the X approximate to (2)A(')<- X approximate to (1)A(') transition are performed at varying levels of approximation. Full treatment with Duschinsky rotation is necessary to reproduce experimental results. Comparison of the experimental and simulated spectra leads to the assignment of previously unresolved transitions, notably between levels of a(') symmetry. C1 [Yacovitch, Tara I.; Garand, Etienne; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453 FU Air Force Office of Scientific Research [F49620-03-1-0085]; Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT); National Science and Engineering Research Council of Canada (NSERC) FX This work was supported by the Air Force Office of Scientific Research under Grant No. F49620-03-1-0085. T.I.Y. thanks the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) for a master's scholarship. E. G. thanks the National Science and Engineering Research Council of Canada (NSERC) for a postgraduate scholarship. NR 52 TC 12 Z9 12 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2009 VL 130 IS 24 AR 244309 DI 10.1063/1.3157208 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 465PX UT WOS:000267600400021 PM 19566155 ER PT J AU Kollias, P Miller, MA Johnson, KL Jensen, MP Troyan, DT AF Kollias, Pavlos Miller, Mark A. Johnson, Karen L. Jensen, Michael P. Troyan, David T. TI Cloud, thermodynamic, and precipitation observations in West Africa during 2006 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID TOP HEIGHT; TOGA-COARE; TROPICAL ATLANTIC; RADIATION BUDGET; NAURU-ISLAND; DRY AIR; PACIFIC; RADAR; STATISTICS; INTRUSION AB In 2006, the ARM Mobile Facility (AMF) completed a 1-year deployment at Niamey, Niger, Africa, in support of the Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations (RADAGAST) field campaign, which is the subject of this special issue. Observations from the AMF instrumentation are used to analyze the relationship between clouds, precipitation, and the thermodynamic environment in this rarely observed region and to evaluate the cloud fields in the National Center for Environmental Prediction Global Forecast System (GFS) initialization product. The 1-year deployment period enabled measurements in the dry and wet (monsoon) seasons and through the transitions in May and September, respectively. Cirrus clouds in the 10- to 15-km layer with modest monthly cloud fraction and mean depth of similar to 1 km are ubiquitous through the observing period as observed in other regions of the tropics. The monsoon season from May to September is characterized by convective clouds of varying depth that produce precipitation of varying intensity, as indicated by cloud radar. Peak surface rainfall is observed during August, and the largest daily rainfall rates are observed during the period from July to September. The lifting condensation level (LCL) is observed to decrease as the monsoon season progresses, and a strong correlation between the height of the LCL and precipitation is demonstrated. Cooling of the lower troposphere is implicated as the probable cause of the lowering of the LCL. Conversely, the amount of convective available potential energy is found to be poorly correlated with precipitation. As in other tropical regions, the physical height at which the zero-degree isotherm is observed corresponds to gradients in the thermodynamic profiles and a gradient in the profile of cloud occurrence. Comparisons with the GFS initialization data, which are derived from a number of sources including satellites, show some systematic biases when compared to AMF measurements. There is general correspondence between the locations of clouds and the profile of vertical velocity diagnosed by the GFS initialization early in the monsoon season, but vague correspondence thereafter. The relative humidity in the GFS initialization is too large above 10 km and too small in the monsoon layer near the surface, and it seriously underestimates the amount of cloud below 10 km during August, which is the height of the West African monsoon in Niamey. C1 [Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 2K6, Canada. [Miller, Mark A.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Johnson, Karen L.; Jensen, Michael P.; Troyan, David T.] Brookhaven Natl Lab, Dept Atmospher Sci, Upton, NY 11973 USA. RP Kollias, P (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, 805 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. EM pavlos.kollias@mcgill.ca NR 30 TC 14 Z9 14 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2009 VL 114 AR D00E08 DI 10.1029/2008JD010641 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 464FH UT WOS:000267490200001 ER PT J AU Tilmes, S Garcia, RR Kinnison, DE Gettelman, A Rasch, PJ AF Tilmes, Simone Garcia, Rolando R. Kinnison, Douglas E. Gettelman, Andrew Rasch, Philip J. TI Impact of geoengineered aerosols on the troposphere and stratosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID OZONE DEPLETION; SOUTHERN-HEMISPHERE; VOLCANIC AEROSOLS; SULFATE AEROSOLS; CLIMATE; MODEL; CIRCULATION; FORMULATION; SIMULATION; EVOLUTION AB A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020-2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth's climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates. C1 [Tilmes, Simone; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, Andrew] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Rasch, Philip J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tilmes, S (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, POB 3000, Boulder, CO 80307 USA. EM tilmes@ucar.edu FU U.K. Meteorological Office; European Center for Medium-range Weather Forecasts FX We gratefully acknowledge the members of the HALOE team at NASA/Langley Research Center for their work in producing and making available the HALOE data set. Thanks are also owed to the U.K. Meteorological Office and the European Center for Medium-range Weather Forecasts for providing meteorological analyses. Further, we thank the WACCM team, especially Francis Vitt, StacyWalters, and Fabrizio Sassi, for assistance with regard to the WACCM3 model setup and analysis tools. We also thank Michael Mills and Brian Toon for helpful discussions on microphysical processes in connection with stratospheric sulfur injection. Finally, we are grateful to Steven Massie and John Orlando for their review of the original manuscript. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. NR 52 TC 62 Z9 62 U1 1 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 27 PY 2009 VL 114 AR D12305 DI 10.1029/2008JD011420 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 464FH UT WOS:000267490200003 ER PT J AU Lu, GH Ocola, LE Chen, JH AF Lu, Ganhua Ocola, Leonidas E. Chen, Junhong TI Room-Temperature Gas Sensing Based on Electron Transfer between Discrete Tin Oxide Nanocrystals and Multiwalled Carbon Nanotubes SO ADVANCED MATERIALS LA English DT Article ID MINIARC PLASMA SOURCE; CHEMICAL SENSORS; NANOPARTICLES; NANOTECHNOLOGY; CONDUCTANCE; SENSITIVITY; SURFACE AB A new gas-sensing platform for low-concentration gases (NO(2), H(2), and CO) comprises discrete SnO(2) nanocrystals uniformly distributed on the surface of multiwalled carbon nanotubes (CNTs). The resulting hybrid nanostructures are highly sensitive, even at room temperature, because their gas sensing abilities rely on electron transfer between the nanocrystals and the CNTs. C1 [Lu, Ganhua; Chen, Junhong] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. [Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chen, JH (reprint author), Univ Wisconsin, Dept Mech Engn, 3200 N Cramer St, Milwaukee, WI 53211 USA. EM jhchen@uwm.edu RI Lu, Ganhua/B-4643-2010; OI Lu, Ganhua/0000-0003-3279-8427; Ocola, Leonidas/0000-0003-4990-1064 FU National Science Foundation [CMMI-0609059, CBET-0803142]; UWMRF; US Department of Energy [DE-AC02-06CH 11357] FX This work was financially supported by the National Science Foundation through grants CMMI-0609059 and CBET-0803142 and by the UWMRF through a catalyst grant. The authors thank M. Gajdardziska-Josifiovska for providing TEM access and D. Robertson for technical support with TEM analyses. The e-bearn lithography was performed at the Center for Nanoscale Materials of Argonne National Laboratory (ANL), and the SEM imaging was conducted at the Electron Microscopy Center of ANIL, both of which are supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH 11357. NR 39 TC 153 Z9 155 U1 12 U2 90 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 26 PY 2009 VL 21 IS 24 BP 2487 EP + DI 10.1002/adma.200803536 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 467EA UT WOS:000267719000002 ER PT J AU Jura, N Endres, NF Engel, K Deindl, S Das, R Lamers, MH Wemmer, DE Zhang, XW Kuriyan, J AF Jura, Natalia Endres, Nicholas F. Engel, Kate Deindl, Sebastian Das, Rahul Lamers, Meindert H. Wemmer, David E. Zhang, Xuewu Kuriyan, John TI Mechanism for Activation of the EGF Receptor Catalytic Domain by the Juxtamembrane Segment SO CELL LA English DT Article ID EPIDERMAL-GROWTH-FACTOR; TYROSINE KINASE; TRANSMEMBRANE DOMAIN; CRYSTAL-STRUCTURE; PLASMA-MEMBRANE; COILED-COIL; DIMERIZATION; INHIBITOR; MUTATIONS; LIGAND AB Signaling by the epidermal growth factor receptor requires an allosteric interaction between the kinase domains of two receptors, whereby one activates the other. We show that the intracellular juxtamembrane segment of the receptor, known to potentiate kinase activity, is able to dimerize the kinase domains. The C-terminal half of the juxtamembrane segment latches the activated kinase domain to the activator, and the N-terminal half of this segment further potentiates dimerization, most likely by forming an antiparallel helical dimer that engages the transmembrane helices of the activated receptor. Our data are consistent with a mechanism in which the extracellular domains block the intrinsic ability of the transmembrane and cytoplasmic domains to dimerize and activate, with ligand binding releasing this block. The formation of the activating juxtamembrane latch is prevented by the C-terminal tails in a structure of an inactive kinase domain dimer, suggesting how alternative C1 [Jura, Natalia; Endres, Nicholas F.; Engel, Kate; Deindl, Sebastian; Das, Rahul; Lamers, Meindert H.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Jura, Natalia; Endres, Nicholas F.; Engel, Kate; Deindl, Sebastian; Das, Rahul; Lamers, Meindert H.; Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Pharmacol, Dallas, TX 75390 USA. [Zhang, Xuewu] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu OI Deindl, Sebastian/0000-0001-6807-8654 FU Howard Hughes Medical Institute; NCI NIH HHS [R01 CA096504-06, R01 CA096504, R01 CA96504-06]; NIGMS NIH HHS [GM 68933, P41 GM068933, P41 GM068933-05] NR 50 TC 262 Z9 264 U1 5 U2 40 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD JUN 26 PY 2009 VL 137 IS 7 BP 1293 EP 1307 DI 10.1016/j.cell.2009.04.025 PG 15 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 462RM UT WOS:000267373400022 PM 19563760 ER PT J AU Um, W Serne, RJ Last, GV Clayton, RE Glossbrenner, ET AF Um, Wooyong Serne, R. Jeffrey Last, George V. Clayton, Ray E. Glossbrenner, Ellwood T. TI The effect of gravel size fraction on the distribution coefficients of selected radionuclides SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Gravel fraction; Distribution coefficient (K(d)); Radionuclide; Adsorption; Mobility ID HANFORD SITE; AQUIFER SEDIMENTS; ADSORPTION; SORPTION; SAND; WASHINGTON; TRANSPORT AB This manuscript addresses the consequences of the common practice of assuming that the gravel fraction of sediments does not participate in sorption reactions and thus sorption quantified by the distribution coefficient (K(d)) construct can be estimated from laboratory tests on sediments less than 2 mm size fraction. However, this common assumption can lead to inaccurate estimates of the mobility and sorption affinity of many radionuclides (e.g., Tc, U, and Np) on gravel dominated sediments at the Hanford Site and other locations. Laboratory batch sorption experiments showed that the distribution coefficients measured using only sediment less than 2 mm size fraction and correcting for inert gravel fraction were not in agreement with those obtained from the bulk sediments including gravel (larger than 2 mm size fraction), depending on the radionuclide. The least reactive radionuclide, Tc had K(d) values for bulk sediment with negligible deviations from the inert gravel corrected K(d) values measured on less than 2 mm size fraction. However, differences between measured K(d) values using sediment less than 2 mm size fraction and the K(d) values on the bulk sediment were significant for intermediately and strongly reactive radionuclides such as U and Np, especially on the sediment with gravel fractions that contained highly reactive sites. Highly reactive sites in the gravel fraction were attributed to the presence of Fe oxide coatings and/or reactive fracture faces on the gravel surfaces. Gravel correction factors that use the sum of the K(d,<2 mm). and K(d,) (>2 mm) values to estimate the K(d) for the bulk sediment were found to best describe Kd values for radionuclides on the bulk sediment. Gravel correction factors should not be neglected to predict precisely the sorption capacity of the bulk sediments that contain more than 30% gravel. In addition, more detailed characterization of gravel surfaces should be conducted to identify whether higher reactive sorbents are present in the gravels. Published by Elsevier B.V. C1 [Um, Wooyong; Serne, R. Jeffrey; Last, George V.; Clayton, Ray E.; Glossbrenner, Ellwood T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Um, W (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Wooyong.um@pnl.gov FU Fluor Hanford Inc; The Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC006-76RLO 1830] FX This study was conducted in support of the Remediation Decision Support (RDS) Project with funding from Fluor Hanford Inc. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the U.S. Department of Energy under contracts DE-AC006-76RLO 1830. Eric Clayton, Steven Baum, and Chris Strickland in PNNL are also gratefully acknowledged for their help in the sample analyses. The authors also thank two anonymous reviewers for their helpful comments to improve this manuscript. NR 19 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD JUN 26 PY 2009 VL 107 IS 1-2 BP 82 EP 90 DI 10.1016/j.jconhyd.2009.04.003 PG 9 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 468RA UT WOS:000267836400007 PM 19442406 ER PT J AU Kehr, S Malinouski, M Finney, L Vogt, S Labunskyy, VM Kasaikina, MV Carlson, BA Zhou, Y Hatfield, DL Gladyshev, VN AF Kehr, Sebastian Malinouski, Mikalai Finney, Lydia Vogt, Stefan Labunskyy, Vyacheslav M. Kasaikina, Marina V. Carlson, Bradley A. Zhou, You Hatfield, Dolph L. Gladyshev, Vadim N. TI X-Ray Fluorescence Microscopy Reveals the Role of Selenium in Spermatogenesis SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE selenium; X-ray fluorescence microscopy; spermatogenesis; male reproduction; trace elements ID HYDROPEROXIDE GLUTATHIONE-PEROXIDASE; SPERM MATURATION; SELENOPROTEIN-P; DEVELOPMENTAL EXPRESSION; MITOCHONDRIAL CAPSULES; THIOREDOXIN REDUCTASE; MOUSE; SELENOCYSTEINE; PROTEIN; SUPPLEMENTATION AB Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular, and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and colocalized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.2 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Kehr, Sebastian; Malinouski, Mikalai; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Gladyshev, Vadim N.] Univ Nebraska, Redox Biol Ctr, Lincoln, NE 68588 USA. [Kehr, Sebastian; Malinouski, Mikalai; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Gladyshev, Vadim N.] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA. [Finney, Lydia] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Finney, Lydia; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Carlson, Bradley A.; Hatfield, Dolph L.] NCI, Mol Biol Selenium Sect, Lab Canc Prevent, CCR,NIH, Bethesda, MD 20892 USA. [Zhou, You] Univ Nebraska, Ctr Biotechnol, Lincoln, NE 68588 USA. RP Gladyshev, VN (reprint author), Univ Nebraska, Redox Biol Ctr, Lincoln, NE 68588 USA. EM vgladyshev1@unl.edu RI Gladyshev, Vadim/A-9894-2013; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU National Institutes of Health [GM065204]; Intramural Research Program of the Center for Cancer Research; National Cancer Institute; National Institutes of Health; Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Wayne Vogl for helpful discussion. We also thank Marcus Conrad for providing tissues from nGPx4 and mGPx4 knockout mice and Raymond Burk and Kristina Hill for tissues from Sell? knockout mice. This study was supported by National Institutes of Health Grant GM065204 (to V.N.G.) and the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health (to D.L.H.). Use of the Advanced Photon Source was supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 44 TC 41 Z9 43 U1 0 U2 6 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD JUN 26 PY 2009 VL 389 IS 5 BP 808 EP 818 DI 10.1016/j.jmb.2009.04.024 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 466OL UT WOS:000267671700002 PM 19379757 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Andeen, T Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Ochando, C Onoprienko, D Orduna, J Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Potter, C da Silva, WLP Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Andeen, T. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Ochando, C. Onoprienko, D. Orduna, J. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Potter, C. Prado da Silva, W. L. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for the Standard Model Higgs Boson in Tau Final States SO PHYSICAL REVIEW LETTERS LA English DT Article ID EVENTS AB We present a search for the standard model Higgs boson using hadronically decaying tau leptons, in 1 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron pp collider. We select two final states: tau(+/-) plus missing transverse energy and b jets, and tau(+)tau(-) plus jets. These final states are sensitive to a combination of associated W/Z boson plus Higgs boson, vector boson fusion, and gluon-gluon fusion production processes. The observed ratio of the combined limit on the Higgs production cross section at the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of 115 GeV. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Mundal, O.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Khatidze, D.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Li, Liang/O-1107-2015; Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Ancu, Lucian Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012 OI Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Carrera, Edgar/0000-0002-0857-8507; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Dudko, Lev/0000-0002-4462-3192; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Novaes, Sergio/0000-0003-0471-8549 FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CFI, NSERC; BMBF and DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and West-Grid Project Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 22 TC 13 Z9 13 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 251801 DI 10.1103/PhysRevLett.102.251801 PG 7 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000012 ER PT J AU Cloet, IC Bentz, W Thomas, AW AF Cloet, I. C. Bentz, W. Thomas, A. W. TI Isovector EMC Effect and the NuTeV Anomaly SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXTENDED NJL MODEL; QUARK DISTRIBUTIONS; NUCLEAR-MATTER; PARTON DISTRIBUTIONS; NEUTRINO REACTIONS; DYNAMICAL MODEL; SUPERCONDUCTIVITY; ANALOGY AB A neutron or proton excess in nuclei leads to an isovector-vector mean field which, through its coupling to the quarks in a bound nucleon, implies a shift in the quark distributions with respect to the Bjorken scaling variable. We show that this result leads to an additional correction to the NuTeV measurement of sin(2)theta(W). The sign of this correction is largely model independent and acts to reduce their result. Explicit calculation in nuclear matter within a covariant and confining Nambu-Jona-Lasinio model predicts that this vector field correction may account for a substantial fraction of the NuTeV anomaly. We are therefore led to offer a new interpretation of the NuTeV measurement, namely, that it provides further evidence for the medium modification of the bound nucleon wave function. C1 [Cloet, I. C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bentz, W.] Tokai Univ, Sch Sci, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Cloet, IC (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU U.S. Department of Energy [DEFG03-97ER4014, DE-AC05-06OR23177]; Japanese Ministry of Education, Culture, Sports, Science and Technology [C-19540306] FX I. C. thanks Jerry Miller for helpful discussions. This work was supported by the U.S. Department of Energy under Grant No. DEFG03-97ER4014 and by Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory and by the Grant in Aid for Scientific Research of the Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. C-19540306. NR 35 TC 54 Z9 54 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 252301 DI 10.1103/PhysRevLett.102.252301 PG 4 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000013 PM 19659069 ER PT J AU Dandrea, L Pederiva, F Gandolfi, S Kalos, MH AF Dandrea, L. Pederiva, F. Gandolfi, S. Kalos, M. H. TI Fermionic Shadow Wave Function Variational Calculations of the Vacancy Formation Energy in He-3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SOLID HE-3; LIQUID-HE-4; HELIUM AB We present a novel technique well suited for studying the ground state of inhomogeneous fermionic matter in a wide range of different systems. The system is described using a fermionic shadow wave function, and the energy is computed by means of the variational Monte Carlo technique. The general form of the fermionic shadow wave function is useful for describing many-body systems with the coexistence of different phases as well in the presence of defects or impurities, but it requires overcoming a significant sign problem. As an application, we studied the energy to activate vacancies in solid He-3. C1 [Dandrea, L.; Pederiva, F.] Univ Trent, Dipartimento Fis, I-38050 Trento, Italy. [Dandrea, L.; Pederiva, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy. [Gandolfi, S.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Gandolfi, S.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Kalos, M. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Dandrea, L (reprint author), Univ Trent, Dipartimento Fis, Via Sommarive 14, I-38050 Trento, Italy. FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX We thank G. V. Chester for useful discussions, C. J. Umrigar for providing us with the Levemberg- Marquardt package used for the optimization of the wave function, and, in particular, we are indebted to F. Operetto for help with the optimization procedure. Calculations were partially performed on the BEN cluster at ECT* in Trento, under a grant for supercomputing projects, and partially on the HPC facility WIGLAF of the Department of Physics, University of Trento. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC5207NA27344. NR 18 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 255302 DI 10.1103/PhysRevLett.102.255302 PG 4 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000034 PM 19659090 ER PT J AU Pollmann, F Mukerjee, S Turner, AM Moore, JE AF Pollmann, Frank Mukerjee, Subroto Turner, Ari M. Moore, Joel E. TI Theory of Finite-Entanglement Scaling at One-Dimensional Quantum Critical Points SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE; SYSTEMS AB Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the 'central charge' of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)]. The parameter-free theory is checked against numerical scaling at several quantum critical points. C1 [Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M.; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mukerjee, Subroto; Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Pollmann, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Pollmann, Frank/L-5378-2013; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU DARPA OLE; Max Planck Foundation; DOE; NSF [DMR-0804413] FX The authors thank DARPA OLE and the Max Planck Foundation (F. P.), DOE (S. M.), and NSF DMR-0804413 (J. E. M.) for support. NR 27 TC 110 Z9 110 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 26 PY 2009 VL 102 IS 25 AR 255701 DI 10.1103/PhysRevLett.102.255701 PG 4 WC Physics, Multidisciplinary SC Physics GA 463KX UT WOS:000267432000040 PM 19659096 ER PT J AU Blanchette, CD Woo, YH Thomas, C Shen, N Sulchek, TA Hiddessen, AL AF Blanchette, Craig D. Woo, Youn-Hi Thomas, Cynthia Shen, Nan Sulchek, Todd A. Hiddessen, Amy L. TI Decoupling Internalization, Acidification and Phagosomal-Endosomal/lysosomal Fusion during Phagocytosis of InlA Coated Beads in Epithelial Cells SO PLOS ONE LA English DT Article AB Background: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomalendosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Methodology/Principal Findings: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. Conclusions/Significance: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e. g. pathogen-host systems. RP Blanchette, CD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hiddessen1@llnl.gov NR 50 TC 21 Z9 22 U1 0 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 26 PY 2009 VL 4 IS 6 AR e6056 DI 10.1371/journal.pone.0006056 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 463ID UT WOS:000267424600004 PM 19557127 ER PT J AU Pushp, A Parker, CV Pasupathy, AN Gomes, KK Ono, S Wen, JS Xu, ZJ Gu, G Yazdani, A AF Pushp, Aakash Parker, Colin V. Pasupathy, Abhay N. Gomes, Kenjiro K. Ono, Shimpei Wen, Jinsheng Xu, Zhijun Gu, Genda Yazdani, Ali TI Extending Universal Nodal Excitations Optimizes Superconductivity in Bi2Sr2CaCu2O8+delta SO SCIENCE LA English DT Article ID HIGH-T-C; HIGH-TEMPERATURE SUPERCONDUCTORS; UNDERDOPED BI2212; MOTT INSULATOR; ENERGY GAPS; PSEUDOGAP AB Understanding the mechanism by which d wave superconductivity in the cuprates emerges and is optimized by doping the Mott insulator is one of the major outstanding problems in condensed-matter physics. Our high-resolution scanning tunneling microscopy measurements of the high-transition temperature (T-c) superconductor Bi2Sr2CaCu2O8+delta show that samples with different T-c values in the low doping regime follow a remarkably universal d wave low-energy excitation spectrum, indicating a doping-independent nodal gap. We demonstrate that T-c instead correlates with the fraction of the Fermi surface over which the samples exhibit the universal spectrum. Optimal T-c is achieved when all parts of the Fermi surface follow this universal behavior. Increasing the temperature above T-c turns the universal spectrum into an arc of gapless excitations, whereas overdoping breaks down the universal nodal behavior. C1 [Pushp, Aakash; Parker, Colin V.; Pasupathy, Abhay N.; Gomes, Kenjiro K.; Yazdani, Ali] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Pushp, Aakash; Parker, Colin V.; Pasupathy, Abhay N.; Gomes, Kenjiro K.; Yazdani, Ali] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Pushp, Aakash] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Ono, Shimpei] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. [Wen, Jinsheng; Xu, Zhijun; Gu, Genda] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yazdani, A (reprint author), Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. EM yazdani@princeton.edu RI Wen, Jinsheng/F-4209-2010; Pushp, Aakash/G-6626-2011; xu, zhijun/A-3264-2013 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015 FU U.S. Department of Energy (DOE) [DE-FG02-07ER46419, DE-AC02-98CH10886]; NSF through the Princeton Center for Complex Materials; NSF FX We gratefully acknowledge discussions with P. W. Anderson, N. P. Ong, M. R. Norman, and M. Randeria. The work at Princeton is supported by the U.S. Department of Energy (DOE) under contract DE-FG02-07ER46419 and NSF through the Princeton Center for Complex Materials and through an NSF-Instrumentation grant. The work in BNL is supported by DOE under contract DE-AC02-98CH10886. NR 29 TC 89 Z9 89 U1 4 U2 22 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 26 PY 2009 VL 324 IS 5935 BP 1689 EP 1693 DI 10.1126/science.1174338 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 462GE UT WOS:000267338200033 PM 19498107 ER PT J AU Maiti, A Dinh, LN Baumann, TF Maxwell, RS Saab, AP AF Maiti, A. Dinh, L. N. Baumann, T. F. Maxwell, R. S. Saab, A. P. TI Kinetics of hydrogen uptake by scavenger molecules - Insights from molecular modeling SO CHEMICAL PHYSICS LETTERS LA English DT Article ID SPILLOVER; STORAGE; DPB AB Mixed aromatic-alkyne molecules have been designed to scavenge and remove hydrogen in unwanted situations. Such materials in powdered solid form are mixed with catalytic metal particles that dissociate H(2) molecules into H radicals. However, many details of the H uptake mechanism remain poorly understood. Here we report molecular modeling studies, using both classical force fields and first-principles density functional theory, aimed at providing enhanced understanding of the uptake kinetics. Such insights are important in improving the H scavenging efficiency of the present and next-generation materials, as well as to provide molecular-scale interpretation of supporting experiments. (C) 2009 Published by Elsevier B.V. C1 [Maiti, A.; Dinh, L. N.; Baumann, T. F.; Maxwell, R. S.; Saab, A. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Maiti, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM amaiti@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [06-SI-005] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by Project 06-SI-005 funded by the Laboratory Directed Research and Development Program at LLNL. NR 24 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 25 PY 2009 VL 475 IS 4-6 BP 223 EP 226 DI 10.1016/j.cplett.2009.05.047 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457QV UT WOS:000266948100012 ER PT J AU Papagno, M Rodriguez, AF Girit, CO Meyer, JC Zettl, A Pacile, D AF Papagno, M. Rodriguez, A. Fraile Girit, C. Oe Meyer, J. C. Zettl, A. Pacile, D. TI Polarization-dependent C K near-edge X-ray absorption fine-structure of graphene SO CHEMICAL PHYSICS LETTERS LA English DT Article ID GRAPHITE-INTERCALATION COMPOUNDS; ELECTRONIC-STRUCTURE; INTERLAYER STATES; BAND; SPECTROSCOPY; GAS AB We report the polarization-dependent C K photoabsorption spectra of single-and few-layer graphene (FLG) samples produced by micromechanical cleavage of highly ordered pyrolytic graphite (HOPG) on a SiO(2) substrate. We show that the unoccupied sigma density of states of graphene and FLG strongly reflects the one measured on bulk HOPG, demonstrating the two-dimensional character of sigma states as well as the very-weak interlayer couplings between planes. Moreover, our spectra taken with different polarization allow us to show the predicted hybrid nature of the interlayer state. (C) 2009 Elsevier B. V. All rights reserved. C1 [Papagno, M.; Pacile, D.] Univ Calabria, Ist Nazl Fis Nucl, I-87036 Cosenza, Italy. [Papagno, M.; Pacile, D.] Univ Calabria, Dip Fis, I-87036 Cosenza, Italy. [Rodriguez, A. Fraile] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Girit, C. Oe; Meyer, J. C.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Girit, C. Oe; Meyer, J. C.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Papagno, M (reprint author), CNR, Ist Struttura Mat, Basovizza, TS, Italy. EM marco.papagno@ism.cnr.it RI Fraile Rodriguez, Arantxa/A-2446-2009; Meyer, Jannik/H-8541-2012; Girit, Caglar/D-4845-2014; Zettl, Alex/O-4925-2016; OI Fraile Rodriguez, Arantxa/0000-0003-2722-0882; Meyer, Jannik/0000-0003-4023-0778; Girit, Caglar/0000-0001-8953-9261; Zettl, Alex/0000-0001-6330-136X; Pacile, Daniela/0000-0001-6219-3889; Papagno, Marco/0000-0003-2623-1563 FU European Commission [R113-CT-2004-506008] FX Part of this work was performed at the Swiss Light Source, Paul Scherrer Institut, Switzerland. This research project has been supported by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures. Contract No. R113-CT-2004-506008. NR 24 TC 23 Z9 24 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUN 25 PY 2009 VL 475 IS 4-6 BP 269 EP 271 DI 10.1016/j.cplett.2009.05.054 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457QV UT WOS:000266948100022 ER PT J AU Gorton, I Chavarria, D Nieplocha, J AF Gorton, Ian Chavarria, Daniel Nieplocha, Jarek TI Design and implementation of a high-performance CCA event service SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE components; common component architecture; event service ID MODEL AB Event services based on publish-subscribe architectures are well-established components of distributed computing applications. Recently, an event service has been proposed as part of the common component architecture (CCA) for high-performance computing (HPC) applications. In this paper we describe our implementation, experimental evaluation, and initial experience with a high-performance CCA event service that exploits efficient communications mechanisms commonly used on HPC platforms. We describe the CCA event service model and briefly discuss the possible implementation strategies of the model. We then present the design and implementation of the event service using the aggregate remote memory copy interface as an underlying communication layer for this mechanism. Two alternative implementations are presented and evaluated on a Cray XD-1 platform. The performance results demonstrate that event delivery latencies are low and that the event service is able to achieve high-throughput levels. Finally, we describe the use of the event service in an application for high-speed processing of data from a mass spectrometer and conclude by discussing some possible extensions to the event service for other HPC applications. Published in 2009 by John Wiley & Sons, Ltd. C1 [Gorton, Ian; Chavarria, Daniel; Nieplocha, Jarek] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gorton, I (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ian.gorton@pnl.gov RI Gorton, Ian/A-8247-2009 NR 19 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD JUN 25 PY 2009 VL 21 IS 9 BP 1159 EP 1179 DI 10.1002/cpe.1382 PG 21 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 459YE UT WOS:000267148400003 ER PT J AU Wing, S Johnson, JR AF Wing, Simon Johnson, Jay R. TI Substorm entropies SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CENTRAL PLASMA SHEET; ION FLOW; MAGNETOSPHERIC PLASMA; GEOSYNCHRONOUS ORBIT; FLUX TUBES; CONVECTION; MODEL; TAIL; FIELD; MAGNETOTAIL AB The specific entropy (s = p/rho(gamma)) and total entropy (S = p(1/gamma)V) of the plasma sheet during substorms are investigated with DMSP observations using a method that assumes ion isotropy (as also assumed in the derivation of S = S = p(1/gamma)V) and empirical magnetic field models that capture the expected characteristics of substorm phases. Earthward reductions of S are found during quasi-steady periods (e.g., growth phase) as well as during the transition from growth to expansion phases. During quasi-steady periods, (1) S and flux tube content (N) decrease moderately at midtail, but more steeply at the inner edge of the plasma sheet, and (2) s appears roughly conserved in the X or convection direction, but closer to Earth, there is a duskward heat flux. Both 1 and 2 suggest that curvature/gradient drifts can play a significant role in the S and N losses. On the other hand, during the transition from growth to expansion phases, S is reduced by an order of magnitude earthward of 20 R-E, which can be attributed mainly to the reduction in V from the dipolarization after onset, but s is roughly conserved. This result is consistent with a mechanism that reduces the flux tube volume/content without significantly altering s. Recent magnetohydrodynamic/particle-in-cell simulations of magnetic reconnection indicate that s tends to be conserved except in the small dissipation region, but the change in the field line topology for a reconnected field line can lead to a reduction in S with the remainder contained in a plasmoid that forms tailward of the X line. C1 [Wing, Simon] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Johnson, Jay R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wing, S (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM simon.wing@jhuapl.edu FU NSF [ATM-0703445, ATM-0802715, ATM-0538513, ATM0411392, ATM0614012]; NASA [NNH04AB23I, NNH04AA73I, NNG06GE96G, NNX06AB87G, NNH07AF37I]; DOE [DE-AC02-76CH03073] FX Gordon Wilson has been helpful in our acquiring DMSP SSJ4 data, as has the World Data Center in Boulder, Colorado. Joe Borovsky has kindly and generously provided Figure 6. The authors thank Jesper Gjerloev for providing the substorm database and Michelle Thomsen for helpful discussions. Simon Wing gratefully acknowledges support from NSF grants ATM-0703445, ATM-0802715, and ATM-0538513 and NASA grant NNX06AB87G. Jay R. Johnson acknowledges support from NASA grants (NNH04AB23I, NNH04AA73I, NNG06GE96G, NNX06AB87G and NNH07AF37I), NSF grants (ATM0411392, ATM0614012, and ATM-0703445), and DOE contract DE-AC02-76CH03073. Finally, the authors would like to thank both referees for helpful comments. NR 57 TC 14 Z9 14 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 25 PY 2009 VL 114 AR A00D07 DI 10.1029/2008JA013989 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 464FX UT WOS:000267491800001 ER PT J AU Jiang, DE van Duin, ACT Goddard, WA Dai, S AF Jiang, De-en van Duin, Adri C. T. Goddard, William A., III Dai, Sheng TI Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MESOPOROUS CARBON MATERIALS; SYSTEMS; OXIDATION; MODELS AB Pyrolysis of phenolic resins leads to carbon formation. Simulating this resin-to-carbon process atomistically is a daunting task. In this paper, we attempt to model the initial stage of this process by using the ReaxFF reactive force field, which bridges quantum mechanical and molecular mechanical methods. We run molecular dynamics simulations to examine the evolution of small molecules at different temperatures. The main small-molecule products found include H2O, H-2, CO, and C2H2. We find multiple pathways leading to H2O formation, including a frequent channel via beta-H elimination, which has not been proposed before. We determine the reaction barrier for H2O formation from the reaction rates obtained at different temperatures. We also discuss the relevance of our simulations to previous experimental observations. This work represents a first attempt to model the resin-to-carbon proc ess atomistically. C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Goddard, William A., III] CALTECH, Div Chem & Chem Engn, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX The work was supported by Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 27 TC 47 Z9 49 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 25 PY 2009 VL 113 IS 25 BP 6891 EP 6894 DI 10.1021/jp902986u PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460RT UT WOS:000267205500007 PM 19496580 ER PT J AU Zheng, LX Satishkumar, BC Gao, PQ Zhang, Q AF Zheng, Lianxi Satishkumar, B. C. Gao, Pingqi Zhang, Qing TI Kinetics Studies of Ultralong Single-Walled Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; GROWTH; TEMPERATURE AB Single-walled carbon nanotubes (SWCNTs) were synthesized using ethanol CVD to study the nucleation kinetics of nanotube growth. By counting the number density of SWCNTs, i.e., the number of nanotubes per unit area on the substrate, the nucleation process of SWCNT growth was studied extensively within a wide range of growth temperatures. A nucleation energy about 2.8 eV was obtained from the Arrhenius-like temperature dependence of the number density of SWCNTs. The big difference between nucleation energy and diffusion energy implies the growth route for ultralong SWCNTs, and our approach may afford control over nanotube structure. The novel approach of studying the influence of "measure length" on activation energy may open an opportunity to understand the physics behind growth of nanotubes. C1 [Zheng, Lianxi] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore. [Satishkumar, B. C.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Gao, Pingqi; Zhang, Qing] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore. RP Zheng, LX (reprint author), Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore. EM Lxzheng@ntu.edu.sg RI Zhang , Qing/A-5073-2011; Gao, Pingqi/B-4813-2011; Zheng, Lianxi/A-3855-2011 OI Zhang , Qing/0000-0002-2655-4971; Zheng, Lianxi/0000-0003-4974-365X FU Singapore MOE tier [I RG26/08] FX One of the authors, L.Z. would like to thank the Singapore MOE tier I RG26/08 research fund for financial support. NR 21 TC 18 Z9 18 U1 3 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 25 PY 2009 VL 113 IS 25 BP 10896 EP 10900 DI 10.1021/jp901640d PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 460RV UT WOS:000267205700010 ER PT J AU Deng, XY Matranga, C AF Deng, Xingyi Matranga, Christopher TI Selective Growth of Fe2O3 Nanoparticles and Islands on Au(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; FISCHER-TROPSCH SYNTHESIS; LAYER-ASSISTED DEPOSITION; IRON-OXIDE FILMS; SURFACE-STRUCTURE; HETEROEPITAXIAL GROWTH; MOO3 NANOSTRUCTURES; EPITAXIAL-GROWTH; PT(111); ADSORPTION AB Selective growth of well-defined alpha-Fe2O3 structures was achieved on a Au(111) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Although oxidation of Fe particles on Au(111) with molecular O-2 at room temperature forms FeO, Fe2O3 is prepared by oxidation of Fe particles on Au(111) with NO2 at an elevated temperature, as verified by XPS, based on the binding energy (BE) value of the Fe 2p(3/2) (710.9 eV) peak and atomic ratio of O and Fe similar to 1.5:1. STM images reveal that Fe2O3 adopted ordered three-dimensional structures on Au(111). Although the general morphology of the Fe2O3 structures on Au(111) depends on the cove rage, varying from nanoparticles at low coverage to islands at high coverage, all of these Fe2O3 structures have nearly identical heights of 5-6 angstrom at all coverages. The surface structures of the Fe2O3 are all consistent with an O-terminated alpha-Fe2O3(0001), showing a hexagonal unit cell with a lattice constant of similar to 3 angstrom in atomically resolved STM images. C1 [Deng, Xingyi; Matranga, Christopher] US DOE, NETL, Pittsburgh, PA 15236 USA. [Deng, Xingyi] Parsons Project Serv Inc, South Pk, PA 15129 USA. RP Deng, XY (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA. EM Xingyi.Deng@netl.doe.gov RI Matranga, Christopher/E-4741-2015; OI Matranga, Christopher/0000-0001-7082-5938; Deng, Xingyi/0000-0001-9109-1443 FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX We thank Dr. Junseok Lee for his experimental assistance and discussions regarding our results. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in Fischer-Tropsch catalysts for the Hydrogen from Coal Program under the RDS Contract DE-AC26-04NT41817. Reference in this work to any specific commercial product is to facilitate understanding and does not necessarily imply endorsement by the U.S. Department of Energy. NR 47 TC 19 Z9 19 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 25 PY 2009 VL 113 IS 25 BP 11104 EP 11109 DI 10.1021/jp9021954 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 460RV UT WOS:000267205700036 ER PT J AU Brown, DW Bourke, MAM Clausen, B Korzekwa, DR Korzekwa, RC McCabe, RJ Sisneros, TA Teter, DF AF Brown, D. W. Bourke, M. A. M. Clausen, B. Korzekwa, D. R. Korzekwa, R. C. McCabe, R. J. Sisneros, T. A. Teter, D. F. TI Temperature and direction dependence of internal strain and texture evolution during deformation of uranium SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Uranium; Deformation; Neutron diffraction; Internal stresses; Texture ID FINITE-ELEMENT ANALYSIS; RIETVELD REFINEMENT; NEUTRON-DIFFRACTION; MECHANICAL RESPONSE; RESIDUAL-STRESSES; ROD TEXTURE; ZIRCALOY-2; ZIRCONIUM AB Depleted uranium is of current programmatic interest at Los Alamos National Lab due to its high density and nuclear applications. At room temperature, depleted uranium displays an orthorhombic crystal structure with highly anisotropic mechanical and thermal properties. For instance, the coefficient of thermal expansion is roughly 20 x 10(-6) degrees C(-1) in the a and c directions, but near zero or slightly negative in the b direction. The innate anisotropy combined with thermo-mechanical processing during manufacture results in spatially varying residual stresses and crystallographic texture, which can cause distortion, and failure in completed parts, effectively wasting resources. This paper focuses on the development of residual stresses and textures during deformation at room and elevated temperatures with an eye on the future development of computational polycrystalline plasticity models based on the known micro-mechanical deformation mechanisms of the material. (C) 2009 Published by Elsevier B.V. C1 [Brown, D. W.; Bourke, M. A. M.; Clausen, B.; Korzekwa, D. R.; Korzekwa, R. C.; McCabe, R. J.; Sisneros, T. A.; Teter, D. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brown, DW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dbrown@lanl.gov RI Clausen, Bjorn/B-3618-2015; OI Clausen, Bjorn/0000-0003-3906-846X; McCabe, Rodney /0000-0002-6684-7410 FU Office of Basic Energy Sciences (DOE); National Security LLC [DE-AC52-06NA25396] FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 27 TC 16 Z9 17 U1 2 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUN 25 PY 2009 VL 512 IS 1-2 BP 67 EP 75 DI 10.1016/j.msea.2009.02.004 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 452YL UT WOS:000266577000010 ER PT J AU Janssens, RVF AF Janssens, Robert V. F. TI NUCLEAR PHYSICS Unexpected doubly magic nucleus SO NATURE LA English DT Editorial Material ID NUMBERS C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Janssens, RVF (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM janssens@anl.gov NR 8 TC 32 Z9 33 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 25 PY 2009 VL 459 IS 7250 BP 1069 EP 1070 DI 10.1038/4591069a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 466BX UT WOS:000267636700031 PM 19553989 ER PT J AU Zhang, GJ Wang, RG De Jonghe, LC AF Zhang, Guojing Wang, Ruigang De Jonghe, Lutgard C. TI Crystallization and conductivity of 2CaO-La2O3-5P(2)O(5) glass-ceramic with Al2O3 addition SO SOLID STATE IONICS LA English DT Article DE Rare earth phosphates; Glass-ceramic; Conductivity ID TEMPERATURE PROTONIC CONDUCTION; LAP3O9; LAPO4 AB Al2O3 was added to a 2CaO-La2O3-5P(2)O(5) metaphosphate, to replace 10% of the Ca2+ ions by Al3+, forming a phosphate with the nominal composition 1.8CaO-0.1Al(2)O(3)-La2O3-5P(2)O(5). The effect of Al2O3 addition and heat treatment on the microstructure and conductivity of the resulting glass-ceramics was investigated by XRD, SEM, TEM, and AC impedance spectroscopy. Upon transformation from glass to glass-ceramic, conductivities increased significantly. The glasses were isochronally transformed at 700 and at 800 degrees C for 1 h or 5 h, in air, following heating at 3 or 10 degrees C/min. With Al2O3 addition, after a heat treatment at 700 degrees C, 100-300 nm nano-domains of LaP3O9 crystallized from the glass matrix. Annealing at 800 degrees C produced a further order of magnitude conductivity increase for the Al-free glass, but less so for the M-containing glass. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Guojing; Wang, Ruigang; De Jonghe, Lutgard C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [De Jonghe, Lutgard C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP De Jonghe, LC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM dejonghe@lbl.gov RI Wang, Ruigang/C-2769-2011 FU U. S. Department of Energy [DE-AC02-05CH11231]; Molecular Foundry; National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory FX This work was supported by the Director, Office of Science, Office of Basic Energy Science, Materials Sciences and Engineering Division, of the U. S. Department of Energy under contract No. DE-AC02-05CH11231. The authors acknowledge support of the Molecular Foundry and the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory, which is also supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 8 TC 1 Z9 1 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD JUN 25 PY 2009 VL 180 IS 14-16 BP 941 EP 945 DI 10.1016/j.ssi.2009.04.008 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 466PH UT WOS:000267674000006 ER PT J AU Sugita, S Yamaoka, K Ohno, M Tashiro, MS Nakagawa, YE Urata, Y Pal'shin, V Golenetskii, S Sakamoto, T Cummings, J Krimm, H Stamatikos, M Parsons, A Barthelmy, S Gehrels, N AF Sugita, Satoshi Yamaoka, Kazutaka Ohno, Masanori Tashiro, Makoto S. Nakagawa, Yujin E. Urata, Yuji Pal'shin, Valentin Golenetskii, Sergei Sakamoto, Takanori Cummings, Jay Krimm, Hans Stamatikos, Michael Parsons, Ann Barthelmy, Scott Gehrels, Neil TI Suzaku-WAM, Konus-Wind, and Swift-BAT Observations of Prompt Emission of the High-Redshift GRB 050904 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE gamma rays: observations; stars: individual (GRB 050904) ID GAMMA-RAY BURST; ALL-SKY MONITOR; PEAK ENERGY; LUMINOSITY RELATION; OPTICAL AFTERGLOW; COSMIC EXPLOSION; GRB-050904; ENERGETICS; SPECTRA; BRIGHT AB We present the results of the high-redshift GRB 050904 at z = 6.295 from joint spectral analysis among Swift-BAT, Konus-Wind, and Suzaku-WAM, covering a wide energy range of 15-5000 keV. The nu F-nu spectrum peak energy, E-peak, was measured at 314(-89)(+173) keV, corresponding to 2291(-634)(+1263) keV in the source frame, and the isotropic equivalent radiated energy, E-iso, was estimated to be 1.04(-0.17)(+0.21) x 10(54)erg. Both are among the highest values that have ever been measured. GRBs with such a high E-iso (similar to 10(54) erg) might be associated with prompt optical emission. The derived spectral and energetic parameters are consistent with the correlation between the rest-frame E-p,E-i and the E-iso (Amati relation), but not with the correlation between the intrinsic peak energy E-p,E-i and the collimation-corrected energy E-gamma (Ghirlanda relation), unless the density of the circumburst environment of this burst is much larger than the nominal value, as suggested by other wavelength observations. We also discuss the possibility that this burst is an outlier in the correlation between E-p,E-i and the peak luminosity L-p (Yonetoku relation). C1 [Sugita, Satoshi; Yamaoka, Kazutaka] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. [Sugita, Satoshi; Nakagawa, Yujin E.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Ohno, Masanori] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Tashiro, Makoto S.; Urata, Yuji] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Pal'shin, Valentin; Golenetskii, Sergei] AF Ioffe Phys Tech Inst, Expt Astrophys Lab, St Petersburg 194021, Russia. [Sakamoto, Takanori; Cummings, Jay; Krimm, Hans; Stamatikos, Michael; Parsons, Ann; Barthelmy, Scott; Gehrels, Neil] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Sakamoto, Takanori; Stamatikos, Michael] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Cummings, Jay] Univ Maryland, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Krimm, Hans] Univ Space Res Assoc, Columbia, MD 21044 USA. [Urata, Yuji] Acad Sinica, Inst Astron & Astrophys, Taipei 106, Taiwan. RP Sugita, S (reprint author), Aoyama Gakuin Univ, Dept Math & Phys, 5-10-1 Fuchinobe, Kanagawa 2298558, Japan. EM sugita@phys.aoyama.ac.jp RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Parsons, Ann/I-6604-2012; Tashiro, Makoto/J-4562-2012; Pal'shin, Valentin/F-3973-2014; Golenetskii, Sergey/B-3818-2015; XRAY, SUZAKU/A-1808-2009 FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) [19047001]; Special Postdoctoral Researchers Program in RIKEN; Russian Space Agency contract and RFBR [06-02-16070] FX We thank an anonymous referee for useful cornments and suggestions. This research has been supported in part by a Grant-in-Aid for Scientific Research (19047001 KY) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Y.E.N. is supported in part by the Special Postdoctoral Researchers Program in RIKEN. The Konus-Wind experiment is supported by a Russian Space Agency contract and RFBR grant 06-02-16070. NR 54 TC 12 Z9 12 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD JUN 25 PY 2009 VL 61 IS 3 BP 521 EP 527 DI 10.1093/pasj/61.3.521 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 475OI UT WOS:000268368900016 ER PT J AU Burkes, DE Hartmann, T Prabhakaran, R Jue, JF AF Burkes, Douglas E. Hartmann, Thomas Prabhakaran, Ramprashad Jue, Jan-Fong TI Microstructural characteristics of DU-xMo alloys with x=7-12 wt% SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Actinide alloys and compounds; Nuclear reactor materials; Microstructure; Metallography; X-ray diffraction ID URANIUM-MOLYBDENUM ALLOYS; IRRADIATION BEHAVIOR; PHASE; FUELS AB Microstructural, phase, and impurity analyses of six depleted uranium-molybdenum alloys were obtained using optical metallography, X-ray diffraction, and carbon/nitrogen/oxygen determination. Uranium-molybdenum alloy foils are currently under investigation for the conversion of high-power research reactors using high-enriched uranium fuel to accommodate the use of low-enriched uranium fuel. Understanding basic microstructural behavior of these foils is an important consideration in determining the impact of fabrication processes and in anticipating performance of the foils in a reactor. Average grain diameter decreased with increasing molybdenum content. Lattice parameter decreased with increasing molybdenum content, and no significant degree of phase decomposition or crystallographic ordering was caused by processing and post-processing conditions employed in this study. Impurity concentration, specifically carbon, inhibited the degree of microstructural recrystallization but did not appear to impact other microstructural traits, such as gamma-phase retention or lattice parameter. (c) 2008 Elsevier B.V. All rights reserved. C1 [Burkes, Douglas E.; Hartmann, Thomas; Prabhakaran, Ramprashad; Jue, Jan-Fong] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. [Hartmann, Thomas] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Prabhakaran, Ramprashad] Univ Idaho, Mat Sci & Engn Dept, Moscow, ID 83844 USA. RP Burkes, DE (reprint author), Idaho Natl Lab, Nucl Fuels & Mat Div, POB 1625, Idaho Falls, ID 83415 USA. EM Douglas.Burkes@inl.gov NR 28 TC 12 Z9 12 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 24 PY 2009 VL 479 IS 1-2 BP 140 EP 147 DI 10.1016/j.jallcom.2008.12.063 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 458XR UT WOS:000267063300045 ER PT J AU Hu, YY Levin, EM Schmidt-Rohr, K AF Hu, Yan-Yan Levin, E. M. Schmidt-Rohr, Klaus TI Broadband "Infinite-Speed" Magic-Angle Spinning NMR Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHEMICAL-SHIFT ANISOTROPY; THERMOELECTRIC-MATERIALS; PULSES AB high-resolution magic-angle spinning NMR of high-Z spin-1/2 nuclei such as (125)Te, (207)Pb, (119)Sn, (113)Cd, and (195)Pt is often hampered by large (>1000 ppm) chemical-shift anisotropies, which result in strong spinning sidebands that can obscure the centerbands of interest. In various tellurides with applications as thermoelectrics and as phase-change materials for data storage, even 22-kHz magic-angle spinning cannot resolve the center- and sidebands broadened by chemical-shift dispersion, which precludes peak identification or quantification. For sideband suppression over the necessary wide spectral range (up to 200 kHz), radio frequency pulse sequences with few, short pulses are required. We have identified Gan's two-dimensional magic-angle-turning (MAT) experiment with five 90 degrees pulses as a promising broadband technique for obtaining spectra without sidebands. We have adapted it to broad spectra and fast magic-angle spinning by accounting for Long pulses (comparable to the dwelt time in t(1)) and short rotation periods. Spectral distortions are small and residual sidebands negligible even for spectra with signals covering a range of 1.5 gamma B(1), due to a favorable disposition of the narrow ranges containing the signals of interest in the spectral plane. The method is demonstrated on various technologically interesting tellurides with spectra spanning up to 170 kHz, at 22 kHz MAS. C1 [Hu, Yan-Yan; Levin, E. M.; Schmidt-Rohr, Klaus] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Hu, Yan-Yan; Schmidt-Rohr, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM srohr@iastate.edu RI Hu, Yan-Yan/A-1795-2015 OI Hu, Yan-Yan/0000-0003-0677-5897 FU U.S. Department of Energy - Basic Energy Sciences [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy - Basic Energy Sciences, Contract No. DE-AC02-07CH11358. NR 15 TC 13 Z9 13 U1 6 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8390 EP + DI 10.1021/ja903334p PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000027 PM 19489580 ER PT J AU Zhao, YN Trewyn, BG Slowing, II Lin, VSY AF Zhao, Yannan Trewyn, Brian G. Slowing, Igor I. Lin, Victor S. -Y. TI Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHYSIOLOGICAL PH; ACID GEL; BIODISTRIBUTION; SENSORS; ISLETS; CELLS AB A boronic acid-functionalized mesoporous silica nanoparticle-based drug delivery system (BA-MSN) for glucose-responsive controlled release of both insulin and cyclic adenosine monophosphate (CAMP) was synthesized. Fluorescein isothiocyanate-labeled, gluconic acid-modified insulin (FITC-G-Ins) proteins were immobilized on the exterior surface of BA-MSN and also served as caps to encapsulate CAMP molecules inside the mesopores of BA-MSN. The release of both G-Ins and CAMP was triggered by the introduction of saccharides. The selectivity of FITC-G-Ins release toward a series of carbohydrate triggers was determined to be fructose > glucose > other saccharides. The unique feature of this double-release system is that the decrease of FITC-G-Ins release with cycles can be balanced by the release of CAMP from mesopores of MSN, which is regulated by the gatekeeper effect of FITC-G-Ins. In vitro controlled release of cAMP was studied at two pH conditions (pH 7.4 and 8.5). Furthermore, the cytotoxicity of cAMP-loaded G-Ins-MSN with four different cell tines was investigated by cell viability and proliferation studies. The cellular uptake properties of cAMP-loaded FITC-BA-MSN with and without G-Ins capping were investigated by flow cytometry and fluorescence confocal microscopy. We envision that this glucose-responsive MSN-based double-release system could lead to a new generation of self-regulated insulin-releasing devices. C1 [Zhao, Yannan; Trewyn, Brian G.; Slowing, Igor I.; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, Dept Chem, US DOE, Ames Lab, Ames, IA 50011 USA. EM vsylin@iastate.edu OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation [CHE-0809521] FX This research was supported by the U.S. National Science Foundation (CHE-0809521). NR 23 TC 421 Z9 426 U1 27 U2 361 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8398 EP + DI 10.1021/ja901831u PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000031 PM 19476380 ER PT J AU Mastroianni, AJ Claridge, SA Alivisatos, AP AF Mastroianni, Alexander J. Claridge, Shelley A. Alivisatos, A. Paul TI Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BUILDING-BLOCKS; NANOSTRUCTURES; NANOPARTICLE; MOLECULES; ORGANIZATION; OCTAHEDRON; TRIANGLES; LIGATION AB Nanostructures constructed from metal and semiconductor nanocrystals conjugated to and organized by DNA are an emerging class of materials with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small-angle X-ray scattering measurments from solutions of these pyramids, we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures. C1 [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy [DE-AC02-05CH11231]; NIH-NCI [5U54CA112970]; NSF-IGERT FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contact No. DE-AC02-05CH11231 and by NIH-NCI Grant No. 5U54CA112970. S.A.C. gratefully acknowledges an NSF-IGERT Predoctoral Fellowship. NR 27 TC 254 Z9 261 U1 11 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8455 EP 8459 DI 10.1021/ja808570g PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000041 PM 19331419 ER PT J AU Xiang, HJ Kang, J Wei, SH Kim, YH Curtis, C Blake, D AF Xiang, Hongjun Kang, Joongoo Wei, Su-Huai Kim, Yong-Hyun Curtis, Calvin Blake, Daniel TI Shape Control of Al Nanoclusters by Ligand Size SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ALUMINUM CLUSTER ANIONS; AUGMENTED-WAVE METHOD; GAS-PHASE; GALLIUM; ATOMS; AL-77 AB It is a challenge to synthesize clusters having a certain shape associated with a desirable property. In this study, we perform density functional calculations on ligand-protected Al(7) and Al(77) clusters. It is found that small ligands such as NH(2) Still prefer the compact structure of bare Al clusters. However, large ligands such as N(SiMe(3))(2) stabilize the experimentally observed shell-like structures due to the steric effect. This is different from the Ga(84) cluster case where small ligands can stabilize the experimental shell-like Ga(84) cluster. Our study suggests that the shape, and thus the properties, of clusters (for instance, C(3v) Al(7) cluster has a finite dipole moment in contrast to the centrosymmetric D(3d) cluster) can be controlled by using ligands with different sizes. C1 [Xiang, Hongjun; Kang, Joongoo; Wei, Su-Huai; Kim, Yong-Hyun; Curtis, Calvin; Blake, Daniel] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM hongjun_xiang@nrel.gov RI Xiang, Hongjun/A-4076-2008; Kim, Yong-Hyun/C-2045-2011; Xiang, Hongjun/I-4305-2016 OI Kim, Yong-Hyun/0000-0003-4255-2068; Xiang, Hongjun/0000-0002-9396-3214 FU DOE/NREU/LDRD program [DE-AC36-08GO28308]; Korea Science and Engineering Foundation (KOSEF); Korean government (MEST) [R31 2008-000-10071-0] FX This work was supported by the DOE/NREU/LDRD program, under Contract No. DE-AC36-08GO28308. We thank Dr. Xiaojun Wu for useful discussions. Y.H.K. was partly supported by Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant code: R31 2008-000-10071-0). NR 34 TC 19 Z9 20 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8522 EP 8526 DI 10.1021/ja900965w PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000048 PM 19473016 ER PT J AU Que, EL Gianolio, E Baker, SL Wong, AP Aime, S Chang, CJ AF Que, Emily L. Gianolio, Eliana Baker, Suzanne L. Wong, Audrey P. Aime, Silvio Chang, Christopher J. TI Copper-Responsive Magnetic Resonance Imaging Contrast Agents SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Review ID AMYOTROPHIC-LATERAL-SCLEROSIS; PROTON RELAXATION TIMES; SPHERE WATER-MOLECULES; ON FLUORESCENT SENSOR; HIGH-RELAXIVITY; IN-VIVO; LANTHANIDE LUMINESCENCE; CEREBRAL MANIFESTATION; MACROCYCLIC GADOLINIUM; PARAMAGNETIC SOLUTIONS AB The design, synthesis, and evaluation of the Copper-Gad (CG) family, a new class of copper-activated magnetic resonance imaging (MRI) contrast agents, are presented. These indicators comprise a Gd(3+)-DO3A core coupled to various thioether-rich receptors for copper-induced relaxivity switching. In the absence of copper ions, inner-sphere water binding to the Gd(3+) chelate is restricted, resulting in low longitudinal relaxivity values (r(1) = 1.2-2.2 mM(-1) s(-1) measured at 60 MHz). Addition of Cu(+) to CG2, CG3, CG4, and CG5 and either Cu(+) or Cu(2+) to CG6 triggers marked enhancements in relaxivity (r(1) = 2.3-6.9 mM(-1) s(-1)). CG2 and CG3 exhibit the greatest turn-on responses, going from r(1) = 1.5 mM(-1) s(-1) in the absence of Cu(+) to r(1) = 6.9 mM(-1) s(-1) upon Cu(+) binding (a 360% increase). The CG sensors are highly selective for Cu(+) and/or Cu(2+) over competing metal ions at cellular concentrations, including Zn(2+) at 10-fold higher concentrations. (17)O NMR dysprosium-induced shift and nuclear magnetic relaxation dispersion measurements support a mechanism in which copper-induced changes in the coordination environment of the Gd(3+) core result in increases in q and r(1). T(1)-weighted phantom images establish that the CG sensors re capable of visualizing changes in copper levels by MRI at clinical field strengths. C1 [Que, Emily L.; Wong, Audrey P.; Chang, Christopher J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Baker, Suzanne L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Funct Imaging, Berkeley, CA 94720 USA. [Gianolio, Eliana; Aime, Silvio] Univ Turin, Ctr Mol Biotechnol, I-10125 Turin, Italy. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu FU University of California, Berkeley, the Dreyfus, Beckman, Packard; Sloan Foundations; Hellman Faculty Fund (UC Berkeley); National Institute of General Medical Sciences [79465]; Howard Hughes Medical Institute; Branch Graduate Fellowship from UC Berkeley FX We thank the University of California, Berkeley, the Dreyfus, Beckman, Packard, and Sloan Foundations, the Hellman Faculty Fund (UC Berkeley), the National Institute of General Medical Sciences (NIH GM 79465), and the Howard Hughes Medical Institute for funding this work. We thank Ms. Christine Yin for preliminary synthetic studies. E.L.Q. acknowledges a Branch Graduate Fellowship from UC Berkeley. NR 115 TC 88 Z9 91 U1 9 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8527 EP 8536 DI 10.1021/ja900884j PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000049 PM 19489557 ER PT J AU Norris, AL Serpersu, EH AF Norris, Adrianne L. Serpersu, Engin H. TI NMR Detected Hydrogen-Deuterium Exchange Reveals Differential Dynamics of Antibiotic- and Nucleotide-Bound Aminoglycoside Phosphotransferase 3 '-IIIa SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INTRINSICALLY UNSTRUCTURED PROTEINS; KINASE APH(3')-IIIA; RESISTANCE ENZYME; MODIFYING ENZYMES; LIGAND-BINDING; MECHANISM; OVEREXPRESSION; PURIFICATION; FLEXIBILITY; PROTECTION AB In this work, hydrogen-deuterium exchange detected by NMR spectroscopy is used to determine the dynamic properties of the aminoglycoside phosphotransferase 3 '-IIIa (APH), a protein of intense interest due to its involvement in conferring antibiotic resistance to both Gram negative and Gram positive microorganisms. This represents the first characterization of dynamic properties of an aminoglycoside-modifying enzyme. Herein we describe in vitro dynamics of apo, binary, and ternary complexes of APH with kanamycin A, neomycin B, and metal-nucleotide. Regions of APH in different complexes that are superimposable in crystal structures show remarkably different dynamic behavior. A complete exchange of backbone amides is observed within the first 15 h of exposure to D(2)O in the apo form of this 31 kDa protein. Binding of aminoglycosides to the enzyme induces significant protection against exchange, and similar to 30% of the amides remain unexchanged up to 95 h after exposure to D(2)O. Our data also indicate that neomycin creates greater solvent protection and overall enhanced structural stability to APH than kanamycin. Surprisingly, nucleotide binding to the enzyme-aminoglycoside complex increases solvent accessibility of a number of amides and is responsible for destabilization of a nearby beta-sheet, thus providing a rational explanation for previously observed global thermodynamic parameters. Our data also provide a molecular basis for broad substrate selectivity of APH. C1 [Norris, Adrianne L.; Serpersu, Engin H.] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Univ Tennessee, Grad Sch Genom Sci & Technol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. EM Serpersu@utk.edu FU National Science Foundation [01110741]; Center of Excellence for Structural Biology at the University of Tennessee FX This research was partly supported by a Grant from the National Science Foundation (MCB 01110741 to EHS) and the Center of Excellence for Structural Biology at the University of Tennessee. We thank Can Ozen for purification of isotopically labeled APH. We also thank Dr. Elias Fernandez for critical reading of the manuscript. NR 39 TC 14 Z9 15 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8587 EP 8594 DI 10.1021/ja901685h PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000056 PM 19463004 ER PT J AU Rodriguez, JA Liu, P Takahashi, Y Nakamura, K Vines, F Illas, F AF Rodriguez, Jose A. Liu, Ping Takahashi, Yoshiro Nakamura, Kenichi Vines, Francesc Illas, Francesc TI Desulfurization of Thiophene on Au/TiC(001): Au-C Interactions and Charge Polarization SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL CARBIDES; GAS SHIFT REACTION; GOLD NANOPARTICLES; ATOMIC OXYGEN; HYDROTREATING CATALYSTS; MOLECULAR-MECHANISM; MOLYBDENUM CARBIDE; MGO(001) SURFACE; SULFUR-DIOXIDE; OXIDE SURFACES AB Photoemission and first-principles DF calculations were used to study the interaction of thiophene with TiC(001) and Au/TiC(001) surfaces. The adsorption strength of thiophene on TiC(001) is weak, and the molecule desorbs at temperatures below 200 K. The molecule binds to Ti centers of TiC(001) through its sulfur atom with negligible structural perturbations. In spite of the very poor desulfurization performance of TiC(001) or Au(111), a Au/TiC(001) system displays a hydrodesulfurization activity higher than that of conventional Ni/MoS(x) catalysts. The Au <-> TiC(001) interactions induce a polarization of electron density around Au which substantially increases the chemical reactivity of this metal. Au nanoparticles drastically increase the hydrodesulfurization activity of TiC(001) by enhancing the bonding energy of thiophene and by helping in the dissociation of H(2) to produce the hydrogen necessary for the hydrogenolysis of C-S bonds and the removal of sulfur. H(2) spontaneously dissociates on small two-dimensional clusters of gold in contact with TiC(001). On these systems, the adsorption energy of thiophene is 0.45-0.65 eV larger than that on TiC(001) or Au(111). Thiophene binds in a eta(5) configuration with a large elongation (similar to 0.2 angstrom) of the C-S bonds. C1 [Rodriguez, Jose A.; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Takahashi, Yoshiro; Nakamura, Kenichi] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Vines, Francesc; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Vines, Francesc; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Vines, Francesc/0000-0001-9987-8654 FU U.S. Department of Energy, Chemical Sciences Division; Generalitat de Catalunya; Spanish Ministry of Education and Science; Universitat de Barcelona; Nippon Foundation for Materials Science; Spanish MICINN [FIS2008-02238/FIS] FX The authors are grateful to B. Roldan-Cuenya (University of Central Florida) and J. Gomes (Universidade do Porto) for thought-provoking discussions about the properties of Au/TiC. Many thanks to T. Jirsak (BNL) for his help with the operation of the U7A beamline and the photoemission experiments at the NSLS. The research carried out at BNL was supported by the U.S. Department of Energy, Chemical Sciences Division. J.A.R. acknowledges the support of the Generalitat de Catalunya in a visit to the Universitat de Barcelona. F.V. thanks the Spanish Ministry of Education and Science and Universitat de Barcelona for supporting his predoctoral research. K.N. is grateful to the Nippon Foundation for Materials Science for grants that made possible part of this work. and F.I. acknowledges financial support from Spanish MICINN Grant FIS2008-02238/FIS. Computational time at the Center for Functional Nanomaterials at BNL and the Marenostrum Supercomputer of the Barcelona Supercomputing Center is gratefully acknowledged. NR 78 TC 52 Z9 52 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8595 EP 8602 DI 10.1021/ja901522a PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000057 PM 19530731 ER PT J AU Dai, JC Gupta, S Gourdon, O Kim, HJ Corbett, JD AF Dai, Jing-Cao Gupta, Shalabh Gourdon, Olivier Kim, Hyun-Jeong Corbett, John D. TI BaHg2Tl2. An Unusual Polar Intermetallic Phase with Strong Differentiation between the Neighboring Elements Mercury and Thallium SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METALLIC ZINTL PHASE; ELECTRONIC-STRUCTURE; STRUCTURAL CHEMISTRY; GOLD SUBSTITUTION; EXAMPLES; CLUSTERS; SOLIDS; RB; CS AB High yields of the novel BaHg2Tl2 are achieved from reactions of the appropriate cast alloys at similar to 400 degrees C. (Isotypic SrHg2Tl2 also exists.) The tetragonal barium structure (P4(2)/mnm, a = 10.606 angstrom, c = 5.159 angstrom) was refined from both single-crystal X-ray and neutron powder diffraction data in order to ensure the atom site assignments although distances and calculated atom site population also support the results. The Hg and Tl network atoms are distinctive in their functions and bonding. Parallel chains of Hg hexagons and of Tl tetrahedra along care constructed from polyhedra that share opposed like edges, and these are in turn interconnected by Hg-Tl bonds. Overall, the number of Tl-Tl bonds per cell exceeds the Hg-Hg type by 20:12, but these are similar to 1:2 each in bonding according to their average -ICOHP values (related to overlap populations). Barium is bound within a close 15-atom polyhedron, 12 atoms of which are the more electronegative Hg. LMTO-ASA calculations show that scalar relativistic effects are particularly important for Hg 5d-6s mixing in Hg-Hg and Hg-Tl bonding, whereas relatively separate Tl 6s and 6p states are more important in Tl-Tl interactions. The 6p states of Hg and Tl and 5d of Ba define a dominant conduction band around E-F, and the phase is metallic and Pauli-like paramagnetic. The thallium characteristics here are close to those in numerous alkali-metal-Ti cluster systems. Other active metal-mercury phases that have been studied theoretically are all distinctly electron-richer and more reduced, and without appreciable net 5d, 6s contributions to Hg-Hg bonding. C1 [Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D.] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. [Gourdon, Olivier] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kim, Hyun-Jeong] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Corbett, JD (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. EM jcorbett@iastate.edu RI Lujan Center, LANL/G-4896-2012; Gupta, Shalabh/H-6214-2012; Dai, Jing-Cao/G-8427-2012 FU Office of Basic Energy Sciences (BES), Materials Sciences Division, U.S. Department of Energy (DOE) [DE-AC02-07CH11358, DE-AC52-06NA25396]; Ames Laboratory; Iowa State University; NPDF at the Lujan Center at Los Alamos Neutron Science Center; BES FX The authors are indebted to Gordon J. Miller for his interest and helpful insights and to Serge Bud'kov for the magnetic susceptibility data. This research was supported by the Office of Basic Energy Sciences (BES), Materials Sciences Division, U.S. Department of Energy (DOE) and performed primarily in the Ames Laboratory, which is operated for DOE by Iowa State University under Contract No. DE-AC02-07CH11358. This work also benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, also funded by BES. