FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Natesan, M Cooper, MA Tran, JP Rivera, VR Poli, MA AF Natesan, Mohan Cooper, Matthew A. Tran, Julie P. Rivera, Victor R. Poli, Mark A. TI Quantitative Detection of Staphylococcal Enterotoxin B by Resonant Acoustic Profiling SO ANALYTICAL CHEMISTRY LA English DT Article ID SHOCK-SYNDROME TOXIN; PIEZOELECTRIC CRYSTAL IMMUNOSENSOR; SURFACE-PLASMON RESONANCE; SENSITIVE DETECTION; DNA HYBRIDIZATION; HUMAN-ANTIBODIES; MICROBALANCE; BIOSENSOR; SUPERANTIGENS; LOCALIZATION AB A rapid and sensitive detection of staphylococcal enterotoxin B (SEB) was developed using a novel acoustic sensing technique: Resonant Acoustic Profiling (RAP), which utilizes high-frequency piezoelectric quartz resonators for monitoring biomolecular interactions. An automated four-channel instrument consisting of acoustic sensors covalently conjugated with anti-SEB antibodies was used. As the samples flowed across control and active sensors simultaneously, binding was measured as a change in the resonant frequency. The lower limit Of detection (LWD) for the label free direct format was 25 ng/mL. Detection sensitivity was increased by adding mass sequentially to the captured SEB on the sensor in the form of sandwich antibodies and biotin-avidin-based gold nanoparticles. The LLOD for the mass enhanced formats were 5 and 0.5 ng/mL of SEB, respectively. The lowest sensitivity corresponds to 1.3 fM in a 75 mu L sample. The total assay time including the enhancement steps was less than 10 min. SEB was detected in both neat urine and PBS buffer-spiked samples, with linear correlations between resonant frequency signals and SEB concentrations (R-2 of 0.999 and 0.998, respectively). No significant cross-reactivity was observed with homologue toxins SEA, SED, and TSST, but some cross-reactivity was observed with the closely related toxin SEC, when we used a polyclonal antibody in the assay.,SEC, cross-reactivity was not observed when a SEB-specific monoclonal antibody was employed in the assay. Thus the specificity of the assay presented here was dependent on the quality of the antibodies used. In addition to detection, we evaluated RAP's ability to measure the toxin in unknown samples rapidly by measuring the initial binding rate of the interaction, thereby further shortening the assay time to 6 min. C1 [Natesan, Mohan; Tran, Julie P.; Rivera, Victor R.; Poli, Mark A.] USA, Med Res Inst Infect Dis, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. [Cooper, Matthew A.] Cambridge Med Innovat Ltd, Cambridge CB4 0GJ, England. [Tran, Julie P.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37831 USA. RP Natesan, M (reprint author), USA, Med Res Inst Infect Dis, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. EM mohan.natesan@us.army.mil RI Cooper, Matthew/C-7988-2009; OI Cooper, Matthew/0000-0003-3147-3460 FU National Institute of Allergy and Infectious Diseases [AI-061243-02] FX This work was supported by National Institute of Allergy and Infectious Diseases Grant No. AI-061243-02. J.P.T. was supported by the Oak Ridge Institute of Science Education. The authors thank Dwayne Neal for performing preliminary studies and Luis A. Raez for technical help. Research on human urine samples was conducted in compliance with DoD, Federal, and State statutes and regulations relating to the protection of human subjects and adheres to principles identified in the Belmont Report (1979). All data and human urine samples research was gathered and conducted for this publication under an IRB approved protocol, number FY-07-23. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army. NR 36 TC 19 Z9 20 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD MAY 15 PY 2009 VL 81 IS 10 BP 3896 EP 3902 DI 10.1021/ac900086t PG 7 WC Chemistry, Analytical SC Chemistry GA 446BL UT WOS:000266095100026 PM 19374426 ER PT J AU Yang, F Wu, S Stenoien, DL Zhao, R Monroe, ME Gritsenko, MA Purvine, SO Polpitiya, AD Tolic, N Zhang, QB Norbeck, AD Orton, DJ Moore, RJ Tang, KQ Anderson, GA Pasa-Tolic, L Camp, DG Smith, RD AF Yang, Feng Wu, Si Stenoien, David L. Zhao, Rui Monroe, Matthew E. Gritsenko, Marina A. Purvine, Samuel O. Polpitiya, Ashoka D. Tolic, Nikola Zhang, Qibin Norbeck, Angela D. Orton, Daniel J. Moore, Ronald J. Tang, Keqi Anderson, Gordon A. Pasa-Tolic, Ljiljana Camp, David G., II Smith, Richard D. TI Combined Pulsed-Q Dissociation and Electron Transfer Dissociation for Identification and Quantification of iTRAQ-Labeled Phosphopeptides SO ANALYTICAL CHEMISTRY LA English DT Article ID TRAP MASS-SPECTROMETER; SITE-SPECIFIC PHOSPHORYLATION; COMPLEX PROTEIN MIXTURES; SACCHAROMYCES-CEREVISIAE; QUANTITATIVE-ANALYSIS; PROTEOMIC ANALYSIS; IN-VIVO; PEPTIDE; MS/MS; TAGS AB Here, we report a new approach that integrates pulsed Q dissociation (PQD) and electron transfer dissociation (ETD) techniques for confident and quantitative identification of iTRAQ-labeled phosphopeptides. The use of isobaric tags for relative and absolute quantification enables a high-throughput quantification of peptides via reporter ion signals in the low m/z range of tandem mass spectra. PQD, a form of ion trap collision activated dissociation, allows for detection of low mass-to-charge fragment ions, and electron transfer dissociation is especially useful for sequencing peptides that contain post-translational modifications. Analysis of the phosphoproteome of human fibroblast cells using a sensitive linear ion trap mass spectrometer demonstrated that this hybrid approach improves both identification and quantification of phosphopeptides. ETD improved phosphopeptide identification, while PQD provides improved quantification of iTRAQ-labeled phosphopeptides. C1 [Yang, Feng; Wu, Si; Stenoien, David L.; Zhao, Rui; Monroe, Matthew E.; Gritsenko, Marina A.; Purvine, Samuel O.; Polpitiya, Ashoka D.; Tolic, Nikola; Zhang, Qibin; Norbeck, Angela D.; Orton, Daniel J.; Moore, Ronald J.; Tang, Keqi; Anderson, Gordon A.; Pasa-Tolic, Ljiljana; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), POB 999,MS K8-98, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR018522]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Low Dose Radiation Research Program FX F.Y. and S.W. contributed equally to this work. The authors thank Penny Colton for her helpful assistance. Portions of this research were supported by the NIH National Center for Research Resources (Grant RR018522; R.D.S.) and the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Low Dose Radiation Research Program. Experiments and data analyses were performed in the Environmental Molecular Sciences Laboratory, a DOE/BER national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 29 TC 20 Z9 22 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 15 PY 2009 VL 81 IS 10 BP 4137 EP 4143 DI 10.1021/ac802605m PG 7 WC Chemistry, Analytical SC Chemistry GA 446BL UT WOS:000266095100057 PM 19371082 ER PT J AU Hennessy, BT Gonzalez-Angulo, AM Stemke-Hale, K Gilcrease, MZ Krishnamurthy, S Lee, JS Fridlyand, J Sahin, A Agarwal, R Joy, C Liu, WB Stivers, D Baggerly, K Carey, M Lluch, A Monteagudo, C He, XP Weigman, V Fan, C Palazzo, J Hortobagyi, GN Nolden, LK Wang, NJ Valero, V Gray, JW Perou, CM Mills, GB AF Hennessy, Bryan T. Gonzalez-Angulo, Ana-Maria Stemke-Hale, Katherine Gilcrease, Michael Z. Krishnamurthy, Savitri Lee, Ju-Seog Fridlyand, Jane Sahin, Aysegul Agarwal, Roshan Joy, Corwin Liu, Wenbin Stivers, David Baggerly, Keith Carey, Mark Lluch, Ana Monteagudo, Carlos He, Xiaping Weigman, Victor Fan, Cheng Palazzo, Juan Hortobagyi, Gabriel N. Nolden, Laura K. Wang, Nicholas J. Valero, Vicente Gray, Joe W. Perou, Charles M. Mills, Gordon B. TI Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics SO CANCER RESEARCH LA English DT Article ID DNA COPY NUMBER; METAPLASTIC CARCINOMAS; ADJUVANT CHEMOTHERAPY; ADENOCARCINOMA CELLS; KINASE; MICROARRAYS; EXPRESSION; MUTATIONS; PATHWAY; PROTEIN AB Metaplastic breast cancers (MBC) are aggressive, chemo-resistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset. constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a "tumorigenic" signature defined using CD44(+)/CD24(-) breast tumor-initiating stein cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets. [Cancer Res 2009;69(10):4116-24] C1 [Hennessy, Bryan T.] Univ Texas MD Anderson Canc Ctr, Dept Gynecol Med Oncol, Houston, TX 77030 USA. [Hennessy, Bryan T.; Gonzalez-Angulo, Ana-Maria; Stemke-Hale, Katherine; Lee, Ju-Seog; Agarwal, Roshan; Carey, Mark; Nolden, Laura K.; Mills, Gordon B.] Univ Texas MD Anderson Canc Ctr, Dept Syst Biol, Houston, TX 77030 USA. [Gonzalez-Angulo, Ana-Maria; Hortobagyi, Gabriel N.; Valero, Vicente] Univ Texas MD Anderson Canc Ctr, Dept Breast Med Oncol, Houston, TX 77030 USA. [Gilcrease, Michael Z.; Krishnamurthy, Savitri; Sahin, Aysegul] Univ Texas MD Anderson Canc Ctr, Dept Pathol, Houston, TX 77030 USA. [Joy, Corwin; Liu, Wenbin; Stivers, David; Baggerly, Keith] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA. [Hennessy, Bryan T.; Gonzalez-Angulo, Ana-Maria; Stemke-Hale, Katherine; Carey, Mark; Mills, Gordon B.] Univ Texas MD Anderson Canc Ctr, Kleberg Ctr Mol Markers, Houston, TX 77030 USA. [Fridlyand, Jane; Wang, Nicholas J.; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lluch, Ana] Clin Hosp, Valencia, Spain. [Monteagudo, Carlos] Univ Valencia, Valencia, Spain. [He, Xiaping; Weigman, Victor; Fan, Cheng; Perou, Charles M.] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Palazzo, Juan] Thomas Jefferson Univ, Dept Pathol, Philadelphia, PA 19107 USA. RP Hennessy, BT (reprint author), Univ Texas MD Anderson Canc Ctr, Dept Gynecol Med Oncol, 1515 Holcombe Blvd, Houston, TX 77030 USA. EM bhennessy@mdanderson.org RI Stemke-Hale, Katherine/K-9113-2013; Monteagudo, Carlos/H-6555-2016; OI Stemke-Hale, Katherine/0000-0002-1231-4192; Perou, Charles/0000-0001-9827-2247 FU Kleberg Center for Molecular Markers at MDACC; Cancer Center Support [CA16672]; MDACC Physician Scientist Program; Robert and Janice McNair Foundation; National Cancer Institute grants [K23-CA121994, R21-CAI20248]; National Cancer Institute Breast Specialized Program for Research Excellence [P50-CA116199, P50-CA58223-09A1, R01-CA-101227-01]; National Cancer Institute [CA116199, CA099031]; Komen Foundation [FAS0703849]; V Foundation for Cancer Research; Breast Cancer Research Foundation; Office of Science, Office of Biological & Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231]; NIH/National Cancer Institute [P50 CA58207, U54 CA112970] FX Grant support: Kleberg Center for Molecular Markers at MDACC, Cancer Center Support Grant CA16672 at MDACC, and MDACC Physician Scientist Program and The McNair Scholars Program supported by The Robert and Janice McNair Foundation (B.T. Hennessy); National Cancer Institute grants K23-CA121994 and R21-CAI20248 and National Cancer Institute Breast Specialized Program for Research Excellence grant P50-CA116199 (A-M. Gonzalez-Angulo); National Cancer Institute grants CA116199 and CA099031 (G.B. Mills); Komen Foundation grant FAS0703849 (G.B. Mills, A-M. Gonzalez-Angulo, and B.T. Hennessy); National Cancer Institute Breast Specialized Program for Research Excellence grants P50-CA58223-09A1 and R01-CA-101227-01. V Foundation for Cancer Research, and Breast Cancer Research Foundation (C.M. Perou); and Director, Office of Science, Office of Biological & Environmental Research, U.S. Department of Energy contract DE-AC02-05CH11231 and NIH/National Cancer Institute grants P50 CA58207 and U54 CA112970 (J.W. Gray). NR 53 TC 397 Z9 414 U1 2 U2 35 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD MAY 15 PY 2009 VL 69 IS 10 BP 4116 EP 4124 DI 10.1158/0008-5472.CAN-08-3441 PG 9 WC Oncology SC Oncology GA 447TJ UT WOS:000266214400006 PM 19435916 ER PT J AU Fournier, MV Fata, JE Martin, KJ Yaswen, P Bissell, MJ AF Fournier, Marcia V. Fata, Jimmie E. Martin, Katherine J. Yaswen, Paul Bissell, Mina J. TI Interaction of E-cadherin and PTEN Regulates Morphogenesis and Growth Arrest in Human Mammary Epithelial Cells SO CANCER RESEARCH LA English DT Article ID TUMOR-SUPPRESSOR PTEN; LIPID PHOSPHATASE-ACTIVITY; FOCAL ADHESION KINASE; BREAST-CANCER; EXTRACELLULAR-MATRIX; SIGNALING PATHWAYS; PROTEIN MAGI-2; DEFINED MEDIUM; CYCLE ARREST; G(1) ARREST AB Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a dual-function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two nonmalignant human mammary epithelial cell tines that form polarized, growth-arrested structures (acini) when cultured in three-dimensional laminin-rich extracellular matrix gels (IrECM). As acini begin to form, PTEN accumulates both in the cytoplasm and at cell-cell contacts where it colocalizes with the E-cadherin/beta-catenin complex. Reduction of PTEN levels by shRNA in IrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in Skbr-3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in three-dimensional IrECM, indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus seems to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells. [Cancer Res 2009;69(10):4545-52] C1 [Fournier, Marcia V.; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc Biol, Div Life Sci, Berkeley, CA 94720 USA. [Fata, Jimmie E.] CUNY Coll Staten Isl, Dept Biol, New York, NY USA. [Martin, Katherine J.] Bioarray Consulting, Belmont, MA USA. RP Fournier, MV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc Biol, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM marcia.fournier@yahoo.com FU NCI NIH HHS [R01 CA064786, R01 CA057621, R01 CA057621-16A1, R01 CA064786-10, U54 CA112970, U54 CA112970-05, U54 CA126552, U54 CA126552-03] NR 49 TC 35 Z9 37 U1 0 U2 4 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD MAY 15 PY 2009 VL 69 IS 10 BP 4545 EP 4552 DI 10.1158/0008-5472.CAN-08-1694 PG 8 WC Oncology SC Oncology GA 447TJ UT WOS:000266214400056 PM 19417140 ER PT J AU Rodriguez, JA Liu, P Wang, X Wen, W Hanson, J Hrbek, J Perez, M Evans, J AF Rodriguez, J. A. Liu, P. Wang, X. Wen, W. Hanson, J. Hrbek, J. Perez, M. Evans, J. TI Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT International Symposium on Catalysis for Clean Energy and Sustainable Chemistry CY JUN 17-20, 2008 CL Madrid, SPAIN DE Copper; Magnesium oxide; Metal oxides; Carbon monoxide; Hydrogen production; Water; Water-gas shift; CO oxidation ID IN-SITU; REACTION-MECHANISM; CATALYSTS; MGO(100); CU(111); CERIA; GOLD; AU; REACTIVITY; KINETICS AB Oxide supported Cu catalysts show significant activity for the water-gas shift reaction (WGS, CO + H(2)O -> H(2) + CO(2)) but their performance is not fully understood and is highly dependent on the synthesis conditions or the nature of the oxide Support. This article describes a series of new studies examining the water-gas shift activity of Cu/MgO(1 0 0) Surfaces and compares it to the activities found for pure copper systems, Cu nanoparticles in contact with well-defined surfaces of TiO(2), ZnO, MoO(2) and CeO(2), and Cu cations present in mixed-metal oxides. Catalytic tests performed over CuFe(2)O(4), Ce(1-x)Cu(x)O(2) or CuMoO(4) Show significant WGS activity only when the Cu cations in the mixed-metal oxide are reduced to metallic copper. Thus, Cu nanoparticles were deposited on different oxide surfaces and their WGS activity was measured in a batch reactor(P(CO) = 20 Torr; P(H2O) = 10 Torr: T = 575-650 K). The WGS activity of the Cu nanoparticles Supported on MgO(1 0 0) was 2-3 times larger than that Of Cu(1 0 0). Even better WGS catalysts were obtained when Cu was deposited on CeO(2)(1 1 1) or TiO(2)(1 1 0). All apparent activation energy of 13.8 kcal/nnol was found for the WGS on Cu/MgO(1 0 0). This is smaller than the value of 15.2 kcal/mol observed on Cu(1 0 0), and substantially larger than the values of 7-9 kcal/rnol seen for the apparent activation energies of the Cu/CeO(2)(1 1 1) and Cu/TiO(2)(1 1 0) catalysts. Post-reaction surface characterization pointed to the lack of 0 vacancies in the Cu/MgO(1 0 0) catalysts. This is in contrast to results found for Cu/CeO(2)(1 1 1) and Cu/TiO(2)(1 1 0), where the oxide support exhibits a significant concentration of 0 vacancies as a consequence of the WGS reaction. The oxygen vacancies present in Cu/CeO(2)(1 1 1) and Cu/TiO(2)(1 1 0) help in the dissociation of the water molecule and reduce the apparent activation energy for the WGS process. Such a phenomenon cannot Occur on the Cu/MgO(0 0 1) catalysts, and the main steps of the WGS probably take place on the Cu nanoparticles. (C) 2008 Elsevier B.V. All rights reserved. C1 [Rodriguez, J. A.; Liu, P.; Wang, X.; Wen, W.; Hanson, J.; Hrbek, J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Perez, M.; Evans, J.] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hrbek, Jan/I-1020-2013; Hanson, jonathan/E-3517-2010 NR 33 TC 66 Z9 68 U1 5 U2 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD MAY 15 PY 2009 VL 143 IS 1-2 BP 45 EP 50 DI 10.1016/j.cattod.2008.08.022 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 448SX UT WOS:000266283400008 ER PT J AU Herranz, T Deng, XY Cabot, A Alivisatos, P Liu, Z Soler-Illia, G Salmeron, M AF Herranz, Tirma Deng, Xingyi Cabot, Andreu Alivisatos, Paul Liu, Zhi Soler-Illia, Galo Salmeron, Miquel TI Reactivity of Au nanoparticles supported over SiO2 and TiO2 studied by ambient pressure photoelectron spectroscopy SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT International Symposium on Catalysis for Clean Energy and Sustainable Chemistry CY JUN 17-20, 2008 CL Madrid, SPAIN DE Gold; Titanium oxide; Ambient pressure photoelectron; spectroscopy; In situ XPS; Model catalysts ID LOW-TEMPERATURE OXIDATION; CO OXIDATION; GOLD CATALYSTS; CARBON-MONOXIDE; ACTIVE GOLD; TITANIA; AU/TIO2; OXYGEN; ADSORPTION; CLUSTERS AB The influence of the metal cluster size and the support on the reactivity of gold-based catalysts has been Studied in the CO oxidation reaction. To overcome the structural complexity of the supported catalysts, gold nanoparticles synthesized from colloidal chemistry with precisely controlled size have been used. Those particles were supported over SiO2 and TiO2 and their catalytic activity measured in a flow reactor. The reaction rate was dependent on the particle size and on the support, suggesting two reaction pathways in the CO oxidation reaction. In parallel, ambient pressure photoelectron spectroscopy (APPS) has been performed under reaction conditions using bidimensional model catalysts prepared by supporting Au nanoparticles over planar polycrystalline SiO2 and TiO2 thin films. The nanoparticles were transferred from a water surface where they have been dispersed by means of the Langmuir-Blodgett (LB) technique. In this way, the catalytically active surface was characterized under real reaction conditions, revealing that during CO oxidation gold remains in the metallic state. (C) 2008 Elsevier B.V. All rights reserved. C1 [Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Alivisatos, Paul; Salmeron, Miquel] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Soler-Illia, Galo] UAQ CAC CNEA, Comis Nacl Energia Atom, Unidad Actividad Quim, Buenos Aires, DF, Argentina. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Herranz, T (reprint author), Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,Mail Stop 67R02206, Berkeley, CA 94720 USA. EM THerranzCruz@lbl.gov RI Herranz, Tirma/A-8656-2008; andreu, cabot/B-5683-2014; Liu, Zhi/B-3642-2009; Alivisatos , Paul /N-8863-2015; OI cabot, andreu /0000-0002-7533-3251; Liu, Zhi/0000-0002-8973-6561; Alivisatos , Paul /0000-0001-6895-9048; Soler-Illia, Galo/0000-0001-9984-3806; Deng, Xingyi/0000-0001-9109-1443 NR 43 TC 26 Z9 27 U1 3 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD MAY 15 PY 2009 VL 143 IS 1-2 BP 158 EP 166 DI 10.1016/j.cattod.2008.09.023 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 448SX UT WOS:000266283400025 ER PT J AU Simonetta, KR Kazmirski, SL Goedken, ER Cantor, AJ Kelch, BA McNally, R Seyedin, SN Makino, DL O'Donnell, M Kuriyan, J AF Simonetta, Kyle R. Kazmirski, Steven L. Goedken, Eric R. Cantor, Aaron J. Kelch, Brian A. McNally, Randall Seyedin, Steven N. Makino, Debora L. O'Donnell, Mike Kuriyan, John TI The Mechanism of ATP-Dependent Primer-Template Recognition by a Clamp Loader Complex SO CELL LA English DT Article ID DNA-POLYMERASE-III; REPLICATION FACTOR-C; CELL NUCLEAR ANTIGEN; ESCHERICHIA-COLI SSB; CRYSTAL-STRUCTURE; SLIDING CLAMP; GAMMA-COMPLEX; DELTA-SUBUNIT; STRUCTURAL-ANALYSIS; ACCESSORY PROTEINS AB Clamp loaders load sliding clamps onto primer-template DNA. The structure of the E. coli clamp loader bound to DNA reveals the formation of an ATP-dependent spiral of ATPase domains that tracks only the template strand, allowing recognition of both RNA and DNA primers. Unlike hexameric helicases, in which DNA translocation requires distinct conformations of the ATPase domains, the clamp loader spiral is symmetric and is set up to trigger release upon DNA recognition. Specificity for primed DNA arises from blockage of the end of the primer and accommodation of the emerging template along a surface groove. A related structure reveals how the c protein, essential for coupling the clamp loader to single-stranded DNA-binding protein (SSB), binds to the clamp loader. By stabilizing a conformation of the clamp loader that is consistent with the ATPase spiral observed upon DNA binding, c binding promotes the clamp-loading activity of the complex. C1 [Simonetta, Kyle R.; Kazmirski, Steven L.; Goedken, Eric R.; Cantor, Aaron J.; Kelch, Brian A.; McNally, Randall; Seyedin, Steven N.; Makino, Debora L.; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [O'Donnell, Mike] Rockefeller Univ, Howard Hughes Med Inst, New York, NY 10021 USA. RP Kuriyan, J (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM kuriyan@berkeley.edu OI Seyedin, Steven/0000-0002-6841-968X; O'Donnell, Michael/0000-0001-9002-4214 FU NIH [GM45547, GM38839] FX We thank James Berger and members of the Kuriyan Lab, in particular Meindert Lamers, for helpful discussions. We are also thankful to David King for synthesis of the c peptide and to the staff at beamlines 8.2.1, 8.2.2, and 5.0.1 of the Advanced Light Source (Berkeley, CA) for their help and technical support. This work was supported in part by grants from the NIH to J. K. (GM45547) and M. O. (GM38839). NR 56 TC 65 Z9 65 U1 2 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD MAY 15 PY 2009 VL 137 IS 4 BP 659 EP 671 DI 10.1016/j.cell.2009.03.044 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 446IA UT WOS:000266114100015 PM 19450514 ER PT J AU Waldron, PJ Wu, LY Van Nostrand, JD Schadt, CW He, ZL Watson, DB Jardine, PM Palumbo, AV Hazen, TC Zhou, JZ AF Waldron, Patricia J. Wu, Liyou Van Nostrand, Joy D. Schadt, Chris W. He, Zhili Watson, David B. Jardine, Philip M. Palumbo, Anthony V. Hazen, Terry C. Zhou, Jizhong TI Functional Gene Array-Based Analysis of Microbial Community Structure in Groundwaters with a Gradient of Contaminant Levels SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; IRON REACTIVE BARRIER; DESULFOVIBRIO-DESULFURICANS; ENVIRONMENTAL-SAMPLES; URANIUM; REDUCTION; DIVERSITY; MICROARRAY; HETEROGENEITY; POPULATIONS AB To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination. C1 [Waldron, Patricia J.; Wu, Liyou; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. [Waldron, Patricia J.; Wu, Liyou; Van Nostrand, Joy D.; Schadt, Chris W.; He, Zhili; Watson, David B.; Jardine, Philip M.; Palumbo, Anthony V.; Hazen, Terry C.; Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Schadt, Chris W.; Watson, David B.; Jardine, Philip M.; Palumbo, Anthony V.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu RI Palumbo, Anthony/A-4764-2011; Schadt, Christopher/B-7143-2008; He, Zhili/C-2879-2012; Watson, David/C-3256-2016; Van Nostrand, Joy/F-1740-2016; Hazen, Terry/C-1076-2012 OI Palumbo, Anthony/0000-0002-1102-3975; Schadt, Christopher/0000-0001-8759-2448; Watson, David/0000-0002-4972-4136; Van Nostrand, Joy/0000-0001-9548-6450; Hazen, Terry/0000-0002-2536-9993 FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Sanghoon Kang for his valuable assistance in data analysis. This work was part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program:GTL through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 39 TC 55 Z9 59 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2009 VL 43 IS 10 BP 3529 EP 3534 DI 10.1021/es803423p PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 445JI UT WOS:000266046700023 PM 19544850 ER PT J AU Laskin, A Smith, JS Laskin, J AF Laskin, Alexander Smith, Jeffrey S. Laskin, Julia TI Molecular Characterization of Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass Spectrometry SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID EVEN-ELECTRON IONS; FINE PARTICLES PM2.5; CHEMICAL-COMPOSITION; NORTHERN CALIFORNIA; IONIZATION MASS; FOG WATERS; SECONDARY; OLIGOMERS; RAIN; IDENTIFICATION AB Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical composition. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high-resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds (species naturally produced by plants and living organisms) comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine (a widespread tree in the western U.S. areas frequently affected by large scale fires) suggests that N-heterocyclic alkaloids in BBA may play a significant role in dry and wet deposition of fixed nitrogen in this region. C1 [Laskin, Alexander] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Smith, Jeffrey S.; Laskin, Julia] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Laskin, A (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Alexander.Laskin@pnl.gov; Julia.Laskin@pnl.gov RI Laskin, Alexander/I-2574-2012; Laskin, Julia/H-9974-2012 OI Laskin, Alexander/0000-0002-7836-8417; Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX The research described in this manuscript was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy. J. L. acknowledges support from the Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. DOE. A.L. acknowledges support from the Atmospheric Science Program, Office of Biological and Environmental Research of the U.S. DOE. J.S.S. acknowledges support from the DOE Science Undergraduate Laboratory Internship (SULI) program at Pacific Northwest National Laboratory (PNNL). The authors gratefully acknowledge Drs. William C. Maim, Wei-Min Hao, Jeffery L. Collett Jr., and Sonia Kreidenweiss for organizing the FLAME project and the staff at the USDA/USFS Fire Sciences Laboratory for technical help. Additionally, the authors acknowledge the support of Dr. Yuri Desyaterik at the sampling site. NR 51 TC 78 Z9 78 U1 3 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2009 VL 43 IS 10 BP 3764 EP 3771 DI 10.1021/es803456n PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 445JI UT WOS:000266046700058 PM 19544885 ER PT J AU Kutchko, BG Strazisar, BR Huerta, N Lowry, GV Dzombak, DA Thaulow, N AF Kutchko, Barbara G. Strazisar, Brian R. Huerta, Nicolas Lowry, Gregory V. Dzombak, David A. Thaulow, Niels TI CO2 Reaction with Hydrated Class H Well Cement under Geologic Sequestration Conditions: Effects of Flyash Admixtures SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RESISTANCE; CONCRETE AB The rate and mechanism of reaction of pozzolan-amended Class H cement exposed to both supercritical CO2 and CO2-saturated brine were determined under geologic sequestration conditions to assess the potential impact of cement degradation in existing wells on CO2 storage integrity. The pozzolan additive chosen, Type F flyash, is the most common additive used in cements for well sealing in oil-gas field operations. The 35:65 and 65:35 (v/v) pozzolan-cement blends were exposed to supercritical CO2 and CO2-saturated brine and underwent cement carbonation. Extrapolation of the carbonation rate for the 35:65 case suggests a penetration depth of 170-180 mm far both the CO2-saturated brine and supercritical CO2 after 30 years. Despite alteration in both pozzolan systems, the reacted cement remained relatively impermeable to fluid flow after exposure to brine solution saturated with CO2, with values well below the American Petroleum Institute recommended maximum well cement permeability of 200 mu D. Analyses of 50: 50 pozzolan-cement cores from a production well in a sandstone reservoir exhibited carbonation and low permeability to brine solution saturated with CO2, which are consistent with our laboratory findings. C1 [Kutchko, Barbara G.; Strazisar, Brian R.; Huerta, Nicolas] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Kutchko, Barbara G.; Lowry, Gregory V.; Dzombak, David A.] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Huerta, Nicolas] Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USA. [Thaulow, Niels] RJ Lee Grp Inc, Monroeville, PA 15146 USA. RP Strazisar, BR (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM brian.strazisar@netl.doe.gov FU U.S. Department of Energy (DOE) FX We thank Glen Benge (ExxonMobil) and Craig Gardner (Chevron) for technical guidance with cement slurry calculations. We acknowledge the technical assistance of Keith Wagner and Jim Kutchko, RJ Lee Group, Inc., James Moyer, Geotechnics, and Bret Howard, National Energy Technology Laboratory (NETL). This work was supported by the Carbon Sequestration Program of the U.S. Department of Energy (DOE) NETL. Reference in this paper to any specific commercial product or service is to facilitate understanding and does not imply endorsement by the U.S. DOE. NR 16 TC 52 Z9 52 U1 4 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 15 PY 2009 VL 43 IS 10 BP 3947 EP 3952 DI 10.1021/es803007e PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 445JI UT WOS:000266046700085 PM 19544912 ER PT J AU Maher, K Steefel, CI White, AF Stonestrom, DA AF Maher, Kate Steefel, Carl I. White, Art F. Stonestrom, Dave A. TI The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID SOLUTION SATURATION STATE; CALCITE RECRYSTALLIZATION RATES; ALBITE DISSOLUTION KINETICS; CATION-EXCHANGE CAPACITY; PORE FLUID CHEMISTRY; GIBBS FREE-ENERGY; PRECIPITATION KINETICS; KAOLINITE DISSOLUTION; SILICATE MINERALS; LABRADORITE DISSOLUTION AB In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2009) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. 1: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 20112024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO(2)(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic Saturation of the primary dissolving phases plagioclase and K-fieldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Maher, Kate] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Steefel, Carl I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [White, Art F.; Stonestrom, Dave A.] US Geol Survey, Menlo Pk, CA 94025 USA. RP Maher, K (reprint author), Stanford Univ, Dept Geol & Environm Sci, Barun Hall 118,450 Serra Mall,Bldg 320, Stanford, CA 94305 USA. EM kmaher@stanford.edu RI Maher, Kate/B-3489-2010; Stonestrom, David/E-9125-2011; Steefel, Carl/B-7758-2010 OI Maher, Kate/0000-0002-5982-6064; Stonestrom, David/0000-0001-7883-3385; NR 93 TC 125 Z9 129 U1 11 U2 80 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 15 PY 2009 VL 73 IS 10 BP 2804 EP 2831 DI 10.1016/j.gca.2009.01.030 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 440AF UT WOS:000265669300007 ER PT J AU Balke, N Granzow, T Rodel, J AF Balke, Nina Granzow, Torsten Roedel, Juergen TI Degradation of lead-zirconate-titanate ceramics under different dc loads SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE dielectric hysteresis; dielectric polarisation; domain boundaries; electric domains; fatigue; lead compounds; permittivity; piezoceramics; piezoelectricity ID INTERNAL BIAS; FERROELECTRICS; DEPENDENCE; FATIGUE AB During poling and application in actuators, piezoelectric ceramics like lead-zirconate-titanate are exposed to static or cyclically varying electric fields, often leading to pronounced changes in the electromechanical properties. These fatigue phenomena depend on time, peak electric load, and temperature. Although this process impacts the performance of many actuator materials, its physical understanding remains elusive. This paper proposes a set of key experiments to systematically investigate the changes in the ferroelectric hysteresis, field-dependent relative permittivity, and piezoelectric coefficient after submitting the material to dc loads of varying amplitude and duration. The observed effects are explained based on a model of domain stabilization due to charge accumulation at domain boundaries. C1 [Balke, Nina; Granzow, Torsten; Roedel, Juergen] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balke@ornl.gov; granzow@ceramics.tu-darmstadt.de RI Balke, Nina/Q-2505-2015 OI Balke, Nina/0000-0001-5865-5892 FU Deutsche Forschungsgemeinschaft [SFB 595] FX Financial support by the Deutsche Forschungsgemeinschaft (SFB 595) and the experimental assistance by Emil Aulbach are greatly acknowledged. NR 22 TC 13 Z9 13 U1 3 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 104105 DI 10.1063/1.3126707 PG 7 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100128 ER PT J AU Burnham, AK Qiu, SR Pitchimani, R Weeks, BL AF Burnham, Alan K. Qiu, S. R. Pitchimani, Rajasekar Weeks, Brandon L. TI Comparison of kinetic and thermodynamic parameters of single crystal pentaerythritol tetranitrate using atomic force microscopy and thermogravimetric analysis: Implications on coarsening mechanisms SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE ageing; atomic force microscopy; organic compounds; powders; surface morphology; thermal analysis; thermodynamics ID PETN; SURFACE; IMPURITY; GROWTH AB Pentaerythritol tetranitrate (PETN) is a secondary energetic material generally used in initiators for industrial and government applications. Changes in the morphology and surface area of aging powders have been observed during aging, which can modify the initiability and performance. Here work is presented using two different techniques to determine kinetic and thermodynamic parameters of single crystal PETN. Atomic force microscopy is used for low-temperature analysis, while thermogravimetric analysis is used at higher temperatures. A mechanism is proposed to expand the understanding of coarsening observed in real world PETN. C1 [Burnham, Alan K.; Qiu, S. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pitchimani, Rajasekar; Weeks, Brandon L.] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA. RP Burnham, AK (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM brandon.weeks@ttu.edu RI Weeks, Brandon/P-6331-2014 OI Weeks, Brandon/0000-0003-2552-4129 FU U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory [W-7405Eng-48]; NSF CAREER [CBET-0644832] FX This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory, under Contract No. W-7405Eng-48. This work was partially (B.L.W.) supported by NSF CAREER (Grant No. CBET-0644832). NR 24 TC 11 Z9 11 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 104312 DI 10.1063/1.3129504 PG 6 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100141 ER PT J AU Green, ML Allen, AJ Jordan-Sweet, JL Ilavsky, J AF Green, M. L. Allen, A. J. Jordan-Sweet, J. L. Ilavsky, J. TI Annealing behavior of atomic layer deposited HfO2 films studied by synchrotron x-ray reflectivity and grazing incidence small angle scattering SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE annealing; atomic layer deposition; crystal microstructure; dielectric thin films; diffusion; hafnium compounds; nanostructured materials; porosity; surface roughness; X-ray reflection ID GATE DIELECTRIC LAYERS; THIN-FILMS; ELECTRICAL-PROPERTIES; MICROELECTRONICS; CRYSTALLIZATION; MORPHOLOGY; BEAMLINE; SILICON; SIO2 AB New results are presented for the annealing behavior of ultrathin complementary-metal-oxide-semiconductor (CMOS) gate dielectric HfO2 films grown by atomic layer deposition (ALD). A series of ALD HfO2 dielectric films has been studied by a combination of x-ray reflectivity (XRR) and grazing-incidence small-angle x-ray scattering (GISAXS) measurements. By using these techniques together, we have shown that the surface, interfaces, and internal structure of thin ALD films can be characterized with unprecedented sensitivity. Changes in film thickness, film roughness, or diffuseness of the film/substrate interface as measured by XRR are correlated with the corresponding changes in the internal film nanostructure, as measured by GISAXS. Although the films are dense, an internal film structure is shown to exist, attributed primarily to approximate to 2 nm "missing island" porosity features close to the substrate; these are most likely associated with coalescence defects as a result of initial ALD growth, as they are not observed in the upper regions of the film. Some 8-9 nm heterogeneities are also present, which may indicate a widespread modulation in the film density pervading the entire film volume, and which likely also give rise to surface roughness. Comparison of the data between different scattering geometries and among a carefully designed sequence of samples has enabled important insights to be derived for the annealing behavior of the ALD HfO2 films. The main effects of single, brief, high temperature excursions to above 900 degrees C are to anneal out some of the fine voids and reduce the mean roughness and interfacial diffuseness of the film. These changes are indicative of densification. However, depending on the film thickness, the annealing behavior at temperatures between 650 and 800 degrees C is quite different for single excursion and cyclic anneals. Particularly for thin, just-coalesced films, XRR indicates marked increases in the film thickness and in the mean roughness/diffuseness dimension for cyclic anneals. GISAXS also shows an increase, rather than a reduction, in the void microstructure under these conditions. These changes in the film microstructure appear sufficient to overcome the expected film densification at elevated temperatures with implications for the gate dielectric performance of the films after extended high temperature exposure and cycling, as may occur during gate dielectric fabrication. C1 [Green, M. L.; Allen, A. J.] NIST, Gaithersburg, MD 20899 USA. [Jordan-Sweet, J. L.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Green, ML (reprint author), NIST, Gaithersburg, MD 20899 USA. EM martin.green@nist.gov RI USAXS, APS/D-4198-2013 NR 29 TC 3 Z9 3 U1 1 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 103522 DI 10.1063/1.3125510 PG 11 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100091 ER PT J AU Jensen, BJ Gray, GT, Hixson, RS AF Jensen, B. J. Gray, G. T., III Hixson, R. S. TI Direct measurements of the alpha-epsilon transition stress and kinetics for shocked iron SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE elastic waves; impact strength; iron; polymorphic transformations; shock wave effects ID X-RAY DIFFRACTION; PHASE-TRANSITION; REFRACTIVE-INDEX; HIGH-PRESSURE; INTERFEROMETER; SAPPHIRE; LASER AB Iron undergoes a polymorphic phase transformation from the alpha-phase (bcc) to the epsilon-phase (hcp) when compressed to stresses exceeding 13 GPa. Because the epsilon phase is denser than the alpha phase, a single shock wave is unstable and breaks up into an elastic wave, a plastic wave, and a phase transition wave. Examination of this structured wave coupled with various phase transformation models has been used to indirectly examine the transition kinetics. Recently, multimillion-atom molecular dynamics (MD) simulations have been used to examine the shock-induced transition in single crystal iron illustrating an orientation dependence of the transition stress, mechanisms, and kinetics. The objective of the current work was to perform plate impact experiments to examine the shock response of polycrystalline and single crystal iron with nanosecond resolution for impact stresses spanning the alpha-epsilon transition. The current data reveal an orientation dependence of the transition stress coupled with a transition time that is nonlinearly dependent on the impact stress with a duration ranging from picoseconds to hundreds of nanoseconds. The higher transition stress for iron shocked along the [100] direction is in agreement with the predictions from MD calculations that describe an orientation dependence of the transition stress. However, MD calculations do not capture the complexity of the continuum states achieved or the transition kinetics. Further results and implications are discussed in this paper. C1 [Jensen, B. J.; Gray, G. T., III; Hixson, R. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jensen, BJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bjjensen@lanl.gov NR 26 TC 35 Z9 35 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 103502 DI 10.1063/1.3110188 PG 7 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100071 ER PT J AU Paudel, MR Wolfe, CS Ali, N Stadler, S Christodoulides, JA Ederer, DL Li, YW Callcott, TA Freeland, JW AF Paudel, Moti R. Wolfe, Christopher S. Ali, Naushad Stadler, Shane Christodoulides, Joseph A. Ederer, David L. Li, Yinwan Callcott, Thomas A. Freeland, John W. TI X-ray magnetic circular dichroism of pulsed laser deposited Co2MnSn and Co2MnSb thin films grown on GaAs (001) SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE antimony alloys; cobalt alloys; magnetic circular dichroism; magnetic moments; magnetic thin films; manganese alloys; metallic thin films; pulsed laser deposition; sum rules; tin alloys; X-ray absorption spectra ID HALF-METALLIC FERROMAGNETS; HEUSLER ALLOYS; COBALT AB We present the structural and element specific magnetic properties of Co2MnSn and Co2MnSb thin films grown on GaAs (100) substrates using pulsed laser deposition. X-ray magnetic circular dichroism (XMCD) spectra were measured for 400 A thick films at the L-2,L-3 edges of Co and Mn. Element specific moments for Co and Mn in Co2MnSn were calculated from the x-ray absorption and XMCD spectra using the XMCD sum rules. The ratios of orbital to spin magnetic moments for Co and Mn were calculated for Co2MnSn and Co2MnSb. C1 [Paudel, Moti R.; Wolfe, Christopher S.; Ali, Naushad; Stadler, Shane] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Christodoulides, Joseph A.] USN, Res Lab, Washington, DC 20375 USA. [Ederer, David L.; Li, Yinwan] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Callcott, Thomas A.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Paudel, MR (reprint author), Univ Alberta, Cross Canc Inst, Dept Oncol, Edmonton, AB T6G 1Z2, Canada. EM motirajpaudel@yahoo.com FU NSF [NSF-DMR-0545728]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work is supported by NSF Grant No. NSF-DMR-0545728. The Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. NR 26 TC 3 Z9 3 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 103907 DI 10.1063/1.3126502 PG 5 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100113 ER PT J AU Shi, L Zhou, JH Kim, P Bachtold, A Majumdar, A McEuen, PL AF Shi, Li Zhou, Jianhua Kim, Philip Bachtold, Adrian Majumdar, Arun McEuen, Paul L. TI Thermal probing of energy dissipation in current-carrying carbon nanotubes SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE carbon nanotubes; scanning probe microscopy; temperature distribution; thermal conductivity; thermal diffusivity ID ELECTRICAL BREAKDOWN; BACK SCATTERING; 3-OMEGA METHOD; TRANSPORT; CONDUCTIVITY; CONDUCTANCE; MICROSCOPY; ABSENCE; VOLTAGE; PROBES AB The temperature distributions in current-carrying carbon nanotubes have been measured with a scanning thermal microscope. The obtained temperature profiles reveal diffusive and dissipative electron transport in multiwalled nanotubes and in single-walled nanotubes when the voltage bias was higher than the 0.1-0.2 eV optical phonon energy. Over 90% of the Joule heat in a multiwalled nanotube was found to be conducted along the nanotube to the two metal contacts. In comparison, about 80% of the Joule heat was transferred directly across the nanotube-substrate interface for single-walled nanotubes. The average temperature rise in the nanotubes is determined to be in the range of 5-42 K per microwatt Joule heat dissipation in the nanotubes. C1 [Shi, Li; Zhou, Jianhua] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Shi, Li; Zhou, Jianhua] Univ Texas Austin, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA. [Kim, Philip] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Bachtold, Adrian] Campus Univ Autonoma Barcelona, Inst Catala Nanotecnol, CSIC, Ctr Invest Nanociencia & Nanotecnol, E-08193 Barcelona, Spain. [Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Majumdar, Arun] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [McEuen, Paul L.] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. RP Shi, L (reprint author), Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. EM lishi@mail.utexas.edu RI Shi, Li/C-8123-2013; Kim, Philip/N-1886-2013; Bachtold, Adrian/C-1389-2014 OI Shi, Li/0000-0002-5401-6839; Bachtold, Adrian/0000-0002-6145-2479 FU Department of Energy [DE-FG02-07ER46377]; National Science Foundation; Texas Higher Education Coordinating Board Norman Hackerman Advanced Research Program FX The authors acknowledge Sergei Plyasunov's contribution during the early stage of this work and thank Arden Moore for calculating the spreading resistance. This work is supported in part by the Department of Energy Award No. DE-FG02-07ER46377, National Science Foundation Thermal Transport Processes Program, and Texas Higher Education Coordinating Board Norman Hackerman Advanced Research Program. NR 39 TC 51 Z9 52 U1 3 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 104306 DI 10.1063/1.3126708 PG 5 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100135 ER PT J AU Stieler, D Barsic, A Tuttle, G Li, M Ho, KM AF Stieler, Daniel Barsic, Anthony Tuttle, Gary Li, Ming Ho, Kai-Ming TI Effects of defect permittivity on resonant frequency and mode shape in the three-dimensional woodpile photonic crystal SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE lattice constants; permittivity; photonic band gap; photonic crystals ID BAND-GAP; WAVE-GUIDES AB Tuning the resonant frequency of a 1 uc defect across the bandgap of a three-dimensional woodpile photonic crystal (PC) was achieved by altering the defect's permittivity. Experiments were performed at microwave frequencies and calculations were made using the transfer-scattering matrix method. Defect permittivity was varied by using solid materials of different permittivities or by constructing structures smaller than a lattice constant from the the PC lattice materials. These small structures, which will be referred to as "sublattice defects," produce an effective permittivity between their two materials' permittivities. Changes in mode shape with resonant frequency and permittivity were also examined. C1 [Stieler, Daniel; Barsic, Anthony; Tuttle, Gary] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Stieler, Daniel; Barsic, Anthony; Tuttle, Gary] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Li, Ming; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, Ming; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Stieler, D (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM dstieler@gmail.com FU Department of Energy by Iowa State University [W-7405-ENG-82] FX Ames Laboratory is operated for the Department of Energy by Iowa State University under Contract No. W-7405-ENG-82. NR 17 TC 4 Z9 4 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 103109 DI 10.1063/1.3109213 PG 4 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100058 ER PT J AU Zhang, YW Bae, IT Sun, K Wang, CM Ishimaru, M Zhu, ZH Jiang, WL Weber, WJ AF Zhang, Yanwen Bae, In-Tae Sun, Kai Wang, Chongmin Ishimaru, Manabu Zhu, Zihua Jiang, Weilin Weber, William J. TI Damage profile and ion distribution of slow heavy ions in compounds SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRONIC STOPPING POWERS; IMPLANTED SILICON-CARBIDE; OF-FLIGHT SPECTROMETRY; RANGE PARAMETERS; STRUCTURAL-MATERIALS; DEFECT PRODUCTION; SINGLE-CRYSTALS; DEPTH PROFILES; HIGH-PRECISION; IRRADIATION AB Slow heavy ions inevitably produce a significant concentration of defects and lattice disorder in solids during their slowing-down process via ion-solid interactions. For irradiation effects research and many industrial applications, atomic defect production, ion range, and doping concentration are commonly estimated by the stopping and range of ions in matter (SRIM) code. In this study, ion-induced damage and projectile ranges of low energy Au ions in SiC are determined using complementary ion beam and microscopy techniques. Considerable errors in both disorder profile and ion range predicted by the SRIM code indicate an overestimation of the electronic stopping power, by a factor of 2 in most cases, in the energy region up to 25 keV/nucleon. Such large discrepancies are also observed for slow heavy ions, including Pt, Au, and Pb ions, in other compound materials, such as GaN, AlN, and SrTiO(3). Due to the importance of these materials for advanced device and nuclear applications, better electronic stopping cross section predictions, based on a reciprocity principle developed by Sigmund, is suggested with fitting parameters for possible improvement. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3118582] C1 [Zhang, Yanwen; Wang, Chongmin; Zhu, Zihua; Jiang, Weilin; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bae, In-Tae] SUNY Binghamton, Small Scale Syst Integrat & Packaging Ctr, Binghamton, NY 13902 USA. [Sun, Kai] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Ishimaru, Manabu] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. RP Zhang, YW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM yanwen.zhang@pnl.gov RI Weber, William/A-4177-2008; Zhu, Zihua/K-7652-2012; OI Weber, William/0000-0002-9017-7365; Jiang, Weilin/0000-0001-8302-8313 FU U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Y.Z. is grateful for suggestions regarding this work from Professor P. Sigmund. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U. S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 76 TC 48 Z9 48 U1 0 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 104901 DI 10.1063/1.3118582 PG 12 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100164 ER PT J AU Zhou, YG Zu, XT Gao, F Xiao, HY Lv, HF AF Zhou, Y. G. Zu, X. T. Gao, F. Xiao, H. Y. Lv, H. F. TI Electronic and magnetic properties of graphene absorbed with S atom: A first-principles study SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE adsorption; band structure; density functional theory; graphene; magnetic moments; surface energy; surface potential ID EXCHANGE AB Stable configuration, electronic structures, and magnetic behaviors for S adsorption on graphene have been investigated by first-principles calculations. It is found that the adsorption site of S on graphene is coverage dependent. As the increase in coverage from 0 to 0.5 ML, the preferred site is changed from bridge to hollow site. For the adsorption of S at bridge site, no magnetic moment is detected, and the adsorption is characterized by strong hybridization between the S 2s state and graphene sigma states. For the adsorption of S at hollow site, a magnetic moment of 1.98 mu(B) was induced. In this case, the hybridization occurs between S 2p states and graphene pi states. Furthermore, from the investigation of the surface potential energy curve, we find that graphene is a suitable candidate for the S storage. C1 [Zhou, Y. G.; Zu, X. T.; Xiao, H. Y.; Lv, H. F.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Zu, X. T.] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110015, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 FU NSAF Joint Foundation of China [10376006]; Sichuan Young Scientists Foundation [103ZQ026-059]; SRF; US Department of Energy [DE-AC05-76RL01830] FX This study was supported financially by the NSAF Joint Foundation of China (Grant No. 10376006) and by the Sichuan Young Scientists Foundation (Grant No. 103ZQ026-059) and by the Project-sponsored by SRF for ROCS, SEM. F. G. was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC05-76RL01830. NR 15 TC 13 Z9 13 U1 3 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 15 PY 2009 VL 105 IS 10 AR 104311 DI 10.1063/1.3130401 PG 5 WC Physics, Applied SC Physics GA 451VX UT WOS:000266500100140 ER PT J AU Rozalen, M Brady, PV Huertas, FJ AF Rozalen, Marisa Brady, Patrick V. Huertas, F. Javier TI Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Montmorillonite; Smectite; Acid-base properties; Potentiometric titration; Surface complexation model; Dissolution rates ID ACID-BASE PROPERTIES; SOLID-SOLUTION INTERFACE; NA-MONTMORILLONITE; PROTON ADSORPTION; MECHANISTIC DESCRIPTION; KAOLINITE DISSOLUTION; ZN SORPTION; AB-INITIO; PH; 25-DEGREES-C AB The surface chemistry of K-montmorillonite was investigated by potentiometric titrations conducted at 25, 50 and 70 degrees C and at ionic strengths of 0.001, 0.01 and 0.1 M KNO(3). Proton adsorption decreases with electrolyte concentration at all pHs. The pH of zero net proton charge (PZNPC) decreases from 8.1 to 7.6 when the ionic strength increases from 0.001 to 0.1 M. Temperature has a very small effect on surface charge. A constant capacitance model that accounts for protonation/deprotonation of aluminol and silanol edge sites and basal plane H(+)/K(+) exchange is used to fit the experimental data. H(+) and OH(-) adsorption to specific surface sites appear to account for the pH-dependence of the K-montmorillonite dissolution. (C) 2009 Elsevier Inc. All rights reserved. C1 [Rozalen, Marisa; Huertas, F. Javier] CSIC, Estac Expt Zaidin, Dept Environm Geochem, E-18008 Granada, Spain. [Rozalen, Marisa; Brady, Patrick V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rozalen, M (reprint author), CSIC, Estac Expt Zaidin, Dept Environm Geochem, Prof Albareda 1, E-18008 Granada, Spain. EM mrozalen@eez.csic.es RI Huertas, F. Javier/B-8332-2008; Rozalen, Maria Luisa/L-9757-2015 OI Huertas, F. Javier/0000-0002-1833-6018; Rozalen, Maria Luisa/0000-0003-3254-1218 FU Spanish National Research Program [CGL2001-0255, CGL2005-00618]; EC [FIKW-CT-2000-00016, FiKW-CT-200000028]; Ministerio de Educacion y Ciencia FX This investigation obtained financial support from Spanish National Research Program (CGL2001-0255, CGL2005-00618), EC (Febex 11 FIKW-CT-2000-00016 and Ecoclay II FiKW-CT-200000028), and ENRESA (EN 0770043). M.R. was granted by Ministerio de Educacion y Ciencia. We also thank to Sandia National Laboratories and Cooperative Monitoring Center who hosted M.R. during the experimental work. We greatly appreciate the helpful suggestions of the two reviewers. NR 61 TC 36 Z9 38 U1 3 U2 33 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD MAY 15 PY 2009 VL 333 IS 2 BP 474 EP 484 DI 10.1016/j.jcis.2009.01.059 PG 11 WC Chemistry, Physical SC Chemistry GA 432GM UT WOS:000265121500007 PM 19281997 ER PT J AU Jang, JH Kim, HS Norton, DP Craciun, V AF Jang, J. H. Kim, H. S. Norton, D. P. Craciun, V. TI Study of microstructural evolutions in phosphorus-doped ZnO films grown by pulsed laser deposition SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Characterization; X-ray diffraction; Pulsed laser deposition; Semiconducting II-IV materials ID P-TYPE ZNO; MOLECULAR-BEAM EPITAXY; THIN-FILMS; ROOM-TEMPERATURE; SAPPHIRE; GAN; EMISSION; DEVICES; LAYERS AB The microstructure of P-doped ZnO films grown on the c-plane sapphire substrate by pulsed laser deposition (PLD) was investigated. ZnO films were highly textured along c-axis with two different in-plane orientations. The textured domain was surrounded by the threading dislocations, resulting in the formation of low-angle grain boundary. It was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. For the microstrain study, X-ray diffraction line profile analysis (LPA) was performed. The 0.5 at% P-doped ZnO film showed much higher microstrain than the 1.0 at% P-doped ZnO film as well as as-grown film, which indicated that the phosphorus in former film was effectively incorporated into ZnO film. X-ray photoelectron spectroscopy (XPS) results showed that the phosphorus in 1.0 at% P-doped ZnO film tended towards segregation, which was well consistent with XRD results. (C) 2009 Elsevier B.V. All rights reserved. C1 [Jang, J. H.; Norton, D. P.; Craciun, V.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kim, H. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Jang, JH (reprint author), Univ Florida, Dept Mat Sci & Engn, Box 116400, Gainesville, FL 32611 USA. EM huse29@ufl.edu RI Craciun, Valentin/C-4789-2011 NR 27 TC 10 Z9 11 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAY 15 PY 2009 VL 311 IS 11 BP 3143 EP 3146 DI 10.1016/j.jcrysgro.2009.03.019 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 465BH UT WOS:000267555100005 ER PT J AU Hu, SY Henager, CH AF Hu, Shenyang Henager, Charles H., Jr. TI Phase-field simulations of Te-precipitate morphology and evolution kinetics in Te-rich CdTe crystals SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Growth kinetics; Morphology; Phase-field model; Te precipitate; CdTe crystal ID CDZNTE RADIATION DETECTORS; CADMIUM TELLURIDE; BRIDGMAN GROWTH; POINT-DEFECTS; PRESSURE; QUALITY; NONSTOICHIOMETRY; DYNAMICS; MODELS; SYSTEM AB Te precipitates are one of principal defects that form during cooling of melt-grown CdTe or CZT crystals when grown Te-rich. Many factors such as the kinetic properties of intrinsic point defects (vacancy, interstitial, and antisite defects); stresses associated with the lattice mismatch between precipitate and matrix; temperature gradients and extended defects (dislocations, twin and grain boundaries); non-stoichiometric composition; thermal treatment history all affect the formation and growth/dissolution of Te precipitates in CdTe. A good understanding of these effects on Te precipitate evolution kinetics is technically important in order to optimize material processing and obtain high-quality crystals. This research develops a phase-field model capable of investigating the evolution of coherent Te precipitates in a Te-rich CdTe crystal undergoing cooling from the melt. Cd vacancies and Te interstitials are assumed to be the dominant diffusing species in the system, which is in two-phase equilibrium (matrix CdTe and liquid Te inclusion) at high temperatures and three-phase equilibrium (matrix CdTe, Te precipitate, and void) at low temperatures. Using available thermodynamic and kinetic data from experimental phase diagrams and thermodynamic calculations, the effects of Te interstitial and Cd vacancy mobility, cooling rates and stresses on Te precipitate, and void evolution kinetics are investigated. Published by Elsevier B.V. C1 [Hu, Shenyang; Henager, Charles H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hu, SY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM shenyang.hu@pnl.gov OI HU, Shenyang/0000-0002-7187-3082; Henager, Chuck/0000-0002-8600-6803 FU US Department of Energy [DE-AC06-76RLO 1830]; Office of Defense Nuclear Nonproliferation, office of Nonproliferation Research and Development [NA-22] FX PNNL is operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. This work was funded at PNNL by the Office of Defense Nuclear Nonproliferation, office of Nonproliferation Research and Development (NA-22). NR 49 TC 15 Z9 16 U1 8 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAY 15 PY 2009 VL 311 IS 11 BP 3184 EP 3194 DI 10.1016/j.jcrysgro.2009.02.042 PG 11 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 465BH UT WOS:000267555100013 ER PT J AU Muldoon, JG Pintauro, PN Wysick, RJ Lin, J Orme, CJ Stewart, FF AF Muldoon, John G. Pintauro, Peter N. Wysick, Ryzard J. Lin, Jun Orme, Christopher J. Stewart, Frederick F. TI Synthesis, characterization, and gas permeability of a series of 4-phenylphenoxy/phenoxy substituted polyphosphazene membranes SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Membranes; Polyphosphazenes; Gas permeability; Gas separation ID POLY(ORGANOPHOSPHAZENE) MEMBRANES; PHOSPHAZENE MEMBRANES; MECHANICAL-PROPERTIES; PENDANT GROUPS; WATER; PERVAPORATION; TRANSPORT; POLY; SEPARATIONS; SELECTIVITY AB Phosphazene polymers are unique materials in that series of materials can be synthesized with a uniform backbone structure while varying the pendant group speciation. The result of this variation is that the physical properties can be controlled through adroit selection of pendant groups. in this work, a series of phosphazenes have been synthesized using phenol and 4-phenylphenol (PP) as the pendant groups. The relative amounts of PP were varied between 10% and 47%. As the PP was increased, the glass transition also increased. Furthermore, at 10.0% and 47.4% loadings. the polymers were found to be semicrystalline. Loadings in between these values, 25.9%, 30.6%, and 34.5%, were found to be completely amorphous. Gas permeability characterization of these materials showed that, regardless of the crystallinity, increased permeability with decreasing PP loading. Gases used in this study include O(2), N(2), CO(2), CH(4), He, and H(2). Additionally, ideal separation factors for the gas pairs O(2)/N(2), He/N(2,) and CO(2)/CH(4) are discussed. (C) 2009 Elsevier B.V. All rights reserved. C1 [Orme, Christopher J.; Stewart, Frederick F.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Muldoon, John G.] Toyota Res Inst N Amer, Ann Arbor, MI 48105 USA. [Pintauro, Peter N.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Wysick, Ryzard J.; Lin, Jun] Case Western Reserve Univ, Dept Chem Engn, Cleveland, OH 44106 USA. RP Stewart, FF (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM john.muldoon@tema.toyota.com; Frederick.Stewart@inl.gov RI Lin, Jun/F-5732-2013 NR 35 TC 6 Z9 7 U1 0 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD MAY 15 PY 2009 VL 334 IS 1-2 BP 74 EP 82 DI 10.1016/j.memsci.2009.02.016 PG 9 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 440LR UT WOS:000265702300009 ER PT J AU Fadeev, EA Sam, MD Clubb, RT AF Fadeev, Evgeny A. Sam, My D. Clubb, Robert T. TI NMR Structure of the Amino-Terminal Domain of the Lambda Integrase Protein in Complex with DNA: Immobilization of a Flexible Tail Facilitates Beta-Sheet Recognition of the Major Groove SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE NMR; protein-DNA interactions; structure; recombination ID EXCISIVE RECOMBINATION; BINDING DOMAIN; PHAGE-LAMBDA; NOESY SPECTRA; GENE-PRODUCT; INT PROTEIN; SITE; XIS; IDENTIFICATION; PURIFICATION AB The integrase protein (Int) from bacteriophage lambda is the archetypal member of the tyrosine recombinase family, a large group of enzymes that rearrange DNA in all domains of life. Int catalyzes the insertion and excision of the viral genome into and out of the Escherichia coli chromosome. Recombination transpires within higher-order nucleoprotein complexes that form when its amino-terminal domain binds to arm-type DNA sequences that are located distal to the site of strand exchange. Arm-site binding by Int is essential for catalysis, as it promotes Int-mediated bridge structures that stabilize the recombination machinery. We have elucidated how Int is able to sequence specifically recognize the arm-type site sequence by determining the Solution structure of its amino-terminal domain (Int(N), residues Met1 to Leu64) in complex with its P'2 DNA binding site. Previous studies have shown that Int(N) adopts a rare monomeric DNA binding fold that consists of a three-stranded antiparallel beta-sheet that is packed against a carboxy-terminal alpha helix. A low-resolution crystal structure of the full-length protein also revealed that the sheet is inserted into the major groove of the arm-type site. The solution structure presented here reveals how Int(N) specifically recognizes the arm-type site sequence. A novel feature of the new solution structure is the use of an 11-residue tail that is located at the amino terminus. DNA binding induces the folding of a 3(10) helix in the tail that projects the amino terminus of the protein deep into the minor groove for stabilizing DNA contacts. This finding reveals the structural basis for the observation that the "unstructured" amino terminus is required for recombination. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Clubb, Robert T.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. RP Clubb, RT (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 405 Hilgard Ave, Los Angeles, CA 90095 USA. EM rclubb@mbi.ucla.edu FU U.S. Department of Energy [DE-FC-03-87ER60615] FX We thank Dr. Scott Robson for useful discussions and Dr. Robert Peterson for his assistance with NMR experiments. This work was supported by a grant from the U.S. Department of Energy (DE-FC-03-87ER60615). NR 46 TC 19 Z9 21 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD MAY 15 PY 2009 VL 388 IS 4 BP 682 EP 690 DI 10.1016/j.jmb.2009.03.041 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 449AG UT WOS:000266302500002 PM 19324050 ER PT J AU Pak, JE Sharon, C Satkunarajah, M Auperin, TC Cameron, CM Kelvin, DJ Seetharaman, J Cochrane, A Plummer, FA Berry, JD Rini, JM AF Pak, John E. Sharon, Chetna Satkunarajah, Malathy Auperin, Thierry C. Cameron, Cheryl M. Kelvin, David J. Seetharaman, Jayaraman Cochrane, Alan Plummer, Francis A. Berry, Jody D. Rini, James M. TI Structural Insights into Immune Recognition of the Severe Acute Respiratory Syndrome Coronavirus S Protein Receptor Binding Domain SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE immune recognition; spike glycoprotein; SARS; SARS-CoV; angiotensin-converting enzyme 2 ID ANGIOTENSIN-CONVERTING ENZYME-2; POTENT NEUTRALIZING ANTIBODIES; HUMAN MONOCLONAL-ANTIBODIES; SARS-CORONAVIRUS; SPIKE PROTEIN; PROTECTIVE IMMUNITY; VIRUS INFECTIVITY; SUBUNIT VACCINE; INFLUENZA-VIRUS; MICE AB The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for host cell attachment and fusion of the viral and host cell membranes. Within S the receptor binding domain (RBD) mediates the interaction with angiotensin-converting enzyme 2 (ACE2), the SARS-CoV host cell receptor. Both S and the RBD are highly immunogenic and both have been found to elicit neutralizing antibodies. Reported here is the X-ray crystal structure of the RBD in complex with the Fab of a neutralizing Mouse monoclonal antibody, F26G19, elicited by immunization with chemically inactivated SARS-CoV. The RBD-F26G19 Fab complex represents the first example of the structural characterization of all antibody elicited by an immune response to SARS-CoV or any fragment of it. The structure reveals that the RBD surface recognized by F26G19 overlaps significantly with the surface recognized by ACE2 and, as such, Suggests that F26G19 likely neutralizes SARS-CoV by blocking the virus-host cell interaction. (C) 2009 Elsevier I-td. All rights reserved. C1 [Pak, John E.; Sharon, Chetna; Satkunarajah, Malathy; Auperin, Thierry C.; Cochrane, Alan; Rini, James M.] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Sharon, Chetna; Satkunarajah, Malathy; Auperin, Thierry C.; Rini, James M.] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada. [Cameron, Cheryl M.; Kelvin, David J.] Univ Hlth Network, Toronto, ON M5G 1L7, Canada. [Cameron, Cheryl M.; Kelvin, David J.] Univ Toronto, Toronto, ON M5S 1A8, Canada. [Seetharaman, Jayaraman] Brookhaven Natl Lab, Upton, NY 11973 USA. [Plummer, Francis A.; Berry, Jody D.] Natl Microbiol Lab, Winnipeg, MB R3E 3R2, Canada. RP Rini, JM (reprint author), Univ Toronto, Dept Mol Genet, 100 Coll St, Toronto, ON M5S 1A8, Canada. EM james.rini@utoronto.ca RI Berry, Jody/C-3184-2013 FU Protein Engineering Network Centres of Excellence; Canadian Institutes of Health Research FX Support for this work was provided by the Protein Engineering Network Centres of Excellence (to J.M.R and A.C). and the Canadian Institutes of Health Research (to A.C) C.S. and T.C.A. received fellowships from the Canadian Institutes of Health Research Strategic Training Program in the Structural Biology of Membrane Proteins Linked to Disease. NR 51 TC 7 Z9 8 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD MAY 15 PY 2009 VL 388 IS 4 BP 815 EP 823 DI 10.1016/j.jmb.2009.03.042 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 449AG UT WOS:000266302500011 PM 19324051 ER PT J AU Wong, L Suratwala, T Feit, MD Miller, PE Steele, R AF Wong, L. Suratwala, T. Feit, M. D. Miller, P. E. Steele, R. TI The effect of HF/NH4F etching on the morphology of surface fractures on fused silica SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Glasses; Fracture; Indentation, microindentation; Optical microscopy; Lasers; Silica ID HYDROFLUORIC-ACID; DISSOLUTION; DAMAGE; GLASS AB The effects of HF/NH4F, wet chemical etching on the morphology of individual surface fractures (indentations, scratches) and of an ensemble of surface fractures (ground surfaces) on fused silica glass has been characterized. For the individual surface fractures, a series of static or dynamic (sliding) Vickers and Brinnell indenters were used to create radial, lateral, Hertzian cone and trailing indentation fractures on a set of polished fused silica substrates which were subsequently etched. After short etch times. the visibility of both surface and subsurface cracks is significantly enhanced when observed by optical microscopy. This is attributed to the increased width of the cracks following etching, allowing for greater optical scatter at the fracture interface. The removal of material during etching was found to be isotropic except in areas where the etchant has difficulty penetrating or in areas that exhibit significant plastic deformation/densification. Isolated fractures continue to etch, but will never be completely removed since the bottom and top of the crack both etch at the same rate. The etching behavior of ensembles of closely spaced cracks, such as those produced during grinding, has also been characterized. This was done using a Second set of fused silica samples that were ground using either fixed or loose abrasives. The resulting samples were etched and both the etch rate and the morphology of the surfaces were monitored as a function of time. Etching results in the formation of a series of open cracks or cusps, each corresponding to the individual fractures originally on the surface of the substrate. During extended etching, the individual cusps coalesce with one another, providing a means of reducing the depth of subsurface damage and the peak-to-valley roughness. In addition, the material removal rate of the ground surfaces was found to scale with the surface area of the cracks as a function of etch time. The initial removal rate for the ground surface was typically 3.5 x the bulk etch rate. The evolving morphology of ground surfaces during etching was simulated using an isotropic finite difference model. This model illustrates the importance that the initial distributions of fracture sizes and spatial locations have on the evolution of roughness and the rate at which material is removed during the etching process. The etching of ground surfaces can be used during optical fabrication to convert subsurface damage into surface roughness thereby reducing the time required to produce polished surfaces that are free of subsurface damage. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wong, L.; Suratwala, T.; Feit, M. D.; Miller, P. E.; Steele, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wong, L (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM wong69@llnl.gov RI Feit, Michael/A-4480-2009; Suratwala, Tayyab/A-9952-2013 OI Suratwala, Tayyab/0000-0001-9086-1039 NR 29 TC 60 Z9 69 U1 6 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAY 15 PY 2009 VL 355 IS 13 BP 797 EP 810 DI 10.1016/j.jnoncrysol.2009.01.037 PG 14 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 453YP UT WOS:000266649100006 ER PT J AU Baumann, TF Jones, TV Wilson, T Saab, AP Maxwell, RS AF Baumann, Theodore F. Jones, Ticora V. Wilson, Thomas Saab, Andrew P. Maxwell, Robert S. TI Synthesis and Characterization of Novel PDMS Nanocomposites Using POSS Derivatives as Cross-Linking Filler SO JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY LA English DT Article DE elastomers; nanocomposites; polysiloxanes ID POLYHEDRAL OLIGOMERIC SILSESQUIOXANE; POLYMER NANOCOMPOSITES; COPOLYMERS AB We report the synthesis and characterization of novel elastomeric nanocomposites containing polyhedral oligomeric silsesquioxanes (POSS) as both the cross-linker and filler within a polydimethylsiloxane (PDMS) polymer matrix. These polymer composites were prepared through the reaction of octasilane-POSS (OS-POSS) with vinyl-terminated PI)MS chains using hydrosilylation chemistry. In addition, larger super-POSS cross-linkers, consisting of two pendant hepta(isobutyl)POSS molecules attached to a central octasilane-POSS core, were also used in the fabrication of the PDMS composites. The chemical incorporation of these POSS cross-linkers into the PDMS network was verified by solid-state (1)H magic angle spinning NMR. Based on dynamic mechanical analysis, the PDMS nanocomposites prepared with the octafunctional OS-POSS cross-linker exhibited enhanced mechanical properties relative to polymer systems prepared with the tetrafunctional TDSS cross-linker at equivalent loading levels. The observed improvements in mechanical properties can be attributed to the increased dimensionality of the POSS cross-linker. The PDMS elastomers synthesized from the larger super-POSS molecule showed improved mechanical properties relative to both the TDSS and OS-POSS composites due to the increased volume-fraction of POSS filler in the polymer matrix. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2589-2596, 2009 C1 [Baumann, Theodore F.; Jones, Ticora V.; Wilson, Thomas; Saab, Andrew P.; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Baumann, TF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM baumann2@llnl.gov NR 27 TC 40 Z9 41 U1 5 U2 25 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-624X J9 J POLYM SCI POL CHEM JI J. Polym. Sci. Pol. Chem. PD MAY 15 PY 2009 VL 47 IS 10 BP 2589 EP 2596 DI 10.1002/pola.23344 PG 8 WC Polymer Science SC Polymer Science GA 440KR UT WOS:000265699700011 ER PT J AU Govindaraju, N Liu, WN Sun, X Singh, P Singh, RN AF Govindaraju, N. Liu, W. N. Sun, X. Singh, P. Singh, R. N. TI A modeling study on the thermomechanical behavior of glass-ceramic and self-healing glass seals at elevated temperatures SO JOURNAL OF POWER SOURCES LA English DT Article DE Solid Oxide Fuel Cell; Glass seals; Thermomechanical behavior; Modeling; Creep ID OXIDE FUEL-CELLS; THERMAL-STRESS ANALYSIS; FINITE-ELEMENT-ANALYSIS; PLANAR SOFC; TOOL AB Hermetic gas seals are critical components of planar Solid Oxide Fuel Cells (SOFCs). This article focuses on the comparative evaluation of a glass-ceramic seal developed by the Pacific Northwest National Laboratory (PNNL) and a self-healing glass seal developed by the University of Cincinnati. The stress and strain levels in the Positive electrode-Electrolyte-Negative electrode (PEN) seal in a single-cell stack are evaluated using a multi-physics simulation package developed at PNNL Simulations were carried out with and without consideration of a clamping force and a stack body force, respectively. The results indicate that the overall stress and strain levels are dominated by the thermal expansion mismatches between the different cell components. Further, compared with the glass-ceramic, the self-healing glass results in a much lower steady state stress value due to its much lower stiffness at the operating temperature of the SOFC. It also exhibits much shorter relaxation times due to a high creep rate. It is also noted that the self-healing glass seal will experience continuing creep deformation at the operating temperature of a SOFC therefore resulting in possible overflow of the sealant material. Therefore, a stopper material may be required to maintain its geometric stability during operation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Govindaraju, N.; Singh, R. N.] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Liu, W. N.; Sun, X.; Singh, P.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Singh, RN (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM Raj.Singh@uc.edu RI Singh, Prabhakar/M-3186-2013 FU United States Department of Energy [DE-AC06-76RL01830, DE-FC2604NT42227]; U.S. Department of Energy's National Energy Technology Laboratory (NETL).; University of Cincinnati FX The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy under Contract DE-AC06-76RL01830. The work summarized in this report was funded as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory (NETL). The University of Cincinnati authors gratefully acknowledge the support for this work under the SECA program DOE contract DE-FC2604NT42227, the University of Cincinnati, and the stewardship of Dr. A. Manivarman. The authors would also like to acknowledge the help and technical discussions with Dr. Brian Koeppel. NR 22 TC 21 Z9 21 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAY 15 PY 2009 VL 190 IS 2 BP 476 EP 484 DI 10.1016/j.jpowsour.2009.01.006 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 452XK UT WOS:000266574300038 ER PT J AU Yeh, WW Jaru-ampornpan, P Nevidomskyte, D Asmal, M Rao, SS Buzby, AP Montefiori, DC Korber, BT Letvin, NL AF Yeh, Wendy W. Jaru-ampornpan, Pimkwan Nevidomskyte, Daiva Asmal, Mohammed Rao, Srinivas S. Buzby, Adam P. Montefiori, David C. Korber, Bette T. Letvin, Norman L. TI Partial Protection of Simian Immunodeficiency Virus (SIV)-Infected Rhesus Monkeys against Superinfection with a Heterologous SIV Isolate (vol 83, pg 2686, 2009) SO JOURNAL OF VIROLOGY LA English DT Correction C1 [Yeh, Wendy W.] Harvard Univ, Sch Med, Div Viral Pathogenesis, Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. NIH, Vaccine Res Ctr, Bethesda, MD 20892 USA. Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Santa Fe Inst, Santa Fe, NM 87501 USA. RP Yeh, WW (reprint author), Harvard Univ, Sch Med, Div Viral Pathogenesis, Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD MAY 15 PY 2009 VL 83 IS 10 BP 5293 EP 5293 DI 10.1128/JVI.00496-09 PG 1 WC Virology SC Virology GA 436IS UT WOS:000265407700056 ER PT J AU Bhatta, UM Ghatak, J Mukhopadhyay, M Wang, J Narayanan, S Satyam, PV AF Bhatta, Umananda M. Ghatak, J. Mukhopadhyay, M. Wang, Jin Narayanan, Suresh Satyam, P. V. TI Synchrotron X-ray induced damage in polymer (PS) thin films SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE X-ray reflectivity; Thin films; Polymer films; Radiation damage ID SELF-ASSEMBLED MONOLAYERS; IRRADIATION; ELECTRONS AB Thin polystyrene (PS) films (M-w= 234,000) are spin coated on silicon substrates with a Chromium (Cr) layer as a sandwiched metallic layer that produces photoelectrons (by synchrotron X-rays). Earlier studies on synchrotron radiation damage in PS films, without metallic layer, have shown a decrease in interfacial roughness and a slight increase in thickness, at temperatures below T-g [A.G. Richter, R. Guico, K Shull, J. Wang, Macromolecules 39 (2006) 1545]. Similar trend is observed in the presence of a thin layer of Cr film (similar to 2.5 nm). For the sample with a thick Cr layer the opposite effect was observed for X-ray radiation damage. For the 50 nm thick Cr film system thickness of the polystyrene film decreased by approximate to 4.4% which amount to a loss of about 0.021 nm(3) per incident photon in the fluence range studied (6.8 x 10(9) photons mm(-2) to 1 x 10(14) photons mm(-2)). Interfacial roughness also increased from about 1.0 nm to 2.1 nm in the process. These effects are explained by invoking the presence of more number of X-ray induced photoelectrons and secondary electrons for 50 nm thick Cr film case compared to 2.5 nm thin film case. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bhatta, Umananda M.; Ghatak, J.; Satyam, P. V.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Mukhopadhyay, M.; Wang, Jin; Narayanan, Suresh] Argonne Natl Lab, Adv Photon Source, Argonne, IL USA. [Mukhopadhyay, M.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Satyam, PV (reprint author), Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India. EM satyam@iopb.res.in RI Mukhopadhyay, Mrinmay/E-6667-2012 FU US Department of Energy; Office of Science; Office of Basic Energy Sciences [DEAC02-06CH11357] FX Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-06CH11357. We are grateful for the help provided by sector-8 staff during the measurements at APS (Sector-8). PVS would like thank S K Sinha of UCSD for his financial support for the stay at Argonne and very helpful discussions during the course of the stay. We thank Raymond Conley and Chian Liu for helping in the deposition from APS deposition lab. NR 16 TC 6 Z9 6 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY 15 PY 2009 VL 267 IS 10 BP 1807 EP 1810 DI 10.1016/j.nimb.2009.01.130 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 455LA UT WOS:000266759900011 ER PT J AU Braiman, Y Egami, T AF Braiman, Y. Egami, T. TI Nanoscale oscillatory fracture propagation in metallic glasses SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article ID CRACK-PROPAGATION; BRITTLE-FRACTURE; DYNAMICS; FRICTION; MODEL AB We describe the oscillatory crack propagation for small propagation velocities at the atomistic scale that was recently observed for brittle metallic glasses [G. Wang, Y.T. Wang, Y.H. Liu, MX Pan, D.Q. Zhao, W.H. Wang, Appl. Lett. 89 (2006) 121909; G. Wang, D.Q Zhao, H.Y. Bai, MX Pan, A.L. Xia, B.S. Han, XX Xi, Y. Wu, W.H. Wang, Phys. Rev. Lett. 98 (2007) 235501]. Based on a simple model of crack propagation [Y. Braiman, T. Egami, Phys. Rev. E, 77 (2008) 065101(R)], we derived and analyzed expressions for the feature size, oscillation period. and maximum strain accumulated in the material. (C) 2009 Elsevier B.V. All rights reserved. C1 [Braiman, Y.; Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Braiman, Y.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Braiman, Y (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,MS 6015, Oak Ridge, TN 37831 USA. EM braimany@ornl.gov FU US Department of Energy [DE-AC05-00OR-22725] FX This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences(LLH), US Department of Energy under contract DE-AC05-00OR-22725 with UT-Battele, LLC. NR 23 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD MAY 15 PY 2009 VL 388 IS 10 BP 1978 EP 1984 DI 10.1016/j.physa.2008.12.072 PG 7 WC Physics, Multidisciplinary SC Physics GA 430VC UT WOS:000265016600002 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CD DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Escalier, M Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A.-F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Escalier, M. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M.-A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of gamma + b + X and gamma + c + X Production Cross Sections in pp > Collisions at s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS; PHOTON AB First measurements of the differential cross sections d(3)sigma/(dp(T)(gamma)dy(gamma)dy(jet)) for the inclusive production of a photon in association with a heavy quark (b, c) jet are presented, covering photon transverse momenta 30 < p(T)(gamma)< 150 GeV, photon rapidities |y(gamma)|< 1.0, jet rapidities |y(jet)|< 0.8, and jet transverse momenta p(T)(jet)> 15 GeV. The results are based on an integrated luminosity of 1 fb(-1) in pp collisions at s=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider. The results are compared with next-to-leading order perturbative QCD predictions. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A.-F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Escalier, M.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Andrieu, B.; Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, LPNHE, IN2P3, CNRS, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M.-A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF H, FOM Inst, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF H, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] Univ Illinois, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Andrieu, B.; Bernardi, G.; Huske, N.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Mundim, Luiz/A-1291-2012; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016 OI Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108 NR 21 TC 35 Z9 35 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 192002 DI 10.1103/PhysRevLett.102.192002 PG 7 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700019 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CD Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Kertzscher, G Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Assis Jesus, A. C. S. Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Kertzscher, G. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for Charged Higgs Bosons Decaying into Top and Bottom Quarks in pp Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID E(+)E(-) COLLISIONS; EVENTS AB We describe a search for production of a charged Higgs boson, qq>-> H+, reconstructed in the tb final state in the mass range 180 <= M-H(+)<= 300 GeV. The search was undertaken at the Fermilab Tevatron collider with a center-of-mass energy s=1.96 TeV and uses 0.9 fb(-1) of data collected with the D0 detector. We find no evidence for charged Higgs boson production and set upper limits on the production cross section in the types I, II, and III two-Higgs-doublet models (2HDMs). An excluded region in the (M-H(+), tan beta) plane for type I 2HDM is presented. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Assis Jesus, A. C. S.; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Kertzscher, G.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Kertzscher, G.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Kertzscher, G.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Kertzscher, G.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF H, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, J.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Podesta-Lerma, P. L. M.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Haley, J.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, G.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Ancu, Lucian Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Shivpuri, R K/A-5848-2010; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; OI Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Belanger-Champagne, Camille/0000-0003-2368-2617 FU DOE; NSF; CEA; CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 26 TC 22 Z9 22 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 191802 DI 10.1103/PhysRevLett.102.191802 PG 7 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700017 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E. Krapivsky, P. L. TI Strong Mobility in Weakly Disordered Systems SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIMENSIONAL RANDOM-ENVIRONMENTS; NONEQUILIBRIUM DYNAMICS; EXCLUSION MODELS; SPIN-GLASSES; RANDOM-WALKS; DIFFUSION; LOCALIZATION; TRANSPORT; BEHAVIOR; ABSENCE AB We study transport of interacting particles in weakly disordered media. Our one-dimensional system includes (i) disorder, the hopping rate governing the movement of a particle between two neighboring lattice sites is inhomogeneous, and (ii) hard core interaction, the maximum occupancy at each site is one particle. We find that over a substantial regime, the root-mean-square displacement of a particle sigma grows superdiffusively with time t, sigma similar to(epsilon t)(2/3), where epsilon is the disorder strength. Without disorder the particle displacement is subdiffusive, sigma similar to t(1/4), and therefore disorder strongly enhances particle mobility. We explain this effect using scaling arguments, and verify the theoretical predictions through numerical simulations. Also, the simulations show that regardless of disorder strength, disorder leads to stronger mobility over an intermediate time regime. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU U. S. DOE [DE-AC52-06NA25396]; NSF [CHE-0532969, CCF-0829541] FX We thank Nigel Goldenfeld, Sidney Redner, and Stuart Trugman for useful discussions. We are grateful for financial support from U. S. DOE Grant No. DE-AC52-06NA25396, NSF Grants No. CHE-0532969 and No. CCF-0829541. NR 32 TC 17 Z9 19 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 190602 DI 10.1103/PhysRevLett.102.190602 PG 4 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700009 PM 19518935 ER PT J AU Casalderrey-Solana, J Mateos, D AF Casalderrey-Solana, Jorge Mateos, David TI Prediction of a Photon Peak in Relativistic Heavy Ion Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID HADRONIC SPECTRAL FUNCTIONS; QCD PHASE-TRANSITION; QUARK-GLUON PLASMA; STATISTICAL HADRONIZATION; RESTORATION; SUPPRESSION; SPS AB We show that if a flavorless vector meson remains bound after deconfinement, and if its limiting velocity in the quark-gluon plasma is subluminal, then this meson produces a distinct peak in the spectrum of thermal photons emitted by the plasma. We also demonstrate that this effect is a universal property of all strongly coupled, large-N-c plasmas with a gravity dual. For the J/psi, the corresponding peak lies between 3 and 5 GeV and could be observed in heavy-ion collisions at the LHC. C1 [Casalderrey-Solana, Jorge] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Mateos, David] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Casalderrey-Solana, J (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 70R319, Berkeley, CA 94720 USA. OI Casalderrey Solana, Jorge/0000-0002-5241-0154 FU NSF [PHY-0244764] FX We thank M. Cacciari, D. d'Enterria, E. Ferreiro, S. Hartnoll, G. Martinez, V. Koch, M. Strassler, V. N. Tram, and L. Yaffe for discussions, the INT at the University of Washington for hospitality, and the DOE, Contract No. DE-AC03-76SF00098 (J. C. S.) and NSF Grant No. PHY-0244764 (D. M.), for support. NR 41 TC 16 Z9 16 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 192302 DI 10.1103/PhysRevLett.102.192302 PG 4 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700021 PM 19518947 ER PT J AU Chambers, SA AF Chambers, Scott A. TI Comment on "Origin of Metallic States at the Heterointerface between the Band Insulators LaAlO3 and SrTiO3" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Comment on the Letter by K. Yoshimatsu et al., Phys. Rev. Lett. 101, 026802 (2008). The authors of the Letter offer a Reply. C1 Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. NR 2 TC 8 Z9 8 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 199703 DI 10.1103/PhysRevLett.102.199703 PG 1 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700081 PM 19519007 ER PT J AU Dix, OM Swartz, AG Zieve, RJ Cooley, J Sayles, TR Maple, MB AF Dix, O. M. Swartz, A. G. Zieve, R. J. Cooley, J. Sayles, T. R. Maple, M. B. TI Anisotropic Dependence of Superconductivity on Uniaxial Pressure in CeIrIn5 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-FERMION SUPERCONDUCTIVITY; ANTIFERROMAGNETISM; TRANSITION; MAGNETISM; CAPACITY; CERHIN5; STATE AB We measure the effect of uniaxial pressure on the superconducting transition temperature T-c in CeIrIn5. We find a linear change in T-c with both a-axis and c-axis pressure, with slopes of 56 and -66 mK/kbar, respectively. By comparing results from doping studies and different types of pressure measurements, we separate the influences of hybridization and dimensionality on T-c. We find the true geometric influence, for constant hybridization, is partial derivative T-c/partial derivative(c/a)=44 K. C1 [Dix, O. M.; Swartz, A. G.; Zieve, R. J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Sayles, T. R.; Maple, M. B.] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA. [Cooley, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Dix, OM (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RI Cooley, Jason/E-4163-2013 FU NSF [DMR-0454869, DMR-0802478] FX thank S. Johnson for useful discussions and J. Ma for helping to polish the samples. We acknowledge support from NSF under DMR-0454869 and DMR-0802478. NR 26 TC 7 Z9 7 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 197001 DI 10.1103/PhysRevLett.102.197001 PG 4 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700061 PM 19518987 ER PT J AU Horowitz, CJ Kadau, K AF Horowitz, C. J. Kadau, Kai TI Breaking Strain of Neutron Star Crust and Gravitational Waves SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAMMA-RAY BURSTS; GIANT FLARE; SGR 1900+14; EMISSION; OSCILLATIONS AB Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares. C1 [Horowitz, C. J.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Horowitz, C. J.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47405 USA. [Kadau, Kai] Los Alamos Natl Lab, Grp T1, Los Alamos, NM 87545 USA. RP Horowitz, CJ (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM horowit@indiana.edu; kkadau@lanl.gov FU DOE [DE-FG02-87ER40365]; IBM; U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; LDRD-DR FX We thank Ben Owen, Timothy C. Germann, Sanjay Reddy, and Bob Rutledge for important discussions. We also thank Andrey Chugunov for comments on the manuscript and Don Berry for help in equilibrating the impure sample. This work was supported in part (C.J.H.) by DOE grant DE-FG02-87ER40365 and by Shared University Research grants from IBM, Inc., to Indiana University and partly (K. K.) under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with funding from the LDRD-DR project X-ray bursts, Superbursts, and Giant Flares. NR 21 TC 122 Z9 122 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 191102 DI 10.1103/PhysRevLett.102.191102 PG 4 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700011 PM 19518937 ER PT J AU Lachniet, J Afanasev, A Arenhovel, H Brooks, WK Gilfoyle, GP Higinbotham, D Jeschonnek, S Quinn, B Vineyard, MF Adams, G Adhikari, KP Amaryan, MJ Anghinolfi, M Asavapibhop, B Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Barrow, S Batourine, V Battaglieri, M Beard, K Bedlinskiy, I Bektasoglu, M Bellis, M Benmouna, N Berman, BL Biselli, AS Bonner, BE Bookwalter, C Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Bultmann, S Burkert, VD Calarco, JR Careccia, SL Carman, DS Casey, L Cheng, L Cole, PL Coleman, A Collins, P Cords, D Corvisiero, P Crabb, D Crede, V Cummings, JP Dale, D Daniel, A Dashyan, N De Masi, R De Vita, R De Sanctis, E Degtyarenko, PV Denizli, H Dennis, L Deur, A Dhamija, S Dharmawardane, KV Dhuga, KS Dickson, R Djalali, C Dodge, GE Doughty, D Dragovitsch, P Dugger, M Dytman, S Dzyubak, OP Egiyan, H Egiyan, KS El Fassi, L Elouadrhiri, L Empl, A Eugenio, P Fatemi, R Fedotov, G Fersch, R Feuerbach, RJ Forest, TA Fradi, A Gabrielyan, MY Garcon, M Gavalian, G Gevorgyan, N Giovanetti, KL Girod, FX Goetz, JT Gohn, W Golovatch, E Gothe, RW Graham, L Griffioen, KA Guidal, M Guillo, M Guler, N Guo, L Gyurjyan, V Hadjidakis, C Hafidi, K Hakobyan, H Hanretty, C Hardie, J Hassall, N Heddle, D Hersman, FW Hicks, K Hleiqawi, I Holtrop, M Hu, J Huertas, M Hyde-Wright, CE Ilieva, Y Ireland, DG Ishkhanov, BS Isupov, EL Ito, MM Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kageya, T Kalantarians, N Keller, D Kellie, JD Khandaker, M Khetarpal, P Kim, KY Kim, K Kim, W Klein, A Klein, FJ Klusman, M Konczykowski, P Kossov, M Kramer, LH Kubarovsky, V Kuhn, J Kuhn, SE Kuleshov, SV Kuznetsov, V Laget, JM Langheinrich, J Lawrence, D Lima, ACS Livingston, K Lowry, M Lu, HY Lukashin, K MacCormick, M Malace, S Manak, JJ Markov, N Mattione, P McAleer, S McCracken, ME McKinnon, B McNabb, JWC Mecking, BA Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Mineeva, T Minehart, R Mirazita, M Miskimen, R Mokeev, V Moreno, B Moriya, K Morrow, SA Moteabbed, M Mueller, J Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M O'Rielly, GV Osipenko, M Ostrovidov, AI Park, K Park, S Pasyuk, E Paterson, C Pereira, SA Philips, SA Pierce, J Pivnyuk, N Pocanic, D Pogorelko, O Polli, E Popa, I Pozdniakov, S Preedom, BM Price, JW Prok, Y Protopopescu, D Qin, LM Raue, BA Riccardi, G Ricco, G Ripani, M Ritchie, BG Rosner, G Rossi, P Rowntree, D Rubin, PD Sabatie, F Saini, MS Salamanca, J Salgado, C Sandorfi, A Santoro, JP Sapunenko, V Schott, D Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shaw, J Shvedunov, NV Skabelin, AV Smith, ES Smith, LC Sober, DI Sokhan, D Starostin, A Stavinsky, A Stepanyan, S Stepanyan, SS Stokes, BE Stoler, P Stopani, KA Strakovsky, II Strauch, S Suleiman, R Taiuti, M Taylor, S Tedeschi, DJ Thompson, R Tkabladze, A Tkachenko, S Ungaro, M Vlassov, AV Watts, DP Wei, X Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Yun, J Yurov, M Zana, L Zhang, J Zhao, B Zhao, ZW AF Lachniet, J. Afanasev, A. Arenhoevel, H. Brooks, W. K. Gilfoyle, G. P. Higinbotham, D. Jeschonnek, S. Quinn, B. Vineyard, M. F. Adams, G. Adhikari, K. P. Amaryan, M. J. Anghinolfi, M. Asavapibhop, B. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Barrow, S. Batourine, V. Battaglieri, M. Beard, K. Bedlinskiy, I. Bektasoglu, M. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Bonner, B. E. Bookwalter, C. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Bueltmann, S. Burkert, V. D. Calarco, J. R. Careccia, S. L. Carman, D. S. Casey, L. Cheng, L. Cole, P. L. Coleman, A. Collins, P. Cords, D. Corvisiero, P. Crabb, D. Crede, V. Cummings, J. P. Dale, D. Daniel, A. Dashyan, N. De Masi, R. De Vita, R. De Sanctis, E. Degtyarenko, P. V. Denizli, H. Dennis, L. Deur, A. Dhamija, S. Dharmawardane, K. V. Dhuga, K. S. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Dragovitsch, P. Dugger, M. Dytman, S. Dzyubak, O. P. Egiyan, H. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Empl, A. Eugenio, P. Fatemi, R. Fedotov, G. Fersch, R. Feuerbach, R. J. Forest, T. A. Fradi, A. Gabrielyan, M. Y. Garcon, M. Gavalian, G. Gevorgyan, N. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Golovatch, E. Gothe, R. W. Graham, L. Griffioen, K. A. Guidal, M. Guillo, M. Guler, N. Guo, L. Gyurjyan, V. Hadjidakis, C. Hafidi, K. Hakobyan, H. Hanretty, C. Hardie, J. Hassall, N. Heddle, D. Hersman, F. W. Hicks, K. Hleiqawi, I. Holtrop, M. Hu, J. Huertas, M. Hyde-Wright, C. E. Ilieva, Y. Ireland, D. G. Ishkhanov, B. S. Isupov, E. L. Ito, M. M. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kageya, T. Kalantarians, N. Keller, D. Kellie, J. D. Khandaker, M. Khetarpal, P. Kim, K. Y. Kim, K. Kim, W. Klein, A. Klein, F. J. Klusman, M. Konczykowski, P. Kossov, M. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Laget, J. M. Langheinrich, J. Lawrence, D. Lima, A. C. S. Livingston, K. Lowry, M. Lu, H. Y. Lukashin, K. MacCormick, M. Malace, S. Manak, J. J. Markov, N. Mattione, P. McAleer, S. McCracken, M. E. McKinnon, B. McNabb, J. W. C. Mecking, B. A. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Mineeva, T. Minehart, R. Mirazita, M. Miskimen, R. Mokeev, V. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Mueller, J. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. O'Rielly, G. V. Osipenko, M. Ostrovidov, A. I. Park, K. Park, S. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Philips, S. A. Pierce, J. Pivnyuk, N. Pocanic, D. Pogorelko, O. Polli, E. Popa, I. Pozdniakov, S. Preedom, B. M. Price, J. W. Prok, Y. Protopopescu, D. Qin, L. M. Raue, B. A. Riccardi, G. Ricco, G. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Rowntree, D. Rubin, P. D. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Sandorfi, A. Santoro, J. P. Sapunenko, V. Schott, D. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shaw, J. Shvedunov, N. V. Skabelin, A. V. Smith, E. S. Smith, L. C. Sober, D. I. Sokhan, D. Starostin, A. Stavinsky, A. Stepanyan, S. Stepanyan, S. S. Stokes, B. E. Stoler, P. Stopani, K. A. Strakovsky, I. I. Strauch, S. Suleiman, R. Taiuti, M. Taylor, S. Tedeschi, D. J. Thompson, R. Tkabladze, A. Tkachenko, S. Ungaro, M. Vlassov, A. V. Watts, D. P. Wei, X. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Yun, J. Yurov, M. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. TI Precise Measurement of the Neutron Magnetic Form Factor G(M)(n) in the Few-GeV2 Region SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON-DEUTERON SCATTERING; 4-MOMENTUM TRANSFERS; CROSS-SECTIONS; NUCLEON; CLAS; SYSTEM AB The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q(2)=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data. C1 [Lachniet, J.; Quinn, B.; Bellis, M.; Bradford, R.; Dickson, R.; Feuerbach, R. J.; Kuhn, J.; McCracken, M. E.; McNabb, J. W. C.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Lachniet, J.; Adhikari, K. P.; Amaryan, M. J.; Bagdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Dharmawardane, K. V.; Dodge, G. E.; Forest, T. A.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Kuhn, S. E.; Niroula, M. R.; Niyazov, R. A.; Qin, L. M.; Sabatie, F.; Tkachenko, S.; Weinstein, L. B.; Yun, J.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Afanasev, A.] Hampton Univ, Hampton, VA 23668 USA. [Arenhoevel, H.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Gilfoyle, G. P.; Rubin, P. D.] Univ Richmond, Richmond, VA 23173 USA. [Higinbotham, D.; Batourine, V.; Bouchigny, S.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Cords, D.; Degtyarenko, P. V.; Deur, A.; Elouadrhiri, L.; Girod, F. X.; Guo, L.; Gyurjyan, V.; Hakobyan, H.; Hardie, J.; Heddle, D.; Ito, M. M.; Kageya, T.; Klein, F. J.; Kramer, L. H.; Kubarovsky, V.; Laget, J. M.; Lowry, M.; Lukashin, K.; Manak, J. J.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Niczyporuk, B. B.; Nozar, M.; Raue, B. A.; Sandorfi, A.; Sapunenko, V.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Wei, X.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Jeschonnek, S.] Ohio State Univ, Lima, OH 45804 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.; Starostin, A.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ, Carson, CA 90747 USA. [Casey, L.; Cheng, L.; Juengst, H. G.; Klein, F. J.; Lukashin, K.; Nadel-Turonski, P.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [De Masi, R.; Garcon, M.; Girod, F. X.; Konczykowski, P.; Laget, J. M.; Morrow, S. A.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Elouadrhiri, L.; Hardie, J.; Heddle, D.; Prok, Y.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Mineeva, T.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; Sokhan, D.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Gabrielyan, M. Y.; Klein, F. J.; Kramer, L. H.; Moteabbed, M.; Nasseripour, R.; Raue, B. A.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Barrow, S.; Bookwalter, C.; Crede, V.; Dennis, L.; Dragovitsch, P.; Eugenio, P.; Hanretty, C.; McAleer, S.; Ostrovidov, A. I.; Park, S.; Riccardi, G.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Dhuga, K. S.; Lima, A. C. S.; Munevar, E.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; O'Rielly, G. V.; Philips, S. A.; Popa, I.; Stokes, B. E.; Strakovsky, I. I.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.; Paterson, C.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Cole, P. L.; Dale, D.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [Avakian, H.; De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Polli, E.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; De Vita, R.; Golovatch, E.; Osipenko, M.; Ricco, G.; Ripani, M.; Sapunenko, V.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bouchigny, S.; Fradi, A.; Guidal, M.; Hadjidakis, C.; Jo, H. S.; MacCormick, M.; Moreno, B.; Morrow, S. A.; Niccolai, S.] Inst Phys Nucl ORSAY, Orsay, France. [Bedlinskiy, I.; Boiarinov, S.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Beard, K.; Giovanetti, K. L.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, K.; Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.; Yurov, M.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Rowntree, D.; Skabelin, A. V.; Suleiman, R.] MIT, Cambridge, MA 02139 USA. [Asavapibhop, B.; Lawrence, D.; Miskimen, R.; Shaw, J.] Univ Massachusetts, Amherst, MA 01003 USA. [Calarco, J. R.; Egiyan, H.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Bektasoglu, M.; Daniel, A.; Hicks, K.; Hleiqawi, I.; Keller, D.; Mibe, T.; Niculescu, G.; Tkabladze, A.] Ohio Univ, Athens, OH 45701 USA. [Denizli, H.; Dytman, S.; Kim, K. Y.; Mueller, J.; Thompson, R.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Adams, G.; Cummings, J. P.; Empl, A.; Hu, J.; Khetarpal, P.; Klusman, M.; Niyazov, R. A.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Bonner, B. E.; Mattione, P.; Mutchler, G. S.; Taylor, S.] Rice Univ, Houston, TX 77005 USA. [Fedotov, G.; Golovatch, E.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Osipenko, M.; Sharov, D.; Shvedunov, N. V.; Stopani, K. A.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Baltzell, N. A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Graham, L.; Guillo, M.; Huertas, M.; Ilieva, Y.; Langheinrich, J.; Lu, H. Y.; Malace, S.; Nasseripour, R.; Park, K.; Preedom, B. M.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Fatemi, R.; Joo, K.; Minehart, R.; Pierce, J.; Pocanic, D.; Prok, Y.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Coleman, A.; Egiyan, H.; Fersch, R.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Dashyan, N.; Egiyan, K. S.; Gevorgyan, N.; Griffioen, K. A.; Hakobyan, H.; Stepanyan, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Coleman, A.] Syst Planning & Anal, Alexandria, VA 22311 USA. [Guo, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rubin, P. D.] George Mason Univ, Fairfax, VA 22030 USA. RP Lachniet, J (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RI Ireland, David/E-8618-2010; Bektasoglu, Mehmet/A-2074-2012; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; riccardi, gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Ishkhanov, Boris/E-1431-2012; Kuleshov, Sergey/D-9940-2013; Isupov, Evgeny/J-2976-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Schumacher, Reinhard/K-6455-2013; Higinbotham, Douglas/J-9394-2014; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Quinn, Brian/N-7343-2014; OI Ireland, David/0000-0001-7713-7011; Kuleshov, Sergey/0000-0002-3065-326X; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Schumacher, Reinhard/0000-0002-3860-1827; Higinbotham, Douglas/0000-0003-2758-6526; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Quinn, Brian/0000-0003-2800-986X; Jeschonnek, Sabine/0000-0002-8603-7589; Afanasev, Andrei/0000-0003-0679-3307; Sapunenko, Vladimir/0000-0003-1877-9043 FU Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique; U. S. Department of Energy; National Science Foundation; Deutsche Forschungsgemeinschaft; U. K. Engineering and Physical Science Research Council; Chilean Fondo Nacional de Desarrollo Cientifico y Tecnologico; Korean Science and Engineering Foundation FX We acknowledge the staff of the Accelerator and Physics Divisions at Jefferson Lab that made this experiment possible. This work was supported in part by the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the U. S. Department of Energy, the National Science Foundation, an Emmy Noether grant from the Deutsche Forschungsgemeinschaft, the U. K. Engineering and Physical Science Research Council, the Chilean Fondo Nacional de Desarrollo Cientifico y Tecnologico, and the Korean Science and Engineering Foundation. Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility for the U. S. DOE. under Contract No. DE-AC05-06OR23177. NR 28 TC 58 Z9 58 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 192001 DI 10.1103/PhysRevLett.102.192001 PG 6 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700018 PM 19518944 ER PT J AU Pei, JC Nazarewicz, W Sheikh, JA Kerman, AK AF Pei, J. C. Nazarewicz, W. Sheikh, J. A. Kerman, A. K. TI Fission Barriers of Compound Superheavy Nuclei SO PHYSICAL REVIEW LETTERS LA English DT Article ID FOCK-BOGOLYUBOV EQUATIONS; HARMONIC-OSCILLATOR BASIS; MEAN-FIELD; ROTATING NUCLEI; HOT NUCLEI; ELEMENTS; ENERGY AB The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for (264)Fm, (272)Ds, (278)112, (292)114, and (312)124. For nuclei around (278)112 produced in "cold-fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around (292)114 synthesized in "hot-fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied. C1 [Pei, J. C.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Pei, J. C.; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Pei, J. C.; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Kerman, A. K.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Pei, JC (reprint author), Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. RI Pei, Junchen/E-3532-2010 FU National Nuclear Security Administration [DE-FG03-03NA00083]; U. S. Department of Energy [DE-FG02-96ER40963, DE-AC05-00OR22725]; LLC (Oak Ridge National Laboratory); [DE-FC02-07ER41457] FX Useful discussions with W. Loveland, J. Skalski, and A. Staszczak are gratefully acknowledged. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through Grant DE-FG03-03NA00083; by the U. S. Department of Energy under Contract Nos. DE-FG02-96ER40963 (University of Tennessee), and DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and DE-FC02-07ER41457 UNEDF SciDAC Collaboration). Computational resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 30 TC 48 Z9 50 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 192501 DI 10.1103/PhysRevLett.102.192501 PG 4 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700022 PM 19518948 ER PT J AU Sandweiss, J AF Sandweiss, Jack TI Essay: The Future of Scientific Publishing SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB How can the scientific publishing enterprise deal with the increasing specialization of individual physicists? The possible aids include virtual journals, the new APS journal Physics, and the possibility of artificial intelligence programs. C1 [Sandweiss, Jack] Yale Univ, New Haven, CT 06520 USA. [Sandweiss, Jack] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sandweiss, Jack] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sandweiss, J (reprint author), Yale Univ, New Haven, CT 06520 USA. NR 0 TC 3 Z9 3 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 190001 DI 10.1103/PhysRevLett.102.190001 PG 2 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700001 PM 19518927 ER PT J AU Unal, B Fournee, V Thiel, PA Evans, JW AF Unal, Baris Fournee, V. Thiel, P. A. Evans, J. W. TI Structure and Growth of Height-Selected Ag Islands on Fivefold i-AlPdMn Quasicrystalline Surfaces: STM Analysis and Step Dynamics Modeling SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEPOSITION; FILM AB The development and local structure of height-selected 3-layer Ag islands on fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals is characterized by STM for Ag deposition at 365 K. Heterogeneous nucleation of pseudomorphic single layer high islands is followed by rapid formation of 2nd and 3rd layers and subsequent lateral spreading, where each of these 3 layers consists of a family of nonfcc structures. The behavior is elucidated by step dynamics modeling incorporating strain buildup for larger islands, enhanced binding in higher layers, and height selection due to quantum size effects. C1 [Unal, Baris; Thiel, P. A.; Evans, J. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Unal, Baris; Thiel, P. A.; Evans, J. W.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Unal, Baris; Thiel, P. A.; Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Unal, Baris; Thiel, P. A.; Evans, J. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Fournee, V.] Ecole Mines, CNRS, LSG2M, UMR 7584, F-5402 Nancy, France. RP Unal, B (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. FU NSF [CHE-0809472]; ISU [DE-AC02-07CH11358] FX The modeling was supported by NSF Grant CHE-0809472, and the experiments by the Division of Materials Sciences, USDOE-BES. The work was performed at the Ames Laboratory, operated for the U. S. DOE by ISU under Contract No. DE-AC02-07CH11358. NR 18 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 196103 DI 10.1103/PhysRevLett.102.196103 PG 4 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700052 PM 19518978 ER PT J AU Whitelam, S Bretschneider, T Burroughs, NJ AF Whitelam, Stephen Bretschneider, Till Burroughs, Nigel J. TI Transformation from Spots to Waves in a Model of Actin Pattern Formation SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUILIBRIUM; SYSTEMS AB Actin networks in certain single-celled organisms exhibit a complex pattern-forming dynamics that starts with the appearance of static spots of actin on the cell cortex. Spots soon become mobile, executing persistent random walks, and eventually give rise to traveling waves of actin. Here we describe a possible physical mechanism for this distinctive set of dynamic transformations, by equipping an excitable reaction-diffusion model with a field describing the spatial orientation of its chief constituent (which we consider to be actin). The interplay of anisotropic actin growth and spatial inhibition drives a transformation at fixed parameter values from static spots to moving spots to waves. C1 [Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Whitelam, Stephen; Bretschneider, Till; Burroughs, Nigel J.] Univ Warwick, Syst Biol Ctr, Coventry CV4 7AL, W Midlands, England. RP Whitelam, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov RI Bretschneider, Till/D-4667-2011 OI Bretschneider, Till/0000-0002-5317-603X FU U. S. Department of Energy [DE-AC0205CH11231]; BioSim E. U. Network of Excellence; Warwick's Centre for Scientific Computing FX We thank B. N. Vasiev for discussions. Work at the Molecular Foundry was supported by the U. S. Department of Energy under Contract No. DE-AC0205CH11231. Support at Warwick was provided by the BioSim E. U. Network of Excellence and Warwick's Centre for Scientific Computing. NR 22 TC 36 Z9 36 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 15 PY 2009 VL 102 IS 19 AR 198103 DI 10.1103/PhysRevLett.102.198103 PG 4 WC Physics, Multidisciplinary SC Physics GA 447QU UT WOS:000266207700074 PM 19519000 ER PT J AU Bertonati, C Punta, M Fischer, M Yachdav, G Forouhar, F Zhou, WH Kuzin, AP Seetharaman, J Abashidze, M Ramelot, TA Kennedy, MA Cort, JR Belachew, A Hunt, JF Tong, L Montelione, GT Rost, B AF Bertonati, Claudia Punta, Marco Fischer, Markus Yachdav, Guy Forouhar, Farhad Zhou, Weihong Kuzin, Alexander P. Seetharaman, Jayaraman Abashidze, Mariam Ramelot, Theresa A. Kennedy, Michael A. Cort, John R. Belachew, Adam Hunt, John F. Tong, Liang Montelione, Gaetano T. Rost, Burkhard TI Structural genomics reveals EVE as a new ASCH/PUA-related domain SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE structural genomics; protein function prediction; PUA domain-like domains; X-ray crystallography; NMR ID CRYSTAL-STRUCTURE; PROTEIN SEQUENCES; BINDING DOMAINS; TRANSFER-RNA; PUA DOMAIN; ALIGNMENT; VISUALIZATION; DATABASE; DNA; RECOGNITION AB We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links. C1 [Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Rost, Burkhard] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. [Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Rost, Burkhard] Columbia Univ, Ctr Computat Biol & Bioinformat C2B2, New York, NY 10032 USA. [Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Montelione, Gaetano T.; Rost, Burkhard] Columbia Univ, NE Struct Genom Consortium NESG, New York, NY 10032 USA. [Bertonati, Claudia] Univ Roma La Sapienza, Dept Biochem A Rossi Fanelli, I-00185 Rome, Italy. [Forouhar, Farhad; Zhou, Weihong; Kuzin, Alexander P.; Seetharaman, Jayaraman; Abashidze, Mariam; Hunt, John F.; Tong, Liang] Columbia Univ, Dept Biol Sci, NE Struct Genom Consortium, New York, NY 10027 USA. [Ramelot, Theresa A.; Kennedy, Michael A.] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. [Ramelot, Theresa A.; Kennedy, Michael A.] Miami Univ, NE Struct Genom Consortium NESG, Oxford, OH 45056 USA. [Cort, John R.] Washington State Univ, Dept Chem, Richland, WA 99354 USA. [Cort, John R.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Cort, John R.] Pacific NW Natl Lab, NE Struct Genom Consortium, Richland, WA 99352 USA. [Belachew, Adam] Weill Cornell Med Coll, Dept Pharmacol, New York, NY 10021 USA. [Montelione, Gaetano T.] Rutgers State Univ, Ctr Adv Biotechnol, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA. [Montelione, Gaetano T.] NE Struct Genom Consortium, Piscataway, NJ 08854 USA. [Montelione, Gaetano T.] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA. RP Bertonati, C (reprint author), Columbia Univ, Dept Biochem & Mol Biophys, 630 W 168th St, New York, NY 10032 USA. EM claudia.bertonati@uniroma1.it OI Tong, Liang/0000-0002-0563-6468 FU Northeast Structural Genomics consortium from the Protein Structure Initiative (PSI); National Institute of General Medical Science (NIGMS); National Institutes of Health (NIH) [U54-GM074958-01, R01-GN4079767, R01-LM07329]; Istituto Pasteur-Fondazione Cenci Bolognetti Universita' di Roma "La Sapienza" FX Grant sponsors: Northeast Structural Genomics consortium from the Protein Structure Initiative (PSI), National Institute of General Medical Science (NIGMS), National Institutes of Health (NIH); Grant number: U54-GM074958-01; Grant sponsor: NIH; Grant numbers: R01-GN4079767, R01-LM07329 (to G.Y. and B.R.); Grant sponsor: Istituto Pasteur-Fondazione Cenci Bolognetti Universita' di Roma "La Sapienza" (to C.B.). NR 59 TC 9 Z9 9 U1 0 U2 0 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD MAY 15 PY 2009 VL 75 IS 3 BP 760 EP 773 DI 10.1002/prot.22287 PG 14 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 433CJ UT WOS:000265181000019 PM 19191354 ER PT J AU Lu, ZL Ladrak, T Roubeau, O van der Toorn, J Teat, SJ Massera, C Gamez, P Reedijk, J AF Lu, Zhengliang Ladrak, Tim Roubeau, Olivier van der Toorn, John Teat, Simon J. Massera, Chiara Gamez, Patrick Reedijk, Jan TI Selective, catalytic aerobic oxidation of alcohols using CuBr2 and bifunctional triazine-based ligands containing both a bipyridine and a TEMPO group SO DALTON TRANSACTIONS LA English DT Article ID CARBONYL-COMPOUNDS; BENZYLIC ALCOHOLS; MOLECULAR-OXYGEN; MILD CONDITIONS; ELECTRONIC-PROPERTIES; COPPER(II) COMPLEX; SECONDARY ALCOHOLS; 2-PHASE CONDITIONS; DONOR LIGANDS; IONIC LIQUID AB Three novel, bifunctional triazine-based ligands, namely 4-bpyT, 5-bpyT and 6-bpyT, containing both a TEMPO and a bipyridine moiety have been synthesized. These bpy/TEMPO-based molecules have been used as catalyst precursors for the copper-catalyzed aerobic oxidation of alcohols to aldehydes and ketones, in the presence of tert-BuOK as co-catalyst. The complexes obtained in situ from ligands 4-bpyT and 5-bpyT with copper(II) bromide in a 2:1 acetonitrile/water mixture, selectively catalyze the aerobic oxidation of primary benzylic, allylic and aliphatic alcohols and secondary benzylic alcohols. The rate of oxidation achieved using compound 4-bpyT is slightly lower than that of compound 5-bpyT. Surprisingly, the [copper/6-bpyT] system is not ail efficient catalyst. The distinct catalytic behaviour of the three complexes is most likely due to the different position of file anchoring point of the bipyridine moiety on the triazine core, thereby inducing dissimilar steric effects. The effect of the substitution position of the bipyridine unit is reflected by the Vis-NIR spectra of the corresponding copper(II) complexes, which show similar LMCT and d-d transitions for 4-bpyT and 5-bpyT, while these absorption bands are significantly red-shifted ill the case of the [Cu(II)/6-bpyT] complex. These differences are indicative of different coordination environments around the Cu-II centres in those compounds. Single-crystal X-ray diffraction studies reveal that [Cu-2(4-bpyT)(2)Br-4](CH3CN)(7) (6) and [Cu-2(5-bpyT)(2)Br-4](CH3CN)(2) (7) are comparable dinuclear compounds with pentacoordinated copper ions, in a distorted square-pyramidal geometry in 6 and in a distorted trigonal-bipyramidal geometry in 7. These two coordination geometries are also reflected by their slightly different Vis-NIR results. Cu(6-bpyT)Br-2 (8) is mononuclear, with the Cu-II ion in a distorted tetrahedral geometry, suggesting a relationship with its catalytic inactivity. C1 [Lu, Zhengliang; Ladrak, Tim; van der Toorn, John; Gamez, Patrick; Reedijk, Jan] Leiden Univ, Leiden Inst Chem, Gorlaeus Labs, NL-2300 RA Leiden, Netherlands. [Roubeau, Olivier] Univ Bordeaux 1, Ctr Rech Paul Pascal, CNRS, F-33600 Pessac, France. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. [Massera, Chiara] Univ Parma, Dipartimento Chim Gen & Inorgan, I-43100 Parma, Italy. RP Gamez, P (reprint author), Leiden Univ, Leiden Inst Chem, Gorlaeus Labs, POB 9502, NL-2300 RA Leiden, Netherlands. RI Roubeau, Olivier/A-6839-2010; Reedijk, Jan/F-1992-2010; Gamez, Patrick/B-3610-2012; OI Roubeau, Olivier/0000-0003-2095-5843; Reedijk, Jan/0000-0002-6739-8514; Gamez, Patrick/0000-0003-2602-9525; Massera, Chiara/0000-0003-0230-1707 FU NIOK; HRSMC; PTN; COST [D35/0011]; FP6 Network of Excellence [515767]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful for support from the Graduate Research School Combination "Catalysis", a joint activity of the graduate research schools NIOK, HRSMC, and PTN, and the COST program Action D35/0011. Coordination of some of our research by the FP6 Network of Excellence "Magmanet" (contract number 515767) is also kindly acknowledged. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 42 Z9 42 U1 0 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PD MAY 14 PY 2009 IS 18 BP 3559 EP 3570 DI 10.1039/b820554j PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 453SQ UT WOS:000266632500021 PM 19381418 ER PT J AU Lawler, KV Parkhill, JA Head-Gordon, M AF Lawler, Keith V. Parkhill, John A. Head-Gordon, Martin TI The numerical condition of electron correlation theories when only active pairs of electrons are spin-unrestricted SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE coupled cluster calculations; electron correlations; HF calculations; potential energy surfaces ID COUPLED-CLUSTER EQUATIONS; CONFIGURATION-INTERACTION; MATHEMATICAL CONTENT; WAVE-FUNCTIONS; DOUBLES MODEL; EXCITED-STATE; SYSTEMS; EXCITATIONS; CHEMISTRY AB The use of spin-unrestriction with high-quality correlation theory, such as coupled-cluster (CC) methods, is a common practice necessary to obtain high-quality potential energy surfaces. While this typically is a useful approach, we find that in the unrestricted limit of ROHF fragments (the unrestricted in active pair orbitals) the CC equations are singular if only the strongly correlated electrons are considered. Unstable amplitudes which do not represent the physics of the problem are easily found and could be unwittingly accepted without inspection. We use stability analysis and the condition number of the CC doubles Jacobian matrix to examine the problem, and present results for several molecular systems with a variety of unrestricted cluster models. Finally a regularization of the CC equations is proposed, using a dynamic penalty function, which allows us to apply CC, and Lagrangian gradient formulas even in the singular limit. C1 [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM keith@bastille.cchem.berkeley.edu; john.parkhill@gmail.com; mhg@cchem.berkeley.edu NR 35 TC 3 Z9 3 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2009 VL 130 IS 18 AR 184113 DI 10.1063/1.3134223 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448LD UT WOS:000266263200014 PM 19449914 ER PT J AU Schwartz, CP Uejio, JS Saykally, RJ Prendergast, D AF Schwartz, Craig P. Uejio, Janel S. Saykally, Richard J. Prendergast, David TI On the importance of nuclear quantum motions in near edge x-ray absorption fine structure spectroscopy of molecules SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE EXAFS; ground states; molecular configurations; organic compounds; spectral line broadening; vibrational states; XANES ID AB-INITIO; EXCESS PROTON; S-TRIAZINE; SPECTRA; GLYCINE; BOND; EXCITATION; SCATTERING; WATER; GAS AB We report the effects of sampling nuclear quantum motion with path integral molecular dynamics (PIMD) on calculations of the nitrogen K-edge spectra of two isolated organic molecules. s-triazine, a prototypical aromatic molecule occupying primarily its vibrational ground state at room temperature, exhibits substantially improved spectral agreement when nuclear quantum effects are included via PIMD, as compared to the spectra obtained from either a single fixed-nuclei based calculation or from a series of configurations extracted from a classical molecular dynamics trajectory. Nuclear quantum dynamics can accurately explain the intrinsic broadening of certain features. Glycine, the simplest amino acid, is problematic due to large spectral variations associated with multiple energetically accessible conformations at the experimental temperature. This work highlights the sensitivity of near edge x-ray absorption fine structure (NEXAFS) to quantum nuclear motions in molecules, and the necessity of accurately sampling such quantum motion when simulating their NEXAFS spectra. C1 [Prendergast, David] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Prendergast, D (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM dgprendergast@lbl.gov RI Prendergast, David/E-4437-2010 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the LBNL Chemical Sciences Division, and the Molecular Foundry. Computational resources were provided by NERSC, a DOE Advanced Scientific Computing Research User Facility. NR 41 TC 31 Z9 31 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2009 VL 130 IS 18 AR 184109 DI 10.1063/1.3125509 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448LD UT WOS:000266263200010 PM 19449910 ER PT J AU Searcy, AW Beruto, DT Barberis, F AF Searcy, Alan W. Beruto, Dario T. Barberis, Fabrizio TI A partial equilibrium theory for liquids bonded to immobile solids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE chemical potential; contact angle; drops; free energy; liquid films; quartz; surface energy; water ID KELVIN EQUATION; CAPILLARY CONDENSATION; SURFACE-DIFFUSION; WATER; ADSORPTION; MECHANISM; KINETICS; DECOMPOSITION; VAPORIZATION; PARTICLES AB In order to obtain consistency with the force balance theory of Young and Laplace, which quantitatively predicts the height of capillary rise from the contact angles of drops on solid surfaces, Gibbs made chemical potentials in interface functions of the integral interface free energies. We cite evidence that equilibrium chemical potentials in one-component systems are identical at interfaces to equilibrium chemical potentials in bulk phases. We evaluate two postulates. (1) Partial free energies of liquids at an interface with a solid are functions of the strength and range of attractive fields outside solid phase boundaries. (2) At equilibrium, the chemical potentials in all interfaces of a one-component liquid equal the chemical potential in its interior when the liquid is bonded to one or more immiscible solids. These postulates yield equations for partial equilibrium (PE) states of drops, films, and liquids. The PE equations yield the same prediction of the height of a meniscus from the contact angle of drops as does Young-Laplace theory and also the same dependence of the volume of capillary condensate on vapor pressure as does the Kelvin equation. But our measurements of the contact angles of water on glass and Teflon and between their close-spaced surfaces contradict the YL supposition that meniscus angles are the same as angles of drops on glass and Teflon surfaces and support the PE postulate that attraction by the external fields of solids, not meniscus curvature, is responsible for capillary rise. We use published data to illustrate the validity of the PE conclusion that divergence or convergence at the saturation pressure of a parent liquid depends on whether or not the attractive field of a solid surface imparts to the liquid more than twice the energy required to create two liquid-vapor interfaces. For divergent water films on quartz, the PE equation provides a quantitative fit to experimental data for films of any thickness greater than 1.5 nm. No previous theory has accomplished that. In an appendix, we illustrate applications of PE theory to evaluating the complex interactions between inherently reversible chemical diffusion and inherently irreversible forces introduced by strains. C1 [Searcy, Alan W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Searcy, Alan W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Searcy, Alan W.; Beruto, Dario T.; Barberis, Fabrizio] Univ Genoa, Dept Civil Environm & Architectural Engn, I-16129 Genoa, Italy. RP Searcy, AW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM asearcy@berkeley.edu NR 53 TC 1 Z9 1 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2009 VL 130 IS 18 AR 184713 DI 10.1063/1.3123389 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448LD UT WOS:000266263200049 PM 19449949 ER PT J AU Tao, GH Miller, WH AF Tao, Guohua Miller, William H. TI Semiclassical description of vibrational quantum coherence in a three dimensional I2Arn (n <= 6) cluster: A forward-backward initial value representation implementation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE atomic clusters; iodine compounds; photoexcitation; probability; solvent effects; vibrational states ID COMPLEX MOLECULAR-SYSTEMS; THERMAL RATE CONSTANTS; TIME-CORRELATION FUNCTIONS; WAVE-PACKET PROPAGATION; PROTON-TRANSFER; WAVEPACKET PROPAGATION; DYNAMICS SIMULATIONS; CONDENSED-PHASE; S-MATRIX; HYDROGEN AB The semiclassical (SC) initial value representation (IVR) has been applied to describe true quantum coherence effects in a complex molecular system in full three dimensional space. The specific quantity considered is the time-dependent probability distribution of the I-2 vibrational coordinate following photoexcitation of I-2 in a rare gas cluster. The "forward-backward" version of the IVR method is shown to be capable of capturing detailed quantum coherence in this quantity, coherence that cannot be described by a classical Wigner model (which is equivalent to a linearized approximation to the more general SC-IVR). Solvent effects on this vibrational quantum coherence have also been investigated for a I2Arn (n=1,6) cluster. A solvent cage consisting of six argon atoms reduces the fraction of iodine molecules that dissociate (an example of the "cage effect") and also diminishes, but does not entirely eliminate, quantum coherence in the vibrational motion of the molecules that remain undissociated. C1 [Tao, Guohua] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tao, GH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM millerwh@berkeley.edu FU National Science Foundation [CHE-0809073]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation under Grant No. CHE-0809073 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. G. T. thanks Haobin Wang for the help on reproducing results for the one-dimensional model of iodine molecule. NR 71 TC 12 Z9 12 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 14 PY 2009 VL 130 IS 18 AR 184108 DI 10.1063/1.3132224 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448LD UT WOS:000266263200009 PM 19449909 ER PT J AU Han, Q Robinson, H Cai, T Tagle, DA Li, JY AF Han, Qian Robinson, Howard Cai, Tao Tagle, Danilo A. Li, Jianyong TI Structural Insight into the Inhibition of Human Kynurenine Aminotransferase I/Glutamine Transaminase K SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID SPONTANEOUSLY HYPERTENSIVE-RATS; EXCITATORY AMINO-ACIDS; SUBSTRATE-SPECIFICITY; CRYSTAL-STRUCTURES; TRYPTOPHAN DEGRADATION; SYNAPTIC-TRANSMISSION; HUNTINGTONS-DISEASE; NICOTINIC RECEPTORS; QUINOLINIC ACID; DRUG TARGET AB Human kynurenine aminotransferase I (hKAT I) catalyzes the formation of kynurenic acid, a neuroactive compound. Here, we report three high-resolution crystal structures (1.50-1.55 angstrom) of hKAT I that are in complex with glycerol and each of two inhibitors of hKAT I: indole-3-acetic acid (IAC) and Tris. Because Tris is able to occupy the substrate binding position, we speculate that this may be the basis for hKAT I inhibition. Furthermore, the hKAT/IAC complex structure reveals that the binding moieties of the inhibitor are its indole ring and a carboxyl group. Six chemicals with both binding moieties were tested for their ability to inhibit hKAT I activity; 3-indolepropionic acid and DL-indole-3-lactic acid demonstrated the highest level of inhibition, and as they cannot be considered as substrates of the enzyme, these two inhibitors are promising candidates for future study. Perhaps even more significantly, we report the discovery of two different ligands located simultaneously in the hKAT I active center for the first time. C1 [Han, Qian; Li, Jianyong] Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Cai, Tao] NIDCR, OIIB, NIH, Bethesda, MD 20892 USA. [Tagle, Danilo A.] NINDS, Ctr Neurosci, NIH, Bethesda, MD 20892 USA. RP Han, Q (reprint author), Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. EM qianhan@vt.edu RI Han, Qian/J-8696-2014 OI Han, Qian/0000-0001-6245-5252 FU National Synchrotron Light Source; Brookhaven National Laboratory; Intramural Research Program FX This work was carried out in part at the National Synchrotron Light Source, Brookhaven National Laboratory, and supported in part by the Intramural Research Program of the institutes of NIDCR and NINDS at NIH. We are grateful to Elizabeth Watson and Graham Richardson (Dr. Jianyong Li's laboratory, Department-of Biochemistry, Virginia Tech) for critical reading of this paper. NR 57 TC 20 Z9 23 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD MAY 14 PY 2009 VL 52 IS 9 BP 2786 EP 2793 DI 10.1021/jm9000874 PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 443LP UT WOS:000265911800016 PM 19338303 ER PT J AU Wang, XB Sergeeva, AP Yang, J Xing, XP Boldyrev, AI Wang, LS AF Wang, Xue-Bin Sergeeva, Alina P. Yang, Jie Xing, Xiao-Peng Boldyrev, Alexander I. Wang, Lai-Sheng TI Photoelectron Spectroscopy of Cold Hydrated Sulfate Clusters, SO42-(H2O)(n) (n=4-7): Temperature-Dependent Isomer Populations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DOUBLY-CHARGED ANION; GAUSSIAN-BASIS SETS; GAS-PHASE; MOLECULAR CALCULATIONS; ELECTRON CORRELATION; AB-INITIO; DENSITY; ENERGY; PHOTODETACHMENT; STABILIZATION AB Sulfate is in important inorganic anion and its interactions with water are essential to understand its chemistry in aqueous solution. Studies Of Sulfate with well-controlled solvent numbers provide molecular-level information about the solute-solvent interactions and critical data to test theoretical methods for weakly bounded species. Here we report a low-temperature photoelectron spectroscopy Study of hydrated sulfate clusters SO42-(H2O)(n) (n = 4-7) at 12 K and ab initio studies to understand the structures and dynamics of these unique solvated systems. A significant increase of electron binding energies was observed for the 12 K spectra relative to those at room temperature, suggesting different structural isomers were populated as a function of temperature. Theoretical calculations revealed a competition between isomers with optimal water-solute and water-water interactions. The global minimum isomers all possess higher electron binding energies due to their optimal water-solute interactions, giving rise to the binding energy shift in the 12 K spectra, whereas many additional low-lying isomers with less optimal solvent-solute interactions were populated at room temperature, resulting in a shift to lower electron binding energies in the observed spectra. The current work demonstrates and confirms the complexity of the water-sulfate potential energy landscape and the importance of temperature control in studying the solvent-solute systems and in comparing calculations with experiment. C1 [Wang, Xue-Bin; Yang, Jie; Xing, Xiao-Peng; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Wang, Xue-Bin; Yang, Jie; Xing, Xiao-Peng; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Sergeeva, Alina P.; Boldyrev, Alexander I.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. RP Wang, XB (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM xuebin.wang@pnl.gov; a.i.boldyrev@usu.edu; ls.wang@pnl.gov RI Boldyrev, Alexander/C-5940-2009 OI Boldyrev, Alexander/0000-0002-8277-3669 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences; National Science Foundation [CHE-07148510]; Utah State University [CTS-0321170] FX The experimental work Was Supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences. Chemical Sciences Division and was performed at the EMSL, a national scientific user facility sponsored by DOE's, Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. The theoretical work done at Utah State University was Supported by the National Science Foundation (CHE-07148510). Computer time from the Center for High Performance Computing at Utah State University is gratefully acknowledged. The Computational resource, the Uinta cluster supercomputer, was provided through the National Science Foundation under Grant CTS-0321170 with matching funds provided by Utah State University. NR 48 TC 31 Z9 31 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 14 PY 2009 VL 113 IS 19 BP 5567 EP 5576 DI 10.1021/jp900682g PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 443CL UT WOS:000265887700011 PM 19419223 ER PT J AU De Silva, CR Musgraves, JD Schneider, Z Potter, BG Boyle, TJ Simmons-Potter, K Corrales, LR AF De Silva, Channa R. Musgraves, J. David Schneider, Z. Potter, B. G., Jr. Boyle, T. J. Simmons-Potter, K. Corrales, L. Rene TI Intrinsic Electronic Transitions of the Absorption Spectrum of (OPy)(2)Ti(TAP)(2): Implications Toward Photostructural Modifications SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TITANIUM ALKOXIDES; THIN-FILMS; GEL FILMS; DENSITY; APPROXIMATION; EXCHANGE AB Theoretical calculations based on time-dependent density functional theory are used to characterize the electronic absorption spectrum of a heteroleptic Ti-alkoxide molecule, (OPy)(2)Ti(TAP)(2) [OPy = pyridine carbinoxide, TAP = 2,4,6 tris(dimethylamino)phenoxide] under investigation as a photosensitive precursor for use in optically initiated solution synthesis of the metal oxide. Computational results support the assignment of UV absorption features observed in solid-state precursor films to key intrinsic ground-state transitions that involve ligand-to-metal charge transfer and pi-pi* transitions within the cyclic ligand moieties present. The nature of electron density redistribution associated with these transitions provides early insight into the excitation wavelength dependence of photostructural modification previously observed in this precursor system. C1 [De Silva, Channa R.; Musgraves, J. David; Potter, B. G., Jr.; Corrales, L. Rene] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Simmons-Potter, K.] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA. [De Silva, Channa R.; Corrales, L. Rene] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA. [Schneider, Z.; Simmons-Potter, K.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Boyle, T. J.] Sandia Natl Labs, Albuquerque, NM 87106 USA. RP Corrales, LR (reprint author), Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. EM lrcorral@email.arizona.edu RI Musgraves, J David/D-9260-2011 OI Musgraves, J David/0000-0003-4575-5119 FU University of Arizona; Petroleum Research Fund FX This work was supported by (CRDS, LRC) start-up funds from the University of Arizona. Acknowledgement is also made to the Donors of The Petroleum Research Fund, administered by the American Chemical Society. The calculations were performed in part using the Molecular Science Computing Facility in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at PNNL. Images were produced using the Extensible Computational Chemistry Environment (ECCE). NR 18 TC 1 Z9 1 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 14 PY 2009 VL 113 IS 19 BP 5598 EP 5601 DI 10.1021/jp9016008 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 443CL UT WOS:000265887700015 PM 19371052 ER PT J AU Jasper, AW Miller, JA AF Jasper, Ahren W. Miller, James A. TI Collisional Energy Transfer in Unimolecular Reactions: Direct Classical Trajectories for CH4 reversible arrow CH3 + H in Helium SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HIGHLY EXCITED MOLECULES; MASTER EQUATION MODELS; LOW-PRESSURE-LIMIT; BASIS-SETS; POLYATOMIC-MOLECULES; GAS-PHASE; DISSOCIATION; DEPENDENCE; ATOMS; SIMULATIONS AB Direct classical trajectories are used to compute energy transfer parameters appropriate for use in master equation calculations for the CH4 reversible arrow CH3 + H reaction in He at 300-2000 K. The quantum chemistry method used in the direct trajectory calculations is MP2/aug'-cc-pVDZ, which is validated against higher level ab initio calculations. The average energy transferred in deactivating collisions is shown to increase with the initial rotational excitation J' of CH4 and with the temperature of the bath gas T-bath. When thermally averaged over J', the resulting average downward energy transfer cc is found to increase nearly linearly with T-bath (alpha = 1107(bath)(0.81) cm(-1)). The results of master equation calculations carried out using the single-exponential-down model and the computed values of alpha are compared with experimental results and recent recommendations. At elevated temperatures (>600 K), good agreement between the predicted and experimental rate coefficients is obtained. At room temperature, the computed rate coefficients are in good agreement with the experimental results if the two-dimensional (E, J) formulation of the master equation is used. Smaller values of alpha (by 25%) are necessary to fit the experimental data at room temperature using the one-dimensional (E) master equation. The present study, combined with previous ab initio transition state theory calculations for the CH3 + H capture rate, provides a complete first-principles characterization of the temperature and pressure dependent rate coefficients for this simple single-well system. C1 [Jasper, Ahren W.; Miller, James A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Jasper, AW (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA. EM ajasper@sandia.gov; jamiller@sandia.gov RI Jasper, Ahren/A-5292-2011 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX This work is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94-AL85000. NR 50 TC 39 Z9 39 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 14 PY 2009 VL 113 IS 19 BP 5612 EP 5619 DI 10.1021/jp900802f PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 443CL UT WOS:000265887700017 PM 19419224 ER PT J AU Hess, NJ Schenter, GK Hartman, MR Daemen, LL Proffen, T Kathmann, SM Mundy, CJ Hartl, M Heldebrant, DJ Stowe, AC Autrey, T AF Hess, Nancy J. Schenter, Gregory K. Hartman, Michael R. Daemen, Luc L. Proffen, Thomas Kathmann, Shawn M. Mundy, Christopher J. Hartl, Monika Heldebrant, David J. Stowe, Ashley C. Autrey, Tom TI Neutron Powder Diffraction and Molecular Simulation Study of the Structural Evolution of Ammonia Borane from 15 to 340 K SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SPACE GAUSSIAN PSEUDOPOTENTIALS; THERMAL-DECOMPOSITION; STRUCTURE REFINEMENT; HYDROGEN STORAGE; PHASE-TRANSITION; DYNAMICS; HEXACHLOROETHANE; NMR; HEXABROMOETHANE; SCATTERING AB The Structural behavior of (11)B-, (2)H-enriched ammonia borane, ND(3)(11)BD(3), over the temperature range from 15 to 340 K was investigated using a combination of neutron powder diffraction and ab initio molecular dynamics simulations. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the airline group was observed leading to the alignment of the B-N bond near parallel to the c-axis. The orthorhombic to tetragonal structural phase transition at 225 K is marked by dramatic change in the dynamics of both the airline and borane group. The resulting hydrogen disorder is problematic to extract from the metrics provided by Rietveld refinement but is readily apparent in molecular dynamics simulation and in difference Fourier transform maps. At the phase transition, Rietveld refinement does indicate a disruption of one of two dihydrogen bonds that link adjacent ammonia borane molecules. Metrics determined by Rietveld refinement are in excellent agreement with those determined from molecular simulation. This Study highlights the valuable insights added by coupled experimental and computational studies. C1 [Hess, Nancy J.; Schenter, Gregory K.; Kathmann, Shawn M.; Mundy, Christopher J.; Stowe, Ashley C.; Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hartman, Michael R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Daemen, Luc L.; Proffen, Thomas; Hartl, Monika] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hess, NJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM nancy.hess@pnl.gov RI Lujan Center, LANL/G-4896-2012; Hartl, Monika/F-3094-2014; Schenter, Gregory/I-7655-2014; Proffen, Thomas/B-3585-2009; Hartl, Monika/N-4586-2016 OI Hartl, Monika/0000-0002-6601-7273; Hess, Nancy/0000-0002-8930-9500; Schenter, Gregory/0000-0001-5444-5484; Proffen, Thomas/0000-0002-1408-6031; Hartl, Monika/0000-0002-6601-7273 FU Office of Basic Energy Sciences Hydrogen Fuel Initiative, Chemical Sciences Division, of the U.S. Department of Energy; National Science Foundation [DMR 0076488] FX N.J.H. has greatly benefited from discussions with Drs. M.E. Bowden and W.I.F. David. This work was supported by the Office of Basic Energy Sciences Hydrogen Fuel Initiative, Chemical Sciences Division, of the U.S. Department of Energy. Pacific Northwest is operated for the Department of Energy by Battelle. A portion of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Lujan Center at Los Alamos Neutron Science Center is funded by Department of Energy, Office of Basic Energy Sciences. The upgrade of NPDF at Los Alamos has been funded by the National Science Foundation through Grant DMR 0076488. NR 40 TC 35 Z9 38 U1 1 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAY 14 PY 2009 VL 113 IS 19 BP 5723 EP 5735 DI 10.1021/jp900839c PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 443CL UT WOS:000265887700031 PM 19374410 ER PT J AU Jribi, R Barthel, E Bluhm, H Grunze, M Koelsch, P Verreault, D Sondergard, E AF Jribi, R. Barthel, E. Bluhm, H. Grunze, M. Koelsch, P. Verreault, D. Sondergard, E. TI Ultraviolet Irradiation Suppresses Adhesion on TiO2 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; SUM-FREQUENCY GENERATION; ATOMIC-FORCE MICROSCOPY; HYDRATION FORCES; ELECTROLYTE-SOLUTIONS; WETTABILITY CONTROL; TITANIUM-DIOXIDE; ULTRAHIGH-VACUUM; SOLID INTERFACES; SILICA SURFACES AB Environmental concerns have recently spurred a quest for materials that stay clean, Such as TiO2 when subjected to the combined action of sunlight irradiation and exposure to rain. However, the fundamental mechanism that governs the self-cleaning properties of TiO2 still needs to be elucidated. TiO2 is known to be photocatalytic as well as to decompose organic adsorbents, but these properties do not explain its capacity to eliminate mineral contaminants. In the present paper, we report that hydrophilic UV-irradiated TiO2 layers are nonadhesive in the presence of water, thus preventing adhesion of mineral particles. Surface force measurements done using atornic, force microscopy reveal the presence of an additional short-range repulsive force, which screens the van der Waals attractive forces, while long-range interactions are preserved. This additional short-range force does not originate from UV-induced trapping of surface charges or OH group creation. as we demonstrate by second harmonic generation and ambient pressure X-ray photoelectron spectroscopy investigations. This short-range repulsive force, which appears to be intrinsic to the TiO2 surface, is certainly a key phenomenon for a strong self-cleaning capacity. C1 [Jribi, R.; Barthel, E.; Sondergard, E.] CNRS St Gobain, UMR 125, Lab Surface Verre & Interfaces, F-93303 Aubervilliers, France. [Bluhm, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Grunze, M.; Koelsch, P.; Verreault, D.] Angew Phys Chem, D-69120 Heidelberg, Germany. RP Sondergard, E (reprint author), CNRS St Gobain, UMR 125, Lab Surface Verre & Interfaces, 39 Quai Lucien Lefranc, F-93303 Aubervilliers, France. EM elin.sondergard@saint-gobain.com RI Grunze, Michael/H-1600-2013 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. Geosciences, and Biosciences and Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft [KO 3618/1-1]; Saint-Gobain; Association Nationale de la Recherche et de la Technologie FX H.B. acknowledges the support by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. Geosciences, and Biosciences and Materials Sciences Division of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. P. K. thanks the Deutsche Forschungsgemeinschaft (KO 3618/1-1) for financial support. R.J., E.B., and E.S. acknowledge support from Saint-Gobain and the Association Nationale de la Recherche et de la Technologie. NR 48 TC 12 Z9 12 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 14 PY 2009 VL 113 IS 19 BP 8273 EP 8277 DI 10.1021/jp809607b PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 443FL UT WOS:000265895500044 ER PT J AU Reinhold, CO Yoshida, S Burgdorfer, J Wyker, B Mestayer, JJ Dunning, FB AF Reinhold, C. O. Yoshida, S. Burgdoerfer, J. Wyker, B. Mestayer, J. J. Dunning, F. B. TI Large-scale quantum coherence of nearly circular wave packets SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CHAOTIC SCATTERING; RYDBERG ATOMS; DYNAMICS; DECOHERENCE; GENERATION; REVIVALS; PULSES; CAVITY AB We demonstrate that the quantum coherence of mesoscopic very-high-n, n similar to 305, Rydberg wave packets travelling along nearly circular orbits can be maintained on microsecond time scales corresponding to hundreds of classical orbital periods. The coherence is probed through collapses and revivals of periodic oscillations in the average electron position. The temporal interferences of spatially separated Schrodinger cat-like wave packets are also observed. A novel hybrid quantum-classical trajectory method is employed to simulate the wave packet dynamics. C1 [Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Reinhold, C. O.; Burgdoerfer, J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Yoshida, S.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Wyker, B.; Mestayer, J. J.; Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Wyker, B.; Mestayer, J. J.; Dunning, F. B.] Rice Univ, Rice Quantum Inst, Houston, TX 77005 USA. RP Reinhold, CO (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. OI Reinhold, Carlos/0000-0003-0100-4962 NR 27 TC 12 Z9 12 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD MAY 14 PY 2009 VL 42 IS 9 AR 091003 DI 10.1088/0953-4075/42/9/091003 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 438UW UT WOS:000265582000003 ER PT J AU Takase, K Rahn, LA Chandler, DW Strecker, KE AF Takase, Ken Rahn, Larry A. Chandler, David W. Strecker, Kevin E. TI The kinematic cooling of molecules with laser-cooled atoms SO NEW JOURNAL OF PHYSICS LA English DT Article ID SPECTROSCOPY; COLLISIONS; DIFFRACTION; ARGON; GAS AB We propose a new scheme for the production of milli-Kelvin molecules via kinematic cooling through collisions with atoms in a magneto-optical trap (MOT). We will discuss the kinematic conditions necessary for producing cold molecules, the limits of the final attainable temperatures and the experimental implementation of this technique. Finally, we will look at some specific physical systems and discuss the effectiveness of kinematic cooling inside a MOT. C1 [Takase, Ken; Rahn, Larry A.; Chandler, David W.; Strecker, Kevin E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Strecker, KE (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM kstreck@sandia.gov OI Rahn, Larry/0000-0002-4793-1158 FU US Department of Energy, Office of Basic Energy Science FX We gratefully acknowledge Mr Mark Jaska, Sandia National Laboratory, for excellent technical help with this project. We also acknowledge Dr James Valentini, Columbia University, for his discussions and contributions. We acknowledge the funding for this work provided by the US Department of Energy, Office of Basic Energy Science. Sandia is a multidisciplinary laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy. NR 41 TC 4 Z9 4 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 14 PY 2009 VL 11 AR 055033 DI 10.1088/1367-2630/11/5/055033 PG 10 WC Physics, Multidisciplinary SC Physics GA 448AW UT WOS:000266234500024 ER PT J AU Mori, K Kiyanagi, R Richardson, JW Fieramosca, J Onodera, Y Itoh, K Sugiyama, M Kamiyama, T Fukunaga, T AF Mori, Kazuhiro Kiyanagi, Ryoji Richardson, James W., Jr. Fieramosca, Joe Onodera, Yohei Itoh, Keiji Sugiyama, Masaaki Kamiyama, Takashi Fukunaga, Toshiharu TI Crystal structure of Fe-doped lanthanum gallate for oxygen partial pressures studied by neutron powder diffraction SO SOLID STATE IONICS LA English DT Article DE Mixed conductor; LaGaO(3); Fe-doping; Perovskite structure; Neutron diffraction ID PEROVSKITE-TYPE OXIDE; IONIC-CONDUCTIVITY; CO; NI AB Neutron powder diffraction experiments were carried out to investigate a change in a crystal structure of La(0.8)Sr(0.2)Ga(0.65)Fe(0.35)O(3) for oxygen partial pressures, P(O2), at 800 degrees C. The crystal structure was refined on the basis of the R3c syrnmetry for the P(O2) range from 10(-1) to 10(-20) atm, by the Rietveld analysis. It was found that lattice parameters, a and c, monotonically expand with decreasing P(O2), and then both expansions are rapidly suppressed below 10(-4) atm. In the meantime, I(M-O) and I(O-O)(2) also discontinuously increased with decreasing P(O2), while I(O-O)(1) did not change at all P(O2), where I(M-O), I(O-O)(1) and I(O-O)(2) are the bond lengths within a MO(6) octahedron (M = Ga(0.65)Fe(0.35)). This result indicates that the I(M-O) and the I(O-O)(2) are more important than the I(O-O)(1) for such a complicated lattice expansion for P(O2). (C) 2008 Elsevier B.V. All rights reserved. C1 [Mori, Kazuhiro; Onodera, Yohei; Itoh, Keiji; Sugiyama, Masaaki; Fukunaga, Toshiharu] Kyoto Univ, Inst Res Reactor, Kumatori, Osaka 5900494, Japan. [Kiyanagi, Ryoji; Richardson, James W., Jr.; Fieramosca, Joe] Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Kamiyama, Takashi] High Energy Accelerator Res Org, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan. RP Mori, K (reprint author), Kyoto Univ, Inst Res Reactor, 1010 Asahiro Nishi 2, Kumatori, Osaka 5900494, Japan. EM kmori@rri.kyoto-u.ac.jp RI Onodera, Yohei/I-7495-2015 FU Kansai Research Foundation for Technology Promotion; U.S. Department of Energy, Office of Science, Basic Energy Science; Ministry of Education, Culture, Sports, Science and Technology of Japan FX This work was supported by the Kansai Research Foundation for Technology Promotion. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Science. Neutron scattering experiments at the ANL-IPNS were partially supported by the Inter-University Research Program on Pulsed Neutron Scattering at Oversea Facilities from the Ministry of Education, Culture, Sports, Science and Technology of Japan. NR 17 TC 0 Z9 0 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD MAY 14 PY 2009 VL 180 IS 6-8 BP 541 EP 545 DI 10.1016/j.ssi.2008.07.001 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 455MJ UT WOS:000266764100022 ER PT J AU Klise, KA Weissmann, GS McKenna, SA Nichols, EM Frechette, JD Wawrzyniec, TF Tidwell, VC AF Klise, Katherine A. Weissmann, Gary S. McKenna, Sean A. Nichols, Elizabeth M. Frechette, Jedediah D. Wawrzyniec, Tim F. Tidwell, Vince C. TI Exploring solute transport and streamline connectivity using lidar-based outcrop images and geostatistical representations of heterogeneity SO WATER RESOURCES RESEARCH LA English DT Article ID POROUS-MEDIA; NUMERICAL-SIMULATION; LITHOFACIES; SANDSTONE; PATTERNS; SCALE; FLOW; CONDUCTIVITY; MODELS AB Using high-resolution lidar scans of a braided stream deposit, we investigate solute transport characteristics and streamline-based connectivity that are lost when simulating the outcrop heterogeneity using geostatistical methods based on two-point covariance functions. Attributes of the lidar scans were used to segment the outcrop into sand-and gravel-dominated lithofacies. Simulated fields were created using sequential indicator methods based on the two-point covariance of the binary segmented lidar field. Sand and gravel lithofacies are then assigned reasonable hydraulic conductivity values. Two-dimensional advective-diffusive solute transport simulations in the segmented lidar field show strong solute focusing through gravel-dominated strata, resulting in a heavy-tailed (e. g., non-Fickian) breakthrough. The sequential indicator fields do not replicate the early and late time arrival characteristics. Streamline-based analysis shows that the sequential indicator fields do not reproduce connectivity of the segmented lidar field. Even when the sequential indicator fields are highly conditioned, streamlines migrate between sands and gravel beds nearly twice as often as streamlines in the segmented lidar field. C1 [Klise, Katherine A.; McKenna, Sean A.; Tidwell, Vince C.] Sandia Natl Labs, Geosci Res & Applicat Grp, Albuquerque, NM 87185 USA. [Weissmann, Gary S.; Nichols, Elizabeth M.; Frechette, Jedediah D.; Wawrzyniec, Tim F.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Klise, KA (reprint author), Sandia Natl Labs, Geosci Res & Applicat Grp, POB 5800, Albuquerque, NM 87185 USA. EM kaklise@sandia.gov FU Department of Energy Office of Science (BER); Sandia University Research Program; Sandia Corporation; Lockheed Martin Company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by a Department of Energy Basic Energy Science grant, a Department of Energy Office of Science (BER) grant, and by the Sandia University Research Program. The authors greatly acknowledge Louis Scuderi for work on lidar segmentation and Eric LaBolle and Josh Christian for contributions to solute transport simulations and three anonymous reviewers. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 41 TC 21 Z9 21 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD MAY 14 PY 2009 VL 45 AR W05413 DI 10.1029/2008WR007500 PG 11 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 446FB UT WOS:000266105000003 ER PT J AU Schiffer, WK Liebling, CNB Reiszel, C Hooker, JM Brodie, JD Dewey, SL AF Schiffer, Wynne K. Liebling, Courtney N. B. Reiszel, Corinne Hooker, Jacob M. Brodie, Jonathan D. Dewey, Stephen L. TI Cue-Induced Dopamine Release Predicts Cocaine Preference: Positron Emission Tomography Studies in Freely Moving Rodents SO JOURNAL OF NEUROSCIENCE LA English DT Article ID GAMMA-VINYL GABA; HUMAN-BRAIN; NUCLEUS-ACCUMBENS; C-11 RACLOPRIDE; EXTRACELLULAR DOPAMINE; CONDITIONED INCREASES; INTRAVENOUS COCAINE; NONHUMAN PRIMATE; DORSAL STRIATUM; D-2 RECEPTORS AB Positron emission tomography studies in drug-addicted patients have shown that exposure to drug-related cues increases striatal dopamine, which displaces binding of the D(2) ligand, [(11)C]-raclopride. However, it is not known if animals will also show cue-induced displacement of [(11)C]-raclopride binding. In this study, we use [(11)C]-raclopride imaging in awake rodents to capture cue-induced changes in dopamine release associated with the conditioned place preference model of drug craving. Ten animals were conditioned to receive cocaine in a contextually distinct environment from where they received saline. Following conditioning, each animal was tested for preference and then received two separate [(11)C]-raclopride scans. For each scan, animals were confined to the cocaine and/or the saline-paired environment for the first 25 min of uptake, after which they were anesthetized and scanned. [(11)C]-raclopride uptake in the saline-paired environment served as a within-animal control for uptake in the cocaine-paired environment. Cocaine produced a significant place preference (p = 0.004) and exposure to the cocaine-paired environment decreased [(11)C]-raclopride binding relative to the saline-paired environment in both the dorsal (20%; p = 0.002) and ventral striatum (22%; p < 0.05). The change in [(11)C]-raclopride binding correlated with preference in the ventral striatum (R(2) = -0.87; p = 0.003). In this region, animals who showed little or no preference exhibited little or no change in [(11)C]-raclopride binding in the cocaine-paired environment. This noninvasive procedure of monitoring neurochemical events in freely moving, behaving animals advances preclinical molecular imaging by interrogating the degree to which animal models reflect the human condition on multiple dimensions, both biological and behavioral. C1 [Schiffer, Wynne K.; Liebling, Courtney N. B.; Reiszel, Corinne; Hooker, Jacob M.; Dewey, Stephen L.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Schiffer, Wynne K.; Brodie, Jonathan D.; Dewey, Stephen L.] NYU, Sch Med, Dept Psychiat, New York, NY 10016 USA. RP Schiffer, WK (reprint author), Brookhaven Natl Lab, Dept Med, Chem Bldg 555, Upton, NY 11973 USA. EM wynne@bnl.gov OI Hooker, Jacob/0000-0002-9394-7708; Brodie, Jonathan/0000-0002-2254-8654 FU Department of Energy [DE-AC02-98CH10886, LDRD 06-026]; National Institutes of Health [DA15041, DA22346] FX This work was performed at Brookhaven National Laboratory under contract no. DE-AC02-98CH10886 with the Department of Energy and supported by its Office of Biological and Environmental Research. Additional funds were provided by the Department of Energy (LDRD 06-026 to W. K. S.) and National Institutes of Health (DA15041 and DA22346 to S. L. D.). We are especially grateful for helpful discussions with Drs. Joanna Fowler, Jean Logan, David Alexoff, and Nora Volkow. These studies would not have been possible without advice and continued assistance from Brookhaven National Laboratory (BNL) Health Physics Representatives Kimberly Wehunt and Cheryl Burns. We also appreciate the radiosynthesis efforts of Colleen Shea, Lisa Muench, and Youwen Xu and technical assistance from Vinal Patel, James Anselmini, and Barry Laffler in the BNL Chemistry Department. NR 46 TC 24 Z9 24 U1 3 U2 6 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD MAY 13 PY 2009 VL 29 IS 19 BP 6176 EP 6185 DI 10.1523/JNEUROSCI.5221-08.2009 PG 10 WC Neurosciences SC Neurosciences & Neurology GA 445HU UT WOS:000266042700015 PM 19439595 ER PT J AU Dyer, GC Crossno, JD Aizin, GR Shaner, EA Wanke, MC Reno, JL Allen, SJ AF Dyer, G. C. Crossno, J. D. Aizin, G. R. Shaner, E. A. Wanke, M. C. Reno, J. L. Allen, S. J. TI A plasmonic terahertz detector with a monolithic hot electron bolometer SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID INVERSION-LAYERS; TRANSISTOR; MODES; OSCILLATIONS; RADIATION AB A plasmonic terahertz detector that integrates a voltage-controlled planar barrier into a grating gated GaAs/AlGaAs high electron mobility transistor has been fabricated and experimentally characterized. The plasmonic response at fixed grating gate voltage has a full width at half-maximum of 40 GHz at similar to 405 GHz. Substantially increased responsivity is achieved by introducing an independently biased narrow gate that produces a lateral potential barrier electrically in series with the resonant grating gated region. DC electrical characterization in conjunction with bias-dependent terahertz responsivity and time constant measurements indicate that a hot electron bolometric effect is the dominant response mechanism at 20 K. C1 [Dyer, G. C.; Crossno, J. D.; Allen, S. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Aizin, G. R.] CUNY, Kingsborough Coll, Dept Phys Sci, Brooklyn, NY 11235 USA. [Shaner, E. A.; Wanke, M. C.; Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dyer, GC (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. FU University of Buffalo NSF-NIRT THz [ECS0609146]; ARO [W911NF-05-1-0031] FX The authors would like to thank Dave Enyeart and Gerry Ramian at the UCSB Free Electron Laser facility for their assistance, maintenance and operation of the facility. This work is supported by the University of Buffalo NSF-NIRT THz Collaboratory: ECS0609146. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Theoretical work is supported by ARO grant no. W911NF-05-1-0031. NR 20 TC 17 Z9 17 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 13 PY 2009 VL 21 IS 19 AR 195803 DI 10.1088/0953-8984/21/19/195803 PG 6 WC Physics, Condensed Matter SC Physics GA 436MO UT WOS:000265418400028 PM 21825498 ER PT J AU Harrison, N McDonald, RD AF Harrison, N. McDonald, R. D. TI Determining the in-plane Fermi surface topology in high T-c superconductors using angle-dependent magnetic quantum oscillations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID MAGNETORESISTANCE AB We propose a quantum oscillation experiment by which the rotation of an underdoped YBa2Cu3O6+x sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2 Delta F between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds vertical bar B vertical bar. C1 [Harrison, N.; McDonald, R. D.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Harrison, N (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, MS E536, Los Alamos, NM 87545 USA. RI McDonald, Ross/H-3783-2013; OI McDonald, Ross/0000-0002-0188-1087; Harrison, Neil/0000-0001-5456-7756; Mcdonald, Ross/0000-0002-5819-4739 FU US Department of Energy; State of Florida; US National Science Foundation FX This work is conducted under the auspices of the US Department of Energy, the State of Florida and the US National Science Foundation. NR 21 TC 4 Z9 4 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 13 PY 2009 VL 21 IS 19 AR 192201 DI 10.1088/0953-8984/21/19/192201 PG 5 WC Physics, Condensed Matter SC Physics GA 436MO UT WOS:000265418400001 PM 21825471 ER PT J AU Janik, JA Zhou, HD Jo, YJ Balicas, L MacDougall, GJ Luke, GM Garrett, JD McClellan, KJ Bauer, ED Sarrao, JL Qiu, Y Copley, JRD Yamani, Z Buyers, WJL Wiebe, CR AF Janik, J. A. Zhou, H. D. Jo, Y-J Balicas, L. MacDougall, G. J. Luke, G. M. Garrett, J. D. McClellan, K. J. Bauer, E. D. Sarrao, J. L. Qiu, Y. Copley, J. R. D. Yamani, Z. Buyers, W. J. L. Wiebe, C. R. TI Itinerant spin excitations near the hidden order transition in URu2Si2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ELECTRON SUPERCONDUCTOR URU2SI2; MAGNETIC EXCITATIONS; NEUTRON-SCATTERING; FERMI-SURFACE; FLUCTUATIONS AB By means of neutron scattering we show that the high temperature precursor to the hidden order state of the heavy fermion superconductor URu2Si2 exhibits heavily damped incommensurate paramagnons whose strong energy dispersion is very similar to that of the long-lived longitudinal f spin excitations that appear below T-0. This suggests that there is a strongly hybridized character to the itinerant excitations observed previously above the hidden order transition. Here we present evidence that the itinerant excitations, like those in chromium, are due to Fermi surface nesting of hole and electron pockets; hence the hidden order phase probably originates from a Fermi surface instability. We identify wavevectors that span nested regions of a f-d hybridized band calculation and that match the neutron spin crossover from incommensurate to commensurate on approach to the hidden order phase. C1 [Janik, J. A.; Wiebe, C. R.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Janik, J. A.; Zhou, H. D.; Jo, Y-J; Balicas, L.; Wiebe, C. R.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [MacDougall, G. J.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Luke, G. M.; Buyers, W. J. L.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [Garrett, J. D.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [McClellan, K. J.; Bauer, E. D.; Sarrao, J. L.] Los Alamos Natl Lab, Sci Technol & Engn Directorate, Los Alamos, NM 87545 USA. [Qiu, Y.; Copley, J. R. D.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Yamani, Z.; Buyers, W. J. L.] CNBC, Natl Res Council, Chalk River, ON K0J 1J0, Canada. RP Janik, JA (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM cwiebe@magnet.fsu.edu RI Bauer, Eric/D-7212-2011; yamani, zahra/B-7892-2012; Luke, Graeme/A-9094-2010; Zhou, Haidong/O-4373-2016; OI Luke, Graeme/0000-0003-4762-1173; Bauer, Eric/0000-0003-0017-1937; MacDougall, Gregory/0000-0002-7490-9650 FU NSF [CDMR-0084173, DMR-0454672]; EIEG; State of Florida; NSERC; US DOE FX This work was supported by the NSF CDMR-0084173, DMR-0454672, the EIEG program (FSU) and the State of Florida. The work at McMaster is supported by NSERC and at Los Alamos by the US DOE. The authors are grateful for the local support staff at the NIST Center for Neutron Research and Chalk River Laboratories. The authors would also like to acknowledge the support of the UCGP at the NHMFL. NR 23 TC 19 Z9 19 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAY 13 PY 2009 VL 21 IS 19 AR 192202 DI 10.1088/0953-8984/21/19/192202 PG 4 WC Physics, Condensed Matter SC Physics GA 436MO UT WOS:000265418400002 PM 21825472 ER PT J AU Booth, CH Walter, MD Kazhdan, D Hu, YJ Lukens, WW Bauer, ED Maron, L Eisenstein, O Andersen, RA AF Booth, Corwin H. Walter, Marc D. Kazhdan, Daniel Hu, Yung-Jin Lukens, Wayne W. Bauer, Eric D. Maron, Laurent Eisenstein, Odile Andersen, Richard A. TI Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AB-INITIO PSEUDOPOTENTIALS; HEAVY-FERMION SYSTEMS; RARE-EARTH-ELEMENTS; STRUCTURAL-CHARACTERIZATION; YTTERBOCENE COMPLEXES; LANTHANIDE COMPLEXES; ELECTRONIC-STRUCTURE; VALENCE TAUTOMERISM; MAGNETIC-PROPERTIES; ORGANIC RADICALS AB Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C(5)Me(5))(2)Yb, abbreviated as CP(2)(star)Yb. Data used to support this claim include ytterbium valence measurements using Yb L(III)-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f(13)(pi(star))(1), where pi(star) is the lowest unoccupied molecular orbital of the bipyridine or diazabutadiene ligands, and a closed-shell singlet f(14) component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices. C1 [Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Lukens, Wayne W.; Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Hu, Yung-Jin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Andersen, Richard A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bauer, Eric D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Maron, Laurent] Univ Toulouse, INSA UPS LPCNO, F-31077 Toulouse, France. [Maron, Laurent] Univ Toulouse, CNRS LPCNO, F-31077 Toulouse, France. [Eisenstein, Odile] Univ Montpellier 2, Inst Charles Gerhardt, F-34095 Montpellier, France. [Eisenstein, Odile] Univ Montpellier 2, Inst Charles Gerhardt CNRS, UMR 5253, CNRS UM2 ENSCM UM1, F-34095 Montpellier, France. RP Booth, CH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM chbooth@lbl.gov RI Bauer, Eric/D-7212-2011; Walter, Marc/E-4479-2012; Eisenstein, Odile/I-1704-2016; OI Eisenstein, Odile/0000-0001-5056-0311; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; German Academic Exchange Service (DAAD); CNRS; Ministere de I'Enscignement Superieur et de la Recherche FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, and by the German Academic Exchange Service (DAAD) with a fellowship (M.D.W.). X-ray absorption data were collected at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the DOE/OBES. Work at Los Alamos was performed under the auspices of the DOE. L.M. thanks the CINES and CALMIP for a generous grant of computing time. L.M. is also member of the Institut Universitaire de France. L.M. and O.E. thank the CNRS and Ministere de I'Enscignement Superieur et de la Recherche for funding. We thank Martin Head-Gordon for enlightening discussions, Dr. Fred Hollander (at CHEXRAY, the U.C. Berkeley X-ray diffraction facility) for assistance with the crystallography, and Dr. Evan Werkema for his assistance. NR 77 TC 53 Z9 53 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 13 PY 2009 VL 131 IS 18 BP 6480 EP 6491 DI 10.1021/ja809624w PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 443VP UT WOS:000265939200049 PM 19385617 ER PT J AU Rodriguez, BJ Jesse, S Habelitz, S Proksch, R Kalinin, SV AF Rodriguez, Brian J. Jesse, Stephen Habelitz, Stefan Proksch, Roger Kalinin, Sergei V. TI Intermittent contact mode piezoresponse force microscopy in a liquid environment SO NANOTECHNOLOGY LA English DT Article ID SCANNING PROBE MICROSCOPY; CANTILEVERS; SURFACES AB Probing electromechanical coupling in biological systems and electroactive molecules requires high resolution functional imaging. Here, we investigate the feasibility of intermittent contact mode piezoresponse force microscopy based on simultaneous mechanical and electrical probe modulation. It is shown that imaging at frequencies corresponding to the first contact resonance in liquid allows contrast consistent with the electromechanical signal to be obtained for model ferroelectric systems and piezoelectric tooth dentin. C1 [Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Rodriguez, Brian J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. [Habelitz, Stefan] Univ Calif San Francisco, Dept Prevent & Restorat Dent Sci, San Francisco, CA 94143 USA. [Proksch, Roger] Asylum Res, Santa Barbara, CA 93117 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM brian.rodriguez@ucd.ie; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Jesse, Stephen/0000-0002-1168-8483 FU ORNL LDRD; Alexander von Humboldt foundation; [RO1-DE16849] FX This research was supported by the ORNL LDRD (BJR, SJ, SVK) and RO1-DE16849 (SH). BJR acknowledges the Alexander von Humboldt foundation financial support. NR 28 TC 16 Z9 16 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 13 PY 2009 VL 20 IS 19 AR 195701 DI 10.1088/0957-4484/20/19/195701 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 435NL UT WOS:000265350500017 PM 19420645 ER PT J AU Perry, JJP Hitomi, K Tainer, JA AF Perry, J. Jefferson P. Hitomi, Kenichi Tainer, John A. TI Flexibility Promotes Fidelity SO STRUCTURE LA English DT Editorial Material ID DNA-POLYMERASE; DPO4 POLYMERASE; REPLICATION; BYPASS; REPAIR C1 [Perry, J. Jefferson P.; Hitomi, Kenichi; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Perry, J. Jefferson P.; Hitomi, Kenichi; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Perry, J. Jefferson P.] Amrita Univ, Sch Biotechnol, Kollam 690525, Kerala, India. [Hitomi, Kenichi; Tainer, John A.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Perry, JJP (reprint author), Scripps Res Inst, Dept Mol Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM jjperry@scripps.edu OI Tainer, John/0000-0003-1659-2429 NR 10 TC 0 Z9 0 U1 1 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD MAY 13 PY 2009 VL 17 IS 5 BP 633 EP 634 DI 10.1016/j.str.2009.04.003 PG 2 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 446VV UT WOS:000266150500001 PM 19446518 ER PT J AU Kozlov, G Maattanen, P Schrag, JD Hura, GL Gabrielli, L Cygler, M Thomas, DY Gehring, K AF Kozlov, Guennadi Maeaettaenen, Pekka Schrag, Joseph D. Hura, Greg L. Gabrielli, Lisa Cygler, Miroslaw Thomas, David Y. Gehring, Kalle TI Structure of the Noncatalytic Domains and Global Fold of the Protein Disulfide Isomerase ERp72 SO STRUCTURE LA English DT Article ID SMALL-ANGLE SCATTERING; X-RAY-SCATTERING; ENDOPLASMIC-RETICULUM; CRYSTAL-STRUCTURE; BIOLOGICAL MACROMOLECULES; BINDING SITE; B' DOMAIN; ERP57; CALNEXIN; CALRETICULIN AB Protein disulfide isomerases are a family of proteins that catalyze the oxidation and isomerization of disulfide bonds in newly synthesized proteins in the endoplasmic reticulum. The family includes general enzymes such as PDI that recognize unfolded proteins, and others that are selective for specific classes of proteins. Here, we report the X-ray crystal structure of central non-catalytic domains of a specific isomerase, ERp72 (also called CaBP2 and protein disulfide-isomerase A4) from Rattus norvegicus. The structure reveals strong similarity to ERp57, a PDI-family member that interacts with the lectin-like chaperones calnexin and calreticulin but, unexpectedly, ERp72 does not interact with calnexin as shown by isothermal titration calorimetry and nuclear magnetic resonance (NMR) spectroscopy. Small-angle X-ray scattering (SAXS) of ERp72 was used to develop models of the full-length protein using both rigid body refinement and ab initio simulated annealing of dummy atoms. The two methods show excellent agreement and define the relative positions of the five thioredoxin-like domains of ERp72 and potential substrate or chaperone binding sites. C1 [Kozlov, Guennadi; Maeaettaenen, Pekka; Gabrielli, Lisa; Thomas, David Y.; Gehring, Kalle] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada. [Kozlov, Guennadi; Maeaettaenen, Pekka; Schrag, Joseph D.; Gabrielli, Lisa; Cygler, Miroslaw; Thomas, David Y.; Gehring, Kalle] Grp Rech Axe Struct Prot, Montreal, PQ H3G 1Y6, Canada. [Schrag, Joseph D.; Cygler, Miroslaw] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada. [Hura, Greg L.