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 39 TC 14 Z9 14 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 24 PY 2009 VL 131 IS 24 BP 8677 EP 8682 DI 10.1021/ja901865d PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 465ZP UT WOS:000267630000067 PM 19459627 ER PT J AU Ovchinnikov, OS Jesse, S Kalinin, SV AF Ovchinnikov, Oleg S. Jesse, S. Kalinin, S. V. TI Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry SO NANOTECHNOLOGY LA English DT Article AB An adaptive scanning method in scanning probe microscopy (SPM) is developed for studies of surfaces with a highly-non-uniform information density such as nanowires or interfaces in disordered media. In path-engineered SPM, the surface is pre-scanned to locate features, and a secondary scan is acquired with the pixel density concentrated in the vicinity of the objects of interest. Here, we demonstrate this approach for piezoresponse force microscopy, and develop approaches for fractal and self-affine characterization of domain interfaces. The relationship between the variational roughness, structure factor, and correlation functions is established and resolution effects on these parameters are determined. C1 [Ovchinnikov, Oleg S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ovchinnikov, OS (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM sjesse@ornl.gov; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 NR 16 TC 7 Z9 7 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 24 PY 2009 VL 20 IS 25 AR 255701 DI 10.1088/0957-4484/20/25/255701 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 453NR UT WOS:000266618000015 PM 19491461 ER PT J AU Loginova, E Bartelt, NC Feibelman, PJ McCarty, KF AF Loginova, E. Bartelt, N. C. Feibelman, P. J. McCarty, K. F. TI Factors influencing graphene growth on metal surfaces SO NEW JOURNAL OF PHYSICS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; EPITAXIAL GRAPHENE; CARBON; TRANSITION; GRAPHITE; DECOMPOSITION; ADSORPTION; IR(111); SEGREGATION AB Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces. C1 [Loginova, E.; Bartelt, N. C.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA USA. [Feibelman, P. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA USA. EM mccarty@sandia.gov RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012 OI McCarty, Kevin/0000-0002-8601-079X; NR 51 TC 156 Z9 157 U1 16 U2 186 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUN 24 PY 2009 VL 11 AR 063046 DI 10.1088/1367-2630/11/6/063046 PG 20 WC Physics, Multidisciplinary SC Physics GA 464RH UT WOS:000267523100003 ER PT J AU Virkar, A Mannsfeld, S Oh, JH Toney, MF Tan, YH Liu, GY Scott, JC Miller, R Bao, Z AF Virkar, Ajay Mannsfeld, Stefan Oh, Joon Hak Toney, Michael F. Tan, Yih Horng Liu, Gang-yu Scott, J. Campbell Miller, Robert Bao, Zhenan TI The Role of OTS Density on Pentacene and C-60 Nucleation, Thin Film Growth, and Transistor Performance SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; ORGANIC SEMICONDUCTORS; MOBILITY; CRYSTAL; MORPHOLOGY; MOLECULES AB In organic thin film transistors (OTFTs), charge transport occurs in the first few monolayers of the semiconductor near the semiconductor/dielectric interface. Previous work has investigated the roles of dielectric surface energy, roughness, and chemical functionality on performance. However, large discrepancies in performance, even with apparently identical surface treatments, indicate that additional surface parameters must be identified and controlled in order to optimize OTETs. Here, a crystalline, dense octadecylsilane (OTS) surface modification layer is found that promotes two-dimensional semiconductor growth. Higher mobility is consistently achieved for films deposited on crystalline OTS compared to on disordered OTS, with mobilities as high as 5.3 and 2.3 cm(2)V(-1) s(-1) for C-60 and pentacene, respectively. This is a significant step toward morphological control of organic semiconductors which is directly linked to their thin film carrier transport. C1 [Virkar, Ajay; Mannsfeld, Stefan; Oh, Joon Hak; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Tan, Yih Horng; Liu, Gang-yu] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Scott, J. Campbell; Miller, Robert] IBM Almaden Res Ctr, San Jose, CA 95120 USA. RP Virkar, A (reprint author), Stanford Univ, Dept Chem Engn, 381 N S Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu RI Oh, Joon Hak/F-1454-2010 OI Oh, Joon Hak/0000-0003-0481-6069 FU Stanford Center for Polymeric Interfaces and Macromolecular Assemblies; NSF DMR Solid State Chemistry; Air Force Office of Scientific Research; Stanford School of Engineering; Sloan Research Fellowship FX Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The authors acknowledge helpful discussion with Y. Ito, R. Stoltenberg, R. Lowe, M. Wang, M. Roberts, and C. Reese. Y. H. T acknowledge University of California, Davis, provided 2007 Summer Graduate Student Researcher Award. This work was partially supported by the Stanford Center for Polymeric Interfaces and Macromolecular Assemblies (NSF-Center MRSEC), NSF DMR Solid State Chemistry, Air Force Office of Scientific Research, the Stanford School of Engineering, and a Sloan Research Fellowship. Supporting Information is available online at Wiley InterScience or from the author. NR 39 TC 152 Z9 152 U1 8 U2 91 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 23 PY 2009 VL 19 IS 12 BP 1962 EP 1970 DI 10.1002/adfm.200801727 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 464MT UT WOS:000267509900015 ER PT J AU Levkin, PA Svec, F Frechet, JMJ AF Levkin, Pavel A. Svec, Frantisek Frechet, Jean M. J. TI Porous Polymer Coatings: a Versatile Approach to Superhydrophobic Surfaces SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LENGTH SCALES; TRANSPARENT; FILMS; DESIGN; LOTUS; WATER; FABRICATION; TOPOGRAPHY; ROUGHNESS; CHEMISTRY AB Here, a facile and inexpensive approach to superhydrophobic polymer coatings is presented. The method involves the in situ polymerization of common monomers in the presence of a porogenic solvent to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The method is applicable to a variety of substrates and is not limited to small areas or flat surfaces. The polymerized material can be ground into a superhydrophobic powder, which, once applied to a surface, renders it superhydrophobic. The morphology of the porous polymer structure can be efficiently controlled by composition of the polymerization mixture, while surface chemistry can be adjusted by photografting. Morphology control is used to reduce the globule size of the porous architecture from micro down to nanoscale thereby affording a transparent material. The influence of both surface chemistry as well as the length scale of surface roughness on the superhydrophobicity is discussed. C1 [Levkin, Pavel A.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Levkin, PA (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Levkin, Pavel/E-5804-2011; OI Levkin, Pavel/0000-0002-5975-948X; Frechet, Jean /0000-0001-6419-0163 FU National Institute of Biomedical Imaging and Bioengineering; National Institutes of Health [EB-006133]; Director, Office of Science, Office of Basic Energy Sciences; Division of Materials Sciences and Engineering; US Department of Energy [DE-AC02-05CH11231] FX Support of this research by a grant of the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (EB-006133) is gratefully acknowledged. Characterization work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Supporting Information is available online from Wiley InterScience or from the author. NR 27 TC 154 Z9 161 U1 4 U2 114 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUN 23 PY 2009 VL 19 IS 12 BP 1993 EP 1998 DI 10.1002/adfm.200801916 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 464MT UT WOS:000267509900019 PM 20160978 ER PT J AU Messman, JM Lokitz, BS Pickel, JM Kilbey, SM AF Messman, Jamie M. Lokitz, Bradley S. Pickel, Joseph M. Kilbey, S. Michael, II TI Highly Tailorable Materials based on 2-Vinyl-4,4-dimethyl Azlactone: (Co)Polymerization, Synthetic Manipulation and Characterization SO MACROMOLECULES LA English DT Article ID RADICAL POLYMERIZATION; POLYMERS; IMMOBILIZATION; CHEMISTRY; PRECURSOR; BRUSHES AB Through rigorous spectroscopic characterizations, including in situ, real-time monitoring, and size-exclusion chromatography (SEC) we describe the functionalization of polymers and copolymers based on vinyl dimethyl azlactone (VDMA), as well as modification of the VDMA monomer using efficient ring-opening strategies. Specifically, we demonstrate modification of VDMA-based materials by "pegylation", base-catalyzed ring-opening hydrolysis, and nucleophilic addition of short alkyl chains, fluorescent markers, and motifs used to specifically bind proteins. All of these functionalizations take advantage of the susceptibility of the pendant azlactone ring of VDMA to undergo nucleophilic attack. Polymers as well Lis copolymers incorporating vinyl pyrrolidone were synthesized by conventional free radical polymerization and thoroughly characterized by FTIR, (1)H NMR, (13)C NMR, SEC, thermogravimetric analysis and differential scanning calorimetry prior to modification. The variety of conjugations and ease of transformations enabled by use of the reactive yet hydrolytically stable VDMA-based materials inspires a broad range of applications for these soft materials. C1 [Messman, Jamie M.; Pickel, Joseph M.; Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. [Lokitz, Bradley S.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Kilbey, S. Michael, II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Messman, JM (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM messmanjm@ornl.gov RI Lokitz, Bradley/Q-2430-2015; OI Lokitz, Bradley/0000-0002-1229-6078; Pickel, Joseph/0000-0001-9828-1565 FU Division of Scientific User Facilities; U.S. Department of Energy; ORNL's Laboratory Directed Research and Development Program [D07-138] FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy, and enabled through CNMS User Project 2005-024. A portion of this research was supported by ORNL's Laboratory Directed Research and Development Program, Project No. D07-138. NR 21 TC 33 Z9 33 U1 5 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 23 PY 2009 VL 42 IS 12 BP 3933 EP 3941 DI 10.1021/ma900316t PG 9 WC Polymer Science SC Polymer Science GA 458TW UT WOS:000267048200021 ER PT J AU Duan, YX Thunga, M Schlegel, R Sehneider, K Rettler, E Weidisch, R Siesler, HW Stamm, M Mays, JW Hadjichristidis, N AF Duan, Yongxin Thunga, Mahendra Schlegel, Ralf Sehneider, Konrad Rettler, Erik Weidisch, Roland Siesler, Heinz W. Stamm, Manfred Mays, Jimmy W. Hadjichristidis, Nikos TI Morphology and Deformation Mechanisms and Tensile Properties of Tetrafunctional Multigraft Copolymers SO MACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; POLY(STYRENE-BLOCK-BUTADIENE-BLOCK-STYRENE) TRIBLOCK COPOLYMER; BLOCK-COPOLYMERS; CYLINDRICAL MORPHOLOGY; MOLECULAR-ORIENTATION; BRANCH-POINTS; BEHAVIOR; POLYSTYRENE; SPECTROSCOPY; ARCHITECTURE AB Morphology and deformation mechanisms and tensile properties of tetrafunctional multigraft (MG) polystrene-g-polyisoprene (PS-g-PI) copolymers were investigated dependent on PS volume fraction and number of branch points. The combination of various methods such as TEM, real time synchrotron SAXS, rheo-optical FTIR, and tensile tests provides comprehensive information at different dimension levels. TEM and SAXS studies revealed that the number of branch points has no obvious influence on the microphase-separated morphology of tetrafunction MG copolymers with 16 wt % PS. But for tetrafunctional MG copolymers with 25 wt % PS, the size and integrity of PS microdomains decrease with increasing number of branch point. The deformation mechanisms of MG copolymers are highly related to the morphology. Dependent on the microphase-separated morphology and integrity of the PS phase, the strain-induced orientation of the PS phase is at different size scales. Polarized FT-IR spectra analysis reveals that, for all investigated MG copolymers, the PI phase shows strain-induced orientation along SD at molecular scale. The proportion of the PI block effectively bridging PS domains controls the tensile properties of the MG copolymers at high strain, while the stress-strain behavior in the low-mediate strain region is controlled by the continuity of PS microdomains. The special molecular architecture, which leads to the higher effective functionality of PS domains and the higher possibility for an individual PI backbone being tethered with a large number of PS domains, is proposed to be the origin of the superelasticity for MG copolymers. C1 [Duan, Yongxin; Thunga, Mahendra; Schlegel, Ralf; Weidisch, Roland] Univ Jena, Inst Mat Sci & Technol, D-07743 Jena, Germany. [Duan, Yongxin; Thunga, Mahendra; Sehneider, Konrad; Weidisch, Roland] Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany. [Rettler, Erik; Siesler, Heinz W.; Stamm, Manfred] Univ Duisburg Essen, Dept Phys Chem, D-45117 Essen, Germany. [Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hadjichristidis, Nikos] Univ Athens, Dept Chem, GR-10680 Athens, Greece. [Duan, Yongxin] Qingdao Univ Sci & Technol, Minist Educ, Key Lab Rubber Plast, Qingdao 266042, Peoples R China. RP Weidisch, R (reprint author), Univ Jena, Inst Mat Sci & Technol, Lobdergraben 32, D-07743 Jena, Germany. EM roland.weidisch@uni-jena.de RI Thunga, Mahendra/D-4638-2013; Umlauf, Ursula/D-3356-2014 OI Thunga, Mahendra/0000-0002-4856-242X; FU Alexander von Humboldt foundation; Division of Materials Science and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy [DE-ACo5-00OR22725] FX Y. X. Duan is grateful to the Alexander von Humboldt foundation for kindly providing the fellowship in Germany which made it possible for her to perform this study. J. Mays acknowledges Support through the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DE-ACo5-00OR22725). NR 39 TC 23 Z9 23 U1 4 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 23 PY 2009 VL 42 IS 12 BP 4155 EP 4164 DI 10.1021/ma900414h PG 10 WC Polymer Science SC Polymer Science GA 458TW UT WOS:000267048200049 ER PT J AU Ho, CC Lee, YH Dai, CA Segalman, RA Su, WF AF Ho, Chun-Chih Lee, Yi-Huan Dai, Chi-An Segalman, Rachel A. Su, Wei-Fang TI Synthesis and Self-Assembly of Poly(diethylhexyloxy-p-phenylenevinylene)-b-poly(methyl methacrylate) Rod-Coil Block Copolymers SO MACROMOLECULES LA English DT Article ID DIBLOCK COPOLYMERS; CLICK CHEMISTRY; PHASE-BEHAVIOR; 1,3-DIPOLAR CYCLOADDITIONS; FUNCTIONALIZED POLYMERS; ANIONIC-POLYMERIZATION; CRYSTALLINE-STRUCTURE; TRIBLOCK COPOLYMERS; MATERIALS SCIENCE; THIN-FILMS AB A series of poly(diethylhexyloxy-p-phenylenevinylene-e-methyl methacrylate) (DEH-PPV-b-PMMA) polymers with narrow polydispersity (PDI < 1.1) were synthesized using Siegrist polycondensation and anionic polymerizations followed by "click" chemistry. Alkyne-terminated-DEH-PPV and azidoterminated PMMA were synthesized first, and then the two functionalized polymers underwent 1,3-cycloaddition reaction to obtain copolymers. Both the conversion of the end-functionalization of the homopolymers and the yield of the "click" reaction were higher than 98% as determined by (1)H nuclear magnetic resonance ((1)H NMR) and gel permeation chromatography (GPC). Transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies reveal the details of copolymer morphology. The DEH-PPV-b-PMMA system presented here has higher block segregation strength than many previously studied rod-coil block copolymers yet still shows experimentally accessible phase transitions with respect to temperature. As a result, this molecule offers new insight into the competition between rod-rod and rod-coil interactions that occurs in the system. The DEH-PPV rods are organized as a monolayer that is inclined with the lamellar normal (smectic C) for the copolymers containing low volume fraction of PMMA coil (< 54%). However, as the coil fraction increases, the strips containing DEH-PPV pack into hexagonal lattice. In contrast to previous work which demonstrated similar morphologies, the sequence of reversible liquid crystalline and microphase phase transitions is altered as a result of the increased block segregation. Upon heating, the low coil fraction copolymers exhibit a series of clear transitions of smectic-lamellar to amorphous-lamellar to disordered structures. In high coil fraction copolymers, the transitions between smectic-hexagonal to amorphous-hexagonal and smectic-hexagonal to disorder structures could not be clearly differentiated. The order-to-disorder temperature (ODT) decreases slowly with increasing coil fraction while the smectic-to-isotropic transition (SI) temperature stays relatively unchanged. The steady SI temperature suggests that the strong rod-rod interaction keeps the liquid crystalline rod in the nanodomain structure regardless of the amount of coil segment in the copolymers. C1 [Ho, Chun-Chih; Su, Wei-Fang] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan. [Lee, Yi-Huan; Dai, Chi-An] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 106, Taiwan. [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Lawrence Berkeley Natl Labs, Div Mat Sci, Berkeley, CA 94720 USA. RP Su, WF (reprint author), Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan. EM suwf@ntu.edu.tw RI Ho, Chun-Chih/C-2614-2009; Su, Wei-Fang/C-2646-2009; OI Segalman, Rachel/0000-0002-4292-5103 NR 72 TC 54 Z9 54 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUN 23 PY 2009 VL 42 IS 12 BP 4208 EP 4219 DI 10.1021/ma802551v PG 12 WC Polymer Science SC Polymer Science GA 458TW UT WOS:000267048200055 ER PT J AU Huang, JY Ding, F Yakobson, BI Lu, P Qi, L Li, J AF Huang, Jian Yu Ding, Feng Yakobson, Boris I. Lu, Ping Qi, Liang Li, Ju TI In situ observation of graphene sublimation and multi-layer edge reconstructions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE flat fullerene; fractal sublimation; graphene bilayer edge; in situ electron microscopy; fractional nanotube ID CARBON NANOTUBES; CRYSTALS; SHEETS AB We induced sublimation of suspended few-layer graphene by in situ Joule-heating inside a transmission electron microscope. The graphene sublimation fronts consisted of mostly {1100} zigzag edges. Under appropriate conditions, a fractal-like "coastline'' morphology was observed. Extensive multiple-layer reconstructions at the graphene edges led to the formation of unique carbon nanostructures, such as sp(2)-bonded bilayer edges (BLEs) and nanotubes connected to BLEs. Flat fullerenes/nanopods and nanotubes tunneling multiple layers of graphene sheets were also observed. Remarkably, >99% of the graphene edges observed during sublimation are BLEs rather than monolayer edges (MLEs), indicating that BLEs are the stable edges in graphene at high temperatures. We reproduced the "coastline'' sublimation morphologies by kinetic Monte Carlo (kMC) simulations. The simulation revealed geometrical and topological features unique to quasi-2-dimensional (2D) graphene sublimation and reconstructions. These reconstructions were enabled by bending, which cannot occur in first-order phase transformations of 3D bulk materials. These results indicate that substrate of multiple-layer graphene can offer unique opportunities for tailoring carbon-based nanostructures and engineering novel nano-devices with complex topologies. C1 [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Ding, Feng] Hong Kong Polytech Univ, Inst Text & Clothing, Kowloon, Hong Kong, Peoples R China. [Ding, Feng; Yakobson, Boris I.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Ding, Feng; Yakobson, Boris I.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Qi, Liang; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Huang, JY (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov; biy@rice.edu; liju@seas.upenn.edu RI Li, Ju/A-2993-2008; Qi, Liang/A-3851-2010; Ding, Feng/D-5938-2011; Huang, Jianyu/C-5183-2008 OI Li, Ju/0000-0002-7841-8058; Qi, Liang/0000-0002-0201-9333; Ding, Feng/0000-0001-9153-9279; FU Sandia Corporation; Lockheed-Martin Company; U. S. Department of Energy [DE-AC04-94AL85000]; National Science Foundation [CMMI-0728069]; Air Force Office of Scientific Research; Honda Research Institute U. S. A., Department of Energy [DOE-DE-FG02-06ER46330]; Office of Naval Research [N00014-05-1-0504] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. This work was supported by National Science Foundation Grant CMMI-0728069, the Air Force Office of Scientific Research, Honda Research Institute U. S. A., Department of Energy Contract DOE-DE-FG02-06ER46330, and Office of Naval Research Contract N00014-05-1-0504 ( to L. Q. and J. L.). NR 31 TC 126 Z9 127 U1 7 U2 70 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 23 PY 2009 VL 106 IS 25 BP 10103 EP 10108 DI 10.1073/pnas.0905193106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 461SQ UT WOS:000267292200008 PM 19515820 ER PT J AU Chroneos, A Jiang, C Grimes, RW Schwingenschlogl, U Bracht, H AF Chroneos, A. Jiang, C. Grimes, R. W. Schwingenschloegl, U. Bracht, H. TI Defect interactions in Sn1-xGex random alloys SO APPLIED PHYSICS LETTERS LA English DT Article DE band structure; germanium alloys; lattice constants; tin alloys; vacancies (crystal) ID ATOMIC-SCALE SIMULATIONS; VACANCY COMPLEXES; GERMANIUM; SILICON; SEMICONDUCTORS AB Sn1-xGex alloys are candidates for buffer layers to match the lattices of III-V or II-VI compounds with Si or Ge for microelectronic or optoelectronic applications. In the present work electronic structure calculations are used to study relative energies of clusters formed between Sn atoms and lattice vacancies in Ge that relate to alloys of low Sn content. We also establish that the special quasirandom structure approach correctly describes the random alloy nature of Sn1-xGex with higher Sn content. In particular, the calculated deviations of the lattice parameters from Vegard's Law are consistent with experimental results. C1 [Chroneos, A.; Grimes, R. W.; Schwingenschloegl, U.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. [Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. [Schwingenschloegl, U.] KAUST, PCSE Div, Jeddah 21534, Saudi Arabia. [Jiang, C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Chroneos, A (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. EM alexander.chroneos@imperial.ac.uk RI Jiang, Chao/A-2546-2011; OI Chroneos, Alex/0000-0002-2558-495X NR 26 TC 48 Z9 48 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 252104 DI 10.1063/1.3159468 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700035 ER PT J AU Folkman, CM Baek, SH Jang, HW Eom, CB Nelson, CT Pan, XQ Li, YL Chen, LQ Kumar, A Gopalan, V Streiffer, SK AF Folkman, C. M. Baek, S. H. Jang, H. W. Eom, C. B. Nelson, C. T. Pan, X. Q. Li, Y. L. Chen, L. Q. Kumar, A. Gopalan, V. Streiffer, S. K. TI Stripe domain structure in epitaxial (001) BiFeO3 thin films on orthorhombic TbScO3 substrate SO APPLIED PHYSICS LETTERS LA English DT Article DE bismuth compounds; dielectric polarisation; electric domains; epitaxial layers; ferroelasticity; ferroelectric thin films; nucleation; terbium compounds ID RHOMBOHEDRAL FERROELECTRIC-FILMS AB We have analyzed the ferroelastic and ferroelectric domain structure of high crystalline quality (001) BiFeO3 films on orthorhombic (110) TbScO3 substrates. Two domains were present in stripes separated by (010) vertical boundaries, with spontaneous polarizations in adjacent domains rotated by 109 degrees. The striped morphology was caused by nucleation of only two ferroelastic domains on the low symmetry GdFeO3-type substrate. Domain engineering through substrate symmetry is an important finding for rhombohedral ferroelectric epitaxial thin films. The stripe pattern with vertical walls may be useful for extracting domain wall contributions to magnetism and electrical transport properties of BiFeO3 materials. C1 [Folkman, C. M.; Baek, S. H.; Jang, H. W.; Eom, C. B.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Streiffer, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Li, Y. L.; Chen, L. Q.; Kumar, A.; Gopalan, V.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Nelson, C. T.; Pan, X. Q.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM eom@engr.wisc.edu RI Kumar, Amit/C-9662-2012; Baek, Seung-Hyub/B-9189-2013; Eom, Chang-Beom/I-5567-2014; Jang, Ho Won/D-9866-2011 OI Kumar, Amit/0000-0002-1194-5531; Jang, Ho Won/0000-0002-6952-7359 NR 13 TC 40 Z9 40 U1 5 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 251911 DI 10.1063/1.3152009 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700029 ER PT J AU Grigorenko, I Rabitz, H AF Grigorenko, Ilya Rabitz, Herschel TI Optimal control of the local electromagnetic response of nanostructured materials: Optimal detectors and quantum disguises. SO APPLIED PHYSICS LETTERS LA English DT Article DE electron traps; nanostructured materials AB We consider the problem of optimization of an effective trapping potential in a nanostructure with a quasi-one-dimensional geometry. The optimization is performed to achieve certain target optical properties of the system. We formulate and solve the optimization problem for a nanostructure that serves either as a single molecule detector or as a "quantum disguise" for a single molecule. C1 [Grigorenko, Ilya] Los Alamos Natl Lab, Theoret Div T1, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Rabitz, Herschel] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Grigorenko, I (reprint author), Los Alamos Natl Lab, Theoret Div T1, Ctr Nonlinear Studies, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM ilya@lanl.gov RI Grigorenko, Ilya/B-5616-2009 FU ARO; NSF FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. H. R. also acknowledges support from ARO and NSF. NR 12 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 253107 DI 10.1063/1.3159879 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700061 ER PT J AU Huda, MN Yan, YF Walsh, A Wei, SH Al-Jassim, MM AF Huda, Muhammad N. Yan, Yanfa Walsh, Aron Wei, Su-Huai Al-Jassim, Mowafak M. TI Symmetry-breaking-induced enhancement of visible light absorption in delafossite alloys SO APPLIED PHYSICS LETTERS LA English DT Article DE copper compounds; density functional theory; energy gap; optical constants; spontaneous symmetry breaking; visible spectra ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; HYDROGEN GENERATION; SEMICONDUCTORS; METALS AB Through density functional theory calculations, we demonstrate that enhancement of optical absorption and optimization of the fundamental band gap for Cu delafossites can be achieved through alloying group IIIA and IIIB delafossites. These alloys significantly improved the flexibility in designing delafossite-based photoelectrodes for application in photoelectrochemical decomposition of water by visible spectra of solar light. C1 [Huda, Muhammad N.; Yan, Yanfa; Walsh, Aron; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM suhuai_wei@nrel.gov RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008 OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X FU U.S. Department of Energy [DE-AC36-08GO28308]; National Energy Research Scientific Computing Center; Office of Science of the U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 18 TC 13 Z9 13 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 251907 DI 10.1063/1.3157840 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700025 ER PT J AU Kan, EJ Xiang, HJ Yang, JL Whangbo, MH AF Kan, Erjun Xiang, Hongjun Yang, Jinlong Whangbo, Myung-Hwan TI Magnetism of semiconductor-based magnetic tunnel junctions under electric field from first principles SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; antiferromagnetic materials; cobalt compounds; density functional theory; ferromagnetic materials; ferromagnetic-antiferromagnetic transitions; gallium compounds; III-V semiconductors; II-VI semiconductors; interface magnetism; magnetic tunnelling; manganese compounds; semimagnetic semiconductors; wide band gap semiconductors; zinc compounds AB Semiconductor magnetic tunnel junctions (MTJs), composed of diluted magnetic semiconductors (DMSs) sandwiching a semiconductor barrier, have potential applications in spintronics but their development has been slow due to the difficulty of controlling the magnetism of DMSs. In terms of density functional calculations for model semiconductor MTJs, (Zn,Co)O/ZnO/(Zn,Co)O and (Ga,Mn)N/GaN/(Ga,Mn)N, we show that the magnetic coupling between the transition metal ions in each DMS electrode of such semiconductor MTJs can be switched from ferromagnetic to antiferromagnetic, or vice versa, under the application of external electric field across the junctions. Our results suggest a possible avenue for the application of semiconductor MTJs. C1 [Kan, Erjun; Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Yang, Jinlong] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Xiang, Hongjun] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Whangbo, MH (reprint author), N Carolina State Univ, Dept Chem, Box 8204, Raleigh, NC 27695 USA. EM mike_whangbo@ncsu.edu RI Xiang, Hongjun/A-4076-2008; Kan, Erjun/A-4322-2009; Yang, Jinlong/D-3465-2009; Xiang, Hongjun/I-4305-2016 OI Kan, Erjun/0000-0003-0433-4190; Yang, Jinlong/0000-0002-5651-5340; Xiang, Hongjun/0000-0002-9396-3214 NR 29 TC 1 Z9 2 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 252102 DI 10.1063/1.3157273 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700033 ER PT J AU Shin, J Goyal, A Jesse, S Kim, DH AF Shin, Junsoo Goyal, Amit Jesse, Stephen Kim, Dae Ho TI Single-crystal-like, c-axis oriented BaTiO3 thin films with high-performance on flexible metal templates for ferroelectric applications SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; crystal symmetry; dielectric hysteresis; dielectric polarisation; electric domains; epitaxial layers; ferroelectric switching; ferroelectric thin films; laser ablation; piezoelectric thin films; space groups; X-ray diffraction ID ENHANCEMENT; CAPACITORS AB Epitaxial, c-axis oriented BaTiO3 thin films were deposited using pulsed laser ablation on flexible, polycrystalline Ni alloy tape with biaxially textured oxide buffer multilayers. The high quality of epitaxial BaTiO3 thin films with P4mm group symmetry was confirmed by x-ray diffraction. The microscopic ferroelectric domain structure and the piezoelectric domain switching in these films were confirmed via spatially resolved piezoresponse mapping and local hysteresis loops. Macroscopic measurements demonstrate that the films have well-saturated hysteresis loops with a high remanent polarization of similar to 11.5 mu C/cm(2). Such high-quality, single-crystal-like BaTiO3 films on low-cost, polycrystalline, flexible Ni alloy substrates are attractive for applications in flexible lead-free ferroelectric devices. C1 [Shin, Junsoo; Goyal, Amit; Jesse, Stephen] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kim, Dae Ho] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. RP Shin, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM goyala@ornl.gov RI Kim, Dae Ho/B-4670-2012; Jesse, Stephen/D-3975-2016 OI Jesse, Stephen/0000-0002-1168-8483 NR 26 TC 16 Z9 16 U1 5 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 252903 DI 10.1063/1.3158955 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700050 ER PT J AU Wu, YL Chen, GD Ye, HG Zhu, YZ Wei, SH AF Wu, Yelong Chen, Guangde Ye, Honggang Zhu, Youzhang Wei, Su-Huai TI Origin of the phase transition of AlN, GaN, and ZnO nanowires SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; aluminium compounds; gallium compounds; III-V semiconductors; II-VI semiconductors; ionisation potential; nanofabrication; nanowires; phase diagrams; solid-state phase transformations; wide band gap semiconductors; zinc compounds ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SEMICONDUCTORS; BLUE AB The stabilities of AlN, GaN, and ZnO nanowires/nanorods with different structures and sizes are investigated using first-principles calculations. We found a structure transformation from the graphitelike phase to wurtzite phase as the diameter and length of the nanowire increases. We show that this is due to the competition between the bond energy, the Coulomb energy, and the energy originating from the dipole field of the wurtzite structure. A mechanism of growing uniform nanowires using a graphitelike structure as a precursor is proposed through analyzing the phase diagram of these materials. C1 [Wu, Yelong; Chen, Guangde; Ye, Honggang; Zhu, Youzhang] Xi An Jiao Tong Univ, Minist Educ, Nonequilibrium Condensed Matter & Quantum Engn La, Key Lab,Sch Sci, Xian 710049, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wu, YL (reprint author), Xi An Jiao Tong Univ, Minist Educ, Nonequilibrium Condensed Matter & Quantum Engn La, Key Lab,Sch Sci, Xian 710049, Peoples R China. EM suhuai.wei@nrel.gov RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen, Guangde/D-4373-2011; chen, guangde/I-4260-2014 OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X; FU China National Natural Science Fund [10474078]; U.S. DOE [DE-36-AC08GO28308] FX We gratefully acknowledge the financial support of China National Natural Science Fund (Grant No. 10474078) and the computing support of "National High Performance Computing Center (Xi'an)." The work at NREL is supported by the U.S. DOE under Grant No. DE-36-AC08GO28308. NR 18 TC 17 Z9 17 U1 3 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 253101 DI 10.1063/1.3159816 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700055 ER PT J AU Yang, ZH Lam, CH DiMasi, E Bouet, N Jordan-Sweet, J Tsui, OKC AF Yang, Zhaohui Lam, Chi-Hang DiMasi, Elaine Bouet, Nathalie Jordan-Sweet, Jean Tsui, Ophelia K. C. TI Method to measure the viscosity of nanometer liquid films from the surface fluctuations SO APPLIED PHYSICS LETTERS LA English DT Article DE capillary waves; glass transition; liquid films; nanotechnology; polymer solutions; viscosity; viscosity measurement ID THIN POLYMER-FILMS; GLASS-TRANSITION AB We describe a method to measure the viscosity of polystyrene liquid films with thicknesses similar to 5 and similar to 80 nm spin-cast on oxide-coated silicon. In this method, temporal evolution of the film surface is monitored and modeled according to the dynamics of the surface capillary waves. Viscosities obtained from the similar to 80 nm films display an excellent agreement with those of the bulk polymer, but those from the similar to 5 nm films are up to 10(6) times reduced. By modeling the data to the Vogel-Fulcher-Tammann relation, we find that the observations are consistent with the thickness dependence of the glass transition temperature previously reported of these films. C1 [Yang, Zhaohui; Bouet, Nathalie; Tsui, Ophelia K. C.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Lam, Chi-Hang] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong, Hong Kong, Peoples R China. [DiMasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Jordan-Sweet, Jean] IBM Corp, Div Res, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Tsui, OKC (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM okctsui@bu.edu RI Lam, Chi-Hang/A-4626-2009; Yang, Zhaohui/B-9331-2013; OI Lam, Chi-Hang/0000-0002-0476-1857; Bouet, Nathalie/0000-0002-5816-9429; Tsui, Ophelia K. C./0000-0001-5987-2733 FU NSF [DMR-0706096]; ACS Petroleum Research Fund [47882-AC5]; U.S. Department of Energy [DE-AC02-98CH10886] FX We thank Professor K. F. Ludwig for critical reading of this paper and Dr. Y. Fujii for useful discussions. Funding supports of NSF (Grant No. DMR-0706096) and ACS Petroleum Research Fund (Grant No. 47882-AC5) are acknowledged. NSLS is supported by the U.S. Department of Energy Contract No. DE-AC02-98CH10886. NR 14 TC 14 Z9 14 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 22 PY 2009 VL 94 IS 25 AR 251906 DI 10.1063/1.3158956 PG 3 WC Physics, Applied SC Physics GA 463KV UT WOS:000267431700024 ER PT J AU Konidaris, KF Papaefstathiou, GS Aromi, G Teat, SJ Manessi-Zoupa, E Escuer, A Perlepes, SP AF Konidaris, Konstantis F. Papaefstathiou, Giannis S. Aromi, Guillem Teat, Simon J. Manessi-Zoupa, Evy Escuer, Albert Perlepes, Spyros P. TI A three-dimensional copper(II) coordination polymer featuring the 2,3-dioxyquinoxalinate(-2) ligand: Preparation, structural characterization and magnetic study SO POLYHEDRON LA English DT Article; Proceedings Paper CT 11th International Conference on Molecule-Based Magnets (ICMM 2008) CY SEP 21-24, 2008 CL Florence, ITALY DE Coordination polymers; Copper(II) polymers; Crystal structure; 1,4-Dihydro-2,3-quinoxalinedione; 2,3-Dioxyquinoxalinate(-2) metal complexes; Magnetochemistry ID METAL-ORGANIC FRAMEWORKS; IN-SITU FORMATION; SOLID-STATE; MOLECULAR-STRUCTURE; DONOR LIGANDS; NETS; CHEMISTRY; CRYSTAL; 1,4-DIHYDRO-2,3-QUINOXALINEDIONE; NETWORKS AB The synthesis, single-crystal X-ray structure and magnetic properties of [Cu(3)l(2)Cl(2)(DMF)(4)](n) (1), where L(2-) is the 2,3-dioxyquinoxalinate(-2) ligand, are reported. The complex was prepared by the reaction of CuCl(2) and 1,4-dihydro-2,3-quinoxalinedione (H(2)L') under basic conditions using either solvothermal or normal laboratory techniques. Compound 1 is a 3D coordination polymer with an (8(2).10)-a, lig (LiGe) topology, containing the ligand in a novel 3.1111 (Harris notation) coordination mode. Variable-temperature and variable-field magnetic studies reveal that the ligand L(2-) propagates weak anti ferromagnetic exchange interactions through its "quinoxaline" part. IR data are discussed in terms of the structural features of 1 and the coordination mode of L(2-). (C) 2008 Elsevier Ltd. All rights reserved. C1 [Konidaris, Konstantis F.; Manessi-Zoupa, Evy; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece. [Papaefstathiou, Giannis S.] Univ Athens, Dept Chem, Inorgan Chem Lab, Panepistimiopolis 15771, Zografou, Greece. [Aromi, Guillem; Escuer, Albert] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Aromi, Guillem; Escuer, Albert] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Spain. [Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Manessi-Zoupa, E (reprint author), Univ Patras, Dept Chem, Patras 26504, Greece. EM emane@upatras.gr; albert.escuer@qi.ub.es; perlepes@patreas.upatras.gr RI Escuer, Albert/L-4706-2014; Aromi, Guillem/I-2483-2015; Papaefstathiou, Giannis/M-9890-2013; OI Escuer, Albert/0000-0002-6274-6866; Aromi, Guillem/0000-0002-0997-9484; Papaefstathiou, Giannis/0000-0001-5514-6371; Konidaris, Konstantis/0000-0002-7366-5682 NR 38 TC 6 Z9 6 U1 3 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUN 22 PY 2009 VL 28 IS 9-10 BP 1646 EP 1651 DI 10.1016/j.poly.2008.10.043 PG 6 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 465JQ UT WOS:000267580000011 ER PT J AU Fishman, RS Okamoto, S Reboredo, FA AF Fishman, Randy S. Okamoto, Satoshi Reboredo, Fernando A. TI Spin-orbit coupling and Jahn-Teller distortion in bimetallic oxalates SO POLYHEDRON LA English DT Article; Proceedings Paper CT 11th International Conference on Molecule-Based Magnets (ICMM 2008) CY SEP 21-24, 2008 CL Florence, ITALY DE Jahn-Teller distortion; Spin-orbit interaction; Crystal fields; Bimetallic oxalates ID MIXED-VALENCY; MAGNETIC-PROPERTIES; HONEYCOMB LATTICE; ORGANIC CATION; PSEUDOPOTENTIALS; TRANSITIONS; FERRIMAGNET; COMPLEXES; SYSTEM; MN AB The C3-symmetric crystal-field potential in the Fe(II)Fe(III) bimetallic oxalates splits the L = 2 Fe(II) multiplet into two doublets and one singlet. In compounds that exhibit magnetic compensation, one of the doublets lies lowest in energy and carries an average orbital angular momentum L-z(cf) that exceeds a threshold value of roughly 0.25. In a range of L-z(cf), a Jahn-Teller (JT) distortion enhances the splitting of the low-lying doublet and breaks the C-3 symmetry of the bimetallic planes around the ferrimagnetic transition temperature. Due to the competition with the spin-orbit coupling, the JT distortion disappears at low temperatures in Compounds that display magnetic compensation. A comparison with recent measurements provides compelling evidence for this inverse, low-temperature JT transition. The size of the JT distortion is estimated using first-principles calculations, which suggest that the long-range ordering of smaller, non-C-3-symmetric organic cations can eliminate magnetic compensation. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Fishman, Randy S.; Okamoto, Satoshi; Reboredo, Fernando A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM fishmanrs@ornl.gov RI Reboredo, Fernando/B-8391-2009; Okamoto, Satoshi/G-5390-2011; Fishman, Randy/C-8639-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; NR 31 TC 5 Z9 5 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JUN 22 PY 2009 VL 28 IS 9-10 SI SI BP 1740 EP 1745 DI 10.1016/j.poly.2008.11.007 PG 6 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA 465JQ UT WOS:000267580000029 ER PT J AU Bonhommeau, D Valero, R Truhlar, DG Jasper, AW AF Bonhommeau, David Valero, Rosendo Truhlar, Donald G. Jasper, Ahren W. TI Coupled-surface investigation of the photodissociation of NH3((A)over-tilde): Effect of exciting the symmetric and antisymmetric stretching modes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ammonia; excited states; free radical reactions; ground states; molecule-photon collisions; photochemistry; photodissociation; potential energy surfaces; translational states; vibrational states ID ZERO-POINT ENERGY; CLASSICAL TRAJECTORY SIMULATIONS; FORBIDDEN ELECTRONIC-TRANSITIONS; INITIAL VIBRATIONAL-STATE; JET-COOLED AMMONIA; MOLECULAR-DYNAMICS; PREDISSOCIATION DYNAMICS; 193.3 NM; NH3; ND3 AB Using previously developed potential energy surfaces and their couplings, non-Born-Oppenheimer trajectory methods are used to study the state-selected photodissociation of ammonia, prepared with up to six quanta of vibrational excitation in the symmetric (nu(1)) or antisymmetric (nu(3)) stretching modes of NH3((A) over tilde). The predicted dynamics is mainly electronically nonadiabatic (that is, it produces ground electronic state amino radicals). The small probability of forming the excited-state amino radical is found, for low excitations, to increase with total energy and to be independent of whether the symmetric or antisymmetric stretch is excited; however some selectivity with respect to exciting the antisymmetric stretch is found when more than one quantum of excitation is added to the stretches, and more than 50% of the amino radical are found to be electronically excited when six quanta are placed in the antisymmetric stretch. These results are in contrast to the mechanism inferred in recent experimental work, where excitation of the antisymmetric stretch by a single quantum was found to produce significant amounts of excited-state products via adiabatic dissociation at total energies of about 7.0 eV. Both theory and experiment predict a broad range of translational energies for the departing H atoms when the symmetric stretch is excited, but the present simulations do not reproduce the experimental translational energy profiles when the antisymmetric stretch is excited. The sensitivity of the predicted results to several aspects of the calculation is considered in detail, and the analysis leads to insight into the nature of the dynamics that is responsible for mode selectivity. C1 [Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Bonhommeau, David; Valero, Rosendo; Truhlar, Donald G.] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Jasper, Ahren W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Bonhommeau, D (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM truhlar@umn.edu RI Jasper, Ahren/A-5292-2011; Valero, Rosendo/J-3724-2013; Truhlar, Donald/G-7076-2015 OI Valero, Rosendo/0000-0002-4617-0721; Truhlar, Donald/0000-0002-7742-7294 FU National Science Foundation [CHE07-04974]; United States Department of Energy [DE-AC04-94-AL85000]; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX We are grateful to Zhen Hua Li for helpful assistance and to Hua Guo for helpful discussions. This work was supported in part by the National Science Foundation through Grant No. CHE07-04974 and in part by the United States Department of Energy Grant No. DE-AC04-94-AL85000, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. NR 64 TC 25 Z9 25 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234303 DI 10.1063/1.3132222 PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200024 PM 19548723 ER PT J AU Griffin, GB Ehrler, OT Kammrath, A Young, RM Cheshnovsky, O Neumark, DM AF Griffin, Graham B. Ehrler, Oli T. Kammrath, Aster Young, Ryan M. Cheshnovsky, Ori Neumark, Daniel M. TI Auger recombination and excited state relaxation dynamics in Hg-n(-) (n=9-20) anion clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atomic clusters; Auger effect; electron-electron scattering; electron-hole recombination; excited states; mercury (metal); negative ions ID SEMICONDUCTOR QUANTUM DOTS; MERCURY CLUSTERS; INTRABAND EXCITATION; PHOTOELECTRON; TRANSITION; GENERATION; RESOLUTION; ELECTRON AB Using femtosecond time-resolved photoelectron imaging, electron-hole pairs are created in size-selected Hg-n(-) anion clusters (n=9-20), and the subsequent decay dynamics are measured. These clusters eject electrons via Auger decay on time scales of 100-600 fs. There is an abrupt increase in the Auger decay time for clusters larger than Hg-12(-), coinciding with the onset of the transition from van der Waals to covalent bonding in mercury clusters. Our results also show evidence for subpicosecond excited state relaxation attributed to inelastic electron-electron and electron-hole scattering as well as hole-induced contraction of the cluster. C1 [Griffin, Graham B.; Ehrler, Oli T.; Young, Ryan M.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kammrath, Aster] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Cheshnovsky, Ori] Tel Aviv Univ, Sch Chem, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Neumark, Daniel/B-9551-2009; Ehrler, Oli/B-6215-2008 OI Neumark, Daniel/0000-0002-3762-9473; FU National Science Foundation [CHE-0649647]; States-Israel Binational Science Foundation (BSF), Jerusalem, Israel [2000-333, 2004-401]; Alexander von Humboldt Foundation (Germany; Feodor-Lynen fellowship FX This research was supported by the National Science Foundation under Grant No. CHE-0649647. Additional support was provided by the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel, under Grant Nos. 2000-333 and 2004-401. O. T. E. is grateful to the Alexander von Humboldt Foundation (Germany) for the award of a Feodor-Lynen fellowship. NR 32 TC 1 Z9 1 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 231103 DI 10.1063/1.3149562 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200003 PM 19548702 ER PT J AU Ishizaki, A Fleming, GR AF Ishizaki, Akihito Fleming, Graham R. TI On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE energy level crossing; molecular electronic states; molecule-photon collisions; nonradiative transitions; photosynthesis; quantum theory; solvent effects ID PHOTOSYNTHETIC ANTENNA COMPLEXES; PRIMARY CHARGE SEPARATION; REACTION CENTERS; VARIATIONAL CALCULATION; CHLOROBIUM-TEPIDUM; 2-LEVEL SYSTEM; RELAXATION; SPECTROSCOPY; BACTERIA; COHERENCE AB The observation of long-lived electronic coherence in photosynthetic excitation energy transfer (EET) by Engel [Nature (London) 446, 782 (2007)] raises questions about the role of the protein environment in protecting this coherence and the significance of the quantum coherence in light harvesting efficiency. In this paper we explore the applicability of the Redfield equation in its full form, in the secular approximation and with neglect of the imaginary part of the relaxation terms for the study of these phenomena. We find that none of the methods can give a reliable picture of the role of the environment in photosynthetic EET. In particular the popular secular approximation (or the corresponding Lindblad equation) produces anomalous behavior in the incoherent transfer region leading to overestimation of the contribution of environment-assisted transfer. The full Redfield expression on the other hand produces environment-independent dynamics in the large reorganization energy region. A companion paper presents an improved approach, which corrects these deficiencies [A. Ishizaki and G. R. Fleming, J. Chem. Phys. 130, 234111 (2009)]. C1 [Ishizaki, Akihito] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ishizaki, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Ishizaki, Akihito/A-7069-2010 OI Ishizaki, Akihito/0000-0002-0246-4461 FU Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-05CH11231]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC03-76SF000098]; JSPS Postdoctoral Fellowship for Research Abroad FX We thank Dr. Yuan-Chung Cheng for critical reading of the manuscript and valuable comments. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC03-76SF000098. A. I. appreciates the support of the JSPS Postdoctoral Fellowship for Research Abroad. NR 61 TC 226 Z9 227 U1 10 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234110 DI 10.1063/1.3155214 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200015 PM 19548714 ER PT J AU Ishizaki, A Fleming, GR AF Ishizaki, Akihito Fleming, Graham R. TI Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE dipole coupling; excited states; fluorescence; Markov processes; nonradiative transitions; quantum theory; radiative lifetimes; wave functions ID 2-LEVEL SYSTEM; VARIATIONAL CALCULATION; CHLOROBIUM-TEPIDUM; REDFIELD EQUATION; ANTENNA COMPLEXES; PHASE RELAXATION; NOISE BATH; SPECTROSCOPY; PROTEIN; BACTERIOCHLOROPHYLL AB A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Foumlrster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Foumlrster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores. C1 [Ishizaki, Akihito] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Ishizaki, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Ishizaki, Akihito/A-7069-2010 OI Ishizaki, Akihito/0000-0002-0246-4461 FU U. S. Department of Energy [DE-AC02-05CH1123, DE-AC03-76SF000098]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences; JSPS Postdoctoral Fellowship for Research Abroad FX We thank Dr. Yuan-Chung Cheng for valuable comments. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC03-76SF000098. A. I. appreciates the support of the JSPS Postdoctoral Fellowship for Research Abroad. NR 57 TC 308 Z9 308 U1 8 U2 52 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234111 DI 10.1063/1.3155372 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200016 PM 19548715 ER PT J AU Xu, ZJ Meakin, P AF Xu, Zhijie Meakin, Paul TI A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE confined flow; flow simulation ID DENSE COLLOIDAL SUSPENSIONS; COMPUTER-SIMULATION; SOLIDIFICATION; CONVECTION; GROWTH AB Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries. C1 [Xu, Zhijie; Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Meakin, Paul] Univ Oslo, N-0316 Oslo, Norway. [Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2027 Kjeller, Norway. RP Xu, ZJ (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. EM zhijie.xu@inl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 FU U. S. Department of Energy, Office of Science Scientific Discovery; Battelle Energy Alliance [DE-AC07-05ID14517] FX This work was supported by the U. S. Department of Energy, Office of Science Scientific Discovery through Advanced Computing Program. The Idaho National Laboratory is operated for the U. S. Department of Energy by the Battelle Energy Alliance under Contract No. DE-AC07-05ID14517. NR 40 TC 13 Z9 14 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234103 DI 10.1063/1.3152634 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200008 PM 19548707 ER PT J AU Zhang, Y Donev, A Weisgraber, T Alder, BJ Graham, MD de Pablo, JJ AF Zhang, Yu Donev, Aleksandar Weisgraber, Todd Alder, Berni J. Graham, Michael D. de Pablo, Juan J. TI Tethered DNA dynamics in shear flow SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biological fluid dynamics; Brownian motion; DNA; fluctuations; lattice Boltzmann methods; molecular dynamics method; shear flow; stochastic processes ID DRIVEN MOLECULAR-DYNAMICS; NONSPHERICAL HARD PARTICLES; IMMERSED BOUNDARY METHOD; SINGLE-POLYMER DYNAMICS; LATTICE BOLTZMANN; HYDRODYNAMIC INTERACTIONS; STOCHASTIC SIMULATIONS; ELONGATIONAL FLOW; INDUCED MIGRATION; CHAIN POLYMERS AB We study the cyclic dynamics of a single polymer tethered to a hard wall in shear flow using Brownian dynamics, the lattice Boltzmann method, and a recent stochastic event-driven molecular dynamics algorithm. We focus on the dynamics of the free end (last bead) of the tethered chain and we examine the cross-correlation function and power spectral density of the chain extensions in the flow and gradient directions as a function of chain length N and dimensionless shear rate Wi. Extensive simulation results suggest a classical fluctuation-dissipation stochastic process and question the existence of periodicity of the cyclic dynamics, as previously claimed. We support our numerical findings with a simple analytical calculation for a harmonic dimer in shear flow. C1 [Zhang, Yu; Graham, Michael D.; de Pablo, Juan J.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Donev, Aleksandar; Weisgraber, Todd; Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Zhang, Y (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM depablo@engr.wisc.edu RI Graham, Michael/A-8356-2009 OI Graham, Michael/0000-0003-4983-4949 NR 63 TC 27 Z9 27 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 21 PY 2009 VL 130 IS 23 AR 234902 DI 10.1063/1.3149860 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 460DE UT WOS:000267166200052 PM 19548751 ER PT J AU Schawinski, K Lintott, C Thomas, D Sarzi, M Andreescu, D Bamford, SP Kaviraj, S Khochfar, S Land, K Murray, P Nichol, RC Raddick, MJ Slosar, A Szalay, A VandenBerg, J Yi, SK AF Schawinski, Kevin Lintott, Chris Thomas, Daniel Sarzi, Marc Andreescu, Dan Bamford, Steven P. Kaviraj, Sugata Khochfar, Sadegh Land, Kate Murray, Phil Nichol, Robert C. Raddick, M. Jordan Slosar, Anze Szalay, Alex VandenBerg, Jan Yi, Sukyoung K. TI Galaxy Zoo: a sample of blue early-type galaxies at low redshift SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: formation; galaxies: fundamental parameters; galaxies: starburst ID DIGITAL-SKY-SURVEY; ACTIVE GALACTIC NUCLEI; STAR-FORMING GALAXIES; COLOR-MAGNITUDE RELATION; ELLIPTIC GALAXIES; HOST GALAXIES; VELOCITY DISPERSIONS; STELLAR POPULATIONS; SAURON PROJECT; RADIO GALAXIES AB We report the discovery of a population of nearby, blue early-type galaxies with high star formation rates (0.5 < SFR < 50 M(circle dot) yr(-1)). They are identified by their visual morphology as provided by Galaxy Zoo for Sloan Digital Sky Survey Data Release 6 and their u - r colour. We select a volume-limited sample in the redshift range 0.02 < z < 0.05, corresponding to luminosities of approximately L* and above and with u - r colours significantly bluer than the red sequence. We confirm the early-type morphology of the objects in this sample and investigate their environmental dependence and star formation properties. Blue early-type galaxies tend to live in lower density environments than 'normal' red sequence early-types and make up 5.7 +/- 0.4 per cent of the low-redshift early-type galaxy population. We find that such blue early-type galaxies are virtually absent at high velocity dispersions above 200 km s(-1). Our analysis uses emission line diagnostic diagrams and we find that similar to 25 per cent of them are actively star forming, while another similar to 25 per cent host both star formation and an active galactic nucleus (AGN). Another similar to 12 per cent are AGN. The remaining 38 per cent show no strong emission lines. When present and uncontaminated by an AGN contribution, the star formation is generally intense. We consider star formation rates derived from Ha, u band and infrared luminosities, and radial colour profiles, and conclude that the star formation is spatially extended. Of those objects that are not currently undergoing star formation must have ceased doing so recently in order to account for their blue optical colours. The gas-phase metallicity of the actively star-forming blue early-types galaxies is supersolar in all cases. We discuss the place of these objects in the context of galaxy formation. Acatalogue of all 204 blue early-type galaxies in our sample, including star formation rates, emission line classification is provided. C1 [Schawinski, Kevin] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Schawinski, Kevin] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Schawinski, Kevin; Lintott, Chris; Kaviraj, Sugata; Khochfar, Sadegh; Land, Kate] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Thomas, Daniel; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Sarzi, Marc] Univ Hertfordshire, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Andreescu, Dan] LinkLab, Bronx, NY 10471 USA. [Bamford, Steven P.] Univ Nottingham, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Khochfar, Sadegh] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Murray, Phil] Fingerprint Digital Media, Newtownards BT23 7GY, Down, North Ireland. [Raddick, M. Jordan; Szalay, Alex; VandenBerg, Jan] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Yi, Sukyoung K.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. RP Schawinski, K (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA. EM kevins@astro.ox.ac.uk RI Bamford, Steven/E-8702-2010; OI Bamford, Steven/0000-0001-7821-7195; Schawinski, Kevin/0000-0001-5464-0888 FU Henry Skynner Junior Research Fellowship; STFC; Leverhulme Early-Career Fellowship; Worcester College, Oxford; Basic Research Program of the Korea Science and Engineering Foundation [R01-2006-000-10716-0]; Korean government [KRF-C00156]; Alfred P. Sloan Foundation FX We would like to thank Adrienne Slyz and Julien Devrient for helpful comments and suggestions. We also thank Alice Sheppard and Edd Edmondson for their help in administering the Galaxy Zoo forum. KS is supported by the Henry Skynner Junior Research Fellowship at Balliol College Oxford. CL acknowledges support from the STFC Science in Society Programme. S. Kaviraj acknowledges a Leverhulme Early-Career Fellowship, a BIPAC fellowship and a Research Fellowship from Worcester College, Oxford. This work was supported by grant No. R01-2006-000-10716-0 from the Basic Research Program of the Korea Science and Engineering Foundation to SKY. This work was supported by the Korea Research Foundation Grant funded by the Korean government ( KRF-C00156) to SKY. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, theMax Planck Society and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/ NR 67 TC 72 Z9 73 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 21 PY 2009 VL 396 IS 2 BP 818 EP 829 DI 10.1111/j.1365-2966.2009.14793.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 457JR UT WOS:000266924800016 ER PT J AU Ren, F Hall, BD Case, ED Timm, EJ Trejo, RM Meisner, RA Lara-Curzio, E AF Ren, F. Hall, B. D. Case, E. D. Timm, E. J. Trejo, R. M. Meisner, R. A. Lara-Curzio, E. TI Temperature-dependent thermal expansion of cast and hot-pressed LAST (Pb-Sb-Ag-Te) thermoelectric materials SO PHILOSOPHICAL MAGAZINE LA English DT Article DE semiconductor; thermomechanical analysis; powder diffraction; thermal expansion ID SOLID-SOLUTIONS; LEAD TELLURIDE; AGPBMSBTE2+M; PERFORMANCE; EFFICIENCY; POWDERS; SYSTEM; GROWTH AB The thermal expansion for two compositions of east and hot-presged LAST (Pb-Sb-Ag-Te) n-type thermoelectric materials has been measured between room temperature and 673 K via thermomechanical analysis (TMA). In addition, using high-temperature X-ray diffraction (HT-XRD), the thermal expansion Cor both cast and licit-pressed LAST materials was determined from the temperature-dependent lattice parameters measured between room temperature and 623 K. The TMA and HT-XRD determined values of the coefficient of thermal expansion (CTE) for the LAST compositions ranged between 20 x 10(-6) K-1 and 24 x 10(-6) K-1, which is comparable to the CTE values for other thermoelectric materials including PbTe and Bi2Te3. The CTE of the LAST specimens with a higher Ag content (Ag0.86Pb19Sb1.0Te20) exhibited a higher CTE value than that of the LAST material with a lower Ag content (Ag0.43Pb18Sb1.2Te20). In addition, a peak in the temperature-dependent CTE was observed between room temperature and approximately 450 K. For both the cast and hot-pressed LAST with the Ag0.86Pb19Sb1.0Te20 composition, whereas the CTE of the Ag0.86Pb19Sb1.0Te20 Specimen increased monotonically with temperature. C1 [Ren, F.; Hall, B. D.; Case, E. D.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Timm, E. J.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. [Trejo, R. M.; Lara-Curzio, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Meisner, R. A.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Ren, F (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. EM renf@ornl.gov RI Ren, Fei/E-7706-2011 FU U.S. Department of Energy [DE-FC26-04NT42281, DE-AC05-00OR22725]; Office of Naval Research MURI [N000140310789]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies; High Temperature Materials Laboratory; Oak Ridge National Laboratory; UT-Battelle; LLC FX The authors acknowledge the financial assistance of the U.S. Department of Energy Grant DE-FC26-04NT42281 and Office of Naval Research MURI Grant number N000140310789. The research work at the High Temperature Materials Laboratory was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. One of the authors (F. Ren) would like to acknowledge the financial support from the Higher Education Research Experience program sponsored by the Oak Ridge National Laboratory during his tenure at the High Temperature Materials Laboratory.; The authors would like to thank Dr. Andrew Payzant at the Materials Science and Technology Division of the Oak Ridge National Laboratory for his technical assistance and helpful discussion with respect to the high temperature x-ray experiments. One of the authors (F. Ren) would like to acknowledge the help from Mr. Takayuki Kobayashi (Visiting scholar, Department of Chemical Engineering and Materials Science, Michigan State University) for his assistance in translating ref. [24] to English. NR 31 TC 7 Z9 7 U1 1 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD JUN 21 PY 2009 VL 89 IS 18 BP 1439 EP 1455 DI 10.1080/14786430903002376 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 478IL UT WOS:000268580900001 ER PT J AU Yu, S Brown, HM Huang, XW Zhou, XD Amonette, JE Zhang, ZC AF Yu Su Brown, Heather M. Huang, Xiwen Zhou, Xiao-dong Amonette, James E. Zhang, Z. Conrad TI Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE 5-Hydroxymethylfurfural; HMF; Ionic liquid; 1-Alkyl-3-methylimidazolium chloride; 1-Ethyl-3-methyl-imidazolium chloride; Glucose; Cellobiose; Maltose; Cellulose conversion; Paired metal chlorides; CuCl(2); CrCl(2) ID LIGNOCELLULOSIC BIOMASS; IONIC LIQUIDS; HYDROLYSIS; FUELS; ACID AB The ability to use cellulosic biomass as feedstock for the large-scale production of liquid fuels and chemicals depends critically on the development of effective low temperature processes. One promising biomass-derived platform chemical is 5-hydroxymethylfurfural (HMF), which is suitable for alternative polymers or for liquid biofuels. While HMF can currently be made from fructose and glucose, the ability to synthesize HMF directly from raw natural cellulose would remove a major barrier to the development of a sustainable HMF platform. Here we report a single-step catalytic process where cellulose as the feed is rapidly depolymerized and the resulting glucose is converted to HMF under mild conditions. A pair of metal chlorides (CuCl(2) and CrCl(2)) dissolved in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at temperatures of 80-120 degrees C collectively catalyze the single-step process of converting cellulose to HMF with an unrefined 96% purity among recoverable products (at 55.4 +/- 4.0% HMF yield). After extractive separation of HMF from the solvent, the catalytic performance of recovered [EMIM]Cl and the catalysts was maintained in repeated uses. Cellulose depolymerization occurs at a rate that is about one order of magnitude faster than conventional acid-catalyzed hydrolysis. In contrast, single metal chlorides at the same total loading showed considerably less activity under similar conditions. (C) 2009 Published by Elsevier B.V. C1 [Yu Su; Brown, Heather M.; Huang, Xiwen; Zhou, Xiao-dong; Amonette, James E.; Zhang, Z. Conrad] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Zhang, ZC (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999, Richland, WA 99352 USA. EM conrad.zhang@kior.com FU Pacific Northwest National Lab (PNNL) [DE-AC06-76RL01830] FX We thank John L. Fulton, Sarah D. Burton, and Guosheng Li for helpful discussions. We also want to express our deep gratitude to the late Professor J.M. White and to Dr. M.R. Thompson of the Pacific Northwest National Lab (PNNL) for their support and for inspiring discussions. This work was supported by the Laboratory Directed Research and Development Program at the PNNL, a multiprogram national laboratory operated by Battelle for the U.S. DOE under contract no. DE-AC06-76RL01830. Part of the research described in this paper was performed at the Environmental Molecular Science Laboratory, a national scientific user facility located at PNNL. NR 15 TC 36 Z9 43 U1 7 U2 123 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JUN 20 PY 2009 VL 361 IS 1-2 BP 117 EP 122 DI 10.1016/j.apcata.2009.04.002 PG 6 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 459HR UT WOS:000267092800016 ER PT J AU Naulleau, PP AF Naulleau, Patrick P. TI Correlation method for the measure of mask-induced line-edge roughness in extreme ultraviolet lithography SO APPLIED OPTICS LA English DT Article AB As critical dimensions for leading-edge semiconductor devices shrink, the line-edge roughness (LER) requirements are pushing well into the single digit nanometer regime. At these scales many new sources of LER must be considered. In the case of extreme ultraviolet (EUV) lithography, modeling has shown the lithographic mask to be a source of significant concern. Here we present a correlation-based methodology for experimentally measuring the magnitude of mask contributors to printed LER. The method is applied to recent printing results from a 0.3 numerical aperture ELTV microfield exposure tool. The measurements demonstrate that such effects are indeed present and of significant magnitude. The method is also used to explore the effects of illumination coherence and defocus and has been used to verify model-based predictions of mask-induced LER. (C) 2009 Optical Society of America C1 Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA. RP Naulleau, PP (reprint author), Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA. EM pnaulleau@lbl.gov FU DOE FX The author is greatly indebted to Paul Denham, Bryan Hoef, Gideon Jones, and Lorie Mae Bacleaan for expert support with the exposure tool, and to the entire CXRO staff for enabling this research. The author is also grateful to Warren Montgomery, Chawon Koh, Stefan Wurm, and Brian Rice of SEMATECH for BMET support. This work was supported by SEMATECH and carried out at Lawrence Berkeley National Laboratory's Advanced Light Source, which is supported by the DOE, Office of Science, Basic Energy Sciences. NR 8 TC 14 Z9 15 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUN 20 PY 2009 VL 48 IS 18 BP 3302 EP 3307 DI 10.1364/AO.48.003302 PG 6 WC Optics SC Optics GA 475HX UT WOS:000268350300004 PM 19543335 ER PT J AU Yoo, J Weinberg, DH Tinker, JL Zheng, Z Warren, MS AF Yoo, Jaiyul Weinberg, David H. Tinker, Jeremy L. Zheng, Zheng Warren, Michael S. TI EXTENDING RECOVERY OF THE PRIMORDIAL MATTER POWER SPECTRUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; dark matter; galaxies: halos; large-scale structure of universe ID HALO OCCUPATION DISTRIBUTION; DIGITAL SKY SURVEY; REDSHIFT-SPACE DISTORTIONS; LUMINOUS RED GALAXIES; LARGE-SCALE STRUCTURE; COLD DARK-MATTER; COSMOLOGICAL PARAMETERS; FOURIER-ANALYSIS; ANALYTIC MODEL; MASS FUNCTION AB The shape of the primordial matter power spectrum encodes critical information on cosmological parameters. At large scales, in the linear regime, the observable galaxy power spectrum P(obs)(k) is expected to follow the shape of the linear matter power spectrum P(lin)(k), but on smaller scales the effects of nonlinearity and galaxy bias make the ratio P(obs)(k)/P(lin)(k) scale dependent. We develop a method that can extend the dynamic range of the primordial matter power spectrum recovery, taking full advantage of precision measurements on quasi-linear scales, by incorporating additional constraints on the galaxy halo occupation distribution (HOD) from the projected galaxy correlation function w(p) (r(p)). We devise an analytic model to calculate observable galaxy power spectrum P(obs)(k) in real space and redshift space, given P(lin)(k) and HOD parameters, and we demonstrate its accuracy at the few percent level with tests against a suite of populated N-body simulations. Once HOD parameters are determined by fitting w(p) (r(p)) measurements for a given cosmological model, galaxy bias is completely specified, and our analytic model predicts both the shape and normalization of P(obs)(k). Applying our method to the main galaxy redshift samples from the Sloan Digital Sky Survey (SDSS), we find that the real-space galaxy power spectrum follows the shape of the nonlinear matter power spectrum at the 1%-2% level up to k = 0.2 h Mpc(-1) and that current observational uncertainties in HOD parameters leave only few percent uncertainties in our scale-dependent bias predictions up to k = 0.5 h Mpc(-1). These uncertainties can be marginalized over in deriving cosmological parameter constraints, and they can be reduced by higher precision w(p) (r(p)) measurements. When we apply our method to the SDSS luminous red galaxy (LRG) samples, we find that the linear bias approximation is accurate to 5% at k <= 0.08 h Mpc(-1), but the strong scale dependence of LRG bias prevents the use of linear theory at k >= 0.08 h Mpc(-1). Our HOD model prediction is in good agreement with the recent SDSS LRG power spectrum measurements at all measured scales (k <= 0.2 h Mpc(-1)), naturally explaining the observed shape of P(obs)(k) in the quasi-linear regime. The phenomenological "Q-model" prescription is a poor description of galaxy bias for the LRG samples, and it can lead to biased cosmological parameter estimates when measurements at k >= 0.1 h Mpc(-1) are included in the analysis. We quantify the potential bias and constraints on cosmological parameters that arise from applying linear theory and Q-model fitting, and we demonstrate the utility of HOD modeling of high-precision measurements of P(obs)(k) on quasi-linear scales, which will be obtainable from the final SDSS data set. C1 [Yoo, Jaiyul] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Yoo, Jaiyul; Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Tinker, Jeremy L.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Zheng, Zheng] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Warren, Michael S.] Los Alamos Natl Lab, Div Theoret Astrophys, Los Alamos, NM 87543 USA. RP Yoo, J (reprint author), Harvard Univ, Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM jyoo@cfa.harvard.edu; dhw@astronomy.ohio-state.edu; tinker@cfcp.uchicago.edu; zhengz@ias.edu; msw@lanl.gov OI Warren, Michael/0000-0002-1218-7904 FU Ohio State University; NSF [AST-0707985, AST-0239759]; Chandra award [GO5-6120B]; Institute for Advanced Study through a John Bahcall Fellowship FX We are grateful to Max Tegmark for kindly providing his no-defog measurements used in our Figure 13. J.Y. has been supported by the Harvard College Observatory through a Donald H. Menzel Fellowship and by the Graduate School of The Ohio State University through a Presidential Fellowship. D. W. acknowledges support from NSF Grant AST-0707985. J.T. was supported by the Chandra award GO5-6120B and National Science Foundation ( NSF) under grant AST-0239759. Z.Z. gratefully acknowledges support from the Institute for Advanced Study through a John Bahcall Fellowship. NR 84 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 967 EP 985 DI 10.1088/0004-637X/698/2/967 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400001 ER PT J AU Urrutia, T Becker, RH White, RL Glikman, E Lacy, M Hodge, J Gregg, MD AF Urrutia, Tanya Becker, Robert H. White, Richard L. Glikman, Eilat Lacy, Mark Hodge, Jacqueline Gregg, Michael D. TI THE FIRST-2MASS RED QUASAR SURVEY. II. AN ANOMALOUSLY HIGH FRACTION OF LoBALs IN SEARCHES FOR DUST-REDDENED QUASARS SO ASTROPHYSICAL JOURNAL LA English DT Review DE galaxies: active; galaxies: evolution; quasars: absorption lines; quasars: general ID ACTIVE GALACTIC NUCLEI; BROAD-ABSORPTION-LINE; DIGITAL-SKY-SURVEY; ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; SUPERMASSIVE BLACK-HOLES; HUBBLE-SPACE-TELESCOPE; RADIO-LOUD QUASARS; DEEP FIELD-SOUTH; 3RD DATA RELEASE AB We present results on a survey to find extremely dust-reddened Type 1 quasars. Combining the FIRST radio survey, the 2MASS Infrared Survey and the Sloan Digital Sky Survey, we have selected a candidate list of 122 potential red quasars. With more than 80% spectroscopically identified objects, well over 50% are classified as dust-reddened Type 1 quasars, whose reddenings (E(B-V)) range from approximately 0.1 to 1.5 mag. They lie well off the color selection windows usually used to detect quasars and many fall within the stellar locus, which would have made it impossible to find these objects with traditional color selection techniques. The reddenings found are much more consistent with obscuration happening in the host galaxy rather than stemming from the dust torus. We find an unusually high fraction of broad absorption line (BAL) quasars at high redshift, all but one of them belonging to the low-ionization BAL (LoBAL) class and many also showing absorption in the metastable Fe II line (FeLoBAL). The discovery of further examples of dust-reddened LoBAL quasars provides more support for the hypothesis that BAL quasars (at least LoBAL quasars) represent an early stage in the lifetime of the quasar. The fact that we see such a high fraction of BALs could indicate that the quasar is in a young phase in which quasar feedback from the BAL winds is suppressing star formation in the host galaxy. C1 [Urrutia, Tanya; Lacy, Mark] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Urrutia, Tanya; Becker, Robert H.; Hodge, Jacqueline; Gregg, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Urrutia, Tanya; Becker, Robert H.; Gregg, Michael D.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Glikman, Eilat] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Urrutia, T (reprint author), CALTECH, Spitzer Sci Ctr, MS 314-6,1200 E Calif Blvd, Pasadena, CA 91125 USA. EM bob@igpp.ucllnl.org; rlw@stsci.edu; eilatg@astro.caltech.edu; mlacy@ipac.caltech.edu; hodge@physics.ucdavis.edu; gregg@igpp.ucllnl.org RI White, Richard/A-8143-2012; OI Urrutia, Tanya/0000-0001-6746-9936 FU US Department of Energy [DE-AC52-07NA27344] FX The authors wish to thank Bryn Feldman for help with the first selections of this catalog and for help in carrying out the observations at Lick 3 m telescope. We are also thankful for the helpful comments from an anonymous referee on this paper. This work was partly performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. NR 110 TC 60 Z9 60 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 1095 EP 1109 DI 10.1088/0004-637X/698/2/1095 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400011 ER PT J AU Carrigan, RA AF Carrigan, Richard A., Jr. TI IRAS-BASED WHOLE-SKY UPPER LIMIT ON DYSON SPHERES SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrobiology; extraterrestrial intelligence; infrared: stars; stars: carbon; stars: fundamental parameters ID MASER SOURCES; CARBON STARS; OUTER DISK; GALAXY; SEARCH; IDENTIFICATION; CLASSIFICATION; CANDIDATES; SPECTRA AB A Dyson sphere is a hypothetical construct of a star purposely shrouded by a cloak of broken-up planetary material to better utilize all of the stellar energy. A clean Dyson sphere identification would give a significant signature for intelligence at work. A search for Dyson spheres has been carried out using the 250,000 source database of the IRAS infrared satellite which covered 96% of the sky. The search has used the Calgary database for the IRAS Low Resolution Spectrometer (LRS) to look for fits to blackbody spectra. Searches have been conducted for both pure (fully cloaked) and partial Dyson spheres in the blackbody temperature region 100K <= T <= 600 K. When other stellar signatures that resemble a Dyson sphere are used to eliminate sources that mimic Dyson spheres very few candidates remain and even these are ambiguous. Upper limits are presented for both pure and partial Dyson spheres. The sensitivity of the LRS was enough to find Dyson spheres with the luminosity of the Sun out to 300 pc, a reach that encompasses a million solar-type stars. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Carrigan, RA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM carrigan@fnal.gov NR 26 TC 16 Z9 16 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 2075 EP 2086 DI 10.1088/0004-637X/698/2/2075 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400089 ER PT J AU Abdo, AA Allen, BT Aune, T Berley, D Casanova, S Chen, C Dingus, BL Ellsworth, RW Fleysher, L Fleysher, R Gonzalez, MM Goodman, JA Hoffman, CM Hopper, B Huntemeyer, PH Kolterman, BE Lansdell, CP Linnemann, JT McEnery, JE Mincer, AI Nemethy, P Noyes, D Pretz, J Ryan, JM Parkinson, PMS Shoup, A Sinnis, G Smith, AJ Sullivan, GW Vasileiou, V Walker, GP Williams, DA Yodh, GB AF Abdo, A. A. Allen, B. T. Aune, T. Berley, D. Casanova, S. Chen, C. Dingus, B. L. Ellsworth, R. W. Fleysher, L. Fleysher, R. Gonzalez, M. M. Goodman, J. A. Hoffman, C. M. Hopper, B. Huentemeyer, P. H. Kolterman, B. E. Lansdell, C. P. Linnemann, J. T. McEnery, J. E. Mincer, A. I. Nemethy, P. Noyes, D. Pretz, J. Ryan, J. M. Parkinson, P. M. Saz Shoup, A. Sinnis, G. Smith, A. J. Sullivan, G. W. Vasileiou, V. Walker, G. P. Williams, D. A. Yodh, G. B. TI THE LARGE-SCALE COSMIC-RAY ANISOTROPY AS OBSERVED WITH MILAGRO SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; Galaxy: halo; ISM: magnetic fields; solar neighborhood; Sun: activity; supernova remnants ID GALACTIC PLANE; INTENSITY AB Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 +/- 0.02 stat. +/- 0.09 sys.) x 10(-3) in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years. C1 [Abdo, A. A.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Abdo, A. A.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Allen, B. T.; Chen, C.; Yodh, G. B.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Aune, T.; Parkinson, P. M. Saz; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Berley, D.; Goodman, J. A.; Hopper, B.; Lansdell, C. P.; Noyes, D.; Smith, A. J.; Sullivan, G. W.; Vasileiou, V.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Casanova, S.; Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Pretz, J.; Sinnis, G.; Walker, G. P.] Los Alamos Natl Lab, Grp P 23, Los Alamos, NM 87545 USA. [Ellsworth, R. W.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Nemethy, P.] NYU, Dept Phys, New York, NY 10003 USA. [Gonzalez, M. M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Linnemann, J. T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [McEnery, J. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Ryan, J. M.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Shoup, A.] Ohio State Univ, Lima, OH 45804 USA. RP Abdo, AA (reprint author), Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. RI McEnery, Julie/D-6612-2012; Casanova, Sabrina/J-8935-2013; OI Casanova, Sabrina/0000-0002-6144-9122; Mincer, Allen/0000-0002-6307-1418 FU National Science Foundation [PHY-0245234, PHY-0302000, PHY-0400424, PHY-0504201, PHY-0601080, ATM-0002744]; US Department of Energy; Los Alamos National Laboratory; University of California; Institute of Geophysics and Planetary Physics FX We acknowledge Scott Delay and Michael Schneider for their dedicated efforts in the construction and maintenance of the Milagro experiment. This work has been supported by the National Science Foundation (under grants PHY-0245234, -0302000, -0400424, -0504201, -0601080, and ATM-0002744) the US Department of Energy (Office of High-Energy Physics and Office of Nuclear Physics), Los Alamos National Laboratory, the University of California, and the Institute of Geophysics and Planetary Physics. NR 22 TC 108 Z9 109 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 2121 EP 2130 DI 10.1088/0004-637X/698/2/2121 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400093 ER PT J AU Ryutov, DD Drake, RP Kane, J Liang, E Remington, BA Wood-Vasey, WM AF Ryutov, D. D. Drake, R. P. Kane, J. Liang, E. Remington, B. A. Wood-Vasey, W. M. TI SIMILARITY CRITERIA FOR THE LABORATORY SIMULATION OF SUPERNOVA HYDRODYNAMICS (vol 518, pg 821, 1999) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Ryutov, D. D.; Drake, R. P.; Kane, J.; Liang, E.; Remington, B. A.; Wood-Vasey, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. OI Drake, R Paul/0000-0002-5450-9844 NR 1 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUN 20 PY 2009 VL 698 IS 2 BP 2144 EP 2144 DI 10.1088/0004-637X/698/2/2144 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 455RQ UT WOS:000266782400095 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Bautista, M Beilicke, M Benbow, W Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, K Cannon, A Celik, O Cesarini, A Chow, YC Ciupik, L Cogan, P Colin, P Cui, W Daniel, MK Dickherber, R Duke, C Dwarkadas, VV Ergin, T Fegan, SJ Finley, JP Finnegan, G Fortin, P Fortson, L Furniss, A Gall, D Gibbs, K Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Moriarty, P Ong, RA Otte, AN Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Theiling, M Toner, JA Valcarcel, L Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Bautista, M. Beilicke, M. Benbow, W. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. Cannon, A. Celik, O. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Colin, P. Cui, W. Daniel, M. K. Dickherber, R. Duke, C. Dwarkadas, V. V. Ergin, T. Fegan, S. J. Finley, J. P. Finnegan, G. Fortin, P. Fortson, L. Furniss, A. Gall, D. Gibbs, K. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Moriarty, P. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Theiling, M. Toner, J. A. Valcarcel, L. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. TI OBSERVATION OF EXTENDED VERY HIGH ENERGY EMISSION FROM THE SUPERNOVA REMNANT IC 443 WITH VERITAS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma rays: observations; ISM: individual (IC 443=VER J0616.9+2230, = MAGIC J0616+225) ID GAMMA-RAY EMISSION; XMM-NEWTON OBSERVATIONS; MOLECULAR CLOUDS; MAGIC TELESCOPE; COSMIC-RAYS; IC-443; NEBULA; PULSAR; DISCOVERY; RADIATION AB We present evidence that the very high energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hr during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 6(h)16(m)51(s)+22 degrees 30'11 '' (J2000)+/- 0 degrees.03(stat)+/- 0 degrees.08(sys), with an intrinsic extension of 0 degrees.16 +/- 0 degrees.03(stat)+/- 0 degrees.04(sys). The VHE spectrum is well fit by a power law (dN/dE = N(0) x(E/TeV)(-Gamma)) with a photon index of 2.99 +/- 0.38(stat)+/- 0.3(sys) and an integral flux above 300 GeV of (4.63 +/- 0.90(stat)+/- 0.93(sys)) x 10(-12) cm(-2) s(-1). These results are discussed in the context of existing models for gamma-ray production in IC 443. C1 [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Acciari, V. A.; Benbow, W.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Celik, O.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Bautista, M.; Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Valcarcel, L.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Daniel, M. K.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.; Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Colin, P.; Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Dwarkadas, V. V.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Fortin, P.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Humensky, TB (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM humensky@uchicago.edu RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010; OI Cesarini, Andrea/0000-0002-8611-8610; Cui, Wei/0000-0002-6324-5772; Daniel, Michael/0000-0002-8053-7910; Ward, John E/0000-0003-1973-0794; Otte, Adam Nepomuk/0000-0002-5955-6383; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU US Department of Energy; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC FX This research is supported by grants from the US Department of Energy, the US National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. Some of the simulations used in this work have been performed on the Joint Fermilab-KICP Supercomputing Cluster. NR 42 TC 66 Z9 66 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2009 VL 698 IS 2 BP L133 EP L137 DI 10.1088/0004-637X/698/2/L133 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 458VB UT WOS:000267052600014 ER PT J AU Acciari, VA Aliu, E Arlen, T Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Cesarini, A Chow, YC Ciupik, L Cogan, P Dickherber, R Duke, C Ergin, T Falcone, A Fegan, SJ Finley, JP Finnegan, G Fortin, P Fortson, L Furniss, A Gibbs, K Gillanders, GH Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S LeBohec, S Maier, G McCann, A McCutcheon, M Millis, J Millis, J Moriarty, P Mukherjee, R Ong, RA Otte, AN Pandel, D Perkins, JS Petry, D Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, S Theiling, M Toner, JA Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M AF Acciari, V. A. Aliu, E. Arlen, T. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Cesarini, A. Chow, Y. C. Ciupik, L. Cogan, P. Dickherber, R. Duke, C. Ergin, T. Falcone, A. Fegan, S. J. Finley, J. P. Finnegan, G. Fortin, P. Fortson, L. Furniss, A. Gibbs, K. Gillanders, G. H. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Millis, J. Millis, J. Moriarty, P. Mukherjee, R. Ong, R. A. Otte, A. N. Pandel, D. Perkins, J. S. Petry, D. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. Theiling, M. Toner, J. A. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. TI EVIDENCE FOR LONG-TERM GAMMA-RAY AND X-RAY VARIABILITY FROM THE UNIDENTIFIED TeV SOURCE HESS J0632+057 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; binaries: general; gamma rays: observations; stars: individual (HESS J0632+057, MWC 148) ID BINARY; DISCOVERY; EMISSION; TELESCOPE; CATALOG; STARS AB HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I + 61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hr in 2006, 2008, and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The nondetection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with the Swift X-Ray Telescope reveal a factor of 1.8 +/- 0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the object as a gamma-ray emitting binary. C1 [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Acciari, V. A.; Benbow, W.; Gibbs, K.; Kildea, J.; Perkins, J. S.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Aliu, E.; Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Arlen, T.; Chow, Y. C.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Grube, J.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Ergin, T.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Finley, J. P.; Sembroski, G. H.; Varlotta, A.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Finnegan, G.; Hui, C. M.; Kieda, D.; LeBohec, S.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Fortin, P.; Mukherjee, R.] Columbia Univ Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Horan, D.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Humensky, T. B.; Swordy, S.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Millis, J.; Millis, J.] Anderson Univ, Dept Phys, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Petry, D.] European So Observ, D-85748 Garching, Germany. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. RP Maier, G (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. EM gernot.maier@mcgill.ca OI Millis, John/0000-0002-2069-9838; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU U. S. Department of Energy; U. S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC FX This research is supported by grants from the U. S. Department of Energy, the U. S. National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by STFC in the U. K. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. We acknowledge the efforts of the Swift team for providing the UVOT/XRT observations. NR 27 TC 29 Z9 29 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 20 PY 2009 VL 698 IS 2 BP L94 EP L97 DI 10.1088/0004-637X/698/2/L94 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 458VB UT WOS:000267052600005 ER PT J AU Barad, MF Colella, P Schladow, SG AF Barad, Michael F. Colella, Phillip Schladow, S. Geoffrey TI An adaptive cut-cell method for environmental fluid mechanics SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE embedded boundary; adaptive mesh refinement; variable-density incompressible flows; projection method; environmental fluid mechanics; finite-volume method ID NAVIER-STOKES EQUATIONS; EMBEDDED BOUNDARY METHOD; INCOMPRESSIBLE 2-PHASE FLOWS; HYPERBOLIC CONSERVATION-LAWS; 2ND-ORDER PROJECTION METHOD; IRREGULAR DOMAINS; POISSONS-EQUATION; HEAT-EQUATION; NUMERICAL-SIMULATION; MESH REFINEMENT AB In this work we present a numerical method for solving the incompressible Navier-Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable-density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded-boundary (or cut-cell) method for complex geometry with block-structured adaptive mesh refinement (AMR) while maintaining conservation and second-order accuracy. The accurate simulation of variable-density fluids necessitates special care in formulating projection methods. This variable-density formulation is well known for incompressible flows in unit-aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addressess the intersection of these issues. The methodology is based on a second-order-accurate projection method with high-order-accurate Godunov finite-differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite-volume AMR discretizations are based on two-way flux matching at refinement boundaries to obtain a conservative method that is second-order accurate in solution error. The control volumes are formed by the intersection of the irregular embeeded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint-block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two- and three-dimensional numerical examples to illustrate the accuracy of the method. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Colella, Phillip] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barad, Michael F.; Schladow, S. Geoffrey] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Barad, MF (reprint author), Stanford Univ, Environm Fluid Mech Lab, Stanford, CA 94305 USA. EM barad@stanford.edu FU National Science Foundation MSPRF; Department of Energy CSGF; U.S. Department of Energy Office of Advanced Scientific Computing [DE-AC02-05CH11231]; U.S. Environmental Protection Agency's Coastal Intensive Sites Network Program [R826940-01-0]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX MFB acknowledges the support of the National Science Foundation MSPRF program and the Department of Energy CSGF program. PC acknowledges support by the U.S. Department of Energy Office of Advanced Scientific Computing under contract No. DE-AC02-05CH11231. SGS acknowledges the U.S. Environmental Protection Agency's Coastal Intensive Sites Network Program (Grant no. R826940-01-0). We thank Caroline Gatti-Bono, Dan Graves, Terry Ligocki, Dan Martin, Peter Schwartz, David Serafini, Chip Smith, Ted Sternberg, David Trebotich, and Brian Van Straalen without their efforts this work would not have been possible. Thanks also to Professor Oliver Fringer. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. This research also used resources at the Stanford Center for Computational Earth & Environmental Science. NR 79 TC 13 Z9 13 U1 3 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD JUN 20 PY 2009 VL 60 IS 5 BP 473 EP 514 DI 10.1002/fld.1893 PG 42 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 444RB UT WOS:000265997000001 ER PT J AU Li, QM Lin, Y Creighton, JR Figiel, JJ Wang, GT AF Li, Qiming Lin, Yong Creighton, J. Randall Figiel, Jeffrey J. Wang, George T. TI Nanowire-Templated Lateral Epitaxilal Growth of Low-Dislocation Density Nonpolar a-Plane GaN on r-Plane Sapphire SO ADVANCED MATERIALS LA English DT Article ID LIGHT-EMITTING-DIODES; MISMATCHED SEMICONDUCTOR-MATERIALS; CHEMICAL-VAPOR-DEPOSITION; GALLIUM NITRIDE; IN-SITU; OVERGROWTH; NANOHETEROEPITAXY; HETEROEPITAXY; REDUCTION; SUBSTRATE AB Coalescence of a vertically aligned GaN nanowire array on r-plane sapphire, a technique called nanowire-templated lateral epitaxial growth, is used to grow low-dislocation density a-plane GaN. The resulting film is connected to the lattice-mismatched substrate by nanowires, which facilitates dramatic strain relaxation and leads to a significant reduction in defects. C1 [Li, Qiming; Lin, Yong; Creighton, J. Randall; Figiel, Jeffrey J.; Wang, George T.] Sandia Natl Labs, Adv Mat Dept, Albuquerque, NM 87185 USA. RP Wang, GT (reprint author), Sandia Natl Labs, Adv Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM gtwang@sandia.gov RI Wang, George/C-9401-2009 OI Wang, George/0000-0001-9007-0173 FU DOE Basic Energy Sciences; DOE EERE National Energy Technology Laboratory; Sandia's Laboratory Directed Research and Development program; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AI85000] FX This research is supported by DOE Basic Energy Sciences, DOE EERE National Energy Technology Laboratory, and Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94AI85000. NR 31 TC 34 Z9 35 U1 2 U2 48 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 19 PY 2009 VL 21 IS 23 BP 2416 EP + DI 10.1002/adma.200802532 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 465GN UT WOS:000267570800010 ER PT J AU Avraham, O Hadas, Y Vald, L Zisman, S Schejter, A Visel, A Klar, A AF Avraham, Oshri Hadas, Yoav Vald, Lilach Zisman, Sophie Schejter, Adi Visel, Axel Klar, Avihu TI Transcriptional control of axonal guidance and sorting in dorsal interneurons by the Lim-HD proteins Lhx9 and Lhx1 SO NEURAL DEVELOPMENT LA English DT Article ID SPINAL-CORD INTERNEURONS; MOTOR-NEURON; COMMISSURAL AXONS; FLOOR PLATE; NERVOUS-SYSTEM; HOMEOBOX GENES; IDENTITY; SPECIFICATION; PROJECTIONS; GENERATION AB Background: Lim-HD proteins control crucial aspects of neuronal differentiation, including subtype identity and axonal guidance. The Lim-HD proteins Lhx2/9 and Lhx1/5 are expressed in the dorsal spinal interneuron populations dI1 and dI2, respectively. While they are not required for cell fate acquisition, their role in patterning the axonal trajectory of dI1 and dI2 neurons remains incompletely understood. Results: Using newly identified dI1-and dI2-specific enhancers to trace axonal trajectories originating from these interneurons, we found that each population is subdivided into several distinct groups according to their axonal pathways. dI1 neurons project axons rostrally, either ipsior contra-laterally, while dI2 are mostly commissural neurons that project their axons rostrally and caudally. The longitudinal axonal tracks of each neuronal population self-fasciculate to form dI1-and dI2-specific bundles. The dI1 bundles are spatially located ventral relative to dI2 bundles. To examine the functional contribution of Lim-HD proteins to establishment of dI axonal projections, the Lim-HD code of dI neurons was altered by cell-specific ectopic expression. Expression of Lhx1 in dI1 neurons caused a repression of Lhx2/9 and imposed caudal projection to the caudal commissural dI1 neurons. Complementarily, when expressed in dI2 neurons, Lhx9 repressed Lhx1/5 and triggered a bias toward rostral projection in otherwise caudally projecting dI2 neurons, and ventral shift of the longitudinal axonal fascicule. Conclusion: The Lim-HD proteins Lhx9 and Lhx1 serve as a binary switch in controlling the rostral versus caudal longitudinal turning of the caudal commissural axons. Lhx1 determines caudal turning and Lhx9 triggers rostral turning. C1 [Avraham, Oshri; Hadas, Yoav; Vald, Lilach; Zisman, Sophie; Schejter, Adi; Klar, Avihu] Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Med Neurobiol, IMRIC, IL-91010 Jerusalem, Israel. [Visel, Axel] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP Klar, A (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Med Neurobiol, IMRIC, IL-91010 Jerusalem, Israel. EM oshria@ekmd.huji.ac.il; yoavh@ekmd.huji.ac.il; lilachvald@gmail.com; sophie.zisman@mail.huji.ac.il; aschejter@gmail.com; avisel@lbl.gov; avihu@cc.huji.ac.il RI Visel, Axel/A-9398-2009 OI Visel, Axel/0000-0002-4130-7784 FU Israel Science Foundation; DFG (German Research Foundation); National Human Genome Research Institute; National Institute for Neurological Disorders and Stroke FX The authors thank Thomas Jessell for Isl1, the Lhx1/5 monoclonal antibody, and Lhx2/9 and Lhx1/5 rabbit antibodies and the Lhx2 and Lhx9 chick genes, Artur Kania for chick Lhx1 gene, and Len Pennacchio for help with initial characterization of enhancers in mice. We are also grateful to Artur Kania and Sara Wilson for comments on the manuscript. This work was supported by grants to AK from the Israel Science Foundation, and DFG (German Research Foundation). AV was supported by grants from the National Human Genome Research Institute and from the National Institute for Neurological Disorders and Stroke. NR 44 TC 42 Z9 42 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1749-8104 J9 NEURAL DEV JI Neural Dev. PD JUN 19 PY 2009 VL 4 AR 21 DI 10.1186/1749-8104-4-21 PG 22 WC Developmental Biology; Neurosciences SC Developmental Biology; Neurosciences & Neurology GA 475DY UT WOS:000268339800001 PM 19545367 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Cuenca Almenar, C Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Saltoacute, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Saltoacute, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Evidence for a Narrow Near-Threshold Structure in the J/psi phi Mass Spectrum in B+ -> J/psi phi K+ Decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID MESONS; QCD AB Evidence is reported for a narrow structure near the J/psi phi threshold in exclusive B+ -> J/psi phi K+ decays produced in (p) over barp collisions at root s = 1.96 TeV. A signal of 14 +/- 5 events, with statistical significance in excess of 3.8 standard deviations, is observed in a data sample corresponding to an integrated luminosity of 2.7 fb(-1), collected by the CDF II detector. The mass and natural width of the structure are measured to be 4143.0 +/- 2.9(stat) +/- 1.2(syst) MeV/c(2) and 11.7(-5.0)(+8.3)(stat) +/- 3.7(stat) Mev/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Giakoumopoulou, V.; Giokaris, N.; Lancaster, M.; Malik, S.; Manousakis-Katsikakis, A.; Nurse, E.; Vellidis, C.; Vine, T.; Waters, D.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Azfar, F.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Martinez, M.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Saltoacute, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Scribano, A.; Sforza, F.; Squillacioti, P.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56100 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015 OI Ruiz, Alberto/0000-0002-3639-0368; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580 NR 42 TC 151 Z9 151 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 242002 DI 10.1103/PhysRevLett.102.242002 PG 7 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900017 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pinfold, J Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, L Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pinfold, J. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, L. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Observation of Exclusive Charmonium Production and gamma gamma -> mu(+)mu(-) in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHI-MESON PRODUCTION; HADRON COLLIDERS; EXCHANGE PROCESSES; DIFFRACTION; DETECTOR; POMERON; PROBE; QCD AB In CDF we have observed the reactions p + (p) over bar -> p + X + (p) over bar, with X being a centrally produced J/psi, psi(2S), or chi(c0), and gamma gamma -> mu(+)mu(-) in p (p) over bar collisions at root s = 1.96 TeV. The event signature requires two oppositely charged central muons, and either no other particles or one additional photon detected. Exclusive vector meson production is as expected for elastic photoproduction, gamma + p -> J/psi(psi(2S)) + p, observed here for the first time in hadron-hadron collisions. We also observe exclusive chi(c0) -> J/psi + gamma. The cross sections d sigma/dy vertical bar(y=0) for J/psi, psi(2S), and chi(c0) are 3.92 +/- 0: 25(stat) +/- 0.52(syst) nb, 0.53 +/- 0.09(stat) +/- 0.10(syst) nb, and 76 +/- 10(stat) +/- 10(syst) nb, respectively, and the continuum is consistent with QED. We put an upper limit on the cross section for Odderon exchange in exclusive J/psi production. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, E.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Autonomous Univ Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Hamilton, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Pinfold, J.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.; Zhang, L.] Univ Alberta, Inst Particle Phys, Edmonton, AB T6G 2G7, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.; Vataga, E.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giagu, S.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giagu, S.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. Inst Particle Phys Univ Alberta, Edmonton, AB T6G 2G7, Canada. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Pinfold, J.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.; Zhang, L.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Pinfold, J.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.; Zhang, L.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Pinfold, J.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.; Zhang, L.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Pinfold, J.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.; Zhang, L.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015 OI Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 35 TC 122 Z9 122 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 242001 DI 10.1103/PhysRevLett.102.242001 PG 7 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900016 ER PT J AU Bao, W Qiu, Y Huang, Q Green, MA Zajdel, P Fitzsimmons, MR Zhernenkov, M Chang, S Fang, MH Qian, B Vehstedt, EK Yang, JH Pham, HM Spinu, L Mao, ZQ AF Bao, Wei Qiu, Y. Huang, Q. Green, M. A. Zajdel, P. Fitzsimmons, M. R. Zhernenkov, M. Chang, S. Fang, Minghu Qian, B. Vehstedt, E. K. Yang, Jinhu Pham, H. M. Spinu, L. Mao, Z. Q. TI Tunable (delta pi, delta pi)-Type Antiferromagnetic Order in alpha-Fe(Te,Se) Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN-DENSITY-WAVE; PHASE-DIAGRAM; SYSTEMS AB The new alpha-Fe(Te,Se) superconductors share the common iron building block and ferminology with the LaFeAsO and BaFe(2)As(2) families of superconductors. In contrast with the predicted commensurate spin-density-wave order at the nesting wave vector (pi, 0), a completely different magnetic order with a composition tunable propagation vector (delta pi, delta pi) was determined for the parent compound Fe(1+y)Te in this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a short-range one even in the highest T(C) sample. An alternative to the prevailing nesting Fermi surface mechanism is required to understand the latest family of ferrous superconductors. C1 [Bao, Wei] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Bao, Wei; Fitzsimmons, M. R.; Zhernenkov, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Qiu, Y.; Huang, Q.; Green, M. A.; Zajdel, P.; Chang, S.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.; Green, M. A.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Zajdel, P.] Silesian Univ, Inst Phys, PL-40007 Katowice, Poland. [Fang, Minghu; Qian, B.; Vehstedt, E. K.; Mao, Z. Q.] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Fang, Minghu; Yang, Jinhu] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. [Pham, H. M.; Spinu, L.] Univ New Orleans, Dept Phys, New Orleans, LA 70148 USA. RP Bao, W (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. EM wbao@ruc.edu.cn RI Bao, Wei/E-9988-2011; 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Lujan Center, LANL/G-4896-2012; Vehstedt, Erin/K-5570-2012; Zajdel, Pawel/B-7574-2013 OI Bao, Wei/0000-0002-2105-461X; Vehstedt, Erin/0000-0002-9659-0791; Zajdel, Pawel/0000-0003-1220-5866 FU DOE-OS-BES; NSF [DMR-0645305]; DOE [DE-FG02-07ER46358]; Research Corp.; NBRP of China [2006CB01003, 2009CB929104]; DARPA [HR0011-07-1-0031] FX Work at LANL was supported by the DOE-OS-BES; at Tulane by the NSF grant DMR-0645305, the DOE DE-FG02-07ER46358 and the Research Corp.; at ZU by NBRP of China (No. 2006CB01003, 2009CB929104) and the PCSIRT of the MOE of China (IRT0754); at UNO by DARPA Grant No. HR0011-07-1-0031. SPINS is in part supported by NSF under Agreement DMR-0454672. NR 38 TC 448 Z9 454 U1 5 U2 98 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 247001 DI 10.1103/PhysRevLett.102.247001 PG 4 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900055 PM 19659037 ER PT J AU de Sousa, R Moore, JE AF de Sousa, Rogerio Moore, Joel E. TI Comment on "Ferroelectrically Induced Weak Ferromagnetism by Design" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID BIFEO3 C1 [de Sousa, Rogerio] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP de Sousa, R (reprint author), Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. RI de Sousa, Rogerio/C-1078-2008; Moore, Joel/O-4959-2016 OI de Sousa, Rogerio/0000-0003-4258-270X; Moore, Joel/0000-0002-4294-5761 NR 6 TC 9 Z9 9 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 249701 DI 10.1103/PhysRevLett.102.249701 PG 1 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900073 PM 19659055 ER PT J AU Martin, C Tillman, ME Kim, H Tanatar, MA Kim, SK Kreyssig, A Gordon, RT Vannette, MD Nandi, S Kogan, VG Bud'ko, SL Canfield, PC Goldman, AI Prozorov, R AF Martin, C. Tillman, M. E. Kim, H. Tanatar, M. A. Kim, S. K. Kreyssig, A. Gordon, R. T. Vannette, M. D. Nandi, S. Kogan, V. G. Bud'ko, S. L. Canfield, P. C. Goldman, A. I. Prozorov, R. TI Nonexponential London Penetration Depth of FeAs-Based Superconducting RFeAsO0.9F0.1 (R=La, Nd) Single Crystals SO PHYSICAL REVIEW LETTERS LA English DT Article ID SMFEASO0.8F0.2; ANISOTROPY; FIELD; GAPS; MGB2 AB The superconducting penetration depth lambda(T) has been measured in RFeAsO0.9F0.1 (R=La, Nd) single crystals (R-1111). In Nd-1111, we find an upturn in lambda(T) upon cooling and attribute it to the paramagnetism of the Nd ions, similar to the case of the electron-doped cuprate Nd-Ce-Cu-O. After the correction for paramagnetism, the London penetration depth variation is found to follow a power-law behavior, Delta lambda(L)(T)proportional to T-2 at low temperatures. The same T-2 variation of lambda(T) was found in nonmagnetic La-1111 crystals. Analysis of the superfluid density and of penetration depth anisotropy over the full temperature range is consistent with two-gap superconductivity. Based on this and on our previous work, we conclude that both the RFeAsO (1111) and BaFe2As2 (122) families of pnictide superconductors exhibit unconventional two-gap superconductivity. C1 [Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX I. I. Mazin, G. D. Samolyuk, J. Schmalian, and A. B. Vorontsov for discussions. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from the Alfred P. Sloan Foundation. NR 47 TC 78 Z9 78 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 247002 DI 10.1103/PhysRevLett.102.247002 PG 4 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900056 PM 19659038 ER PT J AU Morozov, VS Chao, AW Krisch, AD Leonova, MA Raymond, RS Sivers, DW Wong, VK Garishvili, A Gebel, R Lehrach, A Lorentz, B Maier, R Prasuhn, D Stockhorst, H Welsch, D Hinterberger, F Kondratenko, AM AF Morozov, V. S. Chao, A. W. Krisch, A. D. Leonova, M. A. Raymond, R. S. Sivers, D. W. Wong, V. K. Garishvili, A. Gebel, R. Lehrach, A. Lorentz, B. Maier, R. Prasuhn, D. Stockhorst, H. Welsch, D. Hinterberger, F. Kondratenko, A. M. TI Experimental Test of a New Technique to Overcome Spin-Depolarizing Resonances SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLARIZED PROTONS; COSY; ACCELERATION; SYNCHROTRON; SCATTERING; DEUTERONS AB We recently tested a new spin resonance crossing technique, Kondratenko Crossing (KC), by sweeping an rf-solenoid's frequency through an rf-induced spin resonance with both the KC and traditional fast crossing (FC) patterns. Using both rf bunched and unbunched 1.85 GeV/c polarized deuterons stored in COSY, we varied the parameters of both crossing patterns. Compared to FC with the same crossing speed, KC reduced the depolarization by measured factors of 4.7 +/- 0.3 and 19(-5)(+12) for unbunched and bunched beams, respectively. This clearly showed the large potential benefit of Kondratenko Crossing over fast crossing. C1 [Morozov, V. S.; Chao, A. W.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.] Univ Michigan, Spin Phys Ctr, Ann Arbor, MI 48109 USA. [Garishvili, A.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Stockhorst, H.; Welsch, D.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Hinterberger, F.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Kondratenko, A. M.] GOO Zaryad, Novosibirsk 630058, Russia. [Chao, A. W.] SLAC, Menlo Pk, CA 94025 USA. [Garishvili, A.] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany. RP Morozov, VS (reprint author), Univ Michigan, Spin Phys Ctr, Ann Arbor, MI 48109 USA. OI Lehrach, Andreas/0000-0002-6991-2257 FU German BMBF Science Ministry; Helmholtz Association [VH-VI-231] FX We thank the COSY staff for the successful operation of COSY with its injector cyclotron and polarized ion source. We are grateful to E. D. Courant, Ya. S. Derbenev, D. Eversheim, G. Fidecaro, W. Haeberli, H. Huang, Yu. F. Orlov, H. Rohdjea, T. Roser, H. Sato, W. Scobel, E. J. Stephenson, K. Ulbrich, K. Yonehara, and others for their help and advice. This research was supported by grants from the German BMBF Science Ministry, its FFE program at COSY, and the Helmholtz Association through funds provided to the virtual institute "Spin and strong QCD'' (VH-VI-231). NR 45 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 244801 DI 10.1103/PhysRevLett.102.244801 PG 4 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900031 PM 19659013 ER PT J AU Muller, H Chiow, SW Herrmann, S Chu, S AF Mueller, Holger Chiow, Sheng-wey Herrmann, Sven Chu, Steven TI Atom Interferometers with Scalable Enclosed Area SO PHYSICAL REVIEW LETTERS LA English DT Article ID FINE-STRUCTURE CONSTANT; PHOTON RECOIL; GRAVITY; LASER AB Bloch oscillations (i.e., coherent acceleration of matter waves by an optical lattice) and Bragg diffraction are integrated into light-pulse atom interferometers with large momentum splitting between the interferometer arms, and hence enhanced sensitivity. Simultaneous acceleration of both arms in the same internal states suppresses systematic effects, and simultaneously running a pair of interferometers suppresses the effect of vibrations. Ramsey-Bordeacute interferometers using four such Bloch-Bragg-Bloch beam splitters exhibit 15% contrast at 24hk splitting, the largest so far (hk is the photon momentum); single beam splitters achieve 88hk. The prospects for reaching 100 s of hk and applications such as gravitational wave sensors are discussed. C1 [Mueller, Holger; Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mueller, Holger; Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mueller, Holger; Chiow, Sheng-wey; Herrmann, Sven] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, 366 Le Conte Hall, Berkeley, CA 94720 USA. EM hm@berkeley.edu RI Mueller, Holger/E-3194-2015 FU National Science Foundation [0400866]; Alexander von Humboldt Foundation FX We are indebted to Jason Hogan, Mark Kasevich, Tim Kovachy, and Shau-yu Lan for discussions. This material is based upon work supported by the National Science Foundation under Grant No. 0400866. S. H. and H. M. thank the Alexander von Humboldt Foundation. NR 33 TC 52 Z9 52 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 240403 DI 10.1103/PhysRevLett.102.240403 PG 4 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900003 PM 19658985 ER PT J AU Nisoli, C Abraham, D Lookman, T Saxena, A AF Nisoli, Cristiano Abraham, Douglas Lookman, Turab Saxena, Avadh TI Thermal Stability of Strained Nanowires SO PHYSICAL REVIEW LETTERS LA English DT Article ID SILICIDE NANOSTRUCTURES; STRUCTURAL-PROPERTIES; SI(001) SURFACE; GROWTH; TRANSITION; ISLANDS; FILMS; MODEL AB Stranski-Krastanow strained islands undergo a shape anisotropy transition as they grow in size, finally evolving toward nanowires. This effect has been explained until now via simple energetic models that neglect thermodynamics. We investigate theoretically the stability of strained nanowires under thermal fluctuations of the long side. We find phase transitions from nanowires back to nanoislands as the temperature is increased and as the height of the nanostructure is raised or lowered, and we predict regions of phase coexistence. Our results are general, but explain recent data on the growth of erbium silicide on a vicinal Si surface. C1 [Nisoli, Cristiano; Abraham, Douglas; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nisoli, Cristiano; Abraham, Douglas; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Abraham, Douglas] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. RP Nisoli, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Nisoli, Cristiano/0000-0003-0053-1023; Lookman, Turab/0000-0001-8122-5671 FU National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank Dr. Q. Cai of Fudan University and her group for sharing data with us. This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 24 TC 10 Z9 10 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 245504 DI 10.1103/PhysRevLett.102.245504 PG 4 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900045 PM 19659027 ER PT J AU van der Slot, PJM Freund, HP Miner, WH Benson, SV Shinn, M Boller, KJ AF van der Slot, P. J. M. Freund, H. P. Miner, W. H., Jr. Benson, S. V. Shinn, M. Boller, K. -J. TI Time-Dependent, Three-Dimensional Simulation of Free-Electron-Laser Oscillators SO PHYSICAL REVIEW LETTERS LA English DT Article ID FEL; AMPLIFIERS AB We describe a procedure for the simulation of free-electron-laser (FEL) oscillators. The simulation uses a combination of the MEDUSA simulation code for the FEL interaction and the OPC code to model the resonator. The simulations are compared with recent observations of the oscillator at the Thomas Jefferson National Accelerator Facility and are in substantial agreement with the experiment. C1 [van der Slot, P. J. M.; Boller, K. -J.] Univ Twente, LPNO, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Freund, H. P.; Miner, W. H., Jr.] Sci Applicat Int Corp, Mclean, VA 22102 USA. [Benson, S. V.; Shinn, M.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP van der Slot, PJM (reprint author), Univ Twente, LPNO, MESA Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands. FU Joint Technology Office in the U. S; OPC FX This work was supported in part by the Joint Technology Office in the U. S. The authors would like to thank J.G. Karssenberg for his contribution to the OPC package. NR 14 TC 8 Z9 8 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 244802 DI 10.1103/PhysRevLett.102.244802 PG 4 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900032 PM 19659014 ER PT J AU Ylvisaker, ER Kunes, J McMahan, AK Pickett, WE AF Ylvisaker, E. R. Kunes, J. McMahan, A. K. Pickett, W. E. TI Charge Fluctuations and the Valence Transition in Yb under Pressure SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM MONTE-CARLO; MEAN-FIELD THEORY; YTTERBIUM; METAL; GPA AB We present a dynamical mean-field theory study of the valence transition (f(14)-> f(13)) in elemental, metallic Yb under pressure. Our calculations reproduce the observed valence transition as reflected in the volume dependence of the 4f occupation. The transition is advanced by heating, and suggests quasiparticle or Kondo-like structure in the spectra of the trivalent end state, consistent with the early lanthanides. Results for the local charge fluctuations and susceptibility, however, show novel signatures uniquely associated with the valence transition itself, indicating that Yb is a fluctuating valence material in contrast with the intermediate valence behavior seen in the early trivalent lanthanides Ce, Pr, and Nd. C1 [Ylvisaker, E. R.; Pickett, W. E.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Kunes, J.] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. [Kunes, J.] Acad Sci Czech Republic, Inst Phys, Prague 16253 6, Czech Republic. [McMahan, A. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ylvisaker, ER (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RI Kunes, Jan/B-4484-2008 OI Kunes, Jan/0000-0001-9682-7640 FU DOE SciDAC [DE-FC02-06ER25794]; Deutsche Forschungsgemeinschaft FX The authors would like to thank Philipp Werner for providing his CTQMC code and Richard T. Scalettar and Simone Chiesa for stimulating discussions. E. R. Y. and W. E. P. were supported by DOE SciDAC Grant No. DE-FC02-06ER25794. J. K. acknowledges the support of SFB 484 of the Deutsche Forschungsgemeinschaft and the computer time provided by Leibniz Supercomputing Center in Munich. Work at LLNL was performed under the auspices of the U. S. DOE under contract W-7405-Eng-48. NR 26 TC 18 Z9 18 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 19 PY 2009 VL 102 IS 24 AR 246401 DI 10.1103/PhysRevLett.102.246401 PG 4 WC Physics, Multidisciplinary SC Physics GA 460OV UT WOS:000267197900051 PM 19659033 ER PT J AU Chakraborty, S Ahmed, M Jackson, TL Thiemens, MH AF Chakraborty, Subrata Ahmed, Musahid Jackson, Teresa L. Thiemens, Mark H. TI Response to Comments on "Experimental Test of Self-Shielding in Vacuum Ultraviolet Photodissociation of CO" SO SCIENCE LA English DT Editorial Material ID OXYGEN ISOTOPIC FRACTIONATION; 115 NM; ORIGIN; (CO)-C-12-O-16; (CO)-C-13-O-18; ABSORPTION AB We address the comments by Lyons et al., Federman and Young, and Yin et al. regarding the interpretation of our carbon monoxide photodissociation experiments and provide further experimental data analysis, including measured synchrotron beam profiles. The experimental data do not support existing self-shielding models that attempt to explain observed meteoritic oxygen isotopic compositions because they rely on previously untested theoretical assumptions. C1 [Chakraborty, Subrata; Jackson, Teresa L.; Thiemens, Mark H.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Thiemens, MH (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM mthiemens@ucsd.edu RI Ahmed, Musahid/A-8733-2009 NR 19 TC 7 Z9 7 U1 0 U2 7 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 19 PY 2009 VL 324 IS 5934 DI 10.1126/science.1167919 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 459SU UT WOS:000267130600023 ER PT J AU McComas, DJ Allegrini, F Bochsler, P Frisch, P Funsten, HO Gruntman, M Janzen, PH Kucharek, H Mobius, E Reisenfeld, DB Schwadron, NA AF McComas, D. J. Allegrini, F. Bochsler, P. Frisch, P. Funsten, H. O. Gruntman, M. Janzen, P. H. Kucharek, H. Moebius, E. Reisenfeld, D. B. Schwadron, N. A. TI Lunar backscatter and neutralization of the solar wind: First observations of neutral atoms from the Moon SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID REGOLITH; SYSTEM; SUN AB The solar wind continuously flows out from the Sun, filling interplanetary space and impinging directly on the lunar regolith. While most solar wind ions are implanted into the lunar dust, a significant fraction is expected to scatter back and be emitted as energetic neutral atoms (ENAs). However, this population has never been observed, let alone characterized. Here we show the first observations of backscattered neutral atoms from the Moon and determine that the efficiency for this process, the lunar ENA albedo, is similar to 10%. This indicates that the Moon emits similar to 150 metric tons of hydrogen per year. Our observations are important for understanding the universal processes of backscattering and neutralization from complex surfaces, which occur wherever space plasmas interact with dust and other small bodies throughout our solar system as well as in exoplanetary systems throughout the galaxy and beyond. Citation: McComas, D. J., et al. (2009), Lunar backscatter and neutralization of the solar wind: First observations of neutral atoms from the Moon, Geophys. Res. Lett., 36, L12104, doi: 10.1029/2009GL038794. C1 [McComas, D. J.; Allegrini, F.] SW Res Inst, San Antonio, TX 78228 USA. [Bochsler, P.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Frisch, P.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gruntman, M.] Univ So Calif, Astronaut & Space Technol Div, Los Angeles, CA 90089 USA. [Janzen, P. H.; Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP McComas, DJ (reprint author), SW Res Inst, POB Drawer 28510, San Antonio, TX 78228 USA. EM david.mccomas@swri.org; frederic.allegrini@swri.org; bochsler@soho.unibe.ch; frisch@oddjob.uchicago.edu; hfunsten@lanl.gov; mikeg@usc.edu; paul.janzen@umontana.edu; kucharek@atlas.sr.unh.edu; eberhard.moebius@unh.edu; dan.reisenfeld@umontana.edu; nathanas@bu.edu RI Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015; Gruntman, Mike/A-5426-2008; OI Funsten, Herbert/0000-0002-6817-1039; Gruntman, Mike/0000-0002-0830-010X; Moebius, Eberhard/0000-0002-2745-6978 FU NASA [NNG05EC85C]; Swiss Prodex program FX We gratefully acknowledge all of the contributions made by the outstanding men and women of the IBEX team who have been and are making this mission a tremendous success. This work was funded by NASA as a part of the Explorer Program under contract NNG05EC85C; parts of IBEX were also funded by the Swiss Prodex program. NR 24 TC 50 Z9 50 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 18 PY 2009 VL 36 AR L12104 DI 10.1029/2009GL038794 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 460KH UT WOS:000267186100009 ER PT J AU Lewicki, JL Hilley, GE Fischer, ML Pan, LH Oldenburg, CM Dobeck, L Spangler, L AF Lewicki, Jennifer L. Hilley, George E. Fischer, Marc L. Pan, Lehua Oldenburg, Curtis M. Dobeck, Laura Spangler, Lee TI Eddy covariance observations of surface leakage during shallow subsurface CO2 releases SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID NET ECOSYSTEM EXCHANGE; FLUX MEASUREMENTS; QUALITY ASSESSMENT; MAMMOTH MOUNTAIN; WATER-VAPOR; CARBON; CALIFORNIA; RESPIRATION; ATMOSPHERE; ENERGY AB We tested the ability of eddy covariance (EC) to detect, locate, and quantify surface CO2 flux leakage signals within a background ecosystem. For 10 days starting on 9 July 2007, and for 7 days starting on 3 August 2007, 0.1 (Release 1) and 0.3 (Release 2) t CO2 d(-1), respectively, were released from a horizontal well similar to 100 m in length and similar to 2.5 m in depth located in an agricultural field in Bozeman, Montana. An EC station measured net CO2 flux (F-c) from 8 June 2006 to 4 September 2006 (mean and standard deviation = -12.4 and 28.1 g m(-2) d(-1), respectively) and from 28 May 2007 to 4 September 2007 (mean and standard deviation = -12.0 and 28.1 g m(-2) d(-1), respectively). The Release 2 leakage signal was visible in the F-c time series, whereas the Release 1 signal was difficult to detect within variability of ecosystem fluxes. To improve detection ability, we calculated residual fluxes (F-cr) by subtracting fluxes corresponding to a model for net ecosystem exchange from F-c. F-cr had reduced variability and lacked the negative bias seen in corresponding F-c distributions. Plotting the upper 90th percentile F-cr versus time enhanced the Release 2 leakage signal. However, values measured during Release 1 fell within the variability assumed to be related to unmodeled natural processes. F-cr measurements and corresponding footprint functions were inverted using a least squares approach to infer the spatial distribution of surface CO2 fluxes during Release 2. When combined with flux source area evaluation, inversion results roughly located the CO2 leak, while resolution was insufficient to quantify leakage rate. C1 [Lewicki, Jennifer L.; Pan, Lehua; Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Dobeck, Laura; Spangler, Lee] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Fischer, Marc L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Hilley, George E.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. RP Lewicki, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jllewicki@lbl.gov RI Oldenburg, Curtis/L-6219-2013; Pan, Lehua/G-2439-2015; OI Oldenburg, Curtis/0000-0002-0132-6016; Spangler, Lee/0000-0002-3870-6696 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We are grateful to five anonymous reviewers whose scrutiny and constructive comments greatly improved this paper. We thank J. Ajo-Franklin for careful review of the draft manuscript, K. Gullickson for assistance in the field, and H. P. Schmid for the FSAM source code. This work was funded by the ZERT Project, Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, NETL, of the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 33 TC 24 Z9 24 U1 1 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 18 PY 2009 VL 114 AR D12302 DI 10.1029/2008JD011297 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 460KS UT WOS:000267187200005 ER PT J AU Yu, HG AF Yu, Hua-Gen TI Spherical Electron Cloud Hopping Molecular Dynamics Simulation on Dissociative Recombination of Protonated Water SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID AB-INITIO DYNAMICS; CAPTURE PROCESSES; BRANCHING RATIOS; H3O+; IONS; TRANSITIONS; COLLISIONS; MECHANISM; COMPLEX; SURFACE AB Dissociative recombination (DR) of H(3)O(+) with electrons at zero collision energy has been studied by a direct ab initio molecular dynamics method on four low-lying electronic states of the system. Initial conditions for trajectories are determined by a spherical electron cloud hopping (SECH) model, while nonadiabatic effects are considered through a surface hopping scheme. The energies, forces, and nonadiabatic coupling strengths (NACS) used in trajectory propagations are calculated on-the-fly via state-average complete active self-consistent field (CASSCF) theory with full valence electrons. Dynamics results show that the H(3)O(+) DR is ultrafast and yields diversity of products. Product branching fractions are predicted to be 0.660 for (OH + 2H), 0.230 for (H(2)O + H), 0.108 for (OH + H(2)), and 0.002 for (O + H + H(2)), which are in excellent agreement with the heavy-ion storage ring experimental results. Kinetic energies of the eliminated hydrogen. atoms are large and show a bimodal distribution. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Yu, HG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hgy@bnl.gov RI Yu, Hua-Gen/N-7339-2015 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Division of Chemical Sciences, Office of Basic Energy Sciences FX This work was performed at Brookhaven National Laboratory under Contract DE-AC02-98CH10886 with the U.S. Department of Energy and was supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. NR 51 TC 1 Z9 1 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 18 PY 2009 VL 113 IS 24 BP 6555 EP 6561 DI 10.1021/jp902063w PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457LO UT WOS:000266930100006 PM 19469513 ER PT J AU Roy, LE Jakubikova, E Guthrie, MG Batista, ER AF Roy, Lindsay E. Jakubikova, Elena Guthrie, M. Graham Batista, Enrique R. TI Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods? SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID COMPUTATIONAL CHEMISTRY APPROACH; 2-ELECTRON REDUCTION POTENTIALS; TRANSITION-METAL-COMPLEXES; EFFECTIVE CORE POTENTIALS; SOLVATION FREE-ENERGIES; AB-INITIO; MOLECULAR CALCULATIONS; P-BENZOQUINONES; PK(A) VALUES; BASIS-SETS AB Density Functional calculations have been performed to calculate the one-electron oxidation potential for ferrocene and the redox couples for a series of small transition metal compounds of the first-, second-, and third-row elements. The solvation effects are incorporated via a self-consistent reaction field (SCRF), using the polarized continuum model (PCM). From our study of seven different density functionals combined with three different basis sets for ferrocene, we find that no density functional method can reproduce the redox trends from experiment when referencing our results to the experimental absolute standard hydrogen electrode (SHE) potential. In addition, including additional necessary assumptions such as solvation effects does not lead to any conclusion regarding the appropriate functional. However, we propose that if one references their transition metal compounds results to the calculated absolute half-cell potential of ferrocene, they can circumvent the additional assumptions necessary to predict a redox couple. Upon employing this method on several organometallic and inorganic complexes, we obtained very good correlation between calculated and experimental values (R(2) = 0.97), making it possible to predict trends with a high level of confidence. The hybrid functional B3LYP systematically underestimates the redox potential; however, the linear correlation between DFT and experiment is good (R(2) = 0.96) when including a baseline shift. This protocol is a powerful tool that allows theoretical chemists to predict the redox potential in solution of several transition metal complexes a priori and aids in the rational design of redox-active catalysts. C1 [Roy, Lindsay E.; Jakubikova, Elena; Guthrie, M. Graham; Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Batista, ER (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM erb@lanl.gov FU Laboratory Directed Research and Development (LDRD); U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 73 TC 117 Z9 117 U1 7 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 18 PY 2009 VL 113 IS 24 BP 6745 EP 6750 DI 10.1021/jp811388w PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457LO UT WOS:000266930100028 PM 19459608 ER PT J AU Paolone, A Palumbo, O Rispoli, P Cantelli, R Autrey, T Karkamkar, A AF Paolone, Annalisa Palumbo, Oriele Rispoli, Pasquale Cantelli, Rosario Autrey, Tom Karkamkar, Abhijeet TI Absence of the Structural Phase Transition in Ammonia Borane Dispersed in Mesoporous Silica: Evidence of Novel Thermodynamic Properties SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE PROPERTIES; ANELASTIC SPECTROSCOPY; THERMAL-DECOMPOSITION; DIHYDROGEN BOND; HIGH-PRESSURE; DYNAMICS; NMR; BH3NH3; CRYSTAL; RELEASE AB The occurrence of the structural phase transition of NH(3)BH(3) dispersed in mesoporous silica was studied by anelastic spectroscopy and differential scanning calorimetry. Both measurements indicate that the structural phase transition is suppressed in the sample in which ammonia borane covers only the internal surface of the scaffold. Such a drastic change in the main features of this compound indicates that novel thermodynamic properties can be obtained by means of the fine dispersion of NH(3)BH(3) at a monolayer level. C1 [Paolone, Annalisa; Palumbo, Oriele] Univ Roma La Sapienza, Dipartimento Fis, CNISM, I-00185 Rome, Italy. [Paolone, Annalisa] CNR INFM, Lab Reg SuperMAT, Salerno, Italy. [Autrey, Tom; Karkamkar, Abhijeet] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Paolone, A (reprint author), Univ Roma La Sapienza, Dipartimento Fis, CNISM, Piazzale A Moro 2, I-00185 Rome, Italy. EM Annalisa.Paolone@roma1.infn.it RI Paolone, Annalisa/B-7701-2015; Palumbo, Oriele/B-7694-2015; OI Paolone, Annalisa/0000-0002-4839-7815; Palumbo, Oriele/0000-0003-4968-1049 FU Italian "Ministero dell'Ambiente"; U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences Division FX The present study was supported by the Italian "Ministero dell'Ambiente". T.A. and A.K. wish to acknowledge support from the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences Division. PNNL is operated by Battelle for the U.S. DOE. NR 33 TC 46 Z9 46 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 18 PY 2009 VL 113 IS 24 BP 10319 EP 10321 DI 10.1021/jp902341s PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 457LQ UT WOS:000266930400002 ER PT J AU Kathmann, SM Schenter, GK Garrett, BC Chen, B Siepmann, JI AF Kathmann, Shawn M. Schenter, Gregory K. Garrett, Bruce C. Chen, Bin Siepmann, J. Ilja TI Thermodynamics and Kinetics of Nanoclusters Controlling Gas-to-Particle Nucleation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Review ID VAPOR-LIQUID NUCLEATION; TRANSITION-STATE THEORY; BIAS MONTE-CARLO; DENSITY-FUNCTIONAL APPROACH; UNITED-ATOM DESCRIPTION; MOLECULAR-DYNAMICS SIMULATION; BINARY HOMOGENEOUS NUCLEATION; NONUNIFORM POLYATOMIC SYSTEMS; LENNARD-JONES SYSTEM; N-ALCOHOL SERIES AB Nucleation of new particles from vapor-phase molecular precursors is an important process in the synthesis of nanomaterials and in the formation of aerosols in the atmosphere. Vapor-to-particle nucleation is a macroscopic process controlled by nanoscale particles (e.g., molecular clusters). Computational approaches to nucleation have been limited by the lack of a consistent theory of the process and by the lack of efficient approaches to simulate the properties of clusters relevant to nucleation. In this article, we focus on two advances that allow nucleation to be treated in a rigorous manner for molecular systems: dynamical nucleation theory permits a consistent treatment of the nucleation kinetics and aggregation-volume-bias Monte Carlo simulations provides an efficient approach to evaluate the thermodynamics of molecular clusters important in nucleation. The combination of these two approaches positions molecular computational approaches to make significant advances in our understanding of the mechanisms of nucleation, particularly in multiple component systems that play crucial roles in nanoscience applications and in the atmosphere. C1 [Kathmann, Shawn M.; Schenter, Gregory K.; Garrett, Bruce C.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Chen, Bin] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Siepmann, J. Ilja] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM shawn.kathmann@pnl.gov; binchen@lsu.edu; siepmann@umn.edu RI Garrett, Bruce/F-8516-2011; Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 NR 170 TC 34 Z9 35 U1 5 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 18 PY 2009 VL 113 IS 24 BP 10354 EP 10370 DI 10.1021/jp8092226 PG 17 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 457LQ UT WOS:000266930400011 ER PT J AU Maria, J Truong, TT Yao, JM Lee, TW Nuzzo, RG Leyffer, S Gray, SK Rogers, JA AF Maria, Joana Truong, Tu T. Yao, Jimin Lee, Tae-Woo Nuzzo, Ralph G. Leyffer, Sven Gray, Stephen K. Rogers, John A. TI Optimization of 3D Plasmonic Crystal Structures for Refractive Index Sensing SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GOLD-FILMS; METAL NANOPARTICLES; LIGHT TRANSMISSION; NANOMETRIC HOLES; ARRAYS; LITHOGRAPHY; RESONANCE; SENSITIVITY; RESOLUTION; MOLECULES AB We study the refractive index sensitive transmission of a 3D plasmonic crystal that consists of a square array of subwavelength cylindrical nanowells in a polymer conformally coated with a gold film. Using extensive 3D finite-difference time-domain simulations, we investigate the effect of system parameters such as periodicity, well diameter and depth, and metal thickness on its refractive index sensitivity. These theoretical results are also confirmed experimentally in some cases. Our calculations predict an enhancement in sensitivity by an order of magnitude when the plasmonic crystal characteristics are optimized. C1 [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Maria, Joana; Truong, Tu T.; Yao, Jimin; Nuzzo, Ralph G.; Rogers, John A.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Maria, Joana; Truong, Tu T.; Yao, Jimin; Nuzzo, Ralph G.; Rogers, John A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Maria, Joana; Truong, Tu T.; Yao, Jimin; Nuzzo, Ralph G.; Rogers, John A.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Lee, Tae-Woo] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Leyffer, Sven] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Gray, SK (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM gray@anl.gov; jrogers@uiuc.edu RI Truong, Tu/E-7029-2011; Rogers, John /L-2798-2016 FU U.S. Department of Energy [DE-FG02-07ER4653, DE-FG02-07ER46471]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which is partially supported by the U.S. Department of Energy under Grant Nos. DE-FG02-07ER4653 and DE-FG02-07ER46471. The work at Argonne and use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors gratefully acknowledge use of the Turing cluster maintained and operated by the Computational Science and Engineering Program at the University of Illinois. Turing is a 1536-processor Apple G5 X-server cluster devoted to high performance computing in engineering and science. NR 32 TC 28 Z9 28 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 18 PY 2009 VL 113 IS 24 BP 10493 EP 10499 DI 10.1021/jp9024552 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 457LQ UT WOS:000266930400030 ER PT J AU Wang, YT Rashkeev, SN AF Wang, Yanting Rashkeev, Sergey N. TI Melting Phase Transitions and Catalytic Activity of Bilayer Gold Nanoclusters SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CO OXIDATION; SUPPORTED GOLD; NANOPARTICLES; TEMPERATURE; CLUSTERS; PARTICLES; CHEMISTRY; TITANIA AB Recent experiments in oxidation catalysis indicate that bilayer gold nanostructures exhibit exceptional catalytic activity at ambient temperatures. Here we use molecular dynamics simulations to show that an unsupported bilayer gold nanocluster has a melting transition smeared out over a broad temperature range. The transition is characterized by an interplay between the intralayer and interlayer diffusion processes, and the transition temperature region ranges from about 300 to 1200 K. We suggest that surface thermal instabilities of partially melted bilayer gold nanoclusters result in their exceptional catalytic activity at ambient temperatures. For gold nanoclusters with more than two layers, the melting transition temperature range narrows, and the activity of the cluster decreases due to the suppression of surface fluctuations. These results systematically explain experimental observations showing that catalytic ability of gold nanoclusters decreases with size. C1 [Wang, Yanting; Rashkeev, Sergey N.] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Wang, Yanting] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China. RP Rashkeev, SN (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. EM sergey.rashkeev@inl.gov RI Wang, Yanting/C-4649-2013 OI Wang, Yanting/0000-0002-0474-4790 FU INL Laboratory Directed Research and Development program; U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-051D14517]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; High Performance Computer Center at Idaho National Laboratory FX We would like to acknowledge the INL Laboratory Directed Research and Development program and the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 for financial support. This research used resources of the National Energy Research Scientific Computing Center (NER-SC, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It was also supported in part by a grant of computer time from High Performance Computer Center at Idaho National Laboratory. NR 24 TC 2 Z9 2 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 18 PY 2009 VL 113 IS 24 BP 10517 EP 10520 DI 10.1021/jp902995x PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 457LQ UT WOS:000266930400034 ER PT J AU Celniker, SE Dillon, LAL Gerstein, MB Gunsalus, KC Henikoff, S Karpen, GH Kellis, M Lai, EC Lieb, JD MacAlpine, DM Micklem, G Piano, F Snyder, M Stein, L White, KP Waterston, RH AF Celniker, Susan E. Dillon, Laura A. L. Gerstein, Mark B. Gunsalus, Kristin C. Henikoff, Steven Karpen, Gary H. Kellis, Manolis Lai, Eric C. Lieb, Jason D. MacAlpine, David M. Micklem, Gos Piano, Fabio Snyder, Michael Stein, Lincoln White, Kevin P. Waterston, Robert H. CA modENCODE Consortium TI Unlocking the secrets of the genome SO NATURE LA English DT Article ID GENE-EXPRESSION MAP; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; FUNCTIONAL ELEMENTS; RNAI LIBRARY; C-ELEGANS; DISCOVERY; NETWORKS; PROJECT; IDENTIFICATION C1 [Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Biol, Berkeley, CA 94720 USA. [Dillon, Laura A. L.] NHGRI, Div Extramural Res, NIH, Bethesda, MD 20892 USA. [Gerstein, Mark B.] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA. [Gerstein, Mark B.] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA. [Gerstein, Mark B.] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. [Gunsalus, Kristin C.; Piano, Fabio] NYU, Ctr Genom & Syst Biol, New York, NY 10003 USA. [Henikoff, Steven] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA. [Karpen, Gary H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Dept Genome & Computat Biol, Berkeley, CA 94720 USA. [Kellis, Manolis] MIT, Broad Inst, Cambridge, MA 02140 USA. [Kellis, Manolis] Harvard Univ, Cambridge, MA 02140 USA. [Kellis, Manolis] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA. [Lai, Eric C.] Sloan Kettering Inst, New York, NY 10065 USA. [Lieb, Jason D.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA. [Lieb, Jason D.] Univ N Carolina, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA. [MacAlpine, David M.] Duke Univ, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA. [Micklem, Gos] Cambridge Syst Biol Ctr, Cambridge CB2 1QR, England. [Micklem, Gos] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Snyder, Michael] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06824 USA. [Stein, Lincoln] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11542 USA. [White, Kevin P.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. [White, Kevin P.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Waterston, Robert H.] Dept Genome Sci, Seattle, WA 98195 USA. [Waterston, Robert H.] Univ Washington, Sch Med, Seattle, WA 98195 USA. RP Celniker, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Biol, Berkeley, CA 94720 USA. EM celniker@fruitfly.org RI Brenner, Steven/A-8729-2008; OI Brenner, Steven/0000-0001-7559-6185; Brown, Christopher/0000-0002-3785-5008; Micklem, Gos/0000-0002-6883-6168; Edsall, Lee Elizabeth/0000-0002-0326-2829 FU NHGRI NIH HHS [R01 HG004037, R01 HG004037-02, U01 HG004258, U01 HG004258-03, U01 HG004279]; NIGMS NIH HHS [R01 GM066272] NR 35 TC 392 Z9 398 U1 7 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 18 PY 2009 VL 459 IS 7249 BP 927 EP 930 DI 10.1038/459927a PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 458XS UT WOS:000267063500031 PM 19536255 ER PT J AU Fusseis, F Regenauer-Lieb, K Liu, J Hough, RM De Carlo, F AF Fusseis, F. Regenauer-Lieb, K. Liu, J. Hough, R. M. De Carlo, F. TI Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones SO NATURE LA English DT Article ID DEFORMATION; MYLONITES; ROCKS; LITHOSPHERE; PROPAGATION; TRANSITION; NUCLEATION; TRANSPORT; GROWTH; PHASE AB The feedback between fluid migration and rock deformation in mid-crustal shear zones is acknowledged as being critical for earthquake nucleation, the initiation of subduction zones and the formation of mineral deposits(1-3). The importance of this poorly understood feedback is further highlighted by evidence for shear-zone-controlled advective flow of fluids in the ductile lower crust(4) and the recognition that deformation-induced grain-scale porosity is a key to large-scale geodynamics(5,6). Fluid migration in the middle crust cannot be explained in terms of classical concepts. The environment is considered too hot for a dynamic fracture-sustained permeability as in the upper crust(7), and fluid pathways are generally too deformed to be controlled by equilibrium wetting angles that apply to hotter, deeper environments(8-10). Here we present evidence that mechanical and chemical potentials control a syndeformational porosity generation in mid-crustal shear zones. High-resolution synchrotron X-ray tomography and scanning electron microscopy observations allow us to formulate a model for fluid migration in shear zones where a permeable porosity is dynamically created by viscous grain-boundary sliding, creep cavitation, dissolution and precipitation. We propose that syndeformational fluid migration in our 'granular fluid pump' model is a self-sustained process controlled by the explicit role of the rate of entropy production of the underlying irreversible mechanical and chemical microprocesses. The model explains fluid transfer through the middle crust, where strain localization in the creep regime is required for plate tectonics, the formation of giant ore deposits, mantle degassing and earthquake nucleation. Our findings provide a key component for the understanding of creep instabilities in the middle crust. C1 [Fusseis, F.; Regenauer-Lieb, K.] Univ Western Australia, Sch Earth & Environm, Crawley, WA 6009, Australia. [Regenauer-Lieb, K.; Liu, J.; Hough, R. M.] CSIRO Explorat & Min, Kensington, WA 6151, Australia. [De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Fusseis, F (reprint author), Univ Western Australia, Sch Earth & Environm, 35 Stirling Highway, Crawley, WA 6009, Australia. EM fusseis@cyllene.uwa.edu.au RI Regenauer-Lieb, Klaus/F-9560-2011; Liu, Jie/G-3551-2011; Regenauer-Lieb, Klaus/H-5706-2014; Fusseis, Florian/M-5321-2016 OI Regenauer-Lieb, Klaus/0000-0002-2198-5895; Fusseis, Florian/0000-0002-3104-8109 FU Commonwealth of Australia; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Western Australian Premier's Research Fellowship; University of Western Australia FX This work was supported by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. The work was supported by iVEC through the use of visualization resources and expertise provided by the WASP and ARRC facilities. We acknowledge the Centre for Microscopy, Characterization and Analysis at the University of Western Australia for the use of its FESEM. Our work was financially supported by the Western Australian Premier's Research Fellowship program and the University of Western Australia through a research grant. The Multiscale Earth System Dynamics group as well as H. Stuenitz, R. Heilbronner and D. Healy participated in discussions. C. Schrank assisted with data processing. NR 30 TC 66 Z9 66 U1 11 U2 73 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 18 PY 2009 VL 459 IS 7249 BP 974 EP 977 DI 10.1038/nature08051 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 458XS UT WOS:000267063500040 PM 19536262 ER PT J AU Pol, VG Calderon-Moreno, JM Thiyagarajan, P AF Pol, Vilas G. Calderon-Moreno, Jose M. Thiyagarajan, P. TI Catalyst-Free, One-Step Synthesis of Olivary-Shaped Carbon from Olive Oil SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID PARAMAGNETIC CARBON; AUTOGENIC PRESSURE; SPHERES; PYROLYSIS; MICROSTRUCTURE; HYDROCARBONS; TEMPERATURES; PERFORMANCE; MESITYLENE; PARTICLES AB High-purity olivary-shaped carbon particles with a diameter of similar to 1.5 mu m at the middle and a length of similar to 3 mu m were synthesized by the thermolysis [700 degrees C] of olive oil tinder its autogenic pressure in a closed reactor. We employed in situ mass spectrometry to monitor the volatile gases responsible for the autogenic pressure generated during the thermolysis of olive oil in the closed reactor and also measured the autogenic pressure as a function of temperature. The olivary shape of as-prepared microcarbon is verified by scanning electron microscopy and the composition by C,H,N-S and energy-dispersive X-ray analysis. The structural information is determined by powder X-ray diffraction and Raman spectroscopy, while the magnetic properties are determined by electron paramagnetic resonance. We propose a putative mechanism for their formation by using all the complementary data. C1 [Pol, Vilas G.; Thiyagarajan, P.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. [Calderon-Moreno, Jose M.] Acad Romana, Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania. RP Pol, VG (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vilaspol@gmail.com RI Calderon Moreno, Jose/B-2867-2008 OI Calderon Moreno, Jose/0000-0001-8376-9082 FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work benefited from the use of the facilities at IPNS, CNM, and EMC at Argonne National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We acknowledge Nada Dimitrijevic at CSE for the EPR measurement of the OSCPs. NR 31 TC 8 Z9 8 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JUN 17 PY 2009 VL 48 IS 12 BP 5691 EP 5695 DI 10.1021/ie900095v PG 5 WC Engineering, Chemical SC Engineering GA 456RJ UT WOS:000266864800016 ER PT J AU Xiao, HY Gao, F Zu, XT Weber, WJ AF Xiao, H. Y. Gao, Fei Zu, X. T. Weber, W. J. TI Ab initio molecular dynamics simulation of a pressure induced zinc blende to rocksalt phase transition in SiC SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRANSFORMATION; MECHANISM; CRYSTALS AB The high-pressure induced phase transformation from the zinc blende to rocksalt structure in SiC has been studied by the ab initio molecular dynamics method. The simulations showed that SiC passes through a tetragonal intermediate state before transforming to a monoclinic phase at 160 GPa. The mechanism for this phase transformation agrees well with recent ab initio MD simulations, in which the applied pressure was as high as similar to 600 GPa, but in the present study the transformation occurs at much lower pressure. C1 [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM hyxiao@uestc.edu.cn; Fei.Gao@pnl.gov RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830] FX F Gao and W J Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 29 TC 6 Z9 7 U1 3 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 17 PY 2009 VL 21 IS 24 AR 245801 DI 10.1088/0953-8984/21/24/245801 PG 5 WC Physics, Condensed Matter SC Physics GA 453AE UT WOS:000266581500024 PM 21693956 ER PT J AU Ockwig, NW Greathouse, JA Durkin, JS Cygan, RT Daemen, LL Nenoff, TM AF Ockwig, Nathan W. Greathouse, Jeffery A. Durkin, Justin S. Cygan, Randall T. Daemen, Luke L. Nenoff, Tina M. TI Nanoconfined Water in Magnesium-Rich 2:1 Phyllosilicates SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INELASTIC NEUTRON-SCATTERING; SUPERCOOLED CONFINED WATER; TOTAL-ENERGY CALCULATIONS; HYDROGEN-BONDED LIQUIDS; AUGMENTED-WAVE METHOD; X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; BULK WATER; AB-INITIO; MESOSCOPIC CONFINEMENT AB Inelastic neutron scattering, density functional theory, ab initio molecular dynamics, and classical molecular dynamics were used to examine the behavior of nanoconfined water in palygorskite and sepiolite. These complementary methods provide a strong basis to illustrate and correlate the significant differences observed in the spectroscopic signatures of water in two unique clay minerals. Distortions of silicate tetrahedra in the smaller-pore palygorskite exhibit a limited number of hydrogen bonds having relatively short bond lengths. However, without the distorted silicate tetrahedra, an increased number of hydrogen bonds are observed in the larger-pore sepiolite with corresponding longer bond distances. Because there is more hydrogen bonding at the pore interface in sepiolite than in palygorskite, we expect librational modes to have higher overall frequencies (i.e., more restricted rotational motions); experimental neutron scattering data clearly illustrates this shift in spectroscopic signatures. It follows that distortions of the silicate tetrahedra in these minerals effectively disrupt hydrogen-bonding patterns at the silicate-water interface, and this has a greater impact on the dynamical behavior of nanoconfined water than the actual size of the pore or the presence of coordinatively unsaturated magnesium edge sites. C1 [Ockwig, Nathan W.; Greathouse, Jeffery A.; Durkin, Justin S.; Cygan, Randall T.] Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. [Nenoff, Tina M.] Sandia Natl Labs, Surface & Interface Sci Dept, Albuquerque, NM 87185 USA. [Daemen, Luke L.] Los Alamos Natl Lab, LANSCE LC, Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Greathouse, JA (reprint author), Sandia Natl Labs, Dept Geochem, POB 5800, Albuquerque, NM 87185 USA. EM jagreat@sandia.gov RI Lujan Center, LANL/G-4896-2012 FU Sandia National Laboratories; U.S. Department of Energy [W-7405-ENG-36] FX We would like to thank Roland Stumpf for helpful discussions. This work was supported in part by the Laboratory Directed Research and Development (LDRD) program of Sandia National Laboratories. Additional support was provided by the Office of Basic Energy Sciences of the U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research was also sponsored by the United States Department of Energy under contract W-7405-ENG-36. The work benefited from the use of the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos National Laboratory, which is funded by the Department of Energy Office of Science, Basic Energy Sciences. NR 94 TC 33 Z9 35 U1 4 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 17 PY 2009 VL 131 IS 23 BP 8155 EP 8162 DI 10.1021/ja900812m PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 465XL UT WOS:000267623100036 PM 19469542 ER PT J AU Lian, J Zhang, JM Namavar, F Zhang, YW Lu, FY Haider, H Garvin, K Weber, WJ Ewing, RC AF Lian, Jie Zhang, Jiaming Namavar, Fereydoon Zhang, Yanwen Lu, Fengyuan Haider, Hani Garvin, Kevin Weber, W. J. Ewing, Rodney C. TI Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia SO NANOTECHNOLOGY LA English DT Article ID NI THIN-FILMS; PURE ZIRCONIA; AG IONS; IRRADIATION; IMPLANTATION; CRYSTALLINE; TRANSITION; COATINGS; FUEL AB Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared with bulk zirconia counterparts, and it is of particular importance for controlling the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) in different size regimes. In this work, we performed ion beam bombardments on bilayers (amorphous and cubic) of nano-zirconia using 1 MeV Kr(2+) irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. A slower kinetics in the grain growth from cubic nanocrystalline zirconia was found as compared with that for the tetragonal grains recrystallized from the amorphous layer. The radiation-induced nanograins of tetragonal ZrO(2) are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion beam methods provide the means to control the phase stability and structure of zirconia polymorphs. C1 [Lian, Jie; Lu, Fengyuan] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Zhang, Jiaming; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Namavar, Fereydoon; Haider, Hani; Garvin, Kevin] Univ Nebraska, Med Ctr, Omaha, NE 68198 USA. [Zhang, Yanwen; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lian, J (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. EM lianj@rpi.edu RI Lian, Jie/A-7839-2010; Lu, Fengyuan/A-2875-2011; Weber, William/A-4177-2008; Zhang, Jiaming/H-5591-2012 OI Lu, Fengyuan/0000-0003-1912-2713; Weber, William/0000-0002-9017-7365; FU US Department of Energy [DE-FG02-97ER45656, DE-AC05-76RL01830]; Nebraska Research Initiative; University of Nebraska Medical Center FX This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-FG02-97ER45656 and DE-AC05-76RL01830, and the Nebraska Research Initiative and the University of Nebraska Medical Center. The authors also acknowledge the assistance of the staff of IVEM-Tandem facility at ANL during ion irradiation and in situ TEM observation. NR 35 TC 28 Z9 28 U1 2 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUN 17 PY 2009 VL 20 IS 24 AR 245303 DI 10.1088/0957-4484/20/24/245303 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 450XY UT WOS:000266436500009 PM 19468161 ER PT J AU Loustau-Chartez, F Robeson, RM Custelcean, R Sachleben, RA Bonnesen, PV AF Loustau-Chartez, Fanny Robeson, Rachel M. Custelcean, Radu Sachleben, Richard A. Bonnesen, Peter V. TI 2,2,3,3,11,11,12,12-Octamethyl-1,4,7,10,13-pentaoxacyclohexadecane: improved synthesis and crystal structure with NaSCN SO TETRAHEDRON LETTERS LA English DT Article DE Crown ether; Improved synthesis; 16-Crown-5; Sodium AB An efficient synthesis of 2,2,3,3,11,11,12,12-octamethyl-1,4,7,10,13-pentaoxacyclohexadecane (1,OM16C5) is described, which affords over an order of magnitude improvement in yield over the previously reported method. The first X-ray crystal structure of 1, as a complex with NaSCN, is also reported. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Loustau-Chartez, Fanny; Robeson, Rachel M.; Custelcean, Radu; Bonnesen, Peter V.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Sachleben, Richard A.] Momenta Pharmaceut, Cambridge, MA 02142 USA. RP Bonnesen, PV (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM bonnesenpv@ornl.gov RI Custelcean, Radu/C-1037-2009; Bonnesen, Peter/A-1889-2016 OI Custelcean, Radu/0000-0002-0727-7972; Bonnesen, Peter/0000-0002-1397-8281 FU Environmental Management Science Program, Offices of Science and Environmental Management, US Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Environmental Management Science Program, Offices of Science and Environmental Management, US Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 10 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0040-4039 J9 TETRAHEDRON LETT JI Tetrahedron Lett. PD JUN 17 PY 2009 VL 50 IS 24 BP 2936 EP 2938 DI 10.1016/j.tetlet.2009.03.221 PG 3 WC Chemistry, Organic SC Chemistry GA 447JV UT WOS:000266188300024 ER PT J AU Reece, SY Woodward, JJ Marletta, MA AF Reece, Steven Y. Woodward, Joshua J. Marletta, Michael A. TI Synthesis of Nitric Oxide by the NOS-like Protein from Deinococcus radiodurans: A Direct Role for Tetrahydrofolate SO BIOCHEMISTRY LA English DT Article ID COMPLETE GENOME SEQUENCE; HYDROXY-L-ARGININE; BACILLUS-SUBTILIS; LIVER MICROSOMES; HEME DOMAIN; SYNTHASE; TETRAHYDROBIOPTERIN; BIOSYNTHESIS; INTERMEDIATE; NITRATION AB Genes encoding for proteins with high sequence homology to the heme-containing, oxygenase domain of mammalian nitric oxide synthase (NOS) have been identified in a number of bacteria. Many of these species of bacteria do not contain the genes that encode for the synthetic machinery to produce tetrahydrobiopterin (H(4)B), a cofactor of NOS required for NO synthesis. These bacteria have the genes for the synthesis of tetrahydrofolate (H(4)F) which contains the redox-active pteridine ring of H(4)B. These observations led us to investigate whether H(4)F could be used for the synthesis of NO by NOS-like enzymes from bacteria that cannot make H(4)B. The NOS gene from one such bacterium, Deinococcus radiodurans, was cloned and expressed (deiNOS) in Escherichia coli and then purified and characterized. The K(D) of deiNOS for the NOS substrate arginine (0.9 +/- 0.1 mM) drops by over 2 orders of magnitude in the presence of H(4)F (7.4 +/- 0.1 mu M). Further, NO is synthesized from the NOS substrate N-hydroxy-L-arginine (NHA) by deiNOS in the presence of H(4)F. Stopped-flow spectroscopic data reveal that H(4)F accelerates the rate of decay of the ferrous-oxy/ferric-superoxo species in substrate turnover. These data strongly Suggest that H(4)F may be used by D. radiodurans to replace H(4)B as a redox-active cofactor for nitric oxide synthesis. C1 [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, QB3 Inst, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Reece, Steven Y.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, QB3 Inst, Dept Chem, 570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU Aldo DeBenedictis Fund FX Funding was provided by the Aldo DeBenedictis Fund. NR 47 TC 19 Z9 21 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUN 16 PY 2009 VL 48 IS 23 BP 5483 EP 5491 DI 10.1021/bi900385g PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 456PX UT WOS:000266860400049 PM 19388666 ER PT J AU Bishop, JKB Wood, TJ AF Bishop, James K. B. Wood, Todd J. TI Year-round observations of carbon biomass and flux variability in the Southern Ocean SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID WARM-CORE RING; PARTICULATE MATTER; ROBOTIC OBSERVATIONS; ANTHROPOGENIC CO2; DEPTH CIRCULATION; ATLANTIC OCEAN; TWILIGHT ZONE; PACIFIC; IMPACT; WATERS AB Three Carbon Explorer (CE) floats profiling to kilometer depths in the Southern Ocean tracked dawn-dusk variations of mixing and stratification, particulate organic carbon, and light scattering and sedimentation at 100, 250, and 800 m continuously from January 2002 to April 2003. Data were analyzed in conjunction with contemporaneous satellite winds and chlorophyll and derived subsurface light fields. The CE deployed at 66 degrees S, 172 degrees W operated in the ice edge zone in absence of light. Two CEs deployed at 55 degrees S, 172 degrees W recorded wintertime mixing to similar to 400 m yet observed very different bloom dynamics and sedimentation the following spring. Four hypotheses are explored. The strongest hypothesis is that shallow transient stratification of the deep winter mixed layer to shallower than photosynthetic critical depth occurred more frequently in the nonbloom, higher-sedimentation case. The lower particle export to 800 m under the bloom was hypothesized to be due to higher interception of sinking carbon by a relatively starved overwintering zooplankton population. In the Southern Ocean, surface phytoplankton biomass may counterindicate particle flux at kilometer depths. C1 [Bishop, James K. B.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Bishop, James K. B.; Wood, Todd J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Bishop, JKB (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 307 McCone Hall, Berkeley, CA 94720 USA. EM jkbishop@berkeley.edu; tjwood@lbl.gov NR 33 TC 22 Z9 22 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD JUN 16 PY 2009 VL 23 AR GB2019 DI 10.1029/2008GB003206 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 460KM UT WOS:000267186600001 ER PT J AU Hanley, AB Burch, R AF Hanley, A. Bryan Burch, Rachel TI Re: The Role of STAT-3 in the Induction of Apoptosis in Pancreatic Cancer Cells by Benzyl Isothiocyanate SO JOURNAL OF THE NATIONAL CANCER INSTITUTE LA English DT Letter C1 [Hanley, A. Bryan] Moorepk Food Res Ctr, Agr & Food Dev Author, TEAGASC, Fermoy, Cork, Ireland. [Burch, Rachel] Leatherhead Food Int, Leatherhead, Surrey, England. RP Hanley, AB (reprint author), Moorepk Food Res Ctr, Agr & Food Dev Author, TEAGASC, Fermoy, Cork, Ireland. EM abryanhanley@gmail.com NR 3 TC 1 Z9 1 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0027-8874 J9 J NATL CANCER I JI J. Natl. Cancer Inst. PD JUN 16 PY 2009 VL 101 IS 12 BP 893 EP 893 DI 10.1093/jnci/djp120 PG 1 WC Oncology SC Oncology GA 460XH UT WOS:000267225000012 PM 19509359 ER PT J AU Borodko, Y Jones, L Lee, H Frei, H Somorjai, G AF Borodko, Yuri Jones, Louis Lee, Hyunjoo Frei, Heinz Somorjai, Gabor TI Spectroscopic Study of Tetradecyltrimethylammonium Bromide Pt-C(14)TAB Nanoparticles: Structure and Stability SO LANGMUIR LA English DT Article ID ASYMMETRIC LINE-SHAPES; HOLE PAIR MECHANISM; CETYLTRIMETHYLAMMONIUM BROMIDE; PLATINUM NANOCRYSTALS; CATIONIC SURFACTANTS; SURFACES; SPECTRA; FTIR AB The vibrational spectra of platinum nanoparticles (12 nm) capped with tetradecyltrimethylammonium bromide, C(14)TAB, were investigated by Fourier transform infrared (FTIR) spectroscopy. We have shown that the thermal decay of Pt-C(14)TAB nanoparticles in N-2, H-2, and O-2 atmospheres leads to the release of the hydrocarbon chain of the surfactant and the formation of a strongly bonded layer of ammonium cations on the platinum surface. The platinum atoms accessible to CO chemisorption were not reducible by hydrogen in the temperature range from 30 to 200 degrees C. A FTIR spectrum of C(14)TAB adsorbed on Pt nanoparticles was dramatically perturbed as compared with pure C(14)TAB. New intense and broad bands centered at 1450 cm(-1) and 760 cm(-1) are making their appearance in Pt-C(14)TAB. It may be speculated that new bands are the result of coupling between conducting electrons of Pt and molecular vibrations of adsorbed C(14)TAB, and as a consequence, specific vibrational modes of ammonium cation are transformed into electron-vibrational modes. C1 [Borodko, Yuri; Somorjai, Gabor] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. [Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Borodko, Yuri; Somorjai, Gabor] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jones, Louis; Lee, Hyunjoo; Somorjai, Gabor] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Borodko, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Lee, Hyunjoo/G-8034-2012 OI Lee, Hyunjoo/0000-0002-4538-9086 FU U.S. Department of Energy [DE-AC02-05CH112] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under contract no. DE-AC02-05CH112. NR 28 TC 31 Z9 31 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 16 PY 2009 VL 25 IS 12 BP 6665 EP 6671 DI 10.1021/la803406p PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 457LN UT WOS:000266929900014 PM 19397251 ER PT J AU Zarzycki, P Rosso, KM AF Zarzycki, Piotr Rosso, Kevin M. TI Origin of Two Time-Scale Regimes in Potentiometric Titration of Metal Oxides. A Replica Kinetic Monte Carlo Study SO LANGMUIR LA English DT Article ID DISSOLUTION-ACTIVE SITES; MINERAL-WATER INTERFACE; OXIDE/ELECTROLYTE INTERFACE; SURFACE HETEROGENEITY; PROTON BINDING; ADSORPTION; REACTIVITY; REGENERATION; SUSPENSIONS; DEPLETION AB Replica kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface nonuniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton-binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation does not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic nonuniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed, and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies. C1 [Zarzycki, Piotr; Rosso, Kevin M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Zarzycki, P (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,MSIN K8-96, Richland, WA 99352 USA. EM piotr.zarzycki@pnl.gov OI Zarzycki, Piotr/0000-0003-3891-7159 FU U.S. Department of Energy FX This work was supported by a grant from the U.S. Department of Energy, Office of Basic Energy Sciences, Geosciences Program. We thank James R. Rustad (Department of Geology, University of California, Davis) and William Casey (Department of Chemistry, University of California, Davis) for many helpful discussions and their valuable remarks. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 26 TC 7 Z9 7 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 EI 1520-5827 J9 LANGMUIR JI Langmuir PD JUN 16 PY 2009 VL 25 IS 12 BP 6841 EP 6848 DI 10.1021/la900069r PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 457LN UT WOS:000266929900038 PM 19425599 ER PT J AU Goertz, MP Zhu, XY Houston, JE AF Goertz, M. P. Zhu, X. -Y. Houston, J. E. TI Exploring the Liquid-like Layer on the Ice Surface SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; WATER; VISCOSITY; WIRE AB Using interfacial force microscopy and a spherical glass probe, we investigate the adhesive and mechanical properties of the so-called liquid-like layer (L-LL) on the surface of ice at various temperatures over the range from -10 to -30 degrees C. We find that the layer thickness closely follows that predicted on thermodynamic grounds, while the adhesive interaction has the behavior of a "frustrated capillary", strongly suggesting that the layer is viscoelastic. This viscoelasticity is directly probed using a lateral-dither technique to obtain information on the layer's viscous response as a function of both temperature and interfacial separation. C1 [Goertz, M. P.; Zhu, X. -Y.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Houston, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhu, XY (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM zhu@umn.edu; jehoust@sandia.gov FU Sandia National Laboratories; United Sates Department of Energy's National Nuclear Security Administration [AC04-94AL85000] FX Portions of this work were performed under the support of Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Sates Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. We thank Nathan Moore for help with analysis of the friction data. NR 31 TC 19 Z9 21 U1 5 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 16 PY 2009 VL 25 IS 12 BP 6905 EP 6908 DI 10.1021/la9001994 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 457LN UT WOS:000266929900047 PM 19505161 ER PT J AU Hsiao, SC Shum, BJ Onoe, H Douglas, ES Gartner, ZJ Mathies, RA Bertozzi, CR Francis, MB AF Hsiao, Sonny C. Shum, Betty J. Onoe, Hiroaki Douglas, Erik S. Gartner, Zev J. Mathies, Richard A. Bertozzi, Carolyn R. Francis, Matthew B. TI Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; STEM-CELLS; IN-VITRO; ADHESION; MECHANISM; LECTINS; COMPLEX; GENES AB Previously, we reported a method for the attachment of living cells to surfaces through the hybridization of synthetic DNA strands attached to their plasma membrane. The oligonucleotides were introduced using metabolic carbohydrate engineering, which allowed reactive tailoring of the cell surface glycans for chemoselective bioconjugation. While this method is highly effective for cultured mammalian cells, we report here a significant improvement of this technique that allows the direct modification of cell surfaces with NHS-DNA conjugates. This method is rapid and efficient, allowing virtually any mammalian cell to be patterned on surfaces bearing complementary DNA in under 1 h. We demonstrate this technique using several types of cells that are generally incompatible with integrin-targeting approaches, including red blood cells and primary T-cells. Cardiac myoblasts were also captured. The immobilization procedure itself was found not to activate primary T-cells, in contrast to previously reported antibody- and lectin-based methods. Myoblast cells were patterned with high efficiency and remained undifferentiated after surface attachment. Upon changing to differentiation media, myotubes formed in the center of the patterned areas with an excellent degree of edge alignment. The availability of this new protocol greatly expands the applicability of the DNA-based attachment strategy for the generation of artificial tissues and the incorporation of living cells into device settings. C1 [Hsiao, Sonny C.; Shum, Betty J.; Onoe, Hiroaki; Gartner, Zev J.; Mathies, Richard A.; Bertozzi, Carolyn R.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Douglas, Erik S.] Univ Calif Berkeley, UCSF UC Berkeley Joint Grad Grp, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.; Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu RI Onoe, Hiroaki/A-3724-2012 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC03-76SF00098]; Jane Coffin Childs Memorial Fund for Medical Research FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. This investigation was partially funded by a grant to Z.J.G. by the Jane Coffin Childs Memorial Fund for Medical Research. The authors wish to thank Prof. Randall Lee (UCSF Department of Cardiology) for myoblast cells and for many helpful discussions. Primary T-cells harvested from mice were obtained in collaboration with Nina Hartman and the laboratory of Prof. Jay Groves (UC Berkeley Chemistry). NR 36 TC 53 Z9 53 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 16 PY 2009 VL 25 IS 12 BP 6985 EP 6991 DI 10.1021/la900150n PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 457LN UT WOS:000266929900058 PM 19505164 ER PT J AU Capel-Sanchez, MC Blanco-Brieva, G Campos-Martin, JM de Frutos, MP Wen, W Rodriguez, JA Fierro, JLG AF Capel-Sanchez, M. C. Blanco-Brieva, G. Campos-Martin, J. M. de Frutos, M. P. Wen, W. Rodriguez, J. A. Fierro, J. L. G. TI Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface SO LANGMUIR LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; TI-CONTAINING CATALYSTS; K-EDGE XANES; X-RAY; HYDROGEN-PEROXIDE; ALKENE EPOXIDATION; ACTIVE-SITES; MIXED OXIDES; TITANOSILICATE CATALYSTS; ELECTRONIC-PROPERTIES AB Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt%. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide. C1 [Capel-Sanchez, M. C.; Blanco-Brieva, G.; Campos-Martin, J. M.; Fierro, J. L. G.] CSIC, Inst Catalisis & Petr Quim, Madrid 28049, Spain. [de Frutos, M. P.] Ctr Tecnol Repsol YPF, Madrid 28931, Spain. [Wen, W.; Rodriguez, J. A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Fierro, JLG (reprint author), CSIC, Inst Catalisis & Petr Quim, Marie Curie 2, Madrid 28049, Spain. EM jlgfierro@icp.csic.es RI Campos-Martin, Jose/A-4055-2008; jose, fierro/C-4774-2014; OI Campos-Martin, Jose/0000-0002-7913-9851; jose, fierro/0000-0002-6880-3737; Capel Sanchez, Maria del Carmen/0000-0003-0070-0763 FU Repsol-YPF (Spain); Spanish Ministry of Science and Education [PSE-310200-2006-2, FIT-320100-2006-88]; U.S. Department of Energy [DE-AC02-98CH10886] FX The authors acknowledge Financial support from Repsol-YPF (Spain) and the Spanish Ministry of Science and Education in Projects PSE-310200-2006-2 and FIT-320100-2006-88. G.B.-B. and M.C.C.-S. gratefully acknowledge fellowships granted by Repsol-Y-PF. The research carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886). NR 59 TC 29 Z9 29 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUN 16 PY 2009 VL 25 IS 12 BP 7148 EP 7155 DI 10.1021/la900578u PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 457LN UT WOS:000266929900081 PM 19505167 ER PT J AU Maslov, S Krishna, S Pang, TY Sneppen, K AF Maslov, Sergei Krishna, Sandeep Pang, Tin Yau Sneppen, Kim TI Toolbox model of evolution of prokaryotic metabolic networks and their regulation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE functional genome analysis; horizontal gene transfer; transcriptional regulatory networks ID HORIZONTAL GENE-TRANSFER; TRANSCRIPTIONAL REGULATION; ESCHERICHIA-COLI; GENOMES; BACTERIA AB It has been reported that the number of transcription factors encoded in prokaryotic genomes scales approximately quadratically with their total number of genes. We propose a conceptual explanation of this finding and illustrate it using a simple model in which metabolic and regulatory networks of prokaryotes are shaped by horizontal gene transfer of coregulated metabolic pathways. Adapting to a new environmental condition monitored by a new transcription factor (e. g., learning to use another nutrient) involves both acquiring new enzymes and reusing some of the enzymes already encoded in the genome. As the repertoire of enzymes of an organism (its toolbox) grows larger, it can reuse its enzyme tools more often and thus needs to get fewer new ones to master each new task. From this observation, it logically follows that the number of functional tasks and their regulators increases faster than linearly with the total number of genes encoding enzymes. Genomes can also shrink, e. g., because of a loss of a nutrient from the environment, followed by deletion of its regulator and all enzymes that become redundant. We propose several simple models of network evolution elaborating on this toolbox argument and reproducing the empirically observed quadratic scaling. The distribution of lengths of pathway branches in our model agrees with that of the real-life metabolic network of Escherichia coli. Thus, our model provides a qualitative explanation for broad distributions of regulon sizes in prokaryotes. C1 [Maslov, Sergei; Pang, Tin Yau] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Krishna, Sandeep; Sneppen, Kim] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Pang, Tin Yau] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Maslov, S (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM maslov@bnl.gov OI Sneppen, Kim/0000-0001-9820-3567; Maslov, Sergei/0000-0002-3701-492X FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Division of Material Science, US Department of Energy; Danish National Research Foundation FX S. K. and K. S. thank the Theory Institute for Strongly Correlated and Complex Systems at Brookhaven National Laboratory for the hospitality and financial support during visits where some of this work was accomplished. We thank Eugene Koonin, Yuri Wolf, and Mikhail Gelfand for helpful discussions and critical comments on this manuscript. Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886, Division of Material Science, US Department of Energy. Work at Niels Bohr Institute was funded by the Danish National Research Foundation through the Center for Models of Life. NR 29 TC 55 Z9 55 U1 1 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUN 16 PY 2009 VL 106 IS 24 BP 9743 EP 9748 DI 10.1073/pnas.0903206106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 458TD UT WOS:000267045500037 PM 19482938 ER PT J AU Cosh, MH Kabela, ED Hornbuckle, B Gleason, ML Jackson, TJ Prueger, JH AF Cosh, Michael H. Kabela, Erik D. Hornbuckle, Brian Gleason, Mark L. Jackson, Thomas J. Prueger, John H. TI Observations of dew amount using in situ and satellite measurements in an agricultural landscape SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Leaf wetness; Dew; Electronic sensors; Corn; Soybeans ID PASSIVE MICROWAVE OBSERVATIONS; WATER; CANOPY; PERFORMANCE; DURATION; CORN AB Estimating the amount of water on leaf surfaces is an increasing concern for remote sensing and hydrology. Measuring the magnitude and spatial extent of leaf wetness events will provide useful information for water and energy balance modeling and remote sensing. As part of the Soil Moisture Experiments 2005 (SMEX05), the temporal and spatial characterization of leaf wetness over a heterogeneous agricultural domain was investigated. Leaf wetness sensors and physical measurements were collected from 15 June to 3 July 2005 in and around the Walnut Creek Watershed near Ames, Iowa, USA. Comparison of the results of the in situ leaf wetness sensor measurements and the physical sampling revealed a moderate correlation for both corn (Zea mays L) and soybeans (Glycine max Merr.). Regression equations were developed to estimate leaf wetness quantity from these leaf wetness sensors and combined with a vegetation leaf area index map to produce a spatial leaf wetness product hourly during the experiment with an error of approximately 0.05 kg/(m(2) LAI). Using this strategy, future efforts in spatial hydrologic modeling and remote sensing would be able to incorporate quantitative estimates of leaf wetness amount in watershed scale studies using only in situ measurements. Published by Elsevier B.V. C1 [Cosh, Michael H.; Jackson, Thomas J.] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. [Kabela, Erik D.] Savannah River Natl Lab, Aiken, SC USA. [Hornbuckle, Brian; Gleason, Mark L.] Iowa State Univ, Ames, IA 50011 USA. [Prueger, John H.] USDA ARS, Natl Soil Tilth Lab, Ames, IA 50011 USA. RP Cosh, MH (reprint author), USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA. EM Michael.Cosh@ars.usda.gov RI Cosh, MIchael/A-8858-2015 OI Cosh, MIchael/0000-0003-4776-1918 FU NASA Terrestrial Hydrology Program; NASA Aqua AMSR-E Validation Program FX The authors would like to thank the many scientists and students who participated in the development and execution of the SMEX05 Experiment. We would also like to thank Tim Hart, without whose help the experiment would not have been possible. SMEX05 ground sampling was supported by the NASA Terrestrial Hydrology Program and NASA Aqua AMSR-E Validation Program. NR 26 TC 8 Z9 8 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JUN 15 PY 2009 VL 149 IS 6-7 BP 1082 EP 1086 DI 10.1016/j.agrformet.2009.01.004 PG 5 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 435SP UT WOS:000265363900018 ER PT J AU Chavas, DR Izaurralde, RC Thomson, AM Gao, XJ AF Chavas, Daniel R. Izaurralde, R. Cesar Thomson, Allison M. Gao, Xuejie TI Long-term climate change impacts on agricultural productivity in eastern China SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE China; Crop productivity; EPIC model; Impacts; Global warming ID ATMOSPHERIC CARBON-DIOXIDE; LAND-USE CHANGE; EPIC MODEL; MAIZE PRODUCTION; RICE PRODUCTION; CROP YIELD; WATER-USE; WHEAT; EROSION; DENITRIFICATION AB Increasing atmospheric greenhouse gas concentrations are expected to induce significant climate change over the next century and beyond, but the impacts on society remain highly uncertain. This work examines potential climate change impacts on the productivity of five major crops in eastern China: canola, corn, potato, rice, and winter wheat. In addition to determining domain-wide trends, the objective is to identify vulnerable and emergent regions under future climate conditions, defined as having a greater than 10% decrease and increase in productivity, respectively. Data from the ICTP RegCM3 regional climate model for baseline (1961-1990) and future (2071-2100) periods under A2 scenario conditions are used as input for the EPIC agro-ecosystem simulation model in the domain [30 degrees N, 108 degrees E] to [42 degrees N, 123 degrees E]. Simulations are performed with and without the enhanced CO2-fertilization effect. Results indicate that aggregate potential productivity (i.e. if the crop is grown everywhere) increases 6.5% for rice, 8.3% for canola, 18.6% for corn, 22.9% for potato, and 24.9% for winter wheat, although with significant spatial variability for each crop. However, without the enhanced CO2-fertilization effect, potential productivity declines in all cases ranging from 2.5 to 12%. Interannual yield variability remains constant or declines in all cases except rice. Climate variables are found to be more significant drivers of simulated yield changes than changes in soil properties, except in the case of potato production in the northwest where the effects of wind erosion are more significant. Overall, in the future period corn and winter wheat benefit significantly in the North China Plain, rice remains dominant in the southeast and emerges in the northeast, potato and corn yields become viable in the northwest, and potato yields suffer in the southwest with no other crop emerging as a clear beneficiary from among those simulated in this study. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chavas, Daniel R.; Izaurralde, R. Cesar; Thomson, Allison M.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Chavas, Daniel R.; Izaurralde, R. Cesar; Thomson, Allison M.] Univ Maryland, College Pk, MD 20740 USA. [Gao, Xuejie] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China. RP Chavas, DR (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, Coll Pk,8400 Baltimore Ave,Suite 201, College Pk, MD 20740 USA. EM drchavas@mit.edu RI Thomson, Allison/B-1254-2010; Izaurralde, Roberto/E-5826-2012; Gao, Xuejie/B-8360-2013 FU US DOE Office of Biological and Environmental Research [DE-AC06-76RLO 1830] FX This work was supported by the US Department of Energy-China Meteorological Administration Bilateral Agreement oil the Study of Regional Climate and the US DOE Office of Biological and Environmental Research under contract DE-AC06-76RLO 1830. We gratefully acknowledge the assistance of Changsheng Li and Steve Frolking of the University of New Hampshire, as well as Shaoqiang Wang, Jay Gregg, Jimmy Williams, and Todd Campbell. NR 62 TC 67 Z9 90 U1 4 U2 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JUN 15 PY 2009 VL 149 IS 6-7 BP 1118 EP 1128 DI 10.1016/j.agrformet.2009.02.001 PG 11 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 435SP UT WOS:000265363900022 ER PT J AU Tolmachev, AV Clowers, BH Belov, ME Smith, RD AF Tolmachev, Aleksey V. Clowers, Brian H. Belov, Mikhail E. Smith, Richard D. TI Coulombic Effects in Ion Mobility Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID FLIGHT MASS-SPECTROMETRY; RESOLVING POWER; AMBIENT-PRESSURE; FUNNEL TRAP; RESOLUTION AB Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g., IMS resolving power and sensitivity, ate highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of > 10 000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed. C1 [Tolmachev, Aleksey V.; Clowers, Brian H.; Belov, Mikhail E.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Belov, ME (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999-MS K8-98, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU National Center for Research Resources [RR 018522]; National Institute of Allergy and Infectious Diseases [Y1-AI-4894-01]; National Institute of General Medical Sciences [R01 GM063883]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research; DOE [DE-AC05-76RLO 1830] FX The authors are grateful to Dr. Alexandre Shvartsburg for insightful discussions. Portions of this work were supported by the National Center for Research Resources (RR 018522), the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01), the National Institute of General Medical Sciences (NIGMS, R01 GM063883), and the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. Work was performed in the Environmental Molecular Science Laboratory, a DOE national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 32 TC 18 Z9 18 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2009 VL 81 IS 12 BP 4778 EP 4787 DI 10.1021/ac900329x PG 10 WC Chemistry, Analytical SC Chemistry GA 457XN UT WOS:000266969700015 PM 19438247 ER PT J AU Gross, CT McIntyre, SM Houk, RS AF Gross, Cory T. McIntyre, Sally M. Houk, R. S. TI Reduction of Matrix Effects in Inductively Coupled Plasma Mass Spectrometry by Flow Injection with an Unshielded Torch SO ANALYTICAL CHEMISTRY LA English DT Article ID ICP-MS; CONCOMITANT ELEMENTS; TRACE-METALS; ION-SOURCE; INTERFERENCES; SEAWATER; WATER; PRECONCENTRATION; FLUORESCENCE; IMPURITIES AB Solution samples with matrix concentrations above similar to 0.1% generally present difficulties for analysis by inductively coupled plasma mass spectrometry (ICP-MS) because of cone clogging and matrix effects. Flow injection (R) is coupled to ICP-MS to reduce deposition from samples such as 1% sodium salts (as NaCl) and seawater (similar to 3% dissolved salts). Surprisingly, matrix effects are also less severe during flow injection, at least for some matrix elements on the particular instrument used. Sodium chloride at 1% Na and undiluted seawater cause only 2 to 29% losses of signal for typical analyte elements. A heavy matrix element (Bi) at 0.1% also induces only similar to 14% loss of analyte signal. However, barium causes a much worse matrix effects that is, similar to 90% signal loss at 5000 ppm Na. Also, matrix effects during FI are much more severe when a grounded metal shield is inserted between the load coil and the torch, which is the most common mode of operation for the particular ICP-MS device used. C1 [Gross, Cory T.; McIntyre, Sally M.; Houk, R. S.] Iowa State Univ, Ames Lab, US Dept Energy, Dept Chem, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Dept Chem, Ames, IA 50011 USA. EM rshouk@iastate.edu FU Chemical and Biological Sciences Program, Office of Basic Energy Sciences, Ames Laboratory U.S. Department of Energy [DE-AC02-07CH11358] FX The authors thank Agilent for donating the ICP-MS instrument as well as ESI for donating the autosampling unit used in this research. Funding was provided by the Chemical and Biological Sciences Program, Office of Basic Energy Sciences, Ames Laboratory U.S. Department of Energy under Contract No. DE-AC02-07CH11358. NR 42 TC 5 Z9 6 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2009 VL 81 IS 12 BP 4898 EP 4905 DI 10.1021/ac900568x PG 8 WC Chemistry, Analytical SC Chemistry GA 457XN UT WOS:000266969700029 PM 19518145 ER PT J AU Liu, Y Jung, SY Collier, CP AF Liu, Yu Jung, Seung-Yong Collier, C. Patrick TI Shear-Driven Redistribution of Surfactant Affects Enzyme Activity in Well-Mixed Femtoliter Droplets SO ANALYTICAL CHEMISTRY LA English DT Article ID MICROFLUIDIC DEVICE; REACTION-KINETICS; SINGLE; MOLECULES; VOLUME; DEFORMATION; ADSORPTION; INITIATION; CHEMISTRY; MECHANISM AB We developed a microfluidic platform for splitting well-mixed, femtoliter-volume droplets from larger water-in-oil plugs, where the sizes of the daughter droplets were not limited by channel width. These droplets were separated from mother plugs at a microfabricated T-junction, which enabled the study of how increased confinement affected enzyme kinetics in droplets 4-10 mu m in diameter. Initial rates for enzyme catalysis in the mother plugs and the largest daughter drops were close to the average bulk rate, while the rates in smaller droplets decreased linearly with increasing surface to volume ratio. Rates in the smallest droplets decreased by a factor of 4 compared to the bulk rate. Traditional methods for detecting nonspecific adsorption at the water-oil interface were unable to detect evidence of enzyme adsorption, including pendant drop tensiometry, laser scanning confocal microscopy of drops containing labeled proteins in microemulsions, and epifluorescence microscopy of plugs and drops generated on-chip. We propose the slowing of enzyme reaction kinetics in the smaller droplets was the result of increased adsorption and inactivation of enzymes at the water-oil interface arising from transient interfacial shear stresses imparted on the daughter droplets as they split from the mother plugs and passed through the constricted opening of the T-junction. Such stresses are known to modulate the interfacial area and density of surfactant molecules that can passivate the interface. Bright field images of the splitting processes at the junction indicate that these stresses scaled with increasing surface to volume ratios of the droplets but were relatively insensitive to the average flow rate of plugs upstream of the junction. C1 [Liu, Yu; Jung, Seung-Yong; Collier, C. Patrick] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Collier, C. Patrick] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Collier, CP (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. EM colliercp@ornl.gov RI Liu, Yu/H-2283-2013; Collier, Charles/C-9206-2016 OI Collier, Charles/0000-0002-8198-793X FU Center for Nanophase Materials Sciences; Oak Ridge National Laboratory [DE-AC0500OR22725] FX C.P.C. acknowledges support from the Center for Nanophase Materials Sciences, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. Research is sponsored in part by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC0500OR22725. The authors acknowledge assistance from the MicroNano Fabrication Laboratory at Caltech and the Beckman Institute Molecular Materials and Biological Imaging Resource Centers at Caltech. NR 38 TC 17 Z9 18 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUN 15 PY 2009 VL 81 IS 12 BP 4922 EP 4928 DI 10.1021/ac900624h PG 7 WC Chemistry, Analytical SC Chemistry GA 457XN UT WOS:000266969700032 PM 19441820 ER PT J AU Baca, AJ Truong, TT Cambrea, LR Montgomery, JM Gray, SK Abdula, D Banks, TR Yao, JM Nuzzo, RG Rogers, JA AF Baca, Alfred J. Truong, Tu T. Cambrea, Lee R. Montgomery, Jason M. Gray, Stephen K. Abdula, Daner Banks, Tony R. Yao, Jimin Nuzzo, Ralph G. Rogers, John A. TI Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering SO APPLIED PHYSICS LETTERS LA English DT Article DE monolayers; nanofabrication; nanolithography; nanostructured materials; plasmonics; soft lithography; surface enhanced Raman scattering ID SPECTROSCOPY; MONOLAYERS AB This report introduces a type of plasmonic crystal that consists of metal coated nanostructures of relief molded on a polymer film as a substrate for surface-enhanced Raman scattering (SERS). Such crystals exhibit SERS enhancement factors of similar to 10(5), over large areas and with sufficiently high levels of uniformity for precise two-dimensional Raman mapping of surface bound monolayers. The ease of fabrication together with the high sensitivities and spatial resolution that can be achieved suggests an attractive route to SERS substrates for portable chemical warfare agent detection, environmental monitors, noninvasive imaging of biomolecules, and other applications. C1 [Baca, Alfred J.; Truong, Tu T.; Banks, Tony R.; Nuzzo, Ralph G.; Rogers, John A.] Univ Illinois, Beckman Inst, Fredrick Seitz Mat Res Lab, Dept Chem, Urbana, IL 61801 USA. [Cambrea, Lee R.] USN, Air Warfare Ctr, Weap Div, Dept Chem, China Lake, CA 93555 USA. [Montgomery, Jason M.; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Abdula, Daner; Yao, Jimin; Rogers, John A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Abdula, Daner; Yao, Jimin; Rogers, John A.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. RP Baca, AJ (reprint author), Univ Illinois, Beckman Inst, Fredrick Seitz Mat Res Lab, Dept Chem, Urbana, IL 61801 USA. EM jrogers@illinois.edu RI Truong, Tu/E-7029-2011; Rogers, John /L-2798-2016; OI Abdula, Daner/0000-0002-5912-7482 FU U. S. Department of Energy (DoE), Division of Materials Sciences [DE-FG02-07ER46471]; NERSC [DE-AC02-05CH11231, DE-AC0206CH11357] FX A. J. B. thanks C. Conway and D. Stevenson and support from the SMART fellowship program. This work was supported by the U. S. Department of Energy (DoE), Division of Materials Sciences, Contract No. DE-FG02-07ER46471 and ONR ILIR program. Use of NERSC was supported by DOE Contract Nos. DE-AC02-05CH11231 and DE-AC0206CH11357. NR 14 TC 27 Z9 27 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 15 PY 2009 VL 94 IS 24 AR 243109 DI 10.1063/1.3155198 PG 3 WC Physics, Applied SC Physics GA 460DF UT WOS:000267166600066 ER PT J AU Launey, ME Hofmann, DC Suh, JY Kozachkov, H Johnson, WL Ritchie, RO AF Launey, M. E. Hofmann, D. C. Suh, J. -Y. Kozachkov, H. Johnson, W. L. Ritchie, R. O. TI Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites SO APPLIED PHYSICS LETTERS LA English DT Article DE beryllium alloys; composite materials; copper alloys; cracks; fracture toughness; metallic glasses; nickel alloys; niobium alloys; titanium alloys; zirconium alloys ID BULK AMORPHOUS-ALLOYS; TENSILE DUCTILITY; FLOW; PLASTICITY AB Nonlinear-elastic fracture mechanics methods are used to assess the fracture toughness of bulk metallic glass (BMG) composites; results are compared with similar measurements for other monolithic and composite BMG alloys. Mechanistically, plastic shielding gives rise to characteristic resistance-curve behavior where the fracture resistance increases with crack extension. Specifically, confinement of damage by second-phase dendrites is shown to result in enhancement of the toughness by nearly an order of magnitude relative to unreinforced glass. C1 [Launey, M. E.; Ritchie, R. O.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hofmann, D. C.; Suh, J. -Y.; Kozachkov, H.; Johnson, W. L.] CALTECH, Keck Lab Engn Mat, Pasadena, CA 91125 USA. [Hofmann, D. C.] Liquidmet Technol, Rancho Santa Margarita, CA 92688 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; OI Ritchie, Robert/0000-0002-0501-6998; Suh, Jin-Yoo/0000-0003-3786-6652 FU Office of Science; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-05CH11231] FX Supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (for M. E. L. and R.O.R.), with funding for D. C. H. and W.L.J. from the Office of Naval Research under Grant No. N00014-07-1-1115. D. C. H. acknowledges financial support from the Department of Defense via a NDSEG fellowship. NR 22 TC 28 Z9 29 U1 5 U2 61 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 15 PY 2009 VL 94 IS 24 AR 241910 DI 10.1063/1.3156026 PG 3 WC Physics, Applied SC Physics GA 460DF UT WOS:000267166600032 ER PT J AU Zhang, ZJ Peng, RW Wang, Z Gao, F Huang, XR Sun, WH Wang, QJ Wang, M AF Zhang, Z. J. Peng, R. W. Wang, Z. Gao, F. Huang, X. R. Sun, W. H. Wang, Q. J. Wang, Mu TI Plasmonic antenna array at optical frequency made by nanoapertures (vol 93, 171110, 2008) SO APPLIED PHYSICS LETTERS LA English DT Correction DE antenna arrays; plasmonics C1 [Zhang, Z. J.; Peng, R. W.; Wang, Z.; Gao, F.; Sun, W. H.; Wang, Q. J.; Wang, Mu] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. [Zhang, Z. J.; Peng, R. W.; Wang, Z.; Gao, F.; Sun, W. H.; Wang, Q. J.; Wang, Mu] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Huang, X. R.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Peng, RW (reprint author), Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. EM rwpeng@nju.edu.cn OI Wang, Zhikui/0000-0003-0381-5363 NR 1 TC 2 Z9 2 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUN 15 PY 2009 VL 94 IS 24 AR 249901 DI 10.1063/1.3152592 PG 1 WC Physics, Applied SC Physics GA 460DF UT WOS:000267166600096 ER PT J AU Nolph, CA Vescovo, E Reinke, P AF Nolph, C. A. Vescovo, E. Reinke, P. TI The growth of manganese layers on Si(100) at room temperature: A photoelectron spectroscopy study SO APPLIED SURFACE SCIENCE LA English DT Article DE Manganese; Silicon(100); Silicide; Photoelectron spectroscopy; Spintronics ID ANGLE-RESOLVED-PHOTOEMISSION; X-RAY PHOTOEMISSION; ELECTRONIC-STRUCTURE; SURFACE; SI(001); SILICON; FILMS; MN; INTERFACE; SPECTRA AB The combination of spin-and charge based electronics in future devices requires the magnetic doping of group IV semiconductors, and the formation of ferromagnetic contacts. The doping of Mn with Si is one of the material systems which is discussed in this context. The present study focuses on the growth of Mn on a Si(100)(2x1) surface, and the evolution of the surface was observed as a function of Mn coverage with synchrotron-based photoelectron spectroscopy. The reaction of Mn with the Si(100) surface at room temperature leads the formation of silicide at the boundary between the Si substrate and the Mn-overlayer, presumably with MnSi stoichiometry. The residual sub-oxide reacts with the Mn and therefore incorporates a few percent of Mn-O-Si at the interface. The analysis of the sub-oxide composition indicates that the Si+1 component is the most reactive oxidation state. The overlayer is dominated by Mn, either as Mn-metal or as a Mn-rich silicide phase, and the metallic layer introduces a band bending in Si. As a consequence of our observations, including information from a recent STM study, the formation of ferromagnetic contacts which require ideally a. at and compositionally homogenous overlayer, cannot be achieved through room temperature deposition of Mn on the Si(100) (2x1) surface. The influence of residual oxides and surface defects on the growth process will be further investigated. (C) 2009 Published by Elsevier B. V. C1 [Nolph, C. A.; Reinke, P.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Vescovo, E.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Reinke, P (reprint author), Univ Virginia, Dept Mat Sci & Engn, 395 McCormick Rd, Charlottesville, VA 22904 USA. EM pr6e@virginia.edu FU U. S. Department of Energy [DE-AC02-98CH10886] FX The authors gratefully acknowledge the support of this work by the Nanoelectronics Research Initiative (NRI) in conjunction with NSF, and the support of this work by the NSF-supplement to the MRSEC "Center for Nanoscopic Materials Design'' at the University of Virginia. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 46 TC 10 Z9 11 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD JUN 15 PY 2009 VL 255 IS 17 BP 7642 EP 7646 DI 10.1016/j.apsusc.2009.04.047 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 452UT UT WOS:000266567400029 ER PT J AU Morgado, L Fernandes, AR Londer, YY Pokkuluri, PR Schiffer, M Salgueiro, CA AF Morgado, Leonor Fernandes, Ana R. Londer, Yuri Y. Pokkuluri, P. Raj Schiffer, Marianne Salgueiro, Carlos A. TI Thermodynamic characterization of the redox centres in a representative domain of a novel c-type multihaem cytochrome SO BIOCHEMICAL JOURNAL LA English DT Article DE axial co-ordination; cytochrome c; Geobacter; multihaem ID GEOBACTER-SULFURREDUCENS; DESULFOVIBRIO-VULGARIS; ELECTRON-TRANSFER; RHODOPSEUDOMONAS-VIRIDIS; KINETIC CHARACTERIZATION; C(3); NMR; HEMES; COOPERATIVITY; POTENTIALS AB Multihaem cytochromes that could form protein "nanowires" were identified in the Geobacter sulfurreducens genome, and represent a new type of mulithaem cytochrome. The sequences of these proteins, two with 12 haems (GSU 1996, GSU0592) and one with 27 haems (GSU2210), suggest that they are formed with domains homologous to the trihaem cytochrome C7. Although all three haems have bis-His co-ordination in cytochromes C7, in each domain of the above polymers, the haem equivalent to haem IV has His-Met co-ordination. We previously determined the structure and measured the macroscopic redox potential of one representative domain (domain C) of a dodecahaem cytochrome (GSU1996). In the present study, the microscopic redox properties of the individual haem groups of domain C were determined using NMR and UV-visible spectroscopies. The reduction potentials of file haems for the fully reduced and protonated protein are different from each other (haem 1-106mV:haem III. - 136 mV and haem IV, - 125 mV) and are strongly modulated by redox interactions. This result is rather surprising since the His-Met co-ordinated haem TV does not have the highest potential as was expected. The polypeptide environment of each haem group and the strong haem pairwise redox interactions must play a dominant role in controlling, the individual haem potentials. The strong redox interactions between the haems extend the range of their operating potentials at physiological pH (haem 1, - 7 1 mV haem III, - 146 mV and haem IV, - 110 mV). Such a modulation in haem potentials is likely to have a functional significance in the metabolism of G. sulfurreducens. C1 [Morgado, Leonor; Fernandes, Ana R.; Salgueiro, Carlos A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, Requimte CQFB, P-2829516 Caparica, Portugal. [Londer, Yuri Y.; Pokkuluri, P. Raj; Schiffer, Marianne] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Salgueiro, CA (reprint author), Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, Requimte CQFB, Campus Caparica, P-2829516 Caparica, Portugal. EM csalgueiro@dq.fct.unl.pt RI Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013; Fernandes, Ana/B-2940-2014 OI Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; Fernandes, Ana/0000-0002-5201-7993 NR 29 TC 10 Z9 10 U1 0 U2 2 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0264-6021 J9 BIOCHEM J JI Biochem. J. PD JUN 15 PY 2009 VL 420 BP 485 EP 492 DI 10.1042/BJ20082428 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 459YJ UT WOS:000267149100014 PM 19351328 ER PT J AU White, AM Collett, JR Seurynck-Servoss, SL Daly, DS Zangar, RC AF White, Amanda M. Collett, James R. Seurynck-Servoss, Shannon L. Daly, Don S. Zangar, Richard C. TI ELISA-BASE: an integrated bioinformatics tool for analyzing and tracking ELISA microarray data SO BIOINFORMATICS LA English DT Article AB ELISA-BASE is an open source database for capturing, organizing and analyzing enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Software Environment (BASE) database system. C1 [White, Amanda M.; Collett, James R.; Daly, Don S.; Zangar, Richard C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Seurynck-Servoss, Shannon L.] Univ Arkansas, Dept Chem Engn, Fayetteville, AR 72701 USA. RP White, AM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM amanda.white@pnl.gov FU National Institute of Biomedical Imaging Bioengineering [R01 EB006177]; National Cancer Institute [U01 CA117378] FX National Institute of Biomedical Imaging & Bioengineering (R01 EB006177); National Cancer Institute (U01 CA117378). NR 5 TC 4 Z9 4 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUN 15 PY 2009 VL 25 IS 12 BP 1566 EP 1567 DI 10.1093/bioinformatics/btp182 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 451VF UT WOS:000266498300066 PM 19346326 ER PT J AU Kertes, AS King, CJ AF Kertes, A. S. King, C. J. TI Extraction Chemistry of Fermentation Product Carboxylic Acids SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article ID LONG-CHAIN ALKYLAMINE; INTERFACIAL ADSORPTION EQUILIBRIA; TERNARY LIQUID SYSTEMS; DICARBOXYLIC-ACIDS; PARTITION-COEFFICIENTS; CARBON TETRACHLORIDE; SOLVENT-EXTRACTION; TRI-ISOOCTYLAMINE; SECONDARY VALENCE; AMBERLITE LA-2 AB Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or, more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. C1 [Kertes, A. S.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kertes, A. S.] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel. RP Kertes, AS (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. NR 132 TC 6 Z9 6 U1 5 U2 22 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD JUN 15 PY 2009 VL 103 IS 3 BP 432 EP 445 PG 14 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 446XJ UT WOS:000266154600002 ER PT J AU Donohoe, BS Selig, MJ Viamajala, S Vinzant, TB Adney, WS Himmel, ME AF Donohoe, Bryon S. Selig, Michael J. Viamajala, Sridhar Vinzant, Todd B. Adney, William S. Himmel, Michael E. TI Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE cellulase; Cel7A; biomass; corn stover; electron microscopy; lignocellulose ID PHANEROCHAETE-CHRYSOSPORIUM; MONOCLONAL-ANTIBODIES; CATALYTIC MODULE; SURFACE-AREA; POROSITY; LIGNIN; CELLOBIOHYDROLASES; DIGESTIBILITY; PRETREATMENT; DEGRADATION AB In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. in this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stern cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 degrees C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 degrees C) allowed the enzymes to penetrate similar to 20% of the cell wall, and the high severity (20 min pretreatment at 150 degrees C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes. Biotechnol. Bioeng. 2009;103: 480-489. (C) 2009 Wiley Periodicals, Inc. C1 [Donohoe, Bryon S.; Selig, Michael J.; Viamajala, Sridhar; Vinzant, Todd B.; Adney, William S.; Himmel, Michael E.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Donohoe, BS (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM bryon_donohoe@nrel.gov NR 21 TC 27 Z9 27 U1 4 U2 35 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD JUN 15 PY 2009 VL 103 IS 3 BP 480 EP 489 DI 10.1002/bit.22281 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 446XJ UT WOS:000266154600006 PM 19266575 ER PT J AU Novak, P Jensen, TJ Garbe, JC Stampfer, MR Futscher, BW AF Novak, Petr Jensen, Taylor J. Garbe, James C. Stampfer, Martha R. Futscher, Bernard W. TI Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization SO CANCER RESEARCH LA English DT Article ID HUMAN BREAST-CANCER; EARLY EVENT; EPIGENETIC INACTIVATION; COLORECTAL-CANCER; P53 FUNCTION; GENE; TRANSFORMATION; SENESCENCE; HYPERMETHYLATION; P16(INK4A) AB The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. re cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that may prove useful in breast cancer risk assessment. [Cancer Res 2009;69(12):5251-8] C1 [Novak, Petr; Jensen, Taylor J.; Stampfer, Martha R.; Futscher, Bernard W.] Univ Arizona, Arizona Canc Ctr, Tucson, AZ 85724 USA. [Jensen, Taylor J.; Futscher, Bernard W.] Univ Arizona, Dept Pharmacol & Toxicol, Coll Pharm, Tucson, AZ 85724 USA. [Garbe, James C.; Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Novak, Petr] Biol Ctr ASCR, Inst Plant Mol Biol, Ceske Budejovice, Czech Republic. RP Futscher, BW (reprint author), Univ Arizona, Arizona Canc Ctr, 1515 N Campbell Ave, Tucson, AZ 85724 USA. EM bfutscher@azcc.arizona.edu RI Novak, Petr/A-3059-2013 OI Novak, Petr/0000-0002-5068-9681 FU BIO5 Interdisciplinary Biotechnology Center at the University of Arizona; NIH [U54 CA112970]; Department of Defense [BCRP BC060444]; Office of Energy Research, Office of Health and Biological Research, U.S. Department of Energy [DE-AC03-76SF00098]; [R01CA65662]; [R33CA091351]; [P30ES06694]; [P30CA023074]; [ES007091]; [CA09213] FX Grants R01CA65662 and R33CA091351 (B.W. Futscher); center grants P30ES06694 and P30CA023074 and the BIO5 Interdisciplinary Biotechnology Center at the University of Arizona (Genomics Shared Service); training grants ES007091 and CA09213 (T.J. Jensen); and NIH grant U54 CA112970, Department of Defense grant BCRP BC060444. and Office of Energy Research, Office of Health and Biological Research, U.S. Department of Energy contract DE-AC03-76SF00098 (J.C. Garbe and M.R. Stampfer). NR 45 TC 65 Z9 66 U1 0 U2 3 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD JUN 15 PY 2009 VL 69 IS 12 BP 5251 EP 5258 DI 10.1158/0008-5472.CAN-08-4977 PG 8 WC Oncology SC Oncology GA 464LM UT WOS:000267506400042 PM 19509227 ER PT J AU Bhaumik, D Patil, CK Campisi, J AF Bhaumik, Dipa Patil, Christopher K. Campisi, Judith TI MicroRNAs An important player in maintaining a balance between inflammation and tumor suppression SO CELL CYCLE LA English DT News Item C1 [Bhaumik, Dipa; Patil, Christopher K.; Campisi, Judith] Buck Inst Age Res, Novato, CA USA. [Campisi, Judith] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Bhaumik, D (reprint author), Buck Inst Age Res, Novato, CA USA. EM JCampisi@lbl.gov NR 4 TC 6 Z9 6 U1 0 U2 0 PU LANDES BIOSCIENCE PI AUSTIN PA 1002 WEST AVENUE, 2ND FLOOR, AUSTIN, TX 78701 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD JUN 15 PY 2009 VL 8 IS 12 BP 1822 EP 1822 PG 1 WC Cell Biology SC Cell Biology GA 457SZ UT WOS:000266955000009 PM 19471128 ER PT J AU Yan, P Wang, T Newton, GJ Knyushko, TV Xiong, YJ Bigelow, DJ Squier, TC Mayer, MU AF Yan, Ping Wang, Ting Newton, Gregory J. Knyushko, Tatyana V. Xiong, Yijia Bigelow, Diana J. Squier, Thomas C. Mayer, M. Uljana TI A Targeted Releasable Affinity Probe (TRAP) for In Vivo Photocrosslinking SO CHEMBIOCHEM LA English DT Article DE arsenic; bioorganic chemistry; fluorescent probes; mass spectrometry; photoaffinity labeling ID PROTEIN-PROTEIN INTERACTIONS; ESCHERICHIA-COLI HYDROGENASE; TETRACYSTEINE-TAGGED PROTEINS; RNA-POLYMERASE HOLOENZYME; MASS-SPECTROMETRY; TRANSCRIPTION INITIATION; SARCOPLASMIC-RETICULUM; CALMODULIN-BINDING; STRUCTURAL BASIS; LINKED PEPTIDES AB Protein crosslinking, especially coupled to mass-spectrometric identification, is increasingly used to determine protein binding partners and protein-protein interfaces for isolated protein complexes. The modification of crosslinkers to permit their targeted use in living cells is of considerable importance for studying protein-interaction networks, which are commonly modulated through weak interactions that are formed transiently to permit rapid cellular response to environmental changes. We have therefore synthesized a targeted and releasable affinity probe (TRAP) consisting of a biarsenical fluorescein linked to benzophenone that binds to a tetracysteine sequence in a protein engineered for specific labeling. Here, the utility of TRAP for capturing protein binding partners upon photoactivation of the benzophenone moiety has been demonstrated in living bacteria and mammalian cells. In addition, ligand exchange of the arsenic-sulfur bonds between TRAP and the tetracysteine sequence to added dithiols results in fluorophore transfer to the crosslinked binding partner. In isolated protein complexes, this release from the original binding site permits the identification of the proximal binding interface through mass spectrometric fragmentation and computational sequence identification. C1 [Wang, Ting; Xiong, Yijia; Bigelow, Diana J.; Squier, Thomas C.; Mayer, M. Uljana] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99354 USA. [Yan, Ping] Novozymes Inc, Davis, CA 95618 USA. [Newton, Gregory J.] Univ Tokyo, Komaba Open Lab, Meguro Ku, Tokyo 1538904, Japan. [Knyushko, Tatyana V.] NCI, Harris IT Serv, NIH, Bethesda, MD 20814 USA. RP Mayer, MU (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, 999 Battelle Blvd,Stop P7-54, Richland, WA 99354 USA. EM uljana.mayer@pnl.gov NR 66 TC 12 Z9 12 U1 2 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4227 J9 CHEMBIOCHEM JI ChemBioChem PD JUN 15 PY 2009 VL 10 IS 9 BP 1507 EP 1518 DI 10.1002/cbic.200900029 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Medicinal SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy GA 464JE UT WOS:000267500400015 PM 19441027 ER PT J AU Satterfield, MB Kolb, CE Peoples, R Adams, GL Schuster, DS Ramsey, HC Stechel, E Wood-Black, F Garant, RJ Abraham, MA AF Satterfield, M. Barclay Kolb, Charles E. Peoples, Robert Adams, Georjean L. Schuster, Darlene S. Ramsey, Henry C. Stechel, Ellen Wood-Black, Frankie Garant, Raymond J. Abraham, Martin A. TI Overcoming Nontechnical Barriers to the Implementation of Sustainable Solutions in Industry SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Editorial Material ID GREEN CHEMISTRY; SYSTEMS; TECHNOLOGY; EMERGENCE; DESIGN C1 [Abraham, Martin A.] Youngstown State Univ, Coll Sci Technol Engn & Math, Youngstown, OH 44555 USA. [Satterfield, M. Barclay; Garant, Raymond J.] Amer Chem Soc, Off Publ Affairs, CEI, Washington, DC 20036 USA. [Stechel, Ellen] Sandia Natl Labs, Emerging Energy Technol Dept, Livermore, CA 94550 USA. RP Abraham, MA (reprint author), Youngstown State Univ, Coll Sci Technol Engn & Math, Youngstown, OH 44555 USA. RI Stechel, Ellen/B-1253-2012; Kolb, Charles/A-8596-2009 NR 48 TC 10 Z9 10 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2009 VL 43 IS 12 BP 4221 EP 4226 DI 10.1021/es802980j PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 457XF UT WOS:000266968500003 PM 19603626 ER PT J AU Um, W Wang, ZM Serne, RJ Williams, BD Brown, CF Dodge, CJ Francis, AJ AF Um, Wooyong Wang, Zheming Serne, R. Jeffrey Williams, Benjamin D. Brown, Christopher F. Dodge, Cleveland J. Francis, Arokiasamy J. TI Uranium Phases in Contaminated Sediments below Hanford's U Tank Farm SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LASER FLUORESCENCE SPECTROSCOPY; SPECIATION; SORPTION; MINERALS; IFEFFIT; CALCITE; TRLFS; SITE AB Macroscopic and spectroscopic investigations (XAFS, XRF, and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Secondary precipitates of U(VI) silicate precipitates (boltwoodite and uranophane) were present dominantly in shallow-depth sediments (15-16 m bgs), while adsorbed U(VI) phases and polynuclear U(VI) surface precipitates were considered to dominate in intermediate-depth sediments (20-25 m bgs). Only natural uranium was observed in the deeper sediments (>28 m bgs) with no signs of contact with tank wastes containing Hanford-derived U(VI). Across all depths, most of the U(VI) was preferentially associated with the sift and clay size fractions of sediments. Strong correlation between U(VI) and Ca was found in the shallow-depth sediments, especially for the precipitated U(VI) silicates. Because U(VI) silicate precipitates dominate in the shallow-depth sediments, the released U(VI) concentration by macroscopic (bi)carbonate leaching resulted from both desorption and dissolution processes. Having different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments using several different methods would be needed to estimate U(VI) fate and transport correctly in the vadose zone. C1 [Um, Wooyong; Wang, Zheming; Serne, R. Jeffrey; Williams, Benjamin D.; Brown, Christopher F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dodge, Cleveland J.; Francis, Arokiasamy J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Um, W (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wooyong.um@pnl.gov RI Wang, Zheming/E-8244-2010 OI Wang, Zheming/0000-0002-1986-4357 FU CH2M-Hill Hanford Company; U.S. Department of Energy [DE-AC006-76RLO 1830] FX This study was conducted in support of the Hanford tank farm vadose zone project with funding from CH2M-Hill Hanford Company. Part of this work was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory in PNNL. PNNL is operated by Battelle for the U.S. Department of Energy under contract DE-AC006-76RLO 1830. NR 27 TC 21 Z9 21 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2009 VL 43 IS 12 BP 4280 EP 4286 DI 10.1021/es900203r PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 457XF UT WOS:000266968500012 PM 19603635 ER PT J AU Mouser, PJ N'Guessan, AL Elifantz, H Holmes, DE Williams, KH Wilkins, MJ Long, PE Lovley, DR AF Mouser, Paula J. N'Guessan, A. Lucie Elifantz, Hila Holmes, Dawn E. Williams, Kenneth H. Wilkins, Michael J. Long, Philip E. Lovley, Derek R. TI Influence of Heterogeneous Ammonium Availability on Bacterial Community Structure and the Expression of Nitrogen Fixation and Ammonium Transporter Genes during in Situ Bioremediation of Uranium-Contaminated Groundwater SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; SUBSURFACE SEDIMENTS; GEOBACTER-SULFURREDUCENS; MICROBIAL COMMUNITIES; SP-NOV.; REDUCTION; FE(III); NITRATE; NIFD; RESPIRATION AB The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 mu M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation. C1 [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Wilkins, Michael J.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Mouser, Paula J.; N'Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Mouser, PJ (reprint author), Head & Associates, Sanborn, 95 High St, Portland, ME 04101 USA. EM pjmouser@gmail.com RI Wilkins, Michael/A-9358-2013; Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155 FU Office of Science (BER), U.S. Department of Energy [DE-FG02-07ER64377, DE-FG02-07ER64367]; Cooperative Agreement [DE-FC0202ER63446] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Grants DE-FG02-07ER64377 and DE-FG02-07ER64367 and Cooperative Agreement DE-FC0202ER63446. NR 39 TC 53 Z9 53 U1 0 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2009 VL 43 IS 12 BP 4386 EP 4392 DI 10.1021/es8031055 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 457XF UT WOS:000266968500028 PM 19603651 ER PT J AU Keenan, CR Goth-Goldstein, R Lucas, D Sedlak, DL AF Keenan, Christina R. Goth-Goldstein, Regine Lucas, Donald Sedlak, David L. TI Oxidative Stress Induced by Zero-Valent Iron Nanoparticles and Fe(II) in Human Bronchial Epithelial Cells SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HYDROXYL RADICALS; OXIDANT GENERATION; HYDROGEN-PEROXIDE; ESCHERICHIA-COLI; OXYGEN; PARTICLES; TOXICITY; MECHANISM; KINETICS; PM10 AB To identify the mechanism through which nanoparticulate zero-valent iron (nZVI; Fe((s))(0)) damages cells, a series of experiments were conducted in which nZVI in phosphate-buffered saline (PBS) was exposed to oxygen in the presence and absence of human bronchial epithelial cells. When nZVI is added to PBS, a burst of oxidants is produced as Fe(0) and ferrous iron (Fe[II]) are converted to ferric iron (Fe[III]). Cytotoxicity and internal reactive oxygen species (ROS) production in cells exposed to nZVI is equivalent to the response observed when cells are exposed to the same concentration of dissolved Fe(II). Experiments conducted in the absence of cells indicate that the oxidant produced during Fe(II) oxidation reacts with methanol and dimethyl sulfoxide, but not with compounds such as tert-butanol and benzoate that react exclusively with hydroxyl radical. The role of reactive oxidants produced during Fe(II) oxidation in cytotoxicity and internal ROS production is further supported by experiments in which cell damage was limited by the addition of ligands that prevented Fe(II) oxidation and by the absence of cell damage when the nanoparticles were oxidized prior to exposure. The behavior of the oxidant produced by nZVI is consistent with an oxidant such as the ferryl ion, rather than hydroxyl radical. C1 [Keenan, Christina R.; Sedlak, David L.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Goth-Goldstein, Regine] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Lucas, Donald] Lawrence Berkeley Natl Lab, Environm Hlth & Safety Div, Berkeley, CA 94720 USA. RP Sedlak, DL (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM sedlak@ce.berkeley.edu RI Remucal, Christina/B-8932-2009 OI Remucal, Christina/0000-0003-4285-7638 FU NIEHS NIH HHS [P42 ES04705] NR 44 TC 93 Z9 103 U1 3 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUN 15 PY 2009 VL 43 IS 12 BP 4555 EP 4560 DI 10.1021/es9006383 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 457XF UT WOS:000266968500053 PM 19603676 ER PT J AU Zhang, GX Senko, JM Kelly, SD Tan, H Kemner, KM Burgos, WD AF Zhang, Gengxin Senko, John M. Kelly, Shelly D. Tan, Hui Kemner, Kenneth M. Burgos, William D. TI Microbial reduction of iron(III)-rich nontronite and uranium(VI) SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SOLID-WATER INTERFACE; HIGHLY CONTAMINATED AQUIFER; SHEWANELLA-ONEIDENSIS MR-1; METAL-REDUCING BACTERIUM; CLAY-MINERALS; FE(III) REDUCTION; ILLITE REACTION; IRON REDUCTION; ORGANIC-MATTER; SMECTITE CLAY AB To assess the dynamics of microbially mediated U-clay redox reactions, we examined the reduction of iron(III)-rich nontronite NAu-2 and uranium(VI) by Shewanella oneidensis MR-1. Bioreduction experiments were conducted with combinations and varied concentrations of MR-1, nontronite, U(VI) and the electron shuttle anthraquinone-2,6-disulfonate (AQDS). Abiotic experiments were conducted to quantify U(VI) sorption to NAu-2, the reduction of U(VI) by chemically-reduced nontronite-Fe(II), and the oxidation of uraninite, U(IV)O-2(s), by nontronite-Fe(III). When we incubated S. oneidensis MR-1 at lower concentration (0.5 x 108 cell mL(-1)) with nontronite (5.0 g L-1) and U(VI) (1.0 mM), little U(VI) reduction occurred compared to nontronite-free incubations, despite the production of abundant Fe(II). The addition of AQDS to U(VI)- and nontronite-containing incubations enhanced both U(VI) and nontronite-Fe(III) reduction. While U(VI) was completely reduced by S. oneidensis MR-1 at higher concentration (1.0 x 108 cell mL(-1)) in the presence of nontronite, increasing concentrations of nontronite led to progressively slower rates of U(VI) reduction. U(VI) enhanced nontronite-Fe(III) reduction and uraninite was oxidized by nontronite-Fe(III), demonstrating that U served as an effective electron shuttle from S. oneidensis MR-I to nontronite-Fe(III). The electron-shuttling activity of U can explain the lack or delay of U(VI) reduction observed in the bulk solution. Little U(VI) reduction was observed in incubations that contained chemically-reduced nontronite-Fe(II), suggesting that biologic U(VI) reduction drove U valence cycling in these systems. Under the conditions used in these experiments, we demonstrate that iron-rich smectite may inhibit or delay U(VI) bioreduction. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, Gengxin; Tan, Hui; Burgos, William D.] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [Senko, John M.] Univ Akron, Dept Geol & Environm Sci, Akron, OH 44325 USA. [Kelly, Shelly D.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Burgos, WD (reprint author), Penn State Univ, Dept Civil & Environm Engn, 212 Sackett Bldg, University Pk, PA 16802 USA. EM wdb3@psu.edu RI ID, MRCAT/G-7586-2011 FU Natural and Accelerated Bioremediation Research (NABIR) Program; Office of Biological and Environmental Research (BER); Office of Energy Research; U.S. Department of Energy (DOE) [DE-FG02-OIER631180, DE-AC02-06CH11357]; National Science Foundation [CHE-0431328.]; Environmental Remediation Science Program (ERSP); MRCAT member institutions FX This work was supported by the Natural and Accelerated Bioremediation Research (NABIR) Program, Office of Biological and Environmental Research (BER), Office of Energy Research, U.S. Department of Energy (DOE) Grant No. DE-FG02-OIER631180 to The Pennsylvania State University, and by the National Science Foundation under Grant No. CHE-0431328. Use of the MRCAT sector at the Advanced Photon Source (APS) was supported by the Environmental Remediation Science Program (ERSP), U.S. DOE, Office of Science, BER and the MRCAT member institutions. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. We thank Ed O'Loughlin for preparing and providing nontronite-Fe(III) and nontronite-Fe(II) standards for XANES spectroscopy. We thank Jeff Catalano and Joel Kostka and three anonymous reviewers for providing helpful comments that improved this manuscript. NR 72 TC 24 Z9 25 U1 4 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUN 15 PY 2009 VL 73 IS 12 BP 3523 EP 3538 DI 10.1016/j.gca.2009.03.030 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 451FF UT WOS:000266455400001 ER PT J AU Marcalo, J Santos, M de Matos, AP Gibson, JK AF Marcalo, Joaquim Santos, Marta de Matos, Antonio Pires Gibson, John K. TI Molecular Uranates: Laser Synthesis of Uranium Oxide Anions in the Gas Phase SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL COMPOUNDS; MASS-SPECTROMETRY; ELECTROSPRAY-IONIZATION; CLUSTERS; ABLATION; SPECTRA; IONS; ABLATION/IONIZATION; COMPLEXES; CHEMISTRY AB Laser ablation of solid UO(3) or (NH(4))(2)U(2)O(7) yielded in the gas phase molecular uranium oxide anions with compositions ranging from [UO(n)](-)(n=2-4)to[U(14)O(n)](-) (n=32-35), as detected by Fourier transform ion cyclotron resonance mass spectrometry. The cluster series [U(x)O(3x)](-) for x <= 6 and various [U(x)O(3x-y)](-) in which y increased with increasing x, could be identified. A few anions with H atoms were also present, and their abundance increased when hydrated UO(3) Was used in place of anhydrous UO(3). Collision-induced dissociation experiments with some of the lower m/z cluster anions supported extended structures in which neutral UO(3) constitutes the building block. Cationic uranium oxide clusters [U(x)O(n)](+) (x = 2-9; n = 3-24) could also be produced and are briefly discussed. Common trends in the O/U ratios for both negative and positive clusters could be unveiled. C1 [Marcalo, Joaquim; Santos, Marta; de Matos, Antonio Pires] Inst Tecnol & Nucl, Dept Quim, P-2686953 Sacavem, Portugal. [Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Marcalo, J (reprint author), Inst Tecnol & Nucl, Dept Quim, P-2686953 Sacavem, Portugal. EM jmarcalo@itn.pt RI Marcalo, Joaquim/J-5476-2013; PTMS, RNEM/C-1589-2014; Santos, Marta/A-2411-2012; OI Marcalo, Joaquim/0000-0001-7580-057X; Santos, Marta/0000-0002-8755-9442; Pires de Matos, Antonio/0000-0003-2674-6938 FU Fundacao para a Ciencia e a Tecnologia [PPCDT-QUI/58222/2004]; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by Fundacao para a Ciencia e a Tecnologia (Contract PPCDT-QUI/58222/2004) and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy (Contract DE-AC02-05CH11231). NR 34 TC 10 Z9 10 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 15 PY 2009 VL 48 IS 12 BP 5055 EP 5057 DI 10.1021/ic9003998 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 456AC UT WOS:000266809200003 PM 19425566 ER PT J AU Boro, BJ Duesler, EN Goldberg, KI Kemp, RA AF Boro, Brian J. Duesler, Eileen N. Goldberg, Karen I. Kemp, Richard A. TI Synthesis, Characterization, and Reactivity of Nickel Hydride Complexes Containing 2,6-C6H3(CH2PR2)(2) (R = tBu, cHex, and iPr) Pincer Ligands SO INORGANIC CHEMISTRY LA English DT Article ID LARGE CHELATE RINGS; N-H BONDS; CRYSTAL-STRUCTURE; MOLECULAR-OXYGEN; ALKANE DEHYDROGENATION; CYCLOMETALLATED COMPLEXES; PALLADIUM(II) COMPLEXES; RHODIUM COMPLEXES; HECK REACTION; C-H AB The syntheses and full characterization of nickel hydrides containing the PCP "pincer'-type ligand, where PCP = 2,6-C6H3(CH2PR2)(2) (R = tBu, cHex, and iPr), are reported. These Ni-H complexes are prepared by the conversion of ((PCP)-P-R)NiCl precursors into the corresponding nickel hydrides by use of appropriate hydride donors. Surprisingly, although the ((PCP)-P-R)NiCl precursors are quite similar chemically, the conversions to the hydrides were not straightforward and required different hydride reagents to provide analytically pure products. While NaBH4 was effective in the preparation of pure ((PCP)-P-tBu)NiH, Super-Hydride solution (LiEt3BH in THF) was required to prepare either ((PCP)-P-cHex)NiH or ((PCP)-P-iPr)NiH. Attempts to prepare a Ni-H from ((PCP)-P-Ph)NiCl with a variety of hydride reagents yielded only the free ligand as an identifiable product. Two of the derivatives, tBu and cHex, have also been subjected to single crystal X-ray analysis. The solid-state structures each showed a classic, near-square planar arrangement for Ni in which the PCP ligand occupied three meridional ligand points with the Ni-H trans to the Ni-C bond. The resulting Ni-H bond lengths were 1.42(3) and 1.55(2) angstrom for the tBu and cHex derivatives, respectively. C1 [Goldberg, Karen I.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Boro, Brian J.; Duesler, Eileen N.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Goldberg, KI (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM rakemp@unm.edu FU Department of Energy [DE-FG02-06ER15765]; National Science Foundation CRIF:MU [CHE-0443580]; Sandia Corporation [DE-AC04-94AL85000] FX This work was supported by the Department of Energy (DE-FG02-06ER15765) via a grant to R.A.K. and K.I.G. The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE-0443580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 72 TC 53 Z9 53 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 15 PY 2009 VL 48 IS 12 BP 5081 EP 5087 DI 10.1021/ic8020194 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 456AC UT WOS:000266809200007 PM 19456134 ER PT J AU Ma, SQ Simmons, JM Sun, DF Yuan, DQ Zhou, HC AF Ma, Shengqian Simmons, Jason M. Sun, Daofeng Yuan, Daqiang Zhou, Hong-Cai TI Porous Metal-Organic Frameworks Based on an Anthracene Derivative: Syntheses, Structure Analysis, and Hydrogen Sorption Studies SO INORGANIC CHEMISTRY LA English DT Article ID HIGH H-2 ADSORPTION; GAS-ADSORPTION; THERMAL-STABILITY; STORAGE; SITES; CATENATION; CARBON; DIFFRACTION; BINDING AB Solvothermal assembly of 5,5'-(9,10-anthracenediyl)di-isophthalate (H(4)adip) with in situ-generated dicopper and diiron paddlewheel secondary building units (SBUs) afforded two porous metal-organic frameworks (MOFs), designated as PCN-14 and PCN-15, respectively. The two MOFs crystallize in different structures, characterized by a difference in the dihedral angles between the anthracene and the phenyl rings of the adip ligand. PCN-14 retains permanent porosity under dehydration and contains nanoscopic cages while PCN-15 contains only one-dimensional hexagonal channels along the (0 0 1) direction which require solvent stabilization. The aromaticity of the anthracene rings of the adip ligand in conjunction with the nanoscopic cages grants PCN-14 high excess hydrogen adsorption capacity of 2.70 wt% at 77 K, 760 Torr (4.42 wt % at saturation), as well as high hydrogen affinity of 8.6 kJ/mol at low H(2) coverage. These values are compared to other tetracarboxylate-derived MOFs to better understand the role of the aromatic rings in hydrogen adsorption. C1 [Ma, Shengqian] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Simmons, Jason M.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Simmons, Jason M.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Sun, Daofeng; Yuan, Daqiang; Zhou, Hong-Cai] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. RP Ma, SQ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sma@anl.gov; zhou@mail.chem.tamu.edu RI Sun, Daofeng/H-3700-2011; Ma, Shengqian/B-4022-2012; Zhou, Hong-Cai/A-3009-2011; Yuan, Daqiang/F-5695-2010 OI Zhou, Hong-Cai/0000-0003-0115-408X; Sun, Daofeng/0000-0003-3184-1841; Ma, Shengqian/0000-0002-1897-7069; Zhou, Hong-Cai/0000-0002-9029-3788; Yuan, Daqiang/0000-0003-4627-072X FU Department of Energy [DE-FC36-07GO17033]; National Science Foundation [CHE-0449634, EAR-0003201]; Argonne National Laboratory; DOE [BES DE-FG02-98ER45701] FX This work was supported by the Department of Energy (DE-FC36-07GO17033) and the National Science Foundation (CHE-0449634). S.M. acknowledges the Director's Postdoctoral Fellowship from Argonne National Laboratory. J.M.S. also acknowledges support from DOE (BES DE-FG02-98ER45701). The diffractometer was funded by NSF Grant EAR-0003201. NR 45 TC 67 Z9 67 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 15 PY 2009 VL 48 IS 12 BP 5263 EP 5268 DI 10.1021/ic900217t PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 456AC UT WOS:000266809200025 PM 19388658 ER PT J AU Ma, SQ Yuan, DQ Chang, JS Zhou, HC AF Ma, Shengqian Yuan, Daqiang Chang, Jong-San Zhou, Hong-Cai TI Investigation of Gas Adsorption Performances and H-2 Affinities of Porous Metal-Organic Frameworks with Different Entatic Metal Centers SO INORGANIC CHEMISTRY LA English DT Article ID INELASTIC NEUTRON-SCATTERING; HYDROGEN STORAGE; BINDING STRENGTH; HIGH-CAPACITY; SITES; CATENATION; FUNCTIONALIZATION; TEMPERATURE; NETWORKS; SORPTION AB Three isomorphous porous metal-organic frameworks (MOFs; PCN-9 (Co/Fe/Mn)) with entatic metal centers have been constructed on the basis of the trigonal planar H(3)TATB ligand and a novel square-planar secondary building unit. N-2 adsorption isotherms at 77 K confirmed the permanent porosities of the three porous MOFs. Variable-temperature adsorption measurements of H-2 revealed that the H-2 affinities of the three porous MOFs are related to the nature of entatic metal centers, which reversely affect their H-2 uptake capacities. C1 [Ma, Shengqian] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Yuan, Daqiang; Zhou, Hong-Cai] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Chang, Jong-San] Korea Res Inst Chem Technol, Catalysis Ctr Mol Engn, Taejon 305600, South Korea. RP Ma, SQ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sma@anl.gov; zhou@mail.chem.tamu.edu RI Zhou, Hong-Cai/A-3009-2011; Ma, Shengqian/B-4022-2012; Yuan, Daqiang/F-5695-2010; OI Zhou, Hong-Cai/0000-0002-9029-3788; Ma, Shengqian/0000-0002-1897-7069; Yuan, Daqiang/0000-0003-4627-072X; Zhou, Hong-Cai/0000-0003-0115-408X FU U.S. Department of Energy [DEFC36-07GO17033]; National Science Foundation [CHE-0449634]; Argonne National Laboratory; Institutional Research Program [KK-0904-A0] FX This work was supported by the U.S. Department of Energy (DEFC36-07GO17033 to H.-C.Z.) and the National Science Foundation (CHE-0449634 to H.-C.Z.). S.M. acknowledges the Director's Postdoctoral Fellowship from Argonne National Laboratory and thanks Dr. Tom Scott for Mossbauer measurements. J.-S.C. is grateful to KOCI through the Institutional Research Program (KK-0904-A0) for the financial support. NR 45 TC 48 Z9 48 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 15 PY 2009 VL 48 IS 12 BP 5398 EP 5402 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 456AC UT WOS:000266809200041 PM 19456136 ER PT J AU Lin, QS Corbett, JD AF Lin, Qisheng Corbett, John D. TI Centric and Non-centric Ca3Au similar to 7.5Ge similar to 3.5: Electron-Poor Derivatives of La3Al11. Syntheses, Structures, and Bonding Analyses SO INORGANIC CHEMISTRY LA English DT Article ID ICOSAHEDRAL QUASI-CRYSTAL; AG-GA SYSTEM; AL SYSTEM; INTERMETALLIC COMPOUNDS; HYPOELECTRONIC SRIN4; PHASES; APPROXIMANT; GD; MG2CU6GA5; SIZE AB Two La3Al11 type derivatives have been discovered in the Ca-Au-Ge system and structurally characterized by single-crystal X-ray diffraction. Compositions Ca3Au7.16(6)Ge3.84(6) (1) and Ca3Au7.43(9)Ge3.57(9) (2) lie within a non-centric Imm2 phase region with a approximate to 4.40 angstrom, approximate to 13.06 angstrom, c approximate to 9.60 angstrom. The Au-richer and electron-poorer Ca3Au7.50(1)Ge3.50(1) (3). and Ca3Au8.01(1)Ge2.99(1) (4) occur within a centric Pnnm phase region with a approximate to 9.50 angstrom, b approximate to 13.20 angstrom, c approximate to 4.43 angstrom. Both phases contain complex [Au,Ge],(6-)(11) polyanionic networks made up of hexagonal and pentagonal prisms that are filled with the electropositive Ca atoms. Both 3:11 phases represent opposed 1 x 3 x 1 superstructure distortions of CaAu2Ge2 (ThCr2Si2 type, 14/mmm), the structure of which has also been re-determined in this work. Linear muff in-tin-orbital (LMTO) calculations reveal that the symmetry variations induced by changes of the Au contents in the present 3:11 phases are consequences of bonding and structural optimizations. The hypothetical "CaAu2.33-2.67Ge1.33-1.00 square(0.33)" compositions, which are close to those of 1-4, follow through creation and elimination of vacancies within the electronegative networks of CaAu2Ge2. C1 [Corbett, John D.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM jcorbett@iastate.edu RI Lin, Qisheng/F-7677-2010 OI Lin, Qisheng/0000-0001-7244-7213 FU Office of the Basic Energy Sciences; Materials Sciences Division; U.S. Department of Energy (DOE); Iowa State University [W-7405-Eng-82] FX The authors thank K. Dennis for allowing use of the DTA Instruments. This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE). The Ames Laboratory is operated for the DOE by Iowa State University under contract No. W-7405-Eng-82. NR 57 TC 12 Z9 12 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 15 PY 2009 VL 48 IS 12 BP 5403 EP 5411 DI 10.1021/ic900383d PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 456AC UT WOS:000266809200042 PM 19499957 ER PT J AU Pol, VG Calderon-Moreno, JM Popa, M Acharya, S Ariga, K Thiyagarajan, P AF Pol, Vilas G. Calderon-Moreno, Jose M. Popa, Monica Acharya, Somobratra Ariga, Katsuhiko Thiyagarajan, P. TI Synthesis of New Red-Emitting Single-Phase Europium Oxycarbonate SO INORGANIC CHEMISTRY LA English DT Article ID THERMAL-DECOMPOSITION; SOLID-SOLUTIONS; NANORODS; PHOSPHOR; SPECTRA AB A fascinating one-pot solvent-, catalyst-, and template-free synthesis process to facilitate a single-phase crystalline hexagonal type-II luminescent Eu2O2CO3 organization comprised of nanoplates is demonstrated. The thermolysis (700 degrees C) of europium acetate in a closed stainless steel reactor under autogenic pressure [-3 MPa] yielded Eu2O2CO3 superstructures. Powder X-ray diffraction, high-resolution transmission electron microscopy, and Raman measurements confirmed the structure. Fourier transform infrared spectroscopy, energy-dispersive spectrometry, and CHNS analysis verified the composition. Scanning electron microscopy corroborated the morphology of the new Eu2O2CO3 compound, and the primary luminescence properties are accounted. C1 [Pol, Vilas G.; Thiyagarajan, P.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA. [Calderon-Moreno, Jose M.; Popa, Monica] Acad Romana, Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania. [Acharya, Somobratra; Ariga, Katsuhiko] Natl Inst Mat Sci, World Premier Int Res Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan. [Thiyagarajan, P.] Off Basic Energy Sci, Dept Energy, Washington, DC 20585 USA. RP Pol, VG (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vilaspol@gmail.com RI Calderon Moreno, Jose/B-2867-2008; Popa, Monica/C-4370-2011; ARIGA, Katsuhiko/H-2695-2011 OI Calderon Moreno, Jose/0000-0001-8376-9082; Popa, Monica/0000-0002-5661-5931; NR 22 TC 13 Z9 13 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUN 15 PY 2009 VL 48 IS 12 BP 5569 EP 5573 DI 10.1021/ic900290b PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 456AC UT WOS:000266809200061 PM 19419151 ER PT J AU Fletcher, BL Fern, JT Rhodes, K McKnight, TE Fowlkes, JD Retterer, ST Keffer, DJ Simpson, ML Doktycz, MJ AF Fletcher, Benjamin L. Fern, Jared T. Rhodes, Kevin McKnight, Timothy E. Fowlkes, Jason D. Retterer, Scott T. Keffer, David J. Simpson, Michael L. Doktycz, Mitchel J. TI Effects of ultramicroelectrode dimensions on the electropolymerization of polypyrrole SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILM TRANSISTORS; ALIGNED CARBON NANOFIBERS; ATOMIC-FORCE MICROSCOPY; CONJUGATED POLYMERS; CONDUCTING POLYMERS; METALS; ELECTRODES; DIFFUSION; NANOTUBE; PYRROLE AB Anode geometry can significantly affect the electrochemical synthesis of conductive polymers. Here, the effects of anode dimensions on the electropolymerization of pyrrole are investigated. Band microelectrodes were prepared with widths ranging from 2 to 500 mu m. The anode dimension has a significant effect on the resulting thickness of polymer film. The electropolymerization process deviates significantly from that predicted by simple mass transfer considerations when electrode dimensions are less than similar to 20 mu m. Polymer film thickness is thinner than expected when electrode dimensions become less than similar to 10 mu m. A simple mathematical model was derived to explain the observed effects of anode dimensions on the polymerization process. Simulation results confirm that diffusive loss of reaction intermediates accounts for the observed experimental trends. The described simulation facilitates understanding of the electropolymerization processes and approaches to the controlled deposition of polypyrrole, particularly at the submicron scale, for microelectromechanical systems and biomedical applications. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3152633] C1 [Fletcher, Benjamin L.; McKnight, Timothy E.; Fowlkes, Jason D.; Retterer, Scott T.; Simpson, Michael L.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Fletcher, Benjamin L.; Rhodes, Kevin; Fowlkes, Jason D.; Simpson, Michael L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fern, Jared T.; Keffer, David J.] Univ Tennessee, Chem & Biomol Engn Dept, Knoxville, TN 37996 USA. [McKnight, Timothy E.] Oak Ridge Natl Lab, Monolith Syst Grp, Engn Sci & Technol Div, Oak Ridge, TN 37831 USA. [Retterer, Scott T.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Div Biosci, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37831 USA. [Retterer, Scott T.; Simpson, Michael L.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Fletcher, BL (reprint author), Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Mat Sci & Technol Div, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM doktyczmj@ornl.gov RI Retterer, Scott/A-5256-2011; Doktycz, Mitchel/A-7499-2011; Simpson, Michael/A-8410-2011; McKnight, Tim/H-3087-2011; Keffer, David/C-5133-2014 OI Retterer, Scott/0000-0001-8534-1979; Doktycz, Mitchel/0000-0003-4856-8343; Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117; Keffer, David/0000-0002-6246-0286 FU NIBIB NIH HHS [R01 EB000657, R01 EB000657-07] NR 31 TC 4 Z9 4 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 124312 DI 10.1063/1.3152633 PG 6 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600126 PM 19657404 ER PT J AU Jungthawan, S Limpijumnong, S Collins, R Kim, K Graf, PA Turner, JA AF Jungthawan, Sirichok Limpijumnong, Sukit Collins, Reuben Kim, Kwiseon Graf, Peter A. Turner, John A. TI Direct enumeration studies of band-gap properties of AlxGayIn1-x-yP alloys SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; TOTAL-ENERGY CALCULATIONS; V-SEMICONDUCTOR ALLOYS; AUGMENTED-WAVE METHOD; GALLIUM-PHOSPHIDE; PERSISTENT PHOTOCONDUCTIVITY; ULTRASOFT PSEUDOPOTENTIALS; ORDERED STRUCTURE; BASIS-SET; TRANSITION AB A band-gap database of a large number of configurations (similar to 5000 configurations) is produced for AlGaInP semiconductor alloys using an empirical pseudopotential method. Our results show that the band gap of this alloy system depends strongly on the cation arrangement in addition to the alloy composition. This indicates that one can effectively control the band gap of alloys by controlling the cation arrangement. For each given alloy composition, the range of possible band gaps is calculated and the complete database of the results is made available online. Our results show that a majority of alloy configurations have band gaps smaller than those predicted by Vegard's law. Our results also show several systematic trends in the band gaps depending on the superlattice directions. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3153948] C1 [Jungthawan, Sirichok; Limpijumnong, Sukit] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Limpijumnong, Sukit] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand. [Jungthawan, Sirichok] Commiss Higher Educ, Thailand Ctr Excellence Phys ThEP Ctr, Bangkok 10400, Thailand. [Collins, Reuben] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Jungthawan, Sirichok; Limpijumnong, Sukit; Kim, Kwiseon; Graf, Peter A.; Turner, John A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Limpijumnong, S (reprint author), Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. EM sukit@sut.ac.th RI Collins, Reuben/O-2545-2014 OI Collins, Reuben/0000-0001-7910-3819 NR 53 TC 4 Z9 4 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123531 DI 10.1063/1.3153948 PG 9 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600064 ER PT J AU Li, N Martin, MS Anderoglu, O Misra, A Shao, L Wang, H Zhang, X AF Li, Nan Martin, M. S. Anderoglu, O. Misra, A. Shao, L. Wang, H. Zhang, X. TI He ion irradiation damage in Al/Nb multilayers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHASE FORMATION; THIN-FILMS; RESISTIVITY CHANGE; HELIUM BUBBLES; SPUTTERED CU/V; METALS; KINETICS; NIOBIUM; DISLOCATIONS; TOLERANCE AB We investigate the evolution of microstructure and mechanical properties of sputter-deposited Al/Nb multilayers with miscible fcc/bcc type interface and individual layer thickness, h, of 1-200 nm, subjected to helium ion irradiations: 100 keV He+ ions and a fluence of 6 x 10(16)/cm(2). Helium bubbles, 1-2 nm in diameter, are observed. When h is greater than 25 nm, hardnesses of irradiated multilayers barely change, whereas radiation hardening is more significant at smaller h. Transmission electron microscopy and scanning transmission electron microscopy studies reveal the formation of a thin layer of Nb3Al intermetallic phase along the Al/Nb interface as a consequence of radiation induced intermixing. The dependence of radiation hardening on h is interpreted by using a composite model considering the formation of the hard Nb3Al intermetallic layer. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3138804] C1 [Li, Nan; Anderoglu, O.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Li, Nan; Anderoglu, O.; Zhang, X.] Texas A&M Univ, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Martin, M. S.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Wang, Haiyan/P-3550-2014 OI Li, Nan /0000-0002-8248-9027; Wang, Haiyan/0000-0002-7397-1209 NR 47 TC 33 Z9 35 U1 3 U2 36 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123522 DI 10.1063/1.3138804 PG 8 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600055 ER PT J AU Malavasi, L Kim, H Proffen, T AF Malavasi, Lorenzo Kim, HyunJeong Proffen, Thomas TI Local and average structures of the proton conducting Y-doped BaCeO3 from neutron diffraction and neutron pair distribution function analysis SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID BARIUM CERATE PEROVSKITES; WATER INCORPORATION; SINTERED OXIDES; NONSTOICHIOMETRY; ELECTROLYTE; TRANSITION; HYDROGEN AB In this paper we investigated the most important family of proton conducting oxides, i.e., cerates, by means of neutron diffraction and of pair distribution function analysis (PDF). The paper describes the structural effects of Y-doping and water incorporation in cerates proton conductors from a viewpoint of the average structure (determined from diffraction) and the local structure (determined from PDF analysis). (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3148864] C1 [Malavasi, Lorenzo] Univ Pavia, Dept Phys Chem, I-27100 Pavia, Italy. [Malavasi, Lorenzo] Univ Pavia, Dept Pavia IENI CNR, I-27100 Pavia, Italy. [Kim, HyunJeong; Proffen, Thomas] Los Alamos Natl Lab, LANSCE 12, Los Alamos, NM 87545 USA. RP Malavasi, L (reprint author), Univ Pavia, Dept Phys Chem, I-27100 Pavia, Italy. EM lorenzo.malavasi@unipv.it RI Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009; Malavasi, Lorenzo/P-1966-2016; OI Proffen, Thomas/0000-0002-1408-6031; Malavasi, Lorenzo/0000-0003-4724-2376 NR 28 TC 5 Z9 5 U1 1 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123519 DI 10.1063/1.3148864 PG 9 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600052 ER PT J AU McCallum, RW Yan, JQ Rustan, GE Mun, ED Singh, Y Das, S Nath, R Bud'ko, SL Dennis, KW Johnston, DC Canfield, PC Kramer, MJ Kreyssig, A Lograsso, TA Goldman, AI AF McCallum, R. W. Yan, J. -Q. Rustan, G. E. Mun, E. D. Singh, Yogesh Das, S. Nath, R. Bud'ko, S. L. Dennis, K. W. Johnston, D. C. Canfield, P. C. Kramer, M. J. Kreyssig, A. Lograsso, T. A. Goldman, A. I. TI In situ high energy x-ray synchrotron diffraction study of the synthesis and stoichiometry of LaFeAsO and LaFeAsO1-xFy SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB The reaction path for the synthesis of LaFeAsO and LaFeAsO1-xFy by solid state reaction was studied by in situ high temperature x-ray diffraction technique and differential thermal analysis in the temperature interval 100 degrees C <= T <= 1150 degrees C. Starting with LaAs, Fe2O3, Fe, and LaF3 as precursors, the results show that the synthesis is characterized by three temperature intervals: (1) Below 500 degrees C the sequential reduction of Fe2O3 and Fe3O4 takes place through the oxidization of LaAs. Below 400 degrees C, Fe2O3 is reduced to Fe3O4 by LaAs and then at 400 degrees C (T) 500 degrees C Fe3O4 is further reduced to Fe. (2) In the temperature interval 500 degrees C < T < 800 degrees C, multiple intermediate reactions take place resulting in the formation of FeAs and La2O3. (3) The formation of LaFeAsO based phase could be unambiguously resolved above 800 degrees C. For both LaFeAsO and LaFeAsO1-xFy, FeAs is a primary impurity at high temperatures that melts at similar to 1040 degrees C. Possible reaction pathways and the difference between F-free and F-doped samples are discussed. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3149773] C1 [McCallum, R. W.; Yan, J. -Q.; Rustan, G. E.; Mun, E. D.; Singh, Yogesh; Das, S.; Nath, R.; Bud'ko, S. L.; Dennis, K. W.; Johnston, D. C.; Canfield, P. C.; Kramer, M. J.; Kreyssig, A.; Lograsso, T. A.; Goldman, A. I.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Rustan, G. E.; Mun, E. D.; Singh, Yogesh; Das, S.; Johnston, D. C.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP McCallum, RW (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM mccallum@ameslab.gov RI Nath, Ramesh/C-9345-2011; Canfield, Paul/H-2698-2014; singh, yogesh/F-7160-2016 NR 20 TC 8 Z9 8 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123912 DI 10.1063/1.3149773 PG 11 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600093 ER PT J AU Potzger, K Shalimov, A Zhou, SQ Schmidt, H Mucklich, A Helm, M Fassbender, J Liberati, M Arenholz, E AF Potzger, K. Shalimov, A. Zhou, Shengqiang Schmidt, H. Muecklich, A. Helm, M. Fassbender, J. Liberati, M. Arenholz, E. TI Amorphous clusters in Co implanted ZnO induced by boron preimplantation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THIN-FILMS AB We demonstrate the formation of superparamagnetic/ ferromagnetic regions within ZnO(0001) single crystals sequentially implanted with B and Co. While the preimplantation with B plays a minor role for the electrical transport properties, its presence leads to the formation of amorphous phases. Moreover, B acts strongly, reducing the implanted Co. Thus, the origin of the ferromagnetic ordering in local clusters with large Co concentration is itinerant d-electron as in the case of metallic Co. The amorphous Co-based phases are nondetectable by common x-ray diffraction. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3151702] C1 [Potzger, K.; Shalimov, A.; Zhou, Shengqiang; Schmidt, H.; Muecklich, A.; Helm, M.; Fassbender, J.] Forschungszentrum Dresden Rossendorf eV, Inst Ionenstrahlphys & Mat Forsch, D-01328 Dresden, Germany. [Liberati, M.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Potzger, K (reprint author), Forschungszentrum Dresden Rossendorf eV, Inst Ionenstrahlphys & Mat Forsch, Bautzner Landstr 400, D-01328 Dresden, Germany. EM k.potzger@fzd.de RI Fassbender, Juergen/A-8664-2008; Helm, Manfred/B-2284-2009; Zhou, Shengqiang/C-1497-2009; Schmidt, Heidemarie/E-4627-2012 OI Fassbender, Juergen/0000-0003-3893-9630; Zhou, Shengqiang/0000-0002-4885-799X; NR 33 TC 4 Z9 4 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123917 DI 10.1063/1.3151702 PG 8 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600098 ER PT J AU Seifter, A Furlanetto, MR Grover, M Holtkamp, DB Macrum, GS Obst, AW Payton, JR Stone, JB Stevens, GD Swift, DC Tabaka, LJ Turley, WD Veeser, LR AF Seifter, A. Furlanetto, M. R. Grover, M. Holtkamp, D. B. Macrum, G. S. Obst, A. W. Payton, J. R. Stone, J. B. Stevens, G. D. Swift, D. C. Tabaka, L. J. Turley, W. D. Veeser, L. R. TI Use of IR pyrometry to measure free-surface temperatures of partially melted tin as a function of shock pressure SO JOURNAL OF APPLIED PHYSICS LA English DT Article AB Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 mu m. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3153973] C1 [Seifter, A.] Los Alamos Natl Lab, Accelerator Operat & Technol Div ABS, Los Alamos, NM 87545 USA. [Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Veeser, L. R.] LANL, Phy Div P23, Los Alamos, NM 87545 USA. [Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.] STL, Santa Barbara, CA 93111 USA. [Swift, D. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Seifter, A (reprint author), Los Alamos Natl Lab, Accelerator Operat & Technol Div ABS, MS H817, Los Alamos, NM 87545 USA. EM seif@lanl.gov NR 34 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123526 DI 10.1063/1.3153973 PG 6 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600059 ER PT J AU Smedley, J Jaye, C Bohon, J Rao, T Fischer, DA AF Smedley, John Jaye, Cherno Bohon, Jen Rao, Triveni Fischer, Daniel A. TI Laser patterning of diamond. Part II. Surface nondiamond carbon formation and its removal SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-ABSORPTION AB As diamond becomes more prevalent for electronic and research applications, methods of patterning diamond will be required. One such method, laser ablation, has been investigated in a related work. We report on the formation of surface nondiamond carbon during laser ablation of both polycrystalline and single-crystal synthetic diamonds. Near edge x-ray absorption fine structure spectroscopy was used to confirm that the nondiamond carbon layer formed during the ablation was amorphous, and Fourier transform infrared absorption spectroscopy (FTIR) was used to estimate the thickness of this layer to be similar to 60 nm. Ozone cleaning was used to remove the nondiamond carbon layer. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3152995] C1 [Smedley, John; Rao, Triveni] Brookhaven Natl Lab, Upton, NY 11973 USA. [Jaye, Cherno; Fischer, Daniel A.] NIST, Gaithersburg, MD 20899 USA. [Bohon, Jen] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Smedley, J (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM smedley@bnl.gov NR 16 TC 5 Z9 5 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123108 DI 10.1063/1.3152995 PG 5 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600024 ER PT J AU Smedley, J Bohon, J Wu, Q Rao, T AF Smedley, John Bohon, Jen Wu, Qiong Rao, Triveni TI Laser patterning of diamond. Part I. Characterization of surface morphology SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ABLATION AB As the use of diamond as a material for electronic and research applications increases, methods of patterning diamond will be required. In this work, single- and polycrystalline synthetic diamond samples were exposed to laser beams of different energies, wavelengths, and pulse durations. The effects of this exposure were characterized using optical microscopy, scanning electron microscopy, and atomic force microscopy. The threshold ablation energy density for 266 nm radiation with similar to 30 ps pulse duration was measured to be similar to 14 J/cm(2). The threshold for similar to 10 ns pulses at the same wavelength was similar, but the ablated area displayed larger surface damage. The surface damage and the threshold energy increase significantly for 532 and 1064 nm radiations. Ablation performed using 213 nm radiation produced the most uniform surface. Changes in the ablated surface are presented in detail. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3152956] C1 [Smedley, John; Wu, Qiong; Rao, Triveni] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bohon, Jen] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Smedley, J (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM smedley@bnl.gov NR 12 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123107 DI 10.1063/1.3152956 PG 5 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600023 ER PT J AU Wang, LW AF Wang, Lin-Wang TI Density functional calculations of shallow acceptor levels in Si SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRON-GAS; SILICON; ENERGY; SEMICONDUCTORS; STATES AB We present a comprehensive study of the binding energies of B, Al, Ga, In, Tl shallow acceptors in bulk Si using density functional theory. Two approaches are used to calculate the binding energies. One is based on the eigenenergy of the single particle Kohn-Sham equation, and another is based on the total energy change during the impurity ionization process. Planewave pseudopotential Hamiltonian under local density approximation is used. A special potential patching method is presented which allows the calculation of 64 000 atom supercells needed for converging the eigenenergies. We found that the calculated impurity eigenenergies reproduce correctly the trend of the element dependence of the binding energy. But the calculated binding energies for In and Tl are much smaller than the experimental values. A linear response formula is derived which relates the total energy difference between the systems with occupied and unoccupied impurity to the impurity state eigenenergy and the impurity state self-interaction. However, the total energy difference gives much worse binding energies when compared to experiment due to the self-interaction error in the local density approximation. We conclude that one must go beyond the usual approximations of the density functional theory in order to predict accurately the binding energies of these shallow impurities. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3153981] C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM lwwang@lbl.gov NR 27 TC 7 Z9 7 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123712 DI 10.1063/1.3153981 PG 9 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600080 ER PT J AU Xiao, HY Gao, F Zu, XT Weber, WJ AF Xiao, H. Y. Gao, Fei Zu, X. T. Weber, W. J. TI Threshold displacement energy in GaN: Ab initio molecular dynamics study SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ION-IMPLANTED GAN; DEFECT PRODUCTION; IRRADIATION; SIMULATION; CASCADES; SILICON; DAMAGE; AMORPHIZATION; BOMBARDMENT; DISORDER AB Large-scale ab initio molecular dynamics method has been used to determine the threshold displacement energies E-d along five specific directions and to determine the defect configurations created during low energy events. The E-d shows a significant dependence on direction. The minimum E-d is determined to be 39 eV along the <(1) over bar 010 > direction for a gallium atom and 17.0 eV along the <(1) over bar 010 > direction for a nitrogen atom, which are in reasonable agreement with the experimental measurements. The average E-d values determined are 73.2 and 32.4 eV for gallium and nitrogen atoms, respectively. The N defects created at low energy events along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed in GaN. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3153277] C1 [Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xiao, HY (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM hyxiao@uestc.edu.cn; fei.gao@pnl.gov RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 OI Weber, William/0000-0002-9017-7365; NR 48 TC 33 Z9 33 U1 4 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUN 15 PY 2009 VL 105 IS 12 AR 123527 DI 10.1063/1.3153277 PG 5 WC Physics, Applied SC Physics GA 465PP UT WOS:000267599600060 ER PT J AU Lee, DS Burd, H Liu, JX Almaas, E Wiest, O Barabasi, AL Oltvai, ZN Kapatral, V AF Lee, Deok-Sun Burd, Henry Liu, Jiangxia Almaas, Eivind Wiest, Olaf Barabasi, Albert-Laszlo Oltvai, Zoltan N. Kapatral, Vinayak TI Comparative Genome-Scale Metabolic Reconstruction and Flux Balance Analysis of Multiple Staphylococcus aureus Genomes Identify Novel Antimicrobial Drug Targets SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ESCHERICHIA-COLI; SEQUENCE; NETWORK; GENES; IDENTIFICATION; INFECTIONS; EVOLUTION; DISCOVERY; DRAFT AB Mortality due to multidrug-resistant Staphylococcus aureus infection is predicted to surpass that of human immunodeficiency virus/AIDS in the United States. Despite the various treatment options for S. aureus infections, it remains a major hospital- and community-acquired opportunistic pathogen. With the emergence of multidrug-resistant S. aureus strains, there is an urgent need for the discovery of new antimicrobial drug targets in the organism. To this end, we reconstructed the metabolic networks of multidrug-resistant S. aureus strains using genome annotation, functional-pathway analysis, and comparative genomic approaches, followed by flux balance analysis-based in silico single and double gene deletion experiments. We identified 70 single enzymes and 54 pairs of enzymes whose corresponding metabolic reactions are predicted to be unconditionally essential for growth. Of these, 44 single enzymes and 10 enzyme pairs proved to be common to all 13 S. aureus strains, including many that had not been previously identified as being essential for growth by gene deletion experiments in S. aureus. We thus conclude that metabolic reconstruction and in silico analyses of multiple strains of the same bacterial species provide a novel approach for potential antibiotic target identification. C1 [Burd, Henry; Kapatral, Vinayak] Integrated Genom Inc, Chicago, IL 60612 USA. [Lee, Deok-Sun; Barabasi, Albert-Laszlo] Northeastern Univ, Ctr Complex Network Res, Boston, MA 02215 USA. [Lee, Deok-Sun; Barabasi, Albert-Laszlo] Northeastern Univ, Dept Phys, Boston, MA 02215 USA. [Lee, Deok-Sun; Barabasi, Albert-Laszlo] Northeastern Univ, Dept Biol, Boston, MA 02215 USA. [Lee, Deok-Sun; Barabasi, Albert-Laszlo] Northeastern Univ, Dept Comp Sci, Boston, MA 02215 USA. [Lee, Deok-Sun; Barabasi, Albert-Laszlo] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02215 USA. [Lee, Deok-Sun] Inha Univ, Dept Nat Med Sci, Inchon 402751, South Korea. [Liu, Jiangxia; Oltvai, Zoltan N.] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15261 USA. [Almaas, Eivind] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. [Wiest, Olaf] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Kapatral, V (reprint author), Integrated Genom Inc, 2201 W Campbell Pk Dr, Chicago, IL 60612 USA. EM vinayak@integratedgenomics.com RI Lee, Deok-Sun/D-1335-2011; OI Almaas, Eivind/0000-0002-9125-326X FU NIH [5U01AI070499-02] FX Support for this work was provided by NIH grant 5U01AI070499-02. NR 30 TC 82 Z9 86 U1 0 U2 22 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUN 15 PY 2009 VL 191 IS 12 BP 4015 EP 4024 DI 10.1128/JB.01743-08 PG 10 WC Microbiology SC Microbiology GA 451ET UT WOS:000266454200025 PM 19376871 ER PT J AU Song, J Xu, JW Filion, T Saiz, E Tomsia, AP Lian, JB Stein, GS Ayers, DC Bertozzi, CR AF Song, Jie Xu, Jianwen Filion, Tera Saiz, Eduardo Tomsia, Antoni P. Lian, Jane B. Stein, Gary S. Ayers, David C. Bertozzi, Carolyn R. TI Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications SO JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A LA English DT Article DE hydrogel; hydroxyapatite; elastomeric composites; osteoblastic differentiation; bone marrow stromal cells ID MECHANICAL-PROPERTIES; CONTACT PRESSURES; COMPACT-BONE; HUMAN HIP; BIOCERAMICS; SCAFFOLDS; STRENGTH AB The design of synthetic bone grafts that mimic the structure and composition of bone and possess good surgical handling characteristics remains a major challenge. We report the development of poly(2-hydroxyethyl methacrylate) (pHEMA)-hydroxyapatite (HA) composites termed "FlexBone" that possess osteoconductive mineral content approximating that of human bone vet exhibit elastomeric properties enabling the press-fitting into a defect site. The approach involves crosslinking pHEMA hydrogel in the presence of HA using viscous ethylene glycol as a solvent. The composites exhibit excellent structural integration between the apatite mineral component and the hydroxylated hydrogel matrix. The stiffness of the composite and the ability to withstand compressive stress correlate with the microstructure and content of the mineral component. The incorporation of porous aggregates of HA nanocrystals rather than compact micrometer-sized calcined HA effectively improved the resistance of the composite to crack propagation under compression. Freeze-dried FlexBone containing 50 wt % porous HA nanocrystals could withstand hundreds-of-megapascals compressive stress and >80% compressive strain without exhibiting brittle fractures. Upon equilibration with water, FlexBone retained good structural integration and withstood repetitive moderate (megapascals) compressive stress at body temperature. When subcutaneously implanted in rats, FlexBone supported osteoblastic differentiation of the bone marrow stromal cells pre-seeded on FlexBone. Taken together, the combination of high osteoconductive mineral content, excellent organic-inorganic structural integration, elasticity, and the ability to support osteoblastic differentiation in vivo makes FlexBone a promising candidate for orthopedic applications. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 89A: 1098-1107, 2009 C1 [Song, Jie; Xu, Jianwen; Filion, Tera; Lian, Jane B.; Ayers, David C.] Univ Massachusetts, Sch Med, Dept Orthoped, Worcester, MA 01655 USA. [Song, Jie; Xu, Jianwen; Filion, Tera; Lian, Jane B.; Stein, Gary S.] Univ Massachusetts, Sch Med, Dept Cell Biol, Worcester, MA 01655 USA. [Saiz, Eduardo; Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Song, J (reprint author), Univ Massachusetts, Sch Med, Dept Orthoped, Worcester, MA 01655 USA. EM jie.song@umassmed.edu RI Xu, Jianwen/B-3460-2009; Xu, Jianwen/E-2587-2012 OI Xu, Jianwen/0000-0003-3547-6415; Xu, Jianwen/0000-0003-3547-6415 FU U.S. Department of Energy [DE-AC03-76SF00098]; National Institutes of Health [5R01DE015633, 1R01AR055615]; Worcester Foundation for Biomedical Research; University of Massachusetts Medical School FX Worcester Foundation for Biomedical Research, University of Massachusetts Medical School (Clinical and Translational Science Pilot Project Program) NR 42 TC 39 Z9 39 U1 2 U2 25 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1549-3296 J9 J BIOMED MATER RES A JI J. Biomed. Mater. Res. Part A PD JUN 15 PY 2009 VL 89A IS 4 BP 1098 EP 1107 DI 10.1002/jbm.a.32110 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 444MN UT WOS:000265985200026 PM 18546185 ER PT J AU Debnath, RK Stoica, T Besmehn, A Jeganathan, K Sutter, E Meijers, R Luth, H Calarco, R AF Debnath, R. K. Stoica, T. Besmehn, A. Jeganathan, K. Sutter, E. Meijers, R. Lueth, H. Calarco, R. TI Formation of GaN nanodots on Si (111) by droplet nitridation SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Atomic force microscopy; Diffusion; Nanostructures; Nucleation; Molecular beam epitaxy; Nitrides ID GROWTH; EPITAXY; NUCLEATION; TRANSITION; SUBSTRATE; SINGLE AB GaN nanodots (NDs) are obtained by Ga metallic droplet formation on Si (1 1 1) substrates followed by their nitridation. The size and density of Ga droplets and GaN NDs can be controlled by varying the growth temperature within the range 514-640 degrees C. Atomic force microscopy (AFM) investigation of Ga droplets shows an increase in the average diameter with temperature. The average diameter of GaN NDs increases with growth temperature while their density decreases more than one order of magnitude. In addition, the formation of a GaN crystallite rough layer on Si, in-between NDs, indicates that a spreading mechanism takes place during the nitridation process. High-resolution transmission electron microscopy (HRTEM) is used for the investigation of shape, crystalline quality and surface distribution of GaN dots. X-ray photoelectron spectroscopy (XPS) results confirm that Ga droplets that are transformed into GaN NDs spread over the sample surface during nitridation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Debnath, R. K.; Stoica, T.; Meijers, R.; Lueth, H.; Calarco, R.] Res Ctr Julich GmbH, IBN 1, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany. [Besmehn, A.] Res Ctr Julich GmbH, Cent Div Analyt Chem ZCH, D-52425 Julich, Germany. [Jeganathan, K.] Bharathidasan Univ, Dept Phys, Tiruchchirappalli 620024, India. [Sutter, E.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Calarco, R (reprint author), Res Ctr Julich GmbH, IBN 1, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany. EM r.calarco@fz-juelich.de RI Kulandaivel, Jeganathan/G-2710-2010; Calarco, Raffaella/B-8218-2011; Debnath, Ratan/D-3629-2012; Debnath, Ratan/B-4678-2016 OI Debnath, Ratan/0000-0003-1343-7888 FU Helmholtz-DAAD Fellowship; Alexander von Humboldt (AvH) Foundation FX The authors would like to thank K.-H. Deussen for technical support. R.K.D and K.J. appreciate the financial support from a Helmholtz-DAAD Fellowship and Alexander von Humboldt (AvH) Foundation, respectively. H. Okumura and M. Shimizu from Power Electronics Research Centre, AIST, Tsukuba, Japan, are kindly acknowledged for providing the MOCVD-grown GaN reference sample. NR 15 TC 12 Z9 12 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUN 15 PY 2009 VL 311 IS 13 BP 3389 EP 3394 DI 10.1016/j.jcrysgro.2009.04.025 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 470DP UT WOS:000267955000006 ER PT J AU Novikov, SV Staddon, CR Akimov, AV Campion, RP Zainal, N Kent, AJ Foxon, CT Chen, CH Yu, KM Walukiewicz, W AF Novikov, S. V. Staddon, C. R. Akimov, A. V. Campion, R. P. Zainal, N. Kent, A. J. Foxon, C. T. Chen, C. H. Yu, K. M. Walukiewicz, W. TI Molecular beam epitaxy of crystalline and amorphous GaN layers with high As content SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Molecular beam epitaxy; Nitrides; Semiconducting III-V materials ID RICH SIDE AB We have studied the low-temperature growth of gallium nitride arsenide (GaN)As layers on sapphire substrates by plasma-assisted molecular beam epitaxy. We have succeeded in achieving GaN(1-x)As(x) alloys over a large composition range by growing the films much below the normal GaN growth temperatures with increasing the As(2) flux as well as Ga:N flux ratio. We found that alloys with high As content x>0.1 are amorphous and those with x<0.1 are crystalline. Optical absorption measurements reveal a continuous gradual decrease of band gap from similar to 3.4 to similar to 1.35 eV with increasing As content. The energy gap reaches its minimum of similar to 1.35eV at x similar to 0.6-0.7. The structural, optical and electrical properties of these crystalline/amorphous GaNAs layers were investigated. For x<0.3, the composition dependence of the band gap of the GaN(1-x)As(x) alloys follows the prediction of the band anticrossing model developed for dilute alloys. This suggests that the amorphous GaN(1-x)As(x) alloys have short-range ordering that resembles random crystalline GaN(1-x)As(x) alloys. (C) 2009 Elsevier B.V. All rights reserved. C1 [Novikov, S. V.; Staddon, C. R.; Akimov, A. V.; Campion, R. P.; Zainal, N.; Kent, A. J.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Chen, C. H.] Ind Technol Res Inst, Photovolta Technol Ctr, Hsinchu 310, Taiwan. [Yu, K. M.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Novikov, SV (reprint author), Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. EM sergei.novikov@nottingham.ac.uk RI Zainal, Norzaini/A-7906-2011; Zainal, Norzaini/G-2250-2010; Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Campion, Richard/0000-0001-8990-8987; Kent, Anthony/0000-0002-2391-6869; Novikov, Sergei/0000-0002-3725-2565 FU EPSRC [EP/G007160/1, EP/D051487/1]; US Department of Energy [DE-AC02-05CH11231] FX This work at the University of Nottingham was undertaken with support from the EPSRC (EP/G007160/1 and EP/D051487/1). The work performed at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract no. DE-AC02-05CH11231. NR 12 TC 19 Z9 19 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUN 15 PY 2009 VL 311 IS 13 BP 3417 EP 3422 DI 10.1016/j.jcrysgro.2009.04.010 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 470DP UT WOS:000267955000010 ER PT J AU Harley, G Kreuer, KD Maier, J De Jonghe, LC AF Harley, Gabriel Kreuer, Klaus-Dieter Maier, Joachim De Jonghe, Lutgard C. TI Structural investigation of ternary La/alkaline earth phosphate (La(1-x)MxP3Oy) (M = Ba, Ca, Sr) glasses SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Raman scattering; Optical spectroscopy; Absorption; Optical spectroscopy; FTIR measurements; Raman spectroscopy; Phosphates; Short-range order; Glass transition; Water; Water in glass ID X-RAY-DIFFRACTION; ULTRAPHOSPHATE GLASSES; METAPHOSPHATE GLASSES; PROTONIC CONDUCTION; WATER; DISSOLUTION; SPECTRA; ALUMINA; ALKALI; ENERGY AB The structure of La-based metaphosphate glasses modified with aliovalent alkaline earth elements (M = Ba, Ca, Sr), with P:(M + La) ratio kept approximately at 3, were analyzed using Raman and IR spectroscopy. Increasing the concentration of the alkaline earths monotonically decreased the glass density and glass transition temperature, and shifted some vibrational modes by as much as 40 wavenumbers. The Raman frequencies of the symmetric POP and the P=O vibrations depended on the M/La ratio, but not on the type of alkaline earth addition; however, the type of alkaline earth cation significantly changed the symmetric PO2 vibration. The average cation-oxygen coordination number remained near similar to 7 except for a slight decrease for high concentrations of Ca and Sr substitutions. The POP/PO2 intensity ratio increased with increasing alkaline earth content. The replacement of divalent elements for trivalent La in a metaphosphate glass structure was partially accommodated by incorporation of protons as charge compensating defects. The protons were found to be in close proximity to the divalent cations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Harley, Gabriel; De Jonghe, Lutgard C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Harley, Gabriel; De Jonghe, Lutgard C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kreuer, Klaus-Dieter; Maier, Joachim] Max Planck Inst Festkorperforsch, D-70565 Stuttgart, Germany. RP Harley, G (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 1 Sproul Hall, Berkeley, CA 94720 USA. EM gharley@gmail.com FU US Department of Energy [DE-AC02-05CH11231]; Max Planck Institute in Stuttgart FX Funding for this project was provided by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Additional funding was also provided by the Max Planck Institute in Stuttgart, as well as support by S. Weiglein and C.C. de Araujo. Gabriel Harley would also like to thank A. Schulz for the Raman, W. Koenig for the FTIR, G. Gotz for the XRD, U. Klock, A. Fuchs, for technical assistance, S. Weiglein and C.C. de Araujo for support, and the crystal preparation laboratory at the Max Planck Institute (FKF). NR 27 TC 14 Z9 14 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUN 15 PY 2009 VL 355 IS 16-17 BP 932 EP 937 DI 10.1016/j.jnoncrysol.2009.04.023 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 459FD UT WOS:000267085400004 ER PT J AU Roth, J Tsitrone, E Loarte, A Loarer, T Counsell, G Neu, R Philipps, V Brezinsek, S Lehnen, M Coad, P Grisolia, C Schmid, K Krieger, K Kallenbach, A Lipschultz, B Doerner, R Causey, R Alimov, V Shu, W Ogorodnikova, O Kirschner, A Federici, G Kukushkin, A AF Roth, Joachim Tsitrone, E. Loarte, A. Loarer, Th. Counsell, G. Neu, R. Philipps, V. Brezinsek, S. Lehnen, M. Coad, P. Grisolia, Ch. Schmid, K. Krieger, K. Kallenbach, A. Lipschultz, B. Doerner, R. Causey, R. Alimov, V. Shu, W. Ogorodnikova, O. Kirschner, A. Federici, G. Kukushkin, A. CA EFDA PWI Task Force ITER PWI Team Fusion Energy ITPA SOL DIV TI Recent analysis of key plasma wall interactions issues for ITER SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID HYDROGEN ISOTOPE RETENTION; SURFACE CONDITIONS; HYDROCARBON FILMS; ASDEX UPGRADE; DIVERTOR; DEUTERIUM; TUNGSTEN; EROSION; CARBON; CODEPOSITION AB Plasma wall interaction (PWI) is important for the material choice in ITER and for the plasma scenarios compatible with material constraints. In this paper, different aspects of the PWI are assessed in their importance for the initial wall materials choice: CFC for the strike point tiles, W in the divertor and baffle and Be on the first wall. Further material options are addressed for comparison, such as W divertor/Be first wall and all-W or all-C. One main parameter in this evaluation is the particle flux to the main vessel wall. One detailed plasma scenario exists for a Q = 10 ITER discharge [G. Federici et al., J. Nucl. Mater. 290293 (2001) 260] which was taken as the basis of further erosion and tritium retention evaluations. As the assessment of steady state wall fluxes from a scaling of present fusion devices indicates that global wall fluxes may be a factor of 4 +/- 3 higher, this margin has been adopted as uncertainty of the scaling. With these wall and divertor fluxes, important PWI processes such as erosion and tritium accumulation have been evaluated: It was found that the steady state erosion is no problem for the lifetime of plasma-facing divertor components. Be wall erosion may pose a problem in case of a concentration of the wall fluxes to small wall areas. ELM erosion may drastically limit the PFC lifetime if ELMs are not mitigated to energies below 0.5 MJ. Dust generation is still a process which requires more attention. Conversion from gross or net erosion to dust and the assessment of dust on hot surfaces need to be investigated. For low-Z materials the build-up of the tritium inventory is dominated by co-deposition with eroded wall atoms. For W, where erosion and tritium co-deposition are small, the implantation, diffusion and bulk trapping constitute the dominant retention processes. First extrapolations with models based on laboratory data show small contributions to the inventory. For later ITER phases and the extrapolation to DEMO additional tritium trapping sites due to neutron-irradiation damage need to be taken into account. Finally, the expected values for erosion and tritium retention are compared to the ITER administrative limits for the lifetime, dust and tritium inventory. (C) 2009 Elsevier B.V. All rights reserved. C1 [Roth, Joachim; Neu, R.; Schmid, K.; Krieger, K.; Kallenbach, A.; Ogorodnikova, O.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Tsitrone, E.; Loarer, Th.; Grisolia, Ch.] CEA DMS DRFC CEA Cadarache, Assoc Euratom CEA, F-13108 St Paul Les Durance, France. [Philipps, V.; Brezinsek, S.; Lehnen, M.; Kirschner, A.] Forschungszentrum Julich, Inst Plasmaphys, EURATOM Assoc, D-52425 Julich, Germany. [Loarte, A.; Kukushkin, A.] ITER Org, Fus Sci & Technol Dept, F-13108 St Paul Les Durance, France. [Coad, P.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Doerner, R.] Univ Calif San Diego, Fus Energy Res Program, La Jolla, CA 92093 USA. [Causey, R.] Sandia Natl Labs, Livermore, CA 94550 USA. [Counsell, G.] ITER Dept, Barcelona 08019, Spain. [Alimov, V.; Shu, W.] Japan Atom Energy Agcy, Tritium Technol Grp, Tokai, Ibaraki 3191195, Japan. [Lipschultz, B.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Roth, J (reprint author), EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. EM roth@ipp.mpg.de RI Lipschultz, Bruce/J-7726-2012; Alimov, Vladimir/G-5826-2014; Krieger, Karl/F-9762-2014; Brezinsek, Sebastijan/B-2796-2017; Neu, Rudolf /B-4438-2010; OI Lipschultz, Bruce/0000-0001-5968-3684; Alimov, Vladimir/0000-0003-4198-8812; Krieger, Karl/0000-0003-0427-8184; Brezinsek, Sebastijan/0000-0002-7213-3326; Neu, Rudolf /0000-0002-6062-1955; Kirschner, Andreas/0000-0002-3213-3225 NR 85 TC 350 Z9 353 U1 22 U2 174 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 1 EP 9 DI 10.1016/j.jnucmat.2009.01.037 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300002 ER PT J AU Grisolia, C Rosanvallon, S Loarte, A Sharpe, P Arnas, C AF Grisolia, C. Rosanvallon, S. Loarte, A. Sharpe, P. Arnas, C. TI From eroded material to dust: An experimental evaluation of the mobilised dust production in Tore Supra SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID DISRUPTIONS AB In a fusion reactor like ITER, in-vessel materials are subjected to interactions with the plasma. One of the main consequences of these plasma-material interactions is the creation of co-deposited layers especially with Beryllium and Carbon based materials. Due to internal stresses, part of these layers can crack leading to micro particle creation. The purpose of the following paper is to review the tokamak operation processes that lead to the erosion of the bulk material and then to layer creation. The proportion of these layers that are converted into micro particles will be evaluated in the case of Tore Supra experiments. For Tore Supra, this conversion factor (Cd) is close to 7-8% comparable to the current ITER retained value of 10%. In the second part of the papers, diagnostics which can be used to constraint the Cd value are proposed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Grisolia, C.; Rosanvallon, S.] DRFC SIPP, Assoc Euratom CEA, F-13108 St Paul Les Durance, France. [Loarte, A.] ITER Int Org, F-13108 St Paul Les Durance, France. [Sharpe, P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Sharpe, P.] Univ Aix Marseille 1, Lab PIIM, UMR 6633, CNRS, F-13397 Marseille, France. RP Grisolia, C (reprint author), DRFC SIPP, Assoc Euratom CEA, F-13108 St Paul Les Durance, France. EM Christian.Grisolia@cea.fr NR 16 TC 11 Z9 11 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 53 EP 56 DI 10.1016/j.jnucmat.2009.01.045 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300009 ER PT J AU Krstic, PS Hollmann, EM Reinhold, CO Stuart, SJ Doerner, RP Nishijima, D Pigarov, AY AF Krstic, P. S. Hollmann, E. M. Reinhold, C. O. Stuart, S. J. Doerner, R. P. Nishijima, D. Pigarov, A. Yu. TI Transfer of rovibrational energies in hydrogen plasma-carbon surface interactions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID DIAGNOSTICS; PISCES AB We present state-of-the-art molecular dynamics (MD) simulations of high-density plasma-bombardment of carbon, mimicking plasma-wall interactions at the fusion reactor first wall. Bare and hydrogenated amorphous carbon surfaces with temperatures in the range of 300-800 K are bombarded by a distribution of neutral hydrogen molecules representing well-defined center-of-mass and rovibrational temperatures. The MD simulations are benchmarked against experiments in which a heated carbon surface is irradiated with hydrogen molecules from a plasma source. Comparisons between simulations and experiment are presented for the rovibrational distributions upon reflection and the rotational and vibrational accommodation coefficients. (C) 2009 Elsevier B.V. All rights reserved. C1 [Krstic, P. S.; Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hollmann, E. M.; Doerner, R. P.; Nishijima, D.; Pigarov, A. Yu.] Univ Calif San Diego, San Diego, CA 92103 USA. [Stuart, S. J.] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. RP Krstic, PS (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM krsticp@ornl.gov RI Stuart, Steven/H-1111-2012; OI Reinhold, Carlos/0000-0003-0100-4962 NR 8 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 88 EP 91 DI 10.1016/j.jnucmat.2009.01.096 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300018 ER PT J AU Zhang, H Meyer, FW AF Zhang, H. Meyer, F. W. TI Steady-state and transient hydrocarbon production in graphite by low energy impact of atomic and molecular deuterium projectiles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID CHEMICAL EROSION; ATJ GRAPHITE; D-IONS; CARBON; BOMBARDMENT; RELEASE; YIELDS; MODEL; D+ AB We report measurements of steady-state yields of methyl, methane and heavier hydrocarbons for deuterium atomic and molecular ions incident on ATJ graphite, HOPG, and a-C:D thin films in the energy range 10-200 eV/D. The yields were determined using a QMS technique in conjunction with calibrated hydrocarbon leaks. We have also studied transient hydrocarbon production and hydrogen (deuterium) re-emission for 80 and 150 eV/D D(+), D(2)(+), and D(3)(+) projectiles incident on ATJ graphite surfaces pre-loaded to steady state by 20 eV/D beams of the corresponding species. Immediately after starting the higher-energy beams, transient hydrocarbon and D(2) re-emission yields significantly larger than steady-state values were observed, which exponentially decayed as a function of beam fluence. The initial yield values were related to the starting hydrocarbon and deuterium densities in the prepared sample, while the exponential decay constants provided information on the hydrocarbon kinetic release and hydrogen (deuterium) detrapping cross-sections. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, H.; Meyer, F. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Meyer, FW (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM meyerfw@ornl.gov NR 29 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 127 EP 131 DI 10.1016/j.jnucmat.2009.01.142 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300028 ER PT J AU McLean, AG Davis, JW Stangeby, PC Allen, SL Boedo, JA Bray, BD Brezinsek, S Brooks, NH Fenstermacher, ME Groth, M Haasz, AA Hollmann, EM Isler, RC Lasnier, CJ Mu, Y Petrie, TW Rudakov, DL Watkins, JG West, WP Whyte, DG Wong, CPC AF McLean, A. G. Davis, J. W. Stangeby, P. C. Allen, S. L. Boedo, J. A. Bray, B. D. Brezinsek, S. Brooks, N. H. Fenstermacher, M. E. Groth, M. Haasz, A. A. Hollmann, E. M. Isler, R. C. Lasnier, C. J. Mu, Y. Petrie, T. W. Rudakov, D. L. Watkins, J. G. West, W. P. Whyte, D. G. Wong, C. P. C. TI Characterization of chemical sputtering using the Mark II DIMES porous plug injector in attached and semi-detached divertor plasmas of DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID EROSION AB An improved, self-contained gas injection system for the divertor material evaluation system (DIMES) on DIII-D has been employed for in situ study of chemical erosion in the tokamak divertor environment. To minimize perturbation to local plasma, the Mark II porous plug injector (PPI) releases methane through a porous graphite surface at the outer strike point at a rate precisely controlled by a micro-orifice flow restrictor to be approximately equal as that predicted for intrinsic chemical sputtering. Effective photon efficiencies resulting from CH(4) are found to be 58 +/- 12 in an attached divertor (n(e) similar to 1.5 x 10(13)/cm(3), T(e) similar to 25 eV, T(surf)similar to 450 K), and 94 +/- 20 in a semi-detached cold divertor (n(e) similar to 6.0 x 10(13)/cm(3), T(e) similar to 2-3 eV, T(surf) similar to 350 K). These values are significantly more than previous measurements in similar plasma conditions, indicating the importance of the injection rate and local re-erosion for the integrity of this analysis. The contribution of chemical versus physical sputtering to the source of C(+) at the target is assessed through simultaneous measurement of CII line, and CD plus CH-band emissions during release of CH(4) from the Pill, then compared with that seen in intrinsic sputtering. (C) 2009 Elsevier B.V. All rights reserved. C1 [McLean, A. G.; Davis, J. W.; Stangeby, P. C.; Haasz, A. A.; Mu, Y.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. [Allen, S. L.; Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boedo, J. A.; Hollmann, E. M.; Rudakov, D. L.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bray, B. D.; Brooks, N. H.; Petrie, T. W.; West, W. P.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Brezinsek, S.] Forschungszentrum Julich, Inst Plasmaphys, D-52425 Julich, Germany. [Isler, R. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Whyte, D. G.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP McLean, AG (reprint author), Univ Toronto, Inst Aerosp Studies, 4925 Dufferin St, Toronto, ON M3H 5T6, Canada. EM adam.mclean@utoronro.ca RI Groth, Mathias/G-2227-2013; Brezinsek, Sebastijan/B-2796-2017; OI Brezinsek, Sebastijan/0000-0002-7213-3326; Isler, Ralph/0000-0002-5368-7200 NR 10 TC 4 Z9 4 U1 4 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 160 EP 163 DI 10.1016/j.jnucmat.2009.01.157 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300036 ER PT J AU Paul, SF Skinner, CH Robinson, JA LeBlanc, B Kugel, HW AF Paul, S. F. Skinner, C. H. Robinson, J. A. LeBlanc, B. Kugel, H. W. TI Measurements of accumulated metallic impurities during LiTER operation in NSTX SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID PLASMAS AB Over 100 g of lithium was evaporated onto the NSTX plasma facing components using two stainless steel ovens (LiTER). Plasma emission was recorded using a 16-channel tangential bolometer and a VUV spectrometer. Confinement improved after lithium deposition and ELM's were either reduced or eliminated for hundreds of milliseconds. The radiated power profiles were generally, but not universally, highly peaked. Both peakness and a modeled on-axis high-Z impurity concentration were used as metrics for the degree of central metallic impurity accumulation. Several changes in plasma performance were seen, including reduction in plasma density and improvements in energy confinement, however high-Z impurity accumulation correlated most directly with ELM-suppression. In the more severe cases of accumulation, the volume-integrated radiated power exceeded 50% of the total input power and the estimated concentration of metals on-axis (modeled using iron as the representative impurity) reached 0.2% of the electron density. (C) 2009 Elsevier B.V. All rights reserved. C1 [Paul, S. F.; Skinner, C. H.; Robinson, J. A.; LeBlanc, B.; Kugel, H. W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Paul, SF (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM spaul@pppl.gov NR 10 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 211 EP 215 DI 10.1016/j.jnucmat.2009.01.170 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300049 ER PT J AU Mu, Y McLean, AG Elder, JD Stangeby, PC Bray, BD Brooks, NH Davis, JW Fenstermacher, ME Groth, M Lasnier, CJ Rudakov, DL Watkins, JG West, WP Wong, CPC AF Mu, Y. McLean, A. G. Elder, J. D. Stangeby, P. C. Bray, B. D. Brooks, N. H. Davis, J. W. Fenstermacher, M. E. Groth, M. Lasnier, C. J. Rudakov, D. L. Watkins, J. G. West, W. P. Wong, C. P. C. TI 3D-DIVIMP-HC modeling analysis of methane injection into DIII-D using the DiMES porous plug injector SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID PLASMA AB A self-contained gas injection system for the Divertor Material Evaluation System (DIMES) on DIII-D, the porous plug injector (PPI), has been employed for in situ study of chemical erosion in the tokamak divertor environment by injection of CH(4) [A.G. McLean et al., these Proceedings]. A new interpretive code, 3D-DIVIMP-HC, has been developed and applied to the interpretation of the CH, CI, and CII emissions. Particular emphasis is placed on the interpretation of 2D filtered-camera (TV) pictures in CH, CI and CII light taken from a view essentially straight down on the PPI. The code replicates sufficient measurements to conclude that most of the basic elements of the controlling physics and chemistry have been identified and incorporated in the code-model. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mu, Y.; McLean, A. G.; Elder, J. D.; Stangeby, P. C.; Davis, J. W.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. [Bray, B. D.; Brooks, N. H.; West, W. P.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rudakov, D. L.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mu, Y (reprint author), Univ Toronto, Inst Aerosp Studies, 4925 Dufferin St, Toronto, ON M3H 5T6, Canada. EM yrmu@starfire.utias.utoronto.ca RI Groth, Mathias/G-2227-2013 NR 8 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 220 EP 222 DI 10.1016/j.jnucmat.2009.01.055 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300051 ER PT J AU Buchenauer, D Clift, WM Klauser, R Horton, RD Howard, SJ Brockington, SJ Evans, RW Hwang, DQ AF Buchenauer, D. Clift, W. M. Klauser, R. Horton, R. D. Howard, S. J. Brockington, S. J. Evans, R. W. Hwang, D. Q. TI Impurity production and acceleration in CTIX SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID COLLECTOR PROBE MEASUREMENTS; COMPACT TOROID INJECTION; TOKAMAK; DESIGN AB The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of 0, AI, Fe, and Cu in films up to 200 A thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT. (C) 2009 Elsevier B.V. All rights reserved. C1 [Buchenauer, D.; Clift, W. M.] Sandia Natl Labs, Livermore, CA 94550 USA. [Klauser, R.; Horton, R. D.; Evans, R. W.; Hwang, D. Q.] Univ Calif Davis, CTIX Grp, Davis, CA 95616 USA. [Howard, S. J.] Gen Fus Inc, Burnaby, BC V5A 3H4, Canada. [Brockington, S. J.] HyperV Technol Corp, Chantilly, VA 20151 USA. RP Buchenauer, D (reprint author), Sandia Natl Labs, MS-9161,POB 969, Livermore, CA 94550 USA. EM dabuche@sandia.gov NR 9 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 223 EP 226 DI 10.1016/j.jnucmat.2009.01.058 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300052 ER PT J AU Petrie, TW Brooks, NH Fenstermacher, ME Groth, M Hyatt, AW Lasnier, CJ Leonard, AW Porter, GD Schaffer, MJ Wade, MR Watkins, JG West, WP AF Petrie, T. W. Brooks, N. H. Fenstermacher, M. E. Groth, M. Hyatt, A. W. Lasnier, C. J. Leonard, A. W. Porter, G. D. Schaffer, M. J. Wade, M. R. Watkins, J. G. West, W. P. TI Sensitivity of injected argon behavior to changes in magnetic balance in double-null plasmas in DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID DIVERTOR; PERFORMANCE; EXHAUST AB Recent DIII-D experiments show that both magnetic balance and particle drifts are important to understanding how argon impurities accumulate in balanced and unbalanced double-null plasmas during 'puff and pump' radiating divertor operation. Unbalanced double-null shapes, which are biased in the direction opposite to the ion B x del B drift direction, have produced the best result to-date in terms of coupling a radiating divertor approach with an H-mode plasma. The proximity to balanced double-null that can be used for puff-and-pump may depend on the width of the heat flux profile in the scrape-off layer. A comparison of plasma behavior in the open lower divertor to that of the more closed upper divertor determined that plasma density control was far more sensitive to the ion B x del B drift direction than to the relative closure of the divertor. (C) 2009 Elsevier B.V. All rights reserved. C1 [Petrie, T. W.; Brooks, N. H.; Hyatt, A. W.; Leonard, A. W.; Schaffer, M. J.; Wade, M. R.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.; Porter, G. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petrie, TW (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM petrie@fusion.gat.com RI Groth, Mathias/G-2227-2013 NR 13 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 242 EP 245 DI 10.1016/j.jnucmat.2009.01.071 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300056 ER PT J AU Wischmeier, M Groth, M Kallenbach, A Chankin, AV Coster, DP Dux, R Herrmann, A Muller, HW Pugno, R Reiter, D Scarabosio, A Watkins, JG AF Wischmeier, M. Groth, M. Kallenbach, A. Chankin, A. V. Coster, D. P. Dux, R. Herrmann, A. Mueller, H. W. Pugno, R. Reiter, D. Scarabosio, A. Watkins, J. G. CA DIII-D Team Asdex Upgrade Team TI Current understanding of divertor detachment: Experiments and modelling SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID PLASMA RECOMBINATION; ASDEX UPGRADE; JET MKIIGB; PHYSICS; TOKAMAK; FIELD AB A qualitative as well as quantitative simulation of experimentally observed plasma parameters in the detached regime proves to be difficult for several tokamaks. A series of ohmic discharges have been performed in ASDEX Upgrade and DIII-D at as similar as possible plasma parameters and at different line averaged densities, (n) over bar (e). The experimental data represent a set of well diagnosed discharges against which numerical simulations are compared. For the numerical modelling the fluid-code B2.5 coupled to the Monte Carlo neutrals transport code EIRENE is used. Only the combination of effects, such its geometry, drift terms, neutral conductance, increased radial transport and divertor target composition explains a significant fraction of the experimentally observed ion fluxes, Gamma(t), to the inner and outer target plates as a function of (n) over bar (e) in ASDEX Upgrade. The relative importance of the mechanisms leading to detachment differ in DIII-D and ASDEX Upgrade. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wischmeier, M.; Kallenbach, A.; Chankin, A. V.; Coster, D. P.; Dux, R.; Herrmann, A.; Mueller, H. W.; Pugno, R.; Scarabosio, A.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Reiter, D.] EURATOM, Inst Energieforsch, Julich, Germany. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wischmeier, M (reprint author), EURATOM, Max Planck Inst Plasmaphys, Boltzmannstr 2, D-85748 Garching, Germany. EM marco.wischmeier@ipp.mpg.de RI Groth, Mathias/G-2227-2013; Coster, David/B-4311-2010 OI Coster, David/0000-0002-2470-9706 NR 17 TC 37 Z9 37 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 250 EP 254 DI 10.1016/j.jnucmat.2009.01.081 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300058 ER PT J AU Mordijck, S Moyer, RA Evans, TE Bonnin, X Canik, J Coster, D Groth, M Maingi, R Osborne, TH Owen, LW Petrie, TW Reiter, D Watkins, JG Unterberg, EA AF Mordijck, S. Moyer, R. A. Evans, T. E. Bonnin, X. Canik, J. Coster, D. Groth, M. Maingi, R. Osborne, T. H. Owen, L. W. Petrie, T. W. Reiter, D. Watkins, J. G. Unterberg, E. A. TI Fluid modeling of an ELMing H-mode and a RMP H-mode SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID DIII-D; TOKAMAK; PLASMA AB In this paper, we investigate the role of wall conditions during the density pump-out observed in Resonant Magnetic Perturbation (RMP) experiments. We use a 2D fluid code, coupled to a neutral Monte-Carlo code (SOLPS5) to model a reference ELMing H-mode. Next we modify either the recycling at the target plates or the pumping efficiency at the pump entrance. This causes a change in upstream profiles, that alone cannot account for the shape change observed in the RMP H-mode. Therefore, the radial transport must be altered to match the RMP H-mode. By comparing the transport model for the ELMing H-mode and the RMP H-mode, we show that inside the separatrix an increase in transport is necessary to model the effects of the applied perturbed field in RMP H-mode. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mordijck, S.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Evans, T. E.; Osborne, T. H.; Petrie, T. W.] Gen Atom Co, San Diego, CA 92186 USA. [Bonnin, X.] CNRS, Lab Ingn Mat & Hautes Press, Villetaneuse, France. [Canik, J.; Maingi, R.; Owen, L. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Coster, D.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Reiter, D.] Forschungszentrum Juelich, Julich, Germany. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Unterberg, E. A.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37831 USA. RP Mordijck, S (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM smordijc@ucsd.edu RI Groth, Mathias/G-2227-2013; Coster, David/B-4311-2010; Unterberg, Ezekial/F-5240-2016; OI Coster, David/0000-0002-2470-9706; Unterberg, Ezekial/0000-0003-1353-8865; Canik, John/0000-0001-6934-6681; Bonnin, Xavier/0000-0002-6743-1062 NR 14 TC 6 Z9 6 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 299 EP 302 DI 10.1016/j.jnucmat.2009.01.130 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300069 ER PT J AU Scotti, F Kado, S AF Scotti, Filippo Kado, Shinichiro TI Comparative study of recombining He plasmas below 0.1 eV using laser Thomson scattering and spectroscopy in the divertor simulator MAP-II SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID COLLISIONAL-RADIATIVE MODEL; HELIUM AB The recent upgrades of the MAP-II Laser Thomson Scattering (LTS) system and the development of a new Hetero-Tandem Double Monochromator, allowed detectable electron temperatures as low as 0.05 eV and electron densities as low as 10(12) or cm(-3). This enabled the study of He Electron Ion Recombining (EIR) plasmas and the comparison with optical emission spectroscopy for He I Rydberg states in partial local thermal equilibrium (p-LTE). 2(1)P-n(1)D and 2(3)P-n(3)D series with transitions from principal quantum numbers n = 9-16 were used for the T(e) derivation. Results from both Boltzmann plot and Collisional Radiative model fitting are consistent with those from LTS. The very low temperature of 0.06 K usually obtained by the Boltzmann plot for He EIR states, is confirmed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Scotti, Filippo] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kado, Shinichiro] Univ Tokyo, Dept Nucl Engn & Management, Tokyo, Japan. RP Scotti, F (reprint author), Princeton Plasma Phys Lab, James Forrestal Campus,US Route 1 N,Sayre Dr, Princeton, NJ 08543 USA. EM fscotti@pppl.gov; kado@n.r.u-tokyo.ac.jp NR 16 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 303 EP 306 DI 10.1016/j.jnucmat.2009.01.134 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300070 ER PT J AU Canik, JM Maingi, R Owen, L Menard, J Goldston, R Kotschenreuther, M Valanju, P Mahajan, S AF Canik, J. M. Maingi, R. Owen, L. Menard, J. Goldston, R. Kotschenreuther, M. Valanju, P. Mahajan, S. TI 2D divertor design calculations for the national high-power advanced torus experiment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID B2-EIRENE; PLASMA; ITER AB The national high-power advanced torus experiment is a concept for a new facility to address the FESAC theme of 'taming the plasma-material interface'. This concept exploits the compactness and excellent access provided by low aspect ratio to achieve a high ratio of exhaust power to major radius in order to study the integration of high-performance, long-pulse plasmas with a reactor-relevant high heat flux plasma boundary. Predictions of the scrape-off-layer plasma characteristics are presented, as calculated with the 2D edge modeling code SOLPS. Calculations in a variety of magnetic geometries indicate that very high levels of divertor heat flux can be expected, with peak values far in excess of the power handling capabilities of presently-used materials. Possible methods to reduce the heat flux to acceptable levels are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Canik, J. M.; Maingi, R.; Owen, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Menard, J.; Goldston, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kotschenreuther, M.; Valanju, P.; Mahajan, S.] Univ Texas Austin, Austin, TX 78712 USA. RP Canik, JM (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM canikjm@ornl.gov OI Canik, John/0000-0001-6934-6681; Menard, Jonathan/0000-0003-1292-3286 NR 16 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 315 EP 318 DI 10.1016/j.jnucmat.2009.01.143 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300073 ER PT J AU Terry, JL Zweben, SJ Umansky, MV Cziegler, I Grulke, O LaBombard, B Stotler, DP AF Terry, J. L. Zweben, S. J. Umansky, M. V. Cziegler, I. Grulke, O. LaBombard, B. Stotler, D. P. TI Spatial structure of scrape-off-layer filaments near the midplane and X-point regions of Alcator-C-Mod SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID TURBULENCE; TRANSPORT; BOUNDARY; TOKAMAK; PLASMA; DIVERTOR; FLOWS AB Movies of edge turbulence at both the outboard midplane and the region outboard of the typical lower X-point location in C-Mod have been obtained using gas-puff-imaging together with fast-framing cameras. Intermittent turbulence structures, typically referred to as blobs or filaments, are observed in both locations. Near the midplane the filaments are roughly circular in cross-section, while in the X-point region they are highly elongated. Filament velocities in this region are similar to 3x faster than the radial velocities at the midplane, in a direction roughly outward across the local flux surfaces. The observations are consistent with the picture that the filaments arise in the outboard region and, as a consequence of the rapid parallel diffusion of the potential perturbations, map along field lines. Results from a 3D BOUT turbulence simulation reproduce many of the spatial features observed in the experiment. (C) 2009 Elsevier B.V. All rights reserved. C1 [Terry, J. L.; Cziegler, I.; LaBombard, B.