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Gehring, K (reprint author), McGill Univ, Dept Biochem, 3655 Promenade Sir William Osler, Montreal, PQ H3G 1Y6, Canada. EM kalle.gehring@mcgill.ca RI Gehring, Kalle/I-4403-2013 OI Gehring, Kalle/0000-0001-6500-1184 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was funded by Canadian Institutes of Health Research (CIHR) grants to D.T. and K.G. G.H. and the SAXS beamline are supported by U.S. Department of Energy Contract No. DE-AC02-05CH11231. Data acquisition at X8C is supported in part by a grant from CIHR and the Natural Sciences and Engineering Research Council. NR 56 TC 27 Z9 28 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD MAY 13 PY 2009 VL 17 IS 5 BP 651 EP 659 DI 10.1016/j.str.2009.02.016 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 446VV UT WOS:000266150500004 PM 19446521 ER PT J AU Rajaram, S Armstrong, PB Kim, BJ Frechet, JMJ AF Rajaram, Sridhar Armstrong, Paul B. Kim, Bumjoon J. Frechet, Jean M. J. TI Effect of Addition of a Diblock Copolymer on Blend Morphology and Performance of Poly(3-hexylthiophene):Perylene Diimide Solar Cells SO CHEMISTRY OF MATERIALS LA English DT Article ID PERYLENE-3,4-9,10-BIS(DICARBOXIMIDE) PIGMENTS; BLOCK-COPOLYMERS; PHOTOVOLTAIC CELLS; CRYSTAL-STRUCTURE; EFFICIENCY; INTERFACE; COLOR C1 [Rajaram, Sridhar; Armstrong, Paul B.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Armstrong, Paul B.; Kim, Bumjoon J.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, 718 Latimer Hall, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Kim, Bumjoon J./C-1714-2011; OI Frechet, Jean /0000-0001-6419-0163 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank D. Kavulak for helpful discussions. NR 27 TC 137 Z9 137 U1 2 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 12 PY 2009 VL 21 IS 9 BP 1775 EP 1777 DI 10.1021/cm900911x PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 441PK UT WOS:000265781000001 ER PT J AU Behera, JN D'Alessandro, DM Soheilnia, N Long, JR AF Behera, Jogendra N. D'Alessandro, Deanna M. Soheilnia, Navid Long, Jeffrey R. TI Synthesis and Characterization of Ruthenium and Iron-Ruthenium Prussian Blue Analogues SO CHEMISTRY OF MATERIALS LA English DT Article ID HYDROGEN STORAGE PROPERTIES; MAGNETIC-ORDERING TEMPERATURE; CRYSTAL-STRUCTURE; ELECTRON-TRANSFER; BUILDING-BLOCKS; DEGREES-C; CYANIDE; TRANSITION; ADSORPTION; NI AB The electronic spectra, electrical conductivity, magnetism, and gas adsorption properties of the newly prepared Prussian blue analogues Fe(4)[Ru(CN)(6)](3)center dot 18H(2)O (2) and K(1.2)Ru(3.6)[Ru(CN)(6)](3)center dot 16H(2)O (3) are compared with those of Prussian blue itself (Fe(4)[Fe(CN)(6)](3)center dot 14H(2)O, 1). The increase in the degree of electronic localization for the unsymmetrical iron-ruthenium analogue 2 is reflected in a shift of the intervalence charge transfer (IVCT) band to higher energies and an increase in the electrical resistivity. In contrast, the all-ruthenium analogue 3 exhibits a lower-energy IVCT band, as well as the highest electrical conductivity, due to the combined effects of electronic delocalization and the presence of potassium ions. Unlike Prussian blue, the ruthenium and iron-ruthenium analogues show no magnetic ordering transition above 1.8 K. Nitrogen adsorption measurements at 77 K show the dehydrated forms of 2 and 3 to be microporous with BET surface areas of 670 and 325 m(2)/g, respectively. C1 [Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu RI D'Alessandro, Deanna/H-7593-2013 OI D'Alessandro, Deanna/0000-0002-1497-2543 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy [DE-AC02-05CH11231]; American Australian Association; 1851 Royal Commission for support of DMD FX This research was funded by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. We thank the American Australian Association and the 1851 Royal Commission for support of DMD through postdoctoral fellowships. NR 53 TC 26 Z9 28 U1 11 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 12 PY 2009 VL 21 IS 9 BP 1922 EP 1926 DI 10.1021/cm900230p PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 441PK UT WOS:000265781000026 ER PT J AU Mauldin, CE Puntambekar, K Murphy, AR Liao, F Subramanian, V Frechet, JMJ DeLongchamp, DM Fischer, DA Toney, MF AF Mauldin, Clayton E. Puntambekar, Kanan Murphy, Amanda R. Liao, Frank Subramanian, Vivek Frechet, Jean M. J. DeLongchamp, Dean M. Fischer, Daniel A. Toney, Michael F. TI Solution-Processable alpha,omega-Distyryl Oligothiophene Semiconductors with Enhanced Environmental Stability SO CHEMISTRY OF MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; ORGANIC SEMICONDUCTORS; EFFECT MOBILITY; PERFORMANCE; THIOPHENE AB We describe the rational design of oligothiophene semiconductors to facilitate solution-based fabrication of environmentally stable organic field-effect transistors (OFETs). Ultrathin films of alpha,omega-distyryl quaterthiophene (DS4T), pentathiophene (DS5T), and sexithiophene (DS6T) were prepared via solution processing to probe the effect of styryl end groups, oligomer length, and thin film structure on air stability. These films were prepared via solution deposition and thermal annealing of precursors featuring thermally labile ester solubilizing groups. A detailed study of the thin film structure was performed using atomic force microscopy (AFM), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and grazing incidence X-ray diffraction (GIXD). Functional OFETs were obtained for DS5T and DS6T and have, respectively, hole mobilities of 0.051 and 0.043 cm(2)/(V s) and on/off ratios of 1 x 10(5) to 1 x 10(6), whereas DS4T OFETs failed to function because of poor film continuity. The effect of both short-term and long-term exposure to air is tracked in OFETs revealing remarkable stability for both DS5T and DS6T. This stability is attributed to the elimination of reactive sites in alpha,omega-distyryl oligothiophenes and suggests that careful choice of end-group structure can stabilize these molecules against oxidative degradation. C1 [Mauldin, Clayton E.; Murphy, Amanda R.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Puntambekar, Kanan; Liao, Frank; Subramanian, Vivek] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Mauldin, Clayton E.; Murphy, Amanda R.; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [DeLongchamp, Dean M.; Fischer, Daniel A.] NIST, Div Polymers, Gaithersburg, MD 20899 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Subramanian, Vivek/K-9818-2016 OI Subramanian, Vivek/0000-0002-1783-8219 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. We acknowledge Daniel Poulsen for assistance with DFT calculations. NR 37 TC 26 Z9 26 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD MAY 12 PY 2009 VL 21 IS 9 BP 1927 EP 1938 DI 10.1021/cm900267v PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 441PK UT WOS:000265781000027 ER PT J AU Ghosal, S Baumann, TF King, JS Kucheyev, SO Wang, YM Worsley, MA Biener, J Bent, SF Hamza, AV AF Ghosal, Sutapa Baumann, Theodore F. King, Jeffrey S. Kucheyev, Sergei O. Wang, Yinmin Worsley, Marcus A. Biener, Juergen Bent, Stacey F. Hamza, Alex V. TI Controlling Atomic Layer Deposition of TiO2 in Aerogels through Surface Functionalization SO CHEMISTRY OF MATERIALS LA English DT Article ID POROUS STRUCTURES; TITANIUM-OXIDE; METAL; FILMS; LITHOGRAPHY; EPITAXY; GROWTH; RESIST; CELLS AB This report demonstrates a chemical functionalization method for controlling TiO2 ALD in low-density nanoporous materials, i.e., aerogels. Functionalization of silica aerogel with trimethylsilane is shown to inhibit TiO2 growth on the aerogel via ALD. A proposed mechanism for the deactivation effect is the blocking of surface functional groups, such as hydroxyl (OH) moieties, which serve as chemisorption sites for the ALD precursors and hence are essential for nucleating the deposition process. Subsequent modification of the aerogel functionalization through the selective removal of hydrocarbon groups via heat or plasma treatment reactivates the aerogel towards deposition, thereby resulting in TiO2 growth. The results presented here demonstrate the use of ALD as a selective tool for creating novel nanoporous materials. C1 [Ghosal, Sutapa; Baumann, Theodore F.; Kucheyev, Sergei O.; Wang, Yinmin; Worsley, Marcus A.; Biener, Juergen; Hamza, Alex V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [King, Jeffrey S.; Bent, Stacey F.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. RP Ghosal, S (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, 7000 E Ave, Livermore, CA 94550 USA. RI Ghosal, Sandip/B-7595-2009; Worsley, Marcus/G-2382-2014; Wang, Yinmin (Morris)/F-2249-2010 OI Worsley, Marcus/0000-0002-8012-7727; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU U.S. DOE [DE-AC52-07NA27344] FX Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. NR 32 TC 15 Z9 15 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAY 12 PY 2009 VL 21 IS 9 BP 1989 EP 1992 DI 10.1021/cm900636s PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 441PK UT WOS:000265781000034 ER PT J AU Oppenheim, MM Sugar, G Slowey, NO Bass, E Chau, JL Close, S AF Oppenheim, Meers M. Sugar, Glenn Slowey, Nicholas O. Bass, Elizabeth Chau, Jorge L. Close, Sigrid TI Remote sensing lower thermosphere wind profiles using non-specular meteor echoes SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID TRAILS AB This article describes a new method of measuring wind velocity profiles between 93 km and 110 km altitude by tracking non-specular meteor echoes as neutral winds transport the plasma trails. This requires a large VHF radar with interferometric capability able to point nearly perpendicular to the geomagnetic field. A small data sample from the Jicamarca Radio Observatory allows the measurement of horizontal wind speeds and directions with a range resolution of a few hundred meters. These observations show speeds reaching 150 m/s and sometimes changing by as much as 100 m/s over a 6 km altitude range. At the best times, these measurements can be made with only a few minutes of data. With some refinement of the data collection and analysis techniques, this technique should produce high resolution images of lower thermospheric winds as they change in both altitude and time. Citation: Oppenheim, M. M., G. Sugar, N. O. Slowey, E. Bass, J. L. Chau, and S. Close (2009), Remote sensing lower thermosphere wind profiles using non-specular meteor echoes, Geophys. Res. Lett., 36, L09817, doi:10.1029/2009GL037353. C1 [Oppenheim, Meers M.; Sugar, Glenn; Slowey, Nicholas O.; Bass, Elizabeth] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Chau, Jorge L.] Inst Geofis Peru, Radio Observ Jicamarca, Lima 13, Peru. [Close, Sigrid] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Oppenheim, MM (reprint author), Boston Univ, Ctr Space Phys, 725 Commonwealth Ave, Boston, MA 02215 USA. EM meerso@bu.edu RI Chau, Jorge/C-7568-2013; OI Chau, Jorge/0000-0002-2364-8892; Oppenheim, Meers/0000-0002-8581-6177 FU National Science Foundation [ATM-9986976, ATM-0332354, ATM-0334906, ATM-0432565, DGE-0221680]; DOE [DE-FG02-06ER54887] FX Work was supported by National Science Foundation grants ATM-9986976, ATM-0332354, ATM-0334906, ATM-0432565, and DGE-0221680 and DOE grant DE-FG02-06ER54887. The authors would like to thank the JRO (and IGP) staff for performing the observations, particularly F. Galindo for help processing the data, as well as M. Mendillo, D. Hysell, and M. Nicolls for useful suggestions. NR 14 TC 21 Z9 21 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD MAY 12 PY 2009 VL 36 AR L09817 DI 10.1029/2009GL037353 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 446CW UT WOS:000266099000003 ER PT J AU Seballos, L Zhang, JZ Ronnebro, E Herberg, JL Majzoub, EH AF Seballos, Leo Zhang, Jin Z. Roennebro, Ewa Herberg, Julie L. Majzoub, E. H. TI Metastability and crystal structure of the bialkali complex metal borohydride NaK(BH4)(2) SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Hydrogen storage materials; X-ray diffraction; Crystal structure and symmetry ID ALUMINUM HYDRIDES; HYDROGEN STORAGE; ALKALI; DECOMPOSITION; POTASSIUM AB A new bialkali borohydricle, NaK(BH4)(2), was synthesized by mechanical milling of NaBH4 and KBH4 in a 1:1 ratio. The synthesis was conducted based on a prediction from a computational screening of hydrogen storage materials suggesting the potential stability of NaK(BH4)(2). The new phase was characterized using X-ray diffraction, Raman scattering and magic angle spinning (MAS) nuclear magnetic resonance (NMR). The Raman measurements indicated B-H vibrations of the BH4- anion, while magnetic resonance chemical shifts in Na-23, and K-39 MAS NMR spectra showed new chemical environments for Na and K resulting from the formation of the new bialkali phase. X-ray diffraction spectra indicated a new crystal structure with rhombohedral symmetry, most likely in the space group R3, distinct from the starting materials NaBH4, and KBH4. Although in situ XRD measurements indicated the material to be metastable, decomposing to the starting materials NaBH4 and KBH4, the successful synthesis of NaK(BH4)(2) demonstrates the ability of computational screening to predict potential candidates for hydrogen storage materials. (C) 2008 Elsevier B.V. All rights reserved. C1 [Seballos, Leo; Majzoub, E. H.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Seballos, Leo; Majzoub, E. H.] Univ Missouri, Ctr Nanosci, St Louis, MO 63121 USA. [Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Roennebro, Ewa] Sandia Natl Labs, Livermore, CA 94551 USA. [Herberg, Julie L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Majzoub, EH (reprint author), Univ Missouri, Dept Phys & Astron, 1 Univ Blvd, St Louis, MO 63121 USA. EM maizoube@umsl.edu FU Basic Energy Sciences (BES) Division of the U.S. Department of Energy (DOE); Office of Energy Efficiency and Renewable Energy (EERE); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This project was supported by the Basic Energy Sciences (BES) Division of the U.S. Department of Energy (DOE) and the Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen Storage Grand Challenge, Center of Excellence within DOE's National Hydrogen Storage Project. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 27 TC 30 Z9 30 U1 3 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAY 12 PY 2009 VL 476 IS 1-2 BP 446 EP 450 DI 10.1016/j.jallcom.2008.09.038 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 446JM UT WOS:000266117900088 ER PT J AU Nie, JL Xiao, HY Gao, F Zu, XT AF Nie, J. L. Xiao, H. Y. Gao, Fei Zu, X. T. TI Electronic and magnetic properties of Al adsorption on alpha-uranium (001) surface: Ab initio calculations SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Uranium; Density functional theory; Bader charge; Density of states; Magnetic property ID GENERALIZED GRADIENT APPROXIMATION; AUGMENTED-WAVE METHOD; PSEUDOPOTENTIAL APPROACH; GAMMA-URANIUM; DENSITY; METALS; TH; PA AB First-principles calculations based on density functional theory (DFT) with the generalized gradient approximation have been performed to study the aluminum (Al) adsorption on the (001) surface of a-uranium (alpha-U). The geometric, electronic and magnetic properties have been investigated at coverages of 0.25 and 0.5 monolayer. The results show that the quasi-trigonal sites are preferred at both coverages. The bonding of Al with U is found to be metallic, which mainly arises from the mixing of Al 3sp and U 5f states. A ferromagnetic phase is determined for the bare a-U (001) surface, while the adsorption of A] on the surface significantly perturbs the spin arrangement pattern and reduces the local magnetic moment, leading to a ferrimagnetic phase on the alpha-U (001) surface at the coverage of 0.5 monolayer. However, the Al overlayer is paramagnetic. Generally, the spin-polarization has negligible effects on the geometric and electronic properties of Al atoms on the alpha-U (001) surface. (c) 2008 Published by Elsevier B.V. C1 [Nie, J. L.; Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zu, XT (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xiaotaozu@yahoo.com RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012 FU National Science Foundation of China [10647111]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830] FX This research was supported by National Science Foundation of China (10647111), the program for W040632 and JX05019. One of the authors (Fei Gao) was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 29 TC 10 Z9 10 U1 2 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAY 12 PY 2009 VL 476 IS 1-2 BP 675 EP 682 DI 10.1016/j.jallcom.2008.09.103 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 446JM UT WOS:000266117900131 ER PT J AU Wu, YX Versteeg, R Slater, L LaBrecque, D AF Wu, Yuxin Versteeg, Roelof Slater, Lee LaBrecque, Douglas TI Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE ZVI; Complex conductivity; Polarization; Conduction; Iron oxides; Calcite ID PERMEABLE REACTIVE BARRIERS; LONG-TERM PERFORMANCE; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; COLE-COLE PARAMETERS; ZEROVALENT IRON; INDUCED-POLARIZATION; GRANULAR IRON; MINERALOGICAL CHARACTERISTICS; REDUCTIVE DECHLORINATION; HEXAVALENT CHROMIUM AB Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO(3) and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO(3) as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO(3) dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO(3) forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO(3) precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation. Published by Elsevier B.V. C1 [Wu, Yuxin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Versteeg, Roelof] IRC, Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Slater, Lee] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [LaBrecque, Douglas] Multiphase Technol, Sparks, NV 89436 USA. RP Wu, YX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ywu3@lbl.gov RI Wu, Yuxin/G-1630-2012 OI Wu, Yuxin/0000-0002-6953-0179 FU DOE [DE-FG-02-04ER84013]; Office of Small Business Innovation Research; Idaho National Laboratory (INL) Laboratory Directed Research and Development (LDRD) FX This research was supported by the DOE contract DE-FG-02-04ER84013 (P.I. Douglas LaBrecque) from Office of Small Business Innovation Research (SBIR). The CR system was supported by Idaho National Laboratory (INL) Laboratory Directed Research and Development (LDRD) funding. We thank Andreas Kemna (University of Bonn) for use of a Cole Cole relaxation modeling code and Nic Spycher (LBNL) for help with geochemical modeling. We also acknowledge the editor and two reviewers for constructive comments that improved the manuscript. NR 48 TC 17 Z9 17 U1 3 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD MAY 12 PY 2009 VL 106 IS 3-4 BP 131 EP 143 DI 10.1016/j.jconhyd.2009.02.003 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 450RR UT WOS:000266419000003 PM 19342119 ER PT J AU Navarre-Sitchler, A Steefel, CI Yang, L Tomutsa, L Brantley, SL AF Navarre-Sitchler, Alexis Steefel, Carl I. Yang, Li Tomutsa, Liviu Brantley, Susan L. TI Evolution of porosity and diffusivity associated with chemical weathering of a basalt clast SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID REACTIVE TRANSPORT; SEDIMENTARY-ROCKS; PERCOLATION-THRESHOLD; MARINE-SEDIMENTS; POROUS-MEDIA; MODEL; PERMEABILITY; RATES; CONDUCTIVITY; COEFFICIENTS AB Weathering of rocks as a result of exposure to water and the atmosphere can cause significant changes in their chemistry and porosity. In low-porosity rocks, such as basalts, changes in porosity, resulting from chemical weathering, are likely to modify the rock's effective diffusivity and permeability, affecting the rate of solute transport and thus potentially the rate of overall weathering to the extent that transport is the rate limiting step. Changes in total porosity as a result of mineral dissolution and precipitation have typically been used to calculate effective diffusion coefficients through Archie's law for reactive transport simulations of chemical weathering, but this approach fails to account for unconnected porosity that does not contribute to transport. In this study, we combine synchrotron X-ray microcomputed tomography (mu CT) and laboratory and numerical diffusion experiments to examine changes in both total and effective porosity and effective diffusion coefficients across a weathering interface in a weathered basalt clast from Costa Rica. The mu CT data indicate that below a critical value of similar to 9%, the porosity is largely unconnected in the basalt clast. The mu CT data were further used to construct a numerical pore network model to determine upscaled, effective diffusivities as a function of total porosity (ranging from 3 to 30%) for comparison with diffusivities determined in laboratory tracer experiments. By using effective porosity as the scaling parameter and accounting for critical porosity, a model is developed that accurately predicts continuum-scale effective diffusivities across the weathering interface of the basalt clast. C1 [Navarre-Sitchler, Alexis] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Steefel, Carl I.; Yang, Li; Tomutsa, Liviu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Navarre-Sitchler, Alexis; Steefel, Carl I.; Yang, Li; Brantley, Susan L.] Penn State Univ, Ctr Environm Kinet Anal, University Pk, PA 16802 USA. [Brantley, Susan L.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. RP Navarre-Sitchler, A (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. EM alexis.sitchler@uwyo.edu RI YANG, LI/F-9392-2010; Steefel, Carl/B-7758-2010; Navarre-Sitchler, Alexis/J-3389-2014 FU National Science Foundation [CHE-0431328, DGE-9972759]; Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the National Science Foundation under grants CHE-0431328 (Biogeochemical Research Initiative for Education) and DGE-9972759 (Center for Environmental Kinetics Analysis), both at Penn State. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under contract DE-AC02-05CH11231. The second and third authors' contributions were also supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U. S. Department of Energy under contract DE-AC02-05CH11231 to the Lawrence Berkeley National Laboratory. We thank two anonymous referees for careful reviews of this manuscript and P. Sak at Dickinson College for SEM images and helpful discussions. NR 54 TC 49 Z9 49 U1 4 U2 37 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD MAY 12 PY 2009 VL 114 AR F02016 DI 10.1029/2008JF001060 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 446DM UT WOS:000266100600001 ER PT J AU Priftis, D Petzetakis, N Sakellariou, G Pitsikalis, M Baskaran, D Mays, JW Hadjichristidis, N AF Priftis, Dimitrios Petzetakis, Nikolaos Sakellariou, Georgios Pitsikalis, Marinos Baskaran, Durairaj Mays, Jimmy W. Hadjichristidis, Nikos TI Surface-Initiated Titanium-Mediated Coordination Polymerization from Catalyst-Functionalized Single and Multiwalled Carbon Nanotubes SO MACROMOLECULES LA English DT Article ID RING-OPENING POLYMERIZATION; N-HEXYL ISOCYANATE; EPSILON-CAPROLACTONE; METATHESIS POLYMERIZATION; RADICAL POLYMERIZATION; ANIONIC-POLYMERIZATION; POLY(L-LACTIC ACID); GRAFTING REACTIONS; BLOCK-COPOLYMERS; NANOCOMPOSITES AB Single (SWNTs) and multiwalled (MWNTs) carbon nanotubes were functionalized with a titanium alkoxide catalyst through a Diels-Alder cycloaddition reaction. The catalyst-functionalized carbon nanotubes (CNTs) were used for the surface initiated titanium-mediated coordination polymerizations of L-lactide (L-LA), epsilon-caprolactone (epsilon-CL) and n-hexyl isocyanate (HIC) employing the "grafting from" technique. (1)H NMR, IR and Raman spectra showed that the precursor catalyst was successfully synthesized and covalently attached on the CNTs surface. Thermogravimetric analysis (TGA) revealed that the grafted poly(L-lactide) (PLLA) content could be controlled with time. The final polymer-grafted CNTs were readily dissolved in organic solvents as compared to the insoluble pristine and catalyst-functionalized CNTs. The presence of thick layers of polymers around the CNTs was observed through transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) proved that the glass transition (T(g)) and melting (T(m)) temperatures of the PLLA are affected by the presence of the CNTs, while PLLA alpha-helix conformation remains intact, as revealed by the circular dichroism (CD) spectra. C1 [Priftis, Dimitrios; Petzetakis, Nikolaos; Sakellariou, Georgios; Pitsikalis, Marinos; Hadjichristidis, Nikos] Univ Athens, Dept Chem, Athens 15771, Greece. [Baskaran, Durairaj; Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Sakellariou, G (reprint author), Univ Athens, Dept Chem, Athens 15771, Greece. EM gsakellariou@chem.uoa.gr; hadjichristidis@chem.uoa.gr RI Durairaj, Baskaran/C-3692-2009; Sakellariou, Georgios/B-1752-2014 OI Durairaj, Baskaran/0000-0002-6886-5604; FU Ministry of Education; Initial Educational Vocational Training on "Polymer Science and its Applications"; Research Committee of the University of Athens; U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC05-00OR22725]; Center for Nanophase Materials Sciences FX The financial support of the Ministry of Education through the Operational Program and Initial Educational Vocational Training on "Polymer Science and its Applications" and the Research Committee of the University of Athens is greatly appreciated. The work at ORNL was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering (DE-AC05-00OR22725) and through a User project to J.M. at the Center for Nanophase Materials Sciences. We thank Daniela Let for her help with CD experiments. NR 61 TC 43 Z9 43 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD MAY 12 PY 2009 VL 42 IS 9 BP 3340 EP 3346 DI 10.1021/ma8027479 PG 7 WC Polymer Science SC Polymer Science GA 441PN UT WOS:000265781300017 ER PT J AU Marietta, C Thompson, LH Lamerdin, JE Brooks, PJ AF Marietta, Cheryl Thompson, Larry H. Lamerdin, Jane E. Brooks, P. J. TI Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: Implications for alcohol-related carcinogenesis SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Article DE Fanconi anemia; Breast cancer; Esophagus; Alcohol ID DNA CROSS-LINKS; FANCONI-ANEMIA; DAMAGE RESPONSE; ALDEHYDE DEHYDROGENASE-2; POLYMERASE-KAPPA; HEAVY DRINKERS; CANCER-RISK; ADDUCTS; REPAIR; CROTONALDEHYDE AB According to a recent IARC Working Group report, alcohol consumption is causally related to an increased risk of cancer of the upper aerodigestive tract, liver, colorectum, and female breast [R. Baan, K. Straif, Y. Grosse, B. Secretan, F. EI Chissassi, V. Bouvard, A. Altieri, V. Cogliano, Carcinogenicity of alcoholic beverages, Lancet Oncol. 8 (2007) 292-293]. Several lines of evidence indicate that acetalclehyde (AA), the first product of alcohol metabolism, plays a very important role in alcohol-related carcinogenesis, particularly in the esophagus. We previously proposed a model for alcohol-related carcinogenesis in which AA, generated from alcohol metabolism, reacts in cells to generate DNA lesions that form interstrand crosslinks (ICLs) [J.A. Theruvathu, P. Jaruga, R.G. Nath, M. Dizdaroglu, P.J. Brooks, Polyamines stimulate the formation of mutagenic 1, N2-propanodeoxyguanosine adducts from acetalclehyde. Nucleic Acids Res. 33 (2005) 3513-3520]. Since the Fanconi anemia-breast cancer associated (FANC-BRCA) DNA damage response network plays a crucial role in protecting cells against ICLs, in the present work we tested this hypothesis by exposing cells to AA and monitoring activation of this network. We found that AA exposure results in a concentration-dependent increase in FANCD2 monoubiquitination, which is dependent upon the FANC core complex. AA also stimulated BRCA1 phosphorylation at Ser1524 and increased the level of gamma H2AX, with both modifications occurring in a dose-dependent manner. However, AA did not detectably increase the levels of hyperphosphorylated RPA34, a marker of single-stranded DNA exposure at replication forks. These results provide the initial description of the AA-DNA damage response, which is qualitatively similar to the cellular response to mitomycin C, a known DNA crosslinking agent. We discuss the mechanistic implications of these results, as well as their possible relationship to alcohol-related carcinogenesis in different human tissues. (c) 2009 Published by Elsevier B.V. C1 [Marietta, Cheryl; Brooks, P. J.] NIAAA, Mol Neurobiol Sect, Neurogenet Lab, Rockville, MD 20852 USA. [Thompson, Larry H.; Lamerdin, Jane E.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. [Lamerdin, Jane E.] Odyssey Thera Inc, San Ramon, CA USA. RP Brooks, PJ (reprint author), NIAAA, Mol Neurobiol Sect, Neurogenet Lab, 5625 Fishers Lane,Room 3S32, Rockville, MD 20852 USA. EM pjbrooks@mail.nih.gov FU Intramural NIH HHS [Z01 AA000083-14] NR 51 TC 26 Z9 27 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD MAY 12 PY 2009 VL 664 IS 1-2 BP 77 EP 83 DI 10.1016/j.mrfmmm.2009.03.011 PG 7 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 449XM UT WOS:000266364100011 PM 19428384 ER PT J AU Sinnis, G AF Sinnis, G. TI Air shower detectors in gamma-ray astronomy SO NEW JOURNAL OF PHYSICS LA English DT Article ID GALACTIC COSMIC-RAYS; CRAB-NEBULA; ENERGY-SPECTRUM; HOT-SPOTS; EMISSION; MILAGRO; GALAXY; BURSTS; ANISOTROPY; DISCOVERY AB Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes-they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro, in the US, and the Tibet AS gamma array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 ( both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Sinnis, G (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM gus@lanl.gov FU Los Alamos National Laboratory FX This work is partially supported by the National Science Foundation, the Department of Energy Office of Science and Los Alamos National Laboratory. I thank Zhen Cao for his assistance with information regarding the ARGO detector and Hu Hongbo for his help in understanding the Tibet AS gamma detector, Andrew Smith who performed the simulations for the HAWC detector and supplied figures 5 and 10, Masato Takita for supplying figure 9 and discussions on the Tibet+ MD detector, and Brenda Dingus for supplying figure 23. Finally, I acknowledge the support of Los Alamos National Laboratory, which enabled not only the writing of this paper, but also the construction and operation of Milagro. NR 78 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 12 PY 2009 VL 11 AR 055007 DI 10.1088/1367-2630/11/5/055007 PG 34 WC Physics, Multidisciplinary SC Physics GA 448AV UT WOS:000266234400004 ER PT J AU Sebastian, SE Harrison, N Batista, CD Trugman, SA Fanelli, V Jaime, M Murphy, TP Palm, EC Harima, H Ebihara, T AF Sebastian, Suchitra E. Harrison, N. Batista, C. D. Trugman, S. A. Fanelli, V. Jaime, M. Murphy, T. P. Palm, E. C. Harima, H. Ebihara, T. TI Heavy holes as a precursor to superconductivity in antiferromagnetic CeIn3 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Fermi surface; heavy fermion; quantum critical point; Lifshitz transition ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; FERMI-SURFACE; QUANTUM CRITICALITY; SPIN FLUCTUATIONS; VAN-ALPHEN; FIELD; PRESSURE AB Numerous phenomenological parallels have been drawn between f- and d-electron systems in an attempt to understand their display of unconventional superconductivity. The microscopics of how electrons evolve from participation in large moment antiferromagnetism to superconductivity in these systems, however, remains a mystery. Knowing the origin of Cooper paired electrons in momentum space is a crucial prerequisite for understanding the pairing mechanism. Of special interest are pressure-induced superconductors CeIn3 and CeRhIn5 in which disparate magnetic and superconducting orders apparently coexist-arising from within the same f- electron degrees of freedom. Here, we present ambient pressure quantum oscillation measurements on CeIn3 that crucially identify the electronic structure-potentially similar to high-temperature superconductors. Heavy hole pockets of f- character are revealed in CeIn3, undergoing an unexpected effective mass divergence well before the antiferromagnetic critical field. We thus uncover the softening of a branch of quasiparticle excitations located away from the traditional spin fluctuation-dominated antiferromagnetic quantum critical point. The observed Fermi surface of dispersive f- electrons in CeIn3 could potentially explain the emergence of Cooper pairs from within a strong moment antiferromagnet. C1 [Sebastian, Suchitra E.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Harrison, N.; Batista, C. D.; Trugman, S. A.; Fanelli, V.; Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Murphy, T. P.; Palm, E. C.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Ebihara, T.] Shizuoka Univ, Dept Phys, Shizuoka 4228529, Japan. [Harima, H.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, Madingley Rd, Cambridge CB3 0HE, England. EM ses59@cam.ac.uk RI Fanelli, Victor/A-4375-2015; Jaime, Marcelo/F-3791-2015; Batista, Cristian/J-8008-2016; OI Jaime, Marcelo/0000-0001-5360-5220; Trugman, Stuart/0000-0002-6688-7228; Harrison, Neil/0000-0001-5456-7756 FU High Field Spin Science in 100T; Ministry of Education, Culture, Sports, Science and Technology FX We thank G. G. Lonzarich and P. B. Littlewood for valuable inputs, and R. D. McDonald and A. C. H. Cheung for technical assistance with simulations. This work was performed under the auspices of the National Science Foundation, the U. S. Department of Energy, and the State of Florida. Support was provided by a Grant-in-Aid for Scientific Research on Priority Areas, "High Field Spin Science in 100T" and the Ministry of Education, Culture, Sports, Science and Technology. S. E. S. acknowledges discussions arising at the Trieste Miniworkshop on Strong Correlations 2008 and support from the Mustard Seed Foundation, the Institute for Complex Adaptive Matter, and Trinity College (Cambridge University, Cambridge, U.K.). NR 30 TC 29 Z9 29 U1 0 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 12 PY 2009 VL 106 IS 19 BP 7741 EP 7744 DI 10.1073/pnas.0811859106 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 447RG UT WOS:000266208900014 PM 19416895 ER PT J AU Inagawa, T Yamada-Inagawa, T Eydmann, T Mian, IS Wang, TS Dalgaard, JZ AF Inagawa, Takabumi Yamada-Inagawa, Tomoko Eydmann, Trevor Mian, I. Saira Wang, Teresa S. Dalgaard, Jacob Z. TI Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE proliferating cell nuclear antigen; RTS1; SUMO; Srs2; Rtf1 ID DNA-REPLICATION; FISSION YEAST; SACCHAROMYCES-CEREVISIAE; POSTREPLICATION REPAIR; SRS2; RECOMBINATION; CHECKPOINT; FORKS; PCNA; SUMO AB Here, we identify a phylogenetically conserved Schizosaccharomyces pombe factor, named Rtf2, as a key requirement for efficient replication termination at the site-specific replication barrier RTS1. We show that Rtf2, a proliferating cell nuclear antigen-interacting protein, promotes termination at RTS1 by preventing replication restart; in the absence of Rtf2, we observe the establishment of "slow-moving'' Srs2-dependent replication forks. Analysis of the pmt3 (SUMO) and rtf2 mutants establishes that pmt3 causes a reduction in RTS1 barrier activity, that rtf2 and pmt3 are nonadditive, and that pmt3 (SUMO) partly suppresses the rtf2-dependent replication restart. Our results are consistent with a model in which Rtf2 stabilizes the replication fork stalled at RTS1 until completion of DNA synthesis by a converging replication fork initiated at a flanking origin. C1 [Inagawa, Takabumi; Yamada-Inagawa, Tomoko; Eydmann, Trevor; Dalgaard, Jacob Z.] Marie Curie Res Inst, Surrey RH8 0TL, England. [Mian, I. Saira] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Wang, Teresa S.] Stanford Univ, Sch Med, Dept Pathol, Stanford, CA 94305 USA. RP Dalgaard, JZ (reprint author), Marie Curie Res Inst, Surrey RH8 0TL, England. EM j.dalgaard@mcri.ac.uk OI Dalgaard, Jacob/0000-0001-9545-7254 FU Marie Curie Cancer Care; Association of International Cancer Research FX We thank Dr. Katsunori Tanaka ( University of Shimane), Dr. Fekret Osman ( University of Oxford), and Dr. Stuart MacNeill ( University of St. Andrews) for kindly providing strains and plasmids for this study. We also thank our colleagues at the Marie Curie Research Institute for helpful suggestions and interactions. This work was supported by the Marie Curie Cancer Care (J.Z.D.) and the Association of International Cancer Research (J.Z.D.). NR 31 TC 14 Z9 16 U1 0 U2 0 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 12 PY 2009 VL 106 IS 19 BP 7927 EP 7932 DI 10.1073/pnas.0812323106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 447RG UT WOS:000266208900046 PM 19416828 ER PT J AU Cole, DP Jin, H Lu, WY Roytburd, AL Bruck, HA AF Cole, Daniel P. Jin, Helena Lu, Wei-Yang Roytburd, Alexander L. Bruck, Hugh A. TI Reversible nanoscale deformation in compositionally graded shape memory alloy films SO APPLIED PHYSICS LETTERS LA English DT Article DE atomic force microscopy; heat treatment; martensitic transformations; metallic thin films; nanoindentation; nickel alloys; recovery; shape memory effects; titanium alloys ID THIN-FILMS; TEMPERATURE; TRANSFORMATION; FABRICATION; STRESS; TINI AB Reversible deformation through the thickness of a compositionally graded shape memory alloy (SMA) film was observed at the nanoscale. Recovery of deformation caused by nanoindentation was characterized at low temperature using atomic force microscopy with in situ heating and cooling. The film was indented at various depths so recovery due to martensite transformations through the thickness could be studied. Tests performed on a homogenous SMA film showed that the recovery exhibited a one-way shape memory effect. The compositionally graded SMA film exhibited a two-way shape memory effect resulting from the variation in the coexistence of the martensite and austenite phases. C1 [Cole, Daniel P.; Bruck, Hugh A.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Jin, Helena; Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA. [Roytburd, Alexander L.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Bruck, HA (reprint author), Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. EM bruck@umd.edu FU National Science Foundation [DMR-0407517]; [DE-AC04-94-AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Departments of Energy under Contract No. DE-AC04-94-AL85000. This work was partially supported by the National Science Foundation under Grant No. DMR-0407517. The authors also wish to thank Neville Moody for help with nanoindentation and Peter Zavalij for help with XRD. The support of the Maryland Nano Center is also appreciated. NR 20 TC 10 Z9 10 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 11 PY 2009 VL 94 IS 19 AR 193114 DI 10.1063/1.3129167 PG 3 WC Physics, Applied SC Physics GA 448LF UT WOS:000266263400063 ER PT J AU Jiang, C Lin, ZJ Zhang, JZ Zhao, YS AF Jiang, Chao Lin, Zhijun Zhang, Jianzhong Zhao, Yusheng TI First-principles prediction of mechanical properties of gamma-boron SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; bonds (chemical); boron; crystal structure; density functional theory; elastic deformation; mechanical stability; shear modulus; tensile strength ID STRENGTH; DIAMOND AB The structural and mechanical properties of gamma-B-28 are investigated using first-principles density functional calculations. The single-crystal elastic constants calculations show that gamma-B-28 is mechanically stable under ambient conditions. The predicted bulk and shear moduli of gamma-B-28 are comparable to those of boron suboxide, suggesting that gamma-B-28 can be a superhard material. We also obtained the ideal tensile strength for gamma-B-28 through deformation from the elastic regime to structural instability. We find that the breaking of B1-B1 and B1-B2 bonds is responsible for the failure of gamma-B-28 under < 100 > and < 010 > tensile deformation, respectively. C1 [Lin, Zhijun; Zhang, Jianzhong; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA. [Jiang, Chao] Los Alamos Natl Lab, Struct Property Relat Grp MST 8, Los Alamos, NM 87545 USA. RP Lin, ZJ (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA. EM zjlin6@gmail.com RI Jiang, Chao/A-2546-2011; Lujan Center, LANL/G-4896-2012; Lin, Zhijun/A-5543-2010; Jiang, Chao/D-1957-2017; OI Jiang, Chao/0000-0003-0610-6327; Zhang, Jianzhong/0000-0001-5508-1782 FU DOE [DEAC52-06NA25396] FX This research was supported by LANL, which is operated by Los Alamos National Security LLC under DOE Contract No. DEAC52-06NA25396. NR 21 TC 29 Z9 30 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 11 PY 2009 VL 94 IS 19 AR 191906 DI 10.1063/1.3133943 PG 3 WC Physics, Applied SC Physics GA 448LF UT WOS:000266263400019 ER PT J AU Slichter, DH Naaman, O Siddiqi, I AF Slichter, D. H. Naaman, O. Siddiqi, I. TI Millikelvin thermal and electrical performance of lossy transmission line filters SO APPLIED PHYSICS LETTERS LA English DT Article DE cryogenics; low-pass filters; strip line filters; thermal noise; transmission lines AB We report on the scattering parameters and Johnson noise emission of low-pass stripline filters employing a magnetically loaded silicone dielectric down to 25 mK. The transmission characteristic of a device with f(-3 dB)=1.3 GHz remains essentially unchanged upon cooling. Another device with f(-3 dB)=0.4 GHz, measured in its stopband, exhibits a steady state noise power emission consistent with a temperature difference of a few millikelvin relative to a well-anchored cryogenic microwave attenuator at temperatures down to 25 mK, thus presenting a matched thermal load. C1 [Slichter, D. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA. RP Slichter, DH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM slichter@berkeley.edu RI Slichter, Daniel/A-2870-2013; Siddiqi, Irfan/E-5548-2015 OI Slichter, Daniel/0000-0002-1228-0631; FU Hertz Foundation; Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX D.H.S. gratefully acknowledges support from a Hertz Foundation Fellowship endowed by Big George Ventures. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. NR 12 TC 16 Z9 16 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 11 PY 2009 VL 94 IS 19 AR 192508 DI 10.1063/1.3133362 PG 3 WC Physics, Applied SC Physics GA 448LF UT WOS:000266263400044 ER PT J AU Keele, BF Li, H Learn, GH Hraber, P Giorgi, EE Grayson, T Sun, CX Chen, YL Yeh, WW Letvin, NL Mascola, JR Nabel, GJ Haynes, BF Bhattacharya, T Perelson, AS Korber, BT Hahn, BH Shaw, GM AF Keele, Brandon F. Li, Hui Learn, Gerald H. Hraber, Peter Giorgi, Elena E. Grayson, Truman Sun, Chuanxi Chen, Yalu Yeh, Wendy W. Letvin, Norman L. Mascola, John R. Nabel, Gary J. Haynes, Barton F. Bhattacharya, Tanmoy Perelson, Alan S. Korber, Bette T. Hahn, Beatrice H. Shaw, George M. TI Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1 SO JOURNAL OF EXPERIMENTAL MEDICINE LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; T-CELL DEPLETION; GASTROINTESTINAL-TRACT; HETEROSEXUAL TRANSMISSION; TYPE-1 TRANSMISSION; NONHUMAN-PRIMATES; VIRAL LOAD; MULTIPLE; SIV; DIVERSITY AB We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences ( median of 48 per animal) were determined from plasma virion RNA 1-5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1-5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIV-macaque mucosal infection model for HIV-1 vaccine and microbicide research. C1 [Keele, Brandon F.; Li, Hui; Learn, Gerald H.; Grayson, Truman; Sun, Chuanxi; Chen, Yalu; Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Birmingham, AL 35223 USA. [Hraber, Peter; Giorgi, Elena E.; Bhattacharya, Tanmoy; Perelson, Alan S.; Korber, Bette T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bhattacharya, Tanmoy; Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Giorgi, Elena E.] Univ Massachusetts, Amherst, MA 01002 USA. [Haynes, Barton F.] Duke Univ, Med Ctr, Durham, NC 27710 USA. [Letvin, Norman L.; Mascola, John R.; Nabel, Gary J.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Yeh, Wendy W.; Letvin, Norman L.] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Viral Pathogenesis,Dept Med, Boston, MA 02115 USA. RP Shaw, GM (reprint author), Univ Alabama, Birmingham, AL 35223 USA. EM gshaw@uab.edu RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Center for HIV/AIDS Vaccine Immunology; National Institutes of Health [AI67854, AI27767]; Bill and Melinda Gates Foundation [37874]; American Foundation for AIDS Research [106997-3] FX This work was supported by the Center for HIV/AIDS Vaccine Immunology and by grants from the National Institutes of Health (AI67854 and AI27767), the Bill and Melinda Gates Foundation (# 37874), and the American Foundation for AIDS Research (106997-3). NR 66 TC 200 Z9 200 U1 1 U2 12 PU ROCKEFELLER UNIV PRESS PI NEW YORK PA 1114 FIRST AVE, 4TH FL, NEW YORK, NY 10021 USA SN 0022-1007 J9 J EXP MED JI J. Exp. Med. PD MAY 11 PY 2009 VL 206 IS 5 BP 1117 EP 1134 DI 10.1084/jem.20082831 PG 18 WC Immunology; Medicine, Research & Experimental SC Immunology; Research & Experimental Medicine GA 444WB UT WOS:000266010000017 PM 19414559 ER PT J AU Kains, N Cassan, A Horne, K Albrow, MD Dieters, S Fouque, P Greenhill, J Udalski, A Zub, M Bennett, DP Dominik, M Donatowicz, J Kubas, D Tsapras, Y Anguita, T Batista, V Beaulieu, JP Brillant, S Bode, M Bramich, DM Burgdorf, M Caldwell, JAR Cook, KH Coutures, C Prester, DD Jorgensen, UG Kane, S Marquette, JB Martin, R Menzies, J Pollard, KR Rattenbury, N Sahu, KC Snodgrass, C Steele, I Vinter, C Wambsganss, J Williams, A Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Szymanski, MK Ulaczyk, K Wyrzykowski, L AF Kains, N. Cassan, A. Horne, K. Albrow, M. D. Dieters, S. Fouque, P. Greenhill, J. Udalski, A. Zub, M. Bennett, D. P. Dominik, M. Donatowicz, J. Kubas, D. Tsapras, Y. Anguita, T. Batista, V. Beaulieu, J. -P. Brillant, S. Bode, M. Bramich, D. M. Burgdorf, M. Caldwell, J. A. R. Cook, K. H. Coutures, Ch. Prester, D. Dominis Jorgensen, U. G. Kane, S. Marquette, J. B. Martin, R. Menzies, J. Pollard, K. R. Rattenbury, N. Sahu, K. C. Snodgrass, C. Steele, I. Vinter, C. Wambsganss, J. Williams, A. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Szymanski, M. K. Ulaczyk, K. Wyrzykowski, L. TI A systematic fitting scheme for caustic-crossing microlensing events SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing; methods: miscellaneous; binaries: general; planetary systems; Galaxy: bulge ID INITIAL MASS FUNCTION; GRAVITATIONAL LENS; GALACTIC BULGE; STARS; LUMINOSITY AB We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parametrization proposed and detailed by Cassan. As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source crossing the whole caustic structure in less than three days. In order to identify all possible models we conduct an extensive search of the parameter space, followed by a refinement of the parameters with a Markov Chain Monte Carlo algorithm. We find a number of low-chi(2) regions in the parameter space, which lead to several distinct competitive best models. We examine the parameters for each of them, and estimate their physical properties. We find that our fitting strategy locates several minima that are difficult to find with other modelling strategies and is therefore a more appropriate method to fit this type of event. C1 [Kains, N.; Horne, K.; Dominik, M.] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Cassan, A.; Zub, M.; Anguita, T.; Wambsganss, J.] Univ Heidelberg, ARI, ZAH, D-69120 Heidelberg, Germany. [Albrow, M. D.; Pollard, K. R.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Dieters, S.; Batista, V.; Beaulieu, J. -P.; Marquette, J. B.] Univ Paris 06, Inst Astrophys Paris, UMR7095, CNRS, F-75014 Paris, France. [Fouque, P.] Univ Toulouse, LATT, CNRS, F-31400 Toulouse, France. [Greenhill, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Udalski, A.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Szewczyk, O.; Szymanski, M. K.; Ulaczyk, K.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Donatowicz, J.; Steele, I.] Vienna Univ Technol, Dept Comp, A-1040 Vienna, Austria. [Kubas, D.; Brillant, S.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Tsapras, Y.; Bode, M.; Burgdorf, M.; Wyrzykowski, L.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Bramich, D. M.] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Spain. [Caldwell, J. A. R.] McDonald Observ, Ft Davis, TX 79734 USA. [Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. [Coutures, Ch.] CEA Saclay, DSM DAPNIA, F-91191 Gif Sur Yvette, France. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Fac Arts & Sci, Rijeka 51000, Croatia. [Jorgensen, U. G.; Vinter, C.] Niels Bohr Inst, Astron Observ, DK-2100 Copenhagen, Denmark. [Kane, S.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Rattenbury, N.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Astron Grp, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. EM nk87@st-and.ac.uk RI Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Williams, Andrew/K-2931-2013; OI Williams, Andrew/0000-0001-9080-0105; Dominik, Martin/0000-0002-3202-0343; Snodgrass, Colin/0000-0001-9328-2905 FU STFC studentship [PA/S/S/2006/04497]; Polish MNiSW [N20303032/4275] FX NK acknowledges STFC studentship PA/S/S/2006/04497 and an STFC travel grant covering his observing run at La Silla. We thank David Warren for financial support for the Mt Canopus Observatory. NK thanks Pascal Fouque for organizing a workshop in Toulouse in 2007 November, and Joachim Wambsganss and Arnaud Cassan for their invitation to visit the Astronomisches Rechen-Institut in Heidelberg in 2008 April. We would like to thank the anonymous referee for helpful comments on the manuscript. We also thank the University of Tasmania for access to their TPAC supercomputer on which part of the calculations were carried out. PF expresses his gratitude to ESO for a two months invitation at Santiago headquarters, Chile, in 2008 October and November. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275. NR 26 TC 9 Z9 9 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2009 VL 395 IS 2 BP 787 EP 796 DI 10.1111/j.1365-2966.2009.14615.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 437TJ UT WOS:000265509500015 ER PT J AU Caprioli, D Blasi, P Amato, E Vietri, M AF Caprioli, D. Blasi, P. Amato, E. Vietri, M. TI Dynamical feedback of self-generated magnetic fields in cosmic ray modified shocks SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE acceleration of particles; magnetic field; shock waves; supernova remnants ID NONLINEAR PARTICLE-ACCELERATION; EARTHS BOW SHOCK; SUPERNOVA-REMNANTS; ALFVEN WAVES; STREAMING INSTABILITY; OBLIQUE SHOCKS; AMPLIFICATION; INJECTION; TURBULENCE; ENERGY AB We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes the magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplified magnetic field and the possible effects of turbulent heating. The approach is specialized to parallel shock waves, and the parameters we chose are the ones appropriate to forward shocks in supernova remnants. Our calculation allows us to show that the net effect of the amplified magnetic field is to enhance the maximum momentum of accelerated particles while reducing the concavity of the spectra, with respect to the standard predictions of NLDSA. This is mainly due to the dynamical reaction of the amplified field on the shock, which notably reduces the modification of the shock precursor. The total compression factors which are obtained for parameters typical of supernova remnants are R(tot) similar to 7-10, in good agreement with the values inferred from observations. The strength of the magnetic field produced through excitation of streaming instability is found in good agreement with the values inferred for several remnants if the thickness of the X-ray rims is interpreted as due to severe synchrotron losses of high-energy electrons. We also discuss the relative role of turbulent heating and magnetic dynamical reaction in driving the reduction of the precursor modification. C1 [Caprioli, D.; Vietri, M.] Scuola Normale Super Pisa, I-56100 Pisa, Italy. [Blasi, P.] Ctr Particle Astrophys, Fermilab, Batavia, IL 60510 USA. [Blasi, P.; Amato, E.] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. RP Caprioli, D (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 1, I-56100 Pisa, Italy. EM d.caprioli@sns.it RI Caprioli, Damiano/I-6582-2012; Blasi, Pasquale/O-9345-2015; Amato, Elena/P-2938-2015 OI Caprioli, Damiano/0000-0003-0939-8775; Blasi, Pasquale/0000-0003-2480-599X; Amato, Elena/0000-0002-9881-8112 FU US DOE [PRIN-2006, ASI-INAFI/088/06/0, DE-AC02-07CH11359]; NASA [NAG5-10842] FX The authors are grateful to the anonymous referee for a careful reading of the paper and for providing detailed comments that helped in improving the manuscript. This work was partially supported by PRIN-2006, by ASI through contract ASI-INAFI/088/06/0 and (for PB) by the US DOE and by NASA grant NAG5-10842. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States DOE. NR 50 TC 50 Z9 50 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 11 PY 2009 VL 395 IS 2 BP 895 EP 906 DI 10.1111/j.1365-2966.2009.14570.x PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 437TJ UT WOS:000265509500024 ER PT J AU Smolentsev, G Sukharina, G Soldatov, AV Chen, LX AF Smolentsev, Grigory Sukharina, Galina Soldatov, Alexander V. Chen, Lin X. TI Application of XANES spectroscopy to study local structure of photoexcited Cu complex SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 17th International Synchrotron Radiation Conference CY JUN 15-20, 2008 CL Budker Inst Nucl Phys, Novosibirsk, RUSSIA HO Budker Inst Nucl Phys DE XANES; Pump-and-probe; Fitlt; Photoexcitation ID STATE STRUCTURE; X-RAY AB A new technique for the analysis of transient X-ray absorption (also known as pump-and-probe XAS) and extraction of 3D structural information for photoexcited molecules is proposed. It is applied to metal-to-ligand-charge-transfer state of [Cu(dmP)(2)]* (dmp = 2,9-dimethyl-1,10-phenanthroline) in acetonitrile solution. Theoretical approach combines fitting of XANES spectra with a multidimensional interpolation approximation and calculating theoretical XANES with molecular potentials beyond the muffin-tin approximation. The results of the study show that the best fit of the experimental XANES data includes a solvent molecule binding to the Cu with Cu-N distance of 2.00 angstrom, average distance Cu-N of dmp groups is 2.04 angstrom and that photoexcited state is characterized by significant rocking distortions of the dmp ligands. (C) 2009 Published by Elsevier B.V. C1 [Smolentsev, Grigory; Sukharina, Galina; Soldatov, Alexander V.] So Fed Univ, Fac Phys, Rostov Na Donu 344090, Russia. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Smolentsev, G (reprint author), So Fed Univ, Fac Phys, Sorge 5, Rostov Na Donu 344090, Russia. EM smolentsev@yandex.ru; sukharina@mail.ru; asoldatov@phys.rsu.ru RI Soldatov, Alexander/E-9323-2012 OI Soldatov, Alexander/0000-0001-8411-0546 NR 10 TC 6 Z9 6 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAY 11 PY 2009 VL 603 IS 1-2 BP 122 EP 124 DI 10.1016/S0168-9002(09)00773-6 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 455LH UT WOS:000266760800037 ER PT J AU Montgomery, JM Imre, A Welp, U Vlasko-Vlasov, V Gray, SK AF Montgomery, Jason M. Imre, Alexandra Welp, Ulrich Vlasko-Vlasov, Vitalii Gray, Stephen K. TI SERS enhancements via periodic arrays of gold nanoparticles on silver film structures SO OPTICS EXPRESS LA English DT Article ID SURFACE; TRANSMISSION AB We discuss surface enhanced Raman spectroscopy (SERS) structures aimed at providing robust and reproducible enhancements. The structures involve periodic arrays of gold nanospheres near silver film structures that may also be patterned. They enable one to excite Bloch wave surface plasmon polaritons (SPPs) that can also couple to local surface plasmons (LSPs) of the nanospheres, leading to the possibility of multiplicative enhancements. If the magnitude of the average electric field, |E|, between the particles is enhanced by g such that |E| = g|E-0|, |E-0| being the incident field, realistic finite-difference time-domain simulations show that under favorable circumstances g approximate to 0.6 g(SPP) g(LSP), where g(SPP) and g(LSP) are enhancement factors associated with the individual components. SERS enhancements for the structures can be as high as O(g(4)) = 10(8). (C) 2009 Optical Society of America. C1 [Montgomery, Jason M.; Imre, Alexandra; Welp, Ulrich; Vlasko-Vlasov, Vitalii; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Montgomery, JM (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jmontgomery@anl.gov; gray@anl.gov RI Joshi-Imre, Alexandra/A-2912-2010 OI Joshi-Imre, Alexandra/0000-0002-4271-1623 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC0205CH11231] FX We thank Jeffrey M. McMahon for providing his FDTD program. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC0205CH11231. NR 11 TC 27 Z9 27 U1 5 U2 31 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD MAY 11 PY 2009 VL 17 IS 10 BP 8669 EP 8675 DI 10.1364/OE.17.008669 PG 7 WC Optics SC Optics GA 450DT UT WOS:000266381900098 PM 19434200 ER PT J AU Abdo, AA Ackermann, M Atwood, WB Bagagli, R Baldini, L Ballet, J Band, DL Barbiellini, G Baring, MG Bartelt, J Bastieri, D Baughman, BM Bechtol, K Bellardi, F Bellazzini, R Berenji, B Bisello, D Blandford, RD Bloom, ED Bogart, JR Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Casandjian, JM Ceccanti, M Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cognard, I Cohen-Tanugi, J Cominsky, LR Conrad, J Corbet, R Corucci, L Cutini, S Davis, DS DeKlotz, M Dermer, CD de Angelis, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Espinoza, C Farnier, C Favuzzi, C Flath, DL Fleury, P Focke, WB Frailis, M Friere, PCC Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giannitrapani, R Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Gotthelf, EV Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Haller, G Harding, AK Hart, PA Hartman, RC Hays, E Hobbs, G Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Johnston, S Kamae, T Kanbach, G Kaspi, VM Katagiri, H Kataoka, J Kavelaars, A Kawai, N Kelly, H Kerr, M Kiziltan, B Klamra, W Knodlseder, J Kramer, M Kuehn, F Kuss, M Lande, J Landriu, D Latronico, L Lee, B Lee, SH Lemoine-Goumard, M Livingstone, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Lyne, AG Madejski, GM Makeev, A Manchester, RN Marangelli, B Marelli, M Mazziotta, MN McEnery, JE McGlynn, S McLaughlin, MA Menon, N Meurer, C Michelson, PF Mineo, T Mirizzi, N Mitthumsiri, W Mizuno, T Moiseev, AA Mongelli, M Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Nolan, PL Noutsos, A Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paccagnella, A Paneque, D Panetta, JH Parent, D Pearce, M Pepe, M Perchiazzi, M Pesce-Rollins, M Pieri, L Pinchera, M Piron, F Porter, TA Raino, S Rando, R Ransom, SM Rapposelli, E Razzano, M Reimer, A Reimer, O Reposeur, T Reyes, LC Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sacchetti, A Sadrozinski, HFW Saggini, N Sanchez, D Sander, A Parkinson, PMS Segal, KN Sellerholm, A Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stamatikos, M Starck, JL Stecker, FW Stephens, TE Strickman, MS Strong, AW Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Tenze, A Thayer, JB Thayer, JG Theureau, G Thompson, DJ Thorsett, SE Tibaldo, L Tibolla, O Torres, DF Tramacere, A Turri, M Usher, TL Vigiani, L Vilchez, N Vitale, V Waite, AP Wang, P Watters, K Weltevrede, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Atwood, W. B. Bagagli, R. Baldini, L. Ballet, J. Band, D. L. Barbiellini, G. Baring, M. G. Bartelt, J. Bastieri, D. Baughman, B. M. Bechtol, K. Bellardi, F. Bellazzini, R. Berenji, B. Bisello, D. Blandford, R. D. Bloom, E. D. Bogart, J. R. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Casandjian, J. M. Ceccanti, M. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cognard, I. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Corbet, R. Corucci, L. Cutini, S. Davis, D. S. DeKlotz, M. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Espinoza, C. Farnier, C. Favuzzi, C. Flath, D. L. Fleury, P. Focke, W. B. Frailis, M. Friere, P. C. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giannitrapani, R. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Gotthelf, E. V. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Haller, G. Harding, A. K. Hart, P. A. Hartman, R. C. Hays, E. Hobbs, G. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Kanbach, G. Kaspi, V. M. Katagiri, H. Kataoka, J. Kavelaars, A. Kawai, N. Kelly, H. Kerr, M. Kiziltan, B. Klamra, W. Knodlseder, J. Kramer, M. Kuehn, F. Kuss, M. Lande, J. Landriu, D. Latronico, L. Lee, B. Lee, S. -H. Lemoine-Goumard, M. Livingstone, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Lyne, A. G. Madejski, G. M. Makeev, A. Manchester, R. N. Marangelli, B. Marelli, M. Mazziotta, M. N. McEnery, J. E. McGlynn, S. McLaughlin, M. A. Menon, N. Meurer, C. Michelson, P. F. Mineo, T. Mirizzi, N. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Mongelli, M. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Nolan, P. L. Noutsos, A. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paccagnella, A. Paneque, D. Panetta, J. H. Parent, D. Pearce, M. Pepe, M. Perchiazzi, M. Pesce-Rollins, M. Pieri, L. Pinchera, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ransom, S. M. Rapposelli, E. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Reyes, L. C. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sacchetti, A. Sadrozinski, H. F. -W. Saggini, N. Sanchez, D. Sander, A. Parkinson, P. M. Saz Segal, K. N. Sellerholm, A. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Starck, J. -L. Stecker, F. W. Stephens, T. E. Strickman, M. S. Strong, A. W. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Tenze, A. Thayer, J. B. Thayer, J. G. Theureau, G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Tibolla, O. Torres, D. F. Tramacere, A. Turri, M. Usher, T. L. Vigiani, L. Vilchez, N. Vitale, V. Waite, A. P. Wang, P. Watters, K. Weltevrede, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: observations; pulsars: individual (PSR B0833-45) ID GAMMA-RAY PULSARS; POLAR-CAP; TIMING PACKAGE; LIGHT CURVES; SLOT GAPS; EMISSION; RADIATION; MODEL; MAGNETOSPHERES; DISCOVERY AB The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new gamma-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E >= 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Gamma = 1.51(-0.04)(+0.05) with an exponential cutoff at E-c = 2.9 +/- 0.1 GeV. Spectral fits with generalized cutoffs of the form e(-(E/Ec)b) require b <= 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula. C1 [Abdo, A. A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Flath, D. L.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Haller, G.; Hart, P. A.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kavelaars, A.; Kelly, H.; Lee, S. -H.; Madejski, G. M.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Godfrey, G.; Haller, G.; Hart, P. A.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kavelaars, A.; Kelly, H.; Lee, S. -H.; Madejski, G. M.; Mitthumsiri, W.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Turri, M.; Usher, T. L.; Waite, A. P.; Wang, P.; Watters, K.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Atwood, W. B.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Bagagli, R.; Bellardi, F.; Bellazzini, R.; Brez, A.; Ceccanti, M.; Corucci, L.; Latronico, L.; Rapposelli, E.; Razzano, M.; Saggini, N.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Grenier, I. A.; Landriu, D.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, CNRS, CEA,IRFU,Lab AIM, F-91191 Gif Sur Yvette, France. [Band, D. L.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Barbiellini, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Bisello, D.; Paccagnella, A.; Pieri, L.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Bisello, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Sander, A.; Smith, P. D.; Winer, B. L.; Ziegler, M.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Ciprini, S.; Germani, S.; Pepe, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Mirizzi, N.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Mirizzi, N.; Monte, C.; Perchiazzi, M.; Raino, S.; Sacchetti, A.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fleury, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Camilo, F.; Gotthelf, E. V.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Theureau, G.] CNRS, UMR 6115, LPCE, F-45071 Orleans 02, France. [Theureau, G.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, F-18330 Nancay, France. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Klamra, W.; Pearce, M.; Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Sellerholm, A.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Rome, Italy. [Davis, D. S.] Univ Maryland, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [DeKlotz, M.; Menon, N.] Stellar Solut Inc, Palo Alto, CA 94306 USA. [de Angelis, A.; Giannitrapani, R.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Giannitrapani, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dumora, D.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Espinoza, C.; Kramer, M.; Noutsos, A.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Friere, P. C. C.] Arecibo Observ, Arecibo, PR 00612 USA. [Fukazawa, Y.; Katagiri, H.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Fukazawa, Y.; Katagiri, H.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima 7398526, Japan. [Gehrels, N.; Ritz, S.] Univ Maryland, College Pk, MD 20742 USA. [Hobbs, G.; Johnston, S.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kanbach, G.; Orlando, E.; Strong, A. W.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Kaspi, V. M.; Livingstone, M.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Kataoka, J.; Kawai, N.; Nakamori, T.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Kiziltan, B.] UCO Lick Observ, Santa Cruz, CA 95064 USA. [Knodlseder, J.; Vilchez, N.] CNRS, UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Lee, B.] Orbital Network Engn, Cupertino, CA 95014 USA. [McLaughlin, M. A.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Mineo, T.] IASF Palermo, I-90146 Palermo, Italy. [Moretti, E.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Morselli, A.; Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ozaki, M.; Takahashi, T.] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, JAXA, Sagamihara, Kanagawa 2298510, Japan. [Paccagnella, A.] Univ Padua, Dipartimento Ingn Informaz, I-35131 Padua, Italy. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Rodriguez, A. Y.; Torres, D. F.] CSIC, Inst Ciencies Espai, IEEC, Barcelona 08193, Spain. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tibolla, O.] Heidelberg Univ, D-69117 Heidelberg, Germany. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Abdo, AA (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM massimiliano.razzano@pi.infn.it; rwr@astro.stanford.edu RI Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Loparco, Francesco/O-8847-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Berenji, Bijan/0000-0002-4551-772X; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Giordano, Francesco/0000-0002-8651-2394; Thorsett, Stephen/0000-0002-2025-9613; Mineo, Teresa/0000-0002-4931-8445; Stephens, Thomas/0000-0003-3065-6871; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Ransom, Scott/0000-0001-5799-9714; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Loparco, Francesco/0000-0002-1173-5673; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; Marelli, Martino/0000-0002-8017-0338 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atomique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare; Istituto Nazionale di Astrofisica in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA); K. A. Wallenberg Foundation; Swedish National Space Board; Commonwealth of Australia FX The Fermi LAT Collaboration acknowledges the generous support of a number of agencies and institutes that have supported the development of the LAT. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana, the Istituto Nazionale di Fisica Nucleare, and the Istituto Nazionale di Astrofisica in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation and the Swedish National Space Board in Sweden. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by the CSIRO. NR 41 TC 102 Z9 102 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2009 VL 696 IS 2 BP 1084 EP 1093 DI 10.1088/0004-637X/696/2/1084 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 441IO UT WOS:000265762700003 ER PT J AU Yao, YS Schulz, NS Gu, MF Nowak, MA Canizares, CR AF Yao, Yangsen Schulz, Norbert S. Gu, Ming F. Nowak, Michael A. Canizares, Claude. R. TI HIGH-RESOLUTION X-RAY SPECTROSCOPY OF THE MULTIPHASE INTERSTELLAR MEDIUM TOWARD Cyg X-2 SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: abundances; X-rays: individual (Cyg X-2); X-rays: ISM ID DIFFUSE IONIZED-GAS; RESONANCE-ABSORPTION LINES; K-SHELL PHOTOABSORPTION; GALACTIC HALO; NEUTRON-STAR; ATOMIC DATA; MILKY-WAY; HOT GAS; WAVELENGTHS LONGWARD; OVI ABSORPTION AB High-resolution X-ray absorption spectroscopy is a powerful diagnostic tool for probing chemical and physical properties of the interstellar medium (ISM) at various phases. We present detections of K transition absorption lines from the low-ionization ions of O I, O II, Ne I, Ne II, and Ne III, and the high-ionization ones of O VI, O VII, O VIII, Ne IX, and Mg XI, as well as details of neutral absorption edges from Mg, Ne, and O in an unprecedented high-quality spectrum of the low-mass X- ray binary Cyg X-2. These absorption features trace the intervening ISM which is indicated by the unshifted line centroids with respect to the rest-frame wavelengths of the corresponding atomic transitions. We have measured the column densities of each ion. We complement these measurements with the radio H I and optical H alpha observations toward the same sight line and estimate the mean abundances of Ne, O, and Mg in the cool phase to Ne/H = 0.84(-0.10)(+ 0.13) x 10(-4), O/H = 3.83(-0.43)(+0.48) x 10(-4), and Mg/H = 0.35(-0.11)(+0.09) x 10(-4), and O and Mg in the hot phase to O/H = 5.81(-1.34)(+1.30) x 10(-4) and Mg/H = 0.33(-0.09)(+0.09) x 10(-4), respectively. These results indicate a mild depletion of oxygen into dust grains in the cool phase and little or no depletion of magnesium. We also find that absorption from highly ionized ions in the hot Galactic disk gas can account for most of the absorption observed toward the extragalactic sight lines like Mrk 421. The bulk of the observed O VI likely originates from the conductive interfaces between the cool and hot gases, from which a significant amount of N V and C IV emission is predicted. C1 [Yao, Yangsen] Univ Colorado, CASA, Boulder, CO 80309 USA. [Schulz, Norbert S.; Nowak, Michael A.; Canizares, Claude. R.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Gu, Ming F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yao, YS (reprint author), Univ Colorado, CASA, 389 UCB, Boulder, CO 80309 USA. EM yaoys@colorado.edu FU NASA [SV3-73016, NNX08AC14G]; Chandra X-Ray Center [NAS 08-03060] FX We thank Q. Daniel Wang, J. Michael Shull, and Frits Paerels for the extensive discussions on the detections and the nondetections of the absorption lines presented in this work. We also thank an anonymous referee for insightful and constructive suggestions. We are grateful to Thoms Gorzcyca for discussions on atomic data. This work is supported by NASA through the Smithsonian Astrophysical Observatory contract SV3-73016 to MIT for support of the Chandra X-Ray Center under contract NAS 08-03060. Y. Y. also thanks the funding support from NASA grant NNX08AC14G, provided to the University of Colorado to support data analysis and scientific discoveries related to the Cosmic Origins Spectrograph on the Hubble Space Telescope. NR 76 TC 22 Z9 22 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2009 VL 696 IS 2 BP 1418 EP 1430 DI 10.1088/0004-637X/696/2/1418 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 441IO UT WOS:000265762700028 ER PT J AU Gonzalez, MM Carrillo-Barragan, M Dingus, BL Kaneko, Y Preece, RD Briggs, MS AF Gonzalez, M. M. Carrillo-Barragan, M. Dingus, B. L. Kaneko, Y. Preece, R. D. Briggs, M. S. TI BROADBAND, TIME-DEPENDENT, SPECTROSCOPY OF THE BRIGHTEST BURSTS OBSERVED BY BATSE LAD AND EGRET TASC SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: bursts; gamma rays: observations; methods: data analysis ID GAMMA-RAY BURST; SYNCHROTRON SHOCK MODEL; SPECTRAL PROPERTIES; EMISSION MODEL; CATALOG; CALIBRATION AB The Energetic Gamma Ray Experiment Telescope (EGRET) calorimeter, Total Absorption ShowerCounter (TASC), was triggered by the Burst And Transient Source Experiment (BATSE) and thus observed several bursts in the energy range of 1-200 MeV. The analysis of combined BATSE Large Area Detector and EGRET TASC data have been developed and discussed previously. Spectroscopy of GRB941017 based on this analysis uncovered an MeV component that would be hidden in the brightness of the synchrotron component in a time-integrated spectrum of the whole burst, while separation into shorter time intervals allowed a unique identification of a new component different from the synchrotron component. In this paper the spectral temporal evolution of the 68 brightest long BATSE bursts, in the broadest energy range yet reported, is studied using the analysis used for GRB941017. We consider the Band function to describe the spectra from keV to MeV energies. Only 21 of the 68 bursts showed MeV emission detectable by TASC. We observed three bursts that contained spectra with peak energy E(peak) > 2 MeV. C1 [Gonzalez, M. M.; Carrillo-Barragan, M.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. [Dingus, B. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kaneko, Y.] NSSTC, Univ Space Res Assoc, Huntsville, AL 35805 USA. [Kaneko, Y.] Sabanci Univ, TR-34956 Istanbul, Turkey. [Preece, R. D.; Briggs, M. S.] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. RP Gonzalez, MM (reprint author), Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico. OI Dingus, Brenda/0000-0001-8451-7450; Preece, Robert/0000-0003-1626-7335 FU Consejo Nacional de Ciencia y Tecnologia [J50705-F] FX M. M. G. and M.C.-B. were partially supported by Consejo Nacional de Ciencia y Tecnologia, grant number J50705-F. NR 33 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 10 PY 2009 VL 696 IS 2 BP 2155 EP 2169 DI 10.1088/0004-637X/696/2/2155 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 441IO UT WOS:000265762700095 ER PT J AU Ohvril, H Teral, H Neiman, L Kannel, M Uustare, M Tee, M Russak, V Okulov, O Joeveer, A Kallis, A Ohvril, T Terez, EI Terez, GA Gushchin, GK Abakumova, GM Gorbarenko, EV Tsvetkov, AV Laulainen, N AF Ohvril, Hanno Teral, Hilda Neiman, Lennart Kannel, Martin Uustare, Marika Tee, Mati Russak, Viivi Okulov, Oleg Joeveer, Anne Kallis, Ain Ohvril, Tiiu Terez, Edward I. Terez, Galina A. Gushchin, Gennady K. Abakumova, Galina M. Gorbarenko, Ekaterina V. Tsvetkov, Anatoly V. Laulainen, Nels TI Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID PRECIPITABLE WATER; SOLAR-RADIATION; AEROSOL; REDUCTION; TURBIDITY; ESTONIA AB Multiannual changes in atmospheric column transparency based on measurements of direct solar radiation allow us to assess various tendencies in climatic changes. Variability of the atmospheric integral (broadband) transparency coefficient, calculated according to the Bouguer-Lambert law and transformed to a solar elevation of 30 degrees, is used for two Russian locations, Pavlovsk and Moscow, one Ukrainian location, Feodosiya, and three Estonian locations, Tartu, Toravere, and Tiirikoja, covering together a 102-year period, 1906-2007. The comparison of time series revealed significant parallelism. Multiannual trends demonstrate decrease in transparency during the postwar period until 1983/1984. The trend ends with a steep decline of transparency after a series of four volcanic eruptions of Soufriere (1979), Saint Helens (1980), Alaid (1981), and El Chichon (1982). From 1984/1985 to 1990 the atmosphere remarkably restored its clarity, which almost reached again the level of the 1960s. Following the eruption of Mount Pinatubo (June 1991), there was the most significant reduction in column transparency of the postwar period. However, from the end of 1990s, the atmosphere in all considered locations is characterized with high values of transparency. The clearing of the atmosphere (from 1993) evidently indicates a decrease in the content of aerosol particles and, besides the decline of volcanic activity, may therefore be also traced to environmentally oriented changes in technology (pollution prevention), to general industrial and agricultural decline in the territory of the former USSR and Eastern Europe after deep political changes in 1991, and in part to migration of some industries out of Europe. C1 [Ohvril, Hanno; Teral, Hilda; Neiman, Lennart; Kannel, Martin; Uustare, Marika; Tee, Mati] Univ Tartu, Fac Sci & Technol, EE-50090 Tartu, Estonia. [Abakumova, Galina M.; Gorbarenko, Ekaterina V.] Moscow MV Lomonosov State Univ, Dept Geog, Meteorol Observ, Moscow 119992, Russia. [Gushchin, Gennady K.] Karadag Geophys Res Observ, UA-98188 Feodosiya, Ukraine. [Joeveer, Anne; Kallis, Ain] Estonian Meteorol & Hydrol Inst, EE-61602 Toravere, Tartumaa, Estonia. [Laulainen, Nels] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ohvril, Tiiu] Estonian Univ Life Sci, Inst Econ & Social Sci, EE-51014 Tartu, Estonia. [Okulov, Oleg] Estonian Meteorol & Hydrol Inst, Tiirikoja Lake Stn, EE-49604 Mustvee, Estonia. [Russak, Viivi; Joeveer, Anne; Kallis, Ain] Tartu Astrophys Observ, EE-61602 Toravere, Tartumaa, Estonia. [Terez, Edward I.] Crimean Astrophys Observ, UA-95000 Simferopol, Ukraine. [Terez, Galina A.] Natl Taurida Vernadsky Univ, Fac Phys, Dept Astron & Methodol Phys, UA-95007 Simferopol, Ukraine. [Tsvetkov, Anatoly V.] Voeikov Main Geophys Observ, St Petersburg 194021, Russia. RP Ohvril, H (reprint author), Univ Tartu, Fac Sci & Technol, Ulikooli Str 18, EE-50090 Tartu, Estonia. EM hanno.ohvril@ut.ee; hilda.teral@ut.ee; lennart.neiman@ut.ee; martin.kannel@ut.ee; marika.uustare@ut.ee; mati@regio.ee; russak@aai.ee; oleg.okulov@emhi.ee; anne@aai.ee; akallis@hot.ee; tiiu.ohvril@emu.ee; terez@crimea.edu; terez@ccssu.crimea.ua; terez@ccssu.hot.ee; farom@gol.ru; catgor@mail.ru; anatoly.tsvetkov@mail.ru; nels_laulainen@msn.com FU U. S. Department of Energy (DOE) [DE-AC06-76RLO 1830] FX We appreciate the hundreds of anonymous meteorologists who, during more than 100 years, have made careful routine observations on direct irradiance in Pavlovsk, Estonia, Moscow, and the Crimea. We thank the Associate Editor Martin Wild, together with two referees, for their friendly, creative, and professional comments. This investigation was supported by grant 7347 of the Estonian Science Foundation. The work at the Pacific Northwest National Laboratory (PNNL) was supported by the U. S. Department of Energy (DOE) under contract DE-AC06-76RLO 1830 (PNNL is operated for DOE by Battelle Memorial Institute). NR 57 TC 32 Z9 32 U1 2 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 9 PY 2009 VL 114 AR D00D12 DI 10.1029/2008JD010644 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 443SI UT WOS:000265930500002 ER PT J AU Minasov, G Padavattan, S Shuvalova, L Brunzelle, JS Miller, DJ Basle, A Massa, C Collart, FR Schirmer, T Anderson, WF AF Minasov, George Padavattan, Sivaraman Shuvalova, Ludmilla Brunzelle, Joseph S. Miller, Darcie J. Basle, Arnaud Massa, Claudia Collart, Frank R. Schirmer, Tilman Anderson, Wayne F. TI Crystal Structures of YkuI and Its Complex with Second Messenger Cyclic Di-GMP Suggest Catalytic Mechanism of Phosphodiester Bond Cleavage by EAL Domains SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ALLOSTERIC CONTROL; DIGUANYLIC ACID; PSEUDOMONAS-AERUGINOSA; ACETOBACTER-XYLINUM; SIGNAL-TRANSDUCTION; RESPONSE REGULATOR; BIOFILM FORMATION; ESCHERICHIA-COLI; PROTEIN DOMAIN; RESOLUTION AB Cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger that is involved in the regulation of cell surface-associated traits and the persistence of infections. Omnipresent GGDEF and EAL domains, which occur in various combinations with regulatory domains, catalyze c-di-GMP synthesis and degradation, respectively. Thecrystal structure of full-length YkuI from Bacillus subtilis, composed of an EAL domain and a C-terminal PAS-like domain, has been determined in its native form and in complex with c-di-GMP and Ca2+. The EAL domain exhibits a triose-phosphate isomerase-barrel fold with one antiparallel beta-strand. The complex with c-di-GMP-Ca2+ defines the active site of the putative phosphodiesterase located at the C-terminal end of the beta-barrel. The EAL motif is part of the active site with Glu-33 of the motif being involved in cation coordination. The structure of the complex allows the proposal of a phosphodiesterase mechanism, in which the divalent cation and the general base Glu-209 activate a catalytic water molecule for nucleophilic in-line attack on the phosphorus. The C-terminal domain closely resembles the PAS-fold. Its pocket-like structure could accommodate a yet unknown ligand. YkuI forms a tight dimer via EAL-EAL and trans EAL-PAS-like domain association. The possible regulatory significance of the EAL-EAL interface and a mechanism for signal transduction between sensory and catalytic domains of c-di-GMP-specific phosphodiesterases are discussed. C1 [Minasov, George; Shuvalova, Ludmilla; Miller, Darcie J.; Anderson, Wayne F.] NW Feinberg Sch Med, Dept Mol Pharmacol & Biol Chem, Chicago, IL 60611 USA. [Minasov, George; Shuvalova, Ludmilla; Miller, Darcie J.; Anderson, Wayne F.] NW Feinberg Sch Med, Midwest Ctr Struct Genom, Chicago, IL 60611 USA. [Padavattan, Sivaraman; Massa, Claudia; Schirmer, Tilman] Univ Basel, Biozentrum, Core Program Struct Biol & Biophys, CH-4056 Basel, Switzerland. [Brunzelle, Joseph S.] Argonne Natl Lab, Adv Photon Source, LS CAT, Argonne, IL 60439 USA. [Miller, Darcie J.] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. [Collart, Frank R.] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. RP Schirmer, T (reprint author), Klingelbergstr 70, CH-4056 Basel, Switzerland. EM tilman.schirmer@unibas.ch; wf-anderson@northwestern.edu OI Minasov, George/0000-0001-5460-3462 FU National Institutes of Health [U54 GM074942]; Swiss National Science Foundation [3100A0-10587] FX This work was supported, in whole or in part, by National Institutes of Health Grant U54 GM074942 (Midwest Center for Structural Genomics). This work was also supported by Swiss National Science Foundation Grant 3100A0-10587. NR 54 TC 52 Z9 52 U1 2 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD MAY 8 PY 2009 VL 284 IS 19 BP 13174 EP 13184 DI 10.1074/jbc.M808221200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 440GH UT WOS:000265688300064 PM 19244251 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Pagan Griso, S Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Pagan Griso, S. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Direct Measurement of the W Production Charge Asymmetry in pp Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS; ELECTROMAGNETIC CALORIMETER; P(P)OVER-BAR COLLISIONS AB We present the first direct measurement of the W production charge asymmetry as a function of the W boson rapidity y(W) in pp collisions at root s=1.96 TeV. We use a sample of W -> e nu events in data from 1 fb(-1) of integrated luminosity collected using the CDF II detector. In the region |y(W)|< 3.0, this measurement is capable of constraining the ratio of up- and down-quark momentum distributions in the proton more directly than in previous measurements of the asymmetry that are functions of the charged-lepton pseudorapidity. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Hou, S.; Lath, A.; Mitra, A.; Somalwar, S.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Azzurri, P.; Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Sapienza Univ Roma, I-00185 Rome, Italy. Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02115 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Canelli, Florencia/O-9693-2016; OI Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 24 TC 60 Z9 60 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 181801 DI 10.1103/PhysRevLett.102.181801 PG 7 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600014 ER PT J AU Dalvit, DAR Lamoreaux, SK AF Dalvit, Diego A. R. Lamoreaux, Steve K. TI Dalvit and Lamoreaux Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Reply to the Comment by R. S. Decca, E. Fischbach, B. Geyer, G. L. Klimchitskaya, D. E. Krause, D. Lopez, U. Mohideen, and V. M. Mostepanenko. C1 [Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lamoreaux, Steve K.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Dalvit, DAR (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. NR 10 TC 11 Z9 11 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 189304 DI 10.1103/PhysRevLett.102.189304 PG 1 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600081 ER PT J AU Decca, RS Fischbach, E Geyer, B Klimchitskaya, GL Krause, DE Lopez, D Mohideen, U Mostepanenko, VM AF Decca, R. S. Fischbach, E. Geyer, B. Klimchitskaya, G. L. Krause, D. E. Lopez, D. Mohideen, U. Mostepanenko, V. M. TI Comment on "Contribution of Drifting Carriers to the Casimir-Lifshitz and Casimir-Polder Interactions with Semiconductor Materials" SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Comment on the Letter by Diego A. R. Dalvit and Steve K. Lamoreaux, Phys. Rev. Lett. 101, 163203 (2008). The authors of the Letter offer a Reply. C1 [Decca, R. S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Fischbach, E.; Krause, D. E.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany. [Krause, D. E.] Wabash Coll, Dept Phys, Crawfordsville, IN 47933 USA. [Lopez, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mohideen, U.