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Zweben, S. J.; Stotler, D. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Grulke, O.] Max Planck Inst Plasma Phys, Greifswald, Germany. RP Terry, JL (reprint author), MIT, Plasma Sci & Fus Ctr, 175 Albany St, Cambridge, MA 02139 USA. EM terry@psfc.mit.edu RI Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 NR 18 TC 24 Z9 24 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 339 EP 342 DI 10.1016/j.jnucmat.2009.01.152 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300078 ER PT J AU Groth, M Porter, GD Boedo, JA Brooks, NH Isler, RC West, WP Bray, BD Fenstermacher, ME Groebner, RJ Leonard, AW Moyer, RA Rognlien, TD Watkins, JG Yu, JH AF Groth, M. Porter, G. D. Boedo, J. A. Brooks, N. H. Isler, R. C. West, W. P. Bray, B. D. Fenstermacher, M. E. Groebner, R. J. Leonard, A. W. Moyer, R. A. Rognlien, T. D. Watkins, J. G. Yu, J. H. TI Measurements and simulations of scrape-off layer flows in the DIII-D Tokamak SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID DIVERTOR TOKAMAKS; PLASMA; TRANSPORT AB Flow velocities of the order 10-20 km/s in the direction of the high-field side divertor have been measured for deuterons and low charge-state carbon ions in the scrape-off layer at the crown of low-density L-mode plasmas, suggesting that these carbon ions at the crown move with the background plasma flow. Simulations with the multi-fluid edge code UEDGE including cross-field drifts due to E x B and B x del B yield calculated divertor conditions which are more consistent with the measurements, but flows at the crown that are stagnant or in the opposite direction than observed. The simulations indicate that both the ion temperature gradient force and deuteron frictional drag play a role in determining the flow direction and magnitude of low charge-state carbon ions. The effect of the assumed radial transport model, toroidal core rotation, and neutral pumping at the divertor plates on the flow at the crown is investigated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Groth, M.; Porter, G. D.; Fenstermacher, M. E.; Rognlien, T. D.] Lawrence Livermore Natl Lab, Gen Atom Co, San Diego, CA 92186 USA. [Boedo, J. A.; Moyer, R. A.; Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Isler, R. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Groth, M (reprint author), Lawrence Livermore Natl Lab, Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM groth@fusion.gat.com RI Groth, Mathias/G-2227-2013; OI Isler, Ralph/0000-0002-5368-7200 NR 15 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 343 EP 346 DI 10.1016/j.jnucmat.2009.01.154 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300079 ER PT J AU Elder, JD McLean, AG Stangeby, PC Allen, SL Boedo, JA Bray, BD Brooks, NH Fenstermacher, ME Groth, M Leonard, AW Rudakov, DL Wampler, WR Watkins, JG West, WP Whyte, DG AF Elder, J. D. McLean, A. G. Stangeby, P. C. Allen, S. L. Boedo, J. A. Bray, B. D. Brooks, N. H. Fenstermacher, M. E. Groth, M. Leonard, A. W. Rudakov, D. L. Wampler, W. R. Watkins, J. G. West, W. P. Whyte, D. G. TI Indications of an inward pinch in the inner SOL of DIII-D from C-13 deposition experiments SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID SCRAPE-OFF-LAYER; TRANSPORT; DIVERTOR; (CH4)-C-13; TURBULENCE; INJECTION; PLASMAS; CARBON; CODE; JET AB C-13 methane puffing experiments were conducted on DIII-D in both L- and ELMy H-mode conditions. The puffing was toroidally symmetric into the crown of a series of well-characterized lower single-null discharges. The hydrocarbon breakup, carbon transport and deposition were modeled using the OEDGE interpretive code. Three separate hypotheses were tested using OEDGE to try to reproduce the experimental deposition: Radial variation of fast parallel flow, erosion of the puffed C-13 deposited in the divertor, and a pinch in the inner scrape off layer (SOL) towards the separatrix. A fast parallel flow was imposed for all hypotheses. The magnitude and the distribution of the C-13 deposition resulting from each hypothesis are compared. A fast parallel flow in the SOL toward the inner divertor combined with a pinch/drift of 10-30 m/s in the inner SOL towards the separatrix roughly reproduces the deposition in both the L- and H-mode experiments. (C) 2009 Elsevier B.V. All rights reserved. C1 [Elder, J. D.; McLean, A. G.; Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, Downsview, ON M3H 5T6, Canada. [Allen, S. L.; Fenstermacher, M. E.; Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boedo, J. A.; Rudakov, D. L.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bray, B. D.; Brooks, N. H.; Leonard, A. W.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Wampler, W. R.; Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Whyte, D. G.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Elder, JD (reprint author), Univ Toronto, Inst Aerosp Studies, 4925 Dufferin St, Downsview, ON M3H 5T6, Canada. EM david@starfire.utias.utoronto.ca RI Groth, Mathias/G-2227-2013 NR 18 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 376 EP 379 DI 10.1016/j.jnucmat.2009.01.080 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300087 ER PT J AU Zweben, SJ Maqueda, RJ Roquemore, AL Bush, CE Kaita, R Marsala, RJ Raitses, Y Cohen, RH Ryutov, DD AF Zweben, S. J. Maqueda, R. J. Roquemore, A. L. Bush, C. E. Kaita, R. Marsala, R. J. Raitses, Y. Cohen, R. H. Ryutov, D. D. TI Biased electrodes for SOL control in NSTX SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID PLASMA CONVECTION; DIVERTOR; PROBE; TOKAMAK; FIELDS; CELLS AB Small electrodes were installed in the outer-midplane edge of NSTX to attempt to control the local width of the scrape-off layer (SOL) by creating an outward E(pol)xB flow. When the applied voltage between electrodes was 90 V, the density between these electrodes increased by a factor of 3-10 over a radial width of similar to 4 cm. Thus a local control of the SOL plasma density was obtained. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zweben, S. J.; Roquemore, A. L.; Kaita, R.; Marsala, R. J.; Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Maqueda, R. J.] Nova Photon, Princeton, NJ USA. [Bush, C. E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Cohen, R. H.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Zweben, SJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08540 USA. EM szweben@pppl.gov NR 17 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 417 EP 420 DI 10.1016/j.jnucmat.2009.01.106 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300097 ER PT J AU Ahn, JW Maingi, R Boedo, JA Soukhanovskii, V AF Ahn, J-W. Maingi, R. Boedo, J. A. Soukhanovskii, V. CA NSTX Team TI Dependence of SOL widths on plasma current and density in NSTX H-mode plasmas SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID SPHERICAL-TORUS-EXPERIMENT; HEAT-FLUX; TRANSPORT; DISCHARGES; TOKAMAK; PHYSICS AB The dependence of various SOL widths on the line-averaged density ((n) over bar (e)) and plasma current (I(p)) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width (lambda(q)), measured by the IR camera, is virtually insensitive to (n) over bar (e) and has a strong negative dependence on I(p). This insensitivity of lambda(q) to (n) over bare is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths (lambda(Te), lambda(jsat), lambda(ne), and lambda(pe), respectively) measured by the probe showed that lambda(Te) and lambda(jsat) have strong negative dependence on I(p), whereas lambda(ne) and lambda(pe) revealed only a little or no dependence. The dependence of lambda(Te) on I(p) is consistent with the scaling law in the literature, while lambda(ne) and lambda(pe) dependence shows a different trend. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ahn, J-W.; Boedo, J. A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ahn, JW (reprint author), Princeton Plasma Phys Lab, B-220,POB 451, Princeton, NJ 08540 USA. EM jahn@pppl.gov; vlad@pppl.gov NR 15 TC 10 Z9 10 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 421 EP 424 DI 10.1016/j.jnucmat.2009.01.110 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300098 ER PT J AU Kelly, F Maingi, R Maqueda, R Menard, J Paul, S AF Kelly, F. Maingi, R. Maqueda, R. Menard, J. Paul, S. TI MARFE stability and movement in an ELMy H-mode NSTX discharge SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID MULTIFACETED ASYMMETRIC RADIATION; SPHERICAL TORUS EXPERIMENT; EDGE MARFE; TOKAMAKS AB The results of a comparison of Multifaceted Asymmetric Radiation From the Edge (MARFE) theory with experiment in the National Spherical Torus Experiment (NSTX) are presented. A variety of MARFE behavior was observed using a fast-framing camera. A basic MARFE theory was applied to NSTX Multi-Pulse Thomson Scattering (MPTS) and Charge-Exchange Recombination Spectroscopy (CHERS) data. MARFE theory showed some limited agreement with experiment, but uncertainty in the separatrix location constrained the analysis. A method based on shifting iso-T(e) flux surfaces was used to estimate the separatrix location. The movements of MARFEs in NSTX are interpreted to result from diamagnetic heat flux driven drifts relative to the E x B drift and imply slowing edge poloidal rotation and/or changing edge profiles before a large ELM. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kelly, F.; Menard, J.; Paul, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Maqueda, R.] Nova Photon, Princeton, NJ 08540 USA. RP Kelly, F (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM fkelly@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 NR 19 TC 3 Z9 3 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 436 EP 439 DI 10.1016/j.jnucmat.2009.01.122 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300102 ER PT J AU Maingi, R Bell, RE LeBlanc, BP Gates, DA Kaye, SM Menard, JE Sabbagh, SA Yuh, H AF Maingi, R. Bell, R. E. LeBlanc, B. P. Gates, D. A. Kaye, S. M. Menard, J. E. Sabbagh, S. A. Yuh, H. TI The enhanced pedestal H-mode in the National Spherical Torus experiment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID NSTX; BETA; TOKAMAK; PLASMAS; INSTABILITIES; START AB Typical H-mode pedestal electron and ion temperatures in NSTX range from 100-300 eV. A new operating regime termed the 'enhanced pedestal' (EP) H-mode has been observed in which the pedestal ion temperature increases to similar to 600 eV in about 50 ms, or one energy confinement time, resulting in a global confinement improvement. Ion temperature gradients as high as 30 keV/m are observed. The regime is correlated with a localized braking of the edge toroidal rotation near the q = 3 surface, in which case the pressure gradient term in the radial force balance becomes dominant over the toroidal and poloidal rotation terms. Coupled with increased rotation just inside the barrier, the radial electric field shear is also increased. An MHD trigger event (large edge localized mode) is common to the formation of the EP H-mode phase, which can occur either during the I(p) ramp-up or flat-top phases of discharges. The observed characteristics of this scenario are presented. (C) 2009 Elsevier B.V. All rights reserved. C1 [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Maingi, R.; Bell, R. E.; LeBlanc, B. P.; Gates, D. A.; Kaye, S. M.; Menard, J. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sabbagh, S. A.] Columbia Univ, New York, NY USA. [Yuh, H.] Nova Photon, Princeton, NJ USA. RP Maingi, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM rmaingi@pppl.gov RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 NR 14 TC 4 Z9 4 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 440 EP 443 DI 10.1016/j.jnucmat.2009.01.126 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300103 ER PT J AU West, WP Groth, M Hyatt, AW Brooks, NH Jackson, GL Wade, MR Greenfield, CM AF West, W. P. Groth, M. Hyatt, A. W. Brooks, N. H. Jackson, G. L. Wade, M. R. Greenfield, C. M. TI Plasma impurity content, gas fueling, and exhaust on DIII-D over extended periods between boronizations SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID TOKAMAK AB During the 2006 and 2007 DIII-D experimental campaigns the rate of boronization events was reduced significantly from past campaigns with no detrimental effects on discharges, including high-performance hybrid and advanced tokamak discharges. Boronizations were completed early in both campaigns due to preceding entry vents. Over the 3-month duration of each campaign, a database of edge and core impurity emission and fueling/exhaust rates from many hybrid discharges was developed that demonstrated little secular change over 7000 plasma-seconds of operations. After 6000 s, a set of seven sequential hybrid discharges was executed with no between-shot helium glow-discharge cleaning. While small effects on fueling and exhaust are observed, density remains controlled and fusion performance is held constant. These results, obtained with the all graphite wall on DIII-D, are promising for the next generation of superconducting, long-pulse tokamaks, where studies of stationary, high performance will be of great interest. (C) 2009 Elsevier B.V. All rights reserved. C1 [West, W. P.; Hyatt, A. W.; Brooks, N. H.; Jackson, G. L.; Wade, M. R.; Greenfield, C. M.] Gen Atom Co, San Diego, CA 92186 USA. [Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Jackson, GL (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM jackson@fusion.gat.com RI Groth, Mathias/G-2227-2013 NR 5 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 461 EP 464 DI 10.1016/j.jnucmat.2009.01.141 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300108 ER PT J AU Leonard, AW Groth, M Porter, GD Rensink, ME AF Leonard, A. W. Groth, M. Porter, G. D. Rensink, M. E. TI Pedestal fueling through interpretive analysis of measured main chamber and divertor target flux in DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID SCRAPE-OFF LAYER; ALCATOR C-MOD; TRANSPORT; TOKAMAK AB Fueling of the pedestal from divertor and main chamber recycling in DIII-D is assessed by a combination of experimental measurements, plasma modeling and kinetic neutral analysis. The 2D profile of surface recycling between edge localized modes in H-mode was previously determined in DIII-D from surface mounted Langmuir probes and a plasma configuration where toroidally symmetric recycling was dominant. The measured profile of recycling neutrals is launched by the DEGAS2 code into a 2D background plasma profile reconstructed by the UEDGE fluid model and constrained to match the upstream temperature and density profiles. Divertor plasmas of varying density and temperature are constructed to test sensitivity to uncertainty in the divertor plasma conditions. The pedestal ionization Fate from this analysis can match the inferred outward ion flux across separatrix only for high density, detached inboard divertor conditions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Leonard, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Groth, M.; Porter, G. D.; Rensink, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Leonard, AW (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM leonard@fusion.gat.com RI Groth, Mathias/G-2227-2013 NR 12 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 470 EP 473 DI 10.1016/j.jnucmat.2009.01.046 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300110 ER PT J AU Unterberg, EA Brooks, NH Evans, TE Fenstermacher, ME Hillis, DL Maingi, R Mordijck, S Moyer, RA Osborne, TH Petrie, TW Watkins, JG AF Unterberg, E. A. Brooks, N. H. Evans, T. E. Fenstermacher, M. E. Hillis, D. L. Maingi, R. Mordijck, S. Moyer, R. A. Osborne, T. H. Petrie, T. W. Watkins, J. G. TI Experimental comparison of recycling and pumping changes during resonant magnetic perturbation experiments at low and high collisionality in DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID FIELDS; EDGE; SUPPRESSION; TOKAMAKS; TEXTOR AB Resonant magnetic perturbations (RMPs) have been shown to successfully suppress edge localized modes (ELMs) in the DIII-D tokamak. A previous study of target plate conditions highlighted differences in RMP discharges between low and high electron collisionality, nu(e)(sic), operation in DIII-D. This paper reports on a systematic study of the electron density pump-out associated with the turn-on of the RMP over a wide range of operating conditions in DIII-D, including shapes and collisionalities similar to those anticipated in ITER. It is shown that the pump-out magnitude, Delta n(e), has an upper envelope that is inversely proportional to the pedestal nu(e)(sic). The particle decay times, which are calculated based on global D-2 particle balances, show an increase as the pedestal nu(e)(sic) is increased. Both results are suggestive that the underlying physics mechanism is an increase in edge particle transport and/or that wall depletion is playing a role in the pump-out magnitude. (C) 2009 Elsevier B.V. All rights reserved. C1 [Unterberg, E. A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hillis, D. L.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mordijck, S.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Unterberg, EA (reprint author), Gen Atom Co, Oak Ridge Inst Sci & Educ, MS 13-368,POB 85608, San Diego, CA 92186 USA. EM unterberge@fusion.gat.com RI Unterberg, Ezekial/F-5240-2016 OI Unterberg, Ezekial/0000-0003-1353-8865 NR 15 TC 7 Z9 7 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 486 EP 489 DI 10.1016/j.jnucmat.2009.01.052 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300114 ER PT J AU Soukhanovskii, VA Bell, RE Bush, C Kaita, R Kugel, HW LeBlanc, BP Maingi, R Raman, R Roquemore, AL AF Soukhanovskii, V. A. Bell, R. E. Bush, C. Kaita, R. Kugel, H. W. LeBlanc, B. P. Maingi, R. Raman, R. Roquemore, A. L. CA NSTX Res Team TI On the secular density rises in NBI-heated H-mode plasmas in NSTX SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID SPHERICAL TORUS EXPERIMENT; ALCATOR C-MOD; DIII-D; VOLUME RECOMBINATION; PARTICLE-FLUX; DIVERTOR; TOKAMAK; TRANSPORT; EDGE; PERFORMANCE AB Plasma-wall interaction analysis is developed at the National Spherical Torus Experiment. At present, poloidally separated recycling and neutral pressure measurements are used to characterize recycling flux trends. The causes of monotonic density increases observed in initial phases of H-mode discharges at t <= 0.2-0.6 s appear to be the monotonically increasing source in the divertor, and particle containment time tau(p)* long in comparison with discharge duration. The ratio of the wall flux to divertor flux is low throughout the density increase phase except in the initial segment, when dN(e)/dt is highest and magnitudes of the wall and divertor fluxes are similar. (C) 2009 Elsevier B.V. All rights reserved. C1 [Soukhanovskii, V. A.; Bell, R. E.; Kaita, R.; Kugel, H. W.; LeBlanc, B. P.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Bush, C.; Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Raman, R.] Univ Washington, Seattle, WA 98195 USA. RP Soukhanovskii, VA (reprint author), Princeton Plasma Phys Lab, MS34,POB 451, Princeton, NJ 08543 USA. EM vlad@llnl.gov NR 34 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 516 EP 519 DI 10.1016/j.jnucmat.2009.01.067 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300121 ER PT J AU Hollmann, EM Pablant, NA Rudakova, DL Boedo, JA Brooks, NH Jernigan, TC Pigarov, AY AF Hollmann, E. M. Pablant, N. A. Rudakova, D. L. Boedo, J. A. Brooks, N. H. Jernigan, T. C. Pigarov, A. Yu. TI Experiments to measure hydrogen release from graphite walls during disruptions in DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID GAS INJECTION; DIVERTOR AB Spectroscopy and wall the bake-out measurements are performed in the DIII-D tokamak to estimate the amount of hydrogen stored in and released from the walls during disruptions. Both naturally occurring disruptions and disruptions induced by massive gas injection (MGI) are investigated. The measurements indicate that both types of disruptions cause a net release of order 10(21) hydrogen (or deuterium) atoms from the graphite walls. This is comparable to the pre-disruptions plasma particle inventory, so the released hydrogen is important for accurate modeling of disruptions. However, the amount of hydrogen released is small compared to the total saturated wall inventory of order 10(22)-10(23), So it appears that many disruptions are necessary to provide full pump-out of the vessel walls. (C) 2009 Published by Elsevier B.V. C1 [Hollmann, E. M.; Pablant, N. A.; Rudakova, D. L.; Boedo, J. A.; Pigarov, A. Yu.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Brooks, N. H.] Gen Atom Co, San Diego, CA 92186 USA. [Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Hollmann, EM (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM ehollmann@ucsd.edu NR 13 TC 9 Z9 9 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 597 EP 601 DI 10.1016/j.jnucmat.2009.01.124 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300139 ER PT J AU Doerner, RP Baldwin, MJ Buchenauer, D De Temmerman, G Nishijima, D AF Doerner, R. P. Baldwin, M. J. Buchenauer, D. De Temmerman, G. Nishijima, D. TI The role of beryllium deuteride in plasma-beryllium interactions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID INFRARED-EMISSION SPECTRA; HYDRIDE; SURFACE AB Beryllium deuteride has been measured in plasma-exposed surfaces and in the plasma column of the PISCES-B experiment. XPS measurements of high-purity BeH(2) samples, used as standards, confirm the presence of beryllium deuteride in beryllium codeposited material (Be 1s energy of BeH(2) bond = 115.0 eV). TDS measurements of high-purity BeD(2) samples are used to accurately determine the decomposition temperature of the beryllium deuteride molecule (similar to 540 K). Deuterium release is observed from plasma-exposed beryllium samples and from Be codeposited layers at this temperature. BeD molecular (A-X) band emission is observed in beryllium seeded plasma discharges and during deuterium sputtering measurements of beryllium. Band emission intensities during Be-seeding are used to estimate the photon emission coefficient, , for the band. The value verifies that molecular sputtering of BeD (from beryllium targets saturated with deuterium from the plasma exposure) is a small fraction of the physical sputtering of beryllium atoms. (C) 2009 Elsevier B.V. All rights reserved. C1 [Doerner, R. P.; Baldwin, M. J.; De Temmerman, G.; Nishijima, D.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Buchenauer, D.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Doerner, RP (reprint author), Univ Calif San Diego, Energy Res Ctr, 9500 Gilamn Dr,Rm 460 EBU2, La Jolla, CA 92093 USA. EM rdoerner@ucsd.edu NR 19 TC 27 Z9 27 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 681 EP 684 DI 10.1016/j.jnucmat.2009.01.187 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300159 ER PT J AU Sharpe, JP Kolasinski, RD Shimada, M Calderoni, P Causey, RA AF Sharpe, J. P. Kolasinski, R. D. Shimada, M. Calderoni, P. Causey, R. A. TI Retention behavior in tungsten and molybdenum exposed to high fluences of deuterium ions in TPE SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID LOW-ENERGY; DISCHARGE AB The Tritium Plasma Experiment (TPE) has been used to investigate deuterium fuel retention behavior in tungsten and molybdenum-materials utilized for plasma-facing surfaces in some existing tokamak plasma devices and under consideration for future devices. Although several studies have been performed over the past several years on these metals, many issues remain unresolved, including for example blister formation mechanisms and correlation to surface conditions. In this study, we expose several metal samples to deuterium ion fluences up to 10(26) ions/m(2) and measure retention behavior with thermal desorption spectroscopy. Fractional retention of up to 2.0 x 10(-5) is found for W at 600 K, and Mo similarly retains deuterium at a fraction of 1.5 x 10(-5) at 600 K. Blistering was found for W samples exposed at temperatures above 453 K, whereas blistering was not observed for Mo samples at any experiment temperature. (C) 2009 Elsevier B.V. All rights reserved. C1 [Sharpe, J. P.; Shimada, M.; Calderoni, P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Kolasinski, R. D.; Causey, R. A.] Sandia Natl Labs, Hydrogen & Met Sci Grp, Livermore, CA 94551 USA. RP Sharpe, JP (reprint author), Idaho Natl Lab, Fus Safety Program, POB 1625, Idaho Falls, ID 83415 USA. EM Phil.Sharpe@inl.gov OI Shimada, Masashi/0000-0002-1592-843X; Calderoni, Pattrick/0000-0002-2316-6404 NR 10 TC 25 Z9 25 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 709 EP 712 DI 10.1016/j.jnucmat.2009.01.195 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300166 ER PT J AU Causey, RA Doerner, R Fraser, H Kolasinski, RD Smugeresky, J Umstadter, K Williams, R AF Causey, R. A. Doerner, R. Fraser, H. Kolasinski, R. D. Smugeresky, J. Umstadter, K. Williams, R. TI Defects in tungsten responsible for molecular hydrogen isotope retention after exposure to low energy plasmas SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID BLISTER FORMATION; DEUTERIUM RETENTION; THERMAL-DESORPTION; FACING MATERIALS; SURFACE; FLUX; REACTOR; DAMAGE; VOIDS; TDS AB Recent work on hydrogen isotope retention in tungsten has shown a substantial fraction of the retained hydrogen to be in the form of molecules. It can be expected that hydrogen permeating through a material such as tungsten, that has a very low solubility for hydrogen, would come out of solution and combine into molecules at voids located throughout the bulk. The purpose of this report is to determine the type of voids responsible for the molecular retention. High purity tungsten provided by Plansee Aktiengesellschaft was first polished, annealed at 1273 K in vacuum for one hour, and then exposed to high fluxes and high fluences of deuterium in the PISCES facility. High resolution Transmission Electron Microscopy was then used to examine the samples for voids. The results of these experiments were used to interpret the expected behavior of tungsten to be used as the divertor of the ITER fusion device. (C) 2009 Elsevier B.V. All rights reserved. C1 [Causey, R. A.; Kolasinski, R. D.; Smugeresky, J.] Sandia Natl Labs, Livermore, CA 94550 USA. [Doerner, R.; Umstadter, K.] Univ Calif San Diego, San Diego, CA 92103 USA. [Fraser, H.; Williams, R.] Ohio State Univ, Columbus, OH 43210 USA. RP Kolasinski, RD (reprint author), Sandia Natl Labs, MS9402,POB 969, Livermore, CA 94550 USA. EM causey@sandia.gov; rkolasi@sandia.gov NR 26 TC 18 Z9 18 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 717 EP 720 DI 10.1016/j.jnucmat.2009.01.300 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300168 ER PT J AU Mansfield, DK Kugel, HW Maingi, R Bell, MG Bell, R Kaita, R Kallman, J Kaye, S LeBlanc, B Mueller, D Paul, S Raman, R Roquemore, L Sabbagh, S Schneider, H Skinner, CH Soukhanovskii, V Timberlake, J Wilgen, J Zakharov, L AF Mansfield, D. K. Kugel, H. W. Maingi, R. Bell, M. G. Bell, R. Kaita, R. Kallman, J. Kaye, S. LeBlanc, B. Mueller, D. Paul, S. Raman, R. Roquemore, L. Sabbagh, S. Schneider, H. Skinner, C. H. Soukhanovskii, V. Timberlake, J. Wilgen, J. Zakharov, L. TI Transition to ELM-free improved H-mode by lithium deposition on NSTX graphite divertor surfaces SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID EDGE-LOCALIZED MODES; DIII-D TOKAMAK; REGIME; PEDESTAL AB Lithium evaporated onto plasma facing components in the NSTX lower divertor has made dramatic improvements in discharge performance. As lithium accumulated, plasmas previously exhibiting robust Type 1 ELMs gradually transformed into discharges with intermittent ELMs and finally into continuously evolving ELM-free discharges. During this sequence, other discharge parameters changed in a complicated manner. As the ELMs disappeared, energy confinement improved and remarkable changes in edge and scrape-off layer plasma properties were observed. These results demonstrate that active modification of plasma surface interactions can preempt large ELMs. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mansfield, D. K.; Kugel, H. W.; Bell, M. G.; Bell, R.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Mueller, D.; Paul, S.; Roquemore, L.; Schneider, H.; Skinner, C. H.; Timberlake, J.; Zakharov, L.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08443 USA. [Maingi, R.; Wilgen, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Raman, R.] Univ Washington, Seattle, WA 98195 USA. [Sabbagh, S.] Columbia Univ, New York, NY 10027 USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mansfield, DK (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08443 USA. EM dmansfield@princeton.edu RI Sabbagh, Steven/C-7142-2011 NR 23 TC 45 Z9 45 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 764 EP 767 DI 10.1016/j.jnucmat.2009.01.203 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300177 ER PT J AU Rudakov, DL Boedo, JA Yu, JH Brooks, NH Fenstermacher, ME Groth, M Hollmann, EM Lasnier, CJ McLean, AG Moyer, RA Stangeby, PC Tynan, GR Wampler, WR Watkins, JG West, WP Wong, CPC Bastasz, RJ Buchenauer, D Whaley, J AF Rudakov, D. L. Boedo, J. A. Yu, J. H. Brooks, N. H. Fenstermacher, M. E. Groth, M. Hollmann, E. M. Lasnier, C. J. McLean, A. G. Moyer, R. A. Stangeby, P. C. Tynan, G. R. Wampler, W. R. Watkins, J. G. West, W. P. Wong, C. P. C. Bastasz, R. J. Buchenauer, D. Whaley, J. TI Plasma interactions with the outboard chamber wall in DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID SCRAPE-OFF LAYER; EDGE LOCALIZED MODES; ASDEX UPGRADE; SOL; TRANSPORT; DIVERTOR; ENERGY; ELMS; JET; COMPONENTS AB Erosion of the main chamber plasma-facing components is of concern for ITER. Plasma interaction with the outboard chamber wall is studied in DIII-D using Langmuir probes and optical diagnostics. Fast camera data shows that edge localized modes (ELMs) feature helical filamentary structures propagating towards the outboard wall. Upon reaching the wall, filaments result in regions of local intense plasma-material interaction (PMI) where peak incident particle and heat fluxes are up to two orders of magnitude higher than those between ELMs. In low density/collisionality H-mode discharges, PMI at the outboard wall is almost entirely due to ELMs. A moderate change of the gap between the separatrix and the outer wall strongly affects PMI intensity at the wall. Material samples exposed near the outboard wall showed net carbon deposition in high-density discharges (near the Greenwald limit) and tendency towards net erosion in lower density discharges (similar to 0.45 of the Greenwald limit). (C) 2009 Elsevier B.V. All rights reserved. C1 [Rudakov, D. L.; Boedo, J. A.; Yu, J. H.; Hollmann, E. M.; Moyer, R. A.; Tynan, G. R.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Brooks, N. H.; West, W. P.; Wong, C. P. C.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Groth, M.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [McLean, A. G.; Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. [Wampler, W. R.; Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bastasz, R. J.; Buchenauer, D.; Whaley, J.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Rudakov, DL (reprint author), Univ Calif San Diego, 9500 Gilman Dr,Mail Code 0417, La Jolla, CA 92093 USA. EM rudakov@fusion.gat.com RI Groth, Mathias/G-2227-2013 NR 23 TC 4 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 785 EP 788 DI 10.1016/j.jnucmat.2009.01.208 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300182 ER PT J AU Evans, TE Yu, JH Jakubowski, MW Schmitz, O Watkins, JG Moyer, RA AF Evans, T. E. Yu, J. H. Jakubowski, M. W. Schmitz, O. Watkins, J. G. Moyer, R. A. TI A conceptual model of the magnetic topology and nonlinear dynamics of ELMS SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID DIII-D; DIVERTOR AB A conceptual model is introduced describing the 3D magnetic topology and nonlinear evolution of Type-I edge localized modes (ELMs), which immediately follow the initial linear peeling-ballooning growth phase. The model requires feedback amplification of stable and unstable invariant manifolds that increases the helical perturbation. The amplification process is caused by a rapid growth of field-aligned helical thermoelectric currents that flow through relatively short pedestal plasma flux tubes connecting the inner and outer divertor target plates. It is shown that the model qualitatively agrees with the formation of global field-aligned emission filaments and with fast IR heat flux splitting patterns of the inner and outer strike points observed experimentally. In addition, the model predicts an increase in the size of the ELMs as the pedestal collisionality drops. Experimental data and modeling results are presented supporting the basic conceptual elements of the model. (C) 2009 Elsevier B.V, All rights reserved. C1 [Evans, T. E.] Gen Atom Co, San Diego, CA 92186 USA. [Yu, J. H.; Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Jakubowski, M. W.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. [Schmitz, O.] Forschungszentrum Julich, Assoc EURATOM FZJ, Plasmaphys IEF4, D-52425 Julich, Germany. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Evans, TE (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM evans@fusion.gat.com; moyer@fusion.gat.com NR 11 TC 21 Z9 22 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 789 EP 792 DI 10.1016/j.jnucmat.2009.01.209 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300183 ER PT J AU Fenstermacher, ME Evans, TE Osborne, TH Schaffer, MJ deGrassie, JS Gohil, P Groebner, RJ Moyer, RA AF Fenstermacher, M. E. Evans, T. E. Osborne, T. H. Schaffer, M. J. deGrassie, J. S. Gohil, P. Groebner, R. J. Moyer, R. A. CA DIII-D Team TI Comparison of edge plasma perturbation during ELM control using one vs. two toroidal rows of RMP coils in ITER similar shaped plasmas on DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID LOCALIZED MODES; CHAPTER 1; SUPPRESSION AB Large Type-I edge localized modes (ELMS) were suppressed by n = 3 resonant magnetic perturbations (RMPs) from a set of internal coils in plasmas with an ITER similar shape at the ITER pedestal collisionality, v(e)(center dot) similar to 0.1 and low edge safety factor (q(95) approximate to 3.6), with either a single toroidal row of the internal RMP coils or two poloidally separated rows of coils. ELM suppression with a single row of internal coils was achieved at approximately the same q(95) surface-averaged perturbation field as with two rows of coils, but required higher current per coil. Maintaining complete suppression of ELMS using n = 3 RMPs from a single toroidal row of internal coils was less robust to variations in input neutral beam injection torque than previous ELM suppression cases using both rows of internal coils. With either configuration of RMP coils. maximum ELM size is correlated with the width of the edge region having good overlap of the magnetic islands from vacuum field calculations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Evans, T. E.; Osborne, T. H.; Schaffer, M. J.; deGrassie, J. S.; Gohil, P.; Groebner, R. J.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Fenstermacher, ME (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM fenstermacher@fusion.gat.com NR 13 TC 4 Z9 4 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 793 EP 796 DI 10.1016/j.jnucmat.2009.01.210 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300184 ER PT J AU Watkins, JG Evans, TE Jakubowski, M Moyer, RA Schmitz, O Wingen, A Fenstermacher, ME Joseph, I Lasnier, CJ Rudakov, DL AF Watkins, J. G. Evans, T. E. Jakubowski, M. Moyer, R. A. Schmitz, O. Wingen, A. Fenstermacher, M. E. Joseph, I. Lasnier, C. J. Rudakov, D. L. TI Particle, heat, and sheath power transmission factor profiles during ELM suppression experiments on DIII-D SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID DIVERTOR; ENERGY; OPERATION; ITER; SOL AB Edge localized modes (ELMs) are predicted to be a significant problem for ITER due to impulse heating of the divertor target plates. During low collisionality experiments on DIII-D where ELMs were suppressed using resonant magnetic perturbations (RMP), target plate profiles of particle flux electron temperature (T(e)), and floating potential (V(f)) have been measured with Langmuir probes (LP) and compared to IRTV heat flux profiles. During ELM suppression, J(sat) and T(e) increase and the J(sat) profile broadens. A three-peak structure, most visible in the V(f), agrees with the spacing and q(95) dependence of an n = 3 toroidal pattern predicted by the TRIP3D code. The heat flux calculated from Langmuir probe data (using sheath theory) is observed to get similar to 2x larger during ELM suppression than between ELMs before the RMP is turned on. The sheath power transmission factor profile has been determined from IRTV and Langmuir probe data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Watkins, J. G.; Evans, T. E.] Gen Atom Co, San Diego, CA 92186 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jakubowski, M.] Max Planck Inst Plasma Phys, Greifswald, Germany. [Moyer, R. A.; Rudakov, D. L.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Schmitz, O.] Forschungszentrum Julich, Plasmaphys IEF4, Assoc EURATOM FZJ, D-52425 Julich, Germany. [Wingen, A.] Univ Dusseldorf, Inst Theoret Phys, D-4000 Dusseldorf, Germany. [Fenstermacher, M. E.; Joseph, I.; Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Watkins, JG (reprint author), Gen Atom 13 350, 13-350,POB 85608, San Diego, CA 92186 USA. EM watkins@fusion.gat.com RI Wingen, Andreas/K-8822-2013; OI Wingen, Andreas/0000-0001-8855-1349 NR 10 TC 14 Z9 14 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 839 EP 842 DI 10.1016/j.jnucmat.2009.01.221 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300195 ER PT J AU Maqueda, RJ Maingi, R Ahn, JW AF Maqueda, R. J. Maingi, R. Ahn, J. -W. CA NSTX Team TI Secondary ELM filaments in NSTX SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID EDGE TURBULENCE; TRANSPORT; PEDESTAL AB Filamentary structures are observed in the scrape-off layer of the National Spherical Torus Experiment during ELMs. While the primary filaments correspond to a direct result of the ELM event, the 'secondary' filaments which occur generally later but still within 1 ms of the ELM onset are observed to have the same characteristics as inter-ELM filaments (or blobs): poloidal auto-correlation lengths of similar to 4 cm, broadband frequency and poloidal wave number spectra and radial velocities of 1-2 km/s. At the same time, no MHD modes are observed during the phase in which secondary filaments are present. (C) 2009 Elsevier B.V. All rights reserved. C1 [Maqueda, R. J.] Nova Photon Inc, Princeton, NJ 08540 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ahn, J. -W.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Maqueda, RJ (reprint author), Nova Photon Inc, 30 Timber Ridge, Los Alamos, NM 87544 USA. EM rmaqueda@pppl.gov NR 15 TC 11 Z9 11 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 843 EP 846 DI 10.1016/j.jnucmat.2009.01.222 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300196 ER PT J AU Allain, JP Rokusek, DL Harilal, SS Nieto-Perez, M Skinner, CH Kugel, HW Heim, B Kaita, R Majeski, R AF Allain, J. P. Rokusek, D. L. Harilal, S. S. Nieto-Perez, M. Skinner, C. H. Kugel, H. W. Heim, B. Kaita, R. Majeski, R. TI Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID CDX-U; LIMITER; TOKAMAK; SYSTEM; PHASE AB Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured. (C) 2009 Elsevier B.V. All rights reserved. C1 [Allain, J. P.; Rokusek, D. L.; Harilal, S. S.; Heim, B.] Purdue Univ, W Lafayette, IN 47907 USA. [Skinner, C. H.; Kugel, H. W.; Kaita, R.; Majeski, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Nieto-Perez, M.] CICATA IPN, Queretaro 76090, Mexico. RP Allain, JP (reprint author), Purdue Univ, 400 Cent Dr, W Lafayette, IN 47907 USA. EM allain@purdue.edu RI Harilal, Sivanandan/B-5438-2014; OI Harilal, Sivanandan/0000-0003-2266-7976; Nieto-Perez, Martin/0000-0001-6600-9786; Allain, Jean Paul/0000-0003-1348-262X NR 14 TC 23 Z9 24 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 942 EP 946 DI 10.1016/j.jnucmat.2009.01.242 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300216 ER PT J AU Kugel, HW Mansfield, D Maingi, R Bell, MG Bell, RE Allain, JP Gates, D Gerhardt, S Kaita, R Kallman, J Kaye, S LeBlanc, B Majeski, R Menard, J Mueller, D Ono, M Paul, S Raman, R Roquemore, AL Ross, PW Sabbagh, S Schneider, H Skinner, CH Soukhanovskii, V Stevenson, T Timberlake, J Wampler, WR Wilgren, J Zakharov, L AF Kugel, H. W. Mansfield, D. Maingi, R. Bell, M. G. Bell, R. E. Allain, J. P. Gates, D. Gerhardt, S. Kaita, R. Kallman, J. Kaye, S. LeBlanc, B. Majeski, R. Menard, J. Mueller, D. Ono, M. Paul, S. Raman, R. Roquemore, A. L. Ross, P. W. Sabbagh, S. Schneider, H. Skinner, C. H. Soukhanovskii, V. Stevenson, T. Timberlake, J. Wampler, W. R. Wilgren, J. Zakharov, L. CA NSTX Team TI Evaporated lithium surface coatings in NSTX SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID LIQUID LITHIUM AB Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kugel, H. W.; Mansfield, D.; Bell, M. G.; Bell, R. E.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.; Paul, S.; Roquemore, A. L.; Ross, P. W.; Schneider, H.; Skinner, C. H.; Stevenson, T.; Timberlake, J.; Zakharov, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.; Wilgren, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Allain, J. P.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Raman, R.] Univ Washington, Seattle, WA 98195 USA. [Sabbagh, S.] Columbia Univ, New York, NY 10027 USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Wampler, W. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kugel, HW (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hkugel@pppl.gov RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286; Allain, Jean Paul/0000-0003-1348-262X NR 14 TC 57 Z9 57 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 1000 EP 1004 DI 10.1016/j.jnucmat.2009.01.262 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300230 ER PT J AU Skinner, CH Kugel, HW Roquemore, AL Krstic, PS Beste, A AF Skinner, C. H. Kugel, H. W. Roquemore, A. L. Krstic, P. S. Beste, A. TI Mass changes in NSTX surface layers with Li conditioning as measured by quartz microbalances SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID CROSS-SECTIONS; DEPOSITION; RETENTION; ATOMS; IONS; JET AB Dynamic retention of deuterium, lithium deposition, and the stability of thick deposited layers were measured by three quartz crystal microbalances (QMB) deployed in plasma shadowed areas at the upper and lower divertor and outboard midplane in the National Spherical Torus Experiment (NSTX) that was equipped with a lithium evaporator. Deposition of 185 mu g/cm(2) over 3 months in 2007 was measured by a QMB at the lower divertor while a QMB on the upper divertor, that was shadowed from the evaporator, received an order of magnitude less deposition. During helium glow discharge conditioning both neutral gas collisions and the ionization of lithium and subsequent drift of the ion interrupted the lithium deposition on the lower divertor. We present calculations of the relevant mean free paths. Occasionally strong variations in the QMB frequency of thick lithium films were observed suggesting relaxation of mechanical stress and/or flaking or peeling of the deposited layers. (C) 2009 Elsevier B.V. All rights reserved. C1 [Skinner, C. H.; Kugel, H. W.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Krstic, P. S.; Beste, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Skinner, CH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cskinner@pppl.gov OI Beste, Ariana/0000-0001-9132-792X NR 23 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 1005 EP 1008 DI 10.1016/j.jnucmat.2009.01.263 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300231 ER PT J AU Wampler, WR Skinner, CH Kugel, HW Roquemore, AL AF Wampler, W. R. Skinner, C. H. Kugel, H. W. Roquemore, A. L. TI Measurement of lithium and deuterium on NSTX carbon tiles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat AB Here, we report results from nuclear reaction analysis of lithium and deuterium on 50 carbon tiles removed from NSTX (National Spherical Torus Experiment) after campaigns in 2006 and 2007 during which lithium was evaporated onto the vessel wall. Measurements give lithium and deuterium concentrations versus depth and the variation in coverage with position in the machine. The lithium was within a few microns of the surface indicating little transport by diffusion through the carbon. Lithium coverage was higher on tiles facing the lithium evaporator than on tiles shadowed from it by the center stack. The deuterium coverage was highest in the private flux region between inner and outer strike points of the high triangularity plasmas used. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wampler, W. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Skinner, C. H.; Kugel, H. W.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Wampler, WR (reprint author), Sandia Natl Labs, MS 1056, Albuquerque, NM 87185 USA. EM wrwampl@sandia.gov NR 5 TC 11 Z9 11 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 1009 EP 1012 DI 10.1016/j.jnucmat.2009.01.264 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300232 ER PT J AU Boyle, DP Skinner, CH Roquemore, AL AF Boyle, D. P. Skinner, C. H. Roquemore, A. L. TI Electrostatic dust detector for fusion devices with improved sensitivity SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID TOKAMAK; PLASMA AB Methods to measure the inventory of dust particles and to remove dust if it approaches safety limits will be required in next-step tokamaks such as ITER. An electrostatic dust detector, based on a fine grid of interlocking circuit traces, biased to 30 or 50 V, has been developed for the detection of dust on remote surfaces in air and vacuum environments. Gaining operational experience of dust detection on surfaces in tokamaks is important, however the level of dust generated in contemporary short-pulse tokamaks is comparatively low and high sensitivity is necessary to measure dust on a shot-by-shot basis. We report on modifications in the detection electronics that have increased the sensitivity of the electrostatic dust detector by a factor of up to 120, - a level suitable for measurements on contemporary tokamaks. (C) 2009 Elsevier B.V. All rights reserved. C1 [Skinner, C. H.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boyle, D. P.] Columbia Univ, New York, NY 10027 USA. RP Skinner, CH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cskinner@pppl.gov OI Boyle, Dennis/0000-0001-8091-8169 NR 10 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 1086 EP 1089 DI 10.1016/j.jnucmat.2009.01.295 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300251 ER PT J AU Lasnier, CJ Seppala, LG Morris, K Fenstermacher, ME Groth, M AF Lasnier, C. J. Seppala, L. G. Morris, K. Fenstermacher, M. E. Groth, M. TI Design status of ITER visible/IR outer strike point view SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 18th International Conference on Plasma-Surface Interactions in Controlled Fusion Devices CY MAY 26-30, 2008 CL Toledo, SPAIN SP Spanish Natl Fus Lab, Spanish Minist Sci & Innovat ID TORE-SUPRA; THERMOGRAPHY; PLATES; ASDEX AB For ITER visible/IR imaging of the outer strike point from the six upper ports currently assigned, we show an optical design that provides a 4 mm Airy disk at 5 gm wavelength at the farthest point in the field of view (much smaller in the visible), with as complete toroidal coverage of the vertical target as possible. Plasma and optical effects provide fundamental limits on the performance and design of the system. Some effects involve interactions of the surfaces with the plasma, such as plasma transport and deposition of material on the surfaces to be viewed, plasma damage to those surfaces, and molecular emission by the plasma at IR wavelengths. We discuss a detailed optical design including the endoscope concept, entrance aperture and collection head, relay optics, and camera specifications and performance. We assess integration times for capture of IR emission from surfaces and visible line emission predicted by boundary modeling. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lasnier, C. J.; Seppala, L. G.; Morris, K.; Fenstermacher, M. E.; Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lasnier, CJ (reprint author), Lawrence Livermore Natl Lab, 13-363 Gen Atom,POB 85608, San Diego, CA 92186 USA. EM Lasnier@llnl.gov RI Groth, Mathias/G-2227-2013 NR 17 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUN 15 PY 2009 VL 390-91 BP 1145 EP 1148 DI 10.1016/j.jnucmat.2009.01.273 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 467OD UT WOS:000267747300266 ER PT J AU Thomsen, EC Coffey, GW Pederson, LR Marina, OA AF Thomsen, E. C. Coffey, G. W. Pederson, L. R. Marina, O. A. TI Performance of lanthanum strontium manganite electrodes at high pressure SO JOURNAL OF POWER SOURCES LA English DT Article DE Lanthanum manganite; LSM; Cathode; Oxygen electrode; Pressure; Solid oxide fuel cell (SOFC) ID OXIDE FUEL-CELLS; SR-DOPED LAMNO3; YTTRIA-STABILIZED ZIRCONIA; OXYGEN TRACER DIFFUSION; IMPEDANCE SPECTROSCOPY; POLARIZATION PHENOMENA; COMPOSITE CATHODES; TECHNOLOGY; SOFC; LSM AB The high-pressure performance of lanthanum strontium manganite (LSM), LSM-zirconia, and LSM/ceria composite electrodes was studied by impedance spectroscopy and dc methods. Electrode resistances decreased in proportion to P(O(2))(1/2) for the LSM electrode in both cathodic and anodic directions to at least 10MPa (similar to 100 atm), a decrease that was attributed to dissociative oxygen adsorption and related phenomena. For the LSM-20/zirconia composite electrode, resistances decreased in proportion to P(O(2))(1/4) across the entire pressure range considered. Two principal features appeared in the impedance spectra, one that showed a P(O(2))(1/4) dependence attributed to charge transfer reactions, and a smaller feature that was nearly pressure-independent possibly due to transport in the zirconia portion of the composite. For the LSM-20/ceria composite electrode, resistances decreased as P(O(2))(0,3 0,4) at high pressure, depending on temperature. Two features appeared in the impedance spectra: one at low to intermediate frequency having a similar to P(O(2))(1/2) dependence and a second at high frequency having a similar to P(O(2))(1/4) dependence. These features are attributed to dissociative oxygen adsorption and to charge transfer reactions, respectively. Results suggest that Cathodic losses can be substantially lowered by operation Of solid Oxide fuel cells at greater than ambient pressure. (C) 2009 Elsevier B.V. All rights reserved. C1 [Thomsen, E. C.; Coffey, G. W.; Pederson, L. R.; Marina, O. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Pederson, LR (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM larry.pederson@pnl.gov FU U.S. Department of Energy, Office of Fossil Energy [AC06-76RLO 1830] FX The authors appreciate helpful discussions with R Singh and J.W. Stevenson. Financial Support from the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory as part of the Solid State Energy Conversion Alliance (SECA) CoalBased Systems Core Research Program (Dr. Paul Tortora, contract manager) is gratefully acknowledged. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract AC06-76RLO 1830. NR 53 TC 20 Z9 20 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUN 15 PY 2009 VL 191 IS 2 BP 217 EP 224 DI 10.1016/j.jpowsour.2009.02.057 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 454HM UT WOS:000266673000004 ER PT J AU Chou, YS Stevenson, JW AF Chou, Yeong-Shyung Stevenson, J. W. TI Long-term ageing and materials degradation of hybrid mica compressive seals for solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Ageing; Thermal cycling; Leak rate; Mica seal; Phlogopite; SOFC ID LEAK RATE; GLASS; SOFC; TEMPERATURE; EXCHANGE; SEALANTS AB Hybrid phlogopite mica seals with silver interlayers were evaluated in long-term isothermal ageing tests in a dual environment consisting of dilute hydrogen versus air at 800 C. High-temperature leak tests with helium showed very stable leakage of 0.01-0.02 sccm cm(-1) for 28,366 h under a low applied compressive stress of 82 kPa (12 psi). Post-mortem SEM and EDS analyses of the mica showed minimum degradation in terms of changes in microstructure and chemical composition, although there appeared to be some Ag migration and segregation at interstices between mica flakes. Fluorine was also found to be released from mica. Overall, the low, constant leakage through the hybrid mica/Ag seals clearly demonstrated a very promising candidate for SOFC sealing. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chou, Yeong-Shyung; Stevenson, J. W.] Pacific NW Natl Lab, Energy Mat Energy & Environm Directory, Richland, WA 99352 USA. RP Chou, YS (reprint author), Pacific NW Natl Lab, Energy Mat Energy & Environm Directory, K2-44,POB 999, Richland, WA 99352 USA. EM yeong-shyung.chou@pnl.gov FU US Department of Energy's National Energy Technology Laboratory (NETL) [DE-AC06-76RLO 1830] FX The authors Would like to thank S. Carlson for SEM sample preparation, and J. Coleman for SEM analysis. This paper was funded is part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program by the US Department of Energy's National Energy Technology Laboratory (NETL). Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy Under Contract no. DE-AC06-76RLO 1830. NR 22 TC 22 Z9 23 U1 4 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUN 15 PY 2009 VL 191 IS 2 BP 384 EP 389 DI 10.1016/j.jpowsour.2009.02.052 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 454HM UT WOS:000266673000027 ER PT J AU Borole, AP Hamilton, CY Vishnivetskaya, TA Leak, D Andras, C Morrell-Falvey, J Keller, M Davison, B AF Borole, Abhijeet P. Hamilton, Choo Y. Vishnivetskaya, Tatiana A. Leak, David Andras, Calin Morrell-Falvey, Jennifer Keller, Martin Davison, Brain TI Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Microbial fuel cell; Enrichment; Exoelectrogenic; Biofilm-forming; Direct electron transfer; Diversity ID 16S RIBOSOMAL-RNA; GRADIENT GEL-ELECTROPHORESIS; PROTON-EXCHANGE MEMBRANE; NEIGHBOR-JOINING METHOD; ELECTRICITY-GENERATION; BACTERIAL COMMUNITIES; COMB. NOV; GEN. NOV.; SEQUENCES; MICROORGANISMS AB Microbial fuel cells (MFC) hold promise as a green technology for bioenergy Production. The challenge is to improve the engineering design while exploiting the ability of microbes to generate and transfer electrons directly to electrodes. A strategy using a combination of improved anode design and an enrichment process was formulated to improve power densities. The design was based on a flow-through anode with minimal dead volume and a high electrode surface area per unit volume. The strategy focused oil promoting biofilm formation via a combination Of forced flow through the anode, carbon limitation, and step-wise reduction of external resistance. The enrichment process resulted in development of exoelectrogenic biofilm communities dominated by Anaeromusa spp. This is the first report identifying organisms from the Veillonellaceae family in MFCs. The power density of the resulting MFC using a ferricyanide cathode reached 300 Wm(-3) net anode volume (3220 mWm(-2)), which is about a third of what is estimated to be necessary for commercial consideration. The operational stability of the MFC using high specific surface area electrodes was demonstrated by operating the MFC for a period of over four months. Published by Elsevier B.V. C1 [Borole, Abhijeet P.; Vishnivetskaya, Tatiana A.; Morrell-Falvey, Jennifer; Keller, Martin] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Hamilton, Choo Y.] Univ Tennessee, Knoxville, TN 37996 USA. [Leak, David; Andras, Calin] Univ London Imperial Coll Sci Technol & Med, London, England. [Keller, Martin; Davison, Brain] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Borole, AP (reprint author), Oak Ridge Natl Lab, BioSci Div, POB 2008, Oak Ridge, TN 37831 USA. EM borolea@ornl.gov RI Morrell-Falvey, Jennifer/A-6615-2011; Borole, AP/F-3933-2011; Keller, Martin/C-4416-2012; Davison, Brian/D-7617-2013; Vishnivetskaya, Tatiana/A-4488-2008; OI Morrell-Falvey, Jennifer/0000-0002-9362-7528; Davison, Brian/0000-0002-7408-3609; Vishnivetskaya, Tatiana/0000-0002-0660-023X; Borole, Abhijeet/0000-0001-8423-811X FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DE-AC05-00OR22725] FX The financial Support from the Oak Ridge National Laboratory (ORNL) Laboratory Director's Research and Development Program is gratefully acknowledged. ORNL is managed by UT-Battelle, Inc. via a contract #DE-AC05-00OR22725 for the U.S. Department of Energy. The authors Would like to thank Mircea Podar, Jonathan Mielenz and anonymous reviewers for helpful Suggestions and Lindsey Amason for editing the manuscript. NR 54 TC 34 Z9 39 U1 2 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUN 15 PY 2009 VL 191 IS 2 BP 520 EP 527 DI 10.1016/j.jpowsour.2009.02.006 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 454HM UT WOS:000266673000044 ER PT J AU Redigolo, ML Koktysh, DS van Benthem, K Rosenthal, SJ Dickerson, JH AF Redigolo, Marcela L. Koktysh, Dmitry S. van Benthem, Klaus Rosenthal, Sandra J. Dickerson, James H. TI Europium sulfide nanoparticles in the sub-2 nm size regime SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Nanostructures; Electron microscopy (STEM); Chalcogenides; Magnetic materials; Rare earth materials ID SINGLE-SOURCE PRECURSOR; MAGNETIC-PROPERTIES; EUS NANOCRYSTALS; MAGNETOOPTICAL PROPERTIES; MACROSCOPIC FERRIMAGNETS; PHYSICAL-PROPERTIES; FILMS; 1,10-PHENANTHROLINE; COMPLEXES AB We demonstrate a synthesis procedure for EuS nanoparticles, which involves the thermolysis of a molecular single-source precursor, europium diethyldithiocarbamate complexed with 1,10-phenanthroline. This technique provides substantial control over the synthesis of EuS nanoparticles within the sub-2 nm size regime. The thermolysis procedure of a single-source EuS precursor was studied by thermogravimetric analysis (TGA) and derivative thermogravimettric analysis (DTG). The particle size and crystallinity were characterized by aberration-corrected scanning transmission electron microscopy (STEM). This thermolysis procedure can be adapted to accommodate other lanthanide-based precursors to yield a variety of lanthanide chalcogenide nanomaterials. (C) 2009 Elsevier B.V. All rights reserved. C1 [Redigolo, Marcela L.; Rosenthal, Sandra J.; Dickerson, James H.] Vanderbilt Univ, Dept Phys & Astron, VU Stn B 351807, Nashville, TN 37235 USA. [Koktysh, Dmitry S.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, VU Stn B 351822, Nashville, TN 37235 USA. [Redigolo, Marcela L.; Koktysh, Dmitry S.; Rosenthal, Sandra J.; Dickerson, James H.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [van Benthem, Klaus] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Dickerson, JH (reprint author), Vanderbilt Univ, Dept Phys & Astron, VU Stn B 351807, Nashville, TN 37235 USA. EM james.h.dickerson@Vanderbilt.Edu RI Dickerson, James/F-7950-2013 OI Dickerson, James/0000-0001-9636-6303 NR 34 TC 14 Z9 16 U1 3 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD JUN 15 PY 2009 VL 115 IS 2-3 BP 526 EP 529 DI 10.1016/j.matchemphys.2009.02.029 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 467ZX UT WOS:000267783900008 ER PT J AU Landwehr, SE Hilmas, GE Fahrenholtz, WG Talmy, IG Wang, H AF Landwehr, Sean E. Hilmas, Gregory E. Fahrenholtz, William G. Talmy, Inna G. Wang, Hsin TI Thermal properties and thermal shock resistance of liquid phase sintered ZrC-Mo cermets SO MATERIALS CHEMISTRY AND PHYSICS LA English DT Article DE Zirconium carbide; Molybdenum; Thermal properties; Thermal shock ID HIGH-TEMPERATURE APPLICATIONS; ZIRCONIUM CARBIDE; CONDUCTIVITY; COMPOSITES; BEHAVIOR; NITRIDE AB The linear thermal expansion coefficient (CTE), heat capacity, and thermal conductivity, were investigated as a function of temperature for hot pressed ZrC and liquid phase sintered ZrC-Mo cermets. The ZrC and the ZrC-Mo cermets had the same CTE at 50 degrees C (similar to 5.1-5.5 ppm degrees C(-1)), but the CTE of ZrC increased to similar to 12.2 ppm degrees C(-1) at 1000 degrees C compared to similar to 7.2-8.5 ppm degrees C(-1) for the ZrC-Mo cermets. Heat capacity was calculated using a rule of mixtures and previously reported thermodynamic data. Thermal diffusivity was measured with a laser flash method and was, in turn, used to calculate thermal conductivity. Thermal conductivity increased linearly with increasing temperature for all compositions and was affected by solid solution formation and carbon deficiency of the carbide phases. Hot pressed ZrC had the highest thermal conductivity (similar to 30-37 W m(-1) K(-1)). The nominally 20 and 30 vol% Mo compositions of the ZrC-Mo cermets had a lower thermal conductivity, but the thermal conductivity generally increased with increasing Mo content. Water quench thermal shock testing showed that ZrC-30vol% Mo had a critical temperature difference of 350 degrees C, which was similar to 120 degrees C higher than ZrC. This increase was due to the increased toughness of the cermet compared to ZrC. (C) 2009 Elsevier B.V. All rights reserved. C1 [Landwehr, Sean E.] Kennametal Inc, Latrobe, PA 15650 USA. [Hilmas, Gregory E.; Fahrenholtz, William G.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Talmy, Inna G.] USN, Ctr Surface Warfare, Carderock Div, Ceram Sci Grp, Bethesda, MD 20817 USA. [Wang, Hsin] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Landwehr, SE (reprint author), Kennametal Inc, Latrobe, PA 15650 USA. EM sean.landwehr@kennametal.com RI Wang, Hsin/A-1942-2013; OI Wang, Hsin/0000-0003-2426-9867; Fahrenholtz, William/0000-0002-8497-0092 NR 26 TC 13 Z9 14 U1 3 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0254-0584 J9 MATER CHEM PHYS JI Mater. Chem. Phys. PD JUN 15 PY 2009 VL 115 IS 2-3 BP 690 EP 695 DI 10.1016/j.matchemphys.2009.02.012 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 467ZX UT WOS:000267783900037 ER PT J AU Ma, BH Narayanan, M Balachandran, U AF Ma, Beihai Narayanan, Manoj Balachandran, U. (Balu) TI Dielectric strength and reliability of ferroelectric PLZT films deposited on nickel substrates SO MATERIALS LETTERS LA English DT Article DE Ferroelectric film; Reliability; Lead lanthanum zirconate titanate; Highly accelerated lifetime test; Breakdown strength ID TITANATE THIN-FILMS AB We have deposited ferroelectric (FE) Pb(0.92)La(0.08)Zr(0.52)Ti(0.48)O(3) (PLZT) films on nickel substrates by chemical solution deposition. Energy density of approximate to 46 J/cm(3) has been measured with 1.15-mu m-thick PLZT/LNO/Ni film-on-foil capacitors. A series of highly accelerated lifetime tests were performed to determine the reliability of these FE film-on-foil capacitors under high temperature and high field stress. Samples were exposed to temperatures ranging from 100 to 150 degrees C and electric fields ranging from 8.7 x 10(5) V/cm to 1.3 x 10(6) V/cm. The breakdown behavior of the FE PLZT film-on-foil capacitors was evaluated by Weibull analysis. The activation energy was determined to be approximate to 0.35 eV when an electric field of 1.05 x 10(6) V/cm was applied. The voltage acceleration factor was approximate to-6.3 at 100 degrees C. The mean time to failure was projected to be >3000 h at 100 degrees C with a dc electric field of approximate to 2.6 x 10(5) V/cm. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ma, Beihai; Narayanan, Manoj; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ma, BH (reprint author), 9700 S Cass Ave, Argonne, IL 60439 USA. EM bma@anl.gov RI Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Vehicle Technologies Program, under Contract DE-AC02-06CH11357. NR 12 TC 29 Z9 30 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-577X J9 MATER LETT JI Mater. Lett. PD JUN 15 PY 2009 VL 63 IS 15 BP 1353 EP 1356 DI 10.1016/j.matlet.2009.03.021 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 443JT UT WOS:000265906700039 ER PT J AU Doyle, BL Foiles, SM Antolak, AJ Popa-Simil, L Brice, DK AF Doyle, B. L. Foiles, S. M. Antolak, A. J. Popa-Simil, L. Brice, D. K. TI A proposed nuclear nanoprobe with Angstrom resolution SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 11th International Conference on Nuclear Microprobe Technology and Applications/3rd International Workshop on Proton Beam Writing CY JUL 20-25, 2008 CL Debrecen, HUNGARY DE Ion microscopes; Shadow cones; Graphene ID ION; MICROSCOPE AB An idea is presented for an entirely new point-projection nuclear microscope that theoretically would have sub-nanometer resolution, approaching one Angstrom. The concept involves using a Kalbitzer super tip as a source of low energy (similar to 100 eV) He or H ions that would be transmitted through a molecular sample (e.g. buckyball, carbon nanotube, graphene sheet, DNA molecule, etc.) placed very near the tip (similar to 1-100 mm), and then projected onto a microchannel plate (MCP) screen placed similar to 1 m from the tip. Small angle scattering of the incident ions with atoms in the sample result in the development of shadow cones with an increase in scattered ion intensity at the critical cone angle. The enhanced intensity patterns formed at multiple intersections of cone perimeters are called "threads". The shadow cones and threads are projected onto a suitable low-energy ion position sensitive detector to create a "shadow or thread image" of the sample. Such point-projection microscopes have no aberrations that affect the image, and the magnification would be of the order 1 m/10 mm, or 1.E8! The feasibility of this scheme is currently being studied theoretically using a deterministic atomic scattering model and a Monte Carlo molecular dynamics code. The results of these calculations indicate that only very low energy (60120 eV) incident hydrogen ions can be used to avoid displacing atoms in the sample. At these energies, the critical cone angles are quite large and it would be necessary to position the molecular samples very close to the tip (down to only 1 nm) so that the projected ion maps are interpretable as distinct threads. Projecting distinct shadows is not supported by the scattering physics. Published by Elsevier B.V. C1 [Doyle, B. L.; Foiles, S. M.; Antolak, A. J.] Sandia Natl Labs, Radiat Solid Interact Dept, Albuquerque, NM 87185 USA. [Popa-Simil, L.] LAVM LLC, Los Alamos, NM 87544 USA. RP Doyle, BL (reprint author), Sandia Natl Labs, Radiat Solid Interact Dept, POB 8500,MS 1056, Albuquerque, NM 87185 USA. EM bldoyle@sandia.gov OI Foiles, Stephen/0000-0002-1907-454X NR 12 TC 1 Z9 1 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 15 PY 2009 VL 267 IS 12-13 BP 1995 EP 1998 DI 10.1016/j.nimb.2009.03.084 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 469OX UT WOS:000267910500002 ER PT J AU Branson, JV Doyle, BL Vizkelethy, G Rossi, P Knapp, JA McMahan, MA AF Branson, J. V. Doyle, B. L. Vizkelethy, G. Rossi, P. Knapp, J. A. McMahan, M. A. TI The ion photon emission microscope on SNL's nuclear microprobe and in LBNL's cyclotron facility SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 11th International Conference on Nuclear Microprobe Technology and Applications/3rd International Workshop on Proton Beam Writing CY JUL 20-25, 2008 CL Debrecen, HUNGARY DE Gallium nitride; Ionoluminescence; Radiation effects microscopy; Radiation hardness; Luminescence; Nuclear microprobe; Cyclotron ID IPEM AB Radiation effects microscopy (REM) has evolved into an essential tool for the study, diagnostics and remedy of single event effects (SEE) in microelectronics devices, However, we are entering an era where the ion energies of the current systems are becoming inadequate for diagnosing SEE problems in modern ICs due to the great thickness of interlevel dielectric, metallization and passivation layers found on top of the active radiation-sensitive Si. Our solution is the ion photon emission microscope (IPEM), which eliminates the need to focus several GeV heavy ions. A tabletop IPEM is currently in use at Sandia National Laboratories (SNL), operating with alpha particles, and showing 4 gm resolution. We have recently developed a second system, and installed it on one of the SNL nuclear microprobe lines to demonstrate the principle and prove its potential as a portable radiation effects microscope that can be installed at the LBNL GeV cyclotron facility. The microprobe system is currently operating with similar to 2 mu m resolution. The determined advantages of installing a similar system at the LBNL cyclotron facility will be discussed, in addition to recently measured optical characteristics of the various phosphor materials being investigated. (C) 2009 Published by Elsevier B.V. C1 [Branson, J. V.; Doyle, B. L.; Vizkelethy, G.; Rossi, P.; Knapp, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rossi, P.] Univ Padua, Dept Phys, Padua, Italy. [Rossi, P.] Ist Nazl Fis Nucl, Padua, Italy. [McMahan, M. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Branson, JV (reprint author), Sandia Natl Labs, POB 5800,MS 1423, Albuquerque, NM 87185 USA. EM jvbrans@sandia.gov NR 7 TC 4 Z9 4 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 15 PY 2009 VL 267 IS 12-13 BP 2085 EP 2089 DI 10.1016/j.nimb.2009.03.072 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 469OX UT WOS:000267910500023 ER PT J AU Vizkelethy, G Onoda, S Hirao, T Ohshima, T Kamiya, T AF Vizkelethy, G. Onoda, S. Hirao, T. Ohshima, T. Kamiya, T. TI Time Resolved Ion Beam Induced Current measurements on MOS capacitors using a cyclotron microbeam SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 11th International Conference on Nuclear Microprobe Technology and Applications/3rd International Workshop on Proton Beam Writing CY JUL 20-25, 2008 CL Debrecen, HUNGARY DE Cyclotron; TRIBIC; MOS capacitor; Nuclear microprobe ID AVF CYCLOTRON; SYSTEM AB As overlayers on electronic devices become progressively thicker, radiation effects microscopy using traditional microbeams (with ion energies up to a few tens of MeVs) is becoming less and less viable. To penetrate to the sensitive regions of these devices, much higher energies, several hundreds of MeVs are necessary. These high energies are available only from cyclotrons. A nuclear microprobe has been developed on the AVF cyclotron of the Takasaki Ion Accelerators for Advanced Radiation Applications (TIARA) facility. In this paper we will present the first results using 260 MeV Ne and 520 MeV Ar microbeams to perform Time Resolved Ion Beam Induced Current (TRIBIC) measurements on Metal-Oxide-Semiconductor (MOS) capacitors. The results will be compared to data taken with a traditional 15 MeV 0 microbeam. (C) 2009 Elsevier B.V. All rights reserved. C1 [Vizkelethy, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Onoda, S.; Hirao, T.; Ohshima, T.; Kamiya, T.] Japan Atom Energy Agcy, Takasaki, Gumma 3701292, Japan. RP Vizkelethy, G (reprint author), Sandia Natl Labs, POB 5800,MS 1056, Albuquerque, NM 87185 USA. EM gvizkel@sandia.gov NR 10 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 15 PY 2009 VL 267 IS 12-13 BP 2185 EP 2188 DI 10.1016/j.nimb.2009.03.057 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 469OX UT WOS:000267910500045 ER PT J AU Rossi, P Doyle, BL Brice, DK Vizkelethy, G McDaniel, FD Branson, JV AF Rossi, P. Doyle, B. L. Brice, D. K. Vizkelethy, G. McDaniel, F. D. Branson, J. V. TI Phosphors' lifetime measurement employing the Time Between Photons method SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 11th International Conference on Nuclear Microprobe Technology and Applications/3rd International Workshop on Proton Beam Writing CY JUL 20-25, 2008 CL Debrecen, HUNGARY DE Radiation Effects Microscopy; Ion beam induced luminescence; Ion beam analysis; Phosphors ID EMISSION MICROSCOPY; NUCLEAR MICROSCOPY; ION; LUMINESCENCE; IPEM AB The Time Between Photons theory (hereafter TBP) is applied to the evaluation of the lifetime of phosphors employed in the Ion Photon Emission Microscope (IPEM). IPEM allows Radiation Effects Microscopy (REM) without focused ion beams and appears to be the best tool for the radiation hardness assessment of modern integrated circuit at cyclotron energies. IPEM determines the impact point of a single ion onto the sample by measuring the light spot produced on a thin phosphor layer placed on the sample surface. The spot is imaged by an optical microscope and projected at high magnification onto a Position Sensitive Detector (PSD). Phosphors, when excited by an ion, emit photons with a particular lifetime, which is important to evaluate. We measured the statistical distribution of the Time Between consecutive detected Photons (TBP) for several phosphors and have been able to link it to their lifetime employing a theory that is derived in this paper. The single-photon signals are provided by the IPEM-PSD, or faster photomultipliers when high-speed materials had to be assessed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rossi, P.; Doyle, B. L.; Brice, D. K.; Vizkelethy, G.; McDaniel, F. D.; Branson, J. V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rossi, P.] Univ Padua, Dept Phys, Padua, Italy. [Rossi, P.] Ist Nazl Fis Nucl, Padua, Italy. [McDaniel, F. D.] Univ N Texas, Denton, TX 76203 USA. [Branson, J. V.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. RP Rossi, P (reprint author), Sandia Natl Labs, Dept 1111,POB 5800,MS 1415, Albuquerque, NM 87185 USA. EM prossi@sandia.gov NR 12 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUN 15 PY 2009 VL 267 IS 12-13 BP 2193 EP 2196 DI 10.1016/j.nimb.2009.03.055 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 469OX UT WOS:000267910500047 ER PT J AU Luo, YX Rasmussen, JO Hamilton, JH Ramayya, AV Goodin, C Zhu, SJ Hwang, JK Li, K Fong, D Stefanescu, I Lee, IY Ter-Akopian, GM Daniel, AV Stoyer, MA Donangelo, R Ma, WC Cole, JD AF Luo, Y. X. Rasmussen, J. O. Hamilton, J. H. Ramayya, A. V. Goodin, C. Zhu, S. J. Hwang, J. K. Li, Ke Fong, D. Stefanescu, I. Lee, I. Y. Ter-Akopian, G. M. Daniel, A. V. Stoyer, M. A. Donangelo, R. Ma, W. C. Cole, J. D. TI The first observation of a deformed K-pi=1(+) ground-state band in Nb-100 and the high-spin level scheme of its 4n fission partner La-148 SO NUCLEAR PHYSICS A LA English DT Article DE RADIOACTIVITY Cf-252(SF); measured E-gamma, I-gamma, gamma gamma-coin using Gammasphere array. Nb-100 La-148; deduced; ICCs. high-spin levels; J; pi; rotational bands; multipolarities; shape coexistence and configurations ID PICOSECOND LIFETIME MEASUREMENTS; NEUTRON-RICH; ODD-ODD; OCTUPOLE CORRELATIONS; ROTATIONAL BANDS; SHAPE COEXISTENCE; NUCLEI; DEFORMATION; REGION; MASS AB The high-spin level schemes of odd-odd Nb-100 (Z = 41, N = 59) and La-148 (Z = 57, N = 91) were identified from gamma-gamma-gamma coincidence studies of prompt gamma rays in the spontaneous fission of Cf-252 with Gammasphere. Spin/parity assignments for the levels in these two nuclei were made based oil the low-lying levels assigned in decay work, on the internal conversion coefficient (ICC) measurements and the level systematics of the neighboring isotopes. A K-pi = l(+) deformed ground-state band was identified in Nb-100. The onset of ground-state deformation in Nb isotopes is found to take place at N = 59, in contrast to N = 60 for Sr (Z = 38), Y (Z = 39) and Zr (Z = 40) isotopes. Unlike the observation in Nb-99. the N = 56 subshell closure seems to be no longer dominant in Nb-100. The bands observed in La-148 are interpreted as aligned coupling of [pi h(11/2)nu h(9/2)](low J) to the deformed core rotor. (C) 2009 Elsevierr B.V. All rights reserved. C1 [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Luo, Y. X.; Hamilton, J. H.; Ramayya, A. V.; Goodin, C.; Zhu, S. J.; Hwang, J. K.; Li, Ke; Fong, D.; Daniel, A. V.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Ter-Akopian, G. M.; Daniel, A. V.] JINR, Joint Inst Heavy Ion Res, Dubna, Russia. [Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Donangelo, R.] Univ Fed Rio de Janeiro, BR-68528 Rio De Janeiro, RJ, Brazil. [Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Cole, J. D.] IRCPL, Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rasmussen, JO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM john_rasmussen@sbcglobal.net RI Sistemas Complexos, Inct/J-8597-2013; OI Hwang, Jae-Kwang/0000-0002-4100-3473 NR 57 TC 3 Z9 5 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD JUN 15 PY 2009 VL 825 IS 1-2 BP 1 EP 15 DI 10.1016/j.nuclphysa.2009.04.006 PG 15 WC Physics, Nuclear SC Physics GA 460LF UT WOS:000267188500001 ER PT J AU Wieczorek, S Chow, WW AF Wieczorek, Sebastian Chow, Weng W. TI Bifurcations and chaos in a semiconductor laser with coherent or noisy optical injection SO OPTICS COMMUNICATIONS LA English DT Article ID TRANSIENT DYNAMICS; NONLINEAR DYNAMICS; LYAPUNOV EXPONENT; SEEDED LASER; DIODE; FEEDBACK; LOCKING; SIGNAL; VIEW AB This paper investigates theoretically the dynamical sensitivity of semiconductor lasers to external optical signals. Bifurcation analysis of ordinary rate equations, describing noise-free lasers with pure coherent external signal, reveals that considerable modifications to the extend and type of externally induced bifurcations and chaos are possible by tailoring of the laser active-medium and resonator configurations. Extending the analysis to stochastic rate equations, which describe lasers with spontaneous emission noise and noisy external signal, reveals further dynamical effects owing to the introduced random fluctuations. In particular, phase-fluctuations (incoherence) in the external signal can have a dramatic impact on induced bifurcations and chaos. The observed strong sensitivity of laser instabilities to the intensity and coherence of external signal can provide a very sensitive means to detect ultra low levels of laser radiation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wieczorek, Sebastian] Univ Exeter, Math Res Inst, Exeter EX4 4QF, Devon, England. [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Chow, Weng W.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Chow, Weng W.] Texas A&M Univ, Inst Quantum Studies, College Stn, TX 77843 USA. RP Wieczorek, S (reprint author), Univ Exeter, Math Res Inst, Harrison Bldg,Room 325,N Pk Rd, Exeter EX4 4QF, Devon, England. EM s.m.wieczorek@ex.ac.uk NR 38 TC 14 Z9 14 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD JUN 15 PY 2009 VL 282 IS 12 BP 2367 EP 2379 DI 10.1016/j.optcom.2009.02.060 PG 13 WC Optics SC Optics GA 446OR UT WOS:000266131400017 ER PT J AU Pfeifer, T Abel, MJ Nagel, PM Boutu, W Bell, MJ Liu, YW Neumark, DM Leone, SR AF Pfeifer, Thomas Abel, Mark J. Nagel, Phillip M. Boutu, Willem Bell, M. Justine Liu, Yanwei Neumark, Daniel M. Leone, Stephen R. TI Measurement and optimization of isolated attosecond pulse contrast SO OPTICS LETTERS LA English DT Article ID SPECTROSCOPY; GENERATION; DYNAMICS AB An experimental method is presented to experimentally measure and control the carrier-envelope-phase (CEP)-dependent pulse-energy contrast of isolated attosecond pulses. By scanning the CEP and measuring the photoelectron spectrum produced by the combined action of the attosecond pulses and the high-harmonic driving laser pulses at zero relative time delay, one can extract the pulse-energy ratio between the main attosecond pulse and its neighboring satellite pulses arriving in preceding or subsequent half-cycles of the driver pulse. Moreover, this method allows fast and efficient in situ retrieval of the optimal CEP for high-contrast isolated attosecond pulse generation. (C) 2009 Optical Society of America C1 [Pfeifer, Thomas] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Pfeifer, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tpfeifer@mpi-hd.mpg.de RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 NR 20 TC 7 Z9 7 U1 1 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUN 15 PY 2009 VL 34 IS 12 BP 1819 EP 1821 PG 3 WC Optics SC Optics GA 468RT UT WOS:000267838400024 PM 19529714 ER PT J AU Grigorenko, LV Wiser, TD Miernik, K Charity, RJ Pfutzner, M Banu, A Bingham, CR Cwiok, M Darby, IG Dominik, W Elson, JM Ginter, T Grzywacz, R Janas, Z Karny, M Korgul, A Liddick, SN Mercurio, K Rajabali, M Rykaczewski, K Shane, R Sobotka, LG Stolz, A Trache, L Tribble, RE Wuosmaa, AH Zhukov, MV AF Grigorenko, L. V. Wiser, T. D. Miernik, K. Charity, R. J. Pfuetzner, M. Banu, A. Bingham, C. R. Cwiok, M. Darby, I. G. Dominik, W. Elson, J. M. Ginter, T. Grzywacz, R. Janas, Z. Karny, M. Korgul, A. Liddick, S. N. Mercurio, K. Rajabali, M. Rykaczewski, K. Shane, R. Sobotka, L. G. Stolz, A. Trache, L. Tribble, R. E. Wuosmaa, A. H. Zhukov, M. V. TI Complete correlation studies of two-proton decays: Be-6 and Fe-45 SO PHYSICS LETTERS B LA English DT Article DE Hyperspherical harmonic method; Two-proton decay; Three-body Coulomb problem ID RADIOACTIVITY; MG-19 AB The complete three-body correlation pictures are experimentally reconstructed for the two-proton decays of the Be-6 and (45)e ground states. We are able to see qualitative similarities and differences between these decays. They demonstrate very good agreement with the predictions of a theoretical three-body cluster model. Validity of the theoretical methods for treatment of the three-body Coulombic decays of this class is thus established by the broad range of lifetimes and nuclear masses spanned by these cases. Implementations for decay dynamics and nuclear structure of 2p emitters are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Grigorenko, L. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, RU-141980 Dubna, Russia. [Grigorenko, L. V.] Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany. [Grigorenko, L. V.] Kurchatov Inst, Russian Res Ctr, RU-123182 Moscow, Russia. [Wiser, T. D.; Mercurio, K.; Sobotka, L. G.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Miernik, K.; Pfuetzner, M.; Cwiok, M.; Dominik, W.; Janas, Z.; Karny, M.; Korgul, A.] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland. [Charity, R. J.; Elson, J. M.; Shane, R.; Sobotka, L. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Banu, A.; Trache, L.; Tribble, R. E.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Bingham, C. R.; Darby, I. G.; Grzywacz, R.; Liddick, S. N.; Rajabali, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ginter, T.; Stolz, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Rykaczewski, K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Wuosmaa, A. H.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Zhukov, M. V.] Chalmers, S-41296 Gothenburg, Sweden. RP Grigorenko, LV (reprint author), Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, RU-141980 Dubna, Russia. EM lgrigorenko@yandex.ru RI Trache, Livius/M-6265-2016; OI Charity, Robert/0000-0003-3020-4998 FU US Department of Energy [DE-FG02-87ER-40316, -93ER40773, -04ER413]; Polish Ministry of Science and Higher Education [1 P03B 138 30]; German DFG [436 RUS 113/907/0-1]; Russian Foundation for Basic Research [08-02-00892, 08-02-00089-a]; Russian Ministry of Industry and Science [NS-3004.2008.2] FX This work was supported by the US Department of Energy, Division of Nuclear Physics, under Grants DE-FG02-87ER-40316, -93ER40773, -04ER413, and a Grant from the Polish Ministry of Science and Higher Education 1 P03B 138 30. LN.G. is supported by German DFG 436 RUS 113/907/0-1, Russian Foundation for Basic Research grants 08-02-00892, 08-02-00089-a, Russian Ministry of Industry and Science grant NS-3004.2008.2. NR 27 TC 32 Z9 32 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 15 PY 2009 VL 677 IS 1-2 BP 30 EP 35 DI 10.1016/j.physletb.2009.04.085 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 459QM UT WOS:000267118700006 ER PT J AU Berger, CF Gainer, JS Hewett, JL Lillie, B Rizzo, TG AF Berger, C. F. Gainer, J. S. Hewett, J. L. Lillie, B. Rizzo, T. G. TI Supersymmetry, the ILC, and the LHC inverse problem SO PHYSICS LETTERS B LA English DT Article AB We report the results of the first large scale examination of the MSSM parameter space at the International Linear Collider (ILC). In particular, we address the question of whether or not the ILC can help to resolve the LHC Inverse Problem within this context. We examine 242 randomly generated but representative points in the MSSM parameter space which were found to lead to somewhat difficult signatures at the LHC. Including full Standard Model backgrounds and a fast detector simulation, Our study finds that only roughly one third of these scenarios lead to visible signatures of some kind with a significance >= 5 at the ILC with root s = 500 GeV. However, kinematically accessible charged sparticles are visible over 90% of the time. Furthermore, we examine these points in the parameter space pairwise and find that only one third of the pairs produce distinguishable signatures at the ILC at 5(T. Going to a 1 TeV center of mass energy Would Substantially improve this situation since the dominant limitations are kinematic in origin. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gainer, J. S.; Hewett, J. L.; Rizzo, T. G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Berger, C. F.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Lillie, B.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Lillie, B.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Rizzo, TG (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM cfberger@mit.edu; jgainer@slac.stanford.edu; hewett@slac.stanford.edu; lillieb@uchicago.edu; rizzo@slac.stanford.edu OI Gainer, James/0000-0002-8872-0664 FU US Department of Energy (D.O.E.) [DE-FC02-94ER40818, DEAC02-06CH11357]; Department of Energy [AC0276SFOO515] FX Research supported in part by the US Department of Energy under contract DEAC02-06CH11357. NR 18 TC 6 Z9 6 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 15 PY 2009 VL 677 IS 1-2 BP 48 EP 53 DI 10.1016/j.physletb.2009.04.091 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 459QM UT WOS:000267118700009 ER PT J AU Riek, F Rapp, R Lee, TSH Oh, Y AF Riek, F. Rapp, R. Lee, T. -S. H. Oh, Yongseok TI Medium effects in rho-meson photoproduction SO PHYSICS LETTERS B LA English DT Article DE Photoproduction; rho meson; In-medium properties ID VECTOR-MESONS; NUCLEI; COLLISIONS; THRESHOLD; MATTER; GAMMA AB We compute dilepton invariant mass spectra from the decays of rho mesons produced by photon reactions off nuclei. Our calculations employ a realistic model for the rho photoproduction amplitude on the nucleon which provides fair agreement with measured cross sections. Medium effects are implemented via an earlier constructed rho propagator based on hadronic many-body theory. At incoming photon energies of 1.5-3 GeV as used by the CLAS experiment at JLAB, the average density probed for iron targets is estimated at about half Saturation density. At the pertinent 3-momenta the predicted medium effects on the rho propagator are rather moderate. The resulting dilepton spectra approximately agree with recent CLAS data. (C) 2009 Elsevier B.V. All rights reserved. C1 [Riek, F.; Rapp, R.; Oh, Yongseok] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Lee, T. -S. H.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Riek, F (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. EM friek@comp.tamu.edu; rapp@comp.tamu.edu; lee@phy.anl.gov; yoh@comp.tamu.edu RI Oh, Yongseok/A-2504-2008 OI Oh, Yongseok/0000-0001-9822-8975 FU US National Science Foundation [PHY-0449489, PHY-0457265, PHY-0758155]; US Department of Energy [DE-AC02-06CH11357]; Welch Foundation [A-1358] FX The authors acknowledge useful discussions with C. Djalali. F.R. and R.R. were supported by a US National Science Foundation CAREER grant No. PHY-0449489. T.S.H.L. was supported by the US Department of Energy, Office of Nuclear Physics Division, under contract No. DE-AC02-06CH11357. Y.O. was supported by the US NSF under grants No. PHY-0457265, PHY-0758155 and the Welch Foundation under Grant No. A-1358. NR 26 TC 14 Z9 14 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUN 15 PY 2009 VL 677 IS 1-2 BP 116 EP 120 DI 10.1016/j.physletb.2009.05.002 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 459QM UT WOS:000267118700020 ER PT J AU Ryabchikov, AI Petrov, AV Struts, VK Mytnikov, AV Usov, YP Renk, TJ AF Ryabchikov, A. I. Petrov, A. V. Struts, V. K. Mytnikov, A. V. Usov, Yu. P. Renk, T. J. TI Structural-phase composition and tribological characteristics of fullerenes containing carbonic coatings obtained using high-power ion beams SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 15th International Conference on Surface Modification of Materials by Ion Beams CY SEP 30-OCT 05, 2007 CL Univ Mumbai, Mumbai, INDIA SP Mat Res Soc India, Bhabha Atom Res Ctr, Tata Inst Fundamental Res HO Univ Mumbai DE Ablation plasma; Carbonic film; Fullerenes; Nano-hardness; Adhesion AB Thin carbon film fullerene-containing coatings were formed by deposition on silicon substrates of ablation plasma, which was generated as a result of high-power pulsed ion beam (HPPIB) interaction with graphite targets of different densities. Relative amounts of crystalline phases of fullerenes C-60, C-70, diamond-like carbon (DLC) as well as the carbon amorphous phase with relative DLC in it, were determined. It is shown that, the relative amount of carbon amorphous phase, the ratio between a quantity of fullerenes C-60:C-70, as well as the amount of DLC in crystalline and amorphous phases critically depend on coating deposition conditions. They are the following: energy densities of the ion beam coming to the graphite target, which, in turn, determines the density and temperature of ablation plasma; and coating deposition rate, which is the film thickness for one pulse of the ion current. Parameters of deposited coatings such as nano-hardness, Young's modulus, adhesion, friction coefficient and roughness were measured. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ryabchikov, A. I.; Petrov, A. V.; Struts, V. K.; Usov, Yu. P.] Inst Nucl Phys, Tomsk 634050, Russia. [Mytnikov, A. V.] Tomsk Polytech Univ, Tomsk 634050, Russia. [Renk, T. J.] Sandia Natl Labs, Albuquerque, NM 87175 USA. RP Struts, VK (reprint author), Inst Nucl Phys, 2A,Lenin Ave, Tomsk 634050, Russia. EM struts@npi.tpu.ru RI Ryabchikov, Alexander/A-3180-2014; Petrov, Anatoly/A-8288-2014; OI Alexander, Ryabchikov/0000-0001-6701-7358 NR 7 TC 1 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUN 15 PY 2009 VL 203 IS 17-18 BP 2608 EP 2611 DI 10.1016/j.surfcoat.2009.02.066 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 454KY UT WOS:000266682000061 ER PT J AU Polyzos, A Schmid, TE Pina-Guzman, B Quintanilla-Vega, B Marchetti, F AF Polyzos, Aris Schmid, Thomas Ernst Pina-Guzman, Belem Quintanilla-Vega, Betzabet Marchetti, Francesco TI Differential sensitivity of male germ cells to mainstream and sidestream tobacco smoke in the mouse SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Comet; SCSA; CASA; Fertilization; 4-cell embryo ID SPERM CHROMATIN-STRUCTURE; INFANT-DEATH-SYNDROME; PATERNAL CIGARETTE-SMOKING; SEMEN QUALITY; IN-VITRO; FERTILIZING-CAPACITY; ASSISTED REPRODUCTION; TESTICULAR FUNCTION; DNA FRAGMENTATION; OXIDATIVE STRESS AB Cigarette smoking in men has been associated with increased chromosomal abnormalities in sperm and with increased risks for spontaneous abortions, birth defects and neonatal death. Little is known, however, about the reproductive consequences of paternal exposure to second-hand smoke, We used a mouse model to investigate the effects of paternal exposure to sidestream (SS) smoke, the main constituent of second-hand smoke, on the genetic integrity and function of sperm, and to determine whether male germ cells were equally sensitive to mainstream (MS) and SS smoke, A series of sperm DNA quality and reproductive endpoints were investigated after exposing male mice for two weeks to MS OF SS smoke. Our results indicated that: (i) only SS smoke significantly affected sperm motility; (ii) only MS smoke induced DNA strand breaks in sperm; (in) both MS and SS smoke increased Sperm chromatin structure abnormalities; and (iv) MS smoke affected both fertilization and the rate of early embryonic development, while SS smoke affected fertilization only. These results show that MS and SS smoke have differential effects on the genetic integrity and function of sperm and provide further evidence that male exposure to second-hand smoke, as well as direct cigarette smoke, may diminish a couple's chance for a successful pregnancy and the birth of a healthy baby. (C) 2009 Elsevier Inc. All rights reserved. C1 [Polyzos, Aris; Schmid, Thomas Ernst; Marchetti, Francesco] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Pina-Guzman, Belem; Quintanilla-Vega, Betzabet] CINVESTAV, IPN, Toxicol Sect, Mexico City 14000, DF, Mexico. RP Marchetti, F (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,MS 977R250, Berkeley, CA 94720 USA. EM fmarchetti@lbl.gov OI Marchetti, Francesco/0000-0002-9435-4867 FU Lawrence Berkeley National Laboratory [DE-AC02-05CH1123]; California Tobacco Related Disease Research Program [13RT-0140A] FX We thank Dr Andrew j Wyrobek for critical reading of the manuscript, Dr. Lara Gundel for help with the total suspended particulate measurements, and Mj Solis-Heredia for technical assistance. Work performed under the auspices of the U.S. DOE by the Lawrence Berkeley National Laboratory under contract DE-AC02-05CH1123 with funding support from the California Tobacco Related Disease Research Program grant 13RT-0140A to FM. NR 69 TC 15 Z9 16 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD JUN 15 PY 2009 VL 237 IS 3 BP 298 EP 305 DI 10.1016/j.taap.2009.03.019 PG 8 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 454NS UT WOS:000266689800006 PM 19345701 ER PT J AU Peters, JS Cook, BA Harringa, JL Russell, AM AF Peters, J. S. Cook, B. A. Harringa, J. L. Russell, A. M. TI Erosion resistance of TiB2-ZrB2 composites SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Borides; Titanium diboride; Zirconium diboride; Hot-pressing; Dry erosion ID SOLID-PARTICLE EROSION; MECHANICAL-PROPERTIES; TITANIUM DIBORIDE; COMPUTER-SIMULATION; SILICON-CARBIDE; SINTERING AID; TIB2 CERAMICS; POWDERS; WEAR; MICROSTRUCTURE AB Elemental powders of Ti, Zr, and B were combined by high-energy ball milling (HEBM) to produce fine single-phase (Ti,Zr)B-2 powders of varying composition. The powders produced by HEBM also facilitate densification (99%) at hot-pressing temperatures as low as 1450 degrees C, which also aids in retaining a fine microstructure. By varying the hot-pressing parameters, a range of grain sizes was produced. ASTM-standard erosion and abrasion testing was performed on these wear-resistant samples to show the effect of grain size on wear resistance, and the results are compared with those for commercially available cemented tungsten carbide and cubic boron nitride. These results are also compared to those of similarly processed samples of TiB2. Erosion rates as low as 0.14 mml/kg were recorded for Ti0.5Zr0.5B2 Composites, compared with 0.51 mml/kg for TiB2 prepared by a similar method, and 0.21 mm(3)/kg for wear-resistant, binderless WC. Published by Elsevier B.V. C1 [Peters, J. S.; Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Peters, J. S.; Cook, B. A.; Harringa, J. L.; Russell, A. M.] Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Peters, JS (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM jphomer@iastate.edu OI Russell, Alan/0000-0001-5264-0104 NR 35 TC 10 Z9 12 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 1-4 SI SI BP 136 EP 143 DI 10.1016/j.wear.2009.01.037 PN 1 PG 8 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 461MH UT WOS:000267270600021 ER PT J AU Aldajah, SH Ajayi, OO Fenske, GR David, S AF Aldajah, S. H. Ajayi, O. O. Fenske, G. R. David, S. TI Effect of friction stir processing on the tribological performance of high carbon steel SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE FSP; Tribology; Friction; Wear ID CAST-ALUMINUM ALLOYS; MICROSTRUCTURAL EVOLUTION; SUPERPLASTICITY; A356; BEHAVIOR AB Friction stir processing (FSP) was applied to 1080 carbon steel as a means to enhance the near-surface material properties. The process transformed the original pearlite microstructure to martensite, resulting in significant increase in surface hardness. This surface hardening produced a significant benefit for friction and wear behavior of the steel as measured by unidirectional sliding ball-on-flat testing. Under dry sliding, FSP reduced friction coefficient by approximately 25% and wear rate by an order of magnitude. Under oil lubrication, FSP had only a marginal effect on friction, but it reduced wear rates by a factor of 4. The improvement in tribological performance of 1080 steel by FSP technique is attributed to reduced plasticity of the near-surface material during sliding contact. (C) 2009 Elsevier B.V. All rights reserved. C1 [Aldajah, S. H.] United Arab Emirates Univ, Al Ain, U Arab Emirates. [Ajayi, O. O.; Fenske, G. R.] Argonne Natl Lab, Argonne, IL 60439 USA. [David, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Aldajah, SH (reprint author), United Arab Emirates Univ, POB 17555, Al Ain, U Arab Emirates. EM s.aldajah@uaeu.ac.ae OI Aldajah, Saud/0000-0001-6061-1004 NR 18 TC 35 Z9 36 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 1-4 BP 350 EP 355 DI 10.1016/j.wear.2008.12.020 PG 6 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 461MH UT WOS:000267270600047 ER PT J AU Blau, PJ Yao, M Qu, J Wu, J AF Blau, P. J. Yao, M. Qu, J. Wu, J. TI Use of multiple criteria to map the high-temperature scuffing behavior of Co-based superalloys SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Co alloys; Stellite 6B; Scuffing; Tribaloy T400; Pleuco 33; Wear map ID ALLOYS; WEAR AB The goal of this work was to rank, as quantitatively as possible, the high-temperature scuffing characteristics of a series of Co-based materials, including coatings, for possible use in wear-critical components like those in diesel engine exhaust systems and emission-controls. A cylinder pivoting on its side against a flat tile was used as the testing geometry. All tests were performed at 600 degrees C in air. The time-dependent torque response was recorded for each 60 min test to investigate trends in friction as surfaces roughened and debris deposits built up. Candidate materials included Stellite 6B, Pleuco 33 (a white cast iron), nitrided stainless steel Type 310, IDM 5399 (a high-silicon, molybdenum iron), and coatings of both Tribaloy T-400 and Stellite 3 on stainless steel. Measurements of the damaged areas on the scuffed tiles were used to calculate a specific normal load and plot it versus the roughness of the worn tiles to map experimental results in a way that indicated the severity of scuffing for each material combination. Data on the map were annotated to reflect visual observations of the extent of damage as well. Using this test method and the foregoing criteria, nitrided type 310 stainless steel against T-400 gave the best overall performance. (c) 2009 Elsevier B.V. All rights reserved. C1 [Blau, P. J.; Qu, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yao, M.] Deloro Stellite Inc, Belleville, ON K8N 5C4, Canada. [Wu, J.] Deloro Stellite, St Louis, MO 63141 USA. RP Blau, PJ (reprint author), Oak Ridge Natl Lab, POB 2008,M-S 6063, Oak Ridge, TN 37831 USA. EM blaupj@ornl.gov OI Qu, Jun/0000-0001-9466-3179 NR 8 TC 3 Z9 3 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 1-4 BP 374 EP 379 DI 10.1016/j.wear.2008.11.004 PG 6 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 461MH UT WOS:000267270600051 ER PT J AU Blau, PJ Brummett, TM Pint, BA AF Blau, P. J. Brummett, T. M. Pint, B. A. TI Effects of prior surface damage on high-temperature oxidation of Fe-, Ni-, and Co-based alloys SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Oxidation; Scratch testing; Single-point abrasion; High-temperature wear; Superalloys ID WEAR; BEHAVIOR AB Multi-component metallic alloys have been developed to withstand high-temperature service in corrosive environments. Some of these applications, like exhaust valve seats in internal combustion engines. must also resist sliding, impact, and abrasion. The conjoint effects of temperature, oxidation, and mechanical contact can result in accelerated wear and the formation of complex surface layers whose properties differ from those of the base metal and the oxide scale that forms in the absence of mechanical contact. The authors have investigated the effects of prior surface damage, produced by scratch tests, on the localized reformation of oxide layers. Three high-performance commercial alloys, based on iron, nickel, and cobalt, were used as model materials. Thermogravimetric analysis (TGA) was used to determine their static oxidation rates at elevated temperature (850 degrees C). A micro-abrasion, ball-cratering technique was used to measure oxide layer thickness and to supplement the TGA results. By using taper-sectioning techniques and energy-dispersive elemental mapping, a comparison was made between oxide compositions grown on non-damaged surfaces and oxides that formed on grooves produced by a diamond stylus. Microindentation and scratch hardness data revealed the effects of high-temperature exposure on both the substrate hardness and the nature of oxide scale disruption. There were significant differences in elemental distribution between statically formed oxides and those that formed on scratched regions. (c) 2009 Elsevier B.V. All rights reserved. C1 [Blau, P. J.; Brummett, T. M.; Pint, B. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Blau, PJ (reprint author), Oak Ridge Natl Lab, POB 2008,M-S 6063, Oak Ridge, TN 37831 USA. EM blaupj@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 17 TC 12 Z9 12 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 1-4 BP 380 EP 386 DI 10.1016/j.wear.2008.12.082 PG 7 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 461MH UT WOS:000267270600052 ER PT J AU Lorenzo-Martin, C Ajayi, OO Erck, RA Routbort, JL AF Lorenzo-Martin, C. Ajayi, O. O. Erck, R. A. Routbort, J. L. TI Tribo-mechanical etching of structural ceramic materials during lubricated severe sliding contact SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Ceramics; Etching; Scuffing; Grain boundary; Metal transfer ID ZIRCONIA AB An unusual phenomenon has been observed in the contact area on the surfaces of three structural ceramic materials that were subjected to severe lubricated sliding contact with hardened steel. Silicon carbide, alumina, and partially stabilized zirconia (PSZ) were slid against a carburized 4620 steel ring in a block-on-ring test rig lubricated with polyalphaolefin synthetic oil. A step-loading protocol was used for the scuffing test. At the conclusion of the tests, the outline of grains and phases in the contact area of the ceramic materials was clearly visible, as if the surface had been etched. This behavior, what we have termed "tribomechanical etching," is attributed to different mechanisms, including anisotropic mechanical and thermal deformation of each grain (SiC and Al(2)O(3)) and the phases (PSZ) in the ceramic material during severe sliding contact. Because of the hexagonal close-packed (hcp) crystal structure of the SiC and Al(2)O(3) grains, they exhibit anisotropic mechanical and thermal behavior. Another possible mechanism for revealing the grain outlines includes uneven/unequal transfer of metal into different ceramic grains as a result of differences in the surface energy of each grain. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lorenzo-Martin, C.; Ajayi, O. O.; Erck, R. A.; Routbort, J. L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ajayi, OO (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ajayi@anl.gov NR 12 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 1-4 BP 608 EP 613 DI 10.1016/j.wear.2008.12.115 PG 6 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 461MH UT WOS:000267270600081 ER PT J AU Qu, J Blau, PJ Jolly, BC AF Qu, Jun Blau, Peter J. Jolly, Brian C. TI Oxygen-diffused titanium as a candidate brake rotor material SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Brake rotor; Oxygen diffusion; Titanium; Friction; Wear; Fade ID WEAR-RESISTANCE; ALLOYS; FRICTION AB Titanium alloys are one of several candidate materials for the next generation of truck disk brake rotors. Despite their advantages of lightweight relative to cast iron and good strength and corrosion resistance, titanium alloys are unlikely to be satisfactory brake rotor materials unless their friction and wear behavior can be significantly improved. In this study, a surface engineering process - oxygen diffusion (OD) - was applied to titanium rotors and has shown very encouraging results. The oxygen-diffused Ti-6Al-4V (OD-Ti64) was tested on a sub-scale brake tester against a flat block of commercial brake lining material and benchmarked against several other Ti-based materials, including untreated Ti-6Al-4V (Ti64), Ti-based metal matrix composites (MMCs), and a thermal spray-coated Ti alloy. With respect to friction, the OD-Ti64 outperformed all other candidate materials under the imposed test conditions with the friction coefficient remaining within a desirable range of 0.35-0.50, even under the harshest conditions when the disk surface temperature reached nearly 600 degrees C. In addition, the OD-Ti64 showed significantly improved wear-resistance over the untreated Ti64 and was even better than the Ti-based composite materials. (C) 2009 Elsevier B.V. All rights reserved. C1 [Qu, Jun; Blau, Peter J.; Jolly, Brian C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov OI Qu, Jun/0000-0001-9466-3179 NR 15 TC 7 Z9 7 U1 2 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 5-8 SI SI BP 818 EP 822 DI 10.1016/j.wear.2008.12.044 PN 2 PG 5 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 465JX UT WOS:000267580700019 ER PT J AU Chen, Q Li, DY Cook, B AF Chen, Q. Li, D. Y. Cook, Bruce TI Is porosity always detrimental to the wear resistance of materials?-A computational study on the effect of porosity on erosive wear of TiC/Cu composites SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Porosity; Composites; Computer simulation; Solid-particle erosion; MSDM ID SOLID PARTICLE EROSION; DRY SLIDING WEAR; MATRIX COMPOSITES; COMPUTER-SIMULATION; BEHAVIOR; MICROSTRUCTURE; ALLOY; IRON AB It is generally agreed that porosity is detrimental to the wear resistance of materials. However some experiments show contradictory results or exceptions. We have conducted a computational study to investigate the influence of porosity on solid-particle erosion of composite materials with the aim of clarifying relevant unclear issues. Using TiC/Cu as a sample composite, we have demonstrated that the porosity could be beneficial to the performance of composite materials under some conditions. In order to better understand mechanisms involved and generate guidelines to take advantage of porosity, solid-particle erosion processes of samples having different pore densities, volume fractions and orientations of reinforcements were studied. The synergic influence of the reinforcement/matrix interfacial bond strength and porosity on the erosion resistance was also studied. Consistency between the modeling and reported experimental observations was found. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chen, Q.; Li, D. Y.] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada. [Cook, Bruce] Iowa State Univ, Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. RP Li, DY (reprint author), Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada. EM dongyang.li@ualberta.ca NR 28 TC 16 Z9 17 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 5-8 BP 1153 EP 1159 DI 10.1016/j.wear.2008.12.058 PG 7 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 465JX UT WOS:000267580700064 ER PT J AU Ajayi, OO Erck, RA Lorenzo-Martin, C Fenske, GR AF Ajayi, O. O. Erck, R. A. Lorenzo-Martin, C. Fenske, G. R. TI Frictional anisotropy under boundary lubrication: Effect of surface texture SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Boundary lubrication; Plastic deformation; Friction anisotropy; Grinding lay AB The friction coefficient was measured under boundary lubrication with a ball-on-flat contact configuration in unidirectional sliding. The ball was smooth and hardened 52100 steel. Discs were made from case-carburized and hardened 4620, annealed 1080, and 1018 steels with directionally ground surfaces. A synthetic lubricant of stock polyalphaolefin was used for testing. During testing with each material, a frictional spike was observed whenever the ball slid parallel to the grinding ridge on the disc surface. The average friction coefficient for all tests was about 0.1, which is typical for the boundary lubrication regime. The magnitude of the frictional spikes, which reached as high as a friction coefficient of 0.25, and their persistence depended on the hardness of the disc surface. On the basis of elastohydrodynamic theory, coupled with the observation of severe plastic deformation on the ridges parallel to the sliding direction, the frictional spike could be due to localized plastic deformation on the disc surface at locations of minimal thickness for the lubricant fluid film. This hypothesis was further supported by lack of frictional spikes in tests using discs coated with a thin film of diamond-like carbon, in which plastic deformation is minimal. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ajayi, O. O.; Erck, R. A.; Lorenzo-Martin, C.; Fenske, G. R.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ajayi, OO (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ajayi@anl.gov NR 10 TC 11 Z9 11 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 5-8 BP 1214 EP 1219 DI 10.1016/j.wear.2008.12.106 PG 6 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 465JX UT WOS:000267580700073 ER PT J AU Qu, J Blau, PJ Dai, S Luo, HM Meyer, HM Truhan, JJ AF Qu, Jun Blau, Peter J. Dai, Sheng Luo, Huimin Meyer, Harry M., III Truhan, John J. TI Tribological characteristics of aluminum alloys sliding against steel lubricated by ammonium and imidazolium ionic liquids SO WEAR LA English DT Article; Proceedings Paper CT 17th International Conference on Wear of Materials CY APR 19-23, 2009 CL Las Vegas, NV DE Ionic liquid; Lubricant; Friction; Wear; Tribochemical reaction; Tribo-corrosion ID ADDITIVES; TEMPERATURE; CONTACTS; EXTRACTION; SYSTEM AB Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs)were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100-0, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C(8)H(17)](3)NH.Tf(2)N and one imidazolium-based C(10)mim.Tf(2)N, were compared to each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for the Al 6061 alloy when lubricated by C(10)mim.Tf(2)N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which have been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Qu, Jun; Blau, Peter J.; Meyer, Harry M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Luo, Huimin] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Truhan, John J.] Caterpillar Inc, Adv Mat Technol, Mossville, IL 61552 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov RI Dai, Sheng/K-8411-2015; OI Dai, Sheng/0000-0002-8046-3931; Qu, Jun/0000-0001-9466-3179 NR 23 TC 57 Z9 58 U1 3 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 J9 WEAR JI Wear PD JUN 15 PY 2009 VL 267 IS 5-8 BP 1226 EP 1231 DI 10.1016/j.wear.2008.12.038 PG 6 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 465JX UT WOS:000267580700075 ER PT J AU Yoo, S Zeng, XC Xantheas, SS AF Yoo, Soohaeng Zeng, Xiao Cheng Xantheas, Sotiris S. TI On the phase diagram of water with density functional theory potentials: The melting temperature of ice I-h with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SPACE GAUSSIAN PSEUDOPOTENTIALS; 1ST PRINCIPLES SIMULATIONS; LIQUID WATER; AMBIENT CONDITIONS; PROTON-TRANSFER; CELL BIOLOGY; TRANSITION; SILICON; THERMOCHEMISTRY; APPROXIMATION AB The melting temperature (T-m) of ice I-h was determined from constant enthalpy and pressure (NPH) Born-Oppenheimer molecular dynamics simulations to be 417 +/- 3 K for the Perdew-Burke-Ernzerhof and 411 +/- 4 K for the Becke-Lee-Yang-Parr density functionals using a coexisting ice (I-h)-liquid phase at constant pressures of P=2500 and 10 000 bar and a density rho=1 g/cm(3), respectively. This suggests that ambient condition simulations at rho=1 g/cm(3) will rather describe a supercooled state that is overstructured when compared to liquid water. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3153871] C1 [Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Yoo, Soohaeng; Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Zeng, XC (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM xczeng@phase2.unl.edu; sotiris.xantheas@pnl.gov RI Xantheas, Sotiris/L-1239-2015 NR 56 TC 130 Z9 130 U1 2 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 14 PY 2009 VL 130 IS 22 AR 221102 DI 10.1063/1.3153871 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 457XH UT WOS:000266968800002 PM 19530755 ER PT J AU Arrowsmith, SJ Burlacu, R Whitaker, R Randall, G AF Arrowsmith, Stephen J. Burlacu, Relu Whitaker, Rod Randall, George TI A repeating secondary source of infrasound from the Wells, Nevada, earthquake sequence SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID WAVES AB The Wells, Nevada, earthquake of February 21, 2008, generated a complex seismo-acoustic wavefield. Epicentral infrasound was recorded at 5 seismo-acoustic arrays in Nevada, Utah, and Wyoming. In addition to epicentral infrasound, the earthquake triggered a secondary source of infrasound at the BGU array in Utah, which was also triggered by subsequent aftershocks. By applying simple constraints on the propagation of seismic and infrasound waves, we show that the secondary source is an isolated peak ('Floating Island') that appears to efficiently generate infrasound through the interaction with seismic surface waves. This hypothesized source location is broadly consistent with crosswind directions extracted from the Ground-to-Space (G2S) atmospheric model (for the appropriate time and source/receiver locations), although modeling the propagation of infrasound predicts this source location to be within the so-called 'zone-of-silence'. In contrast to epicentral infrasound, secondary infrasound associated with the Wells, Nevada, earthquake sequence appears to be local to each array (i.e., not observed at multiple arrays). Secondary infrasonic arrivals observed at BGU are much higher in amplitude than epicentral arrivals, highlighting the importance of being able to clearly identify and separate epicentral and secondary arrivals for infrasonic event discrimination. Citation: Arrowsmith, S. J., R. Burlacu, R. Whitaker, and G. Randall (2009), A repeating secondary source of infrasound from the Wells, Nevada, earthquake sequence, Geophys. Res. Lett., 36, L11817, doi:10.1029/2009GL038363. C1 [Arrowsmith, Stephen J.; Whitaker, Rod; Randall, George] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Burlacu, Relu] Univ Utah, Seismograph Stn, Salt Lake City, UT 84112 USA. RP Arrowsmith, SJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sarrowsmith@gmail.com FU National Nuclear Security Administration Office of Nonproliferation Research and Development; U.S. Department of Energy Los Alamos National Laboratory [DE-AC52-06NA24596] FX The authors acknowledge the support of Leslie A. Casey and the National Nuclear Security Administration Office of Nonproliferation Research and Development for funding this work. This work was completed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under contract DE-AC52-06NA24596. We thank Fabio Florindo and two anonymous reviewers for their helpful comments on an earlier draft of this manuscript. NR 13 TC 11 Z9 11 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUN 13 PY 2009 VL 36 AR L11817 DI 10.1029/2009GL038363 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 458FN UT WOS:000267000700005 ER PT J AU Mannsfeld, SCB Virkar, A Reese, C Toney, MF Bao, ZN AF Mannsfeld, Stefan C. B. Virkar, Ajay Reese, Colin Toney, Michael F. Bao, Zhenan TI Precise Structure of Pentacene Monolayers on Amorphous Silicon Oxide and Relation to Charge Transport SO ADVANCED MATERIALS LA English DT Article ID THIN-FILM TRANSISTORS; X-RAY-DIFFRACTION; ORGANIC SEMICONDUCTORS; SCATTERING; SUBSTRATE; CRYSTALS; OPTIMIZATION; DIELECTRICS; DYNAMICS; SURFACE AB The precise molecular packing in pentacene monolayers on silicon oxide is determined for the first time using a combination of grazing incidence X-ray diffraction (GIXD) and crystallographic refinement calculations. The pentacene molecules are found to adopt a completely tilt-free herringbone motif, the charge-transport properties of which are discussed on the basis of density functional theory calculations. C1 [Virkar, Ajay; Reese, Colin; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Mannsfeld, Stefan C. B.; Toney, Michael F.] Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Bao, ZN (reprint author), Stanford Univ, Dept Chem Engn, 381 NS Mall, Stanford, CA 94305 USA. EM zbao@stanford.edu FU NSF-DMR; NSF-MRSEC; Stanford Synchrotron Radiation Laboratory (SSRL); Department of Energy; Wiley InterScience FX Z. B. acknowledges partial financial support from the NSF-DMR solid state chemistry and NSF-MRSEC (Center for Polymer and Macromolecular Assemblies). The authors acknowledge Paul Zimmerman (Dept. Chem. Eng., Stanford Univ.) for advice on the quantum chemical calculations. This work was done in part at Stanford Synchrotron Radiation Laboratory (SSRL), operated by Department of Energy. Supporting Information is available online from Wiley InterScience or from the author. NR 40 TC 98 Z9 99 U1 4 U2 66 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUN 12 PY 2009 VL 21 IS 22 BP 2294 EP + DI 10.1002/adma.200803328 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 464MP UT WOS:000267509500006 ER PT J AU Bressler, J Fornage, M Hanis, CL Kao, WHL Lewis, CE McPherson, R Dent, R Mosley, TH Pennacchio, LA Boerwinkle, E AF Bressler, Jan Fornage, Myriam Hanis, Craig L. Kao, Wen Hong Linda Lewis, Cora E. McPherson, Ruth Dent, Robert Mosley, Thomas H. Pennacchio, Len A. Boerwinkle, Eric TI The INSIG2 rs7566605 genetic variant does not play a major role in obesity in a sample of 24,722 individuals from four cohorts SO BMC MEDICAL GENETICS LA English DT Article ID GENOME-WIDE ASSOCIATION; BODY-MASS INDEX; FATTY-ACID SYNTHESIS; ADULT OBESITY; CHILDHOOD OBESITY; COMMON VARIANTS; NO ASSOCIATION; FTO GENE; POLYMORPHISM; RISK AB Background: In a genome-wide association study performed in the Framingham Offspring Cohort, individuals homozygous for the rs7566605 C allele located upstream of insulin-induced gene 2 (INSIG2) were reported to incur an increased risk of obesity. This finding was later replicated in four out of five populations examined. The goal of the study reported here was to assess the role of the INSIG2 single nucleotide polymorphism (SNP) in susceptibility to obesity in the prospective longitudinal Atherosclerosis Risk in Communities (ARIC) study (n = 14,566) and in three other cohorts: the Coronary Artery Risk Development in Young Adults (CARDIA) study (n = 3,888), the Genetic Epidemiology Network of Arteriopathy (GENOA) study (n = 4,766), and extremely obese and lean individuals ascertained at the University of Ottawa (n = 1,502). The combined study sample is comprised of 24,722 white, African-American, and Mexican-American participants. Methods: Differences in mean body mass index (BMI) and other anthropometric measures including weight, waist circumference, and waist-to-hip ratio were assessed by a general linear model in individuals categorized by INSIG2 rs7566605 genotype. Multivariable logistic regression was used to predict the risk of obesity (BMI >= 30 kg/m2). Results: There was no discernable variation in the frequencies of the three INSIG2 SNP genotypes observed between white, Hispanic, and African-American obese individuals and non-obese study subjects. When the relationship between rs7566605 and BMI considered either as a categorical variable or a continuous variable was examined, no significant association with obesity was found for participants in any of the four study populations or in a combined analysis (p = 0.38) under a recessive genetic model. There was also no association between the INSIG2 polymorphism and the obesity-related quantitative traits except for a reduced waist-to-hip ratio in white ARIC study participants homozygous for the C allele, and an increased waist-to-hip ratio in African-Americans in the ARIC cohort with the same genotype (p = 0.04 and p = 0.01, respectively). An association with waist-to-hip ratio was not seen when the combined study sample was analyzed (p = 0.74). Conclusion: These results suggest that the INSIG2 rs7566605 variant does not play a major role in determining obesity risk in a racially and ethnically diverse sample of 24,722 individuals from four cohorts. C1 [Bressler, Jan; Hanis, Craig L.; Boerwinkle, Eric] Univ Texas Hlth Sci Ctr Houston, Ctr Human Genet, Houston, TX 77030 USA. [Fornage, Myriam; Boerwinkle, Eric] Univ Texas Hlth Sci Ctr Houston, Brown Fdn Inst Mol Med, Houston, TX 77030 USA. [Kao, Wen Hong Linda] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD 21205 USA. [Lewis, Cora E.] Univ Alabama Birmingham, Div Prevent Med, Birmingham, AL 35205 USA. [McPherson, Ruth; Dent, Robert] Univ Ottawa, Inst Heart, Div Cardiol, Ottawa, ON K1Y 4W7, Canada. [Mosley, Thomas H.] Univ Mississippi, Med Ctr, Dept Internal Med, Div Geriatr, Jackson, MS 39216 USA. [Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Pennacchio, Len A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Boerwinkle, E (reprint author), Univ Texas Hlth Sci Ctr Houston, Ctr Human Genet, 1200 Herman Pressler St, Houston, TX 77030 USA. EM Jan.Bressler@uth.tmc.edu; Myriam.Fornage@uth.tmc.edu; Craig.L.Hanis@uth.tmc.edu; wkao@jhsph.edu; clewis@dopm.uab.edu; rmcpherson@ottawaheart.ca; bdent@ottawahospital.on.ca; tmosley@medicine.umsmed.edu; LAPennacchio@lbl.gov; Eric.Boerwinkle@uth.tmc.edu FU NHLBI NIH HHS [HL039107, N01-HC-55015, N01-HC-55019, N01-HC-55020, N01-HC-55022, N01-HC-95095, N01HC48048, N01HC55015, N01HC55019, N01HC55020, N01HC55022, N01HC95095, N01-HC-48048, N01-HC-48049, N01-HC-48050, N01-HC-55016, N01-HC-55018, N01-HC-55021, N01HC48047, N01HC48049, N01HC48050, N01HC55016, N01HC55018, N01HC55021, R01 HL039107, R37 HL051021, U01 HL054457, U10 HL054457, N01-HC-48047, HL54505, HL054457, HL051021] NR 60 TC 13 Z9 14 U1 1 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2350 J9 BMC MED GENET JI BMC Med. Genet. PD JUN 12 PY 2009 VL 10 AR 56 DI 10.1186/1471-2350-10-56 PG 9 WC Genetics & Heredity SC Genetics & Heredity GA 468ZR UT WOS:000267864600001 PM 19523229 ER PT J AU Manor, R Hagberg, A Meron, E AF Manor, Rotem Hagberg, Aric Meron, Ehud TI Wavenumber locking and pattern formation in spatially forced systems SO NEW JOURNAL OF PHYSICS LA English DT Article ID OPTICAL PARAMETRIC OSCILLATORS; NONEQUILIBRIUM SYSTEMS; LOCALIZED STRUCTURES; THERMAL-CONVECTION; BANDED VEGETATION; FREQUENCY LOCKING; EXTENDED SYSTEMS; FORMING SYSTEMS; INSTABILITY; MODULATION AB We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that produce stationary or traveling stripe patterns when unforced and apply forcing aligned with the stripes. Forcing at close to twice the pattern wavenumber selects, stabilizes, or creates resonant stripes locked at half the forcing wavenumber. If the mismatch between the forcing and pattern wavenumber is high we find that the pattern still locks but develops a wave vector component perpendicular to the forcing direction and forms rectangular and oblique patterns. When the unforced system supports traveling waves, resonant rectangular patterns remain stationary but oblique patterns travel in a direction orthogonal to the traveling waves. C1 [Hagberg, Aric] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Manor, Rotem; Meron, Ehud] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. [Meron, Ehud] Ben Gurion Univ Negev, BIDR, Inst Dryland Environm Res, IL-84990 Sede Boqer, Israel. RP Hagberg, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM manorr@bgu.ac.il; hagberg@lanl.gov; ehud@bgu.ac.il RI MERON, EHUD/F-1810-2012 NR 58 TC 21 Z9 22 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUN 12 PY 2009 VL 11 AR 063016 DI 10.1088/1367-2630/11/6/063016 PG 19 WC Physics, Multidisciplinary SC Physics GA 459CB UT WOS:000267076400002 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the k(T) Distribution of Particles in Jets Produced in p(p)over-bar Collisions at root s = 1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRON SPECTRA; PARTON; RADIATION; MODEL; CDF AB We present a measurement of the transverse momentum with respect to the jet axis (k(t)) of particles in jets produced in p (p) over bar collisions at root s 1.96 TeV. Results are obtained for charged particles in a cone of 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV=c(2). The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.; Zhang, X.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.; Zhang, X.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Neu, C.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Derwent, P. F.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Maksimovic, P.; Miao, T.; Moore, R.; Mukherjee, A.; Mussini, M.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Russ, J.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, UMR7585,LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society; United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider- Ingenio 2010, Spain; Slovak R D Agency; Academy of Finland FX The authors are very grateful to R. Perez-Ramos, F. Arleo, and B. Machet for collaborative work and to Yu. Dokshitzer for a number of very fruitful discussions. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider- Ingenio 2010, Spain; the Slovak R& D Agency; and the Academy of Finland. NR 27 TC 8 Z9 8 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 232002 DI 10.1103/PhysRevLett.102.232002 PG 8 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500017 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CD DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for Resonant Diphoton Production with the D0 Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERSYMMETRY AB We present a search for a narrow resonance in the inclusive diphoton final state using similar to 2.7 fb(-1) of data collected with the D0 detector at the Fermilab Tevatron p (p) over bar Collider. We observe good agreement between the data and the background prediction, and set the first 95% C. L. upper limits on the production cross section times the branching ratio for decay into a pair of photons for resonance masses between 100 and 150 GeV. This search is also interpreted in the context of several models of electroweak symmetry breaking with a Higgs boson decaying into two photons. C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Begel, M.; Carvalho, W.; De Oliveira Martins, C.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Casey, B. C. K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Blaise Pascal, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Huske, N.; Jarvis, C.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Huske, N.; Jarvis, C.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Brown, D.; Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.; Naimuddin, M.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Melnitchouk, A.; Mendoza, L.; Svoisky, P.; Sznajder, A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.; Yamada, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.; Yang, W. -C.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Podstavkov, V. M.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bassler, U.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Vertogradov, L. S.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Fox, H.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Cuplov, V.; Kirby, M. H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Indiana, PA USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wayne, M.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Schellman, H.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Ferbel, T.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Tuts, P. M.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Rominsky, M.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Bose, T.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Bargassa, Pedrame/O-2417-2016; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; OI Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Blekman, Freya/0000-0002-7366-7098; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507; Landsberg, Greg/0000-0002-4184-9380; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617 FU DOE; NSF; CEA; CNRS/IN2P3; FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U. S.); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 25 TC 32 Z9 32 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 231801 DI 10.1103/PhysRevLett.102.231801 PG 7 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500015 ER PT J AU Bazin, D Charity, RJ Souza, RT Famiano, MA Gade, A Henzl, V Henzlova, D Hudan, S Lee, J Lukyanov, S Lynch, WG McDaniel, S Mocko, M Obertelli, A Rogers, AM Sobotka, LG Terry, JR Tostevin, JA Tsang, MB Wallace, MS AF Bazin, D. Charity, R. J. de Souza, R. T. Famiano, M. A. Gade, A. Henzl, V. Henzlova, D. Hudan, S. Lee, J. Lukyanov, S. Lynch, W. G. McDaniel, S. Mocko, M. Obertelli, A. Rogers, A. M. Sobotka, L. G. Terry, J. R. Tostevin, J. A. Tsang, M. B. Wallace, M. S. TI Mechanisms in Knockout Reactions SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEI; LI-10; HALO AB We report the first detailed study of the relative importance of the stripping and diffraction mechanisms involved in nucleon knockout reactions, by the use of a coincidence measurement of the residue and fast proton following one-proton knockout reactions. The measurements used the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results for the reactions (9)Be((9)C,(8)B+X)Y and (9)Be((8)B,(7)Be+X)Y are presented and compared with theoretical predictions for the two reaction mechanisms calculated using the eikonal model. The data show a clear distinction between the stripping and diffraction mechanisms and the measured relative proportions are very well reproduced by the reaction theory. This agreement adds support to the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes. C1 [Bazin, D.; Famiano, M. A.; Gade, A.; Henzl, V.; Henzlova, D.; Lee, J.; Lukyanov, S.; Lynch, W. G.; McDaniel, S.; Mocko, M.; Obertelli, A.; Rogers, A. M.; Terry, J. R.; Tostevin, J. A.; Tsang, M. B.; Wallace, M. S.] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. [Charity, R. J.; Sobotka, L. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [de Souza, R. T.; Hudan, S.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Famiano, M. A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Gade, A.; Lynch, W. G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lukyanov, S.] FLNR JINR, Dubna 141980, Moscow Region, Russia. [Mocko, M.; Wallace, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Obertelli, A.] CEA Saclay, DAPNIA SPhn, F-91191 Gif Sur Yvette, France. [Terry, J. R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Tostevin, J. A.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. RP Bazin, D (reprint author), Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA. EM bazin@nscl.msu.edu RI Gade, Alexandra/A-6850-2008; Mocko, Michal/B-1794-2010; Lujan Center, LANL/G-4896-2012; Lynch, William/I-1447-2013; deSouza, Romualdo/P-5862-2015; OI Gade, Alexandra/0000-0001-8825-0976; Lynch, William/0000-0003-4503-176X; deSouza, Romualdo/0000-0001-5835-677X; Mocko, Michael/0000-0003-0447-4687 FU National Science Foundation [PHY-0606007]; United Kingdom Science and Technology Facilities Council (STFC) [EP/D003628] FX This work was supported by the National Science Foundation under Grant No. PHY-0606007, and the United Kingdom Science and Technology Facilities Council (STFC) under Grant No. EP/D003628. NR 17 TC 26 Z9 27 U1 4 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 232501 DI 10.1103/PhysRevLett.102.232501 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500021 PM 19658928 ER PT J AU Crespo, V Rodrigo, JG Suderow, H Vieira, S Hinks, DG Schuller, IK AF Crespo, V. Rodrigo, J. G. Suderow, H. Vieira, S. Hinks, D. G. Schuller, I. K. TI Evolution of the Local Superconducting Density of States in ErRh4B4 Close to the Ferromagnetic Transition SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE-CRYSTAL; MAGNETISM; TIPS; COEXISTENCE; STM AB We present local tunneling spectroscopy experiments in the superconducting and ferromagnetic phases of the reentrant superconductor ErRh4B4. The tunneling conductance curves jump from showing normal to superconducting features within a few mK close to the ferromagnetic transition temperature, with a clear hysteretic behavior. Within the ferromagnetic phase, we do not detect any superconducting correlations. Within the superconducting phase we find a peculiar V-shaped density of states at low energies, which is produced by the magnetically modulated phase that coexists with superconductivity just before ferromagnetism sets in. C1 [Crespo, V.; Rodrigo, J. G.; Suderow, H.; Vieira, S.] Univ Autonoma Madrid, Dept Fis Mat Condensada, Fac Ciencias, Lab Bajas Temp,Inst Ciencia Mat Nicolas Cabrera, E-28049 Madrid, Spain. [Hinks, D. G.] Argonne Natl Labs, Div Mat Sci, Argonne, IL 60439 USA. [Schuller, I. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Crespo, V (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Fac Ciencias, Lab Bajas Temp,Inst Ciencia Mat Nicolas Cabrera, Cantoblanco, E-28049 Madrid, Spain. RI Rodrigo, Jose Gabriel/E-6700-2013; Suderow, Hermann/L-6612-2013; vieira, sebastian/L-5216-2014 OI Rodrigo, Jose Gabriel/0000-0002-8779-1698; Suderow, Hermann/0000-0002-5902-1880; vieira, sebastian/0000-0002-3854-1377 FU Spanish MICINN [CSD2007-00010, FIS2008-00454]; ESF; USDOE; BES [DE-AC02-06CH11357, DE-FG03-87ER-45332] FX We acknowledge conversations with A. I. Buzdin, F. Guinea, H. Suhl, and S. K. Sinha. The Laboratorio de Bajas Temperaturas is associated to the ICMM of the CSIC. This work was supported by the Spanish MICINN (Consolider Ingenio Molecular Nanoscience CSD2007-00010, and FIS2008-00454), by the Comunidad de Madrid through program "Science and Technology at Millikelvin'', by NES and ECOM programs of the ESF, and by USDOE, BES, under contracts DE-AC02-06CH11357 and DE-FG03-87ER-45332. NR 37 TC 9 Z9 9 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 237002 DI 10.1103/PhysRevLett.102.237002 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500055 PM 19658962 ER PT J AU Ding, Y Haskel, D Tseng, YC Kaneshita, E van Veenendaal, M Mitchell, JF Sinogeikin, SV Prakapenka, V Mao, HK AF Ding, Yang Haskel, Daniel Tseng, Yuan-Chieh Kaneshita, Eiji van Veenendaal, Michel Mitchell, J. F. Sinogeikin, Stanislav V. Prakapenka, Vitali Mao, Ho-kwang TI Pressure-Induced Magnetic Transition in Manganite (La0.75Ca0.25MnO3) SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY DICHROISM; K-EDGE; DOUBLE EXCHANGE; CIRCULAR-DICHROISM; PHASE-DIAGRAM; IRON; ABSORPTION; PR0.7CA0.3MNO3; RESISTIVITY AB Low temperature Mn K-edge x-ray magnetic circular dichroism and x-ray diffraction measurements were carried out to investigate the stability of the ferromagnetic ground state in manganite La0.75Ca0.25MnO3 under nearly uniform compression using diamond anvil cells. The magnetic dichroism signal gradually decreases with pressure and disappears at 23 GPa, and meanwhile a uniaxial compression of MnO6 octahedra along the b axis is observed to continuously increase with pressure and become anomalously large at 23.5 GPa. These changes are attributed to a ferromagnetic-antiferromagnetic transition that is associated with orbital ordering at high pressure. C1 [Ding, Yang; Mao, Ho-kwang] Carnegie Inst Sci, HPSynC, Argonne, IL 60439 USA. [Haskel, Daniel; Tseng, Yuan-Chieh; Kaneshita, Eiji; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Tseng, Yuan-Chieh] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60201 USA. [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Sinogeikin, Stanislav V.; Mao, Ho-kwang] Carnegie Inst Sci, HPCAT, Argonne, IL 60439 USA. [Prakapenka, Vitali] Univ Chicago, Adv Photon Source, GSECARS, Argonne, IL 60439 USA. [Mao, Ho-kwang] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. RP Ding, Y (reprint author), Carnegie Inst Sci, HPSynC, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yangding@aps.anl.gov RI Ding, Yang/K-1995-2014 OI Ding, Yang/0000-0002-8845-4618 FU U. S. DOE [DE-AC02-06CH11357, DE-FG02-03ER46097]; DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; NSF FX We are grateful to helpful comments from Dr. Jun Chang. Argonne is supported by the U. S. DOE Contract No. DE-AC02-06CH11357. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. M. v. V was supported by U. S. DOE DE-FG02-03ER46097. Helium gas loading was performed at GSEACARS. NR 40 TC 42 Z9 42 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 237201 DI 10.1103/PhysRevLett.102.237201 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500058 PM 19658965 ER PT J AU Dobrovitski, VV Feiguin, AE Hanson, R Awschalom, DD AF Dobrovitski, V. V. Feiguin, A. E. Hanson, R. Awschalom, D. D. TI Decay of Rabi Oscillations by Dipolar-Coupled Dynamical Spin Environments SO PHYSICAL REVIEW LETTERS LA English DT Article ID COHERENT DYNAMICS; QUANTUM DOTS; ELECTRON; RELAXATION; DIAMOND; QUBITS; BITS AB We study the Rabi oscillations decay of a spin decohered by a spin bath whose internal dynamics is caused by dipolar coupling between the bath spins. The form and rate of decay as a function of the intrabath coupling is obtained analytically, and confirmed numerically. The complex form of decay smoothly varies from power law to exponential, and the rate changes nonmonotonically with the intrabath coupling, decreasing for both slow and fast baths. The form and rate of Rabi oscillations decay can be used to experimentally determine the intrabath coupling strength for a broad class of solid-state systems. C1 [Dobrovitski, V. V.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Feiguin, A. E.] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Feiguin, A. E.] Univ Calif Santa Barbara, Microsoft Stn Q, Santa Barbara, CA 93106 USA. [Hanson, R.] Delft Univ Technol, Kavli Inst Nanosci Delft, NL-2600 GA Delft, Netherlands. [Awschalom, D. D.] Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA. RP Dobrovitski, VV (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI Hanson, Ronald/B-9555-2008 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; AFOSR; Microsoft Corporation FX Work at Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We acknowledge support from AFOSR (D. D. A.), FOM and NWO (R. H.). A. E. F. acknowledges support from the Microsoft Corporation. NR 33 TC 39 Z9 39 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 237601 DI 10.1103/PhysRevLett.102.237601 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500066 PM 19658973 ER PT J AU Groening, L Barth, W Bayer, W Clemente, G Dahl, L Forck, P Gerhard, P Hofmann, I Kaiser, MS Maier, M Mickat, S Milosic, T Jeon, D Uriot, D AF Groening, L. Barth, W. Bayer, W. Clemente, G. Dahl, L. Forck, P. Gerhard, P. Hofmann, I. Kaiser, M. S. Maier, M. Mickat, S. Milosic, T. Jeon, D. Uriot, D. TI Experimental Evidence of the 90 degrees Stop Band in the GSI UNILAC SO PHYSICAL REVIEW LETTERS LA English DT Article ID EMITTANCE GROWTH; RINGS AB In a particle accelerator with a periodic structure beam space charge force may excite resonant beam emittance growth if the particle's transverse phase advance approaches 90 degrees. A recent simulation study with the PARMILA code [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)] has shown the feasibility of measuring the stop band of this fourth order resonance in the GSI Universal Linear Accelerator UNILAC and proposed its experimental verification, which is reported here. Measurements of transverse phase space distributions behind a periodically focusing structure reveal a fourfold symmetry characteristic of fourth order resonances as well as a resonance stop band above sigma(0) = 90 degrees per focusing cell. These experimental findings agree with results from three different beam dynamics simulation codes, i.e., DYNAMION, PARMILA, and TRACEWIN. C1 [Groening, L.; Barth, W.; Bayer, W.; Clemente, G.; Dahl, L.; Forck, P.; Gerhard, P.; Hofmann, I.; Kaiser, M. S.; Maier, M.; Mickat, S.; Milosic, T.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Jeon, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Uriot, D.] CEA, IRFU, Serv Accelerateurs Cryogenie & Magnetisme, F-91191 Gif Sur Yvette, France. RP Groening, L (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany. RI Jeon, Dong-O/S-2137-2016 OI Jeon, Dong-O/0000-0001-6482-5878 FU European Community-Research Infrastructure Activity [RII3-CT-2003-506395]; ORNL/SNS; U.S. Department of Energy [DE-AC05-00OR22725] FX We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area'' programme (CARE, Contract No. RII3-CT-2003-506395). The participation of D. Jeon to this work was made possible partly by the support of ORNL/SNS (managed by UTBattelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725). NR 15 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 234801 DI 10.1103/PhysRevLett.102.234801 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500033 PM 19658940 ER PT J AU Haraldsen, JT Swanson, M Alvarez, G Fishman, RS AF Haraldsen, J. T. Swanson, M. Alvarez, G. Fishman, R. S. TI Spin-Wave Instabilities and Noncollinear Magnetic Phases of a Geometrically Frustrated Triangular-Lattice Antiferromagnet SO PHYSICAL REVIEW LETTERS LA English DT Article ID CUFEO2 AB This Letter examines the relation between the spin-wave instabilities of collinear magnetic phases and the resulting noncollinear phases for a geometrically frustrated triangular-lattice antiferromagnet in the high-spin limit. Using a combination of phenomenological and Monte Carlo techniques, we demonstrate that the instability wave vector with the strongest intensity in the collinear phase determines the wave vector of a cycloid or the dominant elastic peak of a more complex noncollinear phase. Our results are related to the observed multiferroic phase of Al-doped CuFeO(2). C1 [Haraldsen, J. T.; Swanson, M.; Fishman, R. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Swanson, M.] N Dakota State Univ, Dept Phys, Fargo, ND 58105 USA. [Alvarez, G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Alvarez, G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Haraldsen, JT (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Haraldsen, Jason/B-9809-2012; Fishman, Randy/C-8639-2013 OI Haraldsen, Jason/0000-0002-8641-5412; FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U. S. Department of Energy [DE-AC05-00OR22725]; Division of Materials Science and Engineering; Division of Scientific User Facilities FX This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 and by the Division of Materials Science and Engineering and the Division of Scientific User Facilities of the U. S. DOE. NR 20 TC 16 Z9 16 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 237204 DI 10.1103/PhysRevLett.102.237204 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500061 PM 19658968 ER PT J AU Krzakala, F Zdeborova, L AF Krzakala, Florent Zdeborova, Lenka TI Hiding Quiet Solutions in Random Constraint Satisfaction Problems SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLASS-TRANSITION AB We study constraint satisfaction problems on the so-called planted random ensemble. We show that for a certain class of problems, e.g., graph coloring, many of the properties of the usual random ensemble are quantitatively identical in the planted random ensemble. We study the structural phase transitions and the easy-hard-easy pattern in the average computational complexity. We also discuss the finite temperature phase diagram, finding a close connection with the liquid-glass-solid phenomenology. C1 [Krzakala, Florent] CNRS, UMR Gulliver 7083, F-75000 Paris, France. [Krzakala, Florent] ESPCI ParisTech, UMR Gulliver 7083, F-75000 Paris, France. [Krzakala, Florent; Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Krzakala, Florent; Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Krzakala, F (reprint author), CNRS, UMR Gulliver 7083, 10 Rue Vauquelin, F-75000 Paris, France. RI Krzakala, Florent/D-8846-2012; Zdeborova, Lenka/B-9999-2014 NR 26 TC 31 Z9 31 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 238701 DI 10.1103/PhysRevLett.102.238701 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500071 PM 19658978 ER PT J AU Libal, A Reichhardt, CJO Reichhardt, C AF Libal, A. Reichhardt, C. J. Olson Reichhardt, C. TI Creating Artificial Ice States Using Vortices in Nanostructured Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN ICE; GEOMETRICAL FRUSTRATION; PHASE-TRANSITIONS; LATTICE; ARRAYS; KAGOME; DEFECTS; ENTROPY; FILMS AB We demonstrate that it is possible to realize vortex ice states that are analogous to square and kagome ice. With numerical simulations, we show that the system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems. C1 [Libal, A.; Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Libal, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089; Libal, Andras/0000-0002-9850-9264 FU NNSA; U. S. DOE at LANL [DE-AC52-06NA25396] FX We thank C. Nisoli for a useful discussion. This work was carried out under the NNSA of the U. S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 32 TC 48 Z9 48 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 237004 DI 10.1103/PhysRevLett.102.237004 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500057 PM 19658964 ER PT J AU Lunardini, C AF Lunardini, Cecilia TI Diffuse Neutrino Flux from Failed Supernovae SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUATION-OF-STATE; MASSIVE STARS; EVOLUTION; EXPLOSION; MATTER AB I study the diffuse flux of electron antineutrinos from stellar collapses with direct black hole formation (failed supernovae). This flux is more energetic than that from successful supernovae, and therefore it might contribute substantially to the total diffuse flux above realistic detection thresholds. The total flux might be considerably higher than previously thought, and approach the sensitivity of Super-Kamiokande. For more conservative values of the parameters, the flux from failed supernovae dominates for antineutrino energies above 30-45 MeV, with potential to give an observable spectral distortion at megaton detectors. C1 [Lunardini, Cecilia] Arizona State Univ, Tempe, AZ 85287 USA. [Lunardini, Cecilia] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Lunardini, C (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. FU ASU; RBRC FX I thank H. T. Janka, A. Mezzacappa, and O. L. G. Peres for useful discussions, and ASU and RBRC for support. NR 29 TC 35 Z9 35 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 231101 DI 10.1103/PhysRevLett.102.231101 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500011 PM 19658918 ER PT J AU Nuhrenberg, C Boozer, AH Hudson, SR AF Nuehrenberg, Carolin Boozer, Allen H. Hudson, Stuart R. TI Magnetic-Surface Quality in Nonaxisymmetric Plasma Equilibria SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS; ISLANDS AB The confinement of plasmas by magnetic fields with nonaxisymmetric shaping can be degraded or destroyed by the breakup of the magnetic surfaces through effects that are intrinsic to the shaping. An efficient perturbation method of determining this drive for islands was developed and applied to stellarator equilibria. C1 [Nuehrenberg, Carolin] Teilinst Greifswald, Max Planck Inst Plamaphys, IPP Euratom Assoc, D-17491 Greifswald, Germany. [Boozer, Allen H.] Columbia Univ, New York, NY 10027 USA. [Hudson, Stuart R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Nuhrenberg, C (reprint author), Teilinst Greifswald, Max Planck Inst Plamaphys, IPP Euratom Assoc, D-17491 Greifswald, Germany. EM Carolin.Nuehrenberg@ipp.mpg.de RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 FU [DE-FG02-03ERS496] FX The continuous work of S. P. Hirshman on the VMEC code is thankfully acknowledged. We thank A. H. Reiman and D. A. Monticello for making the PIES code available to us. One author ( A. H. B.) acknowledges support from Grant No. DE-FG02-03ERS496. NR 22 TC 4 Z9 4 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 235001 DI 10.1103/PhysRevLett.102.235001 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500034 PM 19658941 ER PT J AU Rubenchik, AM Fedoruk, MP Turitsyn, SK AF Rubenchik, A. M. Fedoruk, M. P. Turitsyn, S. K. TI Laser Beam Self-Focusing in the Atmosphere SO PHYSICAL REVIEW LETTERS LA English DT Article ID POWER AB We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that when the self-focusing length is comparable with the atmosphere height the spot size on the ground can be reduced well below the diffraction limits without beam quality degradation. The density variation suppresses beam filamentation and provides the self-focusing of the beam as a whole. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers. C1 [Rubenchik, A. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fedoruk, M. P.] SB RAS, Inst Computat Technol, Novosibirsk 630090, Russia. [Turitsyn, S. K.] Aston Univ, Photon Res Grp, Birmingham B4 7ET, W Midlands, England. RP Rubenchik, AM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Turitsyn, Sergei/J-5562-2013 OI Turitsyn, Sergei/0000-0003-0101-3834 FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-o7NA26344]; Siberian Branch of the Russian Academy of Science; Royal Society FX This work was partially performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-o7NA26344 and interdisciplinary Grant No. 42 of the Siberian Branch of the Russian Academy of Science. The financial support of the Royal Society is acknowledged. NR 11 TC 19 Z9 20 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 233902 DI 10.1103/PhysRevLett.102.233902 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500028 PM 19658935 ER PT J AU Watkins, EB Miller, CE Mulder, DJ Kuhl, TL Majewski, J AF Watkins, E. B. Miller, C. E. Mulder, D. J. Kuhl, T. L. Majewski, J. TI Structure and Orientational Texture of Self-Organizing Lipid Bilayers SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY REFLECTIVITY; GRAZING-INCIDENCE DIFFRACTION; SUPPORTED MEMBRANES; MONOLAYERS; SCATTERING AB The structure of single supported dipalmitoyl-phosphatidylcholine bilayers prepared by vesicle fusion or Langmuir-Blodgett-Schaeffer (LBS) deposition techniques was characterized by x-ray reflectivity and grazing incidence diffraction in bulk water. LBS bilayers display symmetric leaflets similar to monolayer structures, while vesicle fusion yields more inhomogeneous bilayers. Diffraction establishes that lipids are always coupled across the bilayer even when leaflets are deposited independently and suggests the existence of orientational texture. C1 [Watkins, E. B.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Watkins, E. B.; Miller, C. E.; Majewski, J.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Mulder, D. J.; Kuhl, T. L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Kuhl, T. L.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. RP Watkins, EB (reprint author), Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. RI Lujan Center, LANL/G-4896-2012 FU U. S. DOE, Office of Basic Energy Science [46340]; Los Alamos National Laboratory [W7405-ENG-36]; Advanced Photon Source [W-31-109-Eng-38] FX This work was supported by the U. S. DOE, Office of Basic Energy Science through Grant No. 46340 and Los Alamos National Laboratory under DOE Contract No. W7405-ENG-36. Use of the Advanced Photon Source is supported under Contract No. W-31-109-Eng-38. NR 20 TC 26 Z9 27 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 12 PY 2009 VL 102 IS 23 AR 238101 DI 10.1103/PhysRevLett.102.238101 PG 4 WC Physics, Multidisciplinary SC Physics GA 457ZI UT WOS:000266977500067 PM 19658974 ER PT J AU Kovalenko, MV Scheele, M Talapin, DV AF Kovalenko, Maksym V. Scheele, Marcus Talapin, Dmitri V. TI Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands SO SCIENCE LA English DT Article ID FIELD-EFFECT TRANSISTORS; CHARGE-TRANSPORT; CLUSTERS; SOLIDS; ASSEMBLIES; FILMS AB Similar to the way that atoms bond to form molecules and crystalline structures, colloidal nanocrystals can be combined together to form larger assemblies. The properties of these structures are determined by the properties of individual nanocrystals and by their interactions. The insulating nature of organic ligands typically used in nanocrystal synthesis results in very poor interparticle coupling. We found that various molecular metal chalcogenide complexes can serve as convenient ligands for colloidal nanocrystals and nanowires. These ligands can be converted into semiconducting phases upon gentle heat treatment, generating inorganic nanocrystal solids. The utility of the inorganic ligands is demonstrated for model systems, including highly conductive arrays of gold nanocrystals capped with Sn(2)S(6)(4-) ions and field-effect transistors on cadmium selenide nanocrystals. C1 [Kovalenko, Maksym V.; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Scheele, Marcus] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Kovalenko, Maksym/B-6844-2008; Scheele, Marcus/F-8522-2010 OI Kovalenko, Maksym/0000-0002-6396-8938; FU Deutsche Studienstiftung; American Chemical Society Petroleum Research Fund [48636-G10]; Chicago Energy Initiative, and Evident Technologies Inc.; U.S. Department of Energy [DE-AC02-05CH11357] FX We thank D. B. Mitzi and P. Guyot-Sionnest for stimulating discussions, M. Bodnarchuk and J. Huang for synthesis of Au nanoparticles and CdSe/CdS tetrapods, E. Shevchenko and I. Steele for help with energy-dispersive x-ray and SEM measurements, J.-S. Lee and R. Divan for help with electrical measurements, the Analytical Chemistry Laboratory at Argonne National Laboratory for elemental analysis, and F. Stafford for reading the manuscript. Supported by Deutsche Studienstiftung (M.S.), American Chemical Society Petroleum Research Fund grant 48636-G10, the Chicago Energy Initiative, and Evident Technologies Inc. Work at the Center for Nanoscale Materials, Argonne National Laboratory, was supported by the U.S. Department of Energy under contract DE-AC02-05CH11357. NR 27 TC 490 Z9 492 U1 37 U2 334 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUN 12 PY 2009 VL 324 IS 5933 BP 1417 EP 1420 DI 10.1126/science.1170524 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 456VD UT WOS:000266878700038 PM 19520953 ER PT J AU Maksymovych, P Jesse, S Yu, P Ramesh, R Baddorf, AP Kalinin, SV AF Maksymovych, Peter Jesse, Stephen Yu, Pu Ramesh, Ramamoorthy Baddorf, Arthur P. Kalinin, Sergei V. TI Polarization Control of Electron Tunneling into Ferroelectric Surfaces SO SCIENCE LA English DT Article ID PIEZORESPONSE FORCE MICROSCOPY; LOCAL POLARIZATION; RESISTANCE; FILMS; CONDUCTION; NANOSCALE; JUNCTIONS; EMISSION; BARRIERS AB We demonstrate a highly reproducible control of local electron transport through a ferroelectric oxide via its spontaneous polarization. Electrons are injected from the tip of an atomic force microscope into a thin film of lead-zirconate titanate, Pb(Zr0.2Ti0.8)O-3, in the regime of electron tunneling assisted by a high electric field (Fowler-Nordheim tunneling). The tunneling current exhibits a pronounced hysteresis with abrupt switching events that coincide, within experimental resolution, with the local switching of ferroelectric polarization. The large spontaneous polarization of the PZT film results in up to 500-fold amplification of the tunneling current upon ferroelectric switching. The magnitude of the effect is subject to electrostatic control via ferroelectric switching, suggesting possible applications in ultrahigh-density data storage and spintronics. C1 [Maksymovych, Peter; Jesse, Stephen; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM maksymovychp@ornl.gov RI Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Yu, Pu/F-1594-2014; Maksymovych, Petro/C-3922-2016; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Maksymovych, Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU Semiconductor Research Corporation Nanoelectronics Research Initiative Western Institute of Nanoelectrics program; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy [DE-AC02-05CH1123] FX Experiments were done at the Center for Nanophase Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. P.M.s research performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory. The work at Berkeley is partially supported by the Semiconductor Research Corporation Nanoelectronics Research Initiative Western Institute of Nanoelectrics program as well as by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract no. DE-AC02-05CH1123. NR 35 TC 256 Z9 260 U1 12 U2 204 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JUN 12 PY 2009 VL 324 IS 5933 BP 1421 EP 1425 DI 10.1126/science.1171200 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 456VD UT WOS:000266878700039 PM 19520954 ER PT J AU Kirkil, G Constantinescu, G AF Kirkil, Gokhan Constantinescu, George TI Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion SO WATER RESOURCES RESEARCH LA English DT Article ID LARGE-EDDY SIMULATION; HORSESHOE VORTEX; SCOUR HOLE; CIRCULAR-CYLINDER; SQUARE CYLINDER; TRANSPORT; SPHERE; OBSTACLE; JUNCTURE; RIPPLES AB Detailed knowledge of the dynamics of large-scale turbulence structures is needed to understand the geomorphodynamic processes around in-stream obstacles present in rivers. Detached Eddy Simulation is used to study the flow past a high-aspect-ratio rectangular cylinder (plate) mounted on a flat-bed relatively shallow channel at a channel Reynolds number of 2.4 x 10(5). Similar to other flows past surface-mounted bluff bodies, the large amplification of the turbulence inside the horseshoe vortex system is because the core of the main necklace vortex is subject to large-scale bimodal oscillations. The presence of a sharp edge at the flanks of the obstruction fixes the position of the flow separation at all depths and induces the formation and shedding of very strong wake rollers over the whole channel depth. Compared with the case of a circular cylinder where the intensity of the rollers decays significantly in the near-bed region because the incoming flow velocity is not sufficient to force the wake to transition from subcritical to supercritical regime, in the case of a high-aspect-ratio rectangular cylinder the passage of the rollers was found to induce high bed-shear stresses at large distances (6-8 D) behind the obstruction. Also, the nondimensional values of the pressure root-mean-square fluctuations at the bed were found to be about 1 order of magnitude higher than the ones predicted for circular cylinders. Overall, this shows that the shape of the in-stream obstruction can greatly modify the dynamics of the large-scale coherent structures, the nature of their interactions, and ultimately, their capability to entrain and transport sediment particles and the speed at which the scour process evolves during its initial stages. C1 [Kirkil, Gokhan; Constantinescu, George] Univ Iowa, C Maxwell Stanley Hydraul Lab, Dept Civil & Environm Engn, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA. RP Kirkil, G (reprint author), Lawrence Livermore Natl Lab, Earth & Energy Div, POB 808,L-103, Livermore, CA 94551 USA. EM sconstan@engineering.uiowa.edu RI constantinescu, george/A-8896-2008; Kirkil, Gokhan/D-8481-2014 OI constantinescu, george/0000-0001-7060-8378; NR 51 TC 26 Z9 26 U1 0 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 12 PY 2009 VL 45 AR W06412 DI 10.1029/2008WR007363 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 458HC UT WOS:000267005400002 ER PT J AU Tokunaga, TK AF Tokunaga, Tetsu K. TI Hydraulic properties of adsorbed water films in unsaturated porous media SO WATER RESOURCES RESEARCH LA English DT Article ID PHYSICAL-PROPERTIES; FRACTURE SURFACES; CONCEPTUAL-MODEL; FLOW; CAPILLARY; CONDUCTIVITY; FORCES; HYSTERESIS; SILICA; PORE AB Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double-layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential (psi) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z(-1), z(-2), and z(-3), respectively. In monodisperse granular media, the characteristic grain size (lambda) controls film hydraulics through lambda(-1) scaling of (1) the perimeter length per unit cross-sectional area over which films occur, (2) the critical matric potential (psi(c)) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when psi < psi(c). While it is recognized that finer-textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate psi, the lambda(-1) scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm a(-1)). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to psi). C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Tokunaga, TK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tktokunaga@lbl.gov RI Tokunaga, Tetsu/H-2790-2014 OI Tokunaga, Tetsu/0000-0003-0861-6128 FU U.S. Department of Energy [DE-AC02-05CH11231] FX I thank the anonymous reviewers and Associate Editor John Selker for their careful review and helpful comments. This work was carried out under U.S. Department of Energy (DOE) contract DE-AC02-05CH11231. Funding provided by the DOE, Basic Energy Sciences, Geosciences Research Program is gratefully acknowledged. NR 54 TC 24 Z9 25 U1 3 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD JUN 12 PY 2009 VL 45 AR W06415 DI 10.1029/2009WR007734 PG 9 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 458HC UT WOS:000267005400005 ER PT J AU Frantti, J Fujioka, Y Zhang, J Vogel, SC Wang, Y Zhao, Y Nieminen, RM AF Frantti, J. Fujioka, Y. Zhang, J. Vogel, S. C. Wang, Y. Zhao, Y. Nieminen, R. M. TI The Factors Behind the Morphotropic Phase Boundary in Piezoelectric Perovskites SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NEUTRON-DIFFRACTION; PRESSURE; PBTIO3; DIFFRACTOMETER; HIPPO AB The best piezoelectric materials are solid solutions in the vicinity of the steep morphotropic phase boundary (MPB) separating rhombohedral and tetragonal phases in the composition-temperature plane. A classical example is the lead zirconate titanate [Pb(Z(x)Ti(1-x))O(3), PZT] system, with x approximate to 0.52, where the two phases are separated by a boundary extending from the lowest temperatures up to several hundred degrees. The origin of the boundary has been under keen studies for 40 years. Recent interest is largely due to the need to develop new, lead-free piezoelectrics, for which a natural starting point is to understand the properties of the present systems. Here, we demonstrate, through high-pressure (up to 8 GPa) neutron powder diffraction experiments and density functional theory computations on lead titanate (PbTiO(3), PT), that it is the competition between two factors which determines the MPB. The first is the oxygen octahedral tilting, giving advantage for the rhombohedral R3c phase, and the second is the entropy, which in the vicinity of the MPB favors the tetragonal phase above 130 K. If the two factors are in balance over a large temperature range, a steep phase boundary results in the pressure-temperature plane. C1 [Frantti, J.; Fujioka, Y.; Nieminen, R. M.] Helsinki Univ Technol, Dept Appl Phys, FI-02015 Espoo, Finland. [Zhang, J.; Vogel, S. C.; Wang, Y.; Zhao, Y.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Frantti, J (reprint author), Helsinki Univ Technol, Dept Appl Phys, FI-02015 Espoo, Finland. EM johannes.frantti@hut.fi RI Lujan Center, LANL/G-4896-2012; Nieminen, Risto/I-5573-2012; OI Nieminen, Risto/0000-0002-1032-2711; Zhang, Jianzhong/0000-0001-5508-1782; Vogel, Sven C./0000-0003-2049-0361 FU Academy of Finland [207071, 207501, 214131]; Finnish Foundation for Technology Promotion FX This project was supported by the Academy of Finland (Projects 207071, 207501, 214131, and the Center of Excellence Program 2006-2011). The Finnish IT Center for Science (CSC) is acknowledged for providing computing resources. Y. F. is grateful to the Finnish Foundation for Technology Promotion for financial support. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the U.S. Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. NR 29 TC 17 Z9 17 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 11 PY 2009 VL 113 IS 23 BP 7967 EP 7972 DI 10.1021/jp9024987 PG 6 WC Chemistry, Physical SC Chemistry GA 454JW UT WOS:000266679200001 PM 19441804 ER PT J AU Parkinson, GS Dohnalek, Z Smith, RS Kay, BD AF Parkinson, Gareth S. Dohnalek, Zdenek Smith, R. Scott Kay, Bruce D. TI Reactivity of C2Cl6 and C2Cl4 Multilayers with Fe-0 Atoms over FeO(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZERO-ORDER DESORPTION; CARBON-TETRACHLORIDE; NANOSTRUCTURE GROWTH; TERMINATED FEO(111); CCL4; IRON; ADSORPTION; FE(110); AGGREGATION; PARTICLES AB The interaction of Fe-0 atoms with C2Cl6 and C2Cl4 multilayers over FeO(111) has been investigated using the "atom dropping" preparation technique and a combination of temperature-programmed desorption and X-ray photoelectron spectroscopy. The reactivity and reaction products are strongly dependent on the Fe-0 coverage. On C2Cl6 multilayers, submonolayer Fe-0 doses lead to high reactivity and primarily FeCl3 and C4Cl6, whereas multilayer Fe-0 doses lead to the production of FeCl2 and C2Cl4 with much lower Fe-0 reactivity. The data are consistent with a model where Fe atoms form intermediate species at low coverage, which consist of an Fe atom inserted into a C-Cl bond. When two Fe atoms react with C2Cl6, a different intermediate species is formed that produces the alternative reaction pathway and the formation of C2Cl4. Similar atom dropping experiments demonstrate that C2Cl4 is also reactive toward Fe-0 atoms at low Fe' dose, leading to the production of one FeCl2 molecule per C2Cl4 molecule reacted. At higher coverages. Fe atoms form clusters that are much less reactive toward C2Cl4. C1 [Parkinson, Gareth S.; Dohnalek, Zdenek; Smith, R. Scott; Kay, Bruce D.] Pacific NW Natl Lab, Div Chem & Mat Sci, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Dohnalek, Z (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM Zdenek.Dohnalek@pnl.gov; Bruce.Kay@pnl.gov RI Parkinson, Gareth/F-4361-2012; Smith, Scott/G-2310-2015; OI Smith, Scott/0000-0002-7145-1963; Parkinson, Gareth/0000-0003-2457-8977 FU the U.S. Department of Energy [DE-AC06-76RLO 1830]; Offices of Basic Energy Sciences and Biological and Environmental Research of the U.S. DOE FX We thank D. Baer, D. M. Camaioni, M. Dupuis, and B. Ginovska for helpful discussion. The work was supported by the Offices of Basic Energy Sciences and Biological and Environmental Research of the U.S. DOE. This work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract No. DE-AC06-76RLO 1830. NR 36 TC 4 Z9 4 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 11 PY 2009 VL 113 IS 23 BP 10233 EP 10241 DI 10.1021/jp901040f PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 454JZ UT WOS:000266679500038 ER PT J AU Desjacques, V Seljak, U Iliev, IT AF Desjacques, Vincent Seljak, Uros Iliev, Ilian T. TI Scale-dependent bias induced by local non-Gaussianity: a comparison to N-body simulations SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; galaxies: haloes; cosmology: theory; dark matter ID PRIMORDIAL NON-GAUSSIANITY; 3-POINT CORRELATION-FUNCTION; HIGH-REDSHIFT; DARK-MATTER; COSMOLOGICAL DENSITY; NONLINEAR EVOLUTION; INFLATIONARY MODELS; POWER SPECTRUM; MASS FUNCTION; HALO BIAS AB We investigate the effect of primordial non-Gaussianity of the local f(NL) type on the auto- and cross-power spectra of dark matter haloes using simulations of the Lambda cold dark matter cosmology. We perform a series of large N-body simulations of both positive and negative f(NL), spanning the range between 10 and 100. Theoretical models predict a scale-dependent bias correction Delta b(k, f(NL)) that depends on the linear halo bias b(M). We measure the power spectra for a range of halo mass and redshifts covering the relevant range of existing galaxy and quasar populations. We show that auto- and cross-correlation analyses of bias are consistent with each other. We find that for low wavenumbers with k < 0.03 h Mpc(-1) the theory and the simulations agree well with each other for biased haloes with b(M) > 1.5. We show that a scale-independent bias correction improves the comparison between theory and simulations on smaller scales, where the scale-dependent effect rapidly becomes negligible. The current limits on f(NL) from Slosar et al. come mostly from very large scales k < 0.01 h Mpc(-1) and, therefore, remain valid. For the halo samples with b(M) < 1.5 - 2, we find that the scale-dependent bias from non-Gaussianity actually exceeds the theoretical predictions. Our results are consistent with the bias correction scaling linearly with fNL. C1 [Desjacques, Vincent; Seljak, Uros; Iliev, Ilian T.] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, Uros] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Desjacques, V (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM dvince@physik.uzh.ch RI Desjacques, Vincent/A-1892-2014; OI Iliev, Ilian/0000-0002-5174-1365 FU Swiss National Foundation [200021-116696/1] FX We are indebted to Volker Springel and Alexander Knebe for making their codes, respectively, GADGET2 and AMIGA available. We thank Pat McDonald and Robert Smith for useful discussions and Chris Hirata for pointing out to us the importance of scale-independent bias. The simulations used in this paper were run on the ZBOX3 supercomputer at the University of Zurich. We acknowledge support from the Swiss National Foundation (contract no. 200021-116696/1). NR 70 TC 103 Z9 103 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUN 11 PY 2009 VL 396 IS 1 BP 85 EP 96 DI 10.1111/j.1365-2966.2009.14721.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 453KT UT WOS:000266610000029 ER PT J AU Tubbs, JL Latypov, V Kanugula, S Butt, A Melikishvili, M Kraehenbuehl, R Fleck, O Marriott, A Watson, AJ Verbeek, B McGown, G Thorncroft, M Santibanez-Koref, MF Millington, C Arvai, AS Kroeger, MD Peterson, LA Williams, DM Fried, MG Margison, GP Pegg, AE Tainer, JA AF Tubbs, Julie L. Latypov, Vitaly Kanugula, Sreenivas Butt, Amna Melikishvili, Manana Kraehenbuehl, Rolf Fleck, Oliver Marriott, Andrew Watson, Amanda J. Verbeek, Barbara McGown, Gail Thorncroft, Mary Santibanez-Koref, Mauro F. Millington, Christopher Arvai, Andrew S. Kroeger, Matthew D. Peterson, Lisa A. Williams, David M. Fried, Michael G. Margison, Geoffrey P. Pegg, Anthony E. Tainer, John A. TI Flipping of alkylated DNA damage bridges base and nucleotide excision repair SO NATURE LA English DT Article ID HUMAN O(6)-ALKYLGUANINE-DNA ALKYLTRANSFERASE; O-6-ALKYLGUANINE-DNA ALKYLTRANSFERASE; ESCHERICHIA-COLI; O-6-METHYLGUANINE-DNA METHYLTRANSFERASE; SCHIZOSACCHAROMYCES-POMBE; STRUCTURAL BASIS; ENDONUCLEASE-V; PROTEIN; BINDING; RECOGNITION AB Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair. C1 [Tubbs, Julie L.; Arvai, Andrew S.; Kroeger, Matthew D.; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Tubbs, Julie L.; Arvai, Andrew S.; Kroeger, Matthew D.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Latypov, Vitaly; Butt, Amna; Marriott, Andrew; Watson, Amanda J.; Verbeek, Barbara; McGown, Gail; Thorncroft, Mary; Margison, Geoffrey P.] Univ Manchester, Paterson Inst Canc Res, Canc Res UK Carcinogenesis Grp, Manchester M20 4BX, Lancs, England. [Kanugula, Sreenivas; Pegg, Anthony E.] Penn State Univ, Coll Med, Milton S Hershey Med Ctr, Dept Cellular & Mol Physiol, Hershey, PA 17033 USA. [Melikishvili, Manana; Fried, Michael G.] Univ Kentucky, Dept Mol & Cellular Biochem, Struct Biol Ctr, Lexington, KY 40536 USA. [Kraehenbuehl, Rolf; Fleck, Oliver] Bangor Univ, NWCRF Inst, Bangor LL57 2UW, Gwynedd, Wales. [Santibanez-Koref, Mauro F.] Univ Newcastle, Inst Human Genet, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, England. [Millington, Christopher; Williams, David M.] Univ Sheffield, Dept Chem, Ctr Chem Biol, Sheffield S3 7HF, S Yorkshire, England. [Peterson, Lisa A.] Univ Minnesota, Masonic Canc Ctr, Minneapolis, MN 55455 USA. [Peterson, Lisa A.] Univ Minnesota, Div Environm Hlth Sci, Minneapolis, MN 55455 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. EM aep1@psu.edu; jat@scripps.edu RI Williams, David/J-9627-2013; OI Peterson, Lisa/0000-0001-8715-4480 FU US Department of Energy; NIH [CA097209, CA018137, GM070662, CA59887]; Skaggs Institute for Chemical Biology; North West Cancer Research Fund [CR675]; Cancer Research-UK; CHEMORES FX We thank C. C. Vu and J. Gong for aiding in the synthesis of O6-pobG oligomers, M. N. Boddy, J. Prudden and A. Sarker for performing genetics and biochemical experiments, G. Guenther, S. Pebernard, R. S. Williams, J. J. Perry, B. R. Chapados, M. Bjora s, D. S. Shin, K. Hitomi, C. Hitomi, E. D. Getzoff, G. Williams, S. Tsutakawa and P. K. Cooper for suggestions, and the staff at the Advanced Light Source (ALS) SIBYLS beamline and the Stanford Synchrotron Radiation Laboratory (SSRL). Operations at SSRL and ALS are supported by the US Department of Energy and NIH. This work was supported by National Institutes of Health grants CA097209 (J. A. T., A. E. P.), CA018137 (A. E. P.), GM070662 (M. G. F.), and CA59887 (L. A. P.), The Skaggs Institute for Chemical Biology (J. L. T.), North West Cancer Research Fund grant CR675 (O. F.), Cancer Research-UK (G. P. M.) and CHEMORES (G. P. M.). NR 50 TC 64 Z9 66 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 11 PY 2009 VL 459 IS 7248 BP 808 EP 813 DI 10.1038/nature08076 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 459EV UT WOS:000267084500031 PM 19516334 ER PT J AU Zhang, YB Tang, TT Girit, C Hao, Z Martin, MC Zettl, A Crommie, MF Shen, YR Wang, F AF Zhang, Yuanbo Tang, Tsung-Ta Girit, Caglar Hao, Zhao Martin, Michael C. Zettl, Alex Crommie, Michael F. Shen, Y. Ron Wang, Feng TI Direct observation of a widely tunable bandgap in bilayer graphene SO NATURE LA English DT Article ID BERRYS PHASE AB The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p-n junctions, transistors, photodiodes and lasers(1). A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET)(2) and infrared microspectroscopy(3-5), we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping(6-8) and provides direct evidence of a widely tunable bandgap-spanning a spectral range from zero to mid-infrared-that has eluded previous attempts(2,9). Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene. C1 [Zhang, Yuanbo; Tang, Tsung-Ta; Girit, Caglar; Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hao, Zhao; Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hao, Zhao] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI Girit, Caglar/D-4845-2014; Hao, Zhao/G-2391-2015; Zettl, Alex/O-4925-2016; wang, Feng/I-5727-2015 OI Girit, Caglar/0000-0001-8953-9261; Hao, Zhao/0000-0003-0677-8529; Zettl, Alex/0000-0001-6330-136X; FU Office of Basic Energy Sciences, US Department of Energy [DE-AC03-76SF0098, DE-AC02-05CH11231]; Sloan fellowship; Miller fellowship; National Science Council of Taiwan FX This work was supported by the Office of Basic Energy Sciences, US Department of Energy under contract DE-AC03-76SF0098 (Materials Science Division) and contract DE-AC02-05CH11231 (Advanced Light Source). F. W., Y. Z. and T.-T. T. acknowledge support from a Sloan fellowship, a Miller fellowship and a fellowship from the National Science Council of Taiwan, respectively. NR 26 TC 1613 Z9 1644 U1 119 U2 935 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUN 11 PY 2009 VL 459 IS 7248 BP 820 EP 823 DI 10.1038/nature08105 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 459EV UT WOS:000267084500034 PM 19516337 ER PT J AU Craievich, P Di Mitri, S Zholents, AA AF Craievich, P. Di Mitri, S. Zholents, A. A. TI Single-bunch emittance preservation in the presence of trajectory jitter for FERMI@elettra-seeded FEL SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Electron beam; Wake field; Trajectory jitter; Emittance; Free electron laser ID GENERATION AB The electron beam dynamics in the presence of the linac structural wake field is studied. Trajectory manipulation is used to gain control of the transverse wake field-induced instability and this technique is also validated in the presence of shot-to-shot trajectory jitter. A specific script working with Courant-Snyder variables has been written to evaluate the residual banana shape after instability suppression in the presence of shot-to-shot trajectory jitter. (C) 2009 Elsevier B.V. All rights reserved. C1 [Craievich, P.; Di Mitri, S.] Sincrotrone Trieste, I-34012 Trieste, Italy. [Zholents, A. A.] LBNL, Berkeley, CA 94720 USA. RP Di Mitri, S (reprint author), Sincrotrone Trieste, Padriciano 99, I-34012 Trieste, Italy. EM simone.dimitri@elettra.trieste.it FU Italian Ministry of University [FIRB-RBAP045JF2, FIRB-RBA-P06AWK] FX The authors thank M. Cornacchia and S. Tazzari for very useful discussions and suggestions during the drafting of this work. This work was supported in part by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBA-P06AWK. NR 40 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 457 EP 465 DI 10.1016/j.nima.2009.03.106 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700004 ER PT J AU Da Via, C Bolle, E Einsweiler, K Garcia-Sciveres, M Hasi, J Kenney, C Linhart, V Parker, S Pospisil, S Rohne, O Slavicek, T Watts, S Wermes, N AF Da Via, C. Bolle, E. Einsweiler, K. Garcia-Sciveres, M. Hasi, J. Kenney, C. Linhart, V. Parker, Sherwood Pospisil, S. Rohne, O. Slavicek, T. Watts, S. Wermes, N. TI 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE 3D silicon detectors; Active edges; Radiation hardness; Large Hadron Collider, SLHC; Forward proton tagging ID ATLAS PIXEL DETECTOR; ARCHITECTURE; READOUT; CHIP AB 3D detectors, with electrodes penetrating the entire silicon wafer and active edges, were fabricated at the Stanford Nano Fabrication Facility (SNF), California, USA, with different electrode configurations. After irradiation with neutrons up to a fluence of 8.8 x 10(15) n(eq)cm(-2), they were characterised using an infrared laser tuned to inject similar to 2 minimum ionising particles showing signal efficiencies as high as 66% for the configuration with the shortest (56 mu m) inter-electrode spacing. Sensors from the same wafer were also bump-bonded to the ATLAS FE-13 pixel readout chip and their noise characterised. Most probable signal-to-noise ratios were calculated before and after irradiation to be as good as 38:1 after the highest irradiation level with a substrate thickness of 210 mu m. These devices are promising candidates for application at the LHC such as the very forward detectors at ATLAS and CMS, the ATLAS B-Layer replacement and the general pixel upgrade. Moreover, 3D sensors could play a role ill applications where high speed, high-resolution detectors are required, such as the vertex locators at the proposed Compact Linear Collider (CLIC) at CERN. (C) 2009 Elsevier B.V. All rights reserved. C1 [Da Via, C.; Hasi, J.; Watts, S.] Univ Manchester, Particle Phys Grp, Manchester M13 9PL, Lancs, England. [Bolle, E.; Rohne, O.] Univ Oslo, Oslo, Norway. [Einsweiler, K.; Garcia-Sciveres, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kenney, C.] Mol Biol Consortium, Chicago, IL USA. [Linhart, V.; Pospisil, S.; Slavicek, T.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Parker, Sherwood] Univ Hawaii, Honolulu, HI 96822 USA. [Wermes, N.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. RP Da Via, C (reprint author), Univ Manchester, Particle Phys Grp, Oxford Rd, Manchester M13 9PL, Lancs, England. EM cinzia.da.via@cern.ch FU UK-STFC; US Department of Energy [DE-FG02-05ER4387]; ATLAS Upgrade projec [98773]; University of Hawaii [DE-FG02-04ER41291] FX We would like to thank Dr. Pavel Bern for performing the irradiation and for useful discussions. This research was supported by the UK-STFC, the US Department of Energy through grants to the Advanced Detector Research project (Grant no. DE-FG02-05ER4387), the ATLAS Upgrade project (Contract no. 98773), and the University of Hawaii (Grant no. DE-FG02-04ER41291), we would also like to thank Prof Hartmut Sadrozinski, SCIPP UCSC, Santa Cruz, USA, for useful discussions. NR 22 TC 30 Z9 30 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 505 EP 511 DI 10.1016/j.nima.2009.03.049 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700011 ER PT J AU Aharmim, B Cleveland, BT Dai, X Doucas, G Farine, J Fergani, H Ford, R Hahn, RL Hallman, ED Jelley, NA Lange, R Majerus, S Mifflin, C Noble, AJ O'Keeffe, HM Rodriguez-Jimenez, R Sinclair, D Yeh, M AF Aharmim, B. Cleveland, B. T. Dai, X. Doucas, G. Farine, J. Fergani, H. Ford, R. Hahn, R. L. Hallman, E. D. Jelley, N. A. Lange, R. Majerus, S. Mifflin, C. Noble, A. J. O'Keeffe, H. M. Rodriguez-Jimenez, R. Sinclair, D. Yeh, M. TI High sensitivity measurement of Ra-224 and Ra-226 in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Radium; Thorium; Sudbury Neutrino Observatory; Hydrous titanium oxide; Ion exchange; Liquid scintillation ID RADIUM; MODELS; TIME AB The existing hydrous titanium oxide (HTiO) technique for the measurement of Ra-224 and Ra-226 in the water at the Sudbury Neutrino Observatory (SNO) has been changed to make it faster and less sensitive to trace impurities in the HTiO eluate. Using HTiO-loaded filters followed by cation exchange adsorption and HTiO co-precipitation, Ra isotopes from 200 to 450 tonnes of heavy water can be extracted and concentrated into a single sample of a few millilitres with a total chemical efficiency of 50%. Combined with beta-alpha coincidence counting, this method is capable of measuring 1.5 x 10(-3) mu Bq/kg of Ra-224 and 3.3 x 10(-3) mu Bq/kg of Ra-226 from the Th-232 and U-238 decay chains, respectively, for a 275 tonne D2O assay, which are equivalent to 4 x 10(-16) gTh/g and 3 x 10(-16) gU/g in heavy water. (C) 2009 Elsevier B.V. All rights reserved. C1 [Dai, X.; Mifflin, C.; Sinclair, D.] Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. [Hahn, R. L.; Lange, R.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Aharmim, B.; Farine, J.; Hallman, E. D.; Rodriguez-Jimenez, R.] Laurentian Univ, Dept Phys, Sudbury, ON P3E 2C6, Canada. [Cleveland, B. T.; Dai, X.; Doucas, G.; Fergani, H.; Jelley, N. A.; Majerus, S.; O'Keeffe, H. M.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Cleveland, B. T.; Dai, X.; Noble, A. J.] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada. [Cleveland, B. T.; Ford, R.] SNOLAB, Sudbury, ON P3Y 1M3, Canada. RP Dai, X (reprint author), Carleton Univ, Dept Phys, Ottawa Carleton Inst Phys, Ottawa, ON K1S 5B6, Canada. EM xdai@owl.phy.queensu.ca RI Dai, Xiongxin/I-3819-2013 FU United Kingdom by the Science and Technology Facilities Council; National Research Council, Industry Canada; Northern Ontario Heritage Fund Corporation FX The authors would like to thank Carol Woodliffe for making the HTiO, Mike Tacon and the Oxford mechanical workshop, Wing Lau and the Oxford design office and the SNO site UIG operations crew for all their contributions. We would also like to thank Vale Inco Ltd. and their staff at the Creighton mine for their cooperation and Atomic Energy of Canada Ltd. (AECL) for the generous loan of the heavy water in cooperation with Ontario Power Generation.; This work was supported in the United Kingdom by the Science and Technology Facilities Council (formerly the Particle Physics and Astronomy Research Council): in Canada by the Natural Sciences and Engineering Research Council, the National Research Council, Industry Canada, the Northern Ontario Heritage Fund Corporation, and the Province of Ontario; in the USA by the Department of Energy. Further support was provided by Vale Inco Ltd., AECL, Agra-Monenco, Canatorn, the Canadian Microelectronics Corporation, AT&T Microelectronics, Northern Telecom and British Nuclear Fuels Ltd. NR 26 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 531 EP 535 DI 10.1016/j.nima.2009.01.227 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700014 ER PT J AU Ringle, R Bollen, G Prinke, A Savory, J Schury, P Schwarz, S Sun, T AF Ringle, R. Bollen, G. Prinke, A. Savory, J. Schury, P. Schwarz, S. Sun, T. TI The LEBIT 9.4T Penning trap mass spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Penning trap; Mass spectrometers ID TRUE CYCLOTRON FREQUENCY; SHORT-LIVED ISOTOPES; ION-BEAM BUNCHER; OCTUPOLAR EXCITATION; FIELD STABILIZATION; HIGH-PRECISION; ACCURACY; ISOLTRAP; SPECTROSCOPY; RESONANCE AB Presented is a detailed description of the LEBIT 9.4T Penning trap mass spectrometer installed at the NSCL, located at Michigan State University. LEBIT is the first facility designed to perform mass measurements of rare isotopes produced via projectile fragmentation of stable, relativistic primary beams. Due to the short half-lives and low production rates of rare isotopes far from the valley of stability the LEBIT Penning trap mass spectrometer has been optimized for high precision in short measurement times. The employment of a 9.4T magnetic field, a high-precision electrode system, fast magnetron orbit preparation, stabilization of the magnetic field, and in-flight beam purification of non-isobaric contaminants all contribute to this end. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ringle, R.; Bollen, G.; Prinke, A.; Savory, J.; Schwarz, S.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Bollen, G.; Prinke, A.; Savory, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Sun, T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Schury, P.] RIKEN, Wako, Saitama 3510198, Japan. RP Ringle, R (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM ringle@nscl.msu.edu RI Ringle, Ryan/A-1610-2010; Savory, Joshua/K-6978-2012 FU Michigan State University; National Science Foundation [PHY0110253]; US Department of Energy [DE-FG02-00ER41144] FX We wish to acknowledge the support of Michigan State University, the National Science Foundation Grant no. PHY0110253, and the US Department of Energy Contract no. DE-FG02-00ER41144. NR 58 TC 36 Z9 36 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 536 EP 547 DI 10.1016/j.nima.2009.03.207 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700015 ER PT J AU Russina, M Mezei, F AF Russina, Margarita Mezei, Ferenc TI First implementation of Repetition Rate Multiplication in neutron spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron spectroscopy; Neutron instrumentation; TOF spectroscopy at pulsed sources; Spallation neutron sources; Repetition Rate Multiplication AB The conventional way in time-of-flight (TOF) neutron spectroscopy is to use neutron pulses of one monochromatic wavelength. By contrast, the Repetition Rate Multiplication (RRM) technique for pulsed neutron sources uses a set of several monochromatic wavelengths coming from one source pulse [F. Mezei, J. Neutron Res. 6 (1997) 3, and references therein]. Thus a major efficiency drawback of practical pulsed neutrons sources can be overcome, i.e. their too low pulse repetition rate for TOF spectroscopy. At the same time the pulse repetition rate at the sample can be chosen freely. Here we present the first experimental realization of this novel technique using the flexible disc chopper system of the TOF spectrometer NEAT at BENSC and report the first real life data collection by Repetition Rate Multiplication. The first choppers of the instrument emulated a pulsed source with a repetition rate of 20-40 Hz at a distance of 13.3 m from the sample. The secondary spectrometer was operated at a chopper pulse frequency of about 160 Hz. The spectra were detected by (3)He counters placed 2.5 m from the sample. Several RRM frames with different incoming wavelengths coming from each "source" chopper pulse were recorded. The results show that information from different RRM frames can be efficiently combined and evaluated. This offers a more efficient use of the pulsed source by reducing the data collection dead time and allows for faster and enhanced-quality data collection by using several monochromatic wavelengths in parallel. (C) 2009 Elsevier B.V. All rights reserved. C1 [Russina, Margarita] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Mezei, Ferenc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mezei, Ferenc] SzFKI, Budapest Neutron Ctr, H-1121 Budapest, Hungary. RP Russina, M (reprint author), Helmholtz Zentrum Berlin Mat & Energie, Glienicker Str 100, D-14109 Berlin, Germany. EM margarita.russina@helmholtz-berlin.de RI Russina, Margarita/E-9886-2016 OI Russina, Margarita/0000-0003-2067-606X FU Los Alamos National Laboratory [2001511 DR] FX The IN500 project was financially supported by Los Alamos National Laboratory, LDRD Project 2001511 DR. We thank Prof. G. Findenegg from Technical University Berlin for providing the sample and Karen Diederichsen for her great help with manuscript preparation. NR 15 TC 22 Z9 22 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 624 EP 631 DI 10.1016/j.nima.2009.03.010 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700027 ER PT J AU Ullan, M Rice, J Brooijmans, G Cressler, JD Damiani, D Diez, S Gadfort, T Grillo, AA Hackenburg, R Hare, G Jones, A Kierstead, J Kononenko, W Mandic, I Martinez-McKinney, F Metcalfe, J Newcomer, FM Parsons, JA Phillips, S Rescia, S Sadrozinski, HFW Seiden, A Spencer, E Spieler, H Sutton, AK Tazawa, Y Wilder, M Wulf, E AF Ullan, M. Rice, J. Brooijmans, G. Cressler, J. D. Damiani, D. Diez, S. Gadfort, T. Grillo, A. A. Hackenburg, R. Hare, G. Jones, A. Kierstead, J. Kononenko, W. Mandic, I. Martinez-McKinney, F. Metcalfe, J. Newcomer, F. M. Parsons, J. A. Phillips, S. Rescia, S. Sadrozinski, H. F. -W. Seiden, A. Spencer, E. Spieler, H. Sutton, A. K. Tazawa, Y. Wilder, M. Wulf, E. TI Evaluation of silicon-germanium (SiGe) bipolar technologies for use in an upgraded atlas detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE ATLAS upgrade; S-LHC; Front-end electronics; SiGe; Bipolar; BiCMOS; Radiation; Hardness; Radiation effects ID RADIATION TOLERANCE; TRANSISTORS; ELECTRONICS; EXPOSURE; DAMAGE AB Silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technologies promise several advantages over CMOS for the front-end readout electronics for the ATLAS upgrade. We have evaluated the relative merits of the latest generations of IBM SiGe HBT BiCMOS technologies, the 8WL and 8HP platforms. These 130 nm SiGe technologies show promise to operate at lower power than do CMOS technologies and would provide a viable alternative for the silicon strip detector and liquid argon calorimeter upgrades, provided that the radiation tolerance studies at multiple gamma and neutron irradiation levels, included in this investigation, show them to be sufficiently radiation tolerant. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ullan, M.; Diez, S.] Univ Autonoma Barcelona, Ctr Nacl Microelect, CSIC, E-08193 Barcelona, Spain. [Rice, J.; Damiani, D.; Grillo, A. A.; Hare, G.; Jones, A.; Martinez-McKinney, F.; Metcalfe, J.; Sadrozinski, H. F. -W.; Seiden, A.; Spencer, E.; Wilder, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Kononenko, W.; Newcomer, F. M.; Tazawa, Y.] Univ Penn, Philadelphia, PA 19104 USA. [Hackenburg, R.; Kierstead, J.; Rescia, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Brooijmans, G.; Gadfort, T.; Parsons, J. A.; Wulf, E.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Spieler, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Mandic, I.] Jozef Stefan Inst, Ljubljana, Slovenia. [Cressler, J. D.; Phillips, S.; Sutton, A. K.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Ullan, M (reprint author), Univ Autonoma Barcelona, Ctr Nacl Microelect, CSIC, Campus UAB Bellaterra, E-08193 Barcelona, Spain. EM Miguel.Ullan@cnm.es RI Rescia, Sergio/D-8604-2011; Ullan, Miguel/P-7392-2015 OI Rescia, Sergio/0000-0003-2411-8903; NR 13 TC 12 Z9 13 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 668 EP 674 DI 10.1016/j.nima.2009.03.177 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700033 ER PT J AU Seeger, PA Daemen, LL Larese, JZ AF Seeger, Philip A. Daemen, Luke L. Larese, John Z. TI Resolution of VISION, a crystal-analyzer spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron scattering; Resolution; Crystal analyzer; Monte Carlo; NISP ID NEUTRON-SCATTERING AB We present both analytic and Monte Carlo calculations of the resolution of VISION, which is a crystal-analyzer spectrometer based on the TOSCA design. The analyzer crystal in VISION is configured to focus in time, radial, and transverse directions ("triple focused"). Previously published analytical results have two serious flaws in the handling of the statistics, which gave misleading results. First, Gaussian distributions were assumed for all resolution components, so that full-width-half-maximum Ill could be used. Not only is this a very poor approximation for most terms, it is also completely unnecessary because standard deviations can be combined in quadrature for any shape distribution (except Lorentzian). The second flaw was the choice of variables that are riot independent, so that significant correlations were ignored. An example of the effect of including correlations is that the mosaic spread of the analyzer crystals does not contribute to the resolution in first order. Monte Carlo simulation is not limited to first order, and we find a mild Optimum value for mosaic spread. A complete set of six independent variables is: neutron emission time, incident flight-path variation (due to moderator tilt), sample thickness, mean path in the analyzer (due to multiple reflections), sample-to-detector radial distance, and detector thickness. We treat separately the resolution contributions from histogramming and rebinning during data acquisition and reduction, and describe a scheme for VISION that minimizes the effect on resolution. We compare the contributions of the six variables to the total resolution, both analytically and by Monte Carlo simulations of a complete VISION model using the Neutron Instrument Simulation Package (NISP). (C) 2009 Elsevier B.V. All rights reserved. C1 [Daemen, Luke L.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM USA. [Larese, John Z.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Seeger, PA (reprint author), 239 Loma Escolar, Los Alamos, NM 87544 USA. EM PASeeger@losalamos.com RI Lujan Center, LANL/G-4896-2012 FU National Science Foundation [DNR-0412231]; Department of Energy's Office of Basic Energy Sciences [DE-AC52-06NA25396] FX This work was performed under National Science Foundation Grant no. DNR-0412231 to the University of Tennessee. Additional funding at the Manuel Lujan, Jr. Neutron Scattering Center came from the Department of Energy's Office of Basic Energy Sciences under DOE Contract DE-AC52-06NA25396 with Los Alamos National Security LLC. We also thank Stewart Parker and John Tompkinson of ISIS for assistance with the TOSCA comparison. NR 14 TC 16 Z9 16 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 719 EP 728 DI 10.1016/j.nima.2009.03.204 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700040 ER PT J AU Smith, ES AF Smith, E. S. TI Multiplicative scale uncertainties in the unified approach for constructing confidence intervals SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Sensitivity; Systematic uncertainties; Statistical methods; Unified approach; Confidence intervals ID SYSTEMATIC UNCERTAINTIES AB We have investigated how uncertainties in the estimation of the detection efficiency affect the 90% confidence intervals in the unified approach for constructing confidence intervals. The Study has been conducted for experiments where the number of detected events is large and can be described by a Gaussian probability density function. We also assume the detection efficiency has a Gaussian probability density and study the range of the relative uncertainties sigma(epsilon) between 0% and 30%. We find that the confidence intervals provide proper coverage over a wide signal range and increase smoothly and continuously from the intervals that ignore scale uncertainties with a quadratic dependence on sigma(epsilon). (C) 2009 Elsevier B.V, All rights reserved. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Smith, ES (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM elton@jlab.org FU U.S. Department of Energy [DE-AC05-06OR23177] FX This work was supported by the U.S. Department of Energy Contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates the Thomas Jefferson National Accelerator Facility. We would like to thank Hovanes Egiyan for useful discussion and valuable Suggestions, and to Kandice Carter for helpful suggestions to improve the manuscript. NR 12 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUN 11 PY 2009 VL 604 IS 3 BP 729 EP 737 DI 10.1016/j.nima.2009.03.206 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 460PD UT WOS:000267198700041 ER PT J AU Flahaut, M Meier, R Coulon, A Nardou, KA Niggli, FK Martinet, D Beckmann, JS Joseph, JM Muhlethaler-Mottet, A Gross, N AF Flahaut, M. Meier, R. Coulon, A. Nardou, K. A. Niggli, F. K. Martinet, D. Beckmann, J. S. Joseph, J-M Muehlethaler-Mottet, A. Gross, N. TI The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway SO ONCOGENE LA English DT Article DE neuroblastoma; chemoresistance; FZD1; MDR1; Wnt signalling ID MULTIDRUG-RESISTANCE; GENE-EXPRESSION; BETA-CATENIN; CELL-LINES; INDUCED APOPTOSIS; CYCLIN D1; CANCER; CARCINOMA; TARGET; AMPLIFICATION AB The development of chemoresistance represents a major obstacle in the successful treatment of cancers such as neuroblastoma (NB), a particularly aggressive childhood solid tumour. The mechanisms underlying the chemoresistant phenotype in NB were addressed by gene expression profiling of two doxorubicin (DoxR)-resistant vs sensitive parental cell lines. Not surprisingly, the MDR1 gene was included in the identified upregulated genes, although the highest overexpressed transcript in both cell lines was the frizzled-1 Wnt receptor (FZD1) gene, an essential component of the Wnt/beta-catenin pathway. FZD1 upregulation in resistant variants was shown to mediate sustained activation of the Wnt/b-catenin pathway as revealed by nuclear beta-catenin translocation and target genes transactivation. Interestingly, specific micro-adapted short hairpin RNA (shRNAmir)-mediated FZD1 silencing induced parallel strong decrease in the expression of MDR1, another beta-catenin target gene, revealing a complex, Wnt/beta-catenin-mediated implication of FZD1 in chemoresistance. The significant restoration of drug sensitivity in FZD1-silenced cells confirmed the FZD1-associated chemoresistance. RNA samples from 21 patient tumours (diagnosis and postchemotherapy), showed a highly significant FZD1 and/or MDR1 overexpression after treatment, underlining a role for FZD1-mediated Wnt/beta-catenin pathway in clinical chemoresistance. Our data represent the first implication of the Wnt/beta-catenin pathway in NB chemoresistance and identify potential new targets to treat aggressive and resistant NB. Oncogene (2009) 28, 2245-2256; doi:10.1038/onc.2009.80; published online 4 May 2009 C1 [Flahaut, M.; Coulon, A.; Nardou, K. A.; Joseph, J-M; Muehlethaler-Mottet, A.; Gross, N.] Univ Hosp CHUV, Dept Paediat, CH-1011 Lausanne, Switzerland. [Meier, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Niggli, F. K.] Univ Children Hosp, Dept Paediat, Zurich, Switzerland. [Martinet, D.; Beckmann, J. S.] Univ Hosp CHUV, Med Genet Serv, CH-1011 Lausanne, Switzerland. RP Flahaut, M (reprint author), Univ Hosp CHUV, Dept Paediat, CH-1011 Lausanne, Switzerland. EM Marjorie.Flahaut@chuv.ch RI Beckmann, Jacques S /A-9772-2008 OI Beckmann, Jacques S /0000-0002-9741-1900 FU Schweizer Forschungsstiftung Kind und Krebs; Swiss National Science foundation; FORCE foundation FX We thank M Wicht and N Besuchet Schmutz ( Medical Genetic Service, CHUV) for their skillful help. This study was supported by the Schweizer Forschungsstiftung Kind und Krebs, the Swiss National Science foundation and the FORCE foundation. NR 44 TC 67 Z9 74 U1 0 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 J9 ONCOGENE JI Oncogene PD JUN 11 PY 2009 VL 28 IS 23 BP 2245 EP 2256 DI 10.1038/onc.2009.80 PG 12 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA 456XM UT WOS:000266886300001 PM 19421142 ER PT J AU Wilkes, TE Stock, SR De Carlo, F Xiao, X Faber, KT AF Wilkes, T. E. Stock, S. R. De Carlo, F. Xiao, X. Faber, K. T. TI X-ray micro-computed tomography of beech wood and biomorphic C, SiC and Al/SiC composites SO PHILOSOPHICAL MAGAZINE LA English DT Article DE synchrotron; X-ray micro-computed tomography; composite; wood; silicone carbide ID METAL-MATRIX COMPOSITES; SILICON-CARBIDE CERAMICS; ADVANCED-PHOTON-SOURCE; MECHANICAL-PROPERTIES; MICROSTRUCTURE EVOLUTION; THERMAL-CONDUCTIVITY; SISIC-CERAMICS; INFILTRATION; MICROTOMOGRAPHY; BEHAVIOR AB The microstructures of beech wood and of beech wood-derived carbon, silicon carbide (SiC), and an aluminium/SiC composite were studied using both scanning electron microscopy (SEM) and synchrotron X-ray microcomputed tomography (mu CT). As opened to traditional two-dimensional imaging techniques, the mu CT data allowed nondestructive evaluation of relatively large sample volumes. Nondestructive three-dimensional data analysis led to the observation of microstructural features, such as varying pore-wall topographies not previously seen in SEM, calculations of the volume fraction of porosity and characterization of the interconnectivity of porosity in the SiC material. C1 [Wilkes, T. E.; Faber, K. T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Stock, S. R.] Northwestern Univ, Dept Biol Chem & Mol Pharmacol, Chicago, IL 60611 USA. [De Carlo, F.; Xiao, X.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Faber, KT (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM k-faber@northwestern.edu RI Faber, Katherine/B-6741-2009 FU National Science Foundation [DMR-0710630]; US Department of Energy; Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Funding for this work was provided by National Science Foundation Grant DMR-0710630. Use of the Advanced Photon Source Lit Argonne National Laboratory was Supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 51 TC 12 Z9 12 U1 0 U2 25 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD JUN 11 PY 2009 VL 89 IS 17 BP 1373 EP 1389 DI 10.1080/14786430902956457 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 478IK UT WOS:000268580800001 ER PT J AU Jiang, YW Liu, SM Petrosian, V AF Jiang, Yan Wei Liu, Siming Petrosian, Vahe TI CASCADE AND DAMPING OF ALFVEN-CYCLOTRON FLUCTUATIONS: APPLICATION TO SOLAR WIND TURBULENCE SO ASTROPHYSICAL JOURNAL LA English DT Article DE MHD; plasmas; solar wind; turbulence; waves ID COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; PROPAGATING PLASMA-WAVES; FAST MODE WAVES; MAGNETIC-FIELD; MHD TURBULENCE; STOCHASTIC ACCELERATION; INTERSTELLAR TURBULENCE; ELECTRON ACCELERATION; DISSIPATION RANGE; ASTROPHYSICAL IMPLICATIONS AB It is well recognized that the presence of magnetic fields will lead to anisotropic energy cascade and dissipation of astrophysical turbulence. With the diffusion approximation and linear dissipation rates, we study the cascade and damping of Alfven-cyclotron fluctuations in solar plasmas numerically for two diagonal diffusion tensors, one (isotropic) with identical components for the parallel and perpendicular directions (with respect to the magnetic field) and one with different components (nonisotropic). It is found that for the isotropic case the steady-state turbulence spectra are nearly isotropic in the inertial range and can be fitted by a single power-law function with a spectral index of -3/2, similar to the Iroshnikov-Kraichnan phenomenology, while for the nonisotropic case the spectra vary greatly with the direction of propagation. The energy fluxes in both cases are much higher in the perpendicular direction than in the parallel direction due to the angular dependence (or inhomogeneity) of the components. In addition, beyond the MHD regime the kinetic effects make the spectrum softer at higher wavenumbers. In the dissipation range the turbulence spectrum cuts off at the wavenumber, where the damping rate becomes comparable to the cascade rate, and the cutoff wavenumber changes with the wave propagation direction. The angle-averaged turbulence spectrum of the isotropic model resembles a broken power law, which cuts off at the maximum of the cutoff wavenumbers or the He-4 cyclotron frequency. Taking into account the Doppler effects, the model naturally reproduces the broken power-law turbulence spectra observed in the solar wind and predicts that a higher break frequency always comes along with a softer dissipation range spectrum that may be caused by the increase of the turbulence intensity, the reciprocal of the plasma beta(p), and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by detailed comparisons with more accurate observations. C1 [Jiang, Yan Wei; Petrosian, Vahe] Stanford Univ, Dept Phys, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. [Jiang, Yan Wei; Petrosian, Vahe] Stanford Univ, Kavli Inst Particle Phys & Cosmol, Stanford, CA 94309 USA. [Liu, Siming] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Liu, Siming] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Petrosian, Vahe] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Jiang, YW (reprint author), Stanford Univ, Dept Phys, Ctr Space Sci & Astrophys, Stanford, CA 94305 USA. EM sliu@astro.gla.ac.uk; vahep@astronomy.edu RI liu, siming/B-5389-2011 FU NSF [ATM-0312344]; NASA [NAG5-12111, NAG5 11918-1]; U.S. Department of Energy [DE-AC52-06NA25396]; IGPP; EU [MTRN-CT-2006-035484] FX We thank Christopher L. Fryer, Hui Li, and Alex Lazarian for helpful discussions and the referee for a critical review. The research at Stanford is partially supported by NSF grant ATM-0312344, NASA grants NAG5-12111, NAG5 11918-1. This work at the Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396, and received partial support from an IGPP grant and the EU's Solaire Research Training Network at the University of Glasgow (MTRN-CT-2006-035484). NR 85 TC 21 Z9 22 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2009 VL 698 IS 1 BP 163 EP 183 DI 10.1088/0004-637X/698/1/163 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 450AP UT WOS:000266373700013 ER PT J AU Fujita, A Martin, CL Low, MMM New, KCB Weaver, R AF Fujita, Akimi Martin, Crystal L. Low, Mordecai-Mark Mac New, Kimberly C. B. Weaver, Robert TI THE ORIGIN AND KINEMATICS OF COLD GAS IN GALACTIC WINDS: INSIGHT FROM NUMERICAL SIMULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: starburst; hydrodynamics; ISM: bubbles; ISM: jets and outflows; ISM: kinematics and dynamics; supernovae: general ID ULTRALUMINOUS INFRARED GALAXIES; X-RAY-EMISSION; RAYLEIGH-TAYLOR INSTABILITY; DWARF STARBURST GALAXIES; SCALE GASEOUS OUTFLOWS; II ESI SPECTRA; INTERSTELLAR-MEDIUM; STAR-FORMATION; COSMOLOGICAL SIMULATIONS; IONIZING-RADIATION AB We study the origin of Na I-absorbing gas in ultraluminous infrared galaxies motivated by the recent observations by Martin of extremely superthermal linewidths in this cool gas. We model the effects of repeated supernova explosions driving supershells in the central regions of molecular disks with M-d = 10(10) M-circle dot, using cylindrically symmetric gas dynamical simulations run with ZEUS-3D. The shocked swept-up shells quickly cool and fragment by Rayleigh Taylor (R-T) instability as they accelerate out of the dense, stratified disks. The numerical resolution of the cooling and compression at the shock fronts determines the peak shell density, and so the speed of R-T fragmentation. We identify cooled shells and shell fragments as Na I-absorbing gas and study its kinematics along various sightlines across the grid. We find that simulations with a numerical resolution of <= 0.2 pc produce multiple R-T fragmented shells in a given line of sight that appear to explain the observed kinematics. We suggest that the observed wide Na I absorption lines, < v > = 320 +/- 120 km s(-1), are produced by these multiple fragmented shells traveling at different velocities. We also suggest that some shell fragments can be accelerated above the observed average terminal velocity of 750 km s(-1) by the same energy-driven wind with an instantaneous starburst of similar to 10(9) M-circle dot. The mass carried by these fragments is only a small fraction of the total shell mass, while the bulk of mass is traveling with velocities consistent with the observed average shell velocity 330 +/- 100 km s(-1). Our results show that an energy-driven bubble causing R-T instabilities can explain the kinematics of cool gas seen in the Na I observations without invoking additional physics relying primarily on momentum conservation, such as entrainment of gas by Kelvin-Helmholtz instabilities, ram pressure driving of cold clouds by a hot wind, or radiation pressure acting on dust. C1 [Fujita, Akimi; Martin, Crystal L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Fujita, Akimi; Low, Mordecai-Mark Mac] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Low, Mordecai-Mark Mac] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Low, Mordecai-Mark Mac] Heidelberg Univ, Zentrum Astron, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [New, Kimberly C. B.; Weaver, Robert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fujita, A (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM cmartin@physics.ucsb.edu; mordecai@amnh.org OI Mac Low, Mordecai-Mark/0000-0003-0064-4060 NR 86 TC 37 Z9 37 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2009 VL 698 IS 1 BP 693 EP 714 DI 10.1088/0004-637X/698/1/693 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 450AP UT WOS:000266373700059 ER PT J AU Cady, E Macintosh, B Kasdin, NJ Soummer, R AF Cady, Eric Macintosh, Bruce Kasdin, N. Jeremy Soummer, Remi TI SHAPED PUPIL DESIGN FOR THE GEMINI PLANET IMAGER SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: high angular resolution; planetary systems ID SPECKLE NOISE; CORONAGRAPHY AB The Gemini Planet Imager is an instrument designed for the Gemini South Telescope to image young Jupiter-mass planets in the infrared. To achieve the high contrast needed for this, it employs an apodized pupil Lyot coronagraph (APLC) to remove most of the starlight. Current designs use a partially transmitting apodizer in the pupil; we examine the use of binary apodizations in the form of star-shaped pupils and present a design that could achieve comparable performance, along with a series of design guidelines for creating shaped pupil versions of APLCs in other systems. C1 [Cady, Eric; Kasdin, N. Jeremy] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Soummer, Remi] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Cady, E (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. EM ecady@princeton.edu FU U. S. Department of Energy; National Nuclear Security Administration [DE-AC52-07NA27344] FX The authors would like to thank C. Marois, L. Poyneer, and A. Sivaramakrishnan for assistance and helpful discussions. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U. S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 20 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2009 VL 698 IS 1 BP 938 EP 943 DI 10.1088/0004-637X/698/1/938 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 450AP UT WOS:000266373700079 ER PT J AU Comerford, JM Gerke, BF Newman, JA Davis, M Yan, R Cooper, MC Faber, SM Koo, DC Coil, AL Rosario, DJ Dutton, AA AF Comerford, Julia M. Gerke, Brian F. Newman, Jeffrey A. Davis, Marc Yan, Renbin Cooper, Michael C. Faber, S. M. Koo, David C. Coil, Alison L. Rosario, D. J. Dutton, Aaron A. TI INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: interactions; galaxies: nuclei; galaxies: Seyfert ID ACTIVE GALACTIC NUCLEI; NARROW-LINE REGION; QUASAR SDSS J092712.65+294344.0; GRAVITATIONAL-RADIATION RECOIL; PEAKED EMISSION-LINES; EXTENDED GROTH STRIP; REDSHIFT SURVEY; SEYFERT-GALAXIES; HOST GALAXIES; GASEOUS KINEMATICS AB We present a new technique for observationally identifying galaxy mergers spectroscopically rather than through host galaxy imaging. Our technique exploits the dynamics of supermassive black holes (SMBHs) powering active galactic nuclei (AGNs) in merger-remnant galaxies. Because structure in the universe is built up through galaxy mergers and nearly all galaxies host a central SMBH, some galaxies should possess two SMBHs near their centers as the result of a recent merger. These SMBHs spiral to the center of the resultant merger-remnant galaxy, and one or both of the SMBHs may power AGNs. Using the DEEP2 Galaxy Redshift Survey, we have examined 1881 red galaxies, of which 91 exhibit [O-III] and H beta emission lines indicative of Seyfert 2 activity. Of these, 32 AGNs have [O-III] emission-line redshifts significantly different from the redshifts of the host galaxies' stars, corresponding to velocity offsets of similar to 50 km s(-1) to similar to 300 km s-1. Two of these AGNs exhibit double-peaked [O-III] emission lines, while the remaining 30 AGNs each exhibit a single set of velocity-offset [O-III] emission lines. After exploring a variety of physical models for these velocity offsets, we argue that the most likely explanation is inspiralling SMBHs in merger-remnant galaxies. Based on this interpretation, we find that roughly half of the red galaxies hosting AGNs are also merger remnants, which implies that mergers may trigger AGN activity in red galaxies. The AGN velocity offsets we find imply a merger fraction of similar to 30% and a merger rate of similar to 3 mergers Gyr(-1) for red galaxies at redshifts 0.34 < z < 0.82. C1 [Comerford, Julia M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Gerke, Brian F.] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94725 USA. [Newman, Jeffrey A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Davis, Marc] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yan, Renbin] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Cooper, Michael C.; Coil, Alison L.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Faber, S. M.; Koo, David C.; Rosario, D. J.; Dutton, Aaron A.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Coil, Alison L.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. RP Comerford, JM (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. FU NSF [AST-0507428, AST-0071048, AST-0071198, AST-0507483]; U. S. Department of Energy [DE-AC3-76SF00515]; NASA; Hubble Fellowship [HF-01182.01-A]; Space Telescope Science Institute FX M. C. acknowledges support from NSF grant AST-0507428. B. F. G. was supported by the U. S. Department of Energy under contract number DE-AC3-76SF00515. M. C. C. acknowledges support by NASA through the Spitzer Space Telescope Fellowship program. A. L. C. is supported by NASA through Hubble Fellowship grants HF-01182.01-A, awarded by the Space Telescope Science Institute. This work was also supported in part by NSF grants AST-0071048, AST-0071198, and AST-0507483. B. F. G. thanks the Aspen Center for Physics for its hospitality, and we also thank Jay Dunn and Mike Crenshaw for illuminating conversations. NR 61 TC 99 Z9 99 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JUN 10 PY 2009 VL 698 IS 1 BP 956 EP 965 DI 10.1088/0004-637X/698/1/956 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 450AP UT WOS:000266373700081 ER PT J AU Xu, H Li, H Collins, DC Li, ST Norman, ML AF Xu, Hao Li, Hui Collins, David C. Li, Shengtai Norman, Michael L. TI TURBULENCE AND DYNAMO IN GALAXY CLUSTER MEDIUM: IMPLICATIONS ON THE ORIGIN OF CLUSTER MAGNETIC FIELDS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: active; galaxies: clusters: general; methods: numerical; MHD; turbulence ID X-RAY CAVITIES; INTRACLUSTER MEDIUM; FARADAY-ROTATION; POWER SPECTRUM; RADIO-SOURCES; HYDRA-A; EVOLUTION; ENERGY; ATMOSPHERES; EMISSION AB We present self-consistent cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and the magnetic field ejection by an active galactic nucleus (AGN). We find that the magnetic fields ejected by the AGNs, though initially distributed in relatively small volumes, can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process. The ICM turbulence is shown to be generated and sustained by the frequent mergers of smaller halos. Furthermore, a cluster-wide dynamo process is shown to exist in the ICM and amplify the magnetic field energy and flux. The total magnetic energy in the cluster can reach similar to 10(61) erg while micro Gauss (mu G) fields can distribute over similar to Mpc scales throughout thewhole cluster. This finding shows that magnetic fields from AGNs, being further amplified by the ICM turbulence through small-scale dynamo processes, can be the origin of cluster-wide magnetic fields. C1 [Xu, Hao; Collins, David C.; Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Xu, Hao; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Xu, H (reprint author), Univ Calif San Diego, Ctr Astrophys & Space Sci, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM haxu@ucsd.edu; hli@lanl.gov; dcollins@physics.ucsd.edu; sli@lanl.gov; mlnorman@ucsd.edu RI Xu, Hao/B-8734-2014; OI Xu, Hao/0000-0003-4084-9925; Li, Shengtai/0000-0002-4142-3080 FU LDRD; IGPP; NSF [ASST-0708960] FX H. Li thanks F. Cattaneo and S. Colgate for discussions. We thank the referee whose comments helped to improve the presentation and the quality of this Letter. This work was supported by the LDRD and IGPP programs at LANL. Computations were performed using the institutional computing resources at LANL. ENZO is developed at the Laboratory for Computational Astrophysics, UCSD with partial support from NSF grant ASST-0708960 to M. L. N. NR 31 TC 39 Z9 39 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUN 10 PY 2009 VL 698 IS 1 BP L14 EP L17 DI 10.1088/0004-637X/698/1/L14 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 450AO UT WOS:000266373600004 ER PT J AU Anderson, JC Gosink, LJ Duchaineau, MA Joy, KI AF Anderson, John C. Gosink, Luke J. Duchaineau, Mark A. Joy, Kenneth I. TI Interactive Visualization of Function Fields by Range-Space Segmentation SO COMPUTER GRAPHICS FORUM LA English DT Article; Proceedings Paper CT 11th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis 09) CY JUN 10-12, 2009 CL Berlin, GERMANY SP IEEE VGTC, European Assoc Comp Graph ID INFORMATION; DISPLAY AB We present a dimension reduction and feature extraction method for the visualization and analysis of function field data. Function fields are a class of high-dimensional, multi-variate data in which data samples are one-dimensional scalar functions. Our approach focuses upon the creation of high-dimensional range-space segmentations, from which we can generate meaningful visualizations and extract separating surfaces between features. We demonstrate our approach on high-dimensional spectral imagery, and particulate pollution data from air quality simulations. C1 [Anderson, John C.; Gosink, Luke J.; Joy, Kenneth I.] Univ Calif Davis, Inst Data Anal & Visualizat, Dept Comp Sci, Davis, CA 95616 USA. [Duchaineau, Mark A.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Anderson, JC (reprint author), Univ Calif Davis, Inst Data Anal & Visualizat, Dept Comp Sci, Davis, CA 95616 USA. EM janderson@ucdavis.edu; ljgosink@ucdavis.edu; duchaine@llnl.gov; kijoy@ucdavis.edu NR 35 TC 3 Z9 3 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0167-7055 EI 1467-8659 J9 COMPUT GRAPH FORUM JI Comput. Graph. Forum PD JUN 10 PY 2009 VL 28 IS 3 SI SI BP 727 EP 734 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 473OQ UT WOS:000268217500004 ER PT J AU Woodring, J Shen, HW AF Woodring, Jonathan Shen, Han-Wei TI Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing SO COMPUTER GRAPHICS FORUM LA English DT Article CT 11th Eurographics/IEEE VGTC Symposium on Visualization (EuroVis 09) CY JUN 10-12, 2009 CL Berlin, GERMANY SP IEEE VGTC, European Assoc Comp Graph ID VISUALIZATION; TRACKING AB When creating transfer functions for time-varying data, it is not clear what range of values to use for classification, as data value ranges and distributions change over time. In order to generate time-varying transfer functions, We search the data for classes that have similar behavior over time, assuming that data points that behave similarly, belong to the same feature. We utilize a method we call temporal clustering and sequencing to find dynamic features in value space and create a corresponding transfer function. First, clustering finds groups of data points that have the same value space activity over time. Then, sequencing derives a progression of clusters over time, creating chains that follow value distribution changes. Finally, the cluster sequences are used to create transfer functions, as sequences describe the value range distributions over time in a data set. C1 [Woodring, Jonathan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Woodring, Jonathan; Shen, Han-Wei] Ohio State Univ, Columbus, OH 43210 USA. RP Woodring, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Shen, Han-wei/A-4710-2012 NR 22 TC 8 Z9 9 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0167-7055 J9 COMPUT GRAPH FORUM JI Comput. Graph. Forum PD JUN 10 PY 2009 VL 28 IS 3 BP 791 EP 798 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 473OQ UT WOS:000268217500012 ER PT J AU Sugar, JD Medlin, DL AF Sugar, Joshua D. Medlin, Douglas L. TI Precipitation of Ag2Te in the thermoelectric material AgSbTe2 SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Thermoelectric materials; Precipitation; Phase transitions; TEM ID AG-SB-TE; PHASE-DIAGRAM; SYSTEM; SILVER; AGPBMSBTE2+M; DIFFRACTION AB The microstructure of AgSbTe2, prepared by solidification, is investigated using electron microscopy. During solidification and thermal treatment, the material separates into a two-phase mixture of a rocksalt phase, which is Ag22Sb28Te50, and silver telluride, Ag2Te. Ag2Te formation results either from eutectic solidification (large lamellar structures), or by solid-state precipitation (fine-scale particles). The crystal structure of the AgSbTe2 phase determined by electron diffraction is consistent with a rocksalt structure that has a disordered cation sublattice. A preferred crystallographic orientation relationship at the interface between the matrix and the low-temperature monoclinic Ag2Te phase is defined and discussed. This orientation relationship is observed for both second-phase morphologies. In both cases, the orientation relationship originates from a topotactic (cube-on-cube) alignment of the Te sublattices in the initially cubic Ag2Te and the matrix at elevated temperature. This Te sublattice alignment is retained as the Ag2Te undergoes a cubic-to-monoclinic transformation during cooling. This orientation relationship is observed for both second-phase morphologies. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sugar, Joshua D.; Medlin, Douglas L.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA USA. RP Sugar, JD (reprint author), Sandia Natl Labs, Dept Mat Phys, Livermore, CA USA. EM jdsugar@sandia.gov FU Sandia Corporation; Lockheed-Martin Company; United States Department of Energy; National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Energy; Office of Basic Energy Sciences; Division of Materials Sciences FX Special thanks to Drs. Monica Barney, Norm Bartelt, Joe McKeown, Nancy Yang, and Peter Sharma for helpful discussions and suggestions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy, National Nuclear Security Administration under Contract DE-AC04-94AL85000. Support was provided in part by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences. NR 34 TC 53 Z9 53 U1 3 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 10 PY 2009 VL 478 IS 1-2 BP 75 EP 82 DI 10.1016/j.jallcom.2008.11.054 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 455SS UT WOS:000266786400025 ER PT J AU Landa, A Soderlind, P Turchi, PEA AF Landa, Alex Soederlind, Per Turchi, Patrice E. A. TI Density-functional study of the U-Zr system SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Nuclear reactor materials; Phase transitions; Computer simulations ID DELTA-PHASE; ALLOYS; TRANSITION; ZIRCONIUM; STABILITY; GRADIENT; INTERDIFFUSION; APPROXIMATION; CALORIMETRY; ENTHALPY AB Density-functional formalism is applied to study the phase equilibria in the U-Zr system The obtained. ground-state properties of the gamma (bcc) and delta (C32) phases are in good agreement with experimental data. The decomposition curve for the gamma-based U-Zr solutions is calculated. Our calculations confirm that experimentally observed "partial" ordering of the alloy components in the delta-UZr2 (AlB2) phase, in which Zr atoms occupy the "Al" position and the two "B" sites are randomly shared by the U and Zr atoms, is the most energetically favorable within the C32 structure. We argue that stabilization of the delta-UZr2 phase relative to the alpha-Zr (hcp) structure is due to an increase of the Zr d-band occupancy that occurs when U is alloyed with Zr. A comparison with stabilization of the omega-phase (also C32) in Zr under compression is made. (C) 2008 Elsevier B.V. All rights reserved. C1 [Landa, Alex; Soederlind, Per; Turchi, Patrice E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Landa, A (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM landa1@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. A. Landa would like to thank Drs. A. Ruban and L. Vitos for helpful discussions. NR 51 TC 30 Z9 31 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUN 10 PY 2009 VL 478 IS 1-2 BP 103 EP 110 DI 10.1016/j.jallcom.2008.12.052 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 455SS UT WOS:000266786400029 ER EF