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. RP Decca, RS (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. RI Krause, Dennis/O-3170-2013 NR 6 TC 11 Z9 11 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 189303 DI 10.1103/PhysRevLett.102.189303 PG 1 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600080 PM 19518924 ER PT J AU Diallo, SO Antropov, VP Perring, TG Broholm, C Pulikkotil, JJ Ni, N Bud'ko, SL Canfield, PC Kreyssig, A Goldman, AI McQueeney, RJ AF Diallo, S. O. Antropov, V. P. Perring, T. G. Broholm, C. Pulikkotil, J. J. Ni, N. Bud'ko, S. L. Canfield, P. C. Kreyssig, A. Goldman, A. I. McQueeney, R. J. TI Itinerant Magnetic Excitations in Antiferromagnetic CaFe2As2 SO PHYSICAL REVIEW LETTERS LA English DT Article AB Neutron scattering measurements of the magnetic excitations in single crystals of antiferromagnetic CaFe2As2 reveal steeply dispersive and well-defined spin waves up to an energy of similar to 100 meV. Magnetic excitations above 100 meV and up to the maximum energy of 200 meV are however broader in energy and momentum than the experimental resolution. While the low energy modes can be fit to a Heisenberg model, the total spectrum cannot be described as arising from excitations of a local moment system. Ab initio calculations of the dynamic magnetic susceptibility suggest that the high energy behavior is dominated by the damping of spin waves by particle-hole excitations. C1 [Diallo, S. O.; Antropov, V. P.; Pulikkotil, J. J.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.] US DOE, Ames Lab, Ames, IA 50011 USA. [Perring, T. G.; Kreyssig, A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Perring, T. G.] UCL, Dept Phys, London WC1E 6BT, England. [Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Diallo, SO (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Broholm, Collin/E-8228-2011; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016; Diallo, Souleymane/B-3111-2016 OI Broholm, Collin/0000-0002-1569-9892; McQueeney, Robert/0000-0003-0718-5602; Diallo, Souleymane/0000-0002-3369-8391 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358, DE-FG02-08ER46544]; ISIS FX Work at the Ames Laboratory and the Johns Hopkins University was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358 and DE-FG02-08ER46544, respectively. Technical assistance of ISIS staff is gratefully acknowledged. NR 18 TC 121 Z9 123 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 187206 DI 10.1103/PhysRevLett.102.187206 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600066 PM 19518910 ER PT J AU Hofmann, A Cui, XY Schafer, J Meyer, S Hopfner, P Blumenstein, C Paul, M Patthey, L Rotenberg, E Bunemann, J Gebhard, F Ohm, T Weber, W Claessen, R AF Hofmann, A. Cui, X. Y. Schaefer, J. Meyer, S. Hoepfner, P. Blumenstein, C. Paul, M. Patthey, L. Rotenberg, E. Buenemann, J. Gebhard, F. Ohm, T. Weber, W. Claessen, R. TI Renormalization of Bulk Magnetic Electron States at High Binding Energies SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; NI; NICKEL; BAND; FE; SUPERCONDUCTORS; SPECTRA; CO AB The quasiparticle dynamics of electrons in a magnetically ordered state is investigated by high-resolution angle-resolved photoemission of Ni(110) at 10 K. The self-energy is extracted for high binding energies reaching up to 500 meV, using a Gutzwiller calculation as a reference frame for correlated quasiparticles. Significant deviations exist in the 300 meV range, as identified on magnetic bulk bands for the first time. The discrepancy is strikingly well described by a self-energy model assuming interactions with spin excitations. Implications relating to different electron-electron correlation regimes are discussed. C1 [Hofmann, A.; Cui, X. Y.; Schaefer, J.; Meyer, S.; Hoepfner, P.; Blumenstein, C.; Paul, M.; Claessen, R.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Cui, X. Y.; Patthey, L.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Buenemann, J.; Gebhard, F.] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany. [Ohm, T.; Weber, W.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. RP Hofmann, A (reprint author), Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. RI Rotenberg, Eli/B-3700-2009; Claessen, Ralph/A-2045-2017 OI Rotenberg, Eli/0000-0002-3979-8844; Claessen, Ralph/0000-0003-3682-6325 FU EU FX We gratefully acknowledge enlightening discussion with D. Vollhardt and M. Kollar, and support by the EU for travel to the SLS. NR 28 TC 27 Z9 27 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 187204 DI 10.1103/PhysRevLett.102.187204 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600064 PM 19518908 ER PT J AU Nisoli, C Gabor, NM Lammert, PE Maynard, JD Crespi, VH AF Nisoli, Cristiano Gabor, Nathaniel M. Lammert, Paul E. Maynard, J. D. Crespi, Vincent H. TI Static and Dynamical Phyllotaxis in a Magnetic Cactus SO PHYSICAL REVIEW LETTERS LA English DT Article AB While the statics of many simple physical systems reproduce the striking number-theoretical patterns found in the phyllotaxis of living beings, their dynamics reveal unusual excitations: multiple classical rotons and a large family of interconverting topological solitons. As we introduce those, we also demonstrate experimentally for the first time Levitov's celebrated model for phyllotaxis. Applications at different scales and in different areas of physics are proposed and discussed. C1 [Nisoli, Cristiano] Los Alamos Natl Lab, CNLS & T Div, Los Alamos, NM 87545 USA. [Gabor, Nathaniel M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Nisoli, Cristiano; Gabor, Nathaniel M.; Lammert, Paul E.; Maynard, J. D.; Crespi, Vincent H.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Nisoli, C (reprint author), Los Alamos Natl Lab, CNLS & T Div, Los Alamos, NM 87545 USA. OI Crespi, Vincent/0000-0003-3846-3193; Nisoli, Cristiano/0000-0003-0053-1023 FU National Science Foundation [DMR-0609243, ECS-0609243] FX This work was supported by the National Science Foundation through DMR-0609243 and ECS-0609243. NR 30 TC 12 Z9 12 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 186103 DI 10.1103/PhysRevLett.102.186103 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600046 PM 19518890 ER PT J AU Rousseaux, C Baton, SD Benisti, D Gremillet, L Adam, JC Heron, A Strozzi, DJ Amiranoff, F AF Rousseaux, C. Baton, S. D. Benisti, D. Gremillet, L. Adam, J. C. Heron, A. Strozzi, D. J. Amiranoff, F. TI Experimental Evidence of Predominantly Transverse Electron Plasma Waves Driven by Stimulated Raman Scattering of Picosecond Laser Pulses SO PHYSICAL REVIEW LETTERS LA English DT Article ID FREQUENCY-SHIFT AB We report on highly time- and space-resolved measurements of the evolution of electron plasma waves driven by stimulated Raman scattering of a picosecond, single laser speckle propagating through a preformed underdense plasma. Two-dimensional Thomson scatter spectra indicate that the dominant waves have significant transverse components. These results are supported by particle-in-cell simulations which pinpoint the dominant role of the wave front bowing and of secondary nonlinear electrostatic instabilities in the evolution of the plasma waves. C1 [Rousseaux, C.; Benisti, D.; Gremillet, L.] DIF, DAM, CEA, F-91297 Arpajon, France. [Baton, S. D.; Amiranoff, F.] Univ Paris 06, LULI, Ecole Polytech, CNRS,CEA, F-91128 Palaiseau, France. [Adam, J. C.; Heron, A.] Univ Paris 06, Ctr Phys Theor, UMR 7644, CNRS,Ecole Polytech, F-91128 Palaiseau, France. [Strozzi, D. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Rousseaux, C (reprint author), DIF, DAM, CEA, F-91297 Arpajon, France. OI Strozzi, David/0000-0001-8814-3791 FU Region d'Ile de France [E1127]; CNRS/IDRIS; CEA/CCRT; U. S. Department of Energy [DE-AC52-07NA27344] FX We acknowledge the beneficial support from LULI technical staff during these experiments. Part of the work was supported by Grant No. E1127 from Region d'Ile de France. PIC simulations were performed using the computer facilities of CNRS/IDRIS and CEA/CCRT. Work at LLNL supported by U. S. Department of Energy Contract No. DE-AC52-07NA27344. NR 22 TC 26 Z9 26 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 185003 DI 10.1103/PhysRevLett.102.185003 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600036 PM 19518880 ER PT J AU Unsal, M AF Uensal, Mithat TI Quantum Phase Transitions and New Scales in QCD-like Theories SO PHYSICAL REVIEW LETTERS LA English DT Article ID SYMMETRY-BREAKING; GAUGE-THEORY; MODEL AB It is commonly believed that in confining vectorlike gauge theories the center and chiral symmetry transition scales are parametrically of the same order and take place around the strong scale Lambda(-1). We demonstrate that (nonthermal) compactification of such theories on R(3)xS(1) exhibit new phase transition scales and unexpected phenomena. There are cases with single chiral symmetry breaking at an exotic scale Lambda(-1)/N(c) in the absence of any change in center symmetry. The scale Lambda(-1)/N(c), invisible in perturbation theory, is also the scale where Abelian versus non-Abelian confinement regimes meet. Large N(c) volume independence provides new insights and independently confirms the existence of these scales. We also show that certain phases and scales are outside the reach of holographic (supergravity) modeling of QCD. C1 [Uensal, Mithat] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Uensal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Unsal, M (reprint author), Stanford Univ, SLAC, Stanford, CA 94305 USA. FU U. S. Department of Energy [DE-AC02-76SF00515] FX I am grateful to O. Aharony, R. Brower, D. Harlow, D. Kutasov, A. Parnachev, M. Shifman, and L. Yaffe for useful discussions. This work is supported by the U. S. Department of Energy Grant No. DE-AC02-76SF00515. NR 28 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 182002 DI 10.1103/PhysRevLett.102.182002 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600017 PM 19518861 ER PT J AU Yang, J Huvonen, D Nagel, U Room, T Ni, N Canfield, PC Bud'ko, SL Carbotte, JP Timusk, T AF Yang, J. Huevonen, D. Nagel, U. Room, T. Ni, N. Canfield, P. C. Bud'ko, S. L. Carbotte, J. P. Timusk, T. TI Optical Spectroscopy of Superconducting Ba0.55K0.45Fe2As2: Evidence for Strong Coupling to Low-Energy Bosons SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAO1-XFXFEAS; COMPOUND; DENSITY; STATES; GAPS; LEAD AB Normal state optical spectroscopy on single crystals of the new iron arsenide superconductor Ba0.55K0.45Fe2As2 shows that the infrared spectrum consists of two major components: a strong metallic Drude band and a well-separated midinfrared absorption centered at 0.7 eV. It is difficult to separate the two components unambiguously but several fits using Lorentzian peaks suggest a model with a Drude peak having a plasma frequency of 1.6 to 2.1 eV and a midinfrared peak with a plasma frequency of 2.5 eV. Detailed analysis of the frequency dependent scattering rate shows that the charge carriers interact with a broad bosonic spectrum extending beyond 100 meV with a very large coupling constant lambda=3.4 at low temperature. As the temperature increases this coupling weakens to lambda=0.78 at ambient temperature. This suggests a bosonic spectrum that is similar to what is seen in the lower T-c cuprates. C1 [Yang, J.; Carbotte, J. P.; Timusk, T.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Yang, J.] Tianjin Univ, Tianjin Key Lab Composite & Funct Mat, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China. [Huevonen, D.; Nagel, U.; Room, T.] NICPB, EE-12618 Tallinn, Estonia. [Ni, N.; Canfield, P. C.; Bud'ko, S. L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Ni, N.; Canfield, P. C.; Bud'ko, S. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Carbotte, J. P.; Timusk, T.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Yang, J (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM timusk@mcmaster.ca RI Huvonen, Dan/A-6664-2008; Room, Toomas/A-6412-2008; Nagel, Urmas/A-6402-2008; Canfield, Paul/H-2698-2014 OI Huvonen, Dan/0000-0002-8906-6588; Room, Toomas/0000-0002-6165-8290; Nagel, Urmas/0000-0001-5827-9495; FU Natural Science and Engineering Research Council of Canada; Canadian Institute for Advanced Research; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We thank E. Schachinger for the maximum entropy inversions shown in Fig. 4. This work has been supported by the Natural Science and Engineering Research Council of Canada and the Canadian Institute for Advanced Research. Sample growth and basic characterization done at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 38 TC 60 Z9 60 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 187003 DI 10.1103/PhysRevLett.102.187003 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600058 ER PT J AU Zhao, K Troparevsky, MC Xiao, D Eguiluz, AG Zhang, ZY AF Zhao, Ke Troparevsky, M. Claudia Xiao, Di Eguiluz, Adolfo G. Zhang, Zhenyu TI Electronic Coupling and Optimal Gap Size between Two Metal Nanoparticles SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENHANCED RAMAN-SCATTERING; QUANTUM DOTS; MOLECULES; SPECTROSCOPY; JUNCTIONS; ATOMS AB We study the electronic coupling between two silver nanoparticles using ab initio density functional theory for real atoms. We show that the electronic coupling depends on both the gap size of the dimer system and the relative orientation of the particles. As the two particles are separated from touching contact, the dimer undergoes a bond-breaking step, which also establishes the striking existence of an optimal gap size defined by a maximal static polarizability of the dimer. For some dimers, the electronic coupling before the bond breaking can be strong enough to give rise to a net magnetic moment of the dimer, even though the isolated particles are nonmagnetic. These findings may be instrumental in understanding and controlling the physical and chemical properties of closely packed nanoparticle aggregates. C1 [Zhao, Ke; Troparevsky, M. Claudia; Eguiluz, Adolfo G.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhao, Ke; Troparevsky, M. Claudia; Xiao, Di; Eguiluz, Adolfo G.; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhao, K (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Xiao, Di/B-1830-2008 OI Xiao, Di/0000-0003-0165-6848 FU NSF [DMR-0606485, DMR-ITR0219332]; DOE [DEFG0205ER46209] FX This work was supported in part by NSF (Grant Nos. DMR-0606485 and DMR-ITR0219332), and by DOE (Grant No. DEFG0205ER46209, and the Division of Material Sciences and Engineering, Office of Basic Sciences, and BES-CMSN/PCSCS). The calculations were performed at NERSC. NR 23 TC 19 Z9 20 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 186804 DI 10.1103/PhysRevLett.102.186804 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600055 PM 19518899 ER PT J AU Zhu, LY Peng, JC Reimer, PE Awes, TC Brooks, ML Brown, CN Bush, JD Carey, TA Chang, TH Cooper, WE Gagliardi, CA Garvey, GT Geesaman, DF Hawker, EA He, XC Isenhower, LD Kaplan, DM Kaufman, SB Klinksiek, SA Koetke, DD Lee, DM Lee, WM Leitch, MJ Makins, N McGaughey, PL Moss, JM Mueller, BA Nord, PM Papavassiliou, V Park, BK Petitt, G Sadler, ME Sondheim, WE Stankus, PW Thompson, TN Towell, RS Tribble, RE Vasiliev, MA Webb, JC Willis, JL Wise, DK Young, GR AF Zhu, L. Y. Peng, J. C. Reimer, P. E. Awes, T. C. Brooks, M. L. Brown, C. N. Bush, J. D. Carey, T. A. Chang, T. H. Cooper, W. E. Gagliardi, C. A. Garvey, G. T. Geesaman, D. F. Hawker, E. A. He, X. C. Isenhower, L. D. Kaplan, D. M. Kaufman, S. B. Klinksiek, S. A. Koetke, D. D. Lee, D. M. Lee, W. M. Leitch, M. J. Makins, N. McGaughey, P. L. Moss, J. M. Mueller, B. A. Nord, P. M. Papavassiliou, V. Park, B. K. Petitt, G. Sadler, M. E. Sondheim, W. E. Stankus, P. W. Thompson, T. N. Towell, R. S. Tribble, R. E. Vasiliev, M. A. Webb, J. C. Willis, J. L. Wise, D. K. Young, G. R. TI Measurement of Angular Distributions of Drell-Yan Dimuons in p plus p Interactions at 800 GeV/c SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; LEPTON PAIR PRODUCTION; PARTON DISTRIBUTIONS; SPIN ASYMMETRIES; SIVERS FUNCTION; NEGATIVE PIONS; MODEL; COLLISIONS; TUNGSTEN AB We report a measurement of the angular distributions of Drell-Yan dimuons produced using an 800 GeV/c proton beam on a hydrogen target. The polar and azimuthal angular distribution parameters have been extracted over the kinematic range 4.5 < m(mu mu)< 15 GeV/c(2) (excluding the Upsilon resonance region), 0 < p(T)< 4 GeV/c, and 0 < x(F)< 0.8. The p+p angular distributions are similar to those of p+d, and both data sets are compared with models which attribute the cos2 phi distribution either to the presence of the transverse-momentum-dependent Boer-Mulders structure function h(1)(perpendicular to) or to QCD effects. The data indicate the need to include QCD effects before reliable information on the Boer-Mulders function can be extracted. The validity of the Lam-Tung relation in p+p Drell-Yan data is also tested. C1 [Reimer, P. E.; Geesaman, D. F.; Kaufman, S. B.; Makins, N.; Mueller, B. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Brown, C. N.; Cooper, W. E.; Lee, W. M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [He, X. C.; Lee, W. M.; Petitt, G.] Georgia State Univ, Atlanta, GA 30303 USA. [Kaplan, D. M.] IIT, Chicago, IL 60616 USA. [Zhu, L. Y.; Peng, J. C.; Makins, N.] Univ Illinois, Urbana, IL 61801 USA. [Peng, J. C.; Reimer, P. E.; Brooks, M. L.; Carey, T. A.; Garvey, G. T.; Lee, D. M.; Leitch, M. J.; McGaughey, P. L.; Moss, J. M.; Park, B. K.; Sondheim, W. E.; Thompson, T. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klinksiek, S. A.] Univ New Mexico, Albuquerque, NM 87131 USA. [Chang, T. H.; Papavassiliou, V.; Webb, J. C.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gagliardi, C. A.; Hawker, E. A.; Tribble, R. E.; Vasiliev, M. A.] Texas A&M Univ, College Stn, TX 77843 USA. [Koetke, D. D.; Nord, P. M.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Zhu, L. Y.] Hampton Univ, Hampton, VA 23187 USA. [Bush, J. D.; Isenhower, L. D.; Sadler, M. E.; Towell, R. S.; Willis, J. L.; Wise, D. K.] Abilene Christian Univ, Abilene, TX 79699 USA. RP Zhu, LY (reprint author), Hampton Univ, Hampton, VA 23187 USA. RI Reimer, Paul/E-2223-2013 FU U. S. Department of Energy; National Science Foundation FX We acknowledge helpful discussion with Bo-Qiang Ma, Bing Zhang, Matthias Burkardt, Feng Yuan, Werner Vogelsang, and Jianwei Qiu. This work was supported in part by the U. S. Department of Energy and the National Science Foundation. NR 39 TC 45 Z9 45 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 8 PY 2009 VL 102 IS 18 AR 182001 DI 10.1103/PhysRevLett.102.182001 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZF UT WOS:000265948600016 PM 19518860 ER PT J AU Wang, XR Li, XL Zhang, L Yoon, Y Weber, PK Wang, HL Guo, J Dai, HJ AF Wang, Xinran Li, Xiaolin Zhang, Li Yoon, Youngki Weber, Peter K. Wang, Hailiang Guo, Jing Dai, Hongjie TI N-Doping of Graphene Through Electrothermal Reactions with Ammonia SO SCIENCE LA English DT Article ID CARBON; TRANSISTORS; DEPENDENCE; NANOTUBES; FILMS; GAS AB Graphene is readily p-doped by adsorbates, but for device applications, it would be useful to access the n-doped material. Individual graphene nanoribbons were covalently functionalized by nitrogen species through high-power electrical joule heating in ammonia gas, leading to n-type electronic doping consistent with theory. The formation of the carbon-nitrogen bond should occur mostly at the edges of graphene where chemical reactivity is high. X-ray photoelectron spectroscopy and nanometer-scale secondary ion mass spectroscopy confirm the carbon-nitrogen species in graphene thermally annealed in ammonia. We fabricated an n-type graphene field-effect transistor that operates at room temperature. C1 [Wang, Xinran; Li, Xiaolin; Zhang, Li; Wang, Hailiang; Dai, Hongjie] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Wang, Xinran; Li, Xiaolin; Zhang, Li; Wang, Hailiang; Dai, Hongjie] Stanford Univ, Adv Mat Lab, Stanford, CA 94305 USA. [Yoon, Youngki; Guo, Jing] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA. [Weber, Peter K.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Dai, HJ (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM hdai@stanford.edu RI Yoon, Youngki/B-1451-2009; Wang, Xinran/E-8392-2010 FU Microelectronics Advanced Research Corporation Materials, Structures, and Devices Focus Center; Intel; Office of Naval Research (ONR).; NSF; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported in part by the Microelectronics Advanced Research Corporation Materials, Structures, and Devices Focus Center; Intel; and Office of Naval Research (ONR). The work done at the University of Florida was supported in part by NSF and ONR. The work at LLNL was performed under the auspices of the U.S. Department of Energy, contract DE-AC52-07NA27344. NR 25 TC 1204 Z9 1229 U1 123 U2 1056 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 8 PY 2009 VL 324 IS 5928 BP 768 EP 771 DI 10.1126/science.1170335 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 442HN UT WOS:000265832400041 PM 19423822 ER PT J AU Devanathan, R Yu, JG Weber, WJ AF Devanathan, Ram Yu, Jianguo Weber, William J. TI Energetic recoils in UO2 simulated using five different potentials SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE annealing; binding energy; crystal defects; crystal microstructure; Frenkel defects; fusion reactor fuel; interstitials; melting; molecular dynamics method; uranium compounds ID MOLECULAR-DYNAMICS SIMULATION; NUCLEAR-FUEL MATERIALS; URANIUM-DIOXIDE; THERMOPHYSICAL PROPERTIES; INTERATOMIC POTENTIALS; DISPLACEMENT CASCADES; THERMAL-PROPERTIES; RADIATION-DAMAGE; DEFECTS; FLUORITE AB This report presents the results of classical molecular dynamics simulations of the diffuse premelting transition, melting, and defect production by 1 keV U recoils in UO2 using five different rigid ion potentials. The experimentally observed premelting transition occurred for all five cases. For all the potentials studied, dynamic defect annealing is highly effective and is accompanied by replacement events on the anion sublattice. The primary damage state after similar to 15 ps consists of isolated Frenkel pairs and interstitial and vacancy clusters of various sizes. The average displacement energy varies from similar to 28 to similar to 83 eV and the number of Frenkel pairs is different by a factor of 3 depending on the choice of potential. The size and spatial distribution of vacancy and interstitial clusters is drastically different for the potentials studied. The results provide statistics of defect production. They point to a pressing need to determine defect formation, migration, and binding energies in UO2 from first principles and to develop reliable potentials based on this data for simulating microstructural evolution in nuclear fuel under operating conditions. C1 [Devanathan, Ram; Yu, Jianguo; Weber, William J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Devanathan, R (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, MS K8-87, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Weber, William/A-4177-2008; Devanathan, Ram/C-7247-2008; Yu, Jianguo/C-3424-2013 OI Weber, William/0000-0002-9017-7365; Devanathan, Ram/0000-0001-8125-4237; Yu, Jianguo/0000-0001-5604-8132 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences (BES), U. S. Department of Energy (DOE) [DE-AC05-76RL01830, DE-AC03-76SF00098] FX This research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences (BES), U. S. Department of Energy (DOE) under Contract No. DE-AC05-76RL01830. It benefited from a DOE BES Computational Materials Science Network Cooperative Research Team grant. This research was performed using the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. DOE under Contract No. DE-AC03-76SF00098 and the Molecular Science Computing Facility in the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the DOE, Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 39 TC 36 Z9 36 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 7 PY 2009 VL 130 IS 17 AR 174502 DI 10.1063/1.3125967 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448LC UT WOS:000266263100025 PM 19425785 ER PT J AU Neuefeind, J Fischer, HE Simonson, JM Idrissi, A Schops, A Honkimaki, V AF Neuefeind, J. Fischer, H. E. Simonson, J. M. Idrissi, A. Schoeps, A. Honkimaeki, V. TI The structure of liquid carbon dioxide and carbon disulfide SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE carbon compounds; liquid structure; molecule-neutron collisions; neutron diffraction; thermodynamics; X-ray scattering ID INITIO MOLECULAR-DYNAMICS; X-RAY-DIFFRACTION; NEUTRON-DIFFRACTION; SUPERCRITICAL CO2; DIFFRACTOMETER; REFINEMENT; SIMULATION; GLASSES; MOTION; WATER AB We present neutron and x-ray scattering data (a 2N+X experiment) of liquid CO(2) and CS(2) at a density of about 10 molecules/nm(3). Because the scattering length contrast of the carbon isotope is very small and, in fact, smaller than anticipated from standard scattering length tables, a direct partial structure factor determination via matrix inversion gives unconvincing results. Instead we search for the best representation of the three independent scattering data sets by a simulation of rigid molecules interacting via a 12-6-1 potential, furthermore restricting the pressure p, the density rho, and the temperature T to the experimental values. We show that a 12-6-1 potential is completely adequate to describe the structure of CO(2); for CS(2) we find that the best 12-6-1 potential still slightly overestimates the height of the sulfur-sulfur pair-distribution function g(SS). Orientational correlations reflect the similarities much more than the differences of the two molecular systems. The distinct differences in the atom-atom pair distribution functions of CO(2) and CS(2) do not mean that their structures are radically different and the comparison with the crystalline structures is somewhat deceptive. A linear transformation, wherein all the parameters describing the interaction and the geometry of CS(2) are changed to those of CO(2), allows us to point out the physical parameters which may be responsible for the differences or similarities in thermodynamic behavior (pressure) and structures (orientations) between the two liquids. C1 [Neuefeind, J.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Fischer, H. E.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Simonson, J. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Idrissi, A.] Univ Sci & Techol Lille, Lab Spectrochim Infrarouge & Raman, F-59655 Villeneuve Dascq, France. [Schoeps, A.] Deutsch Elektronensynchrotron DESY, Hamburger Synchrontronstrahlungslab HASYLAB, D-22603 Hamburg, Germany. [Honkimaeki, V.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. RP Neuefeind, J (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM zjn@sns.gov RI Neuefeind, Joerg/D-9990-2015; Fischer, Henry/D-5299-2012 OI Neuefeind, Joerg/0000-0002-0563-1544; Fischer, Henry/0000-0002-1204-0750 FU UT-Battelle, LLC [DE-AC05-00OR22725]; Division of Scientific User Facilities, U. S. Department of Energy FX We wish to acknowledge the help of P. Palleau (ILL) and R. Nowak (HASYLAB) during the experiments. Email discussion with D. Paschek (Univ. Dortmund) led to the use of rigid molecule models. SNS is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U. S. Department of Energy. Contributions of J.M.S. to this research were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U. S. Department of Energy. NR 42 TC 8 Z9 8 U1 4 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 7 PY 2009 VL 130 IS 17 AR 174503 DI 10.1063/1.3116106 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448LC UT WOS:000266263100026 PM 19425786 ER PT J AU Srivastava, S Basu, JK Sprung, M Wang, J AF Srivastava, S. Basu, J. K. Sprung, M. Wang, J. TI Morphological transitions in polymer monolayers under compression SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE bending; buckling; Langmuir-Blodgett films; monolayers; polymer films; solid-state phase transformations; viscoelasticity; X-ray scattering; Young's modulus ID AIR-WATER-INTERFACE; ELASTIC-MODULI; THIN-FILMS; SURFACE; NANOPARTICLES; MEMBRANE; STRESS; LAYERS AB We present a systematic investigation of morphological transitions in poly vinylacetate Langmuir monolayers. On compression, the polymer monolayer is converted to a continuous membrane with a thickness of similar to 2-3 nm. Above a certain surface concentration the monolayer, on water, undergoes a morphological transition-buckling, leading to formation of striped patterns of period of lambda(b)similar to 160 nm, as determined from in situ grazing incidence small angle x-ray scattering measurements. The obtained value is much smaller than what has been typically observed for Langmuir monolayers on water or thin films on soft substrates. Using existing theories for buckling of fluidlike films on fluid substrates, we obtain very low values of bending rigidity and Young's modulus of the polymer monolayer compared to that observed earlier for lipid or polymeric monolayers. Since buckling in these monolayers occurs only above a certain surface concentration, we have looked at the possibility that the buckling in these films occurs due to changes in their mechanical properties under compression. Using the model of Huang and Suo of buckling of solidlike films on viscoelastic substrates, we find values of the mechanical properties, which are much closer to the bulk values but still significantly lower. Although the reduction could be along the lines of what has been observed earlier for ultrathin polymer film or surface layers of polymers, the possibility of micromechanical effects also determining the buckling in such polymer monolayers cannot be ruled out. We have provided possible explanation of the buckling of the poly vinylacetate monolayers in terms of the change in isothermal compression modulus with surface concentration. C1 [Srivastava, S.; Basu, J. K.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Sprung, M.; Wang, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Srivastava, S (reprint author), Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. EM basu@physics.iisc.ernet.in FU DST, India; GISAXS; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge DST, India, for funding the project as well as financial support needed to perform GISAXS measurements at the Advance Photon Source (APS), USA. The use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 at http://www.aps.anl.gov/Users/Obligations/Published-Reports.html. Assistance from M. K. Mukhopadhyay and S. Narayanan at APS during the experiment is highly appreciated. NR 44 TC 6 Z9 6 U1 4 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAY 7 PY 2009 VL 130 IS 17 AR 174718 DI 10.1063/1.3115447 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448LC UT WOS:000266263100049 PM 19425809 ER PT J AU Darling, SB Sternberg, M AF Darling, Seth B. Sternberg, Michael TI Importance of Side Chains and Backbone Length in Defect Modeling of Poly(3-alkylthiophenes) SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PI-CONJUGATED MOLECULES; TORSIONAL POTENTIALS; SOLAR-CELLS; POLYMERS; POLYTHIOPHENE; OLIGOTHIOPHENE; FUNCTIONALS; PERFORMANCE; BITHIOPHENE; TRANSPORT AB Geometric defects in conjugated polymers play a critical role in determining electronic structure and properties such as charge carrier mobility and band gap. Because the relative roles of individual defects are experimentally difficult to discern, computational approaches provide valuable insight if appropriate molecular models are used. Poly(3-alkylthiophenes) are often modeled with very short backbones and without their side chains. We demonstrate the shortcomings of this approach for modeling torsional disorder in poly(3-hexylthiophene) (P3HT). Using a hybrid density functional model, we identify a minimal acceptable model to comprise approximately 10 monomers with explicitly treated alkane side chains. Potential applications of this work extend to polymer electronics and optoelectronics. C1 [Darling, Seth B.; Sternberg, Michael] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 33 TC 76 Z9 76 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 7 PY 2009 VL 113 IS 18 BP 6215 EP 6218 DI 10.1021/jp808045j PG 4 WC Chemistry, Physical SC Chemistry GA 440FZ UT WOS:000265687500006 PM 19290596 ER PT J AU Wikfeldt, KT Leetmaa, M Ljungberg, MP Nilsson, A Pettersson, LGM AF Wikfeldt, Kjartan T. Leetmaa, Mikael Ljungberg, Mathias P. Nilsson, Anders Pettersson, Lars G. M. TI On the Range of Water Structure Models Compatible with X-ray and Neutron Diffraction Data SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RADIAL-DISTRIBUTION FUNCTIONS; DENSITY-FUNCTIONAL THEORY; MONTE-CARLO ALGORITHM; HYDROGEN-BOND NETWORK; LIQUID WATER; ABSORPTION SPECTROSCOPY; SCATTERING EXPERIMENTS; REARRANGEMENTS; TEMPERATURES; SIMULATION AB We use the reverse Monte Carlo (RMC) method to critically evaluate the structural information content of diffraction data on bulk water by fitting simultaneously or separately to X-ray and neutron data; the O-H and H-H, but not the O-O, pair-correlation functions (PCFs) are well-described by the neutron data alone. Enforcing at the same time different H-bonding constraints, we generate four topologically different structure models of liquid water, including a simple mixture model, that all equally well reproduce the diffraction data. Although earlier work [Leetmaa, M.; et a]. J. Chem. Phys. 2008, 129, 084502] has focused on tetrahedrality in the H-bond network in liquid water, we show here that, even for the O-O-O three-body correlation, tetrahedrality is not strictly defined by the data. We analyze how well two popular MD models (TIP4P-pol2 and SPC/E) reproduce the neutron data in q-space and find differences in important aspects from the experiment. From the RMC fits, we obtain pair-correlation functions (PCFs) that are in optimal agreement with the diffraction data but still show a surprisingly strong variability both in position and height of the first intermolecular (H-bonding) O-H peak. We conclude that, although diffraction data impose important constraints on the range of possible water structures, additional data are needed to narrow the range of possible structure models. C1 [Wikfeldt, Kjartan T.; Leetmaa, Mikael; Ljungberg, Mathias P.; Nilsson, Anders; Pettersson, Lars G. M.] Stockholm Univ, AlbaNova Univ Ctr, FYSIKUM, SE-10691 Stockholm, Sweden. [Nilsson, Anders] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Pettersson, LGM (reprint author), Stockholm Univ, AlbaNova Univ Ctr, FYSIKUM, SE-10691 Stockholm, Sweden. EM lgm@physto.se RI Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Pettersson, Lars/J-4925-2013; Leetmaa, Mikael/J-9786-2012; Ljungberg, Mathias/M-6243-2014 OI Nilsson, Anders/0000-0003-1968-8696; Pettersson, Lars/0000-0003-1133-9934; Leetmaa, Mikael/0000-0002-3446-7253; Ljungberg, Mathias/0000-0002-8774-9529 FU Swedish Foundation for Strategic Research; Swedish Research Council; National Science Foundation (US) [CHE-0518637, CHE-0431425]; Swedish NSC FX We are grateful to A. K. Soper for supplying the neutron data, to T. Head-Gordon for making the X-ray diffraction data available and to J. I. Siepmann for sending the TIP4P-pol2 MD trajectory. This work was supported by the Swedish Foundation for Strategic Research, the Swedish Research Council (VR), and the National Science Foundation (US) CHE-0518637 and CHE-0431425. A generous grant of CPU time from the Swedish NSC center is gratefully acknowledged. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 60 TC 48 Z9 48 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 7 PY 2009 VL 113 IS 18 BP 6246 EP 6255 DI 10.1021/jp9007619 PG 10 WC Chemistry, Physical SC Chemistry GA 440FZ UT WOS:000265687500010 PM 19358575 ER PT J AU Sun, XQ Chang, TM Cao, Y Niwayama, S Hase, WL Dang, LX AF Sun, Xiuquan Chang, Tsun-mei Cao, Yang Niwayama, Satomi Hase, William L. Dang, Liem X. TI Solvation of Dimethyl Succinate in a Sodium Hydroxide Aqueous Solution. A Computational Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID EFFICIENT SELECTIVE MONOHYDROLYSIS; LIQUID-VAPOR INTERFACE; MOLECULAR-DYNAMICS; HIGHLY EFFICIENT; SYMMETRIC DIESTERS; WATER; ESTERS; SIMULATIONS; SURFACE; ACIDS AB Molecular dynamics simulations were carried out to study dimethyl succinate/water/NaOH solutions. The potential of mean force method was used to determine the transport mechanism of a dimethyl succinate (a diester) molecule across the aqueous/vapor interface. The computed number density profiles show a strong propensity for the diester molecules to congregate at the interface, with the solubility of the diester increasing with increasing NaOH concentration. It is observed that the major contribution to the interfacial solvation free-energy minimum is from electrostatic interactions. Even at higher NaOH concentrations, the increasing electrostatic interaction between, the diester and ions is not large enough to favor the solvation of diester in bulk solutions. The calculated solvation free energies are found to be -2.6 to -3.5 kcal/mol in variant concentrations of NaOH aqueous solutions. These values are in qualitative agreement with the corresponding experimental measurements. The computed surface potential indicates that the contribution of diester molecules to the total surface potential is about 25%, with the major contribution from interfacial water molecules. C1 [Sun, Xiuquan; Dang, Liem X.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Chang, Tsun-mei] Univ Wisconsin Parkside, Dept Chem, Kenosha, WI USA. [Cao, Yang; Niwayama, Satomi; Hase, William L.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM liem.dang@pnl.gov RI Niwayama, Satomi/O-1598-2015 OI Niwayama, Satomi/0000-0001-6385-5274 FU National Science Foundation [CHE-061532, CHE-0443265]; Robert A. Welch Foundation [D-0005] FX This work was performed at Pacific Northwest National Laboratory under the auspices of the Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Battelle operates Pacific Northwest National Laboratory the DOE. The computer resources are provided by the Division of Chemical and Materials Sciences. The contributions to the research from Texas Tech University are based on work supported by the National Science Foundation under Grant No. CHE-061532, the Robert A. Welch Foundation under Grant No. D-0005, and National Science Foundation-CAREER (Grant No. CHE-0443265). NR 33 TC 2 Z9 2 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 7 PY 2009 VL 113 IS 18 BP 6473 EP 6477 DI 10.1021/jp901950g PG 5 WC Chemistry, Physical SC Chemistry GA 440FZ UT WOS:000265687500035 PM 19402729 ER PT J AU Read, EL Schlau-Cohen, GS Engel, GS Georgiou, T Papiz, MZ Fleming, GR AF Read, Elizabeth L. Schlau-Cohen, Gabriela S. Engel, Gregory S. Georgiou, Toni Papiz, Miroslav Z. Fleming, Graham R. TI Pigment Organization and Energy Level Structure in Light-Harvesting Complex 4: Insights from Two-Dimensional Electronic Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PHOTOSYNTHETIC PURPLE BACTERIA; RHODOPSEUDOMONAS-PALUSTRIS; RHODOBACTER-SPHAEROIDES; FEMTOSECOND SPECTROSCOPY; EXCITON DELOCALIZATION; CRYSTAL-STRUCTURE; ANTENNA COMPLEX; B850 ANTENNA; LH2; DYNAMICS AB Photosynthetic light-harvesting antennae direct energy collected from sunlight to reaction centers with remarkable efficiency and rapidity. Despite their common function, the pigment-protein complexes that make up antenna systems in different types of photosynthetic organisms exhibit a wide variety of structural forms. Some individual organisms express different types of complexes depending on growth conditions. For example, purple photosynthetic bacteria Rp. palustris preferentially synthesize light-harvesting complex 4 (LH4), a structural variant of the more common and widely studied LH2, when grown under low-light conditions. Here, we investigate the ultrafast dynamics, and energy level structure of LH4 using two-dimensional (2D) electronic spectroscopy in combination with theoretical simulations. The experimental data reveal dynamics on two distinct time scales, consistent with coherent dephasing within approximately the first 100 fs, followed by relaxation of population into lower-energy states on a picosecond time scale. We observe excited state absorption (ESA) features marking the existence of high-energy dark states, which suggest that the strongest dipole-dipole coupling in the complex occurs between bacteriochlorophyll transition dipole moments in an in-line geometry. The results help to refine the Current understanding of the pigment organization in the LH4 complex, for which a high-resolution crystal structure is not yet available. C1 [Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Read, Elizabeth L.; Schlau-Cohen, Gabriela S.; Engel, Gregory S.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Georgiou, Toni; Papiz, Miroslav Z.] Sci & Technol Facil Council, Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Papiz, Miroslav Z.] Univ Liverpool, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Engel, Gregory/C-1108-2012 OI Engel, Gregory/0000-0002-6740-5243 FU U.S. Department of Energy [DE-AC03-76SF000098]; Biotechnology and Biological Sciences Research Council; Science and Technology Facilities Council FX This work was supported by Grant No. DE-AC03-76SF000098 from the Chemical Sciences, Geo-sciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy to G.R.F. M.Z.P. thanks the Biotechnology and Biological Sciences Research Council and Science and Technology Facilities Council. NR 45 TC 15 Z9 15 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAY 7 PY 2009 VL 113 IS 18 BP 6495 EP 6504 DI 10.1021/jp809713q PG 10 WC Chemistry, Physical SC Chemistry GA 440FZ UT WOS:000265687500038 PM 19402730 ER PT J AU Ouyang, JY Kuijper, J Brot, S Kingston, D Wu, XH Leek, DM Hu, MZ Ripmeester, JA Yu, K AF Ouyang, Jianying Kuijper, Jasmijn Brot, Simon Kingston, David Wu, Xiaohua Leek, Donald M. Hu, Michael Z. Ripmeester, John A. Yu, Kui TI Photoluminescent Colloidal CdS Nanocrystals with High Quality via Noninjection One-Pot Synthesis in 1-Octadecene SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STRONG BANDGAP PHOTOLUMINESCENCE; SEMICONDUCTOR NANOCRYSTALS; QUANTUM DOTS; CDTE NANOCRYSTALS; II-VI; GROWTH; CELLS; NUCLEATION; INJECTION; PRECURSOR AB High-quality colloidal photoluminescent US quantum dots (QDs) were synthesized via a noninjection one-pot approach in noncoordinating solvent 1-octadecene. This synthetic approach uses cadmium acetate dihydrate and elemental sulfur as Cd and S sources, respectively, together with one long-chain fatty acid (CH(3)-(CH(2))(n)-COOH) as surface ligands and 2,2'-dithiobisbenzothiazole (MBTS) to increase sulfur activity. The US QDs were synthesized at elevated temperatures such as 240-300 degrees C, and the kinetics of nucleation/growth was monitored via the temporal evolution of the optical properties of the growing CdS QDs. Various synthetic parameters were investigated, such as the feed molar ratios of (0.5-8)Cd/1S and (2-64)S/1MBTS, reactant concentrations of 5-80 mmol/Kg, and growth temperature of 220-350 degrees C. The feed molar ratios of (1-2)Cd/1S and (8-32)S/1MBTS are suggested to be the optimal synthetic window, together with the S feed concentration of 10-20 mmol/Kg, and the growth temperature of 240-260 degrees C. Moreover, ligand effects such as ligand length and concentration were thoroughly investigated. With an increase of the chain length of the fatty acid, the size of the resulting CdS QDs was systematically reduced. The acids of moderate carbon-chain length (n = 10-16) bestowed CdS QDs in high quality regarding narrow size distribution (similar to 17-22 nm in full width at half-maximum), high nanocrystal yield, and high quantum yield (up to 30%). Meanwhile, the acids with longer carbon chain led to small-sized nanocrystals in low concentration, due to large steric hindrance retarding severely the nucleation and growth, as indicated by the late appearance of nanocrystal absorption and slow increase in size. The acids with shorter carbon chain resulted in large-sized nanocrystals in low concentration, due to small steric hindrance causing ready nucleation and growth, as indicated by the large and fast increase in size. Therefore, the steric hindrance of varied-length fatty acids affects the reactivity of Cd(2+) with great impacts on the nanocrystal nucleation/growth and thus the nanocrystal size and surface passivation. Furthermore, with an increase in the acid concentration, the size and size distribution of the resulting CdS QDs increased, together with a decrease in nanocrystal yield, due to an enhanced solubility of the US nanocrystals and thus a hindered nucleation with a low nuclei concentration. C1 [Ouyang, Jianying; Kuijper, Jasmijn; Brot, Simon; Leek, Donald M.; Ripmeester, John A.; Yu, Kui] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. [Kingston, David] Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada. [Wu, Xiaohua] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada. [Hu, Michael Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37931 USA. RP Yu, K (reprint author), Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. EM kui.yu@nrc.ca RI 牛, 开心/C-3081-2014; ye, bin/K-7828-2012; OI Hu, Michael/0000-0001-8461-9684 FU Natural Sciences and Engineering Research Council of Canada (NSERC); National Research Council of Canada (NRC); LDRD; Oak Ridge National Laboratory FX J.O. thanks Natural Sciences and Engineering Research Council of Canada (NSERC) for visiting fellowships at National Research Council of Canada (NRC). J.K. thanks the internship of her school, the Hogeschool Fontys Eindhoven (Netherland), and S.B. thanks the internship of his school, Joseph Fourier University (Grenoble-France, Material Science and Engineering at Polytech). M.Z.H.'s contribution was partially sponsored by the relevant LDRD and Seed Money fund at the Oak Ridge National Laboratory. NR 42 TC 47 Z9 47 U1 4 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 7 PY 2009 VL 113 IS 18 BP 7579 EP 7593 DI 10.1021/jp900252e PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 440GA UT WOS:000265687600018 ER PT J AU Korlann, SD Riley, AE Mun, BS Tolbert, SH AF Korlann, Scott D. Riley, Andrew E. Mun, Bongjin Simon Tolbert, Sarah H. TI Chemical Tuning of the Electronic Properties of Nanostructured Semiconductor Films Formed through Surfactant Templating of Zintl Cluster SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MESOPOROUS MOLECULAR-SIEVES; OPTICAL-PROPERTIES; COMPOSITE-MATERIALS; PORE ORGANIZATION; TRANSITION-METAL; ZIRCONIUM-OXIDE; THIN-FILMS; IN-SITU; GERMANIUM; PLATINUM AB Inorganic/organic coassembly provides a powerful route to the fort-nation of periodic, nanostructured materials. In this work, the surfactant cetyltriethylammonium bromide is used as an organic structure directing agent, and the inorganic phase is formed from the condensation of metal cations with reduced main group clusters know as Zintl clusters. These anionic clusters are formed by alloying alkali metals with various main group elements. The chalcogenide-based Zintl clusters used here have an affinity for gold and other transition metals and will thus nucleate the formation of films on metal surfaces. Interface nucleated inorganic/organic coorganization results in thin films with the periodicity of a liquid crystal phase, but with a cross-linking inorganic network surrounding the surfactant domains. In this work, we investigate the extent to which the band structure of these films can be tuned by altering the elemental composition of the inorganic framework of these periodic nanocomposites. For the semiconducting films investigated here, the band gap and valence and conduction band energies of the inorganic network can be independently tuned by 1-2 eV by varying different elemental components. All trends in the data can be qualitatively understood by considering the orbital contribution to the band structure, in analogy to chalcogenide glass semiconductors. A variety of applications are anticipated for nanostructured semiconducting films for which band properties can be independently tuned across a broad range and films can be synthesized using low cost solution phase methods. C1 [Korlann, Scott D.; Riley, Andrew E.; Tolbert, Sarah H.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Mun, Bongjin Simon] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Tolbert, SH (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM tolbert@chem.ucla.edu RI Mun, Bongjin /G-1701-2013; Tolbert, Sarah/L-2321-2016 FU American Chemical Society Petroleum Research Fund [ACS PRF 46107-AC5]; National Science Foundation [CHE-0527015]; Office of Naval Research [N00014-04-1-0410] FX UPS data were collected at the Advanced Light Sources (ALS), which is operated by the Department of Energy, Office of Basic Energy Science. This work was supported by the American Chemical Society Petroleum Research Fund under Grant ACS PRF# 46107-AC5, by National Science Foundation under Grant CHE-0527015, and by the Office of Naval Research under Grant N00014-04-1-0410. NR 57 TC 13 Z9 13 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 7 PY 2009 VL 113 IS 18 BP 7697 EP 7705 DI 10.1021/jp806857v PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 440GA UT WOS:000265687600036 ER PT J AU Noren, K Loring, JS Bargar, JR Persson, P AF Noren, Katarina Loring, John S. Bargar, John R. Persson, Per TI Adsorption Mechanisms of EDTA at the Water-Iron Oxide Interface: Implications for Dissolution SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL HYDROUS OXIDES; CHELATING-AGENTS; WATER/GOETHITE INTERFACE; AQUATIC ENVIRONMENT; INFRARED SPECTRA; AMINO-ACIDS; GOETHITE; COMPLEXES; SURFACE; AMINOPOLYCARBOXYLATES AB The interactions between chelating agents and metal oxide particles play important roles for the distribution and availability of metal ions in aquatic environments. In this work, the adsorption of ethylenediaminetetraacetate (EDTA) onto goethite (alpha-FeOOH) was studied as a function of pH, time, and background electrolyte concentration at 25.0 degrees C, and the molecular structures of the surface complexes formed were analyzed by means of infrared spectroscopy using the attenuated total reflectance sampling technique. The collective infrared spectroscopic results of this study show that two surface complexes consisting of HEDTA(3-) and H(2)EDTA(2-) predominate at the water-goethite interface within the pH range of 3-9. No direct interactions of these complexes with surface Fe(III) ions were detected; hence, most likely the surface complexes are stabilized at the interface by electrostatic and hydrogen-bonding forces. The formation of the EDTA surface complexes is fast (time scale of minutes), but a slower (time scale of hours to days) dissolution reaction also occurs. The dissolved iron in solution is in the form of the highly stable FeEDTA(-) solution complex, and the experimental evidence presented indicates that this complex can readsorb to the mineral surface. As dissolution proceeds, the concentration of FeEDTA- in the solution phase increases, and this in turn leads to a buildup of readsorbed FeEDTA- onto goethite. In the pH range of 4-7, this dissolution and readsorption process increases the total EDTA concentration at the surface. Under the experimental conditions in the present study, it is primarily the presence of uncomplexed EDTA in solution that drives the dissolution of goethite resulting in the subsequent readsorption of FeEDTA-, while the HEDTA(3-) and H(2)EDTA(2-) surface complexes are stable during this process. C1 [Noren, Katarina; Loring, John S.; Persson, Per] Umea Univ, Dept Chem, SE-90187 Umea, Sweden. [Bargar, John R.] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Persson, P (reprint author), Umea Univ, Dept Chem, SE-90187 Umea, Sweden. EM Per.Persson@chem.umu.se RI Persson, Per/D-7388-2012 OI Persson, Per/0000-0001-9172-3068 FU Swedish Research Council FX The Kempe foundation is acknowledged for providing funding of the infrared spectrometer. This work was supported by the Swedish Research Council. NR 32 TC 22 Z9 22 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 7 PY 2009 VL 113 IS 18 BP 7762 EP 7771 DI 10.1021/jp809190m PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 440GA UT WOS:000265687600046 ER PT J AU Mei, D Ge, QF Szanyi, J Peden, CHF AF Mei, Donghai Ge, Qingfeng Szanyi, Janos Peden, Charles H. F. TI First-Principles Analysis of NOx Adsorption on Anhydrous gamma-Al2O3 Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AUGMENTED-WAVE METHOD; LEAN-BURN CONDITIONS; IR SPECTROSCOPY; OXIDE SURFACES; METAL-OXIDES; BAO; STORAGE; FTIR; REDUCTION; CATALYSTS AB The interaction of nitrogen oxides NOx (x = 1-3) with gamma-Al2O3 has been investigated using first-principles density functional theory calculations. NO and NO2 Weakly physisorb on the clean, dehydrated (100) and (110) surfaces of gamma-Al2O3, whereas the adsorption of the NO3 radical is rather strong. Only the basic-like O-down adsorption configurations were found to be stable. The interaction between NO, and gamma-Al2O3 can be described as a surface-mediated electron transfer process. For single NO., adsorption, greater electron transfer from the surface to the adsorbate (negatively charged) yields stronger interaction between NOx and the surface. The adsorption of four combinations of NOx + NOy (x = 1-3, Y = 2, 3) pairs on the (100) and the (110) facets of gamma-Al2O3 were investigated. Except for the NO2 + NO2 pair, a strong cooperative effect that substantially enhances the stability of NOx on both gamma-Al2O3 surfaces was found. This cooperative effect consists of surface-mediated electron, transfer processes resulting in a favorable electrostatic interaction between two adsorbed NOx species. The NO+delta O3-delta pair was found to be the thermodynamically most stable state among, the coadsorbed NOx + NOy Pairs on both gamma-Al2O3 surfaces. The results are used to analyze the experimentally observed NOx evolution during temperature programmed desorption from NOx-saturated gamma-Al2O3 substrates. C1 [Mei, Donghai; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Ge, Qingfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. RP Mei, D (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM donghai.mei@pnl.gov RI Ge, Qingfeng/A-8498-2009; Mei, Donghai/D-3251-2011; Mei, Donghai/A-2115-2012; OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 NR 40 TC 19 Z9 19 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 7 PY 2009 VL 113 IS 18 BP 7779 EP 7789 DI 10.1021/jp8103563 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 440GA UT WOS:000265687600048 ER PT J AU Jiang, DE Dai, S AF Jiang, De-en Dai, Sheng TI Constructing Gold-Thiolate Oligomers and Polymers on Au(111) Based on the Linear S-Au-S Geometry SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; AUGMENTED-WAVE METHOD; CRYSTAL-STRUCTURE; PROTECTED AU-38; CLUSTER; NANOPARTICLE; ALKANETHIOLS; COMPLEXES; MOLECULES; METALS AB Although neat gold-thiolate oligomers and polymers made of linear S-Au-S bonds have been well-known, observation of RS-Au-SR linear complexes (RS- being an alkylthiolate group) on Au(111) has been reported only recently. On the basis of the unique geometry and bonding of the RS-Au-SR complex on Au(111), we construct simple geometric models of Au-SR oligomers and polymers on Au(111) by fusing linear S-Au-S units matched to the underlying Au(111) surface lattice. We then optimize these models by density functional theory. The hexagonal geometry of the Au(111) lattice determines three possible angles (60 degrees, 120 degrees, and 180 degrees) for connecting two linear S-Au-S units, which lead to isomerism of the Au-SR oligomers and polymer on Au(111). Here we explore open dimers, trimers, and tetramers and cyclic trimers, tetramers, and hexamers of the Au-SR oligomers on Au(111). We also examine four isomers of the Au-SR polymer on Au(111). We find that the 120 degrees Au-S-Au angle is preferred in constructing both oligomeric and polymeric isomers. The two polymeric isomers with 120 degrees Au-S-Au angles are found to be energetically competitive with a previous model proposed for the Au-SR polymer on Au(111). We also discuss potential ways to create Au-SR oligomers on Au(111). C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231] FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 15 Z9 15 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAY 7 PY 2009 VL 113 IS 18 BP 7838 EP 7842 DI 10.1021/jp9007152 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 440GA UT WOS:000265687600055 ER PT J AU Jones, RE Li, SX Yu, KM Ager, JW Haller, EE Walukiewicz, W Lu, H Schaff, WJ AF Jones, R. E. Li, S. X. Yu, K. M. Ager, J. W., III Haller, E. E. Walukiewicz, W. Lu, H. Schaff, W. J. TI Properties of native point defects in In1-xAlxN alloys SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID FUNDAMENTAL-BAND GAP; SURFACE RECOMBINATION; OPTICAL-ABSORPTION; IN1-XGAXN ALLOYS; SEMICONDUCTORS; INN; DEPENDENCE; GAAS AB The electrical and optical properties of the In-rich InAlN alloys are strongly influenced by native point defects. Here the effects of the defects are studied using 2MeV He+ irradiation to vary the defect concentration. Localized native defects in In1-xAlxN (x < 0.45) are predominantly donors, with energy levels located above the conduction band edge. Accordingly, the electron concentration increases and the optical absorption edge blue shifts with increasing irradiation fluence before saturating at high fluences. Saturation occurs when the Fermi level reaches the Fermi level stabilization energy, which is the average energy of localized native defects in semiconductors, at 4.9 eV below the vacuum level. The energy position of the native defects also explains the initial increase followed by the quenching of the photoluminescence (PL) intensity, as well as the blue shift in the PL peak, with increasing irradiation fluence. C1 [Jones, R. E.; Li, S. X.; Yu, K. M.; Ager, J. W., III; Haller, E. E.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jones, R. E.; Li, S. X.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lu, H.; Schaff, W. J.] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA. RP Jones, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM W_Walukiewicz@lbl.gov RI Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Ager, Joel/0000-0001-9334-9751 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; ONR [N000149910936]; National Defense Science and Engineering Graduate Fellowship FX The work at LBNL was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No DE-AC02-05CH11231. The work at Cornell University was supported by ONR under Contract No N000149910936. REJ acknowledges a National Defense Science and Engineering Graduate Fellowship. NR 36 TC 1 Z9 1 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAY 7 PY 2009 VL 42 IS 9 AR 095406 DI 10.1088/0022-3727/42/9/095406 PG 7 WC Physics, Applied SC Physics GA 438BN UT WOS:000265531000047 ER PT J AU Koehler, MR Keppens, V Sales, BC Jin, RY Mandrus, D AF Koehler, Michael R. Keppens, Veerle Sales, Brian C. Jin, Rongying Mandrus, David TI Elastic moduli of superhard rhenium diboride SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID RESONANT ULTRASOUND SPECTROSCOPY; SOLIDS AB The elastic moduli of polycrystalline rhenium diboride are measured as a function of temperature between 5 and 325 K. The room temperature results show that ReB2 has very high values for both the bulk and shear modulus, confirming the incompressible and superhard nature of this material. With decreasing temperature, the moduli increase, with a hint of softening below 50K. C1 [Koehler, Michael R.; Keppens, Veerle] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37919 USA. [Sales, Brian C.; Jin, Rongying; Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Koehler, MR (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37919 USA. RI Koehler, Michael/H-9057-2012; Mandrus, David/H-3090-2014 FU NSF [DMR-0804719]; Division of Materials Science and Engineering; Office of Basic Sciences, US Department of Energy FX We thank Dr J Spruiell for his help with the x-ray measurements and analysis. Work at The University of Tennessee is supported by NSF grant DMR-0804719. Research at Oak Ridge is sponsored by the Division of Materials Science and Engineering, Office of Basic Sciences, US Department of Energy. NR 25 TC 24 Z9 25 U1 0 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAY 7 PY 2009 VL 42 IS 9 AR 095414 DI 10.1088/0022-3727/42/9/095414 PG 4 WC Physics, Applied SC Physics GA 438BN UT WOS:000265531000055 ER PT J AU Wang, HL Toghraee, R Papke, D Cheng, XL McCammon, JA Ravaioli, U Sine, SM AF Wang, Hai-Long Toghraee, Reza Papke, David Cheng, Xiao-Lin McCammon, J. Andrew Ravaioli, Umberto Sine, Steven M. TI Single-Channel Current Through Nicotinic Receptor Produced by Closure of Binding Site C-Loop SO BIOPHYSICAL JOURNAL LA English DT Article ID GATED ION-CHANNEL; X-RAY-STRUCTURE; ACETYLCHOLINE-RECEPTOR; BROWNIAN DYNAMICS; CRYSTAL-STRUCTURE; MOLECULAR-DYNAMICS; ELECTRODIFFUSION THEORY; AGONIST BINDING; PROTEIN; CONDUCTANCE AB We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents the channel in the proposed "resting" state, whereas the model after TMD simulation represents the channel in the proposed "active" state. Under external voltage biases, the channel in the "active" state was permeable to cations. Our simulated ion conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nicotinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation. C1 [Wang, Hai-Long; Sine, Steven M.] Mayo Clin, Coll Med, Receptor Biol Lab, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA. [Sine, Steven M.] Mayo Clin, Coll Med, Dept Neurol, Rochester, MN USA. [Toghraee, Reza; Papke, David; Ravaioli, Umberto] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. [Cheng, Xiao-Lin] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. [McCammon, J. Andrew] Univ Calif San Diego, Howard Hughes Med Inst, NSF Ctr Theoret Biophys, Dept Chem & Biochem, La Jolla, CA 92093 USA. [McCammon, J. Andrew] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA. RP Wang, HL (reprint author), Mayo Clin, Coll Med, Receptor Biol Lab, Dept Physiol & Biomed Engn, Rochester, MN 55905 USA. EM hwang@mayo.edu FU National Institutes of Health [NS31744, GM31749]; NIH National Center for Design of Biomimetic Nanoconductors; NSF Network for Computational Nanotechnology; National Science Foundation [MCB-0506593, MCA93S013]; Howard Hughes Medical Institute; San Diego Supercomputing Center; W.M. Keck Foundation; National Biomedical Computational Resource; Center for Theoretical Biological Physics; Minnesota Supercomputing Institute, University of Minnesota FX This work was supported by grants from the National Institutes of Health (NS31744 to S.M.S and GM31749 to J.A.M.), the NIH National Center for Design of Biomimetic Nanoconductors and NSF Network for Computational Nanotechnology (U.R.), and the National Science Foundation (MCB-0506593 and MCA93S013 to J.A.M.). Additional support from the Howard Hughes Medical Institute, the San Diego Supercomputing Center, the W.M. Keck Foundation, the National Biomedical Computational Resource and the Center for Theoretical Biological Physics, Minnesota Supercomputing Institute, University of Minnesota, is gratefully acknowledged. H.W., R.T., D.P., S.M.S. and X.-L.C. conceived and designed the experiment,,. H.W. performed the experiments and analyzed the data. H.W., R.T., D.P., X.-L.C., J.A.M., U.R., and S.M.S. wrote the article. NR 47 TC 24 Z9 24 U1 0 U2 2 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD MAY 6 PY 2009 VL 96 IS 9 BP 3582 EP 3590 DI 10.1016/j.bpj.2009.02.020 PG 9 WC Biophysics SC Biophysics GA 450JV UT WOS:000266397700011 PM 19413963 ER PT J AU Freddolino, PL Park, S Roux, B Schulten, K AF Freddolino, Peter L. Park, Sanghyun Roux, Benoit Schulten, Klaus TI Force Field Bias in Protein Folding Simulations SO BIOPHYSICAL JOURNAL LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; EWALD BOUNDARY-CONDITIONS; FREE-ENERGY LANDSCAPE; BETA-SHEET PROTEIN; WW DOMAIN; SPEED LIMIT; ARTIFICIAL PERIODICITY; AQUEOUS-SOLUTION; MODELS; TEMPERATURE AB Long timescale (>1 mu s) molecular dynamics simulations of protein folding offer a powerful tool for understanding the atomic-scale interactions that determine a protein's folding pathway and stabilize its native state. Unfortunately, when the simulated protein fails to fold, it is often unclear whether the failure is due to a deficiency in the underlying force fields or simply a lack of sufficient simulation time. We examine one such case, the human Pin1 WW domain, using the recently developed deactivated morphing method to calculate free energy differences between misfolded and folded states. We find that the force field we used favors the misfolded states, explaining the failure of the folding simulations. Possible further applications of deactivated morphing and implications for force field development are discussed. C1 [Freddolino, Peter L.; Schulten, Klaus] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. [Park, Sanghyun] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Schulten, K (reprint author), Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. EM kschulte@ks.uiuc.eclu RI Schulten, Klaus/D-5561-2009 FU National Institutes of Health [P41-RR05969]; National Science Foundation [PHY0922613]; National Center for Supercomputing Applications [MCA93S028]; National Science Foundation Graduate Research Fellowship FX This work was supported by National Institutes of Health grant No. P41-RR05969 and National Science Foundation grant No. PHY0922613. Computer time was provided by the National Center for Supercomputing Applications through grant MCA93S028. P.L.F. has been supported by an National Science Foundation Graduate Research Fellowship.; The authors thank Dr. Chris Harrison for many useful discussions. NR 59 TC 117 Z9 117 U1 1 U2 33 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD MAY 6 PY 2009 VL 96 IS 9 BP 3772 EP 3780 DI 10.1016/j.bpj.2009.02.033 PG 9 WC Biophysics SC Biophysics GA 450JV UT WOS:000266397700031 PM 19413983 ER PT J AU Hung, MS Xu, ZD Lin, YC Mao, JH Yang, CT Chang, PJ Jablons, DM You, L AF Hung, Ming-Szu Xu, Zhidong Lin, Yu-Ching Mao, Jian-Hua Yang, Cheng-Ta Chang, Pey-Jium Jablons, David M. You, Liang TI Identification of hematein as a novel inhibitor of protein kinase CK2 from a natural product library SO BMC CANCER LA English DT Article ID SQUAMOUS-CELL CARCINOMA; COLON-CANCER CELLS; PROSTATE-CANCER; APOPTOSIS; EXPRESSION; TARGET; TUMORIGENESIS; CK2-ALPHA; SUBUNIT; GENE AB Background: Casein kinase 2 (CK2) is dysregulated in various human cancers and is a promising target for cancer therapy. To date, there is no small molecular CK2 inhibitor in clinical trial yet. With the aim to identify novel CK2 inhibitors, we screened a natural product library. Methods: We adopted cell-based proliferation and CK2 kinase assays to screen CK2 inhibitors from a natural compound library. Dose-dependent response of CK2 inhibitors in vitro was determined by a radioisotope kinase assay. Western blot analysis was used to evaluate down stream Akt phosphorylation and apoptosis. Apoptosis was also evaluated by annexin-V/propidium iodide (PI) labeling method using flow cytometry. Inhibition effects of CK2 inhibitors on the growth of cancer and normal cells were evaluated by cell proliferation and viability assays. Results: Hematein was identified as a novel CK2 inhibitor that is highly selective among a panel of kinases. It appears to be an ATP non-competitive and partially reversible CK2 inhibitor with an IC(50) value of 0.55 mu M. In addition, hematein inhibited cancer cell growth partially through down-regulation of Akt phosphorylation and induced apoptosis in these cells. Furthermore, hematein exerted stronger inhibition effects on the growth of cancer cells than in normal cells. Conclusion: In this study, we showed that hematein is a novel selective and cell permeable small molecule CK2 inhibitor. Hematein showed stronger growth inhibition effects to cancer cells when compared to normal cells. This compound may represent a promising class of CK2 inhibitors. C1 [Hung, Ming-Szu; Xu, Zhidong; Jablons, David M.; You, Liang] Univ Calif San Francisco, Ctr Comprehens Canc, Dept Surg, Thorac Oncol Lab, San Francisco, CA 94115 USA. [Hung, Ming-Szu; Lin, Yu-Ching; Yang, Cheng-Ta] Chang Gung Mem Hosp, Div Pulm & Crit Care Med, Chiayi, Taiwan. [Hung, Ming-Szu; Lin, Yu-Ching; Chang, Pey-Jium] Chang Gung Univ, Coll Med, Grad Inst Clin Med Sci, Tao Yuan, Taiwan. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Yang, Cheng-Ta] Chang Gung Univ, Coll Med, Dept Resp Care, Tao Yuan, Taiwan. RP Jablons, DM (reprint author), Univ Calif San Francisco, Ctr Comprehens Canc, Dept Surg, Thorac Oncol Lab, San Francisco, CA 94115 USA. EM Ming-Szu.Hung@ucsfmedctr.org; Zhidong.Xu@ucsfmedctr.org; lin0927@adm.cgmh.org.tw; JHMao@lbl.gov; yang1946@cgmh.org.tw; peyjium@yahoo.com; David.Jablons@ucsfmedctr.org; Liang.You@ucsfmedctr.org FU NIH [RO1 CA 093708-01A3]; Larry Hall and Zygielbaum Memorial Trust; Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation FX We thank Naoaki Fujii, PhD, for giving us some suggestions to our study. This study was supported by NIH grant RO1 CA 093708-01A3, the Larry Hall and Zygielbaum Memorial Trust, and the Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation. NR 29 TC 16 Z9 16 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2407 J9 BMC CANCER JI BMC Cancer PD MAY 6 PY 2009 VL 9 AR 135 DI 10.1186/1471-2407-9-135 PG 10 WC Oncology SC Oncology GA 466CM UT WOS:000267638200002 PM 19419583 ER PT J AU Goldstein, RZ Tomasi, D Alia-Klein, N Carrillo, JH Maloney, T Woicik, PA Wang, RL Telang, F Volkow, ND AF Goldstein, Rita Z. Tomasi, Dardo Alia-Klein, Nelly Carrillo, Jean Honorio Maloney, Thomas Woicik, Patricia A. Wang, Ruiliang Telang, Frank Volkow, Nora D. TI Dopaminergic Response to Drug Words in Cocaine Addiction SO JOURNAL OF NEUROSCIENCE LA English DT Article ID VENTRAL TEGMENTAL AREA; ANTERIOR CINGULATE; GLUTAMATE; CORTEX; CUES; SENSITIVITY; ACTIVATION; STRIATUM; SIGNALS; SEEKING AB When exposed to drug conditioned cues (stimuli associated with the drug), addicted individuals experience an intense desire for the drug, which is associated with increased dopamine cell firing. We hypothesized that drug-related words can trigger activation in the mesencephalon, where dopaminergic cells are located. During functional magnetic resonance imaging (fMRI), 15 individuals with cocaine use disorders and 15 demographically matched healthy control subjects pressed buttons for color of drug-related versus neutral words. Results showed that the drug words, but not neutral words, activated the mesencephalon in the cocaine users only. Further, in the cocaine users only, these increased drug-related mesencephalic responses were associated with enhanced verbal fluency specifically for drug words. Our results for the first time demonstrate fMRI response to drug words in cocaine-addicted individuals in mesencephalic regions as possibly associated with dopaminergic mechanisms and with conditioning to language (in this case drug words). The correlation between the brief verbal fluency test, which can be easily administered (crucial for clinical studies), and fMRI cue reactivity could be used as a biomarker of neurobiological changes in addiction. C1 [Goldstein, Rita Z.; Tomasi, Dardo; Alia-Klein, Nelly; Carrillo, Jean Honorio; Maloney, Thomas; Woicik, Patricia A.; Wang, Ruiliang; Telang, Frank] Brookhaven Natl Lab, Dept Med Res, Ctr Translat Neuroimaging, Upton, NY 11973 USA. [Carrillo, Jean Honorio] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Telang, Frank; Volkow, Nora D.] NIAAA, Rockville, MD 20857 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, Dept Med Res, Ctr Translat Neuroimaging, POB 5000, Upton, NY 11973 USA. EM rgoldstein@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU National Institute on Drug Abuse [1R01DA023579, R21DA02062]; General Clinical Research Center [5-MO1-RR-10710] FX This study was supported by grants from the National Institute on Drug Abuse (Grants 1R01DA023579 and R21DA02062 to R. Z. G.) and the General Clinical Research Center (Grant 5-MO1-RR-10710). WethankMuhammadA. Parvaz for help with task administration, Alex Panagopoulos and Dimitris Samaras for help with early data analyses, and Gene-JackWangfor help with medical screens. Wealso thank Sahib S. Khalsa and Steve Berry for help with word selection, matching, and ratings and Suparna Rajaram for help with early task design. NR 44 TC 43 Z9 47 U1 1 U2 2 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD MAY 6 PY 2009 VL 29 IS 18 BP 6001 EP 6006 DI 10.1523/JNEUROSCI.4247-08.2009 PG 6 WC Neurosciences SC Neurosciences & Neurology GA 442GC UT WOS:000265827900029 PM 19420266 ER PT J AU Musumeci, A Gosztola, D Schiller, T Dimitrijevic, NM Mujica, V Martin, D Rajh, T AF Musumeci, Anthony Gosztola, David Schiller, Tara Dimitrijevic, Nada M. Mujica, Vladimiro Martin, Darren Rajh, Tijana TI SERS of Semiconducting Nanoparticles (TiO2 Hybrid Composites) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ENHANCED RAMAN-SPECTROSCOPY; LARGE AG NANOCRYSTALS; SURFACE; SCATTERING; MOLECULES; FILMS AB Raman scattering of molecules adsorbed on the surface of TiO2 nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO2 nanoparticles. An enhancement factor up to similar to 10(3) was observed in the solutions containing TiO2 nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO2 surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that tower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect. C1 [Musumeci, Anthony; Gosztola, David; Dimitrijevic, Nada M.; Mujica, Vladimiro; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Musumeci, Anthony; Schiller, Tara; Martin, Darren] Univ Queensland, Australian Inst Bioengn & Nanotechnol, ARC Ctr Excellence Funct Nanomat, Brisbane, Qld 4072, Australia. [Mujica, Vladimiro] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Rajh, T (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rajh@anl.gov RI Musumeci, Anthony/C-6674-2009; Gosztola, David/D-9320-2011; Schiller, Tara/C-5675-2009 OI Gosztola, David/0000-0003-2674-1379; Schiller, Tara/0000-0002-3973-1308 FU US DOE-BES [DE-AC02-06CH11357]; University of Queensland Graduate School Research Travel Grant; ARCNN Overseas Travel Fellowship FX The work supported by US DOE-BES Contract DE-AC02-06CH11357. A.M. supported by University of Queensland Graduate School Research Travel Grant and ARCNN Overseas Travel Fellowship. The authors acknowledge useful discussions with Prof. R. Van Duyne. NR 17 TC 175 Z9 180 U1 23 U2 186 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 6 PY 2009 VL 131 IS 17 BP 6040 EP + DI 10.1021/ja808277u PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 441FX UT WOS:000265755800002 PM 19364105 ER PT J AU Antos, JM McFarland, JM Iavarone, AT Francis, MB AF Antos, John M. McFarland, Jesse M. Iavarone, Anthony T. Francis, Matthew B. TI Chemoselective Tryptophan Labeling with Rhodium Carbenoids at Mild pH SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PROTEIN; ACID; DENATURATION; CYCLOPROPANATIONS; SELECTIVITY; MYOGLOBIN; ADDUCTS; ACETATE; PROBE AB Significant improvements have been made to a previously reported tryptophan modification method using rhodium carbenoids in aqueous solution, allowing the reaction to proceed at pH 6-7. This technique is based on the discovery that N-(tert-butyl)hydroxylamine promotes indole modification with rhodium carbenoids over a broad pH range (2-7). This methodology was demonstrated on peptide and protein substrates, generally yielding 40-60% conversion with excellent tryptophan chemoselectivity. The solvent accessibility of the indole side chains was found to be a key factor in successful carbenoid addition, as demonstrated by conducting the reaction at temperatures high enough to cause thermal denaturation of the protein substrate. Progress toward the expression of proteins bearing solvent accessible tryptophan residues as reactive handles for modification with rhodium carbenoids is also reported. C1 [Antos, John M.; McFarland, Jesse M.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Antos, John M.; McFarland, Jesse M.; Francis, Matthew B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Iavarone, Anthony T.] Univ Calif Berkeley, Chem Mass Spectrometry Facil QB3, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu FU NIH [GM072700, 1S10RR022393] FX J.M.A. was supported by a Berkeley Fellowship for Graduate Study. MS/MS analyses for singly modified melittin were performed with the generous help of Dr. Arnold Falick. This work was supported by the NIH (GM072700). The Q-TOF mass,spectrometer was funded by the NIH (1S10RR022393). NR 32 TC 87 Z9 87 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAY 6 PY 2009 VL 131 IS 17 BP 6301 EP 6308 DI 10.1021/ja900094h PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 441FX UT WOS:000265755800057 PM 19366262 ER PT J AU Yang, A Chinnasamy, CN Greneche, JM Chen, YJ Yoon, SD Chen, ZH Hsu, KL Cai, ZH Ziemer, K Vittoria, C Harris, VG AF Yang, Aria Chinnasamy, C. N. Greneche, J. M. Chen, Yajie Yoon, Soack D. Chen, Zhaohui Hsu, Kailin Cai, Zhuhua Ziemer, Kate Vittoria, C. Harris, V. G. TI Enhanced Neel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion SO NANOTECHNOLOGY LA English DT Article ID X-RAY-ABSORPTION; NANOSCALE MNFE2O4 PARTICLES; DEPENDENT CURIE-TEMPERATURE; MAGNETIC-PROPERTIES; ZINC FERRITE; FINE-STRUCTURE; GAMMA-FE2O3 NANOPARTICLES; NEUTRON-DIFFRACTION; AQUEOUS SOLUTION; NIFE2O4 SPINEL AB Mn ferrite (MnFe2O4) nanoparticles, having diameters from 4 to 50 nm, were synthesized using a modified co-precipitation technique in which mixed metal chloride solutions were added to different concentrations of boiling NaOH solutions to control particle growth rate. Thermomagnetization measurements indicated an increase in Neel temperature corresponding to increased particle growth rate and particle size. The Neel temperature is also found to increase inversely proportionally to the cation inversion parameter, delta, appearing in the formula (Mn1-delta Fe delta)(tet)[Mn delta Fe2-delta]O-oct(4). These results contradict previously published reports of trends between Neel temperature and particle size, and demonstrate the dominance of cation inversion in determining the strength of superexchange interactions and subsequently Neel temperature in ferrite systems. The particle surface chemistry, structure, and magnetic spin configuration play secondary roles. C1 [Yang, Aria; Chinnasamy, C. N.; Chen, Yajie; Yoon, Soack D.; Chen, Zhaohui; Hsu, Kailin; Vittoria, C.; Harris, V. G.] Northeastern Univ, Ctr Microwave Magnet Mat & Integrated Circuits, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Greneche, J. M.] Univ Maine, CNRS, UMR 6087, Lab Phys Etat Condense 1, F-72085 Le Mans 9, France. [Cai, Zhuhua; Ziemer, Kate] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA. Brookhaven Natl Lab, Dept Energy Supported Natl Synchrotron Light Sour, Upton, NY 11973 USA. [Hsu, Kailin] Walt Whitman High Sch Bethesda, Bethesda, MD USA. RP Yang, A (reprint author), Northeastern Univ, Ctr Microwave Magnet Mat & Integrated Circuits, Dept Elect & Comp Engn, Boston, MA 02115 USA. OI Greneche, Jean-Marc/0000-0001-7309-8633 FU National Science Foundation [DMR 0400676]; Office of Naval Research [N00014-05-10349]; National Synchrotron Light Source FX This research was supported by the National Science Foundation under grant DMR 0400676 and the Office of Naval Research under grant N00014-05-10349, and was performed, in part, at the Department of Energy supported National Synchrotron Light Source (Brookhaven National Laboratory, Upton, NY). At the time of this research, Ms Kailin Hsu was a student attending the Walt Whitman High School of Bethesda, Maryland. NR 55 TC 22 Z9 22 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD MAY 6 PY 2009 VL 20 IS 18 AR 185704 DI 10.1088/0957-4484/20/18/185704 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 434CN UT WOS:000265252900026 PM 19420627 ER PT J AU Mukundan, H Kubicek, JZ Holt, A Shively, JE Martinez, JS Grace, K Grace, WK Swanson, BI AF Mukundan, Harshini Kubicek, Jessica Z. Holt, Alicia Shively, John E. Martinez, Jennifer S. Grace, Karen Grace, W. Kevin Swanson, Basil I. TI Planar optical waveguide-based biosensor for the quantitative detection of tumor markers SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Carcinoembryonic antigen; Breast cancer; Nipple aspirate fluid; Waveguide; Optical biosensor; Biomarkers ID NIPPLE ASPIRATE FLUID; CARCINOEMBRYONIC ANTIGEN; BREAST-CANCER; PROSTATE-CANCER; IDENTIFICATION; LESIONS; BIOPSY; SENSOR; LUNG; TIME AB There is all immediate need for rapid and sensitive early diagnostics for breast cancer. In this manuscript we demonstrate. for the first time, the application of a waveguide-based biosensor developed at the Los Alamos National Laboratory for the sensitive (<0.5 pM), specific (low non-specific binding), rapid (15 min) and quantitative detection of carcinoembryonic antigen (CEA), a breast cancer biomarker. Out assay format involves the detection of the antigen in a fluorescence-based sandwich immunoassay within the evanescent field of single mode planar optical waveguides. The assay was tested with a small cohort of serum and nipple aspirate fluid samples from patients with abnormal mammograms. Seven of the 15 serum samples tested had CEA concentrations above the assumed normal threshold concentration in serum (similar to 39 pM). Only one aspirate sample presented with significantly high CEA concentrations, and this concenteration correlated with the disease status of the patient. These results simply demonstrate the applicability Of our biosensor for the detection of biomarkers in complex samples. We envision translating this assay to a multi-channel formal for the simulataneous detection of several biomarkers. Such a platform, in addition to current imaging strategies. will allow for the more reliable early detection of breast cancer. Published by Elsevier B.V. C1 [Swanson, Basil I.] Los Alamos Natl Lab, C PCS, Div C, Los Alamos, NM 87545 USA. [Martinez, Jennifer S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Grace, Karen] Los Alamos Natl Lab, ISR Space Instrumentat Syst 4, Los Alamos, NM 87545 USA. [Holt, Alicia; Shively, John E.] City Hope Natl Med Ctr, Beckman Res Inst, Duarte, CA 91010 USA. RP Swanson, BI (reprint author), Los Alamos Natl Lab, C PCS, Div C, MS J567, Los Alamos, NM 87545 USA. EM basil@lanl.gov OI Kubicek-Sutherland, Jessica/0000-0001-6215-4871 NR 37 TC 26 Z9 26 U1 4 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD MAY 6 PY 2009 VL 138 IS 2 BP 453 EP 460 DI 10.1016/j.snb.2009.01.073 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 443EU UT WOS:000265893800010 ER PT J AU Garcia-Barriocanal, J Rivera-Calzada, A Varela, M Sefrioui, Z Diaz-Guillen, MR Moreno, KJ Diaz-Guillen, JA Iborra, E Fuentes, AF Pennycook, SJ Leon, C Santarnaria, J AF Garcia-Barriocanal, Javier Rivera-Calzada, Alberto Varela, Maria Sefrioui, Zouhair Diaz-Guillen, Mario R. Moreno, Karla J. Diaz-Guillen, Jose A. Iborra, Enrique Fuentes, Antonio F. Pennycook, Stephen J. Leon, Carlos Santarnaria, Jacobo TI Tailoring Disorder and Dimensionality: Strategies for Improved Solid Oxide Fuel Cell Electrolytes SO CHEMPHYSCHEM LA English DT Review DE fuel cells; interfaces; ionics; solid electrolytes; superlattices ID YTTRIA-STABILIZED ZIRCONIA; TEMPERATURE AC CONDUCTIVITY; OXYGEN-ION TRANSPORT; ELECTRICAL-CONDUCTIVITY; NANOSTRUCTURED MATERIALS; ACTIVATION-ENERGY; DEFECT CHEMISTRY; THIN-FILMS; SPIN ICE; CONDUCTORS AB Reducing the operation temperature of solid oxide fuel cells is a major challenge towards their widespread use for power generation. This has triggered an intense materials research effort involving the search for novel electrolytes with higher ionic conductivity near room temperature. Two main directions are being currently followed: the use of doping strategies for the synthesis of new bulk materials and the implementation of nanotechnology routes for the fabrication of artificial nanostructures with improved properties. In this paper, we review our recent work on solid oxide fuel cell electrolyte materials in these two directions, with special emphasis on the importance of disorder and reduced dimensionality in determining ion conductivity. Substitution of Ti for Zr in the A(2)Zr(2-y)Ti(y)O(7) (A=Y, Dy, and Gd) series, directly related to yttria stabilized zirconia (a common fuel cell electrolyte), allows controlling ion mobility over wide ranges. In the second scenario we describe the strong enhancement of the conductivity occurring at the interfaces of superlattices made by alternating strontium titanate and yttria stabilized zirconia ultrathin films. We conclude that cooperative effects in oxygen dynamics play a primary role in determining ion mobility of bulk and artificially nanolayered materials and should be considered in the design of new electrolytes with enhanced conductivity. C1 [Garcia-Barriocanal, Javier; Rivera-Calzada, Alberto; Sefrioui, Zouhair; Leon, Carlos; Santarnaria, Jacobo] Univ Complutense Madrid, GFMC, E-28040 Madrid, Spain. [Varela, Maria; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Diaz-Guillen, Mario R.; Moreno, Karla J.; Diaz-Guillen, Jose A.; Fuentes, Antonio F.] Cinvestav Saltillo, Saltillo 25000, Coahuila, Mexico. [Iborra, Enrique] Univ Politecn Madrid, Escuela Tecn Super Ingn Telecomunicac, E-28040 Madrid, Spain. RP Santarnaria, J (reprint author), Univ Complutense Madrid, GFMC, E-28040 Madrid, Spain. EM jacsan@fis.ucm.es RI Leon, Carlos/A-5587-2008; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014; FUENTES, ANTONIO/A-3650-2008; Diaz-Guillen, Mario/G-9272-2011; Moreno Bello, Karla /P-7445-2015; Iborra, Enrique/A-4148-2016; Sefrioui, Zouhair/C-2728-2017 OI Leon, Carlos/0000-0002-3262-1843; Varela, Maria/0000-0002-6582-7004; FUENTES, ANTONIO/0000-0003-3550-4228; Moreno Bello, Karla /0000-0003-1823-270X; Iborra, Enrique/0000-0002-1385-1379; Sefrioui, Zouhair/0000-0002-6703-3339 FU Spanish Ministry for Science and Innovation [MAT2007 6216Z, MAT2008 06517]; Mexican Conacyt [SEP-2003-CO2-44075] FX Work at UCM and UPM supported by Spanish Ministry for Science and Innovation grants MAT2007 6216Z and MAT2008 06517. Research at ORNL sponsored by the Division of Materials Sciences and Engineering of the US Department of Energy. Research at CINVESTAV has been supported by Mexican Conacyt (Grant SEP-2003-CO2-44075). NR 100 TC 37 Z9 38 U1 3 U2 41 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD MAY 5 PY 2009 VL 10 IS 7 BP 1003 EP 1011 DI 10.1002/cphc.200800691 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448WF UT WOS:000266292000001 PM 19330781 ER PT J AU Kamerlin, SCL Haranczyk, M Warshel, A AF Kamerlin, Shina C. L. Haranczyk, Maciej Warshel, Arieh TI Are Mixed Explicit/implicit Solvation Models Reliable for Studying Phosphate Hydrolysis? A Comparative Study of Continuum, Explicit and Mixed Solvation Models SO CHEMPHYSCHEM LA English DT Article DE ab initio calculations; molecular modelling; phosphate hydrolysis; reaction mechanisms; solvation models ID PROTEIN-TYROSINE PHOSPHATASES; SUBSTRATE-ASSISTED CATALYSIS; FREE-ENERGY; ESTER HYDROLYSIS; TRANSITION-STATE; NUCLEOPHILIC-SUBSTITUTION; MONOESTER HYDROLYSIS; AQUEOUS-SOLUTION; DIESTER HYDROLYSIS; ELECTROSTATIC INTERACTIONS AB Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. Herein, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical/molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, both COSMO and QM/MM-FEP reproduce Delta G(obs) within an error of about 1 kcal mol(-1). However, we demonstrate that in order to obtain any kind of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly unstable and miss larger entropic contributions as more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution. C1 [Kamerlin, Shina C. L.; Warshel, Arieh] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Haranczyk, Maciej] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Kamerlin, SCL (reprint author), Univ So Calif, Dept Chem, 3620 McClintock Ave, Los Angeles, CA 90089 USA. EM L.Kamerlin@gmx.at; warshel@usc.edu RI Haranczyk, Maciej/A-6380-2014; Kamerlin, Shina/G-9554-2011 OI Haranczyk, Maciej/0000-0001-7146-9568; Kamerlin, Shina/0000-0002-3190-1173 FU NIH [5U19A105010]; NSF [MCB-0342276]; U. S. Department of Energy [DE-AC02-05CH 11237] FX This work was supported by NIH grant 5U19A105010 and NSF grant MCB-0342276. All computational work was supported by the University of Southern California High Performance Computing and Communication Centre (HPCQ. Maciej Haranczyk is a 2008 Seaborg Fellow at Lawrence Berkeley National Laboratory This research was supported in part (for M. H.) by the U. S. Department of Energy under contract DE-AC02-05CH 1123 7. NR 82 TC 54 Z9 54 U1 1 U2 15 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD MAY 5 PY 2009 VL 10 IS 7 BP 1125 EP 1134 DI 10.1002/cphc.200800753 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 448WF UT WOS:000266292000020 PM 19301306 ER PT J AU Riemer, N West, M Zaveri, RA Easter, RC AF Riemer, N. West, M. Zaveri, R. A. Easter, R. C. TI Simulating the evolution of soot mixing state with a particle-resolved aerosol model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review ID AIR-QUALITY MODEL; ACCELERATED STOCHASTIC SIMULATION; MIXED MULTIVARIATE AEROSOLS; CHEMICALLY REACTING SYSTEMS; GENERAL-CIRCULATION MODEL; SECONDARY ORGANIC AEROSOL; DUTY DIESEL VEHICLES; MONTE-CARLO METHOD; BLACK CARBON; PARTICULATE MATTER AB The mixing state of soot particles in the atmosphere is of crucial importance for assessing their climatic impact, since it governs their chemical reactivity, cloud condensation nuclei activity, and radiative properties. To improve the mixing state representation in models, we present a new approach, the stochastic particle-resolved model PartMC-MOSAIC, which explicitly resolves the composition of individual particles in a given population of different types of aerosol particles. This approach tracks the evolution of the mixing state of particles due to emission, dilution, condensation, and coagulation. To make this direct stochastic particle-based method practical, we implemented a new multiscale stochastic coagulation method. With this method we achieved high computational efficiency for situations when the coagulation kernel is highly nonuniform, as is the case for many realistic applications. PartMC-MOSAIC was applied to an idealized urban plume case representative of a large urban area to simulate the evolution of carbonaceous aerosols of different types due to coagulation and condensation. For this urban plume scenario we quantified the individual processes that contributed to the aging of the aerosol distribution, illustrating the capabilities of our modeling approach. The results showed for the first time the multidimensional structure of particle composition, which is usually lost in sectional or modal aerosol models. C1 [Riemer, N.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [West, M.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Zaveri, R. A.; Easter, R. C.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Riemer, N (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory St, Urbana, IL 61801 USA. EM nriemer@illinois.edu; mwest@illinois.edu; rahul.zaveri@pnl.gov; richard.easter@pnl.gov RI West, Matthew/A-7398-2012; OI West, Matthew/0000-0002-7605-0050; Zaveri, Rahul/0000-0001-9874-8807 FU National Science Foundation (NSF) [ATM 0739404]; U.S. Department of Energy [DE-AC06-76RLO 1830] FX Funding for N. Riemer and M. West was provided by the National Science Foundation (NSF) under grant ATM 0739404. Funding for R. A. Zaveri and R. C. Easter was provided by the Aerosol-Climate Initiative as part of the Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development (LDRD) program. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. We thank Alberto Ayala for helpful discussions on diesel and gasoline vehicle soot emission compositions. We are also grateful to the three anonymous reviewers for their insightful comments and suggestions. NR 111 TC 66 Z9 66 U1 4 U2 33 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD MAY 5 PY 2009 VL 114 AR D09202 DI 10.1029/2008JD011073 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 443SB UT WOS:000265929800003 ER PT J AU Belcher, WR Bedinger, MS Back, JT Sweetkind, DS AF Belcher, Wayne R. Bedinger, M. S. Back, Jennifer T. Sweetkind, Donald S. TI Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, US SO JOURNAL OF HYDROLOGY LA English DT Article DE Death Valley; Hydrochemistry; Springs; Ground-water flow; Ground-water recharge ID DEVILS-HOLE; GROUNDWATER; NEVADA; AREA; CLIMATE; RECORD AB Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo. A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley. California. EOS 85, 349] and Anderson et al. [Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. journal of Hydrology 323, 276-302]. In light of these inconsistencies, interbasin flow is the only readily apparent explanation for the large spring discharges at Furnace Creek and, in our view, is the likely explanation for most large volume, low elevation springs in the Great Basin. An understanding of hydrogeologic processes that control the rate and direction of ground-water flow in eastern and central Nevada is necessary component of regional water-resource planning and management of alluvial and bedrock aquifers. Published by Elsevier B.V. C1 [Belcher, Wayne R.] US DOE, Off Civilian Radioact Waste Management, Las Vegas, NV 89134 USA. [Back, Jennifer T.] Natl Pk Serv, Water Rights Branch, Ft Collins, CO 80525 USA. [Sweetkind, Donald S.] US Geol Survey, Denver Fed Ctr, Lakewood, CO 80225 USA. RP Belcher, WR (reprint author), US DOE, Off Civilian Radioact Waste Management, 1551 Hillshire Dr, Las Vegas, NV 89134 USA. EM wayne_belcher@ymp.gov OI Sweetkind, Donald/0000-0003-0892-4796 NR 68 TC 8 Z9 8 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD MAY 5 PY 2009 VL 369 IS 1-2 BP 30 EP 43 DI 10.1016/j.jhydrol.2009.02.048 PG 14 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 446OJ UT WOS:000266130600003 ER PT J AU Tang, Z Dong, JH Nenoff, TM AF Tang, Zhong Dong, Junhang Nenoff, Tina M. TI Internal Surface Modification of MFI-Type Zeolite Membranes for High Selectivity and High Flux for Hydrogen SO LANGMUIR LA English DT Article ID CATALYTIC CRACKING; HIGH-TEMPERATURE; GAS SEPARATION; PERMEATION; DIFFUSION; SILICALITE; XYLENE; SIZE; CVD AB MFI-type zeolite membranes were modified by depositing molecular silica at a small number of active sites in the internal surface by in situ catalytic cracking of silane precursor. The limited silica deposition reduced the effective size of the zeolitic channels that dramatically enhanced the H(2) selectivity without causing a large increase in H(2) transport resistance. The modified zeolite membrane achieved an extraordinary H(2)/CO(2) permselectivity of 141 with a high H(2) permeance of 3.96 x 10(-7) mol/m(2).s.Pa at 723 K. The effect of pore modification on the gas transport behavior was studied on the basis of single gas permeation data. C1 [Tang, Zhong; Dong, Junhang] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Nenoff, Tina M.] Sandia Natl Labs, Surface & Interface Sci, Albuquerque, NM 87185 USA. RP Dong, JH (reprint author), Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. EM junhang.dong@uc.edu FU Ohio Air Quality Development Authority [AY08-09-C21-N]; U.S. DOE/NETL [DE-FG36-GO15043]; LDRD of Sandia National Laboratories; Sandia Corp., a Lockheed Martin Company [DE-AC04-94AL85000] FX This research was supported by the Ohio Air Quality Development Authority (AY08-09-C21-N) and the U.S. DOE/NETL (grant DE-FG36-GO15043). Partial support also came from the LDRD of Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000. NR 26 TC 50 Z9 51 U1 2 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 5 PY 2009 VL 25 IS 9 BP 4848 EP 4852 DI 10.1021/la900474y PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 438AP UT WOS:000265528600005 PM 19397346 ER PT J AU Fernandez, CA Bekhazi, JG Hoppes, EM Fryxell, GE Wang, CM Bays, JT Warner, MG Wiacek, RJ Addleman, RS AF Fernandez, Carlos A. Bekhazi, Jacky G. Hoppes, Emily M. Fryxell, Glen E. Wang, Chongmin Bays, J. Timothy Warner, Marvin G. Wiacek, Robert J. Addleman, R. Shane TI Effect of the Ligand Shell Composition on the Dispersibility and Transport of Gold Nanocrystals in Near-Critical Solvents SO LANGMUIR LA English DT Article ID SUPERCRITICAL CARBON-DIOXIDE; STERIC STABILIZATION; COATED NANOCRYSTALS; NANOPARTICLES; SOLUBILITIES; FLUIDS; CO2; SIMULATION; SOLVATION; PARTICLES AB The development of more efficient and environmentally benign methods for the synthesis and manipulation of nanomaterials has been a major focus of research among the scientific community. Supercritical (ScFs) and near-critical fluids (NcFs) offer numerous advantages over conventional solvents for these purposes. Among them, ScFs and NcFs offer dramatic reductions in the volume of organic waste typically generated during advanced material processes with the feasibility of changing a number of physicochemical properties by discrete variations in solvent pressure or temperature. In this work, we study the dispersibility of gold nanocrystals with a 3.7 nm core size stabilized by different ligand shells in NcF ethane and propane over a wide range of densities by fine-tuning the pressure of these fluids. Dispersibility vs density plots are obtained by following the variation in the surface plasmon resonance (SPR) absorption spectra of the nanoparticles. To understand the results obtained in this study, three models are briefly discussed: the total interaction theory, the sedimentation coefficient equation, and the Chrastil method. The dispersibility and behavior of the nanocrystals with variations in fluid density are strongly dependent on the surface chemistry of the nanocrystal and the solvent employed. A correlation between measured dispersibility values and calculated sedimentation coefficients was observed in both compressed solvents. In addition, we successfully applied the Chrastil equation to predict and describe the dispersibility of gold nanocrystals with different shells as a function of density, determining that the reason for the high stabilities of some of the nanocrystal dispersions is the strong solvent - nanocrystal interactions. While NcF propane showed higher nanocrystal dispersibilities, using NcF ethane led to improved tunability of nanoparticle dispersions formed in the pressure range studied. Therefore, with a judicious selection of the fluid, NcFs seem to offer a remarkable advantage over conventional solvents for manipulation of nanomaterials, which could be applied to transport, purification, and separation of nanocrystals. C1 [Fernandez, Carlos A.; Bekhazi, Jacky G.; Hoppes, Emily M.; Fryxell, Glen E.; Wang, Chongmin; Bays, J. Timothy; Warner, Marvin G.; Wiacek, Robert J.; Addleman, R. Shane] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Addleman, RS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Raymond.Addleman@pnl.gov FU Oregon Nanoscience and Microtechnologies Institute (ONAMI); Pacific Northwest National Laboratory (PNNL) [DE-AC06-67RLO 1830]; Department of Energy's Office of Biological and Environmental Research FX Funding for this work was provided by the Safer Nanomaterials Nanomanufacturing Initiative (SNNI) of Oregon Nanoscience and Microtechnologies Institute (ONAMI) and Pacific Northwest National Laboratory (PNNL). A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-67RLO 1830. NR 37 TC 4 Z9 4 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 5 PY 2009 VL 25 IS 9 BP 4900 EP 4906 DI 10.1021/la804058x PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 438AP UT WOS:000265528600014 PM 19256464 ER PT J AU He, JB Niu, ZW Tangirala, R Wan, JY Wei, XY Kaur, G Wang, Q Jutz, G Boker, A Lee, B Pingali, SV Thiyagarajan, P Emrick, T Russell, TP AF He, Jinbo Niu, Zhongwei Tangirala, Ravisubhash Wan, Jia-Yu Wei, Xinyu Kaur, Gagandeep Wang, Qian Jutz, Guenther Boeker, Alexander Lee, Byeongdu Pingali, Sai Venkatesh Thiyagarajan, Pappannan Emrick, Todd Russell, Thomas P. TI Self-Assembly of Tobacco Mosaic Virus at Oil/Water Interfaces SO LANGMUIR LA English DT Article ID LIQUID-LIQUID INTERFACES; ELECTROSTATIC INTERACTION; ANILINE POLYMERIZATION; COLLOIDAL PARTICLES; WATER/OIL INTERFACE; CHARGED PARTICLES; FLUID INTERFACES; LATEX-PARTICLES; CROSS-LINKING; NANOPARTICLES AB The oil/water interfacial assembly of tobacco mosaic virus (TMV) has been studied in situ by tensiometry and small-angle X-ray and neutron scattering (SAXS and SANS). TMV showed different orientations at the perfluorodecalin/water interface, depending on the initial TMV concentration in the aqueous phase. At low TMV concentration, the rods oriented parallel to the interface, mediating the interfacial interactions at the greatest extent per particle. At high TMV concentrations, the rods were oriented normal to the interface, mediating the interfacial interactions and also neutralizing inter-rod electrostatic repulsion. We found that the inter-rod repulsive forces between TMVs dominated the in-plane packing, which was strongly affected by the ionic strength and the bulk solution but not by the pH in the range of pH = 6-8. C1 [He, Jinbo; Tangirala, Ravisubhash; Wan, Jia-Yu; Wei, Xinyu; Emrick, Todd; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Niu, Zhongwei; Kaur, Gagandeep; Wang, Qian] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Niu, Zhongwei; Kaur, Gagandeep; Wang, Qian] Univ S Carolina, Nanoctr, Columbia, SC 29208 USA. [Jutz, Guenther; Boeker, Alexander] Univ Bayreuth, Lehrstuhl Phys Chem 2, D-95440 Bayreuth, Germany. [Boeker, Alexander] Rhein Westfal TH Aachen, DWI RWTH Aachen eV, D-52056 Aachen, Germany. [Boeker, Alexander] Rhein Westfal TH Aachen, Lehrstuhl Makromol Mat & Oberflachen, D-52056 Aachen, Germany. [Lee, Byeongdu; Pingali, Sai Venkatesh; Thiyagarajan, Pappannan] Argonne Natl Lab, Argonne, IL 60439 USA. RP Russell, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM russell@mail.pse.umass.edu RI Boker, Alexander/C-2055-2009; He, Jinbo/B-1445-2010; Wang, Jiayu/A-5416-2010; niu, zhongwei/C-7671-2011; OI Boker, Alexander/0000-0002-5760-6631; Wang, Jiayu/0000-0002-9743-933X; Pingali, Sai Venkatesh/0000-0001-7961-4176; Wang, Qian/0000-0002-2149-384X; Lee, Byeongdu/0000-0003-2514-8805 FU U.S. Department of Energy, Office of Basic Energy Science; Army Research laboratory; NSF; Office of Basic Energy Sciences [DE-AC02-06CH11357]; LQD; Lichtenberg-Program of the Volkswagen Stiftung FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, the Army Research laboratory through the MURI program, the NSF supported MRSEC at the University of Massachusetts Amherst, and an NSF CAREER Award. We thank Rex Hjelm and Monika Hard for assistance with the SANS experiments and Greg Grason at the University of Massachusetts Amherst for the help of calculation. Work benefited from the use of IPNS and APS supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357, and the LQD funded by DOE-BES. A.B. and G.J. acknowledge the support of the Lichtenberg-Program of the Volkswagen Stiftung. NR 44 TC 63 Z9 64 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 5 PY 2009 VL 25 IS 9 BP 4979 EP 4987 DI 10.1021/la803533n PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 438AP UT WOS:000265528600023 PM 19397351 ER PT J AU Kaur, G He, JB Xu, J Pingali, SV Jutz, G Boker, A Niu, ZW Li, T Rawlinson, D Emrick, T Lee, B Thiyagarajan, P Russell, TP Wang, Q AF Kaur, Gagandeep He, Jinbo Xu, Ji Pingali, Sai Venkatesh Jutz, Guenther Boeker, Alexander Niu, Zhongwei Li, Tao Rawlinson, Dustin Emrick, Todd Lee, Byeongdu Thiyagarajan, Pappannan Russell, Thomas P. Wang, Qian TI Interfacial Assembly of Turnip Yellow Mosaic Virus Nanoparticles SO LANGMUIR LA English DT Article ID LIQUID-LIQUID INTERFACES; 2D CRYSTALLIZATION; CROSS-LINKING; EMULSIONS; TEMPLATES; PARTICLES; CAPSULES; BLOCK AB An extensive study of the factors that affect the interfacial assembly of bionanoparticles at the oil/water (O/W) interface is reported. Bionanoparticles, such as viruses, have distinctive structural properties due to the unique arrangement of their protein structures. The assembly process of such bionanoparticles at interfaces is governed by factors including the ionic strength and pH of the aqueous layer, concentration of the particles, and nature of the oil phase. This study highlights the impact of these factors on the interfacial assembly of bionanoparticles at the O/W interface using native turnip yellow mosaic virus (TYMV) as the prototype. Robust monolayer assemblies of TYMV were produced by self-assembly at the O/W interface using emulsions and planar interfaces. TYMV maintained its structure and integrity under different assembly conditions. For the emulsion droplets, they were fully covered with TYMV as evidenced by transmission electron microscopy (TEM) and scanning force microscopy (SFM). Tensiometry and small-angle neutron scattering (SANS) further supported this finding. Although the emulsions offered a complete coverage by TYMV particles, they lacked long-range ordering due to rapid exchange at the interface. By altering the assembly process, highly ordered, hexagonal arrays of TYMV were obtained at planar O/W interfaces. The pH, ionic strength, and viscosity of the solution played a crucial role in enhancing the lateral ordering of TYMV assembled at the planar O/W interface. This interfacial ordering of TYMV particles was further stabilized by introduction of a positively charged debydroabietyl amine (DHAA) in the organic phase which held the assembly together by electrostatic interactions. The long-range array formation was observed using TEM and SFM. The results presented here illustrate that the interfacial assembly at the O/W interface is a versatile approach to achieve highly stable self-assembled structures. C1 [Pingali, Sai Venkatesh; Lee, Byeongdu; Thiyagarajan, Pappannan] Argonne Natl Lab, Argonne, IL 60439 USA. [Kaur, Gagandeep; Niu, Zhongwei; Li, Tao; Rawlinson, Dustin; Wang, Qian] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Kaur, Gagandeep; Niu, Zhongwei; Li, Tao; Rawlinson, Dustin; Wang, Qian] Univ S Carolina, Nanoctr, Columbia, SC 29208 USA. [He, Jinbo; Xu, Ji; Emrick, Todd; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Boeker, Alexander] Univ Aachen, DWI RWTH Aachen eV, Lehrstuhl Makromol Mat & Oberflachen, D-52056 Aachen, Germany. [Jutz, Guenther; Boeker, Alexander] Univ Bayreuth, Lehrstuhl Phys Chem 2, D-95440 Bayreuth, Germany. RP Thiyagarajan, P (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM thiyaga@anl.gov; russell@mail.pse.umass.edu; wang@mail.chem.sc.edu RI Boker, Alexander/C-2055-2009; He, Jinbo/B-1445-2010; niu, zhongwei/C-7671-2011; Wang, Qian/J-2144-2012; li, tao/K-8911-2012; OI Boker, Alexander/0000-0002-5760-6631; li, tao/0000-0001-5454-1468; Pingali, Sai Venkatesh/0000-0001-7961-4176; Wang, Qian/0000-0002-2149-384X; Lee, Byeongdu/0000-0003-2514-8805 FU U.S. DoD MURI program; NSF; Alfred P. Sloan Scholarship; Camille Dreyfus Teacher Scholar Award; DoD-BCRP; W. M. Keck Foundation; DOE; BES [DE-AC02-06CH11357]; Lichtenberg-Program of the VolkswagenStiftung FX We are grateful for the support from the U.S. DoD MURI program. QW. is indebted to the support from the NSF CAREER program, the Alfred P. Sloan Scholarship, the Camille Dreyfus Teacher Scholar Award, DoD-BCRP, and the W. M. Keck Foundation. The SANS data were collected at IPNS of ANL funded by DOE, BES under Contract No. DE-AC02-06CH11357 to the U. Chicago Argonne, LLC. We also thank Edward Kramer (University of California at Santa Barbara), Rachel Segalman (University of California at Berkley), Ryan Hayward (University of Massachusetts Amherst), and Gila Stein (NIST) for their help in the quantification of the long-range ordering. A.B. and G.J. acknowledge the support by the Lichtenberg-Program of the VolkswagenStiftung. NR 35 TC 42 Z9 42 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 5 PY 2009 VL 25 IS 9 BP 5168 EP 5176 DI 10.1021/la900167s PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 438AP UT WOS:000265528600048 PM 19354217 ER PT J AU Harland, CW Botyanszki, Z Rabuka, D Bertozzi, CR Parthasarathy, R AF Harland, Christopher W. Botyanszki, Zsofia Rabuka, David Bertozzi, Carolyn R. Parthasarathy, Raghuveer TI Synthetic Trehalose Glycolipids Confer Desiccation Resistance to Supported Lipid Monolayers SO LANGMUIR LA English DT Article ID CORD FACTOR; MEMBRANES; PRESERVATION; TUBERCULOSIS; BILAYERS; SURFACE AB Lipid-derived desiccation resistance in membranes is a rare, unique ability previously observed only with trehalose dimycolate (TDM), an abundant mycobacterial glycolipid. Here we present the first synthetic trehalose glycolipids capable of providing desiccation protection to membranes of which they are constituents. The synthetic glycolipids consist of a simple trehalose disaccharide headgroup, similar to TDM, with hydrophobic tail groups of two 15- or 18-carbon chains. The synthetic trehalose glycolipids protected supported monolayers of phospholipids against dehydration even as minority components of the overall membrane, down to as little as 20 mol % trehalose glycolipid as assessed by assays of membrane fluidity. The dependence of the desiccation protection on the synthetic trehalose glycolipid fraction is nearly identical to that of TDM. The striking similarity of the desiccation resistance observed with TDM and the synthetic trehalose glycolipids, despite the variety of hydrophobic tail structures employed, suggests that interactions between the trehalose headgroup and surrounding molecules are the determining factor in dehydration protection. C1 [Harland, Christopher W.; Parthasarathy, Raghuveer] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Harland, Christopher W.; Parthasarathy, Raghuveer] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. [Botyanszki, Zsofia; Rabuka, David; Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci & Mat Sci Div, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Parthasarathy, R (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. EM raghu@uoregon.edu RI Parthasarathy, Raghuveer/A-5958-2008 OI Parthasarathy, Raghuveer/0000-0002-6006-4749 FU National Institutes of Health [R01-AI51622]; Engineering and Technology Industry Council of Oregon; Office of Naval Research through the Oregon Nanoscience and Microtechnologies Institute; Alfred P. Sloan Foundation FX This work was supported by the National Institutes of Health (grant R01-AI51622 to C.R.B.), the Engineering and Technology Industry Council of Oregon (C.W. H.), the Office of Naval Research through the Oregon Nanoscience and Microtechnologies Institute (R.P. and C.W.H.), and the Alfred P. Sloan Foundation (R.P.). NR 24 TC 23 Z9 23 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 5 PY 2009 VL 25 IS 9 BP 5193 EP 5198 DI 10.1021/la804007a PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 438AP UT WOS:000265528600051 PM 19323499 ER PT J AU Bok, HM Shuford, KL Kim, S KyuKim, S Park, S AF Bok, Hye-Mi Shuford, Kevin L. Kim, Sungwan KyuKim, Seong Park, Sungho TI Multiple Surface Plasmon Modes for Gold/Silver Alloy Nanorods SO LANGMUIR LA English DT Article ID DISCRETE-DIPOLE APPROXIMATION; GOLD NANORODS; SILVER NANOPARTICLES; METAL NANOPARTICLES; OPTICAL-PROPERTIES; COLLOIDAL SOLUTION; ABSORPTION; PARTICLES; RESONANCES; SHAPE AB Alloy nanorods consisting of bimetallic gold and silver are synthesized by employing the electrochemical codeposition of Au/Ag alloy materials into the pores of anodized aluminum oxide templates. This paper presents the variation of localized surface plasmon resonance (LSPR) modes of the Au-x/Ag1-x alloy nanorods as a function of relative compositions of Au and Ag. Transverse and multiple longitudinal modes were observed when the length was longer than ca. 300 nm. For a given length, the transverse LSPR mode systematically blue-shifted as the Ag portion increased, while there was little variation in peak positions of the longitudinal LSPR modes. The optical properties of the Au-x/Ag1-x alloy nanorods were calculated using the discrete dipole approximation and showed a good agreement with the experimental measurements. C1 [Bok, Hye-Mi; Kim, Sungwan; KyuKim, Seong; Park, Sungho] Sungkyunkwan Univ, Dept Chem, Suwon 440746, South Korea. [Bok, Hye-Mi; Kim, Sungwan; KyuKim, Seong; Park, Sungho] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Park, Sungho] Sungkyunkwan Univ, Adv Inst Nanotechnol, Suwon 440746, South Korea. [Shuford, Kevin L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Park, S (reprint author), Sungkyunkwan Univ, Dept Chem, Suwon 440746, South Korea. EM spark72@skku.edu RI Shuford, Kevin/L-2435-2014 FU Korean Government [KRF-2005-005-J11902, KRF-C00050]; Korea Science and Engineering Foundation [2008-04285, 2008-0060482]; Wigner Fellowship Program; Division of Chemical Sciences, Biosciences, and Geosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2005-005-J11902, and KRF-C00050) and the Korea Science and Engineering Foundation (Nano R&D program, 2008-04285, 2008-0060482). S. K. Kim thanks the KOSEF-SRC program (Center for Nanotubes and Nanostructured Composites). K. L. Shuford was supported by the Wigner Fellowship Program and the Division of Chemical Sciences, Biosciences, and Geosciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 25 TC 32 Z9 32 U1 6 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 5 PY 2009 VL 25 IS 9 BP 5266 EP 5270 DI 10.1021/la803900w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 438AP UT WOS:000265528600061 PM 19334728 ER PT J AU Kim, JY Choi, SB Noh, JH HunYoon, S Lee, S Noh, TH Frank, AJ Hong, KS AF Kim, Jin Young Choi, Sung Bum Noh, Jun Hong HunYoon, Sung Lee, Sangwook Noh, Tae Hoon Frank, Arthur J. Hong, Kug Sun TI Synthesis of CdSe-TiO2 Nanocomposites and Their Applications to TiO2 Sensitized Solar Cells SO LANGMUIR LA English DT Article ID CDSE QUANTUM DOTS; ENERGY CONVERSION; NANOPARTICLES; PHOTOSENSITIZATION; NANOCRYSTALS; FILMS AB CdSe-TiO2 nanocomposites were synthesized via aminolysis of Ti-oleate complexes in the presence of CdSe nanocrystals, and their application as sensitizers for TiO2 solar cells was investigated. The formation of CdSe-TiO2 nanocomposites was confirmed using transmission electron microscopy and Raman spectroscopy. The emission spectrum of CdSe-TiO2 nanocomposites revealed photoinduced charge separation at the CdSe-TiO2 interface of the composite. The photocurrent-voltage properties of CdSe-TiO2-sensitized TiO2 particle films compared favorably with those of CdSe-sensitized TiO2 films. Evidence was also found indicating that the TiO2 component of the composite protects CdSe against degradation during film annealing. C1 [Kim, Jin Young; Frank, Arthur J.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Choi, Sung Bum; Noh, Jun Hong; HunYoon, Sung; Lee, Sangwook; Noh, Tae Hoon; Hong, Kug Sun] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea. RP Kim, JY (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. EM jinyoung_kim@nrel.gov; kshongss@plaza.snu.ac.kr RI Kim, Jin Young/B-7077-2012; Lee, Sangwook/O-9166-2015 OI Kim, Jin Young/0000-0001-7728-3182; Lee, Sangwook/0000-0002-3535-0241 FU U.S. Department of Energy [DE-AC36-08GO28308]; Korean government [R01-2007-000-11075-0] FX This research was funded by the U.S. Department of Energy under contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory and was also supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (R01-2007-000-11075-0). NR 16 TC 37 Z9 40 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD MAY 5 PY 2009 VL 25 IS 9 BP 5348 EP 5351 DI 10.1021/la804310z PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 438AP UT WOS:000265528600072 PM 19249822 ER PT J AU Zou, LH Jin, H Lu, WY Li, XD AF Zou, Linhua Jin, Helena Lu, Wei-Yang Li, Xiaodong TI Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers SO MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS LA English DT Article DE Natural materials; Bamboo; Fiber cell wall; Nanostructure; Atomic force microscopy; Nanoindentation ID COMPOSITE-MATERIALS; NANOINDENTATION; MODULUS AB Bamboo is a natural biological composite with superior mechanical strength and toughness. What is the secret recipe that Mother Nature uses to fabricate bamboo? Here we report discovery of cobble-like polygonal cellulose nanograins with a diameter of 21-198 nm in the cell wall of bamboo fibers. These nanograins are basic building blocks that are used to construct individual bamboo fibers. Nanoscale mechanical tests were carried out oil individual fiber cell walls by nanoindentation. The nanograin-structured bamboo fibers are not brittle in nature but somewhat ductile. The bamboo fiber reinforcing mechanisms are discussed with reference to the hierarchical structure and mechanical properties of individual bamboo components. (C) 2008 Elsevier B.V. All rights reserved. C1 [Zou, Linhua; Li, Xiaodong] Univ S Carolina, Dept Mech Engn, Columbia, SC 29208 USA. [Jin, Helena; Lu, Wei-Yang] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. RP Li, XD (reprint author), Univ S Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM lixiao@engr.sc.edu NR 19 TC 55 Z9 60 U1 7 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0928-4931 J9 MAT SCI ENG C-BIO S JI Mater. Sci. Eng. C-Biomimetic Supramol. Syst. PD MAY 5 PY 2009 VL 29 IS 4 BP 1375 EP 1379 DI 10.1016/j.msec.2008.11.007 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 485QX UT WOS:000269139900054 ER PT J AU Kofu, M Qiu, Y Bao, W Lee, SH Chang, S Wu, T Wu, G Chen, XH AF Kofu, M. Qiu, Y. Bao, Wei Lee, S-H Chang, S. Wu, T. Wu, G. Chen, X. H. TI Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2 SO NEW JOURNAL OF PHYSICS LA English DT Article ID LAYERED QUATERNARY COMPOUND; NODELESS SUPERCONDUCTING GAPS; ELECTRONIC-STRUCTURE; PHASE-DIAGRAM; EARTH; LIFEAS; METAL AB The magnetic structure of BaFe2As2 was determined from polycrystalline neutron diffraction measurements soon after the ThCr2Si2-type FeAs-based superconductors were discovered. Both the moment direction and the in-plane antiferromagnetic wavevector are along the longer a-axis of the orthorhombic unit cell. There is only one combined magnetostructural transition at similar to 140 K. However, a later single-crystal neutron diffraction work reported contradicting results. Here, we show neutron diffraction results from a single-crystal sample, grown by a self-flux method, that support the original polycrystalline work. C1 [Bao, Wei] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kofu, M.; Lee, S-H] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Qiu, Y.; Chang, S.] Natl Inst Stand & Technol, NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Wu, T.; Wu, G.; Chen, X. H.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. RP Bao, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wbao@lanl.gov RI Bao, Wei/E-9988-2011 OI Bao, Wei/0000-0002-2105-461X FU Natural Science Foundation of China; Ministry of Science and Technology of China [2006CB601001]; National Basic Research Program of China [2006CB922005]; US DOE [DE-FG02-07ER45384]; NSF [DMR-0454672] FX Work at LANL is supported by US DOE-OS-BES, at USTC by the Natural Science Foundation of China, Ministry of Science and Technology of China (973 Project No: 2006CB601001) and by the National Basic Research Program of China (2006CB922005), at UVA by the US DOE through DE-FG02-07ER45384. The SPINS at NIST is partially supported by NSF under Agreement No. DMR-0454672. NR 74 TC 35 Z9 37 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 5 PY 2009 VL 11 AR 055001 DI 10.1088/1367-2630/11/5/055001 PG 8 WC Physics, Multidisciplinary SC Physics GA 448AU UT WOS:000266234300001 ER PT J AU Mukhopadhyay, S Oh, S Mounce, AM Lee, M Halperin, WP Ni, N Bud'ko, SL Canfield, PC Reyes, AP Kuhns, PL AF Mukhopadhyay, Sutirtha Oh, Sangwon Mounce, A. M. Lee, Moohee Halperin, W. P. Ni, N. Bud'ko, S. L. Canfield, P. C. Reyes, A. P. Kuhns, P. L. TI Magnetic impurities in the pnictide superconductor Ba1-xKxFe2As2 SO NEW JOURNAL OF PHYSICS LA English DT Article ID NMR; COEXISTENCE; ALLOYS; PROBE AB Nuclear magnetic resonance (NMR) measurements have been performed on single crystals of Ba1-xKxFe2As2 (x = 0, 0.45) and CaFe2As2 grown from Sn flux. The Ba-based pnictide crystals contain significant amounts of Sn in their structure, similar to 1%, giving rise to magnetic impurity effects evident in the NMR spectrum and in the magnetization. Our experiments show that the large impurity magnetization is broadly distributed on a microscopic scale, generating substantial magnetic field gradients. There is a concomitant 20% reduction in the transition temperature, which is most likely due to magnetic electron scattering. We suggest that the relative robustness of superconductivity (x = 0.45) in the presence of severe magnetic inhomogeneity might be accounted for by strong spatial correlations between impurities, such as clustering on the coherence length scale. C1 [Mukhopadhyay, Sutirtha; Oh, Sangwon; Mounce, A. M.; Halperin, W. P.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Lee, Moohee] Konkuk Univ, Dept Phys, Seoul 143701, South Korea. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.] US DOE, Ames Lab, Ames, IA 50011 USA. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Reyes, A. P.; Kuhns, P. L.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Halperin, WP (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. EM w-halperin@northwestern.edu RI LEE, Moohee/E-1326-2011; Canfield, Paul/H-2698-2014 NR 35 TC 12 Z9 12 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAY 5 PY 2009 VL 11 AR 055002 DI 10.1088/1367-2630/11/5/055002 PG 13 WC Physics, Multidisciplinary SC Physics GA 448AU UT WOS:000266234300002 ER PT J AU Wolf, YI Novichkov, PS Karev, GP Koonin, EV Lipman, DJ AF Wolf, Yuri I. Novichkov, Pavel S. Karev, Georgy P. Koonin, Eugene V. Lipman, David J. TI The universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE gene age; gene expression; genome evolution; intron density ID PROTEIN EVOLUTION; INVERSE RELATIONSHIP; SEQUENCE EVOLUTION; MAMMALIAN GENES; PSI-BLAST; GENOME; DATABASE; DISPENSABILITY; DIVERGENCE; EXPRESSION AB The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger'' classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young'' genes (e.g., mammal-specific human ones), "old'' genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. C1 [Wolf, Yuri I.; Karev, Georgy P.; Koonin, Eugene V.; Lipman, David J.] NIH, Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. [Novichkov, Pavel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Lipman, DJ (reprint author), NIH, Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. EM lipman@ncbi.nlm.nih.gov FU Department of Health and Human Services (National Library of Medicine, National Institutes of Health) FX We thank Liran Carmel for valuable help with the expression data and useful discussions of the statistical analysis and Josh Cherry for critical reading of the manuscript. This work was supported by the Department of Health and Human Services (National Library of Medicine, National Institutes of Health). NR 64 TC 98 Z9 100 U1 0 U2 14 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAY 5 PY 2009 VL 106 IS 18 BP 7273 EP 7280 DI 10.1073/pnas.0901808106 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 441QI UT WOS:000265783600004 PM 19351897 ER PT J AU Hopkins, PE Piekos, ES AF Hopkins, Patrick E. Piekos, Edward S. TI Lower limit to phonon thermal conductivity of disordered, layered solids SO APPLIED PHYSICS LETTERS LA English DT Article DE metallic thin films; phonons; selenium alloys; thermal conductivity; tungsten alloys ID SILICON NANOWIRES; THERMOELECTRIC PERFORMANCE; HEAT AB The minimum limit to the thermal conductivity of disordered, layered solids is studied by accounting for minimum scattering times and velocities from oscillations of atoms bound by different interatomic forces. The model developed in this work allows for quantification of changes in the lower limit to thermal conductivity in heavily disordered solids due to force differences arising from planar interfaces. This model sets a lower limit to recent data of thermal conductivity of WSe(2) layered films, the data from which were below the lower limits predicted by previous models. C1 [Hopkins, Patrick E.; Piekos, Edward S.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov NR 17 TC 15 Z9 15 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 4 PY 2009 VL 94 IS 18 AR 181901 DI 10.1063/1.3127224 PG 3 WC Physics, Applied SC Physics GA 443TM UT WOS:000265933700012 ER PT J AU LaGrange, T Grummon, DS Reed, BW Browning, ND King, WE Campbell, GH AF LaGrange, Thomas Grummon, David S. Reed, Bryan W. Browning, Nigel D. King, Wayne E. Campbell, Geoffrey H. TI Strongly driven crystallization processes in a metallic glass SO APPLIED PHYSICS LETTERS LA English DT Article DE amorphous state; crystallisation; laser beam annealing; metallic glasses; metallic thin films; nickel alloys; titanium alloys; transmission electron microscopy ID TRANSMISSION ELECTRON-MICROSCOPE; THIN-FILMS; NITI FILMS; IN-SITU; KINETICS AB The crystallization of amorphous NiTi thin films was studied in situ using pulsed laser heating in a dynamic transmission electron microscope. A single pulse can crystallize small areas of the film within 2 mu s. The crystallized volume fraction and morphology depend strongly on the laser energy, the laser spatial profile, and the heat transport in the film. As compared to slower furnace and continuous wave laser annealing, pulsed laser heating produces a dramatically different microstructure. Higher than expected crystallization rates were observed under pulsed irradiation that do not correlate with kinetic data obtained from the slow-heating crystallization experiments. C1 [LaGrange, Thomas; Reed, Bryan W.; Browning, Nigel D.; King, Wayne E.; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Grummon, David S.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP LaGrange, T (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM lagrange2@llnl.gov RI Campbell, Geoffrey/F-7681-2010; Reed, Bryan/C-6442-2013; OI Browning, Nigel/0000-0003-0491-251X FU Office of Science; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering; US Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory and was supported by the Office of Science, the Office of Basic Energy Sciences, the Division of Materials Sciences and Engineering, and the US Department of Energy under Contract No. DE-AC52-07NA27344. NR 13 TC 12 Z9 12 U1 3 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 4 PY 2009 VL 94 IS 18 AR 184101 DI 10.1063/1.3125429 PG 3 WC Physics, Applied SC Physics GA 443TM UT WOS:000265933700070 ER PT J AU Yefremenko, V Wang, G Novosad, V Datesman, A Pearson, J Divan, R Chang, CL Downes, TP McMahon, JJ Bleem, LE Crites, AT Meyer, SS Carlstrom, JE AF Yefremenko, V. Wang, G. Novosad, V. Datesman, A. Pearson, J. Divan, R. Chang, C. L. Downes, T. P. McMahon, J. J. Bleem, L. E. Crites, A. T. Meyer, S. S. Carlstrom, J. E. TI Low temperature thermal transport in partially perforated silicon nitride membranes SO APPLIED PHYSICS LETTERS LA English DT Article DE membranes; silicon compounds; thermal resistance ID SCATTERING AB The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au TESs lithographically defined on silicon nitride membranes 1 mu m thick and 6 mm(2) in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices. C1 [Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A.; Pearson, J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Chang, C. L.; Downes, T. P.; McMahon, J. J.; Bleem, L. E.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Carlstrom, J. E.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Downes, T. P.; Bleem, L. E.; Meyer, S. S.; Carlstrom, J. E.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Novosad, V (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM novosad@anl.gov RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 NR 17 TC 3 Z9 3 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAY 4 PY 2009 VL 94 IS 18 AR 183504 DI 10.1063/1.3127232 PG 3 WC Physics, Applied SC Physics GA 443TM UT WOS:000265933700064 ER PT J AU Schlei, BR AF Schlei, B. R. TI A new computational framework for 2D shape-enclosing contours SO IMAGE AND VISION COMPUTING LA English DT Article DE Contour; Isocontour; Edge; Unstructured grid; Delaunay tessellation; Skeleton; Shape morphology; Material surface; Bacterial colony; Handwritten letter recognition; Constellation; Freeze-out hyper-surface ID RELATIVISTIC HYDRODYNAMICS; GEOMETRIC MORPHOLOGY; BINARY IMAGE; ALGORITHM; EVOLUTION AB In this paper, a new framework for one-dimensional contour extraction from discrete two-dimensional data sets is presented. Contour extraction is important in many scientific fields such as digital image processing, computer vision, pattern recognition, etc. This novel framework includes (but is not limited to) algorithms for dilated contour extraction, contour displacement, shape skeleton extraction, contour continuation, shape feature based contour refinement and contour simplification. Many of the new techniques depend strongly on the application of a Delaunay tessellation. In order to demonstrate the versatility of this novel toolbox approach, the contour extraction techniques presented here are applied to scientific problems in material science, biology, handwritten letter recognition, astronomy and heavy ion physics. (C) 2008 Elsevier B.V. All rights reserved. C1 [Schlei, B. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Schlei, BR (reprint author), Bahnhofstr 59, D-34454 Bad Arolsen, Germany. EM schlei@me.com FU Department of Energy [W-7405-ENG-36] FX This work has been supported by the Department of Energy under contract W-7405-ENG-36. NR 46 TC 5 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0262-8856 J9 IMAGE VISION COMPUT JI Image Vis. Comput. PD MAY 4 PY 2009 VL 27 IS 6 BP 637 EP 647 DI 10.1016/j.imavis.2008.06.014 PG 11 WC Computer Science, Artificial Intelligence; Computer Science, Software Engineering; Computer Science, Theory & Methods; Engineering, Electrical & Electronic; Optics SC Computer Science; Engineering; Optics GA 441YR UT WOS:000265807000004 ER PT J AU Della-Longa, S Chen, LX Frank, P Hayakawa, K Hatada, K Benfatto, M AF Della-Longa, S. Chen, L. X. Frank, P. Hayakawa, K. Hatada, K. Benfatto, M. TI Direct Deconvolution of Two-State Pump-Probe X-ray Absorption Spectra and the Structural Changes in a 100 ps Transient of Ni(II)-tetramesitylporphyrin SO INORGANIC CHEMISTRY LA English DT Article ID NEAR-EDGE STRUCTURE; MULTIPLE-SCATTERING ANALYSIS; FINE-STRUCTURE; MOLECULAR-STRUCTURES; ENERGY REGION; XANES SPECTRA; SPECTROSCOPY; STATE; PORPHYRINS; DYNAMICS AB Full multiple scattering (FMS) Minuit XANES (MXAN) has been combined with laser pump-probe K-edge X-ray absorption spectroscopy (XAS) to determine the structure of photoexcited Ni(II)tetramesitylporphyrin, Ni(II)TMP, in dilute toluene solution. It is shown that an excellent simulation of the XANES spectrum is obtained, excluding the lowest-energy bound-state transitions. In ground-state Ni(II)TMP, the first-shell and second-shell distances are, respectively, d(Ni-N) = (1.93 +/- 0.02) angstrom and d(Ni-C) = (2.94 +/- 0.03) angstrom, in agreement with a previous EXAFS result.(1) The time-resolved XANES difference spectrum was obtained(1) from the spectra of Ni(II)TMP in its photoexcited T-1 state and its ground state, S-0. The XANES difference spectrum has been analyzed to obtain both the structure and the fraction of the T-1 state. If the T-1 fraction is kept fixed at the value (0.37 +/- 0.10) determined by optical transient spectroscopy, a 0.07 angstrom elongation of the Ni-N and Ni-C distances [d(Ni-N) and d(Ni-C)] is found, in agreement with the EXAFS result. However, an evaluation of both the distance elongation and the T-1 fraction can also be obtained using XANES data only. According to experimental evidence, and MXAN simulations, the T-1 fraction is (0.60 +/- 0.15) with d(Ni-N) = (1.98 +/- 0.03) angstrom (0.05 angstrom elongation). The overall uncertainty of these results depends on the statistical correlation between the distances and T-1 fraction, and the chemical shift of the ionization energy because of subtle changes of metal charge between the T-1 and So states. The T-1 excited-state structure results, independently obtained without the excited-state fraction from optical transient spectroscopy, are still in agreement with previous EXAFS investigations. Thus, full multiple scattering theory applied through the MXAN formalism can be used to provide structural information, not only on the ground-state molecules but also on very short-lived excited states through differential analysis applied to transient photoexcited species from time-resolved experiments. C1 [Della-Longa, S.] Univ Aquila, Dipartimento Med Sperimentale, I-67100 Laquila, Italy. [Della-Longa, S.; Hayakawa, K.; Hatada, K.; Benfatto, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Chen, L. X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chen, L. X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Frank, P.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Frank, P.] Stanford Univ, Stanford Synchrotron Radiat Lab, SLAC, Stanford, CA 94309 USA. [Hayakawa, K.] Museo Stor Fis & Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy. RP Della-Longa, S (reprint author), Univ Aquila, Dipartimento Med Sperimentale, I-67100 Laquila, Italy. EM dlonga@caspur.it; maurizio.benfatto@lnf.infn.it RI Hatada, Keisuke/C-2008-2012; OI Hatada, Keisuke/0000-0002-3745-2014; della longa, stefano/0000-0002-8157-9530 NR 43 TC 16 Z9 16 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAY 4 PY 2009 VL 48 IS 9 BP 3934 EP 3942 DI 10.1021/ic8008943 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 441DH UT WOS:000265749000009 PM 19326890 ER PT J AU Kitano, R Ookouchi, Y AF Kitano, Ryuichiro Ookouchi, Yutaka TI Supersymmetry breaking and gauge mediation in models with a generic superpotential SO PHYSICS LETTERS B LA English DT Article ID ELECTRIC-MAGNETIC DUALITY; VACUA; RENORMALIZATION AB We present a general scheme for finding or creating a metastable vacuum in supersymmetric theories. By using the formalism, we show that there is a parameter region where a metastable vacuum exists in the Wess-Zumino model coupled to messenger fields. This model serves as a perturbative renormalizable model of direct gauge mediation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ookouchi, Yutaka] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2YS, Canada. [Kitano, Ryuichiro] Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. RP Ookouchi, Y (reprint author), Perimeter Inst Theoret Phys, Waterloo, ON N2L 2YS, Canada. EM yokochi@perimeterinstitute.ca FU NSERC; Province of Ontario through MRI FX We would like to thank P. Argyres, F. Cachazo, H. Ooguri, K. Maruyoshi, J. Marsano for discussions. Research at Perimeter Institute for Theoretical Physics is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MRI. YO would like to thank the University of Cincinnati and University of Pisa for kind hospitality. NR 56 TC 7 Z9 7 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAY 4 PY 2009 VL 675 IS 1 BP 80 EP 83 DI 10.1016/j.physletb.2009.03.057 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 447HY UT WOS:000266183400017 ER PT J AU Xie, H Li, YF Kagawa, HK Trent, JD Mudalige, K Cotlet, M Swanson, BI AF Xie, Hongzhi Li, Yi-Fen Kagawa, Hiromi K. Trent, Jonathan D. Mudalige, Kumara Cotlet, Mircea Swanson, Basil I. TI An Intrinsically Fluorescent Recognition Ligand Scaffold Based on Chaperonin Protein and Semiconductor Quantum-Dot Conjugates SO SMALL LA English DT Article DE nanoparticles; proteins; quantum dots; semiconductors ID HYPERTHERMOPHILIC ARCHAEON; NANOPARTICLE ARRAYS; SULFOLOBUS-SHIBATAE; AQUEOUS-SOLUTION; MOLECULES; NANOSTRUCTURES; EXCITATION; DYNAMICS; TF55 AB Genetic engineering of a novel protein-nanoparticle hybrid system with great potential for biosensing applications and for patterning of various types of nanoparticles is described. The hybrid system is based on a genetically modified chaperonin protein from the hyperthermophilic archaeon Sulfolobus shibatae. This chaperonin is an 18-subunit double ring, which self-assembles in the presence of Mg ions and ATP. Described here is a mutant chaperonin (His-beta-loopless, HBLL) with. increased access to the central cavity and His-tags on each subunit extending into the central cavity. This mutant binds water-soluble semiconductor quantum dots, creating a protein-encapsulated fluorescent nanoparticle. The new bioconjugate has high affinity, in the order of strong antibody-antigen interactions, a one-to-one protein-nanoparticle stoichiometry, and high stability. By adding selective binding sites to the solvent-exposed regions of the chaperonin, this protein-nanoparticle bioconjugate becomes a sensor for specific targets. C1 [Mudalige, Kumara; Cotlet, Mircea] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Xie, Hongzhi; Swanson, Basil I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Li, Yi-Fen; Kagawa, Hiromi K.; Trent, Jonathan D.] NASA, Ames Res Ctr, Bioengn Branch, Moffett Field, CA 94035 USA. RP Cotlet, M (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Mail Stop 735, Upton, NY 11973 USA. EM cotlet@bnl.gov; basil@lanl.gov RI Cotlet, Mircea/C-5004-2008 NR 32 TC 12 Z9 12 U1 0 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD MAY 4 PY 2009 VL 5 IS 9 BP 1036 EP 1042 DI 10.1002/smll.200801106 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 447IJ UT WOS:000266184500007 PM 19334012 ER PT J AU Rowland, JC Dietrich, WE Day, G Parker, G AF Rowland, J. C. Dietrich, W. E. Day, G. Parker, G. TI Formation and maintenance of single-thread tie channels entering floodplain lakes: Observations from three diverse river systems SO JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE LA English DT Article ID LOWER MISSISSIPPI RIVER; MACKENZIE DELTA; AMAZON RIVER; SEDIMENT; CONNECTIVITY; ADJUSTMENT; MORPHOLOGY; AVULSION; DYNAMICS; PATTERNS AB Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years. C1 [Day, G.] Newcrest Min Ltd, Melbourne, Vic 3004, Australia. [Rowland, J. C.; Dietrich, W. E.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Parker, G.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. RP Rowland, JC (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM jrowland@lanl.gov FU Institute of Geophysics and Planetary Physics (IGPP) through Los Alamos National Laboratory; Ok Tedi Mine, Inc.; NSF [EAR-0203577]; American Chemical Society Petroleum Research Fund; National Center for Earth-Surface Dynamics (NCED) FX This work was supported in part by a grant from the Institute of Geophysics and Planetary Physics (IGPP) through Los Alamos National Laboratory. Work on the Fly River was supported by the Ok Tedi Mine, Inc. and the NSF Margins Source to Sink program (EAR-0203577). Additional funding support was provided by the American Chemical Society Petroleum Research Fund and the National Center for Earth-Surface Dynamics (NCED). Support for the Alaska fieldwork was provided by a Geological Society of America student research grant to J. Rowland. For equipment and logistical support we also thank Randy Brown, Leslie Tose, Scott Allen, Jacques Finlay, and the USGS NASQAN team for help in Alaska and Jacques LaCour, Sam Bentley, and Joel Chaky in Louisiana. Thanks also to Cathy Wilson, Taylor Perron, Wes Lauer, Mary Power, and Christine May for assistance in the collection of field data. Luke Patterson assisted the archival research of aerial photographs on the Mississippi River. We also thank M. Church, the Journal of Geophysical Research Earth Surface assistant editor, and three anonymous reviewers for comments and suggestions that helped to clarify and focus this work. NR 65 TC 20 Z9 20 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-EARTH JI J. Geophys. Res.-Earth Surf. PD MAY 2 PY 2009 VL 114 AR F02013 DI 10.1029/2008JF001073 PG 19 WC Geosciences, Multidisciplinary SC Geology GA 440AM UT WOS:000265670000001 ER PT J AU Zhang, LF Chandrasekar, R Howe, JY West, MK Hedin, NE Arbegast, WJ Fong, H AF Zhang, Lifeng Chandrasekar, Ramya Howe, Jane Y. West, Michael K. Hedin, Nyle E. Arbegast, William J. Fong, Hao TI A Metal Matrix Composite Prepared from Electrospun TiO2 Nanofibers and an Al 1100 Alloy via Friction Stir Processing SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE metal matrix composites; friction stir processing; electrospinning; TiO2 nanofibers ID FABRICATION; PARTICLES; ALUMINUM; FIBERS AB Electrospun TiO2 nanofibers, consisting of anatase phase TiO2 single-crystalline crystallites with sizes of similar to 10 nm, were impregnated into an Al 1100 alloy by the technique of friction stir processing (FSP). The studies of the resulting TiO2-Al composite revealed that the electrospun TiO2 nanofibers with diameters of similar to 200 nm were broken into nanoparticles during FSP; the in situ generated pristine surfaces led to the interfacial reaction between TiO2 and Al and resulted in the formation of strong interfaces between the electrospun TiO2 nanoparticles and the Al 1100 matrix. This was evidenced by the Fact that the filler-matrix fracture always occurred on the Al matrix side in the interfacial region. Consequently, the TiO2-Al composite made from the electrospun TiO2 nanofibers possessed a significantly higher Vickers hardness than that made from a commercially available anatase phase TiO2 nanopowder, of which the organic and/or carbonaceous contaminants on the surface impeded the interfacial reaction between TiO2 and Al during FSP. C1 [Zhang, Lifeng; Chandrasekar, Ramya; West, Michael K.; Hedin, Nyle E.; Arbegast, William J.; Fong, Hao] S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. [Howe, Jane Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Arbegast, WJ (reprint author), S Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. EM William.Arbegast@sdsmt.edu; Hao.Fong@sdsmt.edu RI Howe, Jane/G-2890-2011 FU U.S. Air Force Research Laboratory [FA9453-06-C-0366]; U.S. Department of Energy; Assistant Secretary for Energy Efficiency & Renewable Energy; Office of FreedomCAR and Vehicle Technologies; Oak Ridge National Laboratory FX This research was supported by the U.S. Air Force Research Laboratory under the Cooperative Agreement Number FA9453-06-C-0366. The HRTEM study was sponsored by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency & Renewable Energy, Office of FreedomCAR and Vehicle Technologies, through the High Temperature Materials Laboratory User Center at the Oak Ridge National Laboratory. NR 25 TC 7 Z9 7 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAY PY 2009 VL 1 IS 5 BP 987 EP 991 DI 10.1021/am900095x PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 479NB UT WOS:000268665200003 PM 20355882 ER PT J AU Huang, W Bulusu, S Pal, R Zeng, XC Wang, LS AF Huang, Wei Bulusu, Satya Pal, Rhitankar Zeng, Xiao Cheng Wang, Lai-Sheng TI Structural Transition of Gold Nanoclusters: From the Golden Cage to the Golden Pyramid SO ACS NANO LA English DT Article DE gold clusters; photoelectron spectroscopy; structural isomers; van der Waals complexes; structure-function relationship ID PHOTOELECTRON-SPECTROSCOPY; SPHERICAL AROMATICITY; CLUSTER ANIONS; METAL-CLUSTERS; AU-20 CLUSTERS; FULLERENES; CHEMISTRY; OXIDATION; SPECTRA; AU-19 AB How nanoclusters transform from one structural type to another as a function of size is a critical issue in cluster science. Here we report a study of the structural transition from the golden cage Au(16)(-) to the pyrarmidal Au(20)(-) We obtained distinct experimental evidence that the cage-to-pyramid crossover occurs at Au(18)(-), for which the cage and pyramidal isomers are nearly degenerate and coexist experimentally. The two isomers are observed and identified by their different interactions with O(2) and Ar. The cage isomer is observed to be more reactive with O(2) and can be preferentially "titrated" from the cluster beam, whereas the pyramidal isomer has slightly stronger interactions with Ar and is favored in the Au(18)Ar(x)(-) van der Waals complexes. The current study allows the detailed structural evolution and growth routes from the hollow cage to the compact pyramid to be understood and provides information about the structure-function relationship of the Au(18)(-) cluster. C1 [Bulusu, Satya; Pal, Rhitankar; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Bulusu, Satya; Pal, Rhitankar; Zeng, Xiao Cheng] Univ Nebraska, Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Huang, Wei; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Huang, Wei; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Zeng, XC (reprint author), Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. EM xczeng@phase2.unl.edu; ls.wang@pnl.gov FU National Science Foundation [CHE-0749496, CHE-G427746, DMR/MRSEC-0820521]; DOE's Office of Biological and Environmental Research FX The experimental work done at Washington was supported by the National Science Foundation (CHE-0749496) and was performed at the EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for DOE by Battelle. The theoretical work done at Nebraska was supported by grants from the National Science Foundation (CHE-G427746, DMR/MRSEC-0820521), the Nebraska Research Initiative, and the UNL Research Computing Facility and Holland Supercomputing Center at University of Nebraska-Omaha. NR 46 TC 66 Z9 66 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAY PY 2009 VL 3 IS 5 BP 1225 EP 1230 DI 10.1021/nn900232d PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 449IH UT WOS:000266323600026 PM 19371073 ER PT J AU Farrow, CL Billinge, SJL AF Farrow, Christopher L. Billinge, Simon J. L. TI Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles SO ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES LA English DT Article ID X-RAY-DIFFRACTION; RADIAL-DISTRIBUTION FUNCTIONS; NEUTRON-DIFFRACTION; GOLD NANOPARTICLES; CRYSTALLINE; PARTICLES; PATTERNS; PROGRAM; SYSTEMS; OXIDES AB The relationship between the equations used in the atomic pair distribution function (PDF) method and those commonly used in small-angle-scattering (SAS) analyses is explicitly shown. The origin of the sloping baseline, -4 pi r rho(0), in PDFs of bulk materials is identified as originating from the SAS intensity that is neglected in PDF measurements. The nonlinear baseline in nanoparticles has the same origin, and contains information about the shape and size of the nanoparticles. (c) 2009 International Union of Crystallography Printed in Singapore - all rights reserved C1 [Farrow, Christopher L.; Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sb2896@columbia.edu FU US National Science Foundation [DMR-0703940] FX The authors would like to thank Phil Duxbury and Pavol Juhas for careful proofreading and discussion of this manuscript. The authors acknowledge enlightening conversations with Matteo Leoni, Reinhard Neder, Thomas Proffen, ChongYu Ruan, Paolo Scardi and Mike Thorpe, and thank an anonymous referee for insightful and conductive comments. This work was supported by the US National Science Foundation through grant DMR-0703940. NR 66 TC 58 Z9 58 U1 2 U2 38 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-2733 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD MAY PY 2009 VL 65 BP 232 EP 239 DI 10.1107/S0108767309009714 PN 3 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 429NJ UT WOS:000264927100007 PM 19349667 ER PT J AU Hu, JB Li, JZ Qian, XG Jin, ZM Fu, ZQ Sha, BD AF Hu, Junbin Li, Jingzhi Qian, Xinguo Jin, Zhongmin Fu, Zhengqing Sha, Bingdong TI Preliminary X-ray crystallographic studies of yeast Get3 SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID TAIL-ANCHORED PROTEINS; ENDOPLASMIC-RETICULUM; ER MEMBRANE; SACCHAROMYCES-CEREVISIAE; INSERTION; TRANSLOCATION; INTEGRATION; CHAPERONES; ATPASE; METAL AB Tail-anchored (TA) proteins contain a single transmembrane domain (TMD) at the C-terminus. The post-translational insertion of TA proteins into the ER membrane requires the cooperation of the Golgi ER-trafficking (GET) complex, which contains Get1, Get2 and Get3. Get3 is a cytosolic ATPase which can recognize and bind the TMD of the TA proteins. Get1 and Get2 are ER transmembrane proteins which can recruit and form a complex with TA-bound Get3. The GET complex carries out an energy-dependent process that facilitates the insertion of the TA-protein TMD into the ER membrane. In order to investigate the mechanism by which the GET complex functions to promote protein insertion into the ER membrane, yeast Get3 has been crystallized. The crystals diffracted to 2.7 A resolution using a synchrotron X-ray source. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 220.26, b = 112.95, c = 48.27 angstrom. There is one Get3 dimer in the asymmetric unit, which corresponds to a solvent content of approximately 65%. C1 [Hu, Junbin; Li, Jingzhi; Qian, Xinguo; Sha, Bingdong] Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA. [Jin, Zhongmin; Fu, Zhengqing] Argonne Natl Lab, APS, SER CAT, Argonne, IL 60439 USA. RP Sha, BD (reprint author), Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA. EM bdsha@uab.edu FU NIH [R01 DK56203, R01 GM080261]; Army Research Office [51894LS] FX We are grateful to the staff scientists at APS SER-CAT beamline for their help in data collection. This work was supported by grants from the NIH (R01 DK56203 and R01 GM080261) and the Army Research Office (51894LS). NR 22 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD MAY PY 2009 VL 65 BP 489 EP 491 DI 10.1107/S1744309109012317 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 439PN UT WOS:000265639600015 PM 19407384 ER PT J AU Fisher, SZ Kovalevsky, AY Domsic, JF Mustyakimov, M Silverman, DN McKenna, R Langan, P AF Fisher, S. Z. Kovalevsky, A. Y. Domsic, J. F. Mustyakimov, M. Silverman, D. N. McKenna, R. Langan, Paul TI Preliminary joint neutron and X-ray crystallographic study of human carbonic anhydrase II SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID PROTON-TRANSFER; PROTEIN CRYSTALLOGRAPHY; ACTIVE-SITE; SPALLATION NEUTRONS; CATALYTIC MECHANISM; MASS-SPECTROMETRY; HYDROGEN-ATOMS; DIFFRACTION; EXCHANGE; EVOLUTION AB Carbonic anhydrases catalyze the interconversion of CO(2) to HCO(3)(-), with a subsequent proton-transfer (PT) step. PT proceeds via a proposed hydrogenbonded water network in the active-site cavity that is stabilized by several hydrophilic residues. A joint X-ray and neutron crystallographic study has been initiated to determine the specific water network and the protonation states of the hydrophilic residues that coordinate it in human carbonic anhydrase II. Time-of-flight neutron crystallographic data have been collected from a large (similar to 1.2 mm(3)) hydrogen/deuterium-exchanged crystal to 2.4 angstrom resolution and X-ray crystallographic data have been collected from a similar but smaller crystal to 1.5 angstrom resolution. Obtaining good-quality neutron data will contribute to the understanding of the catalytic mechanisms that utilize water networks for PT in protein environments. C1 [Fisher, S. Z.; Kovalevsky, A. Y.; Mustyakimov, M.; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Domsic, J. F.; McKenna, R.] Univ Florida, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. [Silverman, D. N.] Univ Florida, Dept Pharmacol & Therapeut, Gainesville, FL 32610 USA. RP Fisher, SZ (reprint author), Los Alamos Natl Lab, Biosci Div, MS M888, Los Alamos, NM 87545 USA. EM zfisher@lanl.gov RI Langan, Paul/N-5237-2015; OI Langan, Paul/0000-0002-0247-3122; Kovalevsky, Andrey/0000-0003-4459-9142 FU Office of Biological and Environmental Research of the Department of Energy; NIH-NIGMS [1R01GM07193901]; LANL LDRD [20070131ER, 20080789PRD3]; National Institutes of Health [GM25154]; Thomas Maren Foundation FX The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. MM and PL were partly supported by an NIH-NIGMS-funded consortium (1R01GM07193901) between LANL and LNBL to develop computational tools for neutron protein crystallography. PL was partly supported by an LANL LDRD grant (20070131ER). AYK was supported by an LANL LDRD grant (20080789PRD3). This work was also partly funded by grants from the National Institutes of Health (GM25154 DNS and RM) and the Thomas Maren Foundation (RM). Finally, RM would like to thank A. Joseph Kalb (Gilboa) and Dean A. A. Myles for introducing him to the possibilities of neutron diffraction studies on HCA II. NR 37 TC 8 Z9 8 U1 1 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD MAY PY 2009 VL 65 BP 495 EP 498 DI 10.1107/S1744309109013086 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 439PN UT WOS:000265639600017 PM 19407386 ER PT J AU Young, ML Rao, R Almer, JD Haeffner, DR Lewis, JA Dunand, DC AF Young, M. L. Rao, R. Almer, J. D. Haeffner, D. R. Lewis, J. A. Dunand, D. C. TI Load partitioning in Al2O3-Al composites with three-dimensional periodic architecture SO ACTA MATERIALIA LA English DT Article DE Metal matrix composites (MMC); Synchrotron radiation; X-ray diffraction (XRD); Aluminum; Compression test ID INTERPENETRATING PHASE COMPOSITES; SUBMICRON ALUMINA PARTICLES; METAL-CERAMIC COMPOSITES; MECHANICAL-BEHAVIOR; NEUTRON-DIFFRACTION; REINFORCED ALUMINUM; FRACTURE-TOUGHNESS; INTERNAL STRAINS; POROUS MATERIALS; YOUNG MODULUS AB Interpenetrating composites are created by infiltration of liquid aluminum into three-dimensional (3-D) periodic Al2O3 preforms with simple tetragonal symmetry produced by direct-write assembly. Volume-averaged lattice strains in the Al2O3 phase of the composite are measured by synchrotron X-ray diffraction for various uniaxial compression stresses up to -350 MPa. Load transfer, found by diffraction to Occur From the metal phase to the ceramic phase, is in general agreement with simple rule-of-mixture models and in better agreement with more complex, 3-D finite-element models that account for metal plasticity and details of the geometry of both phases. Spatially resolved diffraction measurements show variations in load transfer at two different positions within the composite. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Young, M. L.; Dunand, D. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, J. D.; Haeffner, D. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Rao, R.; Lewis, J. A.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Young, ML (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM marcus.young@rub.de RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 NR 57 TC 16 Z9 17 U1 5 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD MAY PY 2009 VL 57 IS 8 BP 2362 EP 2375 DI 10.1016/j.actamat.2009.01.019 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 443CD UT WOS:000265886900003 ER PT J AU Choi, KS Liu, WN Sun, X Khaleel, MA AF Choi, K. S. Liu, W. N. Sun, X. Khaleel, M. A. TI Micro structure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions SO ACTA MATERIALIA LA English DT Article DE Ductility; Finite-element analysis (FEA); Martensitic phase transformation; TRIP steel; X-ray diffraction (XRD) ID TRANSFORMATION-INDUCED PLASTICITY; DUAL-PHASE STEELS; INDUCED MARTENSITIC-TRANSFORMATION; ASSISTED MULTIPHASE STEELS; FINITE-ELEMENT-ANALYSIS; DEFORMATION-BEHAVIOR; MULTISCALE MECHANICS; FRACTURE; STRAIN; LOCALIZATION AB We Study the ultimate ductility and failure modes of a commercial transformation-induced plasticity (TRIP) 800 steel under different loading conditions with an advanced microstructure-based finite-element analysis. The representative Volume element (RVE) for the TRIP 800 under examination is developed based oil an actual microstructure obtained from scanning electron microscopy. The ductile failure of the TRIP 800 Under different loading conditions is predicted in (lie form of plastic strain localization without any prescribed failure criteria for the individual phases. This indicates that the microstructure-level inhomogeneity of the various constituent phases can be the key factor influencing the final ductility of the TRIP 800 Steel Under different loading, conditions. Comparisons of the computational results With experimental measurements suggest that the microstructure-based modeling approach accurately captures the overall macroscopic behavior of the TRIP 800 steel Under different loading and boundary conditions. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Choi, K. S.; Liu, W. N.; Sun, X.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, X (reprint author), Pacific NW Natl Lab, POB 99, Richland, WA 99352 USA. EM xin.sun@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 NR 49 TC 64 Z9 67 U1 3 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2009 VL 57 IS 8 BP 2592 EP 2604 DI 10.1016/j.actamat.2009.02.020 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 443CD UT WOS:000265886900025 ER PT J AU Olmsted, DL AF Olmsted, David L. TI A new class of metrics for the macroscopic crystallographic space of grain boundaries SO ACTA MATERIALIA LA English DT Article DE Grain boundaries; Theory ID PARAMETERS; MAGNESIA AB The macroscopic description of a defect-free, flat grain boundary in a pure material requires five degrees of freedom. There is a need to define the distance between boundaries in this five-dimensional space, because boundaries that are close together crystallographically should have similar properties. Morawice has recently proposed such a metric, defined in terms of the misorientation of the two grains and their boundary normals. This approach has the disadvantage that there is no unique way of weighting the importance of the difference in disorientation compared to the difference in boundary normals, as was pointed Out by Cahn and Taylor. In this work a metric is developed using a less familiar description of the crystallographic space which avoids this problem. Two technical results are proven, and a sample application to grain boundary properties is offered. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Olmsted, David L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Olmsted, DL (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. EM linked_puffbird@comcast.net NR 14 TC 20 Z9 20 U1 2 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAY PY 2009 VL 57 IS 9 BP 2793 EP 2799 DI 10.1016/j.actamat.2009.02.030 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 447GT UT WOS:000266180300022 ER PT J AU Lin, G Tartakovsky, AM AF Lin, G. Tartakovsky, A. M. TI An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media SO ADVANCES IN WATER RESOURCES LA English DT Article; Proceedings Paper CT Fall Meeting of the American-Geophysical-Union CY DEC, 2006 CL San Francisco, CA SP Amer Geophys Union DE Probabilistic collocation; Stochastic method; Heterogeneous porous media; Solute transport ID KARHUNEN-LOEVE EXPANSION; MONOMIAL CUBATURE RULES; DIFFERENTIAL-EQUATIONS; SOBOLEV SPACES; COMPILATION; STROUD AB In this study, a probabilistic collocation method (PCM) on sparse grids is used to solve stochastic equations describing flow and transport in three-dimensional, saturated, randomly heterogeneous porous media. The Karhunen-Loeve decomposition is used to represent log hydraulic conductivity Y = In K(s). The hydraulic head h and average pore-velocity v are obtained by solving the continuity equation coupled with Darcy's law with random hydraulic conductivity field. The concentration is computed by solving a stochastic advection-dispersion equation with stochastic average pore-velocity v computed from Darcy's law. The PCM approach is an extension of the generalized polynomial chaos (gPC) that couples gPC with probabilistic collocation. By using sparse grid points in sample space rather than standard grids based on full tensor products, the PCM approach becomes much more efficient when applied to random processes with a large number of random dimensions. Monte Carlo (MC) simulations have also been conducted to verify accuracy of the PCM approach and to demonstrate that the PCM approach is computationally more efficient than MC simulations. The numerical examples demonstrate that the PCM approach on sparse grids can efficiently simulate solute transport in randomly heterogeneous porous media with large variances. (C) 2008 Published by Elsevier Ltd. C1 [Lin, G.; Tartakovsky, A. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lin, G (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM guang.lin@pnl.gov RI Lin, Guang/D-1376-2011 NR 29 TC 50 Z9 50 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD MAY PY 2009 VL 32 IS 5 BP 712 EP 722 DI 10.1016/j.advwatres.2008.09.003 PG 11 WC Water Resources SC Water Resources GA 448HO UT WOS:000266253900007 ER PT J AU Hemrick, JG AF Hemrick, James G. TI Refractory conference examined materials matters SO AMERICAN CERAMIC SOCIETY BULLETIN LA English DT Article C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Hemrick, JG (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU AMER CERAMIC SOC PI WESTERVILLE PA 600 N CLEVELAND AVE, WESTERVILLE, OH 43082 USA SN 0002-7812 J9 AM CERAM SOC BULL JI Am. Ceram. Soc. Bull. PD MAY PY 2009 VL 88 IS 5 BP 16 EP 18 PG 3 WC Materials Science, Ceramics SC Materials Science GA 444OU UT WOS:000265991100004 ER PT J AU Zhang, M Ewing, RC Boatner, LA Salje, EKH Weber, WJ Daniel, P Zhang, YW Farnan, I AF Zhang, Ming Ewing, Rodney C. Boatner, Lynn A. Salje, Ekhard K. H. Weber, William J. Daniel, Philippe Zhang, Yanwen Farnan, Ian TI Pb+ irradiation of synthetic zircon (ZrSiO4): Infrared spectroscopic investigation-Reply SO AMERICAN MINERALOGIST LA English DT Editorial Material ID ION-IMPLANTATION; METAMICTIZATION; SILICA; DAMAGE; TRANSITION; SPECTRA C1 [Zhang, Ming; Salje, Ekhard K. H.; Farnan, Ian] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Boatner, Lynn A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Weber, William J.; Zhang, Yanwen] Pacific NW Natl Lab, Richland, WA 99352 USA. [Daniel, Philippe] Univ Maine, LPEC, CNRS, Fac Sci,UMR 6087, F-72085 Le Mans 9, France. RP Zhang, M (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England. EM mz10001@esc.cam.ac.uk RI Boatner, Lynn/I-6428-2013; Farnan, Ian/M-3881-2014; Weber, William/A-4177-2008; Zhang, Ming/A-4773-2013; Salje, Ekhard/M-2931-2013 OI Boatner, Lynn/0000-0002-0235-7594; Farnan, Ian/0000-0001-7844-5112; Weber, William/0000-0002-9017-7365; Salje, Ekhard/0000-0002-8781-6154 NR 31 TC 3 Z9 3 U1 1 U2 8 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD MAY-JUN PY 2009 VL 94 IS 5-6 BP 856 EP 858 DI 10.2138/am.2009.542 PG 3 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 445VA UT WOS:000266078400026 ER PT J AU Li, JW Xie, WJ Fang, N Yeung, ES AF Li, Jiangwei Xie, Wenjun Fang, Ning Yeung, Edward S. TI Single-molecule immunosorbent assay as a tool for human immunodeficiency virus-1 antigen detection SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Single-molecule immunosorbent assay (SMISA); Early diagnosis; HIV-1; Fluorescence detection ID HEALTH-CARE WORKERS; ANTIBODY-AFFINITY; DNA; HIV; IMMUNOASSAY; DIAGNOSTICS; MICROARRAYS; NANOPORES AB Ultrasensitive detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1 (HIV-1), the major etiological agent of acquired immune deficiency syndrome, served as the screening target in this study. The target molecule was sandwiched between a polyclonal capture antibody and a monoclonal detector antibody. The capture antibody was covalently immobilized on (3-glycidoxypropyl) trimethoxy silane-modified glass slides. The detector antibody was conjugated with fluorescent Alexa Fluor 532 labeled secondary antibody prior to being used as a probe for the antigen. Imaging was performed with a total internal reflection fluorescence single-molecule detection system. This technique is demonstrated for detecting HIV-1 p24 antigen down to 0.1 pg/mL with a dynamic range of over four orders of magnitude. A Langmuir isotherm fits the molecule count dependence on the target concentration. The target antigen was further tested in 20% human serum, and the results showed that neither sensitivity nor dynamic range was affected by the biological matrix. SMISA is therefore a promising approach for the early diagnosis of viral induced diseases. C1 [Li, Jiangwei; Xie, Wenjun; Fang, Ning; Yeung, Edward S.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Li, Jiangwei; Xie, Wenjun; Fang, Ning; Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Yeung, ES (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. EM yeung@ameslab.gov RI Fang, Ning/A-8456-2011 FU Director of Science, Office of Basic Energy Science, Division of Chemical Sciences FX We thank Dr. Mary Jo Schmerr and Dr. Gufeng Wang for valuable discussions. E.S.Y. thanks the Robert Allen Wright Endowment for Excellence for support. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. This work was supported by the Director of Science, Office of Basic Energy Science, Division of Chemical Sciences. NR 30 TC 8 Z9 8 U1 0 U2 14 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD MAY PY 2009 VL 394 IS 2 BP 489 EP 497 DI 10.1007/s00216-009-2712-1 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 436BU UT WOS:000265388400012 PM 19267241 ER PT J AU Srivastava, N Brennan, JS Renzi, RF Wu, MY Branda, SS Singh, AK Herr, AE AF Srivastava, Nimisha Brennan, James S. Renzi, Ronald F. Wu, Meiye Branda, Steven S. Singh, Anup K. Herr, Amy E. TI Fully Integrated Microfluidic Platform Enabling Automated Phosphoprofiling of Macrophage Response SO ANALYTICAL CHEMISTRY LA English DT Article ID CHIP-BASED SYSTEM; FLOW-CYTOMETRY; CELL-CULTURE; MAMMALIAN-CELLS; HIGH-THROUGHPUT; ACTIVATION; EXPRESSION; PERFUSION; PATHWAYS; THROMBIN AB The ability to monitor cell signaling events is crucial to the understanding of immune defense against invading pathogens. Conventional analytical techniques such as flow cytometry, microscopy, and Western blot are powerful tools for signaling studies. Nevertheless, each approach is currently stand-alone and limited by multiple time-consuming and labor-intensive steps. In addition, these techniques do not provide correlated signaling information on total intracellular protein abundance and subcellular protein localization. We report on a novel phosphoFlow Chip (pFC) that relies on monolithic microfluidic technology to rapidly conduct signaling studies. The pFC platform integrates cell stimulation and preparation, microscopy, and subsequent flow cytometry. pFC allows host-pathogen phosphoprofiling in 30 min with an order of magnitude reduction in the consumption of reagents. For pFC validation, we monitor the mitogen-activated protein kinases ERK1/2 and p38 in response to Escherichia coli lipopolysaccharide (LPS) stimulation of murine macrophage cells (RAW 264.7). pFC permits ERK1/2 phosphorylation monitoring, starting at 5 s after LPS stimulation, with phosphorylation observed at 5 min. In addition, ERK1/2 phosphorylation is correlated with subsequent recruitment into the nucleus, as observed from fluorescence microscopy performed on cells upstream of flow cytometric analysis. The fully integrated cell handling has the added advantage of reduced cell aggregation and cell loss, with no detectable cell activation. The pFC approach is a step toward unified, automated infrastructure for high-throughput systems biology. C1 [Srivastava, Nimisha; Brennan, James S.; Renzi, Ronald F.; Wu, Meiye; Branda, Steven S.; Singh, Anup K.; Herr, Amy E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Srivastava, N (reprint author), Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. EM srivastava.nimisha@gmail.com OI Herr, Amy/0000-0002-6906-2985; Wu, Meiye/0000-0003-3712-1554 FU Sandia National Laboratories Internal Laboratory Directed Research and Development Office; Microscale Immune Studies Laboratory; U.S. Department of Energy [DE-AC04-94AL85000] FX The authors acknowledge Dr. C. Branda, Mr. D. Throckmorton, Dr. K. Patel, Mr. H. Tran, and Dr. T. Perroud of Sandia National Laboratories for providing materials and for helpful discussions. Funding was provided by the Sandia National Laboratories Internal Laboratory Directed Research and Development Office, through the Microscale Immune Studies Laboratory "Grand Challenge" project. Sandia is a multiprograin laboratory operated by Sandia Corp., a Lockheed Martin Co., for the U.S. Department of Energy under Contract DE-AC04-94AL85000. NR 35 TC 20 Z9 20 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 1 PY 2009 VL 81 IS 9 BP 3261 EP 3269 DI 10.1021/ac8024224 PG 9 WC Chemistry, Analytical SC Chemistry GA 439MY UT WOS:000265632400013 PM 19323537 ER PT J AU Gritti, F Martin, M Guiochon, G AF Gritti, Fabrice Martin, Michel Guiochon, Georges TI Influence of Viscous Friction Heating on the Efficiency of Columns Operated under Very High Pressures SO ANALYTICAL CHEMISTRY LA English DT Article ID LIQUID-CHROMATOGRAPHY COLUMNS; MASS-TRANSFER; TEMPERATURE PROFILES; SILICA PARTICLES; AXIAL-DISPERSION; TURBULENT-FLOW; HPLC COLUMNS; PACKED-BEDS; DIFFUSION; DISSIPATION AB When columns packed with very fine particles are operated at high mobile phase velocities, the friction of the mobile phase percolating through the column bed generates heat. This heat dissipates along and across the column and axial and radial temperature gradients appear. The wall region of the column tends to be cooler than its center, and due to the influence of temperature on the mobile phase viscosity and on the equilibrium constant of analytes, the band velocity is not constant across the column. This radial heterogeneity of the temperature distribution across the column contributes to band broadening. This phenomenon was investigated assuming a cylindrically symmetrical column and using the general dispersion theory of Aris, which relates the height equivalent to the theoretical plate (HETP) contribution due to a radial heterogeneity of the column to the radial distribution of the linear velocities of a compound peak and to the radial distribution of its apparent dispersion coefficients in the column bed. The former is known from the temperature gradient across the column, the temperature dependencies of the mobile phase viscosity, and the retention factor of the compound. The latter is derived from the known expression of the transverse reduced HETP equation for the column. The values of the HETP calculated with the Aris model and a classical HETP equation were compared to those measured on a 2.1 x 50 mm Acquity BEH-C(18) column, run at flow rates of 0.6, 0.95, 1.30, and 1.65 mL/min, with pure acetonitrile as the mobile,phase and naphtho[2,3-a]pyrene as the retained compound. These two sets of data are in generally good agreement, although the experimental values of the HETP tend to increase faster with increasing mobile phase velocity than the calculated values. C1 [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Martin, Michel] Univ Paris 07, Univ Paris 06, CNRS,UMR 7636, Ecole Super Phys & Chim Ind,Lab Phys & Mecan Mil, F-75231 Paris, France. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 41 TC 85 Z9 85 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAY 1 PY 2009 VL 81 IS 9 BP 3365 EP 3384 DI 10.1021/ac802632x PG 20 WC Chemistry, Analytical SC Chemistry GA 439MY UT WOS:000265632400026 PM 19361228 ER PT J AU Murray, TE Kuhlmann, M Potts, SG AF Murray, Tomas E. Kuhlmann, Michael Potts, Simon G. TI Conservation ecology of bees: populations, species and communities SO APIDOLOGIE LA English DT Review DE conservation; biodiversity; population; community; plant-pollinator ID HALICTUS-RUBICUNDUS HYMENOPTERA; PLANT-POLLINATOR INTERACTIONS; ANIMAL MUTUALISTIC NETWORKS; AMAZONIAN FOREST FRAGMENTS; NEST-SITE SELECTION; LAND-USE INTENSITY; SOLITARY BEES; HABITAT FRAGMENTATION; HONEY-BEES; SWEAT BEE AB Recent concerns regarding the decline of plant and pollinator species, and the impact on ecosystem functioning, has focused attention on the local and global threats to bee diversity. As evidence for bee declines is now accumulating from over broad taxonomic and geographic scales, we review the role of ecology in bee conservation at the levels of species, populations and communities. Bee populations and communities are typified by considerable spatiotemporal variation; whereby autecological traits, population size and growth rate, and plant-pollinator network architecture all play a role in their vulnerability to extinction. As contemporary insect conservation management is broadly based on species- and habitat-targeted approaches, ecological data will be central to integrating management strategies into a broader, landscape scale of dynamic, interconnected habitats capable of delivering bee conservation in the context of global environmental change. C1 [Murray, Tomas E.] TEAGASC, Crops Res Ctr, Carlow, Ireland. [Kuhlmann, Michael] Nat Hist Museum, Dept Entomol, London SW7 5BD, England. [Potts, Simon G.] Univ Reading, Ctr Agrienvironm Res, Sch Agr Policy & Dev, Reading RG6 6AR, Berks, England. RP Murray, TE (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. EM tomas.murray@teagasc.ie RI Potts, Simon/C-7250-2008; Murray, Tomas/C-5540-2013 NR 210 TC 62 Z9 63 U1 10 U2 111 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0044-8435 J9 APIDOLOGIE JI Apidologie PD MAY-JUN PY 2009 VL 40 IS 3 BP 211 EP 236 DI 10.1051/apido/2009015 PG 26 WC Entomology SC Entomology GA 468PT UT WOS:000267832600003 ER PT J AU Herlemann, DPR Geissinger, O Ikeda-Ohtsubo, W Kunin, V Sun, H Lapidus, A Hugenholtz, P Brune, A AF Herlemann, D. P. R. Geissinger, O. Ikeda-Ohtsubo, W. Kunin, V. Sun, H. Lapidus, A. Hugenholtz, P. Brune, A. TI Genomic Analysis of "Elusimicrobium minutum," the First Cultivated Representative of the Phylum "Elusimicrobia" (Formerly Termite Group 1) SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ARCHAEON PYROCOCCUS-FURIOSUS; FERREDOXIN OXIDOREDUCTASE; PHYLOGENETIC DIVERSITY; RETICULITERMES-SPERATUS; NEISSERIA-MENINGITIDIS; CLOSTRIDIUM-KLUYVERI; PEPTIDE FERMENTATION; MICROBIAL ACTIVITIES; ESCHERICHIA-COLI; PILUS BIOGENESIS AB Organisms of the candidate phylum termite group 1 (TG1) are regularly encountered in termite hindguts but are present also in many other habitats. Here, we report the complete genome sequence (1.64 Mbp) of "Elusimicrobium minutum" strain Pei191(T), the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut, and we discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e. g., polyketide synthesis, nonribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of "Elusimicrobia" (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis. C1 [Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Brune, A.] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany. [Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Brune, A (reprint author), Max Planck Inst Terr Microbiol, Karl von Frisch Str, D-35043 Marburg, Germany. EM brune@mpi-marburg.mpg.de RI Lapidus, Alla/I-4348-2013; Hugenholtz, Philip/G-9608-2011; Brune, Andreas/C-6944-2011 OI Lapidus, Alla/0000-0003-0427-8731; hugenholtz, philip/0000-0001-5386-7925; Brune, Andreas/0000-0002-2667-4391 FU International Max Planck Research School for Molecular, Cellular, and Environmental Microbiology; Deutscher Akademischer Austauschdienst; Deutsche Forschungsgemeinschaft FX These activities were supported by the 2007 Community Sequencing Program. D. H. and W.I.-O. were supported by stipends of the International Max Planck Research School for Molecular, Cellular, and Environmental Microbiology and the Deutscher Akademischer Austauschdienst. This work was financed in part by a grant of the Deutsche Forschungsgemeinschaft in the Collaborative Research Center Transregio 1 (SFB-TR1) and by the Max Planck Society. Other parts of this work were performed under the auspices of the U. S. Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Los Alamos National Laboratory under contract DE-AC02-06NA25396. NR 60 TC 35 Z9 153 U1 1 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY 1 PY 2009 VL 75 IS 9 BP 2841 EP 2849 DI 10.1128/AEM.02698-08 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 438WO UT WOS:000265586900030 PM 19270133 ER PT J AU Lower, BH Yongsunthon, R Shi, L Wildling, L Gruber, HJ Wigginton, NS Reardon, CL Pinchuk, GE Droubay, TC Boily, JF Lower, SK AF Lower, Brian H. Yongsunthon, Ruchirej Shi, Liang Wildling, Linda Gruber, Hermann J. Wigginton, Nicholas S. Reardon, Catherine L. Pinchuk, Grigoriy E. Droubay, Timothy C. Boily, Jean-Francois Lower, Steven K. TI Antibody Recognition Force Microscopy Shows that Outer Membrane Cytochromes OmcA and MtrC Are Expressed on the Exterior Surface of Shewanella oneidensis MR-1 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID REDUCING BACTERIUM; PUTREFACIENS MR-1; ELECTRON-TRANSFER; REAL-TIME; PROTEIN; BINDING; GROWTH; CELLS; TIPS AB Antibody recognition force microscopy showed that OmcA and MtrC are expressed on the exterior surface of living Shewanella oneidensis MR-1 cells when Fe(III), including solid-phase hematite (Fe(2)O(3)), was the terminal electron acceptor. OmcA was localized to the interface between the cell and mineral. MtrC displayed a more uniform distribution across the cell surface. Both cytochromes were associated with an extracellular polymeric substance. C1 [Lower, Brian H.] Ohio State Univ, Sch Environm & Nat Resources, Columbus, OH 43210 USA. [Yongsunthon, Ruchirej] Corning Inc, Corning, NY 14831 USA. [Shi, Liang; Reardon, Catherine L.; Pinchuk, Grigoriy E.; Droubay, Timothy C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wildling, Linda; Gruber, Hermann J.] Johannes Kepler Univ Linz, A-4040 Linz, Austria. [Wigginton, Nicholas S.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Boily, Jean-Francois] Umea Univ, SE-90187 Umea, Sweden. RP Lower, BH (reprint author), Ohio State Univ, Sch Environm & Nat Resources, 210 Kottman Hall,2021 Coffey Rd, Columbus, OH 43210 USA. EM Lower.30@osu.edu RI Wigginton, Nicholas/F-1747-2011; Lower, Steven/A-2440-2008; Droubay, Tim/D-5395-2016; Gruber, Hermann/C-4234-2013 OI Wigginton, Nicholas/0000-0001-9161-6131; Lower, Steven/0000-0001-9796-0830; Droubay, Tim/0000-0002-8821-0322; FU DOE-OBES Geosciences Research Program; National Science Foundation [EAR-0745808] FX We are grateful to J. K. Fredrickson and J. M. Zachara for helpful discussions, the suggestions of the anonymous reviewers, and the efforts and comments of the editor. We are forever grateful for the advice given to us by Terry J. Beveridge. NR 28 TC 66 Z9 67 U1 2 U2 28 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAY 1 PY 2009 VL 75 IS 9 BP 2931 EP 2935 DI 10.1128/AEM.02108-08 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 438WO UT WOS:000265586900040 PM 19286784 ER PT J AU Mielenz, JR AF Mielenz, Jonathan R. TI Introduction to Session 10: The New Biofuels Industry: Biomass Environmental Feasibility and Sustainability SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mielenz, JR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mielenzjr@ornl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 156 IS 1-3 BP 521 EP 522 DI 10.1007/s12010-009-8622-z PG 2 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474US UT WOS:000268310300008 PM 19340609 ER PT J AU Selig, MJ Vinzant, TB Himmel, ME Decker, SR AF Selig, Michael J. Vinzant, Todd B. Himmel, Michael E. Decker, Stephen R. TI The Effect of Lignin Removal by Alkaline Peroxide Pretreatment on the Susceptibility of Corn Stover to Purified Cellulolytic and Xylanolytic Enzymes SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Lignin; Pretreatment; Corn stover; Enzyme accessibility; Cellulase; Xylanase ID AGRICULTURAL RESIDUES; ASPERGILLUS-NIGER; DELIGNIFICATION; HYDROLYSIS AB Pretreatment of corn stover with alkaline peroxide (AP) at pH 11.5 resulted in reduction of lignin content in the residual solids as a function of increasing batch temperature. Scanning electron microscopy of these materials revealed notably more textured surfaces on the plant cell walls as a result of the delignifying pretreatment. As expected, digestion of the delignified samples with commercial cellulase preparations showed an inverse relationship between the content of lignin present in the residual solids after pretreatment and the extent of both glucan and xylan conversion achievable. Digestions with purified enzymes revealed that decreased lignin content in the pretreated solids did not significantly impact the extent of glucan conversion achievable by cellulases alone. Not until purified xylanolytic activities were included with the cellulases were significant improvements in glucan conversion realized. In addition, an inverse relationship was observed between lignin content after pretreatment and the extent of xylan conversion achievable in a 24-h period with the xylanolytic enzymes in the absence of the cellulases. This observation, coupled with the direct relationship between enzymatic xylan and glucan conversion observed in a number of cases, suggests that the presence of lignins may not directly occlude cellulose present in lignocelluloses but rather impact cellulase action indirectly by its association with xylan. C1 [Selig, Michael J.; Vinzant, Todd B.; Himmel, Michael E.; Decker, Stephen R.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Selig, MJ (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM michael_selig@nrel.gov FU DOE Office of the Biomass Program; US Department of Energy [DE-AC36-99GO10337] FX This work was supported by the DOE Office of the Biomass Program. This work was supported by the US Department of Energy under contract no. DE-AC36-99GO10337 with the National Renewable Energy Laboratory. NR 17 TC 54 Z9 58 U1 6 U2 31 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 155 IS 1-3 BP 397 EP 406 DI 10.1007/s12010-008-8511-x PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474UM UT WOS:000268309700010 PM 19214798 ER PT J AU Weiss, ND Nagle, NJ Tucker, MP Elander, RT AF Weiss, Noah D. Nagle, Nicholas J. Tucker, Melvin P. Elander, Richard T. TI High Xylose Yields from Dilute Acid Pretreatment of Corn Stover Under Process-Relevant Conditions SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Pretreatment; Dilute acid; Batch reactors; Particle size; Corn stover; Xylose and severity ID SULFURIC-ACID; LIGNOCELLULOSIC BIOMASS; ENZYMATIC-HYDROLYSIS; STEAM EXPLOSION; DIGESTIBILITY; SOLIDS; SACCHARIFICATION; TECHNOLOGIES AB Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave(R) reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 degrees C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment. C1 [Weiss, Noah D.; Nagle, Nicholas J.; Tucker, Melvin P.; Elander, Richard T.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO USA. RP Weiss, ND (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO USA. EM Noah_Weiss@nrel.gov FU US Department of Energy's Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program FX The authors of this paper would like to thank Jeff Wolfe, Justin Sluiter, and David Templeton from the National Renewable Energy Laboratory for their technical and laboratory help. We also gratefully acknowledge the funding for this project provided by the US Department of Energy's Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program. NR 26 TC 29 Z9 29 U1 0 U2 25 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 155 IS 1-3 BP 418 EP 428 DI 10.1007/s12010-008-8490-y PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474UM UT WOS:000268309700012 PM 19142588 ER PT J AU Dodge, TC Davison, BH AF Dodge, Timothy C. Davison, Brian H. TI Session 9: Advances in Bioprocessing and Related Separations Technology SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Editorial Material C1 [Davison, Brian H.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. [Dodge, Timothy C.] Genencor Int, Palo Alto, CA USA. RP Davison, BH (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. EM davisonbh@ornl.gov RI Davison, Brian/D-7617-2013 OI Davison, Brian/0000-0002-7408-3609 NR 0 TC 0 Z9 0 U1 0 U2 1 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 155 IS 1-3 BP 429 EP 430 DI 10.1007/s12010-009-8614-z PG 2 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474UM UT WOS:000268309700013 PM 19319696 ER PT J AU Smith, WA Thompson, DN Thompson, VS Radtke, CW Carter, B AF Smith, William A. Thompson, David N. Thompson, Vicki S. Radtke, Corey W. Carter, Brady TI Assessment of Xylanase Activity in Dry Storage as a Potential Method of Reducing Feedstock Cost SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Endoxylanase; Water activity; Water content; Biomass; Lignocellulose; Storage; Feedstock; Preprocessing; Stability ID WATER ACTIVITY; ENZYMATIC-HYDROLYSIS; INDUSTRIAL APPLICATIONS; WHEAT ARABINOXYLAN; SORPTION PHENOMENA; MOISTURE CONTENTS; BETA-XYLOSIDASE; SYSTEMS AB Enzymatic preprocessing of lignocellulosic biomass in dry storage systems has the potential to improve feedstock characteristics and lower ethanol production costs. To assess the potential for endoxylanase activity at low water contents, endoxylanase activity was tested using a refined wheat arabinoxylan substrate and three commercial endoxylanases over the water activity range 0.21-1.0, corresponding to water contents of 5% to > 60% (dry basis). Homogeneously mixed dry samples were prepared at a fixed enzyme to substrate ratio and incubated in chambers at a variety of fixed water activities. Replicates were sacrificed periodically, and endoxylanase activity was quantified as an increase in reducing sugar relative to desiccant-stored controls. Endoxylanase activity was observed at water activities over 0.91 in all enzyme preparations in less than 4 days and at a water activity of 0.59 in less than 1 week in two preparations. Endoxylanase activity after storage was confirmed for selected desiccant-stored controls by incubation at 100% relative humidity. Water content to water activity relationships were determined for three lignocellulosic substrates, and results indicate that two endoxylanase preparations retained limited activity as low as 7% to 13% water content (dry basis), which is well within the range of water contents representative of dry biomass storage. Future work will examine the effects of endoxylanase activity toward substrates such as corn stover, wheat straw, and switchgrass in low water content environments. C1 [Smith, William A.; Thompson, David N.; Thompson, Vicki S.] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. [Radtke, Corey W.] Shell Global Solut US, Biomass Upstream Dept, Houston, TX 77210 USA. [Carter, Brady] Decagon Devices, Pullman, WA 99163 USA. RP Smith, WA (reprint author), Idaho Natl Lab, Biol Syst Dept, POB 1625, Idaho Falls, ID 83415 USA. EM William.Smith@inl.gov RI Thompson, Vicki/B-9086-2017 OI Thompson, Vicki/0000-0003-4975-392X FU United States Department of Energy; Office of the Biomass Program; DOE-NE Idaho Operations Office [DE-AC07-05ID14517] FX The authors thank Liz Taylor and Karen Delezene- Briggs of the Idaho National Laboratory Biological Systems department for their technical assistance and Robert Cherry of the Idaho National Laboratory Energy Systems and Technology department for his critical review. This work was supported by the United States Department of Energy, Office of the Biomass Program, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. NR 24 TC 3 Z9 3 U1 0 U2 8 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 154 IS 1-3 BP 287 EP 301 DI 10.1007/s12010-008-8451-5 PG 15 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474UE UT WOS:000268308900012 PM 19096939 ER PT J AU Stewart, CN Tschaplinski, T AF Stewart, C. Neal, Jr. Tschaplinski, Timothy TI Session 1: Advances in Bioenergy Feedstocks and Plant Science SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article C1 [Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Tschaplinski, Timothy] Univ Tennessee, Knoxville, TN USA. RP Stewart, CN (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM nstewart@uncg.edu NR 2 TC 0 Z9 0 U1 0 U2 2 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 153 IS 1-2 BP 1 EP 3 DI 10.1007/s12010-009-8617-9 PG 3 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474TV UT WOS:000268308000001 PM 19326257 ER PT J AU Houghton, TP Stevens, DM Pryfogle, PA Wright, CT Radtke, CW AF Houghton, Tracy P. Stevens, Daniel M. Pryfogle, Peter A. Wright, Christopher T. Radtke, Corey W. TI The Effect of Drying Temperature on the Composition of Biomass SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article; Proceedings Paper CT 30th Symposium on Biotechnology for Fuels and Chemicals CY MAY 04-07, 2008 CL New Orleans, LA DE NIR; Biomass; Drying; PCA ID STRAW AB The compositional quality of different lignocellulosic feedstocks influences their performance and potential demand at a biorefinery. Many analytical protocols for determining the composition or performance characteristics of biomass involve a drying step, where the drying temperature can vary depending on the specific protocol. To get reliable data, it is important to determine the correct drying temperature to vaporize the water without negatively impacting the compositional quality of the biomass. A comparison of drying temperatures between 45 degrees C and 100 degrees C was performed using wheat straw and corn stover. Near-infrared (NIR) spectra were taken of the dried samples and compared using principal component analysis (PCA). Carbohydrates were analyzed using quantitative saccharification to determine sugar degradation. Analysis of variance was used to determine if there was a significant difference between drying at different temperatures. PCA showed an obvious separation in samples dried at different temperatures due to sample water content. However, quantitative saccharification data shows, within a 95% confidence interval, that there is no significant difference in sugar content for drying temperatures up to 100 degrees C for wheat straw and corn stover. C1 [Houghton, Tracy P.; Stevens, Daniel M.; Pryfogle, Peter A.; Wright, Christopher T.; Radtke, Corey W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Houghton, TP (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Tracy.Houghton@inl.gov; Daniel.Stevens@inl.gov; Peter.Pryfogle@inl.gov; Christopher.Wright@inl.gov; Corey.Radtke@inl.gov NR 9 TC 4 Z9 4 U1 1 U2 7 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 153 IS 1-2 BP 4 EP 10 DI 10.1007/s12010-008-8406-x PG 7 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474TV UT WOS:000268308000002 PM 19020997 ER PT J AU Knoshaug, EP Zhang, M AF Knoshaug, Eric P. Zhang, Min TI Butanol Tolerance in a Selection of Microorganisms SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Butanol; Tolerance; BioScreenC ID CLOSTRIDIUM-ACETOBUTYLICUM ATCC-824; ETHANOL-PRODUCTION; SOLVENT TOLERANCE; ZYMOMONAS-MOBILIS; ORGANIC-SOLVENTS; SACCHAROMYCES-CEREVISIAE; LIPID-COMPOSITION; MEMBRANE-LIPIDS; FERMENTATION; CORN AB Butanol tolerance is a critical factor affecting the ability of microorganisms to generate economically viable quantities of butanol. Current Clostridium strains are unable to tolerate greater than 2% 1-butanol thus membrane or gas stripping technologies to actively remove butanol during fermentation are advantageous. To evaluate the potential of alternative hosts for butanol production, we screened 24 different microorganisms for their tolerance to butanol. We found that in general, a barrier to growth exists between 1% and 2% butanol and few microorganisms can tolerate 2% butanol. Strains of Escherichia coli, Zymomonas mobilis, and non-Saccharomyces yeasts were unable to surmount the 2% butanol growth barrier. Several strains of Saccharomyces cerevisiae exhibit limited growth in 2% butanol, while two strains of Lactobacillus were able to tolerate and grow in up to 3% butanol. C1 [Knoshaug, Eric P.; Zhang, Min] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Knoshaug, EP (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. EM eric_knoshaug@nrel.gov FU National Renewable Energy Laboratory's Laboratory Directed Research and Development program FX The authors would like to thank the National Renewable Energy Laboratory's Laboratory Directed Research and Development program for funding this work. NR 46 TC 101 Z9 110 U1 4 U2 44 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD MAY PY 2009 VL 153 IS 1-2 BP 13 EP 20 DI 10.1007/s12010-008-8460-4 PG 8 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 474TV UT WOS:000268308000004 PM 19089652 ER PT J AU Fisk, CA Morgan, T Ji, YY Crocker, M Crofcheck, C Lewis, SA AF Fisk, Courtney A. Morgan, Tonya Ji, Yaying Crocker, Mark Crofcheck, Czarena Lewis, Sam A. TI Bio-oil upgrading over platinum catalysts using in situ generated hydrogen SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Bio-oil; Pyrolysis; Upgrading; Catalyst; Platinum ID OXYGENATED HYDROCARBONS; PYROLYSIS; BIOMASS; ALKANES; WATER AB The liquid phase upgrading of a model bio-oil was studied over a series of supported Pt catalysts. Pt/Al(2)O(3) showed the highest activity for deoxygenation, the oxygen content of the model oil decreasing from an initial value of 41.4 wt% to 2.8 wt% after upgrading. GC-MS analysis of the oil showed it to be highly aromatic. the major components corresponding to alkyl-substituted benzenes and cyclohexanes. CO(2) was formed as the major gaseous product, together with lower yields of H(2) and C(1)-C(6) hydrocarbons. Based on the product distribution, a reaction scheme is proposed in which light oxygenates predominantly undergo reforming to CO(2) and H(2), with C-O bond breaking/hydrogenation (to afford alkanes) as a minor pathway. In a parallel process, aromatics undergo C-O cleavage/hydrogenation, affording benzenes and cyclohexanes. The highly alkylated nature of the products appears to be a consequence of the acidic nature of the reaction medium, favoring the occurrence of aromatic electrophilic substitution reactions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fisk, Courtney A.; Morgan, Tonya; Ji, Yaying; Crocker, Mark] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Fisk, Courtney A.; Crofcheck, Czarena] Univ Kentucky, Lexington, KY 40546 USA. [Lewis, Sam A.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Crocker, M (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM crocker@caer.uky.edu; crofcheck@uky.edu RI Crocker, Mark/A-2704-2008 FU Kentucky Rural Energy Consortium FX The authors thank Gerald Thomas for performing the XRD and XRF measurements, Eduardo Santillan-Jimenez for HRTEM analyses, and Dr. John Storey for helpful discussions. Financial support from the Kentucky Rural Energy Consortium is gratefully acknowledged. NR 24 TC 118 Z9 124 U1 0 U2 83 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD MAY 1 PY 2009 VL 358 IS 2 BP 150 EP 156 DI 10.1016/j.apcata.2009.02.006 PG 7 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 437QG UT WOS:000265501400008 ER PT J AU Schaef, HT McGrail, BP AF Schaef, H. Todd McGrail, B. Peter TI Dissolution of Columbia River Basalt under mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide SO APPLIED GEOCHEMISTRY LA English DT Article ID GLASS DISSOLUTION; FORSTERITE DISSOLUTION; FELDSPAR DISSOLUTION; CLIMATE-CHANGE; OXALIC-ACID; PH; KINETICS; RATES; MECHANISM; 25-DEGREES-C AB Increasing attention is being focused on the rapid rise Of CO(2) levels in the atmosphere, which many believe to be the major contributing factor to global climate change. Sequestering CO(2) in deep geological formations has been proposed as a long-term solution to help stabilize CO(2) levels. However, before such technology can be developed and implemented, a basic understanding of H(2)O-CO(2) systems and the chemical interactions of these fluids with the host formation must be obtained. Important issues concerning mineral stability, reaction rates, and carbonate formation are all controlled or at least significantly impacted by the kinetics of rock-water reactions in mildly acidic, CO(2)-saturated solutions. Basalt has recently been identified as a potentially important host formation for geological sequestration. Dissolution kinetics of the Columbia River Basalt (CRB) were measured for a range of temperatures (25-90 degrees C) under mildly acidic to neutral pH conditions using the single-pass flow-through test method. Under anaerobic conditions, the normalized dissolution rates for CRB decrease with increasing pH (3 <= pH <= 7) with a slope, eta, of -0.15 +/- 0.01. Activation energy, E(a), has been estimated at 32.0 +/- 2.4 kJ mol(-1). Dissolution kinetics measurements like these are essential for modeling the rate at which CO(2)-saturated fluids react with basalt and ultimately drive conversion rates to carbonate minerals in situ. (C) 2009 Published by Elsevier Ltd. C1 [Schaef, H. Todd; McGrail, B. Peter] Pacific NW Natl Lab, Energy & Environm Directorate, Appl Geol & Geochem Grp, Richland, WA 99352 USA. RP Schaef, HT (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Appl Geol & Geochem Grp, POB 999,MS K6-81, Richland, WA 99352 USA. EM todd.schaef@pnl.gov FU U.S. Department of Energy Office of Fossil Energy [DE-AC06-76RLO 1830] FX The authors would like to thank the two anonymous reviewers for their insightful comments and suggestions that improved this manuscript. This work was supported by the U.S. Department of Energy Office of Fossil Energy. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 44 TC 37 Z9 40 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD MAY PY 2009 VL 24 IS 5 BP 980 EP 987 DI 10.1016/j.apgeochem.2009.02.025 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 447VU UT WOS:000266220900020 ER PT J AU Inn, KGW LaRosa, J Nour, S Brooks, G Lamont, S Steiner, R Williams, R Patton, B Bostick, D Eiden, G Petersen, S Douglas, M Beals, D Cadieux, J Hall, G Goldberg, S Vogt, S AF Inn, Kenneth G. W. LaRosa, Jerome Nour, Svetlana Brooks, George Lamont, Steve Steiner, Rob Williams, Ross Patton, Brad Bostick, Debbie Eiden, Gregory Petersen, Steve Douglas, Matthew Beals, Donna Cadieux, James Hall, Greg Goldberg, Steve Vogt, Stephan TI Ultra-low level plutonium isotopes in the NIST SRM 4355A (Peruvian Soil-1) SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 5th International Conference on Radionuclide Metrology-Low-Level Radioactivity Measurement Techniques CY SEP 22-26, 2008 CL Braunschweig, GERMANY DE Analytical blank; Inductively-couple-plasma mass spectrometry; Plutonium; Radiochemistry; Reference material; Sediment; Thermal-ionization mass spectrometry ID ATOM RATIOS; NP-237; PU; FALLOUT; SAMPLES AB For more than 20 years, countries and their agencies which monitor radionuclide discharge sites and storage facilities have relied on the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4355 Peruvian Soil. Its low fallout contamination makes it an ideal soil blank for measurements associated with terrestrial-pathway-to-man studies. Presently, SRM 4355 is out of stock, and a new batch of the Peruvian soil is currently under development as future NIST SRM 4355A. Both environmental radioanalytical laboratories and mass spectrometry communities will benefit from the use of this SRM. The former must assess their laboratory procedural contamination and measurement detection limits by measurement of blank sample material. The Peruvian Soil is so low in anthropogenic radionuclide content that it is a suitable virtual blank. On the other hand, mass spectrometric laboratories have high sensitivity instruments that are capable of quantitative isotopic measurements at low plutonium levels in the SRM 4355 (first Peruvian Soil SRM) that provided the mass spectrometric community with the calibration, quality control, and testing material needed for methods development and legal defensibility. The quantification of the ultra-low plutonium content in the SRM 4355A was a considerable challenge for the mass spectrometric laboratories. Careful blank control and correction, isobaric interferences, instrument stability, peak assessment, and detection assessment were necessary. Furthermore, a systematic statistical evaluation of the measurement results and considerable discussions with the mass spectroscopy metrologists were needed to derive the certified values and uncertainties. The one sided upper limit of the 95% tolerance with 95% confidence for the massic (239)Pu content in SRM 4355A is estimated to be 54,000 atoms/g. Published by Elsevier Ltd. C1 [Inn, Kenneth G. W.; LaRosa, Jerome; Nour, Svetlana] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Brooks, George; Lamont, Steve; Steiner, Rob] Los Alamos Natl Lab, Los Alamos, NM USA. [Williams, Ross] Lawrence Livermore Natl Lab, Livermore, CA USA. [Patton, Brad; Bostick, Debbie] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Eiden, Gregory; Petersen, Steve; Douglas, Matthew] Pacific NW Natl Lab, Richland, WA 99352 USA. [Beals, Donna; Cadieux, James; Hall, Greg] Savannah River Natl Lab, Aiken, SC USA. [Goldberg, Steve; Vogt, Stephan] New Brunswick Lab, Argonne, IL USA. RP Inn, KGW (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. EM kenneth.inn@nist.gov OI Douglas, Matthew/0000-0001-9708-1780 NR 8 TC 3 Z9 3 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD MAY PY 2009 VL 67 IS 5 BP 667 EP 671 DI 10.1016/j.apradiso.2009.01.007 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 446OD UT WOS:000266130000002 PM 19264497 ER PT J AU Miley, HS Aalseth, CE Bowyer, TW Fast, JE Hayes, JC Hoppe, EW Hossbach, TW Keillor, ME Kephart, JD McIntyre, JI Seifert, A AF Miley, H. S. Aalseth, C. E. Bowyer, T. W. Fast, J. E. Hayes, J. C. Hoppe, E. W. Hossbach, T. W. Keillor, M. E. Kephart, J. D. McIntyre, J. I. Seifert, A. TI Alternative treaty monitoring approaches using ultra-low background measurement technology SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 5th International Conference on Radionuclide Metrology-Low-Level Radioactivity Measurement Techniques CY SEP 22-26, 2008 CL Braunschweig, GERMANY DE CTBT; IMS; Ultra-low-background; Rasa; Aerosol AB The International Monitoring System (IMS) of the Comprehensive Test Ban Treaty includes a network of stations and laboratories for collection and analysis of radioactive aerosols. Alternative approaches to IMS operations are considered as a method of enhancing treaty verification. Ultra-low background (ULB) detection promises the possibility of improvements to IMS minimum detectable activities (MDAs) well below the current approach, requiring MDA <= 30 mu Bq/m(3) of air for (140)Ba, or about 10(6) fissions per daily sample. (c) 2009 Published by Elsevier Ltd. C1 [Miley, H. S.; Aalseth, C. E.; Bowyer, T. W.; Fast, J. E.; Hayes, J. C.; Hoppe, E. W.; Hossbach, T. W.; Keillor, M. E.; Kephart, J. D.; McIntyre, J. I.; Seifert, A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miley, HS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM harry.miley@pnl.gov RI McIntyre, Justin/P-1346-2014; OI McIntyre, Justin/0000-0002-3706-4310; Keillor, Martin/0000-0001-7828-5868 NR 9 TC 6 Z9 6 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD MAY PY 2009 VL 67 IS 5 BP 746 EP 749 DI 10.1016/j.apradiso.2009.01.069 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 446OD UT WOS:000266130000019 PM 19251426 ER PT J AU Sanna, A Karayiannis, TG Kenning, DBR Hutter, C Sefiane, K Walton, AJ Golobic, I Pavlovic, E Nelson, RA AF Sanna, A. Karayiannis, T. G. Kenning, D. B. R. Hutter, C. Sefiane, K. Walton, A. J. Golobic, I. Pavlovic, E. Nelson, R. A. TI Steps towards the development of an experimentally verified simulation of pool nucleate boiling on a silicon wafer with artificial sites SO APPLIED THERMAL ENGINEERING LA English DT Article CT 10th United Kingdom Heat Transfer Conference CY SEP 10-11, 2007 CL Edinburgh Univ, Pooock Halls, Edinburgh, SCOTLAND SP Heriot-Watt HO Edinburgh Univ, Pooock Halls DE Pool nucleate boiling ID HEAT-TRANSFER; FC-72; MODEL AB Nucleate boiling is a very effective heat transfer cooling process, used in numerous industrial applications. Despite intensive research over decades, a reliable model of nucleate pool boiling is still not available. This paper presents a numerical and experimental investigation of nucleate boiling from artificial nucleation sites. The numerical investigation described in the first section of the paper is carried out by a hybrid mechanistic numerical code first developed at the University of Ljubljana to simulate the temperature field in a heated stainless steel plate with a large number of nucleation sites during pool boiling of water at atmospheric pressure. It is now being redeveloped to interpret experiments on pool boiling at artificial sites on a silicon plate and as a design tool to investigate different arrangements of sites to achieve high heat fluxes. The code combines full simulation of the temperature field in the solid wall with simplified models or correlations for processes in the liquid-vapour region. The current capabilities and limitations of the code are reviewed and improvements are discussed. Examples are given of the removal of computational constraints on the activation of sites in close proximity and improvements to the bubble growth model. Preliminary simulations are presented to compare the wall conditions to be used in the experiments on silicon at Edinburgh University with the conditions in current experiments on thin metal foils at Ljubljana. An experimental rig for boiling experiments with artificial cavities on a 0.38 mm thick silicon wafer immersed in FC-72, developed at Edinburgh University, is described in the second part of the paper. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Sanna, A.; Karayiannis, T. G.; Kenning, D. B. R.] Brunel Univ, Sch Engn & Design, Uxbridge UB8 3PH, Middx, England. [Hutter, C.; Sefiane, K.; Walton, A. J.] Univ Edinburgh, Edinburgh EH9 3JL, Midlothian, Scotland. [Golobic, I.] Univ Ljubljana, Ljubljana, Slovenia. [Pavlovic, E.] Hidrya Inst Klima, Godovic, Slovenia. [Nelson, R. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Karayiannis, TG (reprint author), Brunel Univ, Sch Engn & Design, Uxbridge UB8 3PH, Middx, England. EM tassos.karayiannis@brunel.ac.uk RI Walton, Anthony/A-1550-2010; Walton, Anthony/B-9108-2009 NR 25 TC 9 Z9 9 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD MAY PY 2009 VL 29 IS 7 BP 1327 EP 1337 DI 10.1016/j.applthermaleng.2008.05.021 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA 423ZB UT WOS:000264534200008 ER PT J AU Yellapragada, LS Phan, AV Kaplan, T AF Yellapragada, L. S. Phan, A. -V. Kaplan, T. TI Fluid-solid interaction finite element modeling of a kinetically driven growth instability in stressed solids SO ARCHIVE OF APPLIED MECHANICS LA English DT Article DE Solid phase epitaxy; Fluid-solid interaction; Crystal growth; Interface growth instability ID FRONTS AB The kinetically driven growth instability in stressed solids has been a subject of recent investigation as there is an increasing interest in the effects of non-hydrostatic stresses on crystal growth processes. Recent experimental and modeling work using advanced numerical methods such as boundary element and level set methods have demonstrated that the effect of stress on the solid phase epitaxy (SPE) growth of crystalline silicon from the amorphous phase is responsible for the roughening of its amorphous-crystalline interface. Although our previous model (Phan et al., in Model Simul Mater Sci Eng, 9:309-325, 2001) has been able to explain the observed interfacial instability during the crystal growth of intrinsic silicon, it has not been very successful when extended to the SPE growth process of doped silicon. In an effort to identify the sources that may improve the accuracy and robustness of the previously proposed model, we present in this paper a new approach for modeling the crystal growth in stressed Si layers. The technique is based upon the coupling of a transition-state-theory-based model, a finite element model of the sequentially weak coupling analysis for fluid-solid interaction, and the marker particle method. C1 [Yellapragada, L. S.; Phan, A. -V.] Univ S Alabama, Dept Mech Engn, Mobile, AL 36608 USA. [Kaplan, T.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Phan, AV (reprint author), Univ S Alabama, Dept Mech Engn, Mobile, AL 36608 USA. EM vphan@jaguar1.usouthal.edu FU U.S. Department of Energy [DE-AC05-00OR22725] FX This work was made possible in part by a grant of high performance computing resources and technical support from the Alabama Supercomputer Authority, and by the Applied Mathematical Sciences Research Program of the Office of Mathematical, Information and Computational Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 17 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0939-1533 J9 ARCH APPL MECH JI Arch. Appl. Mech. PD MAY PY 2009 VL 79 IS 5 BP 457 EP 467 DI 10.1007/s00419-008-0244-3 PG 11 WC Mechanics SC Mechanics GA 434XC UT WOS:000265306500006 ER PT J AU Salice, CJ Miller, TJ Roesijadi, G AF Salice, Christopher J. Miller, Thomas J. Roesijadi, G. TI Demographic Responses to Multigeneration Cadmium Exposure in Two Strains of the Freshwater Gastropod, Biomphalaria glabrata SO ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY LA English DT Article ID POPULATION-GROWTH RATE; DAPHNIA-MAGNA; RISK-ASSESSMENT; PARAMETERS; TOLERANCE; TOXICITY; METALS; ACCLIMATION; BIOKINETICS; ELASTICITY AB A life table response experiment (LTRE) was used to quantify the population-level effects of continuous, multigeneration cadmium exposure on two strains of the freshwater gastropod, Biomphalaria glabrata: the parasite-resistant BS90 and parasite-susceptible NMRI strains. Snails were exposed to waterborne cadmium for three consecutive generations. Survival, growth, and reproduction were measured empirically and incorporated into a stage-based, deterministic population model. Cadmium significantly affected hatching success, time to maturity, and juvenile and adult survival in both strains. There were significant effects of generation on fecundity, hatching success, time to maturity and juvenile survival in NMRI, and time to maturity and adult survival in BS90. Cadmium significantly affected the population growth rate, lambda, in BS90. Cadmium, generation, and the cadmium x generation interaction had significant effects on lambda in NMRI. At the high cadmium exposure, lambda for NMRI showed a decrease from generation 1 to generation 2, followed by an increase from generation 2 to generation 3. The lambda value in high-cadmium BS90 steadily decreased over the three generations, while NMRI at this same concentration was similar to the controls. The results indicate that strain-specific differences in response to multigeneration cadmium exposure are evident in B. glabrata. Moreover, effects seen in the first generation are not necessarily indicative of effects in subsequent generations. Changes in lambda over the course of the three-generation exposure suggest that acclimation and/or adaptation to cadmium may have occurred, particularly in NMRI at the high cadmium exposure level. C1 [Salice, Christopher J.] US EPA, OPP, EFED, Washington, DC 20460 USA. [Salice, Christopher J.; Miller, Thomas J.; Roesijadi, G.] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA. [Roesijadi, G.] Pacific NW Natl Lab, Marine Sci Div, Sequim, WA 98382 USA. RP Salice, CJ (reprint author), US EPA, OPP, EFED, 1200 Penn Ave NW 7507P, Washington, DC 20460 USA. EM Salice.christopher@epa.gov; Miller@cbl.umces.edu; g.roesijadi@pnl.gov RI Miller, Thomas/C-2129-2008 OI Miller, Thomas/0000-0001-8427-1614 FU NIH Training Grant [T32 ES-7263]; University of Maryland, Baltimore; Graduate Student Association, University of Maryland, Baltimore FX Support from the following organizations is acknowledged: NIH Training Grant T32 ES-7263 to the Program in Toxicology, University of Maryland, Baltimore, and Graduate Student Association, University of Maryland, Baltimore. Fred Lewis of the Biomedical Research Institute kindly provided snails and invaluable advice on the biology and husbandry of Biomphalaria glabrata. This study was conducted at the University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory. Contribution No. 4201 of the University of Maryland Center for Environmental Science. U. S. Environmental Protection Agency is current address of designated author and is not affiliated with this research. NR 30 TC 15 Z9 15 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-4341 EI 1432-0703 J9 ARCH ENVIRON CON TOX JI Arch. Environ. Contam. Toxicol. PD MAY PY 2009 VL 56 IS 4 BP 785 EP 795 DI 10.1007/s00244-008-9203-9 PG 11 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA 430MT UT WOS:000264993900018 PM 18712500 ER PT J AU Yanny, B Rockosi, C Newberg, HJ Knapp, GR Adelman-McCarthy, JK Alcorn, B Allam, S Prieto, CA An, D Anderson, KSJ Anderson, S Bailer-Jones, CAL Bastian, S Beers, TC Bell, E Belokurov, V Bizyaev, D Blythe, N Bochanski, JJ Boroski, WN Brinchmann, J Brinkmann, J Brewington, H Carey, L Cudworth, KM Evans, M Evans, NW Gates, E Gansicke, BT Gillespie, B Gilmore, G Gomez-Moran, AN Grebel, EK Greenwell, J Gunn, JE Jordan, C Jordan, W Harding, P Harris, H Hendry, JS Holder, D Ivans, II Ivezic, Z Jester, S Johnson, JA Kent, SM Kleinman, S Kniazev, A Krzesinski, J Kron, R Kuropatkin, N Lebedeva, S Lee, YS Leger, RF Lepine, S Levine, S Lin, H Long, DC Loomis, C Lupton, R Malanushenko, O Malanushenko, V Margon, B Martinez-Delgado, D McGehee, P Monet, D Morrison, HL Munn, JA Neilsen, EH Nitta, A Norris, JE Oravetz, D Owen, R Padmanabhan, N Pan, K Peterson, RS Pier, JR Platson, J Fiorentin, PR Richards, GT Rix, HW Schlegel, DJ Schneider, DP Schreiber, MR Schwope, A Sibley, V Simmons, A Snedden, SA Smith, JA Stark, L Stauffer, F Steinmetz, M Stoughton, C SubbaRao, M Szalay, A Szkody, P Thakar, AR Thirupathi, S Tucker, D Uomoto, A Berk, DV Vidrih, S Wadadekar, Y Watters, S Wilhelm, R Wyse, RFG Yarger, J Zucker, D AF Yanny, Brian Rockosi, Constance Newberg, Heidi Jo Knapp, Gillian R. Adelman-McCarthy, Jennifer K. Alcorn, Bonnie Allam, Sahar Prieto, Carlos Allende An, Deokkeun Anderson, Kurt S. J. Anderson, Scott Bailer-Jones, Coryn A. L. Bastian, Steve Beers, Timothy C. Bell, Eric Belokurov, Vasily Bizyaev, Dmitry Blythe, Norm Bochanski, John J. Boroski, William N. Brinchmann, Jarle Brinkmann, J. Brewington, Howard Carey, Larry Cudworth, Kyle M. Evans, Michael Evans, N. W. Gates, Evalyn Gaensicke, B. T. Gillespie, Bruce Gilmore, Gerald Gomez-Moran, Ada Nebot Grebel, Eva K. Greenwell, Jim Gunn, James E. Jordan, Cathy Jordan, Wendell Harding, Paul Harris, Hugh Hendry, John S. Holder, Diana Ivans, Inese I. Ivezic, Zeljko Jester, Sebastian Johnson, Jennifer A. Kent, Stephen M. Kleinman, Scot Kniazev, Alexei Krzesinski, Jurek Kron, Richard Kuropatkin, Nikolay Lebedeva, Svetlana Lee, Young Sun Leger, R. French Lepine, Sebastien Levine, Steve Lin, Huan Long, Daniel C. Loomis, Craig Lupton, Robert Malanushenko, Olena Malanushenko, Viktor Margon, Bruce Martinez-Delgado, David McGehee, Peregrine Monet, Dave Morrison, Heather L. Munn, Jeffrey A. Neilsen, Eric H., Jr. Nitta, Atsuko Norris, John E. Oravetz, Dan Owen, Russell Padmanabhan, Nikhil Pan, Kaike Peterson, R. S. Pier, Jeffrey R. Platson, Jared Fiorentin, Paola Re Richards, Gordon T. Rix, Hans-Walter Schlegel, David J. Schneider, Donald P. Schreiber, Matthias R. Schwope, Axel Sibley, Valena Simmons, Audrey Snedden, Stephanie A. Smith, J. Allyn Stark, Larry Stauffer, Fritz Steinmetz, M. Stoughton, C. SubbaRao, Mark Szalay, Alex Szkody, Paula Thakar, Aniruddha R. Thirupathi, Sivarani Tucker, Douglas Uomoto, Alan Berk, Dan Vanden Vidrih, Simon Wadadekar, Yogesh Watters, Shannon Wilhelm, Ron Wyse, Rosemary F. G. Yarger, Jean Zucker, Dan TI SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g=14-20 SO ASTRONOMICAL JOURNAL LA English DT Review DE Galaxy: halo; Galaxy: stellar content; Galaxy: structure; stars: abundances; stars: fundamental parameters; stars: general ID DIGITAL-SKY-SURVEY; COMMON-ENVELOPE BINARIES; SURVEY COMMISSIONING DATA; RADIAL-VELOCITY SPECTROMETER; SURVEY PHOTOMETRIC SYSTEM; ULTRACOOL WHITE-DWARFS; SURVEY IMAGING DATA; 1ST DATA RELEASE; MILKY-WAY; LUMINOSITY FUNCTION AB The Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey obtained approximate to 240,000 moderate-resolution (R similar to 1800) spectra from 3900 angstrom to 9000 angstrom of fainter Milky Way stars (14.0 < g < 20.3) of a wide variety of spectral types, both main-sequence and evolved objects, with the goal of studying the kinematics and populations of our Galaxy and its halo. The spectra are clustered in 212 regions spaced over three quarters of the sky. Radial velocity accuracies for stars are sigma(RV) similar to 4 km s(-1) at g < 18, degrading to s(RV) similar to 15 km s(-1) at g similar to 20. For stars with signal-to-noise ratio > 10 per resolution element, stellar atmospheric parameters are estimated, including metallicity, surface gravity, and effective temperature. SEGUE obtained 3500 deg(2) of additional ugriz imaging (primarily at low Galactic latitudes) providing precise multicolor photometry (sigma(g, r, i) similar to 2%), (sigma(u, z) similar to 3%) and astrometry (approximate to 0 ''.1) for spectroscopic target selection. The stellar spectra, imaging data, and derived parameter catalogs for this survey are publicly available as part of Sloan Digital Sky Survey Data Release 7. C1 [Yanny, Brian; Adelman-McCarthy, Jennifer K.; Alcorn, Bonnie; Allam, Sahar; Bastian, Steve; Boroski, William N.; Hendry, John S.; Kent, Stephen M.; Kuropatkin, Nikolay; Lebedeva, Svetlana; Leger, R. French; Lin, Huan; Neilsen, Eric H., Jr.; Peterson, R. S.; Platson, Jared; Sibley, Valena; Stoughton, C.; Tucker, Douglas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rockosi, Constance] Univ Calif Santa Cruz, UCO, Lick Observ, Santa Cruz, CA 95064 USA. [Newberg, Heidi Jo] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Knapp, Gillian R.; Gunn, James E.; Ivans, Inese I.; Loomis, Craig; Lupton, Robert; Wadadekar, Yogesh] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Prieto, Carlos Allende] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Prieto, Carlos Allende] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Prieto, Carlos Allende] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [An, Deokkeun] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Anderson, Kurt S. J.; Bizyaev, Dmitry; Blythe, Norm; Brinkmann, J.; Brewington, Howard; Gillespie, Bruce; Jordan, Cathy; Jordan, Wendell; Holder, Diana; Krzesinski, Jurek; Long, Daniel C.; Malanushenko, Olena; Malanushenko, Viktor; Nitta, Atsuko; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie A.; Stauffer, Fritz; Watters, Shannon; Yarger, Jean] Apache Point Observ, Sunspot, NM 88349 USA. [Anderson, Kurt S. J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Anderson, Scott; Bochanski, John J.; Carey, Larry; Evans, Michael; Greenwell, Jim; Owen, Russell; Stark, Larry; Szkody, Paula] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Bailer-Jones, Coryn A. L.; Bell, Eric; Martinez-Delgado, David; Fiorentin, Paola Re; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Beers, Timothy C.; Lee, Young Sun; Thirupathi, Sivarani] Michigan State Univ, Dept Phys & Astron, Ctr Study Cosm Evolut, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun; Thirupathi, Sivarani] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Belokurov, Vasily; Evans, N. W.; Gilmore, Gerald; Zucker, Dan] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Brinchmann, Jarle] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Cudworth, Kyle M.; Gates, Evalyn; Kron, Richard; SubbaRao, Mark] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Gaensicke, B. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Gomez-Moran, Ada Nebot; Schwope, Axel; Steinmetz, M.] Astrophys Inst Potsdam, D-14482 Potsdam, Germany. [Grebel, Eva K.; Vidrih, Simon] Heidelberg Univ, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Harding, Paul; Morrison, Heather L.] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Harris, Hugh; Levine, Steve; Monet, Dave; Munn, Jeffrey A.; Pier, Jeffrey R.] US Naval Observ, Flagstaff Stn, Flagstaff, AZ 86001 USA. [Lepine, Sebastien] Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USA. [Margon, Bruce] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [McGehee, Peregrine] CALTECH, IPAC, Pasadena, CA 91125 USA. [Norris, John E.] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Padmanabhan, Nikhil; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fiorentin, Paola Re] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Richards, Gordon T.] Drexel Univ, Philadelphia, PA 19104 USA. [Schneider, Donald P.; Berk, Dan Vanden] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schreiber, Matthias R.] Univ Valparaiso, Fac Ciencias, Dept Fis & Astron, Valparaiso, Chile. [Smith, J. Allyn] Austin Peay State Univ, Dept Phys & Astron, Clarksville, TN 37040 USA. [SubbaRao, Mark] Adler Planetarium & Astron Museum, Chicago, IL 60605 USA. [Szalay, Alex; Thakar, Aniruddha R.; Wyse, Rosemary F. G.] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Uomoto, Alan] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Wadadekar, Yogesh] Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India. [Wilhelm, Ron] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. RP Yanny, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Padmanabhan, Nikhil/A-2094-2012; Gaensicke, Boris/A-9421-2012; Margon, Bruce/B-5913-2012; Brinchmann, Jarle/M-2616-2015; OI /0000-0002-1891-3794; Gaensicke, Boris/0000-0002-2761-3005; Bell, Eric/0000-0002-5564-9873; Brinchmann, Jarle/0000-0003-4359-8797; Re Fiorentin, Paola/0000-0002-4995-0475; Tucker, Douglas/0000-0001-7211-5729 FU NASA [NAG 5-13057, NAG 5-13147]; Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA) [PHY 02-16783]; U. S. National Science Foundation; Marie Curie Research Training Network [ELSA MRTN-CT-2006-033481] FX C. Allende Prieto acknowledges support from NASA grants NAG 5-13057 and NAG 5-13147. T. C. Beers, Y. S. Lee, and S. Thirupathi acknowledge partial funding of this work from grant PHY 02-16783: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U. S. National Science Foundation. P. Re Fiorentin acknowledges support through the Marie Curie Research Training Network ELSA MRTN-CT-2006-033481. We acknowledge useful discussions with Steve Majewski on the G dwarf target-selection design. We acknowledge several useful suggestions from the referee. NR 116 TC 469 Z9 474 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD MAY PY 2009 VL 137 IS 5 BP 4377 EP 4399 DI 10.1088/0004-6256/137/5/4377 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430WB UT WOS:000265019900021 ER PT J AU Fischer, T Whitehouse, SC Mezzacappa, A Thielemann, FK Liebendorfer, M AF Fischer, T. Whitehouse, S. C. Mezzacappa, A. Thielemann, F. -K. Liebendoerfer, M. TI The neutrino signal from protoneutron star accretion and black hole formation SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE black hole physics; equation of state; hydrodynamics; neutrinos; radiative transfer ID CORE-COLLAPSE SUPERNOVAE; EQUATION-OF-STATE; ELECTRON-CAPTURE SUPERNOVAE; CIRCLE-DOT STARS; METAL-POOR STARS; POPULATION-III; MASSIVE STARS; NUMERICAL-METHOD; DENSE MATTER; TRANSPORT AB Context. We discuss the formation of stellar mass black holes via protoneutron star (PNS) collapse. In the absence of an earlier explosion, the PNS collapses to a black hole due to the continued mass accretion onto the PNS. We present an analysis of the emitted neutrino spectra of all three flavors during the PNS contraction. Aims. Special attention is given to the physical conditions which depend on the input physics, e.g. the equation of state (EoS) and the progenitor model. Methods. The PNSs are modeled as the central object in core collapse simulations using general relativistic three-flavor Boltzmann neutrino transport in spherical symmetry. The simulations are launched from several massive progenitors of 40 M-circle dot and 50 M-circle dot. Results. We analyze the electron-neutrino luminosity dependencies and construct a simple approximation for the electron-neutrino luminosity, which depends only on the physical conditions at the electron-neutrinosphere. In addition, we analyze different (mu, tau)-neutrino pair-reactions separately and compare the differences during the post-bounce phases of failed core collapse supernova explosions of massive progenitors. We also investigate the connection between the increasing (mu, t)-neutrino luminosity and the PNS contraction during the accretion phase before black hole formation. Conclusions. Comparing the different post bounce phases of the progenitor models under investigation, we find large differences in the emitted neutrino spectra. These differences and the analysis of the electron-neutrino luminosity indicate a strong progenitor model dependency of the emitted neutrino signal. C1 [Fischer, T.; Whitehouse, S. C.; Thielemann, F. -K.; Liebendoerfer, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Mezzacappa, A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Fischer, T (reprint author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland. RI Mezzacappa, Anthony/B-3163-2017 OI Mezzacappa, Anthony/0000-0001-9816-9741 NR 62 TC 71 Z9 71 U1 0 U2 6 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2009 VL 499 IS 1 BP 1 EP 15 DI 10.1051/0004-6361/200811055 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 448UD UT WOS:000266286600004 ER PT J AU Hauschildt, PH Baron, E AF Hauschildt, P. H. Baron, E. TI A 3D radiative transfer framework IV. Spherical and cylindrical coordinate systems SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radiative transfer; stars: atmospheres AB Aims. We extend our framework for 3D radiative transfer calculations with a non-local operator splitting methods along (full) characteristics to spherical and cylindrical coordinate systems. These coordinate systems are better suited to a number of physical problems than Cartesian coordinates. Methods. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a full characteristics method. The approximate. operator is constructed considering nearest neighbors exactly. The code is parallelized over both wavelength and solid angle using the MPI library. Results. We present the results of several test cases with different values of the thermalization parameter for the different coordinate systems. The results are directly compared to 1D plane parallel tests. The 3D results agree very well with the well-tested 1D calculations. Conclusions. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. C1 [Hauschildt, P. H.; Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Baron, E.] Univ Oklahoma, Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Hauschildt, PH (reprint author), Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM yeti@hs.uni-hamburg.de; baron@ou.edu RI Baron, Edward/A-9041-2009 OI Baron, Edward/0000-0001-5393-1608 FU NASA [NAG5-3505, NAG5-12127]; NSF [AST-0307323, AST-0707704]; US DOE [DE-FG02-07ER4151, DE-AC03-76SF00098]; DFG [GrK 1351, SFB 676]; State of Hamburg FX This work was supported in part by by NASA grants NAG5-3505 and NAG5-12127, NSF grants AST-0307323, and AST-0707704, and US DOE Grant DE-FG02-07ER41517, as well as DFG GrK 1351 and SFB 676. Some of the calculations presented here were performed at the Hochstleistungs Rechenzentrum Nord (HLRN); at the NASA's Advanced Supercomputing Division's Project Columbia, at the Hamburger Sternwarte Apple G5 and Delta Opteron clusters financially supported by the DFG and the State of Hamburg; and at the National Energy Research Supercomputer Center (NERSC), which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. We thank all these institutions for a generous allocation of computer time. NR 4 TC 11 Z9 11 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2009 VL 498 IS 3 BP 981 EP 985 DI 10.1051/0004-6361/200911661 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 446KZ UT WOS:000266121800033 ER PT J AU Baron, E Hauschildt, PH Chen, B AF Baron, E. Hauschildt, P. H. Chen, B. TI A 3D radiative transfer framework V. Homologous flows SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radiative transfer; relativity; stars: supernovae: general ID OPERATOR PERTURBATION; EQUATION AB Context. Observations and theoretical calculations have shown the importance of non-spherically symmetric structures in supernovae. Thus, the interpretation of observed supernova spectra requires the ability to solve the transfer equation in 3-D moving atmospheres. Aims. We present an implementation of the solution of the radiative transfer equation in 3-D homologously expanding atmospheres in spherical coordinates. The implementation is exact to all orders in v/c. Methods. We use the methods that we have developed in previous papers in this series as well as a new a. ne method that makes use of the fact that photons travel on straight lines. The a. ne method greatly facilitates delineating the characteristics and can be used in the case of strong-gravitational and arbitrary-velocity fields. Results. We compare our results in 3-D for spherically symmetric test problems with high velocity fields (up to 87% of the speed of light) and find excellent agreement, when the number of momentum space angles is high. Our well-tested 1-D results are based on methods where the momentum directions vary along the characteristic (co-moving momentum directions). Thus, we are able to verify both the analytic framework and its numerical implementation. Additionally, we have been able to test the parallelization over characteristics. Using 5122 momentum angles we ran the code on 16 384 Opteron processors and achieved excellent scaling. Conclusions. It is now possible to calculate synthetic spectra from realistic 3D hydro simulations. This should open an era of progress in hydro modeling, similar to that that occurred in the 1980s when 1-D models were confronted with synthetic spectra. C1 [Baron, E.; Hauschildt, P. H.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Baron, E.; Chen, B.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Baron, E (reprint author), Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM baron@ou.edu; yeti@hs.uni-hamburg.de RI Baron, Edward/A-9041-2009; chen, bin/H-5989-2012 OI Baron, Edward/0000-0001-5393-1608; chen, bin/0000-0002-0799-2327 NR 16 TC 12 Z9 12 U1 0 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAY PY 2009 VL 498 IS 3 BP 987 EP 992 DI 10.1051/0004-6361/200911681 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 446KZ UT WOS:000266121800034 ER PT J AU Cooper, PS AF Cooper, Peter S. TI Searching for modifications to the exponential radioactive decay law with the Cassini spacecraft SO ASTROPARTICLE PHYSICS LA English DT Article DE Alpha decay; Deep-space probes AB Data from the power output of the radioisotope thermoelectric generators aboard the Cassini spacecraft are used to test the conjecture that small deviations observed in terrestrial measurements of the exponential radioactive decay law are correlated with the Earth-SUn distance. No significant deviations from exponential decay are observed over a range of 0.7-1.6 A.U.A 90% CL upper limit of 0.84 x 10(-4) is set on a term in the decay rate of (238)Pu proportional to 1/R(2) and 0.99 x 10(-4) for a term proportional to 1/R. The terrestrially measured Earth-Sun distance correlation is similar to (3 x 10(-2))/R(2). (C) 2009 Elsevier B.V. All rights reserved. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Cooper, PS (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM pcooper@fnal.gov NR 6 TC 40 Z9 41 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2009 VL 31 IS 4 BP 267 EP 269 DI 10.1016/j.astropartphys.2009.02.005 PG 3 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 449NC UT WOS:000266336300002 ER PT J AU Watanabe, H Zhang, H Abe, K Hayato, Y Iida, T Ikeda, M Kameda, J Kobayashi, K Koshio, Y Miura, M Moriyama, S Nakahata, M Nakayama, S Obayashi, Y Ogawa, H Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Takenaga, Y Takeuchi, Y Ueno, K Ueshima, K Yamada, S Hazama, S Higuchi, I Ishihara, C Kajita, T Kaneyuki, K Mitsuka, G Nishino, H Okumura, K Tanimoto, N Clark, S Desai, S Dufour, F Kearns, E Likhoded, S Litos, M Raaf, J Stone, JL Sulak, LR Wang, W Goldhaber, M Bays, K Casper, D Cravens, JP Dunmore, J Griskevich, J Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Ganezer, KS Hill, J Keig, WE Jang, JS Jeong, IS Kim, JY Lim, IT Fechner, M Scholberg, K Walter, CW Wendel, R Tasaka, S Guillian, G Learned, JG Matsuno, S Messier, MD Watanabe, Y Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nishikawa, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Ichikawa, AK Minamino, A Nakaya, T Yokoyama, M Haines, TJ Dazeley, S Svoboda, R Gran, R Habig, A Fukuda, Y Itow, Y Tanaka, T Jung, CK McGrew, C Sarrat, A Terri, R Yanagisawa, C Tamura, N Idehara, Y Ishino, H Kibayashi, A Sakuda, M Kuno, Y Yoshida, M Kim, SB Yang, BS Ishizuka, T Okazawa, H Choi, Y Seo, HK Furuse, Y Nishijima, K Yokosawa, Y Koshiba, M Totsuka, Y Vagins, MR Chen, S Deng, Z Gong, G Liu, Y Xue, T Kielczewska, D Berns, HG Shiraishi, KK Thrane, E Wilkes, RJ AF Watanabe, H. Zhang, H. Abe, K. Hayato, Y. Iida, T. Ikeda, M. Kameda, J. Kobayashi, K. Koshio, Y. Miura, M. Moriyama, S. Nakahata, M. Nakayama, S. Obayashi, Y. Ogawa, H. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takenaga, Y. Takeuchi, Y. Ueno, K. Ueshima, K. Yamada, S. Hazama, S. Higuchi, I. Ishihara, C. Kajita, T. Kaneyuki, K. Mitsuka, G. Nishino, H. Okumura, K. Tanimoto, N. Clark, S. Desai, S. Dufour, F. Kearns, E. Likhoded, S. Litos, M. Raaf, J. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Bays, K. Casper, D. Cravens, J. P. Dunmore, J. Griskevich, J. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hill, J. Keig, W. E. Jang, J. S. Jeong, I. S. Kim, J. Y. Lim, I. T. Fechner, M. Scholberg, K. Walter, C. W. Wendel, R. Tasaka, S. Guillian, G. Learned, J. G. Matsuno, S. Messier, M. D. Watanabe, Y. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nishikawa, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Ichikawa, A. K. Minamino, A. Nakaya, T. Yokoyama, M. Haines, T. J. Dazeley, S. Svoboda, R. Gran, R. Habig, A. Fukuda, Y. Itow, Y. Tanaka, T. Jung, C. K. McGrew, C. Sarrat, A. Terri, R. Yanagisawa, C. Tamura, N. Idehara, Y. Ishino, H. Kibayashi, A. Sakuda, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Furuse, Y. Nishijima, K. Yokosawa, Y. Koshiba, M. Totsuka, Y. Vagins, M. R. Chen, S. Deng, Z. Gong, G. Liu, Y. Xue, T. Kielczewska, D. Berns, H. G. Shiraishi, K. K. Thrane, E. Wilkes, R. J. CA Super-Kamiokande Collaboration TI First study of neutron tagging with a water Cherenkov detector SO ASTROPARTICLE PHYSICS LA English DT Article DE Neutron tagging; Water Cherenkov detector; Gadolinium ID SUPERNOVA RELIC NEUTRINO; KAMIOKANDE DETECTOR; OSCILLATION; SPECTRUM; EVOLUTION AB A first study of neutron tagging is conducted in Super-Kamiokande, a 50,000 ton water Cherenkov detector, The tagging efficiencies of thermal neutrons are evaluated in a 0.2% GdCl(3)-water solution and pure water. They are determined to be, respectively, 66.7% for events above 3 MeV and 20% with corresponding background probabilities of 2 x 10(-4) and 3 x 10(-2). This newly developed technique may enable water Cherenkov detectors to identify (nu) over bar (e)'s from astrophysical sources as well as those produced by commercial reactors via the delayed coincidence scheme. (C) 2009 Elsevier B.V. All rights reserved. C1 [Watanabe, H.; Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Ueno, K.; Ueshima, K.; Yamada, S.] Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Gifu 5061205, Japan. [Hazama, S.; Higuchi, I.; Ishihara, C.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nishino, H.; Okumura, K.; Tanimoto, N.] Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Chiba 2778582, Japan. [Clark, S.; Desai, S.; Dufour, F.; Kearns, E.; Likhoded, S.; Litos, M.; Raaf, J.; Stone, J. L.; Sulak, L. R.; Wang, W.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Bays, K.; Casper, D.; Cravens, J. P.; Dunmore, J.; Griskevich, J.; Kropp, W. R.; Liu, D. W.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Jeong, I. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Fechner, M.; Scholberg, K.; Walter, C. W.; Wendel, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Guillian, G.; Learned, J. G.; Matsuno, S.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Messier, M. D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Watanabe, Y.] Kanagawa Univ, Fac Engn, Kanagawa 2218686, Japan. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Ichikawa, A. K.; Minamino, A.; Nakaya, T.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Haines, T. J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. [Dazeley, S.; Svoboda, R.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Itow, Y.; Tanaka, T.] Nagoya Univ, Solar Terr Environm Lab, Aichi 4648602, Japan. [Jung, C. K.; McGrew, C.; Sarrat, A.; Terri, R.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Idehara, Y.; Ishino, H.; Kibayashi, A.; Sakuda, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kuno, Y.; Yoshida, M.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. [Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Furuse, Y.; Nishijima, K.; Yokosawa, Y.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. [Koshiba, M.; Totsuka, Y.] Univ Tokyo, Tokyo 1130033, Japan. [Zhang, H.; Chen, S.; Deng, Z.; Gong, G.; Liu, Y.; Xue, T.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Kielczewska, D.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Berns, H. G.; Shiraishi, K. K.; Thrane, E.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Moriyama, S.; Nakahata, M.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Kajita, T.; Kaneyuki, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Vagins, M. R.] Univ Tokyo, IPMU, Chiba 2778568, Japan. RP Watanabe, H (reprint author), Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Gifu 5061205, Japan. EM h-watana@suketto.icrr.u-tokyo.ac.jp; zhanghb02@mails.tsinghua.edu.cn RI Kibayashi, Atsuko/K-7327-2015; Yokoyama, Masashi/A-4458-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Obayashi, Yoshihisa/A-4472-2011; Suzuki, Yoichiro/F-7542-2010; Takeuchi, Yasuo/A-4310-2011; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015 OI Raaf, Jennifer/0000-0002-4533-929X; Yokoyama, Masashi/0000-0003-2742-0251; Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505 NR 22 TC 34 Z9 34 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD MAY PY 2009 VL 31 IS 4 BP 320 EP 328 DI 10.1016/j.astropartphys.2009.03.002 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 449NC UT WOS:000266336300010 ER PT J AU Wang, P Abel, T AF Wang, Peng Abel, Tom TI MAGNETOHYDRODYNAMIC SIMULATIONS OF DISK GALAXY FORMATION: THE MAGNETIZATION OF THE COLD AND WARM MEDIUM SO ASTROPHYSICAL JOURNAL LA English DT Review DE galaxies: formation; galaxies: ISM ID DRIVEN INTERSTELLAR-MEDIUM; ADAPTIVE MESH REFINEMENT; NEUTRAL ATOMIC PHASES; STAR-FORMATION; MOLECULAR CLOUDS; GALACTIC DISKS; IDEAL MAGNETOHYDRODYNAMICS; ACCRETION DISK; GODUNOV METHOD; SPIRAL GALAXY AB We modeled the formation and early evolution of disk galaxies with a magnetized interstellar medium using magnetohydrodynamic (MHD) adaptive mesh refinement simulations. For a 10(10) M-circle dot halo with initial Navarro-Frenk-White dark matter and gas profiles, we impose a uniform 10(-9) G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. We find that the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk with the amplification rate roughly one e-folding per orbit. After the initial rapid amplification lasting similar to 500 Myr, subsequent field amplification appears self-regulated. The field strengths in the self-regulated regime have similar strength as the observed fields in the Milky Way galaxy both in the warm and the cold H I phases. Since supernova explosions, which we neglected in our current model, are likely to further amplify the magnetic field, our calculation suggests that Milky Way strength magnetic field might be common in high redshift disk galaxies. After saturation, highly magnetized material also begins to form above and below the disk, which may affect subsequent galaxy evolution, especially mergers, significantly. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. We also find that magnetic force can provide further support in the cold gas and lead to a decline of the amount of cold gas at high density which may lead to a decline in the star formation rate. C1 [Wang, Peng; Abel, Tom] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Wang, Peng; Abel, Tom] Stanford Phys Dept, Menlo Pk, CA 94025 USA. [Wang, Peng; Abel, Tom] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. RP Wang, P (reprint author), Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. EM pengwang@stanford.edu; tabel@stanford.edu NR 113 TC 50 Z9 50 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2009 VL 696 IS 1 BP 96 EP 109 DI 10.1088/0004-637X/696/1/96 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435NH UT WOS:000265350100010 ER PT J AU Miles, AR AF Miles, Aaron R. TI THE BLAST-WAVE-DRIVEN INSTABILITY AS A VEHICLE FOR UNDERSTANDING SUPERNOVA EXPLOSION STRUCTURE SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; instabilities; supernovae: general; supernovae: individual (Tycho); supernova remnants ID RAYLEIGH-TAYLOR INSTABILITY; CORE COLLAPSE SUPERNOVAE; DELAYED-DETONATION MODEL; BUBBLE MERGER MODEL; IA SUPERNOVAE; NUMERICAL-SIMULATION; NONLINEAR EVOLUTION; INTERSTELLAR-MEDIUM; 2 DIMENSIONS; SN 1987A AB Blast-wave-driven instabilities play a rich and varied role in supernovae (SNe) evolution from explosion to remnant, but interpreting their role is difficult due to the enormous complexity of stellar systems. We consider the simpler idealized problem of an interface between two constant-density fluids perturbed from spherical and driven by a central blast wave. Where valid, the existence of unified solutions suggests that general conclusions can be drawn about the likely asymptotic structure of the mixing zone. To this end, we apply buoyancy-drag and bubble merger models that include effects of divergence and compressibility. In general, these effects preclude the true self-similar evolution of classical Rayleigh-Taylor (RT), but can be incorporated into a quasi-self-similar growth model. Loss of memory of initial conditions (ICs) can occur in the model, but requires pre-explosion mode numbers higher than predicted for Type II SNe, suggesting that their late-time structure is influenced by details of the initial perturbations. Where low modes dominate, as in the Type Ia Tycho remnant, they result from initial perturbations rather than generation from smaller scales. Therefore, the structure observed now contains direct information about the explosion process. When large-amplitude modes exist in the ICs, the contribution from the Richtmyer-Meshkov (RM) instability is significant compared to RT. Such RM growth can yield proximity of the forward shock to the growing spikes and structure that strongly resembles that observed in Tycho. Laser-driven laboratory experiments offer a promising avenue for testing model and simulation descriptions of blast-wave-driven instabilities and making connections to their astrophysical counterparts. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Miles, AR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM miles15@llnl.gov FU U.S. Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344] FX I thank Tomasz Plewa and Casey Meakin for very educational discussions on SN explosion physics and modeling, and acknowledge that planning for SN-motivated experiments for the NIF is underway in collaboration with Dave Arnett, Paul Drake, Michael Grosskopf, Freddy Hansen, Nathan Hearn, Warren Hsing, Caroline Kuranz, Casey Meakin, Tomasz Plewa, Bruce Remington, and Harry Robey. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 73 TC 15 Z9 15 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2009 VL 696 IS 1 BP 498 EP 514 DI 10.1088/0004-637X/696/1/498 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435NH UT WOS:000265350100040 ER PT J AU Seitenzahl, IR Meakin, CA Townsley, DM Lamb, DQ Truran, JW AF Seitenzahl, Ivo R. Meakin, Casey A. Townsley, Dean M. Lamb, Don Q. Truran, James W. TI SPONTANEOUS INITIATION OF DETONATIONS IN WHITE DWARF ENVIRONMENTS: DETERMINATION OF CRITICAL SIZES SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances; shock waves; supernovae: general; white dwarfs ID GRAVITATIONALLY CONFINED DETONATION; IA-SUPERNOVAE; GASEOUS DETONATIONS; THERMONUCLEAR SUPERNOVAE; STELLAR HYDRODYNAMICS; DELAYED-DETONATION; 3-DIMENSIONAL SIMULATIONS; DEFLAGRATION PHASE; MODEL; STABILITY AB Some explosion models for Type Ia supernovae (SNe Ia), such as the gravitationally confined detonation (GCD) or the double detonation sub-Chandrasekhar (DDSC) models, rely on the spontaneous initiation of a detonation in the degenerate (12)C/(16)O material of a white dwarf (WD). The length scales pertinent to the initiation of the detonation are notoriously unresolved in multidimensional stellar simulations, prompting the use of results of one-dimensional simulations at higher resolution, such as those performed for this work, as guidelines for deciding whether or not conditions reached in the higher dimensional full star simulations successfully would lead to the onset of a detonation. Spontaneous initiation relies on the existence of a suitable gradient in self-ignition (induction) times of the fuel, which we set up with a spatially localized nonuniformity of temperature-a hot spot. We determine the critical (smallest) sizes of such hot spots that still marginally result in a detonation in WD matter by integrating the reactive Euler equations with the hydrodynamics code flash. We quantify the dependences of the critical sizes of such hot spots on composition, background temperature, peak temperature, geometry, and functional form of the temperature disturbance, many of which were hitherto largely unexplored in the literature. We discuss the implications of our results in the context of modeling of SNe Ia. C1 [Seitenzahl, Ivo R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Seitenzahl, Ivo R.; Meakin, Casey A.; Townsley, Dean M.; Truran, James W.] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Seitenzahl, Ivo R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Meakin, Casey A.; Townsley, Dean M.; Lamb, Don Q.; Truran, James W.] Univ Chicago, Ctr Astrophys Thermonucl Flashes, Chicago, IL 60637 USA. [Meakin, Casey A.; Townsley, Dean M.; Lamb, Don Q.; Truran, James W.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Meakin, Casey A.; Townsley, Dean M.] Univ Arizona, Steward Observ, Tucson, AZ 85719 USA. [Truran, James W.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Truran, James W.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Seitenzahl, IR (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. OI Seitenzahl, Ivo/0000-0002-5044-2988 FU U.S. Department of Energy [B523820]; National Science Foundation [PHY 02-16783]; German Research Foundation [RO 3676/1-1]; Argonne National Laboratory [W-31-109-ENG-38] FX This work is supported in part by the U.S. Department of Energy under contract B523820 to the ASC Alliances Center for Astrophysical Flashes and in part by the National Science Foundation under grant PHY 02-16783 for the Frontier Center "Joint Institute for Nuclear Astrophysics" (JINA) and in part by the Emmy Noether Program of the German Research Foundation (DFG; RO 3676/1-1). J.W.T. acknowledges support from Argonne National Laboratory, operated under contract no. W-31-109-ENG-38 with the DOE. NR 64 TC 62 Z9 62 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2009 VL 696 IS 1 BP 515 EP 527 DI 10.1088/0004-637X/696/1/515 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435NH UT WOS:000265350100041 ER PT J AU Heger, A Friedland, A Giannotti, M Cirigliano, V AF Heger, Alexander Friedland, Alexander Giannotti, Maurizio Cirigliano, Vincenzo TI THE IMPACT OF NEUTRINO MAGNETIC MOMENTS ON THE EVOLUTION OF MASSIVE STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE neutrinos; stars: evolution; stars: interiors; supergiants ID RED SUPERGIANT PROGENITOR; ENERGY-LOSS RATES; ELECTROMAGNETIC PROPERTIES; PLATEAU SUPERNOVA; STELLAR EVOLUTION; GAUGE THEORIES; HELIUM FLASH; CORE MASS; PLASMA; PAIR AB We explore the sensitivity of massive stars to neutrino magnetic moments. We find that the additional cooling due to the neutrino magnetic moments brings about qualitative changes to the structure and evolution of stars in the mass window 7 M(circle dot) less than or similar to M less than or similar to 18 M(circle dot), rather than simply changing the timescales for the burning. We describe some of the consequences of this modified evolution: the shifts in the threshold masses for creating core-collapse supernovae and oxygen-neon-magnesium white dwarfs and the appearance of a new type of supernova in which a partial carbon-oxygen core explodes within a massive star. The resulting sensitivity to the magnetic moment is at the level of (2-4) x 10(-11) mu(B). C1 [Heger, Alexander] Univ Minnesota, Theoret Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Los Alamos Natl Lab, Astrophys Grp, Los Alamos, NM 87545 USA. [Heger, Alexander] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Friedland, Alexander; Giannotti, Maurizio] Los Alamos Natl Lab, Elementary Particles & Field Theory Grp, Los Alamos, NM 87545 USA. [Cirigliano, Vincenzo] Los Alamos Natl Lab, Nucl Phys Grp, Los Alamos, NM 87545 USA. RP Heger, A (reprint author), Univ Minnesota, Theoret Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM alex@physics.umn.edu; friedland@lanl.gov; maurizio@lanl.gov; cirigliano@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396, DE-FG02-87ER40328]; DOE [DOE-FC02-01ER41176, DOE-FC02-06ER41438] FX This work was performed under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We thank C. Badenes, C. Fryer, J.Beacom, and S.-C. Yoon for valuable suggestions and discussions. A. H. has also been supported, in part, by the DOE Program for Scientific Discovery through Advanced Computing (SciDAC, DOE-FC02-01ER41176, and DOE-FC02-06ER41438) and by the U.S. Department of Energy under grant DE-FG02-87ER40328. NR 68 TC 15 Z9 15 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2009 VL 696 IS 1 BP 608 EP 619 DI 10.1088/0004-637X/696/1/608 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435NH UT WOS:000265350100050 ER PT J AU Conroy, C Wechsler, RH AF Conroy, Charlie Wechsler, Risa H. TI CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME SO ASTROPHYSICAL JOURNAL LA English DT Review DE cosmology: theory; dark matter; galaxies: formation; galaxies: halos; large-scale structure of universe ID INITIAL MASS FUNCTION; DIGITAL SKY SURVEY; COSMOLOGICAL SPH SIMULATIONS; LUMINOUS RED GALAXIES; AEGIS FIELD GALAXIES; LYMAN BREAK GALAXIES; METAL-POOR STARS; STELLAR MASS; FORMATION HISTORY; FORMING GALAXIES AB A simple, observationally motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs, i.e., more massive galaxies are assigned to more massive halos at each epoch. This "abundance matching" technique has been shown previously to reproduce the observed luminosity and scale dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate (SFR)-stellar mass relation to z similar to 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M(star) approximate to 10(10.0-10.5) M(circle dot) from 0 < z < 1, and that such galaxies over these epochs reside in halos with M(vir) approximate to 10(11.5-12.5) M(circle dot). The SFR-halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including ( 1) a clarification of "downsizing", (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar buildup of galaxies with M(star) less than or similar to 10(11) M(circle dot) at z < 1. C1 [Conroy, Charlie] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Wechsler, Risa H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Wechsler, Risa H.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. RP Conroy, C (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. FU U. S. Department of Energy [DE-AC02-76SF00515]; Terman Fellowship at Stanford University; Aspen Center for Physics [NSF-0602228] FX We thank Andrew Hopkins, Kai Noeske, Ben Panter, Pablo Perez-Gonzalez, Samir Salim, and Stephen Wilkins for providing their data in electronic format and substantial help in its interpretation, Kyle Stewart for providing his simulation results, and Jeremy Tinker for generously providing his mass function and cosmology code. We thank Marcelo Alvarez, Peter Behroozi, Niv Drory, Sandy Faber, Andrew Hopkins, Andrey Kravtsov, Kai Noeske, and Aristotle Socrates for helpful conversations, and Brian Gerke, Ari Maller, Samir Salim, and David Schiminovich for helpful comments on an earlier draft. R. H. W. thanks the San Francisco skyline for inspiration; C. C. thanks Princeton for being monotonic. R. H. W. was supported in part by the U. S. Department of Energy under contract number DE-AC02-76SF00515 and by a Terman Fellowship at Stanford University. We thank the Aspen Center for Physics ( partially funded by NSF-0602228) for hosting us while much of this work was completed. Last, but certainly not least, we thank the referee, Eric Bell, for a careful and constructive referee's report. NR 131 TC 291 Z9 291 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2009 VL 696 IS 1 BP 620 EP 635 DI 10.1088/0004-637X/696/1/620 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435NH UT WOS:000265350100051 ER PT J AU Kuranz, CC Drake, RP Harding, EC Grosskopf, MJ Robey, HF Remington, BA Edwards, MJ Miles, AR Perry, TS Blue, BE Plewa, T Hearn, NC Knauer, JP Arnett, D Leibrandt, DR AF Kuranz, C. C. Drake, R. P. Harding, E. C. Grosskopf, M. J. Robey, H. F. Remington, B. A. Edwards, M. J. Miles, A. R. Perry, T. S. Blue, B. E. Plewa, T. Hearn, N. C. Knauer, J. P. Arnett, D. Leibrandt, D. R. TI TWO-DIMENSIONAL BLAST-WAVE-DRIVEN RAYLEIGH-TAYLOR INSTABILITY: EXPERIMENT AND SIMULATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; instabilities; plasmas; supernovae: individual (SN 1987A) ID CORE COLLAPSE SUPERNOVAE; HYDRODYNAMICS CODE; EARLY EVOLUTION; LIGHT-CURVE; SN-1987A; TRANSITION; REMNANTS; SYSTEM; MODEL; OMEGA AB This paper shows results from experiments diagnosing the development of the Rayleigh-Taylor instability with two-dimensional initial conditions at an embedded, decelerating interface. Experiments are performed at the Omega Laser and use similar to 5 kJ of energy to create a planar blastwave in a dense, plastic layer that is followed by a lower density foam layer. The single-mode interface has a wavelength of 50 mu m and amplitude of 2.5 mu m. Some targets are supplemented with additional modes. The interface is shocked then decelerated by the foam layer. This initially produces the Richtmyer-Meshkov instability followed and then dominated by Rayleigh-Taylor growth that quickly evolves into the nonlinear regime. The experimental conditions are scaled to be hydrodynamically similar to SN1987A in order to study the instabilities that are believed to occur at the He/H interface during the blast-wave-driven explosion phase of the star. Simulations of the experiment were performed using the FLASH hydrodynamics code. C1 [Kuranz, C. C.; Drake, R. P.; Harding, E. C.; Grosskopf, M. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Robey, H. F.; Remington, B. A.; Edwards, M. J.; Miles, A. R.; Perry, T. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Blue, B. E.] Gen Atom Co, San Diego, CA USA. [Plewa, T.] Florida State Univ, Dept Comp Sci, Dirac Sci Lib Tallahassee, Tallahassee, FL 32306 USA. [Hearn, N. C.] Univ Chicago, ASC, Alliances Ctr Astrophys Thermonuclear Flashes, Chicago, IL 60637 USA. [Knauer, J. P.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Arnett, D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Leibrandt, D. R.] MIT, Cambridge, MA 02139 USA. RP Kuranz, CC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. RI Plewa, Tomasz/C-1470-2010; Perry, Theodore/K-3333-2014; OI Plewa, Tomasz/0000-0002-1762-2565; Perry, Theodore/0000-0002-8832-2033; Drake, R Paul/0000-0002-5450-9844 FU DOE Research [DE FG03-99DP00284, DE-FG03-00SF22021] FX The authors would like to acknowledge Chuck Source and the Omega operations staff as well as Russell Wallace and the LLNL target fabrication team. The software used in this work was in part developed by the DOE-supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. Financial support for this work included funding from the Stewardship Science Academic Alliances program through DOE Research grant DE FG03-99DP00284, and through DE-FG03-00SF22021 and other grants and contracts. NR 40 TC 31 Z9 31 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2009 VL 696 IS 1 BP 749 EP 759 DI 10.1088/0004-637X/696/1/749 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435NH UT WOS:000265350100064 ER PT J AU Andersson, K Peterson, JR Madejski, G Goobar, A AF Andersson, K. Peterson, J. R. Madejski, G. Goobar, A. TI CHARACTERIZING THE PROPERTIES OF CLUSTERS OF GALAXIES AS A FUNCTION OF LUMINOSITY AND REDSHIFT SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; X-rays: galaxies: clusters ID XMM-NEWTON OBSERVATION; X-RAY-CLUSTERS; CHANDRA OBSERVATION; INTRACLUSTER GAS; COOLING-CORE; COLD FRONTS; DARK-MATTER; T RELATION; TEMPERATURE; MASS AB We report the application of the new Monte Carlo method, smoothed particle inference (SPI, described in a pair of companion papers), toward analysis and interpretation of X-ray observations of clusters of galaxies with the XMM-Newton satellite. Our sample consists of publicly available well exposed observations of clusters at redshifts z > 0.069, totaling 101 objects. We determine the luminosity and temperature structure of the X-ray emitting gas, with the goal to quantify the scatter and the evolution of the L(X)-T relation, as well as to investigate the dependence on cluster substructure with redshift. This work is important for the establishment of the potential robustness of mass estimates from X-ray data which in turn is essential toward the use of clusters for measurements of cosmological parameters. We use the luminosity and temperature maps derived via the SPI technique to determine the presence of cooling cores, via measurements of luminosity and temperature contrast. The L(X)-T relation is investigated, and we confirm that L(X) alpha T(3). We find a weak redshift dependence (alpha (1 + z)(beta LT), beta(LT) = 0.50 +/- 0.34), in contrast to some Chandra results. The level of dynamical activity is established using the "power ratio" method, and we compare our results to previous application of this method to Chandra data for clusters. We find signs of evolution in the P(3)/P(0) power ratio. A new method, the "temperature two-point correlation function," is proposed. This method is used to determine the " power spectrum" of temperature fluctuations in the X-ray emitting gas as a function of spatial scale. We show how this method can be fruitfully used to identify cooling core clusters as well as those with disturbed structures, presumably due to ongoing or recent merger activity. C1 [Andersson, K.] MIT, MKI, Cambridge, MA 02139 USA. [Andersson, K.; Goobar, A.] Stockholm Univ, Dept Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden. [Peterson, J. R.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Madejski, G.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Madejski, G.] Stanford Univ, KIPAC, Stanford, CA 94309 USA. RP Andersson, K (reprint author), MIT, MKI, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM kanderss@physto.se FU Goran Gustavsson Foundation for Research; Natural Sciences and Medicine; NASA XMM-Newton [NNX06AE39G, NNX07AE93G]; Department of Energy [DE-AC376SF00515] FX K. A. acknowledges financial support from the Goran Gustavsson Foundation for Research in Natural Sciences and Medicine. This research was supported by NASA XMM-Newton observing grants NNX06AE39G and NNX07AE93G, and by the Department of Energy contract to SLAC DE-AC376SF00515. NR 52 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD MAY 1 PY 2009 VL 696 IS 1 BP 1029 EP 1050 DI 10.1088/0004-637X/696/1/1029 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435NH UT WOS:000265350100085 ER PT J AU Kubo, JM Allam, SS Annis, J Buckley-Geer, EJ Diehl, HT Kubik, D Lin, H Tucker, D AF Kubo, Jeffrey M. Allam, Sahar S. Annis, James Buckley-Geer, Elizabeth J. Diehl, H. Thomas Kubik, Donna Lin, Huan Tucker, Douglas TI THE SLOAN BRIGHT ARCS SURVEY: SIX STRONGLY LENSED GALAXIES AT z=0.4-1.4 SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gravitational lensing ID DIGITAL SKY SURVEY; LUMINOUS RED GALAXY; EARLY DATA RELEASE; GIANT ARCS; DISCOVERY; SAMPLE AB We present new results of our program to systematically search for strongly lensed galaxies in the Sloan Digital Sky Survey (SDSS) imaging data. In this study six strong lens systems are presented which we have confirmed with follow-up spectroscopy and imaging using the 3.5m telescope at the Apache Point Observatory. Preliminary mass models indicate that the lenses are group-scale systems with velocity dispersions ranging from 464 to 882 km s(-1) at z = 0.17-0.45 which are strongly lensing source galaxies at z = 0.4-1.4. Galaxy groups are a relatively new mass scale just beginning to be probed with strong lensing. Our sample of lenses roughly doubles the confirmed number of group-scale lenses in the SDSS and complements ongoing strong lens searches in other imaging surveys. As our arcs were discovered in the SDSS imaging data they are all bright (r less than or similar to 22), making them ideally suited for detailed follow-up studies. C1 [Kubo, Jeffrey M.; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Kubik, Donna; Lin, Huan; Tucker, Douglas] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Kubo, JM (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. OI Tucker, Douglas/0000-0001-7211-5729 NR 21 TC 25 Z9 25 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAY 1 PY 2009 VL 696 IS 1 BP L61 EP L65 DI 10.1088/0004-637X/696/1/L61 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 434CP UT WOS:000265253100015 ER PT J AU Schekochihin, AA Cowley, SC Dorland, W Hammett, GW Howes, GG Quataert, E Tatsuno, T AF Schekochihin, A. A. Cowley, S. C. Dorland, W. Hammett, G. W. Howes, G. G. Quataert, E. Tatsuno, T. TI ASTROPHYSICAL GYROKINETICS: KINETIC AND FLUID TURBULENT CASCADES IN MAGNETIZED WEAKLY COLLISIONAL PLASMAS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Review DE magnetic fields; methods: analytical; MHD; plasmas; turbulence ID SOLAR-WIND TURBULENCE; COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; ALFVEN-WAVE-PACKETS; INCOMPRESSIBLE HALL MAGNETOHYDRODYNAMICS; ADVECTION-DOMINATED ACCRETION; GRADIENT-DRIVEN TURBULENCE; DENSITY POWER SPECTRUM; SMALL-SCALE ANISOTROPY; INTERSTELLAR-MEDIUM; MHD TURBULENCE AB This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations become the slow and entropy modes of the conventional MHD). In the "dissipation range" below ion gyroscale, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like electron reduced magnetohydrodynamic (ERMHD) equations and a passive cascade of ion entropy fluctuations both in space and velocity. The latter cascade brings the energy of the inertial-range fluctuations that was Landau-damped at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for all of these cascades. The relationship between the theoretical models proposed in this paper and astrophysical applications and observations is discussed in detail. C1 [Schekochihin, A. A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Schekochihin, A. A.; Cowley, S. C.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Cowley, S. C.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Dorland, W.; Tatsuno, T.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Hammett, G. W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Howes, G. G.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Schekochihin, AA (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, S Parks Rd, Oxford OX1 3NP, England. EM a.schekochihin1@physics.ox.ac.uk RI Schekochihin, Alexander/C-2399-2009; Tatsuno, Tomo/A-3467-2011; Hammett, Gregory/D-1365-2011; Dorland, William/B-4403-2009 OI Hammett, Gregory/0000-0003-1495-6647; Dorland, William/0000-0003-2915-724X NR 288 TC 312 Z9 315 U1 4 U2 34 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD MAY PY 2009 VL 182 IS 1 BP 310 EP 377 DI 10.1088/0067-0049/182/1/310 PG 68 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 442BX UT WOS:000265815900013 ER PT J AU Ribeiro, ALB Schilling, AC AF Ribeiro, A. L. B. Schilling, A. C. TI Dark energy and flatness from observational H(z) plus WMAP constraint SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Dark energy; Flatness ID ACCELERATING UNIVERSE; COSMOLOGICAL CONSTANT; RED GALAXIES; SUPERNOVAE; DENSITY; AGES AB We analyse the dark energy problem using observational H(z) data plus the curvature constraint given by WMAP. After a non-parametric statistical study covering the most probable range of Omega (m0) and H (0) from different combination of data, we investigate the possibility of having the dark energy EoS parameter omega (x) not equal a'1. In order to keep strict flatness (1% of deviation from Omega=1), our results point out this is the case for 0.20a parts per thousand(2)Omega (m0)a parts per thousand(2)0.23 and H (0)a parts per thousand 67 km/s/Mpc, with omega (x) a parts per thousand a'0.55. However, if we admit a 10% deviation from the flatness condition, omega (x) may have any value in the range [-1.2,-0.5] for 0.20a parts per thousand(2)Omega (m0)a parts per thousand(2)0.35 and 67a parts per thousand(2)H (0)a parts per thousand(2)74 km/s/Mpc. C1 [Ribeiro, A. L. B.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Ribeiro, A. L. B.; Schilling, A. C.] Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, BR-45650000 Ilheus, BA, Brazil. RP Ribeiro, ALB (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM albr@uesc.br FU CNPq [201322/2007-2] FX We thank M. Dopita for useful suggestions. A.L.B. Ribeiro also thanks the support of CNPq, under grant 201322/2007-2. NR 31 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD MAY PY 2009 VL 321 IS 1 BP 43 EP 46 DI 10.1007/s10509-009-9995-8 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 428ES UT WOS:000264831400005 ER PT J AU Spicer, CW Holdren, MW Cowen, KA Joseph, DW Satola, J Goodwin, B Mayfield, H Laskin, A Alexander, ML Ortega, JV Newburn, M Kagann, R Hashmonay, R AF Spicer, Chester W. Holdren, Michael W. Cowen, Kenneth A. Joseph, Darrell W. Satola, Jan Goodwin, Bradley Mayfield, Howard Laskin, Alexander Alexander, M. Lizabeth Ortega, John V. Newburn, Matthew Kagann, Robert Hashmonay, Ram TI Rapid measurement of emissions from military aircraft turbine engines by downstream extractive sampling of aircraft on the ground: Results for C-130 and F-15 aircraft SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Jet engine emissions; Turbine engine; Emission factor; Emission index; Hazardous air pollutants; Afterburner emissions; Military aircraft ID USE COMMERCIAL AIRCRAFT; CHEMICAL-COMPOSITION; TROPOSPHERIC OZONE; EXHAUST EMISSIONS; AIR; IMPACT; AIRPORT; MODEL AB Aircraft emissions affect air quality on scales from local to global. More than 20% of the jet fuel used in the U.S. is consumed by military aircraft, and emissions from this source are facing increasingly stringent environmental regulations, so improved methods for quickly and accurately determining emissions from existing and new engines are needed. This paper reports results of a study to advance the methods used for detailed characterization of military aircraft emissions, and provides emission factors for two aircraft: the F-15 fighter and the C-130 cargo plane. The measurements involved outdoor ground-level sampling downstream behind operational military aircraft. This permits rapid change-out of the aircraft so that engines can be tested quickly on operational aircraft. Measurements were made at throttle settings from idle to afterburner using a simple extractive probe in the dilute exhaust. Emission factors determined using this approach agree very well with those from the traditional method of extractive sampling at the exhaust exit. Emission factors are reported for CO(2), CO, NO, NO(x), and more than 60 hazardous and/or reactive organic gases. Particle size, mass and composition also were measured and are being reported separately. Comparison of the emissions of nine hazardous air pollutants from these two engines with emissions from nine other aircraft engines is discussed. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Spicer, Chester W.] SpiceAir Consulting, Columbus, OH 43221 USA. [Holdren, Michael W.] Sci Consulting, Columbus, OH USA. [Cowen, Kenneth A.; Joseph, Darrell W.; Satola, Jan; Goodwin, Bradley] Battelle Mem Inst, Columbus, OH 43201 USA. [Mayfield, Howard] USAF, Res Lab, Tyndall AFB, FL 32403 USA. [Laskin, Alexander; Alexander, M. Lizabeth; Newburn, Matthew] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Ortega, John V.] Univ Colorado, Boulder, CO 80309 USA. [Kagann, Robert; Hashmonay, Ram] Arcadis G&M, Durham, NC 27713 USA. RP Spicer, CW (reprint author), SpiceAir Consulting, 2703 Mt Holyoke Rd, Columbus, OH 43221 USA. EM spiceair@columbus.rr.com RI Laskin, Alexander/I-2574-2012 OI Laskin, Alexander/0000-0002-7836-8417 FU U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830]; Strategic Environmental Research and Development Program (SERDP) [W912HQ-05-C-0002] FX The authors would like to acknowledge the support of SMSgts Wayne Ashley and Gary Dunlap at the Kentucky Air National Guard Base, and their aircraft maintenance team, Mengdawn Cheng of Oak Ridge National Laboratory and Edwin Corporan of Wright-Patterson Air Force Base for their collaboration during the C-130 testing, and Lt. Eric Cappell and MSgt. Jeff Durrence and the staff of the Tyndall Air Force Base trim pad facility during the F-15 test program. We also wish to acknowledge the contributions of our deceased Battelle colleague Tony Wisbith. Some of the measurement techniques were provided by the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under contract No. DE-AC05-76RL01830. This study was conducted with funding support from the Strategic Environmental Research and Development Program (SERDP) under contract W912HQ-05-C-0002. NR 27 TC 17 Z9 18 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAY PY 2009 VL 43 IS 16 BP 2612 EP 2622 DI 10.1016/j.atmosenv.2009.02.012 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 448PA UT WOS:000266273300012 ER PT J AU West, TO Marland, G Singh, N Bhaduri, BL Roddy, AB AF West, Tristram O. Marland, Gregg Singh, Nagendra Bhaduri, Budhendra L. Roddy, Adam B. TI The human carbon budget: an estimate of the spatial distribution of metabolic carbon consumption and release in the United States SO BIOGEOCHEMISTRY LA English DT Article DE Agriculture; Carbon dioxide; Food consumption; Horizontal carbon transfer; Population; Respiration ID AGRICULTURE AB Carbon dioxide is taken up by agricultural crops and released soon after during the consumption of agricultural commodities. The global net impact of this process on carbon flux to the atmosphere is negligible, but impact on the spatial distribution of carbon dioxide uptake and release across regions and continents is significant. To estimate the consumption and release of carbon by humans over the landscape, we developed a carbon budget for humans in the United States. The budget was derived from food commodity intake data for the US and from algorithms representing the metabolic processing of carbon by humans. Data on consumption, respiration, and waste of carbon by humans were distributed over the US using geospatial population data with a resolution of similar to 450 x 450 m. The average adult in the US contains about 21 kg C and consumes about 67 kg C year(-1) which is balanced by the annual release of about 59 kg C as expired CO2, 7 kg C as feces and urine, and less than 1 kg C as flatus, sweat, and aromatic compounds. In 2000, an estimated 17.2 Tg C were consumed by the US population and 15.2 Tg C were expired to the atmosphere as CO2. Historically, carbon stock in the US human population has increased between 1790 and 2006 from 0.06 Tg to 5.37 Tg. Displacement and release of total harvested carbon per capita in the US is nearly 12% of per capita fossil fuel emissions. Humans are using, storing, and transporting carbon about the Earth's surface. Inclusion of these carbon dynamics in regional carbon budgets can improve our understanding of carbon sources and sinks. C1 [West, Tristram O.; Marland, Gregg] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Marland, Gregg] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Singh, Nagendra; Bhaduri, Budhendra L.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Roddy, Adam B.] Swarthmore Coll, Swarthmore, PA 19081 USA. RP West, TO (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM westto@ornl.gov RI West, Tristram/C-5699-2013; Roddy, Adam/M-4523-2013 OI West, Tristram/0000-0001-7859-0125; Roddy, Adam/0000-0002-4423-8729 FU US Department of Energy Global Change Education Program for A. Roddy; National Oceanic and Atmospheric Association; Human Dimensions of Climate Change Program; US Department of Energy, Office of Biological and Environmental Research [DE-AC05-00OR22725]; Carbon Dioxide Information Analysis Center FX We thank Maithilee Kunda for her assistance with calculations of human respiration and Aarthy Sabesan for initial analyses on human food consumption. We kindly acknowledge support from the US Department of Energy Global Change Education Program for A. Roddy. This work was supported by the National Oceanic and Atmospheric Association, Human Dimensions of Climate Change Program. Additional resources were provided by the US Department of Energy, Office of Biological and Environmental Research, Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 54 TC 14 Z9 14 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD MAY PY 2009 VL 94 IS 1 BP 29 EP 41 DI 10.1007/s10533-009-9306-z PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 455CE UT WOS:000266733200003 ER PT J AU Fenton, SE Reiner, JL Nakayama, SF Delinsky, AD Stanko, JP Hines, EP White, SS Lindstrom, AB Strynar, MJ Petropoulou, SSE AF Fenton, S. E. Reiner, J. L. Nakayama, S. F. Delinsky, A. D. Stanko, J. P. Hines, E. P. White, S. S. Lindstrom, A. B. Strynar, M. J. Petropoulou, S. S. E. TI Disposition of Perfluorooctanoic Acid (PFOA) in Pregnant and Lactating CD-1 Mice and Their Pups SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Meeting Abstract C1 [Fenton, S. E.; Stanko, J. P.; Hines, E. P.; White, S. S.] US EPA, Reprod Toxicol Div, Natl Hlth & Environm Effects Res Lab, ORD, Res Triangle Pk, NC 27711 USA. [Reiner, J. L.; Nakayama, S. F.; Petropoulou, S. S. E.] US EPA, ORISE, Human Exposure & Atmospher Sci Div, Natl Exposure Res Lab,ORD, Res Triangle Pk, NC 27711 USA. [White, S. S.] Univ N Carolina, Curriculum Toxicol, Chapel Hill, NC USA. RI Reiner, Jessica/B-9169-2008; Nakayama, Shoji/B-9027-2008 NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD MAY PY 2009 VL 85 IS 5 BP 432 EP 432 PG 1 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA 454PX UT WOS:000266695900107 ER PT J AU Ritchie, RO AF Ritchie, R. O. TI On the origins of fracture resistance and its biological degradation in human bone SO BONE LA English DT Meeting Abstract CT 2nd Joint Meeting of the International-Bone-and-Mineral-Society/Australian-New-Zealand-Bone-and-M ineral-Society CY MAR 21-25, 2009 CL Sydney, AUSTRALIA SP Int Bone & Mineral Soc, Australian & New Zealand Bone & Mineral Soc C1 [Ritchie, R. O.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Ritchie, R. O.] Univ Calif Berkeley, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 8756-3282 J9 BONE JI Bone PD MAY PY 2009 VL 44 MA 045 BP S33 EP S33 DI 10.1016/j.bone.2009.01.083 PG 1 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 436SP UT WOS:000265436200041 ER PT J AU Bakosi, J Franzese, P Boybeyi, Z AF Bakosi, J. Franzese, P. Boybeyi, Z. TI Joint PDF Modelling of Turbulent Flow and Dispersion in an Urban Street Canyon SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Langevin equation; Monte-Carlo method; Probability density function method; Scalar dispersion; Urban-scale turbulence ID PROBABILITY DENSITY-FUNCTION; CONVECTIVE BOUNDARY-LAYER; MEANDERING PLUME MODEL; CONCENTRATION FLUCTUATIONS; REACTIVE FLOWS; HOMOGENEOUS TURBULENCE; INTERNAL FLUCTUATIONS; POLLUTANT DISPERSION; MICROMIXING MODEL; ATMOSPHERIC FLOW AB The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exchange with the conditional mean (IECM) model, with a micro-mixing time scale designed for geometrically complex settings. The boundary layer along no-slip walls (building sides and tops) is fully resolved using an elliptic relaxation technique, which captures the high anisotropy and inhomogeneity of the Reynolds stress tensor in these regions. A less computationally intensive technique based on wall functions to represent the boundary layers and its effect on the solution are also explored. The calculated statistics are compared to experimental data and large-eddy simulation. The present work can be considered as the first example of computation of the full joint PDF of velocity and a transported passive scalar in an urban setting. The methodology proves successful in providing high level statistical information on the turbulence and pollutant concentration fields in complex urban scenarios. C1 [Bakosi, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Franzese, P.; Boybeyi, Z.] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA. RP Bakosi, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jbakosi@lanl.gov OI Bakosi, Jozsef/0000-0002-0604-5555 NR 60 TC 4 Z9 4 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD MAY PY 2009 VL 131 IS 2 BP 245 EP 261 DI 10.1007/s10546-009-9370-x PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 428EW UT WOS:000264831800007 ER PT J AU Mormino, EC Kluth, JT Madison, CM Rabinovici, GD Baker, SL Miller, BL Koeppe, RA Mathis, CA Weiner, MW Jagust, WJ AF Mormino, E. C. Kluth, J. T. Madison, C. M. Rabinovici, G. D. Baker, S. L. Miller, B. L. Koeppe, R. A. Mathis, C. A. Weiner, M. W. Jagust, W. J. CA Alzheimer's Dis Neuroimaging Initi TI Episodic memory loss is related to hippocampal-mediated -amyloid deposition in elderly subjects SO BRAIN LA English DT Article DE Pittsburgh Compound-B; magnetic resonance imaging; -amyloid; hippocampus; preclinical Alzheimers disease ID MILD COGNITIVE IMPAIRMENT; PRECLINICAL ALZHEIMERS-DISEASE; PITTSBURGH COMPOUND-B; PARTIAL-VOLUME CORRECTION; NONDEMENTED INDIVIDUALS; CLINICAL DEMENTIA; HEAD SIZE; BRAIN; PET; MRI AB Although -amyloid (A) plaques are a primary diagnostic criterion for Alzheimers disease, this pathology is commonly observed in the brains of non-demented older individuals. To explore the importance of this pathology in the absence of dementia, we compared levels of amyloid deposition (via Pittsburgh Compound-B (PIB) positron emission tomography (PET) imaging) to hippocampus volume (HV) and episodic memory (EM) in three groups: (i) normal controls (NC) from the Berkeley Aging Cohort (BAC NC, n 20); (ii) normal controls (NC) from the Alzheimers disease neuroimaging initiative (ADNI NC, n 17); and (iii) PIB mild cognitive impairment subjects from the ADNI (ADNI PIB MCI, n 39). Age, gender and education were controlled for in each statistical model, and HV was adjusted for intracranial volume (aHV). In BAC NC, elevated PIB uptake was significantly associated with smaller aHV (P 0.0016) and worse EM (P 0.0086). Within ADNI NC, elevated PIB uptake was significantly associated with smaller aHV (P 0.047) but not EM (P 0.60); within ADNI PIB MCI, elevated PIB uptake was significantly associated with both smaller aHV (P 0.00070) and worse EM (P 0.046). To further understand these relationships, a recursive regression procedure was conducted within all ADNI NC and PIB MCI subjects (n 56) to test the hypothesis that HV mediates the relationship between A and EM. Significant correlations were found between PIB index and EM (P 0.0044), PIB index and aHV (P 0.0001), as well as between aHV and EM (P 0.0001). When both aHV and PIB were included in the same model to predict EM, aHV remained significant (P 0.0015) whereas PIB index was no longer significantly associated with EM (P 0.50). These results are consistent with a model in which A deposition, hippocampal atrophy, and EM occur sequentially in elderly subjects, with A deposition as the primary event in this cascade. This pattern suggests that declining EM in older individuals may be caused by A-induced hippocampus atrophy. C1 [Mormino, E. C.; Madison, C. M.; Rabinovici, G. D.; Jagust, W. J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Kluth, J. T.; Rabinovici, G. D.; Baker, S. L.; Jagust, W. J.] Lawrence Berkeley Natl Lab, Dept Mol Imaging & Neurosci, Berkeley, CA USA. [Rabinovici, G. D.; Miller, B. L.; Jagust, W. J.] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94143 USA. [Rabinovici, G. D.; Miller, B. L.; Jagust, W. J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. [Koeppe, R. A.] Univ Michigan, Dept Radiol, Div Nucl Med, Ann Arbor, MI 48109 USA. [Mathis, C. A.] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA. [Weiner, M. W.] Ctr Imaging Neurodegenerat Dis, Dept Vet Affairs Med Ctr, San Francisco, CA USA. RP Jagust, WJ (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall,MC 3190, Berkeley, CA 94720 USA. EM jagust@berkeley.edu RI Preda, Adrian /K-8889-2013; Saykin, Andrew/A-1318-2007; Beversdorf, David/M-2786-2016 OI Preda, Adrian /0000-0003-3373-2438; Saykin, Andrew/0000-0002-1376-8532; Beversdorf, David/0000-0002-0298-0634 FU National Institutes of Health [AG027859]; Alzheimer's Disease Neuroimaging Initiative [AG024904] FX National Institutes of Health (AG027859); and by the Alzheimer's Disease Neuroimaging Initiative (AG024904). NR 69 TC 339 Z9 343 U1 7 U2 22 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-8950 J9 BRAIN JI Brain PD MAY PY 2009 VL 132 BP 1310 EP 1323 DI 10.1093/brain/awn320 PG 14 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 444AB UT WOS:000265950900019 PM 19042931 ER PT J AU Bissell, M AF Bissell, Mina TI The Importance of the tumor microenvironment in the initiation, promotion, and therapy of cancer SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA PL-4 PG 2 WC Oncology SC Oncology GA V43ST UT WOS:000209701800255 ER PT J AU Bissell, M AF Bissell, Mina TI The Importance of the tumor microenvironment in the initiation, promotion, and therapy of cancer SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA PL-4 PG 2 WC Oncology SC Oncology GA V43TB UT WOS:000209702600050 ER PT J AU Bissell, M AF Bissell, Mina TI The Importance of the tumor microenvironment in the initiation, promotion, and therapy of cancer SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Bissell, Mina] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA PL-4 PG 2 WC Oncology SC Oncology GA V43TB UT WOS:000209702600220 ER PT J AU Chen, L AF Chen, Lei TI Characterization of the promoter region of the ORF11 gene of Kaposi's sarcoma-associated herpesvirus SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Chen, Lei] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 4222 PG 1 WC Oncology SC Oncology GA V43ST UT WOS:000209701802132 ER PT J AU Nguyen, D Oketch-Rabah, H Barcellos-Hoff, MH AF David Nguyen Oketch-Rabah, Hellen Barcellos-Hoff, Mary Helen TI Host biology affects the frequency of ER plus breast cancer SO CANCER RESEARCH LA English DT Meeting Abstract C1 NYU, Langone Sch Med, New York, NY USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 2384 PG 2 WC Oncology SC Oncology GA V43TC UT WOS:000209702703011 ER PT J AU Gendelman, R Xing, HM Mirzoyeva, O Feiler, HF Gray, J Korn, W Khalil, I AF Gendelman, Rina Xing, Heming Mirzoyeva, Olga Feiler, Heidi Feiler Gray, Joe Korn, W. Khalil, Iya TI A systems-based approach to identifying novel components of MEK signaling networks in breast cancer SO CANCER RESEARCH LA English DT Meeting Abstract C1 UCSF, San Francisco, CA USA. Gene Network Sci, Boston, MA USA. LBNL, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 3292 PG 1 WC Oncology SC Oncology GA V43ST UT WOS:000209701801076 ER PT J AU Gu, YC Patterson, A Atwell, G Chernikova, S Brown, JM Thompson, L Wilson, W AF Gu Yongchuan Patterson, Adam Atwell, Graham Chernikova, Sophia Brown, J. Martin Thompson, Larry Wilson, William TI Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A SO CANCER RESEARCH LA English DT Meeting Abstract C1 Univ Auckland, Auckland Canc Soc, Res Ctr, Auckland 1, New Zealand. Stanford Univ, Dept Radiat Oncol, Div Radiat & Canc Biol, Stanford, CA 94305 USA. Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 1294 PG 1 WC Oncology SC Oncology GA V43ST UT WOS:000209701801376 ER PT J AU Hu, Z Kuo, WL Das, D Ziyad, S Gu, S Bhattacharya, S Wyrobek, A Wang, N Feiler, H Wooster, R Weber, B Gray, J AF Hu, Zhi Kuo, Wen-lin Das, Debopriya Ziyad, Safiyyah Gu, Shenda Bhattacharya, Sanchta Wyrobek, Andy Wang, Nicholas Feiler, Heidi Wooster, Richard Weber, Barbara Gray, Joe TI Small molecular inhibitor of centromere-associated protein E (CENP-E), GSK923295A inhibits cell growth in breast cancer cells SO CANCER RESEARCH LA English DT Meeting Abstract C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. GlaxoSmithKline Inc, Collegeville, PA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 5572 PG 2 WC Oncology SC Oncology GA V43TB UT WOS:000209702604331 ER PT J AU Jensen, T Novak, P Garbe, J Stampfer, M Futscher, B AF Jensen, Taylor Novak, Petr Garbe, James Stampfer, Martha Futscher, Bernard TI Step-wise DNA methylation changes are associated with escape from defined proliferation barriers during transformation of human mammary epithelial cells SO CANCER RESEARCH LA English DT Meeting Abstract C1 Univ Arizona, Arizona Canc Ctr, Tucson, AZ USA. Univ Arizona, Tucson, AZ USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 4750 PG 1 WC Oncology SC Oncology GA V43ST UT WOS:000209701801463 ER PT J AU Klein-McDowell, M Hodgson, G Kuo, WL Das, D Goga, A Benz, C Yaswen, P Gray, J Chin, K AF Klein-McDowell, Molly Hodgson, Graeme Kuo, Wen-Lin Das, Debo Goga, Andrei Benz, Chris Yaswen, Paul Gray, Joe Chin, Koei TI MicroRNA expression profiling in 40 breast cancer cell lines. SO CANCER RESEARCH LA English DT Meeting Abstract C1 UCSF Comp Canc Ctr, San Francisco, CA USA. Univ Calif San Francisco, Canc Res Inst, San Francisco, CA 94143 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. UCSF Dept Med Hematol Oncol, San Francisco, CA USA. Buck Inst, Novato, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA LB-308 PG 2 WC Oncology SC Oncology GA V43ST UT WOS:000209701805024 ER PT J AU Krig, S Farnham, P Yaswen, P Sweeney, C AF Krig, Sheryl Farnham, Peggy Yaswen, Paul Sweeney, Colleen TI The ZNF217 breast cancer oncogene, amplifed at 20q13, activates the ErbB3 promoter and is a potential biomarker for invasiveness at DCIS SO CANCER RESEARCH LA English DT Meeting Abstract C1 Univ Calif Davis, Sacramento, CA 95817 USA. Univ Calif Davis, Davis, CA 95616 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 4244 PG 1 WC Oncology SC Oncology GA V43ST UT WOS:000209701802157 ER PT J AU Martin, K Bissell, M Fournier, M AF Martin, Katherine Bissell, Mina Fournier, Marcia TI Predictive value of a gene-signature identified in 3D cultures in breast cancer treated with Docetaxel. SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Martin, Katherine; Bissell, Mina; Fournier, Marcia] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA 751 PG 2 WC Oncology SC Oncology GA V43TC UT WOS:000209702702089 ER PT J AU Sadanandam, A Gibb, W Heiser, L Kuo, WL Spellman, P Gray, J AF Sadanandam, Anguraj Gibb, William Heiser, Laura Kuo, Wen-Lin Spellman, Paul Gray, Joe TI Integrated omic analysis of breast cancer cell lines SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Sadanandam, Anguraj; Gibb, William; Heiser, Laura; Kuo, Wen-Lin; Spellman, Paul; Gray, Joe] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD MAY 1 PY 2009 VL 69 SU 9 MA LB-312 PG 1 WC Oncology SC Oncology GA V43ST UT WOS:000209701802395 ER PT J AU Mellone, BG Zhang, WG Karpen, GH AF Mellone, Barbara G. Zhang, Weiguo Karpen, Gary H. TI Frodos Found: Behold the CENP-A "Ring" Bearers SO CELL LA English DT Review ID FISSION YEAST SCM3; CENTROMERIC CHROMATIN; PROPAGATION; NUCLEOSOME; PROTEIN AB CENP-A is a histone H3-like protein specific to centromeres that is essential for kinetochore formation and accurate chromosome segregation in eukaryotes. Recent studies (Dunleavy et al., 2009; Foltz et al., 2009; Perpelescu et al., 2009; Pidoux et al., 2009; Williams et al., 2009) analyze CENP-A binding proteins required for the recruitment of CENP-A to centromeres in humans and in fission yeast, bringing us closer to understanding how centromere identity is faithfully propagated. C1 [Zhang, Weiguo; Karpen, Gary H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mellone, Barbara G.] Univ Connecticut, Storrs, CT 06269 USA. RP Karpen, GH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM karpen@fruitfly.org OI Mellone, Barbara/0000-0002-2785-5119 FU Susan Komen Foundation; NIH [R01 GM066272] FX We are grateful to The Journal of Cell Biology for providing the Perpelescu et al. manuscript prior to publication and for insightful comments from the reviewers. W.Z. is supported by Susan Komen Foundation. Centromere studies in G.K.'s lab are supported by NIH R01 GM066272. NR 16 TC 10 Z9 11 U1 0 U2 2 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD MAY 1 PY 2009 VL 137 IS 3 BP 409 EP 412 DI 10.1016/j.cell.2009.04.035 PG 4 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 440CV UT WOS:000265677200012 PM 19410539 ER PT J AU Bhaumik, D Patil, CK Campisi, J AF Bhaumik, Dipa Patil, Christopher K. Campisi, Judith TI MicroRNAs An important player in maintaining a balance between inflammation and tumor suppression SO CELL CYCLE LA English DT News Item C1 [Bhaumik, Dipa; Patil, Christopher K.; Campisi, Judith] Buck Inst Age Res, Novato, CA USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bhaumik, D (reprint author), Buck Inst Age Res, Novato, CA USA. EM JCampisi@lbl.gov NR 4 TC 0 Z9 0 U1 0 U2 0 PU LANDES BIOSCIENCE PI AUSTIN PA 1002 WEST AVENUE, 2ND FLOOR, AUSTIN, TX 78701 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD MAY 1 PY 2009 VL 8 IS 9 PG 1 WC Cell Biology SC Cell Biology GA 446IF UT WOS:000266114600010 ER PT J AU Ujwal, R Cascio, D Chaptal, V Ping, P Abramson, J AF Ujwal, Rachna Cascio, Duilio Chaptal, Vincent Ping, Peipei Abramson, Jeff TI Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation SO CHANNELS LA English DT Article DE VDAC; crystal structure; oligomerization; orientation ID DEPENDENT ANION CHANNEL; MITOCHONDRIAL OUTER-MEMBRANE; PEPTIDE-SPECIFIC ANTIBODIES; X-RAY-STRUCTURE; NEUROSPORA-CRASSA; TOPOLOGY; PROTEIN; HEXOKINASE; ANGSTROM; EMRE AB All eukaryotic cells require efficient trafficking of metabolites between the mitochondria and the rest of the cell. This exchange is carried out by the dominant protein in the outer mitochondrial membrane (OMM), the Voltage Dependent Anion Channel (VDAC), which serves as the primary pathway for the exchange of ions an metabolites between the cytoplasm and the intermembrane space of the mitochondria. Additionally, VDAC provides a scaffold for the binding of modulator proteins to the mitochondria and has been implicated in mitochondria-dependent cell death. We recently determined the structure of the murine VDAC1 (mVDAC1) at 2.3 angstrom resolution crystallized in a native-like bilayer environment. The high-resolution structure provided concise structural details about the voltage-sensing N-terminal domain and catalyzed new hypotheses regarding the gating mechanisms for metabolites and ions that transit the OMM. In this study, the crystal packing of MVDAC1 is analyzed revealing a strong antiparallel dimer that further assemble as hexamers mimicking the native oligomeric packing observed in EM and AFM images of the OMM. Oligomerization has been shown to be important for VDAC regulation and function, and mVDAC1 crystal packing in a lipidic medium reveals insights on how oligomerization is accomplished using protein-protein and protein-lipid interactions. Furthermore, the orientation of VDAC in the OMM remains uncertain due to inconsistencies in antibody labeling studies. The physiological implications of a novel antiparallel arrangement are addressed that may clarify these conflicting biochemical data. C1 [Ujwal, Rachna; Chaptal, Vincent; Abramson, Jeff] Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, Los Angeles, CA 90095 USA. [Cascio, Duilio] Univ Calif Los Angeles, DOE Inst Genom Proteonom, Los Angeles, CA 90095 USA. [Ping, Peipei] Univ Calif Los Angeles, David Geffen Sch Med, Cardiovasc Res Lab, Los Angeles, CA 90095 USA. RP Abramson, J (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, 53 254 CHS, Los Angeles, CA 90095 USA. EM jabramson@mednet.ucla.edu FU NHLBI NIH HHS [R21 HL093278]; NIGMS NIH HHS [GM07844, R01 GM078844] NR 30 TC 19 Z9 19 U1 0 U2 3 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1933-6950 J9 CHANNELS JI Channels PD MAY-JUN PY 2009 VL 3 IS 3 BP 167 EP 170 PG 4 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 484AK UT WOS:000269014900017 PM 19574737 ER PT J AU Smith, JN Espino, MA Liu, J Romero, NA Cox, SB Cobb, GP AF Smith, Jordan N. Espino, Marina A. Liu, Jun Romero, Nicholas A. Cox, Stephen B. Cobb, George P. TI Multigenerational effects in deer mice (Peromyscus maniculatus) exposed to hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) SO CHEMOSPHERE LA English DT Article DE Deer mouse; Royal demolition explosive; Hexahydro-1,3,5-trinitroso-1,3,5-triazine; Hexahydro-1,3,5-trinitro-1,3,5-triazine; RDX; TNX ID HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE RDX; MASS-SPECTROMETRY; BIOTRANSFORMATION; CYCLOTRIMETHYLENETRINITRAMINE; 2,4,6-TRINITROTOLUENE; BIODEGRADATION; TRANSFORMATION; GROUNDWATER; METABOLISM; TOXICITY AB Contamination by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has been identified at areas of explosive manufacturing, processing, storage, and usage. Anaerobic conversion of RDX to N-nitroso metabolites (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX)) has been demonstrated in the environment and in gastrointestinal tracts of mammals in vivo. Thus, potential exists for exposure to these N-nitroso compounds. While exposed to TNX via drinking water ad libitum, deer mice (Peromyscus maniculatus) were bred in three generations to produce cohorts F1A-D, F2A-B, and F3A. TNX was administered at four exposure levels: control (0 mu g L(-1)), 10 mu g L(-1), 100 mu g L(-1), and 1000 mu g L(-1). Endpoints investigated include: offspring production, offspring survival, offspring weight gain, and offspring organ weights. TNX exposure decreased litter size and increased postpartum mortality of offspring at the highest exposure level. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Smith, Jordan N.; Espino, Marina A.; Liu, Jun; Romero, Nicholas A.; Cox, Stephen B.; Cobb, George P.] Texas Tech Univ, Dept Environm Toxicol, Inst Environm & Human Hlth, Lubbock, TX 79409 USA. RP Smith, JN (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99354 USA. EM jns_44@hotmail.com RI Cox, Stephen/A-5037-2010 FU US Environmental Protection Agency's Science to Achieve Results Program [FP-91642501-2] FX Authors would like to thank the US Environmental Protection Agency's Science to Achieve Results Program (Fellowship agreement no. FP-91642501-2), Achievement Rewards for College Scientists, A. Stormberg, E. Smith, C. NR 30 TC 2 Z9 3 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD MAY PY 2009 VL 75 IS 7 BP 910 EP 914 DI 10.1016/j.chemosphere.2009.01.010 PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA 446TQ UT WOS:000266144500012 PM 19230956 ER PT J AU Ream, TS Nicora, CD Norbeck, AD Pontvianne, F Haag, JR Pasa-Tolic, L Pikaard, CS AF Ream, Thomas S. Nicora, Carrie D. Norbeck, Angela D. Pontvianne, Frederic Haag, Jeremy R. Pasa-Tolic, Ljiljana Pikaard, Craig S. TI Subunit compositions of Arabidopsis DNA-dependent RNA polymerases I, II, III, IV and V reveal insights into polymerase evolution, functional diversification and subunit redundancy SO CHROMOSOME RESEARCH LA English DT Meeting Abstract CT 17th International Chromosome Conference (ICC) CY JUN 23-26, 2009 CL Boone, NC C1 [Ream, Thomas S.; Pontvianne, Frederic; Haag, Jeremy R.; Pikaard, Craig S.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Pikaard, Craig/K-8772-2012 OI Pikaard, Craig/0000-0001-8204-7459 NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0967-3849 J9 CHROMOSOME RES JI Chromosome Res. PD MAY PY 2009 VL 17 IS 4 BP 539 EP 540 PG 2 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 484OI UT WOS:000269055300026 ER PT J AU Slavotinek, AM Moshrefi, A Lopez Jiminez, N Chao, R Mendell, A Shaw, GM Pennacchio, LA Bates, MD AF Slavotinek, A. M. Moshrefi, A. Lopez Jiminez, N. Chao, R. Mendell, A. Shaw, G. M. Pennacchio, L. A. Bates, M. D. TI Sequence variants in the HLX gene at chromosome 1q41-1q42 in patients with diaphragmatic hernia SO CLINICAL GENETICS LA English DT Article DE alpha-smooth muscle actin promoter; animal models; congenital diaphragmatic hernia; HLX; HLX1; mutation detection; SM22 alpha ID MUSCLE-CELL DIFFERENTIATION; HOMEO BOX GENE; FRYNS-SYNDROME; COMBINATORIAL CONTROL; TRANSCRIPTION FACTOR; CANDIDATE GENES; EXPRESSION; HYBRIDIZATION; MUTATIONS; CDH AB Slavotinek AM, Moshrefi A, Lopez Jiminez N, Chao R, Mendell A, Shaw GM, Pennacchio LA, Bates MD. Sequence variants in the HLX gene at chromosome 1q41-1q42 in patients with diaphragmatic hernia.Clin Genet 2009: 75: 429-439. (C) John Wiley & Sons A/S, 2009 Congenital diaphragmatic hernia (CDH) is a common birth defect for which few causative genes have been identified. Several candidate regions containing genes necessary for normal diaphragm development have been identified, including a 4-5 Mb deleted region at chromosome 1q41-1q42 from which the causative gene(s) has/have not been cloned. We selected the HLX gene from this interval as a candidate gene for CDH, as the Hlx homozygous null mouse has been reported to have diaphragmatic defects and the gene was described as being expressed in the murine diaphragm. We re-sequenced HLX in 119 CDH patients and identified four novel single nucleotide substitutions that predict amino acid changes: p.S12F, p.S18L, p.D173Y and p.A235V. These sequence alterations were all present in patients with isolated CDH, although patients with both isolated CHD and CDH with additional anomalies were studied. The single-nucleotide substitutions were absent in more than 186 control chromosomes. In-situ hybridization studies confirmed expression of Hlx in the developing murine diaphragm at the site of the junction of the diaphragm and the liver. Although functional studies to determine if these novel sequence variants altered the inductive activity of Hlx on the alpha-smooth muscle actin and SM22 alpha promoters showed no significant differences between the variants and wild-type Hlx, sequence variants in HLX may still be relevant in the pathogenesis of CDH in combination with additional genetic and environmental factors. C1 [Slavotinek, A. M.; Moshrefi, A.; Lopez Jiminez, N.; Chao, R.] Univ Calif San Francisco, Dept Pediat, Div Genet, San Francisco, CA 94143 USA. [Mendell, A.; Bates, M. D.] Univ Cincinnati, Coll Med, Dept Pediat,Div Gastroenterol Hepatol & Nutr, Cincinnati Childrens Hosp,Med Ctr,Div Dev Biol, Cincinnati, OH USA. [Shaw, G. M.] Childrens Hosp Oakland, Res Inst, March Dimes Calif Res Div, Oakland, CA 94609 USA. [Pennacchio, L. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Pennacchio, L. A.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. RP Slavotinek, AM (reprint author), Univ Calif San Francisco, Dept Pediat, Div Genet, 533 Parnassus St,Room U585P, San Francisco, CA 94143 USA. EM slavotia@peds.ucsf.edu FU National Institute of Child Health and Development (NICHD) [R03 HDO49411-02, 5R03 HDO49411-02, K08, HD053476-01A1]; Hellman Award (Hellman Family Trust); Lawrence Berkeley National Laboratory; Joint Genome Institute; (LAP), Berkeley-PGA [HL066681]; National Heart, Lung, and Blood Institute, USA; Department of Energy [DE-AC02-05CH11231]; NIH/NCRR UCSF-CTSI [ULI RR024131] FX Anne Slavotinek was generously funded by an R03 grant 5R03 HDO49411-02 from the National Institute of Child Health and Development (NICHD), a Hellman Award (Hellman Family Trust) and a K08 grant HD053476-01A1 from the National Institute of Child Health and Development (NICHD) at the National Institutes of Health. Research conducted at the E.O. Lawrence Berkeley National Laboratory and the Joint Genome Institute, supported by HL066681 (LAP), Berkeley-PGA, under the Programs for Genomic Application, funded by National Heart, Lung, and Blood Institute, USA, was performed under Department of Energy Contract DE-AC02-05CH11231, University of California (LAP). The alpha SMA construct was kindly provided by Dr Gary Owens, University of Virginia and the SM22 alpha promoter construct was kindly provided by Michael Parmacek, University of Pennsylvania. This publication was supported by NIH/NCRR UCSF-CTSI grant number ULI RR024131. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. NR 37 TC 13 Z9 13 U1 1 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0009-9163 J9 CLIN GENET JI Clin. Genet. PD MAY PY 2009 VL 75 IS 5 BP 429 EP 439 DI 10.1111/j.1399-0004.2009.01182.x PG 11 WC Genetics & Heredity SC Genetics & Heredity GA 440NY UT WOS:000265708200005 PM 19459883 ER PT J AU Day, M Bell, J Bremer, PT Pascucci, V Beckner, V Lijewski, M AF Day, Marc Bell, John Bremer, Peer-Timo Pascucci, Valerio Beckner, Vince Lijewski, Michael TI Turbulence effects on cellular burning structures in lean premixed hydrogen flames SO COMBUSTION AND FLAME LA English DT Article DE Turbulent; Premixed; Hydrogen; Simulation; Morse theory ID OXYGEN-NITROGEN MIXTURES; NAVIER-STOKES EQUATIONS; KARMAN VORTEX STREETS; NUMERICAL-SIMULATION; AIR FLAMES; APPROXIMATE PROJECTION; ISOTROPIC TURBULENCE; SURFACE-PROPERTIES; COMPLEX CHEMISTRY; FLOWS AB We present numerical simulations of lean hydrogen flames interacting with turbulence. The simulations are performed in an idealized setting using an adaptive low Mach number model with a numerical feedback control algorithm to stabilize the flame. At the conditions considered here, hydrogen flames are thermodiffusively unstable, and burn in cellular structures. For that reason, we consider two levels of turbulence intensity and a case without turbulence whose dynamics is driven by the natural flame instability. An overview of the flame structure shows that the burning in the cellular structures is quite intense, with the burning patches separated by regions in which the flame is effectively extinguished. We explore the geometry of the flame surface in detail, quantifying the mean and Gaussian curvature distributions and the distribution of the cell sizes. We next characterize the local flame speed to quantify the effect of flame intensification on local propagation speed. We then introduce several diagnostics aimed at quantifying both the level of intensification and diffusive mechanisms that lead to the intensification. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Day, Marc; Bell, John; Beckner, Vince; Lijewski, Michael] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. RP Day, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mailstop 50A-1148,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MSDay@lbl.gov FU Office of Science through the Office of Advanced Scientific Computing Research, Mathematical, Information, and Computational Sciences Division under U.S. Department of Energy [DE-AC03-76SF00098]; [SMD-05-A-0126] FX The calculations were performed under Award SMD-05-A-0126, "Interaction of Turbulence and Chemistry in Lean Premixed Combustion," for the National Leadership Computing System initiative on the "Columbia" supercomputer at the NASA Ames Research Center. A portion of the post-processing was carried out on the "Davinci" server at NERSC. The authors were supported by the Office of Science through the Office of Advanced Scientific Computing Research, Mathematical, Information, and Computational Sciences Division under U.S. Department of Energy contract DE-AC03-76SF00098. NR 52 TC 54 Z9 54 U1 0 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2009 VL 156 IS 5 BP 1035 EP 1045 DI 10.1016/j.combustflame.2008.10.029 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 431GD UT WOS:000265048600009 ER PT J AU Sivaramakrishnan, R Michael, JV AF Sivaramakrishnan, R. Michael, J. V. TI Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes SO COMBUSTION AND FLAME LA English DT Article DE Shock tube; Rate constants; High temperature; Cycloalkanes; Methylcycloalkanes; OH radicals; Elementary reactions; Ab-initio calculations ID ABSOLUTE RATE CONSTANTS; GAS-PHASE REACTIONS; RATE COEFFICIENTS; ALKANES; CYCLOHEXANE; RADICALS; KINETICS; CYCLOPENTANE; H-2; DECOMPOSITION AB High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T > 500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length similar to 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm(3) molecule(-1) s(-1), can be expressed in Arrhenius form as k(OH+Cyclopentane) = (1.90 +/- 0.30) x 10(-10) exp(-1705 +/- 156 K/T) (813-1341 K), k(OH+Cyclohexane) = (1.86 +/- 0.24) x 10(-10) exp(-1513 +/- 123 K/T) (801-1347 K), k(OH+Methylcydopentane) = (2.02 +/- 0.19) x 10(-10) exp(-1799 +/- 96 K/T) (859-1344 K), k(OH+Methylcyclohexane) = (2.55 +/- 0.30) x 10(-10) exp(-1824 +/- 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm(3) molecule(-1) s(-1), are k(OH+Cyclopentane) = 1.390 x 10(-16)T(1.779) exp(97 K/T) cm(3) molecule(-1) s(-1) (209-1341 K), k(OH+Cyclohexane) = 3.169 x 10(-16)T(1.679)exp(119 K/T) cm(3) molecule(-1) s(-1) (225-1347 K), k(OH+Methylcyclopentane) = 6.903 x 10(-18)T(2.148) exp (536 K/T) cm(3) molecule(-1) s(-1) (296-1344 K), k(OH+Methylcyclohexane) = 2.341 x 10(-18)T(2.325) exp(602 K/T) cm(3) molecule(-1) s(-1) (296-1273 K). High level electronic structure methods were used to characterize the first three reactions in order to provide reliable extrapolations of the rate constants from 250-2000 K. The results of the theoretical predictions for OH + cyclohexane and OH + methylcyclopentane were sufficient to make a theoretical prediction for OH + methylcyclohexane. The present recommended rate expressions for OH with cyclohexane, and methylcyclohexane, give rate constants that are 15-25% higher (over the T-range 800-1300 K) than the rate constants utilized in recent modeling efforts aimed at addressing the oxidation of cyclohexane and m ethyl cyclo hexa ne. The current measurements reduce the uncertainties in rate constants for the primary cycloalkane consumption channel in a high temperature oxidation environment. (C) 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sivaramakrishnan, R.; Michael, J. V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Michael, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, D-193,Bldg 200, Argonne, IL 60439 USA. EM jmichael@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010 OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; FU U.S. Department of Energy, office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357. NR 46 TC 16 Z9 16 U1 4 U2 19 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD MAY PY 2009 VL 156 IS 5 BP 1126 EP 1134 DI 10.1016/j.combustflame.2008.10.010 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 431GD UT WOS:000265048600017 ER PT J AU Khavinson, D Mineev-Weinstein, M Putinar, M AF Khavinson, Dmitry Mineev-Weinstein, Mark Putinar, Mihai TI Planar Elliptic Growth SO COMPLEX ANALYSIS AND OPERATOR THEORY LA English DT Article DE Moving boundaries; elliptic growth; Laplacian growth; Schwarz function; Beltrami equation; Schrodinger operator; Dirichlet problem; Carleman equation ID HELE SHAW FLOWS; LAPLACIAN GROWTH; PATTERN-FORMATION; DISPERSIONLESS LIMIT; INTERFACE DYNAMICS; POROUS-MEDIUM; EQUATIONS; FLUID AB The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for area-preserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented. C1 [Khavinson, Dmitry] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA. [Mineev-Weinstein, Mark] LANL, Los Alamos, NM 87545 USA. [Putinar, Mihai] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA. RP Khavinson, D (reprint author), Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA. EM dkhavins@cas.usf.edu; mariner@lanl.gov; mputinar@math.ucsb.edu FU LDRD program at LANL [20070483ER]; NSF FX This work was supported by the 20070483ER project Minimal Description of Complex Interfaces of the LDRD program at LANL. The first and third authors were also partially supported by the NSF grants. NR 45 TC 13 Z9 13 U1 0 U2 1 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 1661-8254 EI 1661-8262 J9 COMPLEX ANAL OPER TH JI Complex Anal. Oper. Theory PD MAY PY 2009 VL 3 IS 2 BP 425 EP 451 DI 10.1007/s11785-008-0093-7 PG 27 WC Mathematics, Applied; Mathematics SC Mathematics GA 444VA UT WOS:000266007300007 ER PT J AU Igathinathane, C Pordesimo, LO Columbus, EP Batchelor, WD Sokhansanj, S AF Igathinathane, C. Pordesimo, L. O. Columbus, E. P. Batchelor, W. D. Sokhansanj, S. TI Sieveless particle size distribution analysis of particulate materials through computer vision SO COMPUTERS AND ELECTRONICS IN AGRICULTURE LA English DT Article DE Biomass sieve analysis; Dimension; ImageJ plugin; Image processing; Particle size distribution; Physical property ID IMAGEJ AB This paper explores the inconsistency of "length-based separation" by mechanical sieving of particulate materials with standard sieves, which is the standard method of particle size distribution (PSD) analysis. We observed inconsistencies of length-based separation of particles using standard sieves with manual measurements, which showed deviations of 17-22 times. In addition, we have demonstrated the "failing through" effect of particles cannot be avoided irrespective of the wall thickness of the sieve. We proposed and utilized a computer vision with image processing as an alternative approach; wherein a user-coded Java ImageJ plugin was developed to evaluate PSD based on length of particles. A regular flatbed scanner acquired digital images of particulate material. The plugin determines particles lengths from Feret's diameter and width from pixel-march method, or minor axis, or the minimum dimension of bounding rectangle utilizing the digital images after assessing the particles area and shape (convex or nonconvex). The plugin also included the determination of several significant dimensions and PSD parameters, Test samples utilized were ground biomass obtained from the first thinning and mature stand Of Southern pine forest residues, oak hard wood, switchgrass, elephant grass, giant miscanthus, wheat straw, as well as Basmati rice. A sieveless PSD analysis method utilized the true separation of all particles into groups based on their distinct length (419-639 particles based on samples studied), with each group truly represented by their exact length. This approach ensured length-based separation without the inconsistencies observed with mechanical sieving. Image based sieve Simulation (developed separately) indicated a significant effect (P<0.05) on number of sieves used in PSD analysis, especially with non-uniform material Such as ground biomass. and more than 50 equally spaced sieves were required to match the sieveless all distinct particles PSD analysis. Results substantiate that mechanical sieving, owing to handling limitations and inconsistent length-based separation of particles, is inadequate in determining the PSD of non-Uniform particulate samples. The developed Computer vision sieveless PSD analysis approach has the potential to replace the standard mechanical sieving. The plugin can be readily extended to model (e.g., Rosin-Rammler) the PSD Of materials, and mass-based analysis, while providing several advantages such as accuracy, speed. low cost, automated analysis, and reproducible results. Published by Elsevier B.V. C1 [Igathinathane, C.; Pordesimo, L. O.; Columbus, E. P.; Batchelor, W. D.] Mississippi State Univ, Dept Agr & Biol Engn, Mississippi State, MS 39762 USA. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Igathinathane, C (reprint author), Mississippi State Univ, Dept Agr & Biol Engn, 130 Creelman St, Mississippi State, MS 39762 USA. EM igathi@gmail.com OI Cannayen, Igathinathane/0000-0001-8884-7959 FU Sustainable Energy Research Center; Mississippi Agricultural and Forestry Experiment Station at Mississippi State University; U.S. Department of Energy [DE-FG3606GO86025] FX This research was supported by the Sustainable Energy Research Center and the Mississippi Agricultural and Forestry Experiment Station at Mississippi State University with funds provided by the U.S. Department of Energy under Award No. DE-FG3606GO86025. This support is gratefully appreciated. Thanks are also due to William Massey and Kyle Thomas for undertaking the grinding of the bulk biomass materials from which the test samples were obtained. NR 26 TC 36 Z9 37 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0168-1699 EI 1872-7107 J9 COMPUT ELECTRON AGR JI Comput. Electron. Agric. PD MAY PY 2009 VL 66 IS 2 BP 147 EP 158 DI 10.1016/j.compag.2009.01.005 PG 12 WC Agriculture, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Agriculture; Computer Science GA 441NV UT WOS:000265776800006 ER PT J AU Davidovich, RL Stavila, V Marinin, DV Voit, EI Whitmire, KH AF Davidovich, Ruven L. Stavila, Vitalie Marinin, Dmitry V. Voit, Elena I. Whitmire, Kenton H. TI Stereochemistry of lead(II) complexes with oxygen donor ligands SO COORDINATION CHEMISTRY REVIEWS LA English DT Review DE Lead; Carboxylate; Polycarboxylate; VSEPR model; Lone pair; Holodirected; Hemidirected ID ORGANOMETALLIC COMPOUNDS CLASSIFICATION; INORGANIC-ORGANIC HYBRID; 2D COORDINATION POLYMER; ACTIVE LONE PAIR; CRYSTAL-STRUCTURE; STRUCTURAL-CHARACTERIZATION; LUMINESCENT PROPERTIES; ACETATE TRIHYDRATE; PB(II) COMPLEXES; SOLID-STATE AB This review discusses the coordination number (CN) and the coordination geometry of the first coordination sphere of Pb(II) atoms in crystal structures of 98 lead(II) complexes with O-donor ligands and the stereochemically active lone pair of electrons (LP, E) in the terms of the valence shell electron-pair repulsion (VSEPR) model. The CN of Pb(II) atoms of the first coordination sphere has values falling into the range(3+E) to (6+E). The following coordination polyhedra-psi-tetrahedron (I), psi-trigonal bipyramid (II), psi-octahedron (III), psi-pentagonal bipyramid with an axial (IV) or equatorial (V) vacant position are formed. For the investigated structures of the Pb(II) complexes, the formula of each compound, the overall CN of the Pb(II) atom considered as the sum of the CN in the first coordination sphere and the number of secondary bonds. the polyhedron shape, the Pb-O bond lengths,and O-Pb-O bond angles in the first coordination sphere, secondary bond lengths, references and REFCODEs are presented in the comprehensive Tables. The quantum chemical investigations performed using density functional theory (DFT) method have confirmed the stereochemical activity of the LP of Pb(II) atoms in the studied structures of lead(II) complexes with O-donor ligands. (C) 2008 Elsevier B.V. All rights reserved. C1 [Davidovich, Ruven L.; Marinin, Dmitry V.; Voit, Elena I.] Russian Acad Sci, Inst Chem, Far E Div, Vladivostok 690022, Russia. [Stavila, Vitalie] Sandia Natl Labs, Dept Mat Engn, Livermore, CA 94550 USA. [Whitmire, Kenton H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Davidovich, RL (reprint author), Russian Acad Sci, Inst Chem, Far E Div, Pr T 100 Letiya Vladivostoka 159, Vladivostok 690022, Russia. EM davidovich@ich.dvo.ru; whitmir@rice.edu RI Stavila, Vitalie/F-4188-2010; Stavila, Vitalie/B-6464-2008; OI Stavila, Vitalie/0000-0003-0981-0432; Whitmire, Kenton/0000-0001-7362-535X FU Robert A. Welch Foundation; NATO-NSF [DGE-0411679]; C-RDF; MRDA [MTFP-1015B, MOE2-2850CS-06] FX RLD acknowledges Prof A.H. White, Prof. R.D. Hancock, Dr. A.A. Soudi, Dr. F. Marandi, and Dr.A. Morsali for providingsome reprints of the publications on crystal structures of Pb(II) complexes. KHW would like to thank the Robert A. Welch Foundation and NATO-NSF for a postdoctoral fellowship to VS (DGE-0411679). KHW and VS are also grateful to the C-RDF and MRDA(MTFP-1015B and MOE2-2850CS-06) for financial support of the Rice-Moldova collaboration. NR 111 TC 110 Z9 111 U1 5 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0010-8545 EI 1873-3840 J9 COORDIN CHEM REV JI Coord. Chem. Rev. PD MAY PY 2009 VL 253 IS 9-10 BP 1316 EP 1352 DI 10.1016/j.ccr.2008.09.003 PG 37 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 430QZ UT WOS:000265004900006 ER PT J AU Zhu, HP Liao, SJ Ye, LY Hu, XF Khomami, B Hu, MZ AF Zhu, Huaping Liao, Shijun Ye, Liyan Hu, Xinfa Khomami, Bamin Hu, Michael Z. TI A Modified Solid-State Reduction Method to Prepare Supported Platinum Nanoparticle Catalysts for Low Temperature Fuel Cell Application SO CURRENT NANOSCIENCE LA English DT Article DE Solid state reduction; fuel cell catalysts; methanol electrooxidation; silicomolybdic acid ID ELECTROCATALYTIC PROPERTIES; CARBON NANOTUBES; H-2/CO MIXTURES; ANODE CATALYST; METHANOL; ELECTROOXIDATION; OXIDATION; SURFACE; CO; NANOCATALYST AB A modified solid state reduction (SSR) method, by which the platinum salt is reduced into platinum nanoparticles by sodium formate in solid state and under low temperature (below 180 degrees C) conditions, is introduced here. The high performance catalysts based on carbon nanotubes (CNTs) supported platinum and platinum promoted by Mo (VI) and Si (IV) was prepared successfully by this method. The catalysts, with small particle size and uniform distribution were active toward the electrooxidation reaction of methanol. Among a few catalysts promoted by silicon, molybdenum and tungsten elements, catalysts co-promoted by silicon and molybdenum elements show best performance. The particle size of promoted Pt/CNTs, calculated from XRD patterns, is small as 3.0 +/- 1.5 nm, and the results of transmission electron microscopy (TEM) revealed that the distribution of particle size is uniform. In comparison with the liquid-state synthesis, the advantages of SSR method include environmental benefits due to less water usage and significantly reduced pollutants generation, as well as suitability for large scale preparation. C1 [Zhu, Huaping; Liao, Shijun; Ye, Liyan; Hu, Xinfa] S China Univ Technol, Sch Chem & Chem Engn, Coll Chem, Guangzhou 510641, Guangdong, Peoples R China. [Khomami, Bamin] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Hu, Michael Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Liao, SJ (reprint author), S China Univ Technol, Sch Chem & Chem Engn, Coll Chem, Guangzhou 510641, Guangdong, Peoples R China. EM chsjliao@scut.edu.cn RI Liao, Shijun/C-1745-2012; OI Hu, Michael/0000-0001-8461-9684 FU State Natural Science Foundation of China [20476034, 20673040, 20876062]; Key Project of Guangdong Provincial Science and Technology department [2006A50102003] FX We would like to thank the State Natural Science Foundation of China (Nos. 20476034, 20673040, 20876062) and the Key Project of Guangdong Provincial Science and Technology department (Nos. 2006A50102003) for financially supporting this work. NR 29 TC 3 Z9 3 U1 2 U2 12 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1573-4137 J9 CURR NANOSCI JI Curr. Nanosci. PD MAY PY 2009 VL 5 IS 2 BP 252 EP 256 PG 5 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics; Materials Science GA 440JU UT WOS:000265697400018 ER PT J AU Nag, K Chaudhary, A AF Nag, Kamalika Chaudhary, Anu TI Mediators of Tyrosine Phosphorylation in Innate Immunity: From Host Defense to Inflammation onto Oncogenesis SO CURRENT SIGNAL TRANSDUCTION THERAPY LA English DT Review DE Toll-like receptors; tyrosine kinases; innate immunity; phosphorylation; cytokine release ID FOCAL ADHESION KINASE; KAPPA-B-ACTIVATION; SRC-FAMILY KINASES; LYN-DEFICIENT MICE; SYSTEMIC-LUPUS-ERYTHEMATOSUS; TNF-ALPHA PRODUCTION; AUTOIMMUNE-DISEASE; LEUKOCYTE RECRUITMENT; SIGNAL-TRANSDUCTION; CYTOKINE PRODUCTION AB Cells respond to extracellular cues through a variety of receptors on the surface. These signals once transduced across the cell membrane, activate protein tyrosine kinases, which through phosphorylation of substrates on key tyrosine residues, are able to control cellular growth, activation and differentiation pathways. Recent data suggest that protein tyrosine kinases are critical in integrating signals from various cellular receptors, including pathogen detection receptors that mediate the host innate immune response. In this article, we have reviewed the roles of tyrosine kinases of the Tec, FAK, Fps, Fer, Syk, Src and TAM-receptor families in toll-like receptor signaling. The shared roles of these tyrosine phosphorylation mediators in host defense, inflammation, autoimmune disease and oncogenesis provides promising avenues for the use of their inhibitors in multiple disorders. C1 [Nag, Kamalika; Chaudhary, Anu] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Nag, Kamalika] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Chaudhary, A (reprint author), Los Alamos Natl Lab, Biosci Div, HRL-1,Mail Stop M888,POB 1663, Los Alamos, NM 87545 USA. EM anu@lanl.gov FU Defense Threat Reduction Agency; LANL Laboratory Office of Directed Research and Development; NIH RO1 [GM076570] FX The authors thank Dr. William S. Hlavacek for useful discussions and critical reading of the manuscript. Dr. Chaudhary was supported in part by a grant from the Defense Threat Reduction Agency and the LANL Laboratory Office of Directed Research and Development. Ms. Nag was supported by NIH RO1 grant GM076570 to WSH. NR 65 TC 6 Z9 6 U1 0 U2 1 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1574-3624 J9 CURR SIGNAL TRANSD T JI Curr. Signal Transduct. Ther. PD MAY PY 2009 VL 4 IS 2 BP 76 EP 81 PG 6 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 441VI UT WOS:000265798200001 PM 21709741 ER PT J AU Watson, DA Gaskill, DF Brown, LO Doorn, SK Nolan, JP AF Watson, Dakota A. Gaskill, Daniel F. Brown, Leif O. Doorn, Stephen K. Nolan, John P. TI Spectral Measurements of Large Particles by Flow Cytometry SO CYTOMETRY PART A LA English DT Article DE multiplex analysis; multiparameter; SERS; flow cytometry; large particles ID PANCREATIC-ISLETS; CLASSIFICATION; INHIBITORS; RESOLUTION; ELEGANS AB Flow cytometers designed to analyze large particles are enabling new applications in biology and chemistry. Similarly, flow spectroscopy approaches are extending the capabilities of the flow cytometry platform. Here, we report on the adaptation of a commercial large particle analyzer to measure fluorescence and Raman spectra of individual particles at high speeds. We modified a Union Biometrica COPAS Plus instrument to allow red excitation and optical fiber-based light collection and spectral analysis using a spectrograph and CCD array detector. These modifications did not compromise the ability of the instrument to resolve different sized particles based on their extinction and time of flight signals. The modified instrument has the sensitivity and spectral resolution to measure the fluorescence and Raman signals from individual particles with signal integration times of 10 usec. The high speed spectral analysis of individual particles in flow will enable new applications in biological and chemical analyses. (c) 2009 International Society for Advancement of Cytometry C1 [Watson, Dakota A.; Gaskill, Daniel F.; Nolan, John P.] La Jolla Bioengn Inst, La Jolla, CA 92037 USA. [Brown, Leif O.; Doorn, Stephen K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Nolan, JP (reprint author), 505 Coast Blvd S, La Jolla, CA 92037 USA. EM jnolan@ljbi.org FU NIH [R01 EB003824] FX Grant sponsor: NIH; Grant number: R01 EB003824 NR 16 TC 20 Z9 21 U1 0 U2 7 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4922 J9 CYTOM PART A JI Cytom. Part A PD MAY PY 2009 VL 75A IS 5 BP 460 EP 464 DI 10.1002/cyto.a.20706 PG 5 WC Biochemical Research Methods; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 436WH UT WOS:000265446300010 PM 19199345 ER PT J AU Pedersen, TB Gu, J Shoshani, A Jensen, CS AF Pedersen, Torben Bach Gu, Junmin Shoshani, Arie Jensen, Christian S. TI Object-extended OLAP querying SO DATA & KNOWLEDGE ENGINEERING LA English DT Article DE On-line analytical processing (OLAP); Multidimensional databases; Object databases; Data integration; Summarizability ID DATA WAREHOUSES; DATABASES; UML AB On-line analytical processing (OLAP) systems based on a dimensional view of data have found widespread use in business applications and are being used increasingly in nonstandard applications. These systems provide good performance and ease-of-use. However, the complex structures and relationships inherent in data in non-standard applications are not accommodated well by OLAP systems. In contrast, object database systems are built to handle such complexity, but do not support OLAP-type querying well. This paper presents the concepts and techniques underlying a flexible, "multi-model" federated system that enables CLAP users to exploit simultaneously the features of CLAP and object systems. The system allows data to be handled using the most appropriate data model and technology: CLAP systems for dimensional data and object database systems for more complex, general data. This allows data analysis on the CLAP data to be significantly enriched by the use of additional object data. Additionally, physical integration of the OLAP and the object data can be avoided. As a vehicle for demonstrating the capabilities of the system, a prototypical OLAP language is defined and extended to naturally support queries that involve data in object databases. The language permits selection criteria that reference object data, queries that return combinations of OLAP and object data, and queries that group dimensional data according to object data. The system is designed to be aggregation-safe, in the sense that it exploits the aggregation semantics of the data to prevent incorrect or meaningless query results. These capabilities may also be integrated into existing languages. It is shown how to integrate relational and XML data using the technology. A prototype implementation of the system is reported, along with performance measurements that show that the approach is a viable alternative to a physically integrated data warehouse. (c) 2008 Elsevier B.V. All rights reserved. C1 [Pedersen, Torben Bach; Jensen, Christian S.] Univ Aalborg, Dept Comp Sci, DK-9220 Aalborg O, Denmark. [Gu, Junmin; Shoshani, Arie] Lawrence Berkeley Natl Lab, Sci Data Management Grp, Berkeley, CA 94720 USA. RP Pedersen, TB (reprint author), Univ Aalborg, Dept Comp Sci, Selma Lagerlofsvej 300, DK-9220 Aalborg O, Denmark. EM tbp@cs.aau.dk; jgu@lbl.gov; shoshani@lbl.gov; csj@cs.aau.dk NR 62 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-023X J9 DATA KNOWL ENG JI Data Knowl. Eng. PD MAY PY 2009 VL 68 IS 5 BP 453 EP 480 DI 10.1016/j.datak.2008.10.008 PG 28 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems SC Computer Science GA 437XG UT WOS:000265519600001 ER PT J AU Collins, MJ AF Collins, Michael J. TI Upper bounds for parent-identifying set systems SO DESIGNS CODES AND CRYPTOGRAPHY LA English DT Article DE Traitor tracing; Broadcast encryption; Identifiable parent property ID COMBINATORIAL PROPERTIES; CODES; FRAMEPROOF; PROPERTY AB We derive new upper bounds on the size set families having the c-identifiable parent property (c-IPP) and the c-traceability property (c-TA) and compare these bounds to similar results on parent-identifying codes. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Collins, MJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mjcolli@sandia.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0925-1022 J9 DESIGN CODE CRYPTOGR JI Designs Codes Cryptogr. PD MAY PY 2009 VL 51 IS 2 BP 167 EP 173 DI 10.1007/s10623-008-9253-z PG 7 WC Computer Science, Theory & Methods; Mathematics, Applied SC Computer Science; Mathematics GA 406MV UT WOS:000263300500006 ER PT J AU Wolfer, M Biener, J El-Dasher, BS Biener, MM Hamza, AV Kriele, A Wild, C AF Wolfer, Marco Biener, Juergen El-dasher, Bassem S. Biener, Monika M. Hamza, Alex V. Kriele, Armin Wild, Christoph TI Crystallographic anisotropy of growth and etch rates of CVD diamond SO DIAMOND AND RELATED MATERIALS LA English DT Article; Proceedings Paper CT 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Garbide CY SEP 07-11, 2008 CL Sitges, SPAIN DE Diamond CVD; Homoepitaxy; Etching; Orientation ID CHEMICAL-VAPOR-DEPOSITION; MICROWAVE-POWER; FILMS; QUALITY; MODEL AB The investigation of orientation dependent crystal growth and etch processes can provide deep insights into the underlying mechanisms and thus helps to validate theoretical models. Here, we report on hornoepitaxial diamond growth and oxygen etch experiments on polished, polycrystalline CVD diamond wafers by use of electron backscatter diffraction (EBSD) and white-light interferometry (WLI). Atomic force microscopy (AFM) was applied to provide additional atomic scale surface morphology information. The main advantage of using polycrystalline diamond substrates with almost random grain orientation is that it allows determining the orientation dependent growth (etch) rate for different orientations within one experiment. Specifically, we studied the effect of methane concentration on the diamond growth rate, using a microwave plasma CVD process. At 1% methane concentration a maximum of the growth rate near < 100 > and a minimum near < 111 > is detected. Increasing the methane concentration up to 5% shifts the maximum towards < 110 > while the minimum stays at < 111 >. Etch rate measurements in a microwave powered oxygen plasma reveal a pronounced maximum at < 111 >. We also made a first attempt to interpret our experimental data in terms of local micro-faceting of high-indexed planes. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wolfer, Marco; Kriele, Armin; Wild, Christoph] Fraunhofer Inst Appl Solid State Phys, D-79108 Freiburg, Germany. [Biener, Juergen; El-dasher, Bassem S.; Biener, Monika M.; Hamza, Alex V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wolfer, M (reprint author), Fraunhofer Inst Appl Solid State Phys, Tullastr 72, D-79108 Freiburg, Germany. EM Marco.Wolfer@iaf.fraunhofer.de NR 21 TC 12 Z9 12 U1 4 U2 39 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD MAY-AUG PY 2009 VL 18 IS 5-8 BP 713 EP 717 DI 10.1016/j.diamond.2008.11.034 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 467KG UT WOS:000267737000006 ER PT J AU Wiora, M Bruhne, K Floter, A Gluche, P Willey, TM Kucheyev, SO Van Buuren, AW Hamza, AV Biener, J Fecht, HJ AF Wiora, M. Bruehne, K. Floeter, A. Gluche, P. Willey, T. M. Kucheyev, S. O. Van Buuren, A. W. Hamza, A. V. Biener, J. Fecht, H. -J. TI Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD SO DIAMOND AND RELATED MATERIALS LA English DT Article; Proceedings Paper CT 19th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and Silicon Garbide CY SEP 07-11, 2008 CL Sitges, SPAIN DE Nanocrystalline diamond films; grain size; mechanical properties; morphology; stress; TEM; XANES; ERDA; HFCVD ID CARBON-FILMS; CHARACTER; HARDNESS AB Nanocrystalline diamond (NCD) films with a thickness of similar to 6 mu m and average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized in order to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp(2)-bonded carbon and hydrogen impurities are low, showing a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp(2) carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond. since both stiffness and hardness decrease with the reduction in crystal size. These trends suggest gradual changes in the nature of the grain boundaries, from graphitic in case of 60 nm grain size material to hydrogen terminated sp(3) carbon in 9 nm grain size material. The films exhibit low levels of internal stress and free-standing structures with a length of several centimeters could be fabricated without noticeable bending (C) 2008 Elsevier B.V. All rights reserved. C1 [Wiora, M.; Bruehne, K.; Fecht, H. -J.] Univ Ulm, Inst Micro & Nanomat, D-89069 Ulm, Germany. [Willey, T. M.; Kucheyev, S. O.; Van Buuren, A. W.; Hamza, A. V.; Biener, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wiora, M (reprint author), Univ Ulm, Inst Micro & Nanomat, D-89069 Ulm, Germany. EM matthias.wiora@uni-ulm.de RI Willey, Trevor/A-8778-2011; Bruhne, Kai/H-3776-2011 OI Bruhne, Kai/0000-0003-1760-8680; Willey, Trevor/0000-0002-9667-8830; NR 19 TC 41 Z9 42 U1 2 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD MAY-AUG PY 2009 VL 18 IS 5-8 BP 927 EP 930 DI 10.1016/j.diamond.2008.11.026 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 467KG UT WOS:000267737000052 ER PT J AU Higuera, PE Brubaker, LB Anderson, PM Hu, FS Brown, TA AF Higuera, Philip E. Brubaker, Linda B. Anderson, Patricia M. Hu, Feng Sheng Brown, Thomas A. TI Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska SO ECOLOGICAL MONOGRAPHS LA English DT Review DE Alaska (USA); arctic; boreal forest; charcoal analysis; climate change; deciduous woodland; fire history; landscape flammability; pollen analysis; shrub tundra; tundra ID YELLOWSTONE-NATIONAL-PARK; CANADIAN BOREAL FORESTS; BRITISH-COLUMBIA; INTERIOR ALASKA; NORTH-AMERICA; CHARCOAL ACCUMULATION; HOLOCENE GLACIATION; ARCTIC VEGETATION; LAKE-SEDIMENTS; GLOBAL CHANGE AB We examined direct and indirect impacts of millennial-scale climate change on fire regimes in the south-central Brooks Range, Alaska, USA, using four lake sediment records and existing paleoclimate interpretations. New techniques were introduced to identify charcoal peaks semi-objectively and to detect statistical differences between. re regimes. Peaks in charcoal accumulation rates provided estimates of. re return intervals (FRIs), which were compared among vegetation zones identified by fossil pollen and stomata. Climatic warming between ca. 15 000-9000 yr BP ( calendar years before Common Era [CE] 1950) coincided with shifts in vegetation from herb tundra to shrub tundra to deciduous woodlands, all novel species assemblages relative to modern vegetation. Two sites cover this period and show decreased FRIs with the transition from herb to Betula-dominated shrub tundra ca. 13 300-14 300 yr BP (FRImean = 144 yr; 95% CI = 120-169 yr), when climate warmed but remained cooler than present. Although warming would have favored shorter FRIs in the shrub tundra, the shift to more continuous, flammable fuels relative to herb tundra was probably a more important cause of increased burning. Similarly, a vegetation shift to Populus-dominated deciduous woodlands overrode the influence of warmer- and drier-than-present summers, resulting in lower. re activity from ca. 10 300-8250 yr BP (FRImean = 251 yr; 95% CI = 156-347 yr). Three sites record the mid-to-late Holocene, when climatic cooling and moistening allowed Picea glauca forest-tundra and P. mariana boreal forests to establish ca. 8000 and 5500 yr BP, respectively. FRIs in forest-tundra were either similar to or shorter than those in the deciduous woodlands (FRImean range = 131-238 yr). The addition of P. mariana ca. 5500 yr BP increased landscape. ammability, overrode the effects of climatic cooling and moistening and resulted in lower FRIs (FRImean = 145 yr; 95% CI = 130-163). Overall, shifts in. re regimes were strongly linked to changes in vegetation, which were responding to millennial-scale climate change. We conclude that shifts in vegetation can amplify or override the direct influence of climate change on fire regimes, when vegetation shifts significantly modify landscape flammability. Our findings emphasize the importance of biophysical feedbacks between climate, fire, and vegetation in determining the response of ecosystems to past, and by inference, future climate change. C1 [Higuera, Philip E.; Brubaker, Linda B.] Univ Washington, Coll Forest Resources, Seattle, WA 98195 USA. [Anderson, Patricia M.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Anderson, Patricia M.] Univ Washington, Quaternary Res Ctr, Seattle, WA 98195 USA. [Hu, Feng Sheng] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. [Brown, Thomas A.] Lawrence Livermore Natl Lab, CAMS, Livermore, CA 94551 USA. RP Higuera, PE (reprint author), Montana State Univ, Dept Earth Sci, 200 Traphagen Hall, Bozeman, MT 59717 USA. EM philip.higuera@montana.edu RI Higuera, Philip/B-1330-2010 OI Higuera, Philip/0000-0001-5396-9956 FU National Science Foundation's Arctic System Science; NSF Graduate Research Fellowship FX This research was supported by grants from the National Science Foundation's Arctic System Science program (to L. B. Brubaker, P. M. Anderson, and T. A. Brown) and an NSF Graduate Research Fellowship (to P. E. Higuera). Sampling was conducted under permit from Gates of the Arctic National Park and the Bureau of Land Management. We thank Ben Clegg, John Mauro, and Kate Shick for field assistance, Claire Adam, Ethan Cudaback, Jennifer Leach, Amy Lilienthal (Yambor), Jason Smith, and Emily Spaulding for laboratory assistance, and Jim Agee, Dan Gavin, Doug Sprugel, Christopher Carcaillet, and an anonymous reviewer for constructive comments on the manuscript. NR 103 TC 200 Z9 205 U1 7 U2 71 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9615 EI 1557-7015 J9 ECOL MONOGR JI Ecol. Monogr. PD MAY PY 2009 VL 79 IS 2 BP 201 EP 219 DI 10.1890/07-2019.1 PG 19 WC Ecology SC Environmental Sciences & Ecology GA 436NQ UT WOS:000265421200002 ER PT J AU Kou, R Shao, YY Wang, DH Engelhard, MH Kwak, JH Wang, J Viswanathan, VV Wang, CM Lin, YH Wang, Y Aksay, IA Liu, J AF Kou, Rong Shao, Yuyan Wang, Donghai Engelhard, Mark H. Kwak, Ja Hun Wang, Jun Viswanathan, Vilayanur V. Wang, Chongmin Lin, Yuehe Wang, Yong Aksay, Ilhan A. Liu, Jun TI Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Functionalized graphene sheets; Fuel cell; Pt; Cathode durability ID MULTIWALLED CARBON NANOTUBES; FUEL-CELL; OXIDATION; SUPPORT; DURABILITY; GRAPHITE AB Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets. Published by Elsevier B.V. C1 [Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chongmin; Lin, Yuehe; Wang, Yong; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnl.gov RI Engelhard, Mark/F-1317-2010; Aksay, Ilhan/B-9281-2008; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Wang, Yong/C-2344-2013; Wang, Donghai/L-1150-2013; Kwak, Ja Hun/J-4894-2014; OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Wang, Donghai/0000-0001-7261-8510; Engelhard, Mark/0000-0002-5543-0812 FU US Department of Energy (DOE) [DE-AC05-76RL01830]; ARO/MURI [W911NF-04-1-0170] FX The work is supported by US Department of Energy (DOE). TEM and XPS investigations were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under DE-AC05-76RL01830. IAA acknowledges support from ARO/MURI under W911NF-04-1-0170. NR 16 TC 374 Z9 388 U1 21 U2 223 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD MAY PY 2009 VL 11 IS 5 BP 954 EP 957 DI 10.1016/j.elecom.2009.02.033 PG 4 WC Electrochemistry SC Electrochemistry GA 452KF UT WOS:000266538200006 ER PT J AU Abouimrane, A Belharouak, I Amine, K AF Abouimrane, A. Belharouak, I. Amine, K. TI Sulfone-based electrolytes for high-voltage Li-ion batteries SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium battery; Sulfone electrolyte; Spinel phase ID LITHIUM BATTERIES; TEMPERATURE; SOLVENT; CELLS; SALT AB Sulfone-based electrolytes have been investigated as electrolytes for lithium-ion cells using high-voltage positive electrodes, such as LiMn(2)O(4) and LiNi(0.5)Mn(1.5)O(4) spinels, and Li(4)Ti(5)O(12) spinel as negative electrode. In the presence of imide salt (LiTFSI) and ethyl methyl sulfone or tetramethyl sulfone (TMS) electrolytes, the Li(4)Ti(5)O(12)/LiMn(2)O(4) cell exhibited a specific capacity of 80 mAh g(-1) with an excellent capacity retention after 100 cycles. In a cell with high-voltage LiNi(0.5)Mn(1.5)O(4) positive electrode and 1 M LiPF(6) in TMS as electrolyte, the capacity reached 110 mAh g(-1) at the C/12 rate. When TMS was blended with ethyl methyl carbonate, the Li(4)Ti(5)O(12)/LiNi(0.5)Mn(1.5)O(4) cell delivered an initial capacity of 80 mAh g(-1) and cycled fairly well for 1000 cycles under 2C rate. The exceptional electrochemical stability of the sulfone electrolytes and their compatibility with the Li(4)Ti(5)O(12) safer and stable anode were the main reason behind the outstanding electrochemical performance observed with high-potential spinel cathode materials. These electrolytes Could be promising alternative electrolytes for high-energy density battery applications such as plug-in hybrid and electric vehicles that require a long cycle life. (C) 2009 Elsevier B.V. All rights reserved. C1 [Abouimrane, A.; Belharouak, I.; Amine, K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Abouimrane, A (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abouimrane@anl.gov; amine@anl.gov RI Amine, Khalil/K-9344-2013; OI Belharouak, Ilias/0000-0002-3985-0278 FU US Department of Energy; FreedomCAR and Vehicle Technologies Office FX This research was funded by the US Department of Energy, FreedomCAR and Vehicle Technologies Office. NR 10 TC 129 Z9 138 U1 13 U2 111 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD MAY PY 2009 VL 11 IS 5 BP 1073 EP 1076 DI 10.1016/j.elecom.2009.03.020 PG 4 WC Electrochemistry SC Electrochemistry GA 452KF UT WOS:000266538200036 ER PT J AU Worrell, E Bernstein, L Roy, J Price, L Harnisch, J AF Worrell, Ernst Bernstein, Lenny Roy, Joyashree Price, Lynn Harnisch, Jochen TI Industrial energy efficiency and climate change mitigation SO ENERGY EFFICIENCY LA English DT Article DE Greenhouse gas mitigation; Industry; Energy efficiency; Policy; Potentials ID VOLUNTARY AGREEMENTS; CEMENT INDUSTRY; CO2 EMISSIONS; TECHNOLOGY; TRENDS; NETHERLANDS; CONSUMPTION; LESSONS; PAPER AB Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO(2) in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy-efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030. C1 [Worrell, Ernst] Univ Utrecht, Sci Technol & Soc Copernicus Inst, ECOFYS, NL-3584 CS Utrecht, Netherlands. [Bernstein, Lenny] LS Bernstein & Associates LLC, Asheville, NC 28804 USA. [Roy, Joyashree] Jadavpur Univ, Kolkata 700032, India. [Price, Lynn] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Harnisch, Jochen] ECOFYS, D-90443 Nurnberg, Germany. RP Worrell, E (reprint author), Univ Utrecht, Sci Technol & Soc Copernicus Inst, ECOFYS, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands. EM e.worrell@uu.nl RI Worrell, Ernst/L-5455-2013 OI Worrell, Ernst/0000-0002-0199-9755 NR 94 TC 96 Z9 96 U1 3 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X EI 1570-6478 J9 ENERG EFFIC JI Energy Effic. PD MAY PY 2009 VL 2 IS 2 SI SI BP 109 EP 123 DI 10.1007/s12053-008-9032-8 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA V18IM UT WOS:000207998500003 ER PT J AU Kobayashi, S Plotkin, S Ribeiro, SK AF Kobayashi, Shigeki Plotkin, Steven Ribeiro, Suzana Kahn TI Energy efficiency technologies for road vehicles SO ENERGY EFFICIENCY LA English DT Article DE Light-duty vehicles; Fuel economy; Fuel efficiency; Vehicle technologies; IPCC AB A key message of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change is that improved energy efficiency is one of society's most important instruments for combating climate change. This article reviews a range of energy efficiency measures in the transportation sector as discussed in AR4 and assess their potentials for improving fuel efficiency. The primary focus is on light-duty vehicles because they represent the largest portion of world transport energy use and carbon dioxide emissions; freight trucks, a rapidly expanding source of greenhouse emissions, are also discussed. Increasing energy efficiency can be achieved by improving the design and technology used in new vehicles, but vehicle technology is only one component of fleet fuel economy. Measures that create strong incentives for customers to take energy efficiency into consideration when buying and operating their vehicles will be crucial to policy success. C1 [Kobayashi, Shigeki] Toyota Cent Res & Dev Labs Inc, Aichi 4801192, Japan. [Plotkin, Steven] Argonne Natl Lab, Washington, DC USA. [Ribeiro, Suzana Kahn] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil. RP Kobayashi, S (reprint author), Toyota Cent Res & Dev Labs Inc, Aichi 4801192, Japan. EM shige@mosk.tytlabs.co.jp NR 30 TC 30 Z9 30 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD MAY PY 2009 VL 2 IS 2 SI SI BP 125 EP 137 DI 10.1007/s12053-008-9037-3 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA V18IM UT WOS:000207998500004 ER PT J AU Murakami, S Levine, MD Yoshino, H Inoue, T Ikaga, T Shimoda, Y Miura, S Sera, T Nishio, M Sakamoto, Y Fujisaki, W AF Murakami, Shuzo Levine, Mark D. Yoshino, Hiroshi Inoue, Takashi Ikaga, Toshiharu Shimoda, Yoshiyuki Miura, Shuichi Sera, Tomoki Nishio, Masahiro Sakamoto, Yasuhiro Fujisaki, Wataru TI Overview of energy consumption and GHG mitigation technologies in the building sector of Japan SO ENERGY EFFICIENCY LA English DT Article DE IPCC; GHG; Building; Energy; Japan AB This paper outlines the energy consumption and greenhouse gas emission trends in the residential and commercial sectors in Japan. The results showed that the increase in residential energy consumption in Japan is mainly caused by the widespread use of heating equipment, hot water supply apparatus, and other household electrical appliances. On the other hand, it was indicated that the increase in commercial energy use is mainly due to the increase of the floor area of buildings, particularly hotels, hospitals, and department stores. The paper also describes political measures to promote energy conservation, including the building energy conservation standard, Comprehensive Assessment System for Building Environmental Efficiency, top runner programs, financial incentives, and the dissemination of the Cool Biz concept. Finally, the projections of CO(2) emissions until 2050 are presented. C1 [Murakami, Shuzo] Bldg Res Inst, Tsukuba, Ibaraki, Japan. [Levine, Mark D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Inoue, Takashi] Tokyo Univ Sci, Tokyo 162, Japan. [Ikaga, Toshiharu] Keio Univ, Tokyo, Japan. [Yoshino, Hiroshi] Tohoku Univ, Sendai, Miyagi 980, Japan. [Shimoda, Yoshiyuki] Osaka Univ, Osaka, Japan. [Miura, Shuichi] Tohoku Univ Art & Design, Yamagata, Japan. [Sera, Tomoki] Tokyo Metropolitan Govt, Tokyo, Japan. [Nishio, Masahiro] Minist Econ Trade & Ind, Tokyo, Japan. [Sakamoto, Yasuhiro] Tokyo Elect Power Co Ltd, Tokyo, Japan. [Fujisaki, Wataru] Tokyo Gas Co Ltd, Tokyo, Japan. RP Yoshino, H (reprint author), Tohoku Univ, Sendai, Miyagi 980, Japan. EM yoshino@sabine.pln.archi.tohoku.ac.jp NR 25 TC 15 Z9 15 U1 2 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD MAY PY 2009 VL 2 IS 2 SI SI BP 179 EP 194 DI 10.1007/s12053-008-9040-8 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA V18IM UT WOS:000207998500007 ER PT J AU Tian, LW Koshland, CP Yano, JK Yachandra, VK Yu, ITS Lee, SC Lucas, D AF Tian, Linwei Koshland, Catherine P. Yano, Junko Yachandra, Vittal K. Yu, Ignatius T. S. Lee, S. C. Lucas, Donald TI Carbon-Centered Free Radicals in Particulate Matter Emissions from Wood and Coal Combustion SO ENERGY & FUELS LA English DT Article ID BITUMINOUS COALS; AIR-POLLUTION; LUNG-CANCER; PYROLYSIS; TOBACCO; OXYGEN; CHINA; EPR AB Electron paramagnetic resonance (EPR) spectroscopy was used to measure the free radicals in the particulate matter (PM) emissions from wood and coal combustion. The intensity of radicals in PM dropped linearly within two months of sample storage and stabilized after that. This factor of storage time was adjusted when comparing radical intensities among different PM samples. An inverse relationship between coal rank and free radical intensities in PM emissions was observed, which was in contrast with the pattern of radical intensities in the source coals. The strong correlation between intensities of free radical and elemental carbon in PM emissions suggests that the radical species may be carbon-centered. The increased g-factors, 2.0029-2.0039, over that of purely carbon-centered radicals may indicate the presence of vicinal oxygen heteroatom. The redox and biology activities of these carbon-centered radicals are worthy of evaluation. C1 [Tian, Linwei; Yu, Ignatius T. S.] Chinese Univ Hong Kong, Sch Publ Hlth, Shatin, Hong Kong, Peoples R China. [Yano, Junko; Yachandra, Vittal K.; Lucas, Donald] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Tian, Linwei; Koshland, Catherine P.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Lee, S. C.] Hong Kong Polytech Univ, Kowloon, Hong Kong, Peoples R China. [Koshland, Catherine P.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Tian, LW (reprint author), Chinese Univ Hong Kong, Sch Publ Hlth, Shatin, Hong Kong, Peoples R China. EM linweit@cuhk.edu.hk RI Tian, Linwei/A-9736-2009; Yu, Ignatius Tak Sun/A-9936-2008; Lee, shun-cheng/A-1393-2014 OI Tian, Linwei/0000-0002-4739-1534; Lee, shun-cheng/0000-0001-5144-8372 FU National Institute of Environmental Health Sciences [P42ESO47050-01]; Wood Calvert Chair in Engineering (UCB); National Cancer Institute; University of California; NIH [GM 55302]; Department of Energy, Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231] FX This work was supported by the Environmental Health Sciences Superfund Basic Research Program (Grant P42ESO47050-01) from the National Institute of Environmental Health Sciences, the Wood Calvert Chair in Engineering (UCB), the National Cancer Institute, and the University of California Toxic Substances Research and Training Program. We also acknowledge NIH Grant GM 55302 (to V.K.Y.) and the Department of Energy, Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under Contract DE-AC02-05CH11231 (to V.K.Y. and J.Y.). NR 22 TC 22 Z9 25 U1 6 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAY-JUN PY 2009 VL 23 BP 2523 EP 2526 DI 10.1021/ef8010096 PG 4 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 463FX UT WOS:000267416600025 PM 19551161 ER PT J AU Moens, L Black, SK Myers, MD Czernik, S AF Moens, Luc Black, Stuart K. Myers, Michele D. Czernik, Stefan TI Study of the Neutralization and Stabilization of a Mixed Hardwood Bio-Oil SO ENERGY & FUELS LA English DT Article ID BIOMASS PYROLYSIS OIL; HZSM-5 ZEOLITE; OXYGENATE COMPONENTS; TRANSFORMATION; CATALYSTS; ACIDS; FUEL AB Fast-pyrolysis bio-oil that is currently produced from lignocellulosic biomass in demonstration and semicommercial plants requires significant modification to become an acceptable transportation fuel. The high acidity and chemical instability of bio-oils render them incompatible with existing petroleum refinery processes that produce gasoline and diesel fuels. To facilitate the use of bio-oil as a feedstock in a traditional refinery infrastructure, there is considerable interest in upgrading bio-oils through chemical pathways that include converting the carboxylic acids and reactive carbonyl compounds into esters and acetals using low-cost alcohols. In this article, we discuss our observations with different approaches to esterification and etherification chemistry using a crude bio-oil derived from mixed hardwoods. The high water content in crude bio-oils (ca. 20-30%) creates equilibrium limitations in the condensation reactions that hamper the upgrading process in that the neutralization and stabilization steps cannot easily be driven to completion. The lowest acid number that we were able to obtain without causing serious degradation of the flow properties of the bio-oil had a total acid number of about 20, a value that is still too high for use in a traditional petroleum refinery. C1 [Moens, Luc; Black, Stuart K.; Myers, Michele D.; Czernik, Stefan] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Moens, L (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM luc-moens@nrel.gov FU Biomass Program of the United States Department of Energy FX This research was supported by the Biomass Program of the United States Department of Energy. NR 23 TC 50 Z9 51 U1 0 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAY-JUN PY 2009 VL 23 BP 2695 EP 2699 DI 10.1021/ef8009266 PG 5 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 463FX UT WOS:000267416600048 ER PT J AU Ozdemir, E Schroeder, K AF Ozdemir, Ekrem Schroeder, Karl TI Effect of Moisture on Adsorption Isotherms and Adsorption Capacities of CO2 on Coals SO ENERGY & FUELS LA English DT Article ID ARGONNE PREMIUM COALS; CARBON-DIOXIDE; PORE STRUCTURE; METHANE RECOVERY; AMERICAN COALS; HIGH-PRESSURE; SORPTION; SURFACE; SAMPLES; WATER AB The effect of moisture on the adsorption isotherms and adsorption capacities Of CO2 on Argonne Premium coals has been investigated. In some experiments a small hysteresis was observed between the adsorption and desorption isotherms. The hysteresis was absent or negligible for high-rank and as-received coals but was discernible for lower rank and dried coals. An equation that accounted for the volumetric changes when an adsorbate alters the structure of an adsorbent was employed to interpret the data. The best-fit solutions indicate that the coal volume decreases upon drying. The microscopic shrinkage estimated using helium expansion was greater than the shrinkage reported using the bed-height technique. The microscopic shrinkage was 5-10% for low-moisture medium and high-rank coals and up to 40% for low-rank coals having higher moisture contents. The CO2 swelling of coals during adsorption isotherm measurements was estimated to be about the same as the shrinkage that occurred during the moisture loss. The adsorption capacity, isosteric heat of adsorption, average pore size, and surface area of the as-received (moist) and dried Argonne coals were estimated after accounting for the volume changes. The isosteric heat of adsorption Of CO2 was found to be between 23 and 25 U/mol for as-received coals and between 25 and 27 U/mol for dried coals, regardless of the rank. The degree of drying was shown to affect the adsorption capacity and the calculated surface area. For dried coals, the adsorption capacity showed the typical 'U-shape' dependence on rank whereas the as-received coals displayed a more linear dependence. A relationship is proposed to quantify the effect of moisture on the adsorption capacity. The mechanism Of CO2 adsorption on moist coals and the implications of the lower adsorption capacity of wet coals to coal seam sequestration Of CO2 are presented. C1 [Ozdemir, Ekrem; Schroeder, Karl] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Ozdemir, Ekrem] Izmir Inst Technol, Dept Chem Engn, Izmir, Turkey. RP Ozdemir, E (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM ekremozdemir@iyte.edu.tr NR 70 TC 51 Z9 53 U1 1 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAY-JUN PY 2009 VL 23 BP 2821 EP 2831 DI 10.1021/ef801126a PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 463FX UT WOS:000267416600064 ER PT J AU Liu, W Jin, YH Quan, X Sasaki, K Saito, N Nakayama, SF Sato, I Tsuda, S AF Liu, Wei Jin, YiHe Quan, Xie Sasaki, Kazuaki Saito, Norimitsu Nakayama, Shoji F. Sato, Itaru Tsuda, Shuji TI Perfluorosulfonates and perfluorocarboxylates in snow and rain in Dalian, China SO ENVIRONMENT INTERNATIONAL LA English DT Article DE Perfluoroalkyl sulfonate; Perfluoroalkyl carboxylate; Snow; Rain; Wet deposition ID PERFLUOROOCTANE SULFONATE; AIRBORNE PERFLUOROOCTANOATE; PERFLUORINATED CHEMICALS; MASS-SPECTROMETRY; CARBOXYLIC-ACIDS; HUMAN BLOOD; KYOTO AREA; SURFACTANTS; WATER; JAPAN AB Samples of precipitation events (snow and rain) in Dalian, a typical coastal town in China, were analyzed for perfluorosulfonates (PFSAs) and perfluorocarboxylates (PFCAs) to investigate atmospheric contamination by these compounds. In the snow event on December 16, 2006, samples were collected from 21 different sites and in another 6 precipitation events, samples were collected from a single location. Four PFSAs (C4, C6, C8, C10) and seven PFCAs (C6-12) were analyzed. Among the homologues, perfluorooctane sulfonate (PFOS) concentrations were the highest with a geometric mean (CM) of 145 ng/L (n = 21) during the snow event on December 16, 2006. followed by perfluorooctanoate (PFOA) with a GM of 24.7 ng/L (n = 21). Concentrations of perfluorobutane sulfonate (PFBS). perfluorohexane sulfonate (PFHxS) and perfluoroheptanoate (PFHpA) were more than two orders of magnitude lower than that of PFOS. Other PFSAs and PFCAs were found to be below the limit of detection in all the samples. In other 6 precipitation events, PFSAs and PFCAs were detected approximately in the same order of magnitude in both snow and rain. The results indicate that wet deposition may be a potential transport mechanism of perfluorinated chemicals in the environment. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Liu, Wei; Jin, YiHe; Quan, Xie] Dalian Univ Technol, Sch Environm & Biol Sci & Technol, Key Lab Ind Ecol & Environm Engn, MOE, Dalian 116024, Peoples R China. [Sasaki, Kazuaki; Saito, Norimitsu] Res Inst Environm Sci & Publ Hlth Iwate Prefectur, Morioka, Iwate 0200852, Japan. [Nakayama, Shoji F.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Sato, Itaru; Tsuda, Shuji] Iwate Univ, Fac Agr, Dept Vet Med, Lab Vet Publ Hlth, Morioka, Iwate 0208550, Japan. RP Jin, YH (reprint author), Dalian Univ Technol, Sch Environm & Biol Sci & Technol, Key Lab Ind Ecol & Environm Engn, MOE, Dalian 116024, Peoples R China. EM jinyihe@dlut.edu.cn RI Nakayama, Shoji/B-9027-2008; Liu, Wei/P-5804-2014 OI Liu, Wei/0000-0001-8920-1172 FU National Nature Science Foundation of China [20837004, 30471435] FX We thank the National Nature Science Foundation of China (No.20837004 and 30471435) for financial support. NR 38 TC 34 Z9 37 U1 5 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 J9 ENVIRON INT JI Environ. Int. PD MAY PY 2009 VL 35 IS 4 BP 737 EP 742 DI 10.1016/j.envint.2009.01.016 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 437XN UT WOS:000265520300009 PM 19278728 ER PT J AU Jordan, PD Benson, SM AF Jordan, Preston D. Benson, Sally M. TI Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: implications for geological storage of carbon dioxide SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Geological carbon dioxide storage; Thermally enhanced oil recovery; Well leakage; Well blowout; California AB Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO(2) via wells, which is considered perhaps the greatest leakage risk for geological storage of CO(2). During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO(2)-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO(2)-enhanced oil recovery (EOR) and natural gas storage. C1 [Jordan, Preston D.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Benson, Sally M.] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. RP Jordan, PD (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM pdjordan@lbl.gov RI Jordan, Preston/L-1587-2016 OI Jordan, Preston/0000-0001-5853-9517 FU Assistant Secretary for Fossil Energy; Office of Coal and Power Systems; National Energy Technology Laboratory (NETL) [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems, through the National Energy Technology Laboratory (NETL) under Department of Energy Contract No. DE-AC02-05CH11231. NR 16 TC 20 Z9 21 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 5 BP 1103 EP 1123 DI 10.1007/s00254-008-1403-0 PG 21 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 436UC UT WOS:000265440600014 ER PT J AU Tsang, CF AF Tsang, Chin-Fu TI Introductory editorial to the special issue on the DECOVALEX-THMC project SO ENVIRONMENTAL GEOLOGY LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Tsang, CF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM cftsang@lbl.gov NR 0 TC 8 Z9 8 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1217 EP 1219 DI 10.1007/s00254-008-1626-0 PG 3 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900001 ER PT J AU Tsang, CF Stephansson, O Jing, LR Kautsky, F AF Tsang, Chin-Fu Stephansson, Ove Jing, Lanru Kautsky, Fritz TI DECOVALEX Project: from 1992 to 2007 SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Geoscience; Quantitative Hydrogeology; Waste Management ID KAMAISHI MINE EXPERIMENT; BENTONITE; MODELS; ROCK AB The DECOVALEX project is a unique international research collaboration, initiated in 1992, for advancing the understanding and mathematical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) processes in geological systems-subjects of importance for performance assessment of radioactive waste repositories in geological formations. From 1992 up to 2007, the project has made important progress and played a key role in the development of numerical modelling of coupled processes in fractured rocks and buffer/backfill materials. The project has been conducted by research teams supported by a large number of radioactive-waste-management organizations and regulatory authorities, including those of Canada, China, Finland, France, Japan, Germany, Spain, Sweden, UK, and the USA. Through this project, in-depth knowledge has been gained of coupled THM and THMC processes associated with nuclear waste repositories, as well as numerical simulation models for their quantitative analysis. The knowledge accumulated from this project, in the form of a large number of research reports and international journal and conference papers in the open literature, has been applied effectively in the implementation and review of national radioactive-waste-management programmes in the participating countries. This paper presents an overview of the project. C1 [Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Stephansson, Ove] Geoforschungszentrum Potsdam, D-14473 Potsdam, Germany. [Jing, Lanru] Royal Inst Technol, S-10044 Stockholm, Sweden. [Kautsky, Fritz] Swedish Radiat Safety Author, S-17116 Stockholm, Sweden. RP Tsang, CF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM cftsang@lbl.gov FU DECOVALEX; Swedish Nuclear Power Inspectorate; Swedish Radiation Safety Authority SSM FX The authors would like to express their sincere gratitude to all funding organizations of the DECOVALEX project (Table 1) for their financial and technical support, and to the experts and research teams for their extensive contributions and outstanding achievements that have made the project successful. Especially, we would like to thank the Swedish Nuclear Power Inspectorate (SKI, recently reorganized as the Swedish Radiation Safety Authority SSM) for their sustained support and encouragement throughout the 15 years of this most successful international cooperative project. NR 21 TC 18 Z9 24 U1 3 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1221 EP 1237 DI 10.1007/s00254-008-1625-1 PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900002 ER PT J AU Nguyen, TS Borgesson, L Chijimatsu, M Hernelind, J Jing, LR Kobayashi, A Rutqvist, J AF Nguyen, Thanh Son Borgesson, Lennart Chijimatsu, Masakazu Hernelind, Jan Jing, Lanru Kobayashi, Akira Rutqvist, Jonny TI A case study on the influence of THM coupling on the near field safety of a spent fuel repository in sparsely fractured granite SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Coupled processes; Thermal; Hydraulic; Mechanical; Excavation disturbed zone; Damage; Permeability; In-situ underground experiments; Safety assessment ID NUCLEAR-WASTE REPOSITORY; DECOVALEX-III PROJECT; BMT1 AB In order to demonstrate the feasibility of geological disposal of spent CANDU fuel in Canada, a safety assessment was performed for a hypothetical repository in the Canadian Shield. The assessment shows that the maximum long term radionuclide release from such repository would meet international criteria for dose rate; however, uncertainties in the assumed evolution of the repository were identified. Such uncertainties could be resolved by the consideration of coupled Thermal-Hydro-Mechanical-Chemical (THMC) processes. In Task A of the DECOVALEX-THMC project, THM models were developed within the framework of the theory of poroelasticity. Such model development was performed in an iterative manner, using experimental data from laboratory and field tests. The models were used to perform near-field simulations of the evolution of the repository in order to address the above-mentioned uncertainties. This paper presents the definition and rationale of task A and the results of the simulations. From a repository safety point of view, the simulations predict that the maximum temperature would be well below the design target of 100A degrees C; however, the stress on the container can marginally exceed the design value of 15 MPa. However, the most important finding from the simulations is that a rock damage zone could form around the emplacement borehole. Such damage zone can extend a few metres from the walls of the emplacement holes, with permeability values that are orders of magnitude higher than the initial values. The damage zone has the potential to increase the radionuclide transport flux from the geosphere; the effect of such an increase should be taken into account in the safety assessment and mitigated if necessary by the provision of sealing systems. C1 [Nguyen, Thanh Son] Canadian Nucl Safety Commiss, Ottawa, ON, Canada. [Borgesson, Lennart] Clay Technol AB, Lund, Sweden. [Chijimatsu, Masakazu] Hazama Cooperat, Tokyo, Japan. [Hernelind, Jan] FEM Tech AB, Vasteras, Sweden. [Jing, Lanru] Royal Inst Technol, Stockholm, Sweden. [Kobayashi, Akira] Kyoto Univ, Kyoto, Japan. [Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Nguyen, TS (reprint author), Canadian Nucl Safety Commiss, Ottawa, ON, Canada. EM nguyens@cnsc-ccsn.gc.ca RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU CNSC; SKI; SKB; STUK; DECOVALEX-THMC FX The authors sincerely thank the funding organizations CNSC, SKI, SKB and STUK for their financial support, and other participants in DECOVALEX- THMC for their continual support, discussion, and peer review during all phases of this project. The opinions discussed in this paper are the authors' and do not necessarily reflect those of the funding organizations. NR 14 TC 6 Z9 6 U1 1 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1239 EP 1254 DI 10.1007/s00254-008-1565-9 PG 16 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900003 ER PT J AU Chijimatsu, M Borgesson, L Fujita, T Jussila, P Nguyen, S Rutqvist, J Jing, LR AF Chijimatsu, Masakazu Borgesson, Lenart Fujita, Tomoo Jussila, Petri Nguyen, Son Rutqvist, Jonny Jing, Lanru TI Model development and calibration for the coupled thermal, hydraulic and mechanical phenomena of the bentonite SO ENVIRONMENTAL GEOLOGY LA English DT Article DE DECOVALEX; Radioactive waste ID MEDIA AB In the international DECOVALEX-THMC project, five research teams study the influence of thermal-hydro-mechanical (THM) coupling on the safety of a hypothetical geological repository for spent fuel. In order to improve the analyses, the teams calibrated their bentonite models with results from laboratory experiments, including swelling pressure tests, water uptake tests, thermally gradient tests, and the CEA mock-up THM experiment. This paper describes the mathematical models used by the teams, and compares the results of their calibrations with the experimental data. C1 [Chijimatsu, Masakazu] Hazama Corp, Minato Ku, Tokyo 1058479, Japan. [Borgesson, Lenart] Clay Technol, Lund, Sweden. [Fujita, Tomoo] Japan Atom Energy Agcy, Tokai, Ibaraki, Japan. [Jussila, Petri] Helsinki Univ Technol, Helsinki, Finland. [Nguyen, Son] Canadian Nucl Safety Commiss, Ottawa, ON, Canada. [Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jing, Lanru] Royal Inst Technol, Stockholm, Sweden. RP Chijimatsu, M (reprint author), Hazama Corp, Minato Ku, 2-2-5 Toranomon, Tokyo 1058479, Japan. EM mchiji@hazama.co.jp RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 NR 9 TC 6 Z9 6 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1255 EP 1261 DI 10.1007/s00254-008-1401-2 PG 7 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900004 ER PT J AU Rutqvist, J Borgesson, L Chijimatsu, M Hernelind, J Jing, LR Kobayashi, A Nguyen, S AF Rutqvist, Jonny Borgesson, Lennart Chijimatsu, Masakazu Hernelind, Jan Jing, Lanru Kobayashi, Akira Nguyen, Son TI Modeling of damage, permeability changes and pressure responses during excavation of the TSX tunnel in granitic rock at URL, Canada SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Coupled processes; Excavation disturbed zone; Damage; Permeability; TSX ID NUCLEAR-WASTE REPOSITORY; DECOVALEX-III PROJECT; NEAR-FIELD SAFETY; FRACTURED ROCK; KAMAISHI MINE; BMT1; GEOMATERIALS; FORMULATION; EQUATIONS; DISPOSAL AB This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of a test tunnel associated with the tunnel sealing experiment (TSX) at the Underground Research Laboratory (URL) in Canada. Four different numerical models were applied using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters, the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increase alongside the tunnel is a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis' coefficient, alpha a parts per thousand 0.2, a porosity of n a parts per thousand 0.007, and a relatively low permeability of k a parts per thousand 2 x 10(-22) m(2), which is consistent with the very tight, unfractured granite at the site. C1 [Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Borgesson, Lennart] Clay Technol AB, Lund, Sweden. [Chijimatsu, Masakazu] Hazama Cooperat, Tokyo, Japan. [Hernelind, Jan] FEM Tech AB, Gothenburg, Sweden. [Jing, Lanru] Royal Inst Technol, Stockholm, Sweden. [Kobayashi, Akira] Kyoto Univ, Kyoto, Japan. [Nguyen, Son] Canadian Nucl Safety Commiss, Ottawa, ON, Canada. RP Rutqvist, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-1116, Berkeley, CA 94720 USA. EM jrutqvist@lbl.gov RI Rutqvist, Jonny/F-4957-2015 OI Rutqvist, Jonny/0000-0002-7949-9785 FU Swedish Nuclear Waste Power Inspectorate (SKI); Japanese Atomic Energy Agency (JAEA); Canadian Nuclear Safety Commission (CNSC); Swedish Nuclear Fuel and Waste Management Company (SKB) FX Funding to the LBNL research team and the first author was provided by the Swedish Nuclear Waste Power Inspectorate (SKI). Funds for modeling work by other research teams were provided by the Japanese Atomic Energy Agency (JAEA), the Canadian Nuclear Safety Commission (CNSC), and the Swedish Nuclear Fuel and Waste Management Company (SKB). It is emphasized that the views expressed in this paper are solely those of the authors and cannot necessarily be taken to represent the views of any of the organizations listed above. NR 38 TC 14 Z9 17 U1 3 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1263 EP 1274 DI 10.1007/s00254-008-1515-6 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900005 ER PT J AU Hudson, JA Backstrom, A Rutqvist, J Jing, L Backers, T Chijimatsu, M Christiansson, R Feng, XT Kobayashi, A Koyama, T Lee, HS Neretnieks, I Pan, PZ Rinne, M Shen, BT AF Hudson, John A. Backstrom, A. Rutqvist, J. Jing, L. Backers, T. Chijimatsu, M. Christiansson, R. Feng, X. -T. Kobayashi, A. Koyama, T. Lee, H. -S. Neretnieks, I. Pan, P. -Z. Rinne, M. Shen, B. -T. TI Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Rock mechanics; Radioactive waste; Excavation disturbed zone; Characterisation; Modelling ID ELASTOPLASTIC CELLULAR-AUTOMATON; LINEAR COMBINATION; PREDICTIONS; STRESS; STRAIN AB This paper describes current knowledge about the nature of and potential for thermo-hydro-mechanical-chemical modelling of the excavation damaged zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX [DEmonstration of COupled models and their VALidation against EXperiment: research funded by an international consortium of radioactive waste regulators and implementers (http://www.decovalex.com)] research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress-strain curve for Avro granite from the Swedish A"spo Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a 'wall-block model' and a 'near-field model'. This included assessing the evolution of stress, failure and permeability and time-dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress-strain curve for rock and for modelling the EDZ. C1 [Hudson, John A.] Univ London Imperial Coll Sci Technol & Med, London, England. [Backstrom, A.] Berg Bygg Konsult AB & Royal Inst Technol, Stockholm, Sweden. [Rutqvist, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Jing, L.; Koyama, T.; Neretnieks, I.] Royal Inst Technol, Stockholm, Sweden. [Backers, T.] GeoFrames GmbH, Potsdam, Germany. [Chijimatsu, M.] Hazama Cooperat, Tokyo, Japan. [Christiansson, R.] SKB, Stockholm, Sweden. [Feng, X. -T.; Pan, P. -Z.] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan, Peoples R China. [Kobayashi, A.; Koyama, T.] Kyoto Univ, Kyoto, Japan. [Lee, H. -S.] Fracom Ltd, Seoul, South Korea. [Rinne, M.] Fracom Ltd, Kyrkslatt, Finland. [Shen, B. -T.] Fracom Ltd, Brisbane, Qld, Australia. RP Hudson, JA (reprint author), Univ London Imperial Coll Sci Technol & Med, London, England. EM john.a.hudson@gmail.com RI Feng, Xia-Ting/D-5324-2009; Rinne, Mikael/G-2401-2013; Rutqvist, Jonny/F-4957-2015 OI Rinne, Mikael/0000-0002-9837-5323; Rutqvist, Jonny/0000-0002-7949-9785 NR 24 TC 22 Z9 23 U1 2 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1275 EP 1297 DI 10.1007/s00254-008-1554-z PG 23 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900006 ER PT J AU Rutqvist, J Backstrom, A Chijimatsu, M Feng, XT Pan, PZ Hudson, J Jing, L Kobayashi, A Koyama, T Lee, HS Huang, XH Rinne, M Shen, BT AF Rutqvist, Jonny Backstrom, Ann Chijimatsu, Masakazu Feng, Xia-Ting Pan, Peng-Zhi Hudson, John Jing, Lanru Kobayashi, Akira Koyama, Tomofumi Lee, Hee-Suk Huang, Xiao-Hua Rinne, Mikael Shen, Baotang TI A multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Coupled THM; Nuclear waste repository; Excavation disturbed zone; Damage; Permeability ID ELASTOPLASTIC CELLULAR-AUTOMATON; DECOVALEX-III PROJECT; NEAR-FIELD SAFETY; YUCCA MOUNTAIN; FRACTURED ROCK; KAMAISHI MINE; EXCAVATION; PREDICTIONS; MODELS; DRIFT AB This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elasto-plastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because of decreasing thermal stress. C1 [Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Backstrom, Ann; Jing, Lanru; Koyama, Tomofumi] Royal Inst Technol, Stockholm, Sweden. [Chijimatsu, Masakazu] Hazama Corp, Tokyo, Japan. [Feng, Xia-Ting; Pan, Peng-Zhi; Huang, Xiao-Hua] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan, Peoples R China. [Kobayashi, Akira] Kyoto Univ, Kyoto, Japan. [Lee, Hee-Suk] FRACOM Ltd, Seoul, South Korea. [Rinne, Mikael] FRACOM Ltd, Kyrkslatt, Finland. [Shen, Baotang] FRACOM Ltd, Brisbane, Qld, Australia. RP Rutqvist, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-1116, Berkeley, CA 94720 USA. EM jrutqvist@lbl.gov RI Feng, Xia-Ting/D-5324-2009; Rinne, Mikael/G-2401-2013; Rutqvist, Jonny/F-4957-2015 OI Rinne, Mikael/0000-0002-9837-5323; Rutqvist, Jonny/0000-0002-7949-9785 NR 31 TC 11 Z9 13 U1 3 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1313 EP 1324 DI 10.1007/s00254-008-1536-1 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900008 ER PT J AU Rutqvist, J Barr, D Birkholzer, JT Fujisaki, K Kolditz, O Liu, QS Fujita, T Wang, WQ Zhang, CY AF Rutqvist, Jonny Barr, Deborah Birkholzer, Jens T. Fujisaki, Kiyoshi Kolditz, Olaf Liu, Quan-Sheng Fujita, Tomoo Wang, Wenqing Zhang, Cheng-Yuan TI A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Coupled processes; Nuclear waste repository; Temperature; Stress; Permeability ID DECOVALEX-III PROJECT; NEAR-FIELD SAFETY; MECHANICAL-BEHAVIOR; YUCCA MOUNTAIN; KAMAISHI MINE; HEATER TEST; FLUID-FLOW; PREDICTIONS; BMT1; FORMULATION AB This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings (1) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (2) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal-mechanically induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal-mechanically induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts. C1 [Rutqvist, Jonny; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Barr, Deborah] US DOE, Off Repository Dev, Las Vegas, NV USA. [Fujisaki, Kiyoshi; Fujita, Tomoo] Japan Atom Energy Agcy, Tokai, Ibaraki, Japan. [Kolditz, Olaf; Wang, Wenqing] UFZ Helmholtz Ctr Environm Res, Leipzig, Germany. [Liu, Quan-Sheng; Zhang, Cheng-Yuan] Chinese Acad Sci, Wuhan, Peoples R China. RP Rutqvist, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-1116, Berkeley, CA 94720 USA. EM Jrutqvist@lbl.gov RI Wang, Wenqing/B-9702-2008; Birkholzer, Jens/C-6783-2011; Rutqvist, Jonny/F-4957-2015 OI Wang, Wenqing/0000-0001-8909-6245; Birkholzer, Jens/0000-0002-7989-1912; Rutqvist, Jonny/0000-0002-7949-9785 NR 33 TC 19 Z9 22 U1 1 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1347 EP 1360 DI 10.1007/s00254-008-1552-1 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900011 ER PT J AU Liu, XY Zhang, CY Liu, QS Birkholzer, J AF Liu, Xiaoyan Zhang, Chengyuan Liu, Quansheng Birkholzer, Jens TI Multiple-point statistical prediction on fracture networks at Yucca Mountain SO ENVIRONMENTAL GEOLOGY LA English DT Article DE Multiple-point-statistics; Fracture network; Seepage; Nuclear waste repository; Yucca Mountain ID ROCK MASSES; SIMULATION; SEEPAGE AB In many underground nuclear waste repository systems, such as Yucca Mountain project, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of Multi-point Statistical method is to record multiple-point statistics concerning the connectivity patterns of fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at Yucca Mountain waste repository system. First, MPS method is used to create fracture network with original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in surrounding rock of waste emplacement drifts. Our study shows that connectivity or pattern of fracture network can be grasped and reconstructed by Multi-Point-Statistical method. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify uncertainty of models even in complicated coupled THM simulation. It indicates that Multi-Point Statistics is a potential method to characterize and reconstruct natural fracture network in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously. C1 [Liu, Xiaoyan; Zhang, Chengyuan; Liu, Quansheng] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Hubei, Peoples R China. [Birkholzer, Jens] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhang, CY (reprint author), Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Xiaohongshan 12, Wuhan 430071, Hubei, Peoples R China. EM zhangcy@whrsm.ac.cn RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 FU Chinese academy of science (CAS) [kzcx2-yw-116]; National Nature Science Foundation of China (NSFC) [40520130315, 50574087] FX This work was supported by Chinese academy of science (CAS) under the project of kzcx2-yw-116 and National Nature Science Foundation of China (NSFC) under the project 40520130315 and 50574087. NR 25 TC 2 Z9 3 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0943-0105 J9 ENVIRON GEOL JI Environ. Geol. PD MAY PY 2009 VL 57 IS 6 BP 1361 EP 1370 DI 10.1007/s00254-008-1623-3 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 439JH UT WOS:000265622900012 ER PT J AU Miot, J Morin, G Skouri-Panet, F Ferard, C Poitevin, A Aubry, E Ona-Nguema, G Juillot, F Guyot, F Brown, GE AF Miot, Jennyfer Morin, Guillaume Skouri-Panet, Feriel Ferard, Celine Poitevin, Antonine Aubry, Emmanuel Ona-Nguema, Georges Juillot, Farid Guyot, Francois Brown, Gordon E., Jr. TI Speciation of Arsenic in Euglena gracilis Cells Exposed to As(V) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ACID-MINE DRAINAGE; NEAR-EDGE STRUCTURE; SACCHAROMYCES-CEREVISIAE; PROTEIN; DETOXIFICATION; RESISTANCE; FRANCE; WATERS; GLUTATHIONE; ADSORPTION AB Euglena gracilis is a photosynthetic eukaryote ubiquitous in arsenic-polluted acid mine drainages and is locally exposed to As(III) and As(V) concentrations up to 250 and 100 mg L(-1), respectively. Here, arsenic speciation in E gracilis was determined by X-ray absorption spectroscopy and selected (bio)chemical methods on cells grown at nonlimiting phosphate concentrations. Our results suggest the following detoxification scheme: (1) uptake of As(V) from solution in competition with phosphate, (2) intracellular reduction to As(III), (3) complexation by cytoplasmic proteic thiol ligands of low molecular weight, and (4) As(III) export from the cell. However, at As(V) concentrations >100 mg L-1, growth rate is markedly lowered and As(V) remains mostly unreduced during the extended lag period. Intracellular As(V) is found to be exclusively concentrated in the membrane + nucleus fraction, suggesting that arsenate could substitute for phosphate groups in membranes or in phosphate-containing macromolecules. Thus, arsenic species are partitioned, with As(III)thiol compounds concentrated in the cytoplasmic proteic pool and As(V)-compounds associated with the membrane + nucleus fraction. The increasing growth delay observed with increasing initial As(V) concentration in the culture medium is proposed to result from the combination of a higher As(V) uptake and limiting intracellular As(V) reduction rate and As(III) export rate. Under high As(V) exposure conditions (200 mg L(-1)) the reduction step is found to be the most limiting step for detoxification. C1 [Miot, Jennyfer; Skouri-Panet, Feriel; Ferard, Celine; Poitevin, Antonine; Ona-Nguema, Georges; Juillot, Farid] Univ Paris 06, Inst Mineral & Phys Milieux Condenses, F-75015 Paris, France. [Miot, Jennyfer; Skouri-Panet, Feriel; Ferard, Celine; Poitevin, Antonine; Ona-Nguema, Georges; Juillot, Farid] Univ Paris 06, Inst Phys Globe, F-75015 Paris, France. [Miot, Jennyfer; Skouri-Panet, Feriel; Ferard, Celine; Poitevin, Antonine; Ona-Nguema, Georges; Juillot, Farid] Univ Paris 07, CNRS, UMR 7590, F-75015 Paris, France. [Morin, Guillaume; Aubry, Emmanuel; Guyot, Francois] Univ Paris 06, INRA,INAPG,ENS,ENSCP, CNRS, UMR 7618, F-75252 Paris 05, France. [Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Brown, Gordon E., Jr.] Stanford Synchrotron Radiat Lab, Stanford, CA USA. RP Miot, J (reprint author), Univ Paris 06, Inst Mineral & Phys Milieux Condenses, 140 Rue Lourmel, F-75015 Paris, France. EM miot@impmc.jussieu.fr RI GUYOT, Francois/C-3824-2016; JUILLOT, Farid/G-7943-2016; IMPMC, Geobio/F-8819-2016 OI GUYOT, Francois/0000-0003-4622-2218; FU ECCO/ECODYN CNRS/INSU Program; ACI/FNS [3033]; SESAME [1775]; NSF [CHE-0431425]; France-Stanford Institute for Interdisciplinary Studies FX We are indebted to the Stanford Synchrotron Radiation Laboratory (SSRL) staff, especiafly John R. Bargar, Joe Rogers, and Samuel Webb, for their technical assistance during the XAFS experiments. This work was supported by the ECCO/ECODYN CNRS/INSU Program, by ACI/FNS grant 3033, by SESAME IdF grant 1775, by NSF-EMS1 Grant CHE-0431425 (Stanford Environmental Molecular Science Institute), and by the France-Stanford Institute for Interdisciplinary Studies. Portions of this research were carried out at SSRL, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. This is IPGP contribution #2483. NR 37 TC 14 Z9 14 U1 3 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 1 PY 2009 VL 43 IS 9 BP 3315 EP 3321 DI 10.1021/es802833s PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 441PL UT WOS:000265781100056 PM 19534152 ER PT J AU Mothersill, C Smith, RW Hinton, TG Aizawa, K Seymour, CB AF Mothersill, C. Smith, R. W. Hinton, T. G. Aizawa, K. Seymour, C. B. TI Communication of Radiation-Induced Signals in Vivo between DNA Repair Deficient and Proficient Medaka (Oryzias latipes) SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID INDUCED GENOMIC INSTABILITY; IONIZING-RADIATION; CELL-LINES; INDUCED STRESS; BYSTANDER SIGNALS; EXPOSURE; IRRADIATION; CANCER; CULTURES; P53 AB Radiation-induced bystander effects are established consequences of exposure to ionizing radiation. The operation of this mechanism has been seen in vitro and also between fish, mammals, and plants in vivo where stress signals from treated organisms induce responses in neighbors. In vitro research shows that DNA repair deficient cells produce more toxic bystander responses. To test this in vivo two strains of Japanese medaka were tested. One is a mutant, repair deficient strain (ric2) and the other, the wildtype repair proficient strain (CAB). Irradiated fish swam with unirradiated partners in a strain mix and match protocol. The data suggest that medaka produce signals, when exposed to radiation, that induce unirradiated fish of the same strain swimming with them to produce an altered response to that seen in bystanders to sham irradiated fish. More apoptosis was seen in bystanders to repair deficient fish. When the strains are mixed, the bystanders of either strain respond like the donor strain. Measurements of Bcl-2 and cmyc proteins in the explants confirmed these observations. A possible role for p53 was also identified in that the use of reporters with mutant p53 demonstrated that CAB signals killed all the reporter cells by apoptosis. Use of a similar but p53 wildtype cell line had no such effect. The data add to the body of knowledge showing that bystander signals operate at hierarchical levels of organization greater than the individual and may therefore have relevance in radiorecology and (eco)systems biology. C1 [Mothersill, C.; Smith, R. W.; Seymour, C. B.] McMaster Univ, Hamilton, ON L8S 4K1, Canada. [Hinton, T. G.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Aizawa, K.] Pharmaceut & Med Devices Agcy, Chiyoda Ku, Tokyo 1000013, Japan. RP Mothersill, C (reprint author), McMaster Univ, 1280 Main St W, Hamilton, ON L8S 4K1, Canada. EM mothers@mcmaster.ca FU NSERC; Canada Research Council FX We wish to acknowledge the following individuals: Hiroshi Mitani for Supplying file fish, Dan Coughlin and Yi Yi for laboratory assistance and fish husbandry, and Chris Wood (McMaster University) for kindly allowing the use ofhis CFI funded fish facility. We also acknowledge the NSERC Industrial Chairs programme, the Canada Research Council Chairs Programme, and the NSERC Discovery Grants Progranune. We also acknowledge Support of colleagues in the FU NOTE integrated project NR 50 TC 27 Z9 27 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAY 1 PY 2009 VL 43 IS 9 BP 3335 EP 3342 DI 10.1021/es8035219 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 441PL UT WOS:000265781100059 PM 19534155 ER PT J AU Greenberg, Y Yahel, E Caspi, EN Benmore, C Beuneu, B Dariel, MP Makov, G AF Greenberg, Y. Yahel, E. Caspi, E. N. Benmore, C. Beuneu, B. Dariel, M. P. Makov, G. TI Evidence for a temperature-driven structural transformation in liquid bismuth SO EPL LA English DT Article ID GROUP-V ELEMENTS; PHASE-TRANSITIONS; PRESSURE; METALS; RESISTIVITY; SIMULATION; VELOCITY; CARBON; SOUND; MELTS AB The thermodynamic properties of liquid bismuth have been explored from the melting point to 1100 degrees C by high-resolution measurements of the density, the heat capacity and the static structure factor. These physical properties display a number of anomalies. In particular, we have observed evidence for the presence of a temperature-driven liquid-liquid structural transformation that takes place at ambient pressure. The latter is characterized by a density discontinuity that occurs at 740 degrees C. Differential thermal analysis measurements revealed the endothermal nature of this transformation. A rearrangement of liquid bismuth structure was found by neutron diffraction measurements, supporting the existence of a liquid-liquid transformation far above the liquidus. Copyright (c) EPLA, 2009 C1 [Greenberg, Y.; Dariel, M. P.] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel. [Greenberg, Y.; Yahel, E.; Caspi, E. N.; Makov, G.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. [Benmore, C.] Argonne Natl Lab, XSD Div, Argonne, IL 60439 USA. [Benmore, C.] Argonne Natl Lab, IPNS Div, Argonne, IL 60439 USA. [Beuneu, B.] CEA Saclay, CNRS, CEA, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. RP Greenberg, Y (reprint author), Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel. EM yargreen@zahav.net.il RI Makov, Guy/F-2025-2012; OI Benmore, Chris/0000-0001-7007-7749; Makov, Guy/0000-0003-4145-7245 FU U. S. Department of Energy, BES-Materials Science, [DE-AC0206CH11357]; French CEA and CNRS FX The authors gratefully acknowledge Argonne National Laboratory, funded by the U. S. Department of Energy, BES-Materials Science, under contract DE-AC0206CH11357 as well as Laboratoire Leon Brillouin at Saclay funded by the French CEA and CNRS. NR 41 TC 34 Z9 37 U1 6 U2 17 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD MAY PY 2009 VL 86 IS 3 AR 36004 DI 10.1209/0295-5075/86/36004 PG 6 WC Physics, Multidisciplinary SC Physics GA 450UX UT WOS:000266427700021 ER PT J AU Yang, KY Yang, HB Johnson, PD Rice, TM Zhang, FC AF Yang, Kai-Yu Yang, H. -B. Johnson, P. D. Rice, T. M. Zhang, Fu-Chun TI Quasiparticles in the pseudogap phase of underdoped cuprate SO EPL LA English DT Article ID T-C SUPERCONDUCTORS; FERMI-SURFACE; COOPER PAIRS; BI2SR2CACU2O8+DELTA; DYNAMICS; STATE AB Recent angle-resolved photoemission (Yang H.-B. et al., Nature, 456 (2008) 77) and scanning tunneling microscopy (Kohsaka Y. et al., Nature, 454 (2008) 1072) measurements on underdoped cuprates have yielded new spectroscopic information on quasiparticles in the pseudogap phase. New features of the normal state such as particle-hole asymmetry, maxima in the energy dispersion, and accompanying drops in the spectral weight of quasiparticles agree with the ansatz of Yang et al. for the single-particle propagator in the pseudogap phase. The coherent quasiparticle dispersion and reduced asymmetry in the tunneling density of states in the superconducting state can also be described by this propagator. Copyright (c) EPLA, 2009 C1 [Yang, Kai-Yu; Rice, T. M.] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Yang, H. -B.; Johnson, P. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Yang, Kai-Yu; Rice, T. M.; Zhang, Fu-Chun] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Yang, Kai-Yu; Rice, T. M.; Zhang, Fu-Chun] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. RP Yang, KY (reprint author), ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. EM yang@phys.ethz.ch RI Zhang, Fuchun/D-3158-2009; yang, kai-yu/C-4140-2011 FU MANEP program; Swiss National funds (KYY and TMR); US Department of Energy [DE-AC02-98CH10886]; RGC grant of HKSAR FX We thank W.-Q. Chen, S. Davis, C. Honerkamp, M. Sigrist, and A. Tsvelik for discussions. Support from the MANEP program of the Swiss National funds (KYY and TMR), the US Department of Energy under Contract No. DE-AC02-98CH10886 (HBY and PDJ) and RGC grant of HKSAR (KYY and FCZ) is gratefully acknowledged. NR 33 TC 44 Z9 44 U1 1 U2 14 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAY PY 2009 VL 86 IS 3 AR 37002 DI 10.1209/0295-5075/86/37002 PG 6 WC Physics, Multidisciplinary SC Physics GA 450UX UT WOS:000266427700024 ER PT J AU Blanton, JO Garrett, AJ Bollinger, JS Hayes, DW Koffman, LD Amft, J AF Blanton, J. O. Garrett, A. J. Bollinger, J. S. Hayes, D. W. Koffman, L. D. Amft, J. TI Transport and Dispersion of a Conservative Tracer in Coastal Waters with Large Intertidal Areas SO ESTUARIES AND COASTS LA English DT Article DE Conservative tracers; Tritium; Hydrodynamic modeling; Estuarine; Coastal circulation ID TURBULENCE CLOSURE-MODEL; ESTUARIES; RIVER; FLOW; SIMULATIONS; VEGETATION; DIFFUSION; IMAGERY; TRITIUM; FATE AB In late December 1991, an accidental release of 5,700 CI of tritiated water (HTO) from the Savannah River Site was transported via site streams into the Savannah River where it was carried downstream to the coastal zone. HTO released into a semitropical Georgia estuary was forced into the tidal marshes surrounding the estuary as well as discharged directly into the Atlantic Ocean. The spreading of HTO was studied with a 3D hydrodynamic model (ALGE) that includes flooding and draining of intertidal areas. Comparisons of model simulations to measured HTO concentration showed that ALGE simulated well the general increase and decrease of HTO as its plume passed a given area. The "sheet flow" approximation for marsh and small tidal creek flow largely compensated for lack of model resolution and accurate bathymetry in areas with numerous small to medium-sized tidal creeks. The water volume of the unresolved tidal creeks had to be accounted for in the simulations by increasing the initial water depth over the marshes. ALGE and a simple box model both reproduced the trapping of HTO in intertidal areas. The time scale over which intertidal areas import and export HTO back to the tidal channels varies between 10 and 30 days. C1 [Blanton, J. O.; Amft, J.] Skidaway Inst Oceanog, Savannah, GA 31411 USA. [Garrett, A. J.; Bollinger, J. S.; Hayes, D. W.; Koffman, L. D.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Blanton, JO (reprint author), Skidaway Inst Oceanog, 10 Ocean Sci Circle, Savannah, GA 31411 USA. EM jack.blanton@skio.usg.edu NR 37 TC 5 Z9 5 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD MAY PY 2009 VL 32 IS 3 BP 573 EP 592 DI 10.1007/s12237-009-9141-4 PG 20 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA 431CI UT WOS:000265038500015 ER PT J AU Jackson, JM Hamecher, EA Sturhahn, W AF Jackson, Jennifer M. Hamecher, Emily A. Sturhahn, Wolfgang TI Nuclear resonant X-ray spectroscopy of (Mg,Fe)SiO3 orthoenstatites SO EUROPEAN JOURNAL OF MINERALOGY LA English DT Article ID EARTHS LOWER MANTLE; ORTHO-PYROXENE; MOSSBAUER-SPECTROSCOPY; SOUND VELOCITIES; HIGH-PRESSURE; SYNCHROTRON-RADIATION; ELASTIC-CONSTANTS; MGSIO3 ORTHOENSTATITE; SILICATE PEROVSKITE; SPIN TRANSITION AB We present nuclear resonant inelastic X-ray scattering (NRIXS) and synchrotron Mossbauer spectroscopy (SMS) measurements, both nuclear resonant X-ray spectroscopic methods, on synthetic samples of orthoenstatite-structured (Mg Fe-57)SiO3, a representative component in Earth's upper mantle. All measurements were performed at ambient conditions. NRIXS spectra were measured for three samples of orthoenstatite containing 20, 13, and 7 mol% FeSiO3. The Debye Sound velocities were determined from the low-energy region of the partial phonon density of states (PDOS). With known density and bulk modulus, the shear modulus, compressional and shear wave velocities have been computed. The sound velocities obtained from NRIXS are in Good agreement with sound velocities obtained using Brillouin spectroscopy and ultrasonic methods for similar compositions. An important advantage of NRIXS is access to additional thermodynamic information, such as the average force constant, mean-square displacement, obtained from the PDOS. We discuss the contribution of the vibrational spectra to these quantities. In addition to the PDOS, the electronic environment of the iron sites in (Mg-0.87 Fe-57(0.13))SiO3 orthoenstatite was determined using Fe-57 SMS and conventional Mossbauer spectroscopy. Evaluation of the Mossbauer spectra reveals two distinct iron sites, which are well distinguished by their hyperfine fields. The minority and majority sites are consistent with high-spin Fe2+ in the M1 and M2 sites, respectively. C1 [Jackson, Jennifer M.; Hamecher, Emily A.; Sturhahn, Wolfgang] CALTECH, Div Geol & Planetary Sci, Seismol Lab, Pasadena, CA 91125 USA. [Sturhahn, Wolfgang] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jackson, JM (reprint author), CALTECH, Div Geol & Planetary Sci, Seismol Lab, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM jackson@gps.caltech.edu NR 65 TC 17 Z9 17 U1 0 U2 11 PU E SCHWEIZERBARTSCHE VERLAGS PI STUTTGART PA NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY SN 0935-1221 J9 EUR J MINERAL JI Eur. J. Mineral. PD MAY-JUN PY 2009 VL 21 IS 3 BP 551 EP 560 DI 10.1127/0935-1221/2009/0021-1932 PG 10 WC Mineralogy SC Mineralogy GA 467LL UT WOS:000267740300003 ER PT J AU Wong, TG Foster, M Colgan, J Madison, DH AF Wong, T. G. Foster, M. Colgan, J. Madison, D. H. TI Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; SMALL-ANGLE SCATTERING; INTERMEDIATE ENERGIES; IMPACT-IONIZATION; HYDROGEN; PROTONS; 25-KEV AB We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible. C1 [Wong, T. G.] Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. [Foster, M.; Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Madison, D. H.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. RP Wong, TG (reprint author), Santa Clara Univ, Dept Phys, Santa Clara, CA 95053 USA. EM jcolgan@lanl.gov OI Colgan, James/0000-0003-1045-3858 NR 17 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 J9 EUR J PHYS JI Eur. J. Phys. PD MAY PY 2009 VL 30 IS 3 BP 447 EP 452 DI 10.1088/0143-0807/30/3/002 PG 6 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 438UO UT WOS:000265581100002 ER PT J AU Lesinski, T Duguet, T Bennaceur, K Meyer, J AF Lesinski, T. Duguet, T. Bennaceur, K. Meyer, J. TI Non-empirical pairing energy density functional First order in the nuclear plus Coulomb two-body interaction SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID LOW-MOMENTUM INTERACTIONS; NEUTRON; MATTER; STARS; PHASE; GAP AB We perform systematic calculations of pairing gaps in semi-magic nuclei across the nuclear chart using the Energy Density Functional method and a non-empirical pairing functional derived, without further approximation, at lowest order in the two-nucleon vacuum interaction, including the Coulomb force. The correlated single-particle motion is accounted for by the SLy4 semi-empirical functional. Rather unexpectedly, both neutron and proton pairing gaps thus generated are systematically close to experimental data. Such a result further suggests that missing effects, i.e. higher partial waves of the NN interaction, the NNN interaction and the coupling to collective fluctuations, provide an overall contribution that is sub-leading as for generating pairing gaps in nuclei. We find that including the Coulomb interaction is essential as it reduces proton pairing gaps by up to 40%. C1 [Lesinski, T.; Bennaceur, K.; Meyer, J.] Univ Lyon, Lyon, France. [Lesinski, T.; Bennaceur, K.; Meyer, J.] Univ Lyon 1, F-69622 Villeurbanne, France. [Lesinski, T.; Bennaceur, K.; Meyer, J.] CNRS, IN2P3, F-75700 Paris, France. [Lesinski, T.; Bennaceur, K.; Meyer, J.] Inst Nucl Phys Lyon, Lyon, France. [Duguet, T.] CEA, Ctr Saclay, IFRU, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Duguet, T.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Duguet, T.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. RP Lesinski, T (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM thomas.duguet@cea.fr RI Bennaceur, Karim/O-1680-2016 OI Bennaceur, Karim/0000-0002-6722-491X FU U.S. National Science Foundation [PHY-0456903] FX This work was supported by the U.S. National Science Foundation under Grant No. PHY-0456903. KB and TL wish to thank the NSCL for its hospitality and support. NR 42 TC 53 Z9 53 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD MAY PY 2009 VL 40 IS 2 BP 121 EP 126 DI 10.1140/epja/i2009-10780-y PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 457SE UT WOS:000266952600001 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, M Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, A Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, N Heath, G Morris, J Kaur, M Kaur, P Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, J Ibrahim, Z Mohamad Idris, F Kamaluddin, B Wan Abdullah, W Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behrens, U Blohm, C Bonato, A Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Fourletova, J Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, I Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Rinaldi, L Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Ukleja, J Wolf, G Wrona, K Yagues Molina, A Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, P Bamberger, A Dobur, D Karstens, F Vlasov, N Bussey, P Doyle, A Dunne, W Forrest, M Rosin, M Saxon, D Skillicorn, I Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, K Tapper, A Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, A Boos, E Pokrovskiy, N Zhautykov, B Aushev, V Bachynska, O Borodin, M Kadenko, I Kozulia, A Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Uribe-Estrada, C Zambrana, M Corriveau, F Liu, C Schwartz, J Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, B Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, R Ermolov, P Gladilin, L Golubkov, Y Khein, L Korzhavina, I Kuzmin, V Levchenko, B Lukina, O Proskuryakov, A Shcheglova, L Zotkin, D Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, W Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, L Lee, A Ling, T Allfrey, P Bell, M Cooper-Sarkar, A Devenish, R Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Bellan, P Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, B Raval, A Whitmore, J Iga, Y D'Agostini, G Marini, G Nigro, A Cole, J Hart, J Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, Y Costa, M Ferrero, M Monaco, V Sacchi, R Sola, V Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, J Stewart, T Boutle, S Butterworth, J Jones, T Loizides, J Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, R Pawlak, J Perlanski, W Tymieniecka, T Zarnecki, AF Adamus, M Plucinski, P Ukleja, A Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, D Savin, A Smith, W Wolfe, H Bhadra, S Catterall, C Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. Pasquale, S. De Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H.-P. Jungst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schonberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Mohamad Idris, F. Kamaluddin, B. Wan Abdullah, W. A. T. Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behrens, U. Blohm, C. Bonato, A. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Fourletova, J. Geiser, A. Gottlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huttmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Kotz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Lohr, B. Mankel, R. Melzer-Pellmann, I.-A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Rinaldi, L. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Ukleja, J. Wolf, G. Wrona, K. Yagues Molina, A. G. Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Rosin, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schorner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kozulia, A. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Uribe-Estrada, C. Zambrana, M. Corriveau, F. Liu, C. Schwartz, J. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Brummer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Bellan, P. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Sola, V. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Tymieniecka, T. Zarnecki, A. F. Adamus, M. Plucinski, P. Ukleja, A. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; LUND MONTE-CARLO; QCD ANALYSIS; PARTON DISTRIBUTIONS; PROTON COLLISIONS; JET FRAGMENTATION; PARTICLE PHYSICS; EVENT GENERATOR; EP INTERACTIONS AB Measurements of the cross sections for charged current deep inelastic scattering in e(-)p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb(-1) collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections d sigma/dQ(2), d sigma/dx and d sigma/dy are presented for Q(2) > 200 GeV2. The double-differential cross-section d(2)sigma/dxdQ(2) is presented in the kinematic range 280 < Q(2) < 30 000 GeV2 and 0.015 < x < 0.65. The measured cross sections are compared with the predictions of the Standard Model. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Pasquale, S. De; Sartorelli, G.; Zichichi, A.; Cole, J. E.; Hart, J. C.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H.-P.; Jungst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schonberg, V.; Shehzadi, R.; Wlasenko, M.; Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Mohamad Idris, F.; Kamaluddin, B.; Wan Abdullah, W. A. T.] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Kisielewska, D.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. Jagiellonian Univ, Dept Phys, Krakow, Poland. [Behnke, O.; Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Gottlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huttmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Kotz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Lohr, B.; Mankel, R.; Melzer-Pellmann, I.-A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Ukleja, J.; Wolf, G.; Wrona, K.; Yagues Molina, A. G.; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.] INFN Florence, Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schorner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Imperial Coll London, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev & Kiev Natl Univ, Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Uribe-Estrada, C.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Brummer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.] INFN Padova, Padua, Italy. [Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Sch Phys, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Tymieniecka, T.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Ukleja, A.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, Toronto, ON M3J 1P3, Canada. UCL, Dept Phys & Astron, London, England. Univ Turin, Turin, Italy. Ist Nazl Fis Nucl, Rome, Italy. Univ Oxford, Dept Phys, Oxford, England. NIKHEF, Amsterdam, Netherlands. Ist Nazl Fis Nucl, Cosenza, Italy. Max Planck Inst, Munich, Germany. INP, Krakow, Poland. AGH Univ Sci & Technol, FPACS, Krakow, Poland. Univ Hamburg, Inst Exp Phys, Hamburg, Germany. Univ Lodz, PL-90131 Lodz, Poland. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tobias.haas@desy.de RI Suchkov, Sergey/M-6671-2015; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Ferrando, James/A-9192-2012; Doyle, Anthony/C-5889-2009; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; OI Ferrando, James/0000-0002-1007-7816; Doyle, Anthony/0000-0001-6322-6195; Gladilin, Leonid/0000-0001-9422-8636; Wiggers, Leo/0000-0003-1060-0520; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; De Pasquale, Salvatore/0000-0001-9236-0748; Raval, Amita/0000-0003-0164-4337 FU Natural Sciences and Engineering Research Council of Canada (NSERC); German Federal Ministry for Education and Research (BMBF) [05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA, 05 HZ4KHA]; MINERVA Gesellschaft for Forschung GmbH; Israel Science Foundation [293/02-11.2]; U.S.-Israel Binational Science Foundation; Italian National Institute for Nuclear Physics (INFN); Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT); Korean Ministry of Education and Korea Science and Engineering Foundation; Netherlands Foundation for Research on Matter (FOM); Polish State Committee for Scientific Research [DESY/256/2006-154/DES/2006/03]; Russian Ministry of Education and Science [N 1456.2008.2]; Spanish Ministry of Education and Science FX Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).; Supported by the German Federal Ministry for Education and Research (BMBF), under contract numbers 05 HZ6PDA, 05 HZ6GUA, 05 HZ6VFA and 05 HZ4KHA.; Supported in part by the MINERVA Gesellschaft for Forschung GmbH, the Israel Science Foundation (grant no. 293/02-11.2) and the U.S.-Israel Binational Science Foundation.; Supported by the Israel Science Foundation.; Supported by the Italian National Institute for Nuclear Physics (INFN).; Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and its grants for Scientific Research.; Supported by the Korean Ministry of Education and Korea Science and Engineering Foundation.; Supported by the Netherlands Foundation for Research on Matter (FOM).; Supported by the Polish State Committee for Scientific Research, project no. DESY/256/2006-154/DES/2006/03. Partially supported by the German Federal Ministry for Education and Research (BMBF).; Supported by RF Presidential grant N 1456.2008.2 for the leading scientific schools and by the Russian Ministry of Education and Science through its grant for Scientific Research on High Energy Physics.; Supported by the Spanish Ministry of Education and Science through funds provided by CICYT. Supported by the Science and Technology Facilities Council, UK.; Supported by the US Department of Energy.; Supported by the US National Science Foundation. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.; Supported by the Polish Ministry of Science and Higher Education as a scientific project (2006-2008).; Supported by FNRS and its associated funds (IISN and FRIA) and by an Inter-University Attraction Poles Programme subsidised by the Belgian Federal Science Policy Office. Supported by an FRGS grant from the Malaysian government. NR 63 TC 24 Z9 24 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAY PY 2009 VL 61 IS 2 BP 223 EP 235 DI 10.1140/epjc/s10052-009-1015-1 PG 13 WC Physics, Particles & Fields SC Physics GA 450EX UT WOS:000266384900003 ER PT J AU Abdullin, S Abramov, V Acharya, B Adam, N Adams, M Adzic, P Akchurin, N Akgun, U Albayrak, E Alemany-Fernandez, R Almeida, N Anagnostou, G Andelin, D Anderson, E Anfreville, M Anicin, I Antchev, G Antunovic, Z Arcidiacono, R Arenton, M Auffray, E Argiro, S Askew, A Atramentov, O Ayan, S Arcidy, M Aydin, S Aziz, T Baarmand, M Babich, K Baccaro, S Baden, D Baffioni, S Bakirci, M Balazs, M Banerjee, S Banerjee, S Bard, R Barge, D Barnes, V Barney, D Barone, L Bartoloni, A Baty, C Bawa, H Baiatian, G Bandurin, D Beauceron, S Bell, K Bencze, G Benetta, R Bercher, M Beri, S Bernet, C Berntzon, L Berthon, U Besancon, M Betev, B Beuselinck, R Bhatnagar, V Bhatti, A Biino, C Blaha, J Bloch, P Blyth, S Bodek, A Bornheim, A Bose, S Bose, T Bourotte, J Brett, A Brown, R Britton, D Budd, H Buehler, M Burchesky, K Busson, P Camanzi, B Camporesi, T Canko, K Carrell, K Carrera, E Cartiglia, N Cavallari, F Cerci, S Cerutti, M Chang, P Chang, Y Charlot, C Chen, E Chen, W Chen, Z Chendvankar, S Chipaux, R Choudhary, B Choudhury, R Chung, Y Clarida, W Cockerill, D Combaret, C Conetti, S Cossutti, F Cox, B Cremaldi, L Cushman, P Cussans, D Dafinei, I Damgov, J Calafiori, D Daskalakis, G Davatz, G David, A de Barbaro, P Debbins, P Deiters, K Dejardin, M Djordjevic, M Deliomeroglu, M Della Negra, R Della Ricca, G Re, D Demianov, A Min, A Denegri, D Depasse, P de Visser, T Descamps, J Deshpande, P Diaz, J Diemoz, M Marco, E Dimitrov, L Dissertori, G Dittmar, M Djambazov, L Dobrzynski, L Drndarevic, S Duboscq, J Dugad, S Dumanoglu, I Duru, F Dutta, D Dzelalija, M Efthymiopoulos, I Elias, J Elliott-Peisert, A Mamouni, H Elvira, D Emeliantchik, I Eno, S Ershov, A Erturk, S Esen, S Eskut, E Evangelou, I Evans, D Fabbro, B Faure, J Fay, J Fenyvesi, A Ferri, F Fisher, W Flower, P Franci, D Franzoni, G Freeman, J Freudenreich, K Funk, W Ganjour, S Gargiulo, C Gascon, S Gataullin, M Gaultney, V Gamsizkan, H Gavrilov, V Geerebaert, Y Genchev, V Gentit, F Gerbaudo, D Gershtein, Y Ghezzi, A Ghodgaonkar, M Gilly, J Givernaud, A Gleyzer, S Gninenko, S Go, A Gobbo, B Godinovic, N Golubev, N Golutvin, I Goncharov, P Gong, D Govoni, P Grant, N Gras, P Grassi, T Green, D Greenhalgh, R Gribushin, A Grinev, B Guevara Riveros, L Guillaud, J Gurtu, A Murat Guler, A Gulmez, E Gumus, K Haelen, T Hagopian, S Hagopian, V Haguenauer, M Halyo, V Hamel de Monchenault, G Hansen, M Hashemi, M Hauptman, J Hazen, E Heath, H Heering, A Heister, A Heltsley, B Hill, J Hintz, W Hirosky, R Hobson, P Honma, A Hou, G Hsiung, Y Hunt, A Husejko, M Ille, B Ilyina, N Imlay, R Ingram, D Ingram, Q Isiksal, E Jarry, P Jarvis, C Jeong, C Jessop, C Johnson, K Jones, J Jovanovic, D Kaadze, K Kachanov, V Kaftanov, V Kailas, S Kalagin, V Kalinin, A Kalmani, S Karmgard, D Kataria, S Kaur, M Kaya, M Kaya, O Kayis-Topaksu, A Kellogg, R Kennedy, B Khmelnikov, A Kim, H Kisselevich, I Kloukinas, K Kodolova, O Kohli, J Kokkas, P Kolberg, T Kolossov, V Korablev, A Korneev, Y Kosarev, I Kramer, L Krasnikov, N Krinitsyn, A Krokhotin, A Krpic, D Kryshkin, V Kubota, Y Kubik, A Kuleshov, S Kumar, A Kumar, P Kunori, S Kuo, C Kurt, P Kyberd, P Kyriakis, A Laasanen, A Ladygin, V Laird, E Landsberg, G Laszlo, A Lawlor, C Lazic, D Lebeau, M Lecomte, P Lecoq, P Ledovskoy, A Lee, SW Leshev, G Lethuillier, M Levchuk, L Lin, S Lin, W Linn, S Lintern, A Litvine, V Litvintsev, D Litov, L Lobolo, L Locci, E Lodge, A Longo, E Loukas, D Los, S Lubinsky, V Luckey, P Lukanin, V Lustermann, W Lynch, C Ma, Y Machado, E Mahlke-Krueger, H Maity, M Majumder, G Malberti, M MalclSs, J Maletic, D Mandjavidze, I Mans, J Manthos, N Maravin, Y Marchica, C Marinelli, N Markou, A Markou, C Marlow, D Markowitz, P Marone, M Martinez, G Mathez, H Matveev, V Mavrommatis, C Maurelli, G Mazumdar, K Meridiani, P Merlo, J Mermerkaya, H Mescheryakov, G Mestvirishvili, A Mikhailin, V Milenovic, P Miller, M Milleret, G Mine, P Moeller, A Mohammadi-Najafabadi, M Mohanty, A Moissenz, P Mondal, N Moortgat, F Mossolov, V Mur, M Musella, P Musienko, Y Nagaraj, P Nardulli, A Nash, J Nedelec, P Negri, P Newman, H Nikitenko, A Norbeck, E Nessi-Tedaldi, F Obertino, M Olson, J Onel, Y Onengut, G Organtini, G Orimoto, T Ozkan, C Ozkurt, H Ozkorucuklu, S Ozok, F Paganoni, M Paganini, P Paktinat, S Pal, A Palma, A Panev, B Pant, L Papadakis, A Papadakis, I Papadopoulos, I Paramatti, R Parracho, P Pastrone, N Patil, M Patterson, J Pauss, F Penzo, A Petrakou, E Petrushanko, S Petrosyan, A Phillips, D Pikalov, V Piperov, S Piroue, P Podrasky, V Polatoz, A Pompos, A Popescu, S Posch, C Pozdnyakov, A Ptochos, F Puljak, I Pullia, A Punz, T Puzovic, J Qian, W Ragazzi, S Rahatlou, S Ralich, R Rande, J Razis, P Redaelli, N Reddy, L Reidy, J Renker, D Reucroft, S Reymond, J Ribeiro, P Roeser, U Rogalev, E Rogan, C Roh, Y Rohlf, J Romanteau, T Rondeaux, F Ronquest, M Ronzhin, A Rosowsky, A Rovelli, C Ruchti, R Rumerio, P Rusack, R Rusakov, S Ryan, M Ryazanov, A Safronov, G Sala, L Salerno, R Sanders, D Santanastasio, F Sanzeni, C Sarycheva, L Satyanarayana, B Schinzel, D Schmidt, I Seez, C Sekmen, S Semenov, S Senchishin, V Sergeyev, S Serin, M Sever, R Sharp, P Shepherd-Themistocleous, C Siamitros, C Sillou, D Singh, J Singovsky, A Sirois, Y Sirunyan, A Silva, J Silva, P Skuja, A Sharma, S Sherwood, B Shiu, J Shivpuri, R Shukla, P Shumeiko, N Smirnov, V Smith, B Smith, V Sogut, K Sonmez, N Sorokin, P Spezziga, M Sproston, M Stefanovich, R Stockli, F Stolin, V Sudhakar, K Sulak, L Suter, H Suzuki, I Swain, J Tabarelli de Fatis, T Talov, V Takahashi, M Tcheremoukhine, A Teller, O Teplov, K Theofilatos, K Thiebaux, C Thomas, R Timciuc, V Timlin, C Titov, M Tobias, A Tonwar, S Topakli, H Topkar, A Triantis, F Troshin, S Tully, C Turchanovich, L Tyurin, N Ueno, K Ulyanov, A Uzunian, A Vanini, A Vankov, I Vardanyan, I Varela, F Varela, J Vasil'ev, A Velasco, M Vergili, M Verma, P Verrecchia, P Vesztergombi, G Veverka, J Vichoudis, P Vidal, R Virdee, T Vishnevskiy, A Vlassov, E Vodopiyanov, I Volobouev, I Volkov, A Volodko, A Gunten, H Wang, L Wang, M Wardrope, D Weber, M Weng, J Werner, J Wetstein, M Winn, D Wigmans, R Williams, J Whitmore, J Won, S Wu, S Yang, Y Yaselli, I Yazgan, E Yetkin, T Yohay, R Zabi, A Zalan, P Zamiatin, N Zarubin, A Zelepoukine, S Zeyrek, M Zhang, J Zhang, L Zhu, K Zhu, R AF Abdullin, S. Abramov, V. Acharya, B. Adam, N. Adams, M. Adzic, P. Akchurin, N. Akgun, U. Albayrak, E. Alemany-Fernandez, R. Almeida, N. Anagnostou, G. Andelin, D. Anderson, E. W. Anfreville, M. Anicin, I. Antchev, G. Antunovic, Z. Arcidiacono, R. Arenton, M. W. Auffray, E. Argiro, S. Askew, A. Atramentov, O. Ayan, S. Arcidy, M. Aydin, S. Aziz, T. Baarmand, M. Babich, K. Baccaro, S. Baden, D. Baffioni, S. Bakirci, M. N. Balazs, M. Banerjee, Sud. Banerjee, Sun. Bard, R. Barge, D. Barnes, V. Barney, D. Barone, L. Bartoloni, A. Baty, C. Bawa, H. Baiatian, G. Bandurin, D. Beauceron, S. Bell, K. W. Bencze, G. Benetta, R. Bercher, M. Beri, S. Bernet, C. Berntzon, L. Berthon, U. Besancon, M. Betev, B. Beuselinck, R. Bhatnagar, V. Bhatti, A. Biino, C. Blaha, J. Bloch, P. Blyth, S. Bodek, A. Bornheim, A. Bose, S. Bose, T. Bourotte, J. Brett, A. M. Brown, R. M. Britton, D. Budd, H. Buehler, M. Burchesky, K. Busson, P. Camanzi, B. Camporesi, T. Canko, K. Carrell, K. Carrera, E. Cartiglia, N. Cavallari, F. Cerci, S. Cerutti, M. Chang, P. Chang, Y. H. Charlot, C. Chen, E. A. Chen, W. T. Chen, Z. Chendvankar, S. Chipaux, R. Choudhary, B. C. Choudhury, R. K. Chung, Y. Clarida, W. Cockerill, D. J. A. Combaret, C. Conetti, S. Cossutti, F. Cox, B. Cremaldi, L. Cushman, P. Cussans, D. G. Dafinei, I. Damgov, J. Calafiori, D. R. Da Silva Di Daskalakis, G. Davatz, G. David, A. de Barbaro, P. Debbins, P. Deiters, K. Dejardin, M. Djordjevic, M. Deliomeroglu, M. Della Negra, R. Della Ricca, G. Re, D. Del Demianov, A. Min, A. De Denegri, D. Depasse, P. de Visser, T. Descamps, J. Deshpande, P. V. Diaz, J. Diemoz, M. Marco, E. Di Dimitrov, L. Dissertori, G. Dittmar, M. Djambazov, L. Dobrzynski, L. Drndarevic, S. Duboscq, J. E. Dugad, S. Dumanoglu, I. Duru, F. Dutta, D. Dzelalija, M. Efthymiopoulos, I. Elias, J. Elliott-Peisert, A. Mamouni, H. El Elvira, D. Emeliantchik, I. Eno, S. Ershov, A. Erturk, S. Esen, S. Eskut, E. Evangelou, I. Evans, D. L. Fabbro, B. Faure, J. L. Fay, J. Fenyvesi, A. Ferri, F. Fisher, W. Flower, P. S. Franci, D. Franzoni, G. Freeman, J. Freudenreich, K. Funk, W. Ganjour, S. Gargiulo, C. Gascon, S. Gataullin, M. Gaultney, V. Gamsizkan, H. Gavrilov, V. Geerebaert, Y. Genchev, V. Gentit, F. X. Gerbaudo, D. Gershtein, Y. Ghezzi, A. Ghodgaonkar, M. D. Gilly, J. Givernaud, A. Gleyzer, S. Gninenko, S. Go, A. Gobbo, B. Godinovic, N. Golubev, N. Golutvin, I. Goncharov, P. Gong, D. Govoni, P. Grant, N. Gras, P. Grassi, T. Green, D. Greenhalgh, R. J. S. Gribushin, A. Grinev, B. Guevara Riveros, L. Guillaud, J. P. Gurtu, A. Murat Guler, A. Gulmez, E. Gumus, K. Haelen, T. Hagopian, S. Hagopian, V. Haguenauer, M. Halyo, V. Hamel de Monchenault, G. Hansen, M. Hashemi, M. Hauptman, J. Hazen, E. Heath, H. F. Heering, A. Heister, A. Heltsley, B. Hill, J. A. Hintz, W. Hirosky, R. Hobson, P. R. Honma, A. Hou, G. W. S. Hsiung, Y. Hunt, A. Husejko, M. Ille, B. Ilyina, N. Imlay, R. Ingram, D. Ingram, Q. Isiksal, E. Jarry, P. Jarvis, C. Jeong, C. Jessop, C. Johnson, K. Jones, J. Jovanovic, D. Kaadze, K. Kachanov, V. Kaftanov, V. Kailas, S. Kalagin, V. Kalinin, A. Kalmani, S. Karmgard, D. Kataria, S. K. Kaur, M. Kaya, M. Kaya, O. Kayis-Topaksu, A. Kellogg, R. Kennedy, B. W. Khmelnikov, A. Kim, H. Kisselevich, I. Kloukinas, K. Kodolova, O. Kohli, J. Kokkas, P. Kolberg, T. Kolossov, V. Korablev, A. Korneev, Y. Kosarev, I. Kramer, L. Krasnikov, N. Krinitsyn, A. Krokhotin, A. Krpic, D. Kryshkin, V. Kubota, Y. Kubik, A. Kuleshov, S. Kumar, A. Kumar, P. Kunori, S. Kuo, C. M. Kurt, P. Kyberd, P. Kyriakis, A. Laasanen, A. Ladygin, V. Laird, E. Landsberg, G. Laszlo, A. Lawlor, C. Lazic, D. Lebeau, M. Lecomte, P. Lecoq, P. Ledovskoy, A. Lee, S.-W. Leshev, G. Lethuillier, M. Levchuk, L. Lin, S. W. Lin, W. Linn, S. Lintern, A. L. Litvine, V. Litvintsev, D. Litov, L. Lobolo, L. Locci, E. Lodge, A. B. Longo, E. Loukas, D. Los, S. Lubinsky, V. Luckey, P. D. Lukanin, V. Lustermann, W. Lynch, C. Ma, Y. Machado, E. Mahlke-Krueger, H. Maity, M. Majumder, G. Malberti, M. MalclSs, J. Maletic, D. Mandjavidze, I. Mans, J. Manthos, N. Maravin, Y. Marchica, C. Marinelli, N. Markou, A. Markou, C. Marlow, D. Markowitz, P. Marone, M. Martinez, G. Mathez, H. Matveev, V. Mavrommatis, C. Maurelli, G. Mazumdar, K. Meridiani, P. Merlo, J. P. Mermerkaya, H. Mescheryakov, G. Mestvirishvili, A. Mikhailin, V. Milenovic, P. Miller, M. Milleret, G. Mine, P. Moeller, A. Mohammadi-Najafabadi, M. Mohanty, A. K. Moissenz, P. Mondal, N. Moortgat, F. Mossolov, V. Mur, M. Musella, P. Musienko, Y. Nagaraj, P. Nardulli, A. Nash, J. Nedelec, P. Negri, P. Newman, H. B. Nikitenko, A. Norbeck, E. Nessi-Tedaldi, F. Obertino, M. M. Olson, J. Onel, Y. Onengut, G. Organtini, G. Orimoto, T. Ozkan, C. Ozkurt, H. Ozkorucuklu, S. Ozok, F. Paganoni, M. Paganini, P. Paktinat, S. Pal, A. Palma, A. Panev, B. Pant, L. Papadakis, A. Papadakis, I. Papadopoulos, I. Paramatti, R. Parracho, P. Pastrone, N. Patil, M. Patterson, J. R. Pauss, F. Penzo, A. Petrakou, E. Petrushanko, S. Petrosyan, A. Phillips, D. G. I. I. Pikalov, V. Piperov, S. Piroue, P. Podrasky, V. Polatoz, A. Pompos, A. Popescu, S. Posch, C. Pozdnyakov, A. Ptochos, F. Puljak, I. Pullia, A. Punz, T. Puzovic, J. Qian, W. Ragazzi, S. Rahatlou, S. Ralich, R. M. Rande, J. Razis, P. A. Redaelli, N. Reddy, L. Reidy, J. Renker, D. Reucroft, S. Reymond, J. M. Ribeiro, P. Roeser, U. Rogalev, E. Rogan, C. Roh, Y. Rohlf, J. Romanteau, T. Rondeaux, F. Ronquest, M. Ronzhin, A. Rosowsky, A. Rovelli, C. Ruchti, R. Rumerio, P. Rusack, R. Rusakov, S. V. Ryan, M. J. Ryazanov, A. Safronov, G. Sala, L. Salerno, R. Sanders, D. A. Santanastasio, F. Sanzeni, C. Sarycheva, L. Satyanarayana, B. Schinzel, D. Schmidt, I. Seez, C. Sekmen, S. Semenov, S. Senchishin, V. Sergeyev, S. Serin, M. Sever, R. Sharp, P. Shepherd-Themistocleous, C. H. Siamitros, C. Sillou, D. Singh, J. B. Singovsky, A. Sirois, Y. Sirunyan, A. Silva, J. Silva, P. Skuja, A. Sharma, S. Sherwood, B. Shiu, J. G. Shivpuri, R. K. Shukla, P. Shumeiko, N. Smirnov, V. Smith, B. J. Smith, V. J. Sogut, K. Sonmez, N. Sorokin, P. Spezziga, M. Sproston, M. Stefanovich, R. Stockli, F. Stolin, V. Sudhakar, K. Sulak, L. Suter, H. Suzuki, I. Swain, J. Tabarelli de Fatis, T. Talov, V. Takahashi, M. Tcheremoukhine, A. Teller, O. Teplov, K. Theofilatos, K. Thiebaux, C. Thomas, R. Timciuc, V. Timlin, C. Titov, M. Tobias, A. Tonwar, S. Topakli, H. Topkar, A. Triantis, F. A. Troshin, S. Tully, C. Turchanovich, L. Tyurin, N. Ueno, K. Ulyanov, A. Uzunian, A. Vanini, A. Vankov, I. Vardanyan, I. Varela, F. Varela, J. Vasil'ev, A. Velasco, M. Vergili, M. Verma, P. Verrecchia, P. Vesztergombi, G. Veverka, J. Vichoudis, P. Vidal, R. Virdee, T. Vishnevskiy, A. Vlassov, E. Vodopiyanov, I. Volobouev, I. Volkov, A. Volodko, A. Gunten, H. P. Von Wang, L. Wang, M. Wardrope, D. Weber, M. Weng, J. Werner, J. Wetstein, M. Winn, D. Wigmans, R. Williams, J. H. Whitmore, J. Won, S. Wu, S. X. Yang, Y. Yaselli, I. Yazgan, E. Yetkin, T. Yohay, R. Zabi, A. Zalan, P. Zamiatin, N. Zarubin, A. Zelepoukine, S. Zeyrek, M. Zhang, J. Zhang, L. Y. Zhu, K. Zhu, R. Y. CA CMS HCAL ECAL Collaborations TI The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c (vol 60, pg 359, 2009) SO EUROPEAN PHYSICAL JOURNAL C LA English DT Correction C1 [Baiatian, G.; Sirunyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Emeliantchik, I.; Mossolov, V.; Shumeiko, N.; Stefanovich, R.] NCPHEP, Minsk, Byelarus. [Dimitrov, L.; Genchev, V.; Panev, B.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Beuselinck, R.; Britton, D.; Cussans, D. G.; Evans, D. L.; Grant, N.; Heath, H. F.; Litov, L.; Lynch, C.; Nash, J.; Ryan, M. J.; Seez, C.; Smith, V. J.; Takahashi, M.; Timlin, C.; Wardrope, D.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Godinovic, N.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Papadakis, A.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Guillaud, J. P.; Nedelec, P.; Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Anfreville, M.; Besancon, M.; Chipaux, R.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; MalclSs, J.; Mandjavidze, I.; Mur, M.; Rande, J.; Reymond, J. M.; Rondeaux, F.; Rosowsky, A.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Bercher, M.; Bernet, C.; Berthon, U.; Bourotte, J.; Busson, P.; Cerutti, M.; Charlot, C.; Dobrzynski, L.; Geerebaert, Y.; Gilly, J.; Guevara Riveros, L.; Haguenauer, M.; Milleret, G.; Mine, P.; Paganini, P.; Romanteau, T.; Sirois, Y.; Thiebaux, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Baty, C.; Blaha, J.; Combaret, C.; Della Negra, R.; Depasse, P.; Mamouni, H. El; Fay, J.; Gascon, S.; Ille, B.; Lethuillier, M.; Mathez, H.; Maurelli, G.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl, F-69365 Lyon, France. [Anagnostou, G.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Mavrommatis, C.; Papadakis, I.; Petrakou, E.; Theofilatos, K.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Laszlo, A.; Pal, A.; Vesztergombi, G.; Zalan, P.] Res Inst Particle & Nucl Phys, KFKI RMKI, Budapest, Hungary. [Fenyvesi, A.] ATOMKI, Debrecen, Hungary. [Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B. C.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Ghodgaonkar, M. D.; Kailas, S.; Kataria, S. K.; Kumar, P.; Mohanty, A. K.; Pant, L.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Acharya, B.; Aziz, T.; Banerjee, Sud.; Banerjee, Sun.; Bose, S.; Chendvankar, S.; Deshpande, P. V.; Dugad, S.; Gurtu, A.; Kalmani, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Hashemi, M.; Mohammadi-Najafabadi, M.; Paktinat, S.] Sharif Univ Technol, Tehran, Iran. [Min, A. De; Govoni, P.; Malberti, M.; Negri, P.; Paganoni, M.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Sala, L.; Salerno, R.; Tabarelli de Fatis, T.] Univ Studi Milano Bicocca, Milan, Italy. [Baccaro, S.; Barone, L.; Bartoloni, A.; Cavallari, F.; Dafinei, I.; Re, D. Del; Diemoz, M.; Marco, E. Di; Franci, D.; Gargiulo, C.; Longo, E.; Organtini, G.; Palma, A.; Paramatti, R.; Rahatlou, S.; Rovelli, C.] Univ Roma 1, Rome, Italy. [Arcidiacono, R.; Argiro, S.; Biino, C.; Cartiglia, N.; Marone, M.; Obertino, M. M.; Pastrone, N.] Univ Turin, Turin, Italy. [Cossutti, F.; Della Ricca, G.; Gobbo, B.; Penzo, A.] Univ Trieste, Trieste, Italy. [Alemany-Fernandez, R.; Almeida, N.; David, A.; Husejko, M.; Musella, P.; Parracho, P.; Ribeiro, P.; Silva, J.; Silva, P.] Lab Instrumentacao Fis Expt Particules, Lisbon, Portugal. [Babich, K.; Golutvin, I.; Kalagin, V.; Kosarev, I.; Ladygin, V.; Mescheryakov, G.; Moissenz, P.; Petrosyan, A.; Rogalev, E.; Smirnov, V.; Tcheremoukhine, A.; Vishnevskiy, A.; Volodko, A.; Zamiatin, N.; Zarubin, A.] JINR, Dubna, Russia. [Gninenko, S.; Golubev, N.; Krasnikov, N.; Matveev, V.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Litvintsev, D.; Nikitenko, A.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A.] ITEP, Moscow, Russia. [Rusakov, S. V.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Demianov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Mikhailin, V.; Petrushanko, S.; Sarycheva, L.; Teplov, K.; Vardanyan, I.; Vasil'ev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Abramov, V.; Goncharov, P.; Kachanov, V.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Troshin, S.; Turchanovich, L.; Tyurin, N.; Uzunian, A.; Volkov, A.; Zelepoukine, S.] IHEP, Protvino, Russia. [Drndarevic, S.; Krpic, D.] Univ Belgrade, Belgrade, Serbia. [Adzic, P.; Anicin, I.; Djordjevic, M.; Jovanovic, D.; Maletic, D.; Milenovic, P.; Puzovic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Auffray, E.; Barney, D.; Beauceron, S.; Benetta, R.; Bloch, P.; Camporesi, T.; de Visser, T.; Efthymiopoulos, I.; Elliott-Peisert, A.; Funk, W.; Ghezzi, A.; Hansen, M.; Honma, A.; Kloukinas, K.; Lebeau, M.; Lecoq, P.; Meridiani, P.; Sharp, P.; Teller, O.; Varela, J.; Vichoudis, P.; Virdee, T.; Vlassov, E.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Deiters, K.; Ingram, Q.; Marchica, C.; Renker, D.] Paul Scherrer Inst, Villigen, Switzerland. [Betev, B.; Brett, A. M.; Chen, Z.; Calafiori, D. R. Da Silva Di; Davatz, G.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Freudenreich, K.; Hintz, W.; Lecomte, P.; Leshev, G.; Luckey, P. D.; Lustermann, W.; Moortgat, F.; Nardulli, A.; Nessi-Tedaldi, F.; Pauss, F.; Punz, T.; Roeser, U.; Schinzel, D.; Stockli, F.; Suter, H.; Gunten, H. P. Von; Weber, M.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Blyth, S.; Chang, Y. H.; Chen, E. A.; Chen, W. T.; Go, A.; Kuo, C. M.; Lin, W.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Hou, G. W. S.; Hsiung, Y.; Lin, S. W.; Shiu, J. G.; Ueno, K.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Aydin, S.; Bakirci, M. N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Kurt, P.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Gamsizkan, H.; Murat Guler, A.; Ozkan, C.; Sekmen, S.; Serin, M.; Sever, R.; Zeyrek, M.] Middle E Tech Univ, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Gulmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] KIPT, Kharkov, Ukraine. [Grinev, B.; Lubinsky, V.; Senchishin, V.] Kharkov Single Crystals Inst, UA-310141 Kharkov, Ukraine. [Bell, K. W.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Flower, P. S.; Greenhalgh, R. J. S.; Hill, J. A.; Kennedy, B. W.; Lintern, A. L.; Lodge, A. B.; Shepherd-Themistocleous, C. H.; Smith, B. J.; Sproston, M.; Williams, J. H.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Hobson, P. R.; Kyberd, P.; Siamitros, C.; Yaselli, I.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Anderson, E. W.; Hauptman, J.] Iowa State Univ, Ames, IA USA. [Damgov, J.; Elias, J.; Elvira, D.; Freeman, J.; Green, D.; Los, S.; Piperov, S.; Ronzhin, A.; Sergeyev, S.; Suzuki, I.; Vidal, R.; Whitmore, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S. X.] Boston Univ, Boston, MA 02215 USA. [Musienko, Y.; Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Andelin, D.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Imlay, R.; Ledovskoy, A.; Phillips, D. G. I. I.; Ronquest, M.; Tobias, A.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Adams, M.; Bard, R.; Burchesky, K.; Qian, W.] Univ Illinois, Chicago, IL USA. [Baden, D.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Wang, L.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Barge, D.; Kubik, A.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Podrasky, V.; Sanzeni, C.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J. P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T.] Univ Iowa, Iowa City, IA USA. [Duboscq, J. E.; Heltsley, B.; Mahlke-Krueger, H.; Patterson, J. R.] Cornell Univ, Ithaca, NY USA. [Akchurin, N.; Berntzon, L.; Carrell, K.; Jeong, C.; Kim, H.; Lee, S.-W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Bandurin, D.; Kaadze, K.; Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Baarmand, M.; Mermerkaya, H.; Ralich, R. M.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Diaz, J.; Gaultney, V.; Kramer, L.; Linn, S.; Lobolo, L.; Markowitz, P.; Martinez, G.] Florida Int Univ, Miami, FL 33199 USA. [Cushman, P.; Franzoni, G.; Gong, D.; Heering, A.; Kubota, Y.; Rusack, R.; Singovsky, A.; Sherwood, B.; Zhang, J.] Univ Minnesota, Minneapolis, MN USA. [Bhatti, A.] Rockefeller Univ, New York, NY 10021 USA. [Jessop, C.; Karmgard, D.; Kolberg, T.; Marinelli, N.; Ruchti, R.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Cremaldi, L.; Reidy, J.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Bornheim, A.; Gataullin, M.; Litvine, V.; Ma, Y.; Newman, H. B.; Orimoto, T.; Rogan, C.; Timciuc, V.; Veverka, J.; Yang, Y.; Zhang, L. Y.; Zhu, K.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Adam, N.; Fisher, W.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Mans, J.; Marlow, D.; Piroue, P.; Tully, C.; Werner, J.] Princeton Univ, Princeton, NJ 08544 USA. [Bose, T.; Esen, S.; Landsberg, G.; Vanini, A.] Brown Univ, Providence, RI 02912 USA. [Bodek, A.; Budd, H.; Chung, Y.; de Barbaro, P.; Haelen, T.] Univ Rochester, Rochester, NY USA. [Askew, A.; Atramentov, O.; Carrera, E.; Gershtein, Y.; Gleyzer, S.; Hagopian, S.; Hagopian, V.; Johnson, K.] Florida State Univ, Tallahassee, FL 32306 USA. [Barnes, V.; Laasanen, A.; Pompos, A.] Purdue Univ, W Lafayette, IN 47907 USA. Inst Studies Theoret Phys, Tehran, Iran. Ist Nazl Fis Nucl, I-20133 Milan, Italy. Sezione Ist Nazl Fis Nucl, Rome, Italy. Sezione Ist Nazl Fis Nucl, Turin, Italy. Sezione Ist Nazl Fis Nucl, Trieste, Italy. RP Abdullin, S (reprint author), Texas Tech Univ, Lubbock, TX 79409 USA. EM nural.akchurin@ttu.edu RI Fisher, Wade/N-4491-2013; Marlow, Daniel/C-9132-2014; Gribushin, Andrei/J-4225-2012; Vasil'ev, Andrey/E-4350-2012; Gulmez, Erhan/P-9518-2015; Della Ricca, Giuseppe/B-6826-2013; Paganoni, Marco/A-4235-2016; Govoni, Pietro/K-9619-2016; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Ragazzi, Stefano/D-2463-2009; Kumar, Prem/B-6691-2009; Tinoco Mendes, Andre David/D-4314-2011; Ganjour, Serguei/D-8853-2011; Britton, David/F-2602-2010; Kodolova, Olga/D-7158-2012; Demianov, Andrei/E-4565-2012; Chipaux, Remi/G-1145-2010; Petrushanko, Sergey/D-6880-2012; Gumus, Kazim/G-2498-2013; Vardanyan, Irina/K-7981-2012; Kuleshov, Sergey/D-9940-2013 OI Vasil'ev, Andrey/0000-0002-7493-7619; Gulmez, Erhan/0000-0002-6353-518X; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Govoni, Pietro/0000-0002-0227-1301; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Ragazzi, Stefano/0000-0001-8219-2074; Tinoco Mendes, Andre David/0000-0001-5854-7699; Britton, David/0000-0001-9998-4342; Gumus, Kazim/0000-0002-1450-6868; Kuleshov, Sergey/0000-0002-3065-326X NR 1 TC 2 Z9 2 U1 3 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAY PY 2009 VL 61 IS 2 BP 353 EP 356 DI 10.1140/epjc/s10052-009-1024-0 PG 4 WC Physics, Particles & Fields SC Physics GA 450EX UT WOS:000266384900013 ER PT J AU Bissaldi, E von Kienlin, A Lichti, G Steinle, H Bhat, PN Briggs, MS Fishman, GJ Hoover, AS Kippen, RM Krumrey, M Gerlach, M Connaughton, V Diehl, R Greiner, J van der Horst, AJ Kouveliotou, C McBreen, S Meegan, CA Paciesas, WS Preece, RD Wilson-Hodge, CA AF Bissaldi, E. von Kienlin, A. Lichti, G. Steinle, H. Bhat, P. N. Briggs, M. S. Fishman, G. J. Hoover, A. S. Kippen, R. M. Krumrey, M. Gerlach, M. Connaughton, V. Diehl, R. Greiner, J. van der Horst, A. J. Kouveliotou, C. McBreen, S. Meegan, C. A. Paciesas, W. S. Preece, R. D. Wilson-Hodge, C. A. TI Ground-based calibration and characterization of the Fermi gamma-ray burst monitor detectors SO EXPERIMENTAL ASTRONOMY LA English DT Article DE Fermi Gamma-Ray space telescope; GLAST; Gamma-Ray detectors; Calibration; NaI(Tl); BGO; Gamma-Ray burst ID HIGH-ENERGY; SPECTRAL PROPERTIES; BESSY-II; GLAST; SIMULATION; NAI(T1); BAMLINE; EGRET AB One of the scientific objectives of NASA's Fermi Gamma-ray Space Telescope is the study of Gamma-Ray Bursts (GRBs). The Fermi Gamma-Ray Burst Monitor (GBM) was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of Fermi's main instrument, the Large Area Telescope, into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. We present the principal instrument properties, which have been determined as a function of energy and angle, including the channel-energy relation, the energy resolution, the effective area and the spatial homogeneity. C1 [Bissaldi, E.; von Kienlin, A.; Lichti, G.; Steinle, H.; Diehl, R.; Greiner, J.; McBreen, S.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.] Univ Alabama, NSSTC, Huntsville, AL 35899 USA. [Fishman, G. J.; van der Horst, A. J.; Kouveliotou, C.; Meegan, C. A.; Wilson-Hodge, C. A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Hoover, A. S.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Krumrey, M.; Gerlach, M.] Phys Tech Bundesanstalt, Berlin, Germany. RP Bissaldi, E (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM ebs@mpe.mpg.de RI Krumrey, Michael/G-6295-2011; Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335 NR 35 TC 27 Z9 27 U1 1 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0922-6435 EI 1572-9508 J9 EXP ASTRON JI Exp. Astron. PD MAY PY 2009 VL 24 IS 1-3 BP 47 EP 88 DI 10.1007/s10686-008-9135-4 PG 42 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 437SX UT WOS:000265508300003 ER PT J AU Vishnivetskaya, TA Kathariou, S Tiedje, JM AF Vishnivetskaya, Tatiana A. Kathariou, Sophia Tiedje, James M. TI The Exiguobacterium genus: biodiversity and biogeography SO EXTREMOPHILES LA English DT Article DE Exiguobacterium; PFGE; Macroarray; Psychrophilic and thermophilic adaptations ID ANCIENT SIBERIAN PERMAFROST; BACTERIUM PSEUDOMONAS-SYRINGAE; FIELD GEL-ELECTROPHORESIS; NEIGHBOR-JOINING METHOD; GRAM-POSITIVE BACTERIA; SP-NOV.; LOW-TEMPERATURE; PSYCHROPHILIC BACTERIUM; CAMPYLOBACTER-JEJUNI; NATURAL ENVIRONMENTS AB Bacteria of the genus Exiguobacterium are low G + C, Gram-positive facultative anaerobes that have been repeatedly isolated from ancient Siberian permafrost. In addition, Exiguobacterium spp. have been isolated from markedly diverse sources, including Greenland glacial ice, hot springs at Yellowstone National Park, the rhizosphere of plants, and the environment of food processing plants. Strains of this hereto little known bacterium that have been retrieved from such different (and often extreme) environments are worthy of attention as they are likely to be specifically adapted to such environments and to carry variations in the genome which may correspond to psychrophilic and thermophilic adaptations. However, comparative genomic investigations of Exiguobacterium spp. from different sources have been limited. In this study, we employed different molecular approaches for the comparative analysis of 24 isolates from markedly diverse environments including ancient Siberian permafrost and hot springs at Yellowstone National Park. Pulsed-field gel electrophoresis (PFGE) with I-CeuI (an intron-encoded endonuclease), AscI and NotI were optimized for the determination of genomic fingerprints of nuclease-producing isolates. The application of a DNA macroarray for 82 putative stress-response genes yielded strain-specific hybridization profiles. Cluster analyses of 16S rRNA gene sequence data, PFGE I-CeuI restriction patterns and hybridization profiles suggested that Exiguobacterium strains formed two distinct divisions that generally agreed with temperature ranges for growth. With few exceptions (e.g., Greenland ice isolate GIC31), psychrotrophic and thermophilic isolates belonged to different divisions. C1 [Vishnivetskaya, Tatiana A.; Kathariou, Sophia] N Carolina State Univ, Raleigh, NC 27695 USA. [Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48823 USA. RP Vishnivetskaya, TA (reprint author), Oak Ridge Natl Lab, Microbial Ecol & Physiol Grp, Biosci Div, 1 Bethel Valley Rd,Bldg 1505,Rm 392,MS-6038, Oak Ridge, TN 37831 USA. EM vishnivetsta@ornl.gov RI Vishnivetskaya, Tatiana/A-4488-2008 OI Vishnivetskaya, Tatiana/0000-0002-0660-023X FU NASA Astrobiology Institute [NCC2-1274] FX We are grateful to R. Ramaley, V. Miteva, A. Sessitch, M. A. Petrova, V. S. Soina, G. King, for providing Exiguobacterium isolates and S. Tiquia for c-Proteobacteria isolate. We thank R. M. Siletzky for laboratory assistance in portions of the study. This study was supported by NASA Astrobiology Institute (Grant # NCC2-1274). NR 57 TC 45 Z9 47 U1 1 U2 12 PU SPRINGER TOKYO PI TOKYO PA 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1431-0651 J9 EXTREMOPHILES JI Extremophiles PD MAY PY 2009 VL 13 IS 3 BP 541 EP 555 DI 10.1007/s00792-009-0243-5 PG 15 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 443NV UT WOS:000265917900015 PM 19381755 ER PT J AU Johnson, DR Nemir, A Andersen, GL Zinder, SH Alvarez-Cohen, L AF Johnson, David R. Nemir, Audra Andersen, Gary L. Zinder, Stephen H. Alvarez-Cohen, Lisa TI Transcriptomic microarray analysis of corrinoid responsive genes in Dehalococcoides ethenogenes strain 195 SO FEMS MICROBIOLOGY LETTERS LA English DT Article DE Dehalococcoides; corrinoid; reductive halogenation ID REDUCTIVELY DECHLORINATES TETRACHLOROETHENE; COMPARATIVE GENOMICS; ENRICHMENT CULTURE; BACTERIUM; VITAMIN-B-12; EXPRESSION; ETHENE; DEHALOGENATION; METHANOGENESIS; RIBOSWITCHES AB Dehalococcoides ethenogenes strain 195 utilizes corrinoid-containing reductive dehalogenases to reduce the environmental pollutants tetrachloroethene and trichloroethene to ethene. Although corrinoids are essential for dehalogenation activity, strain 195 cannot biosynthesize corrinoids de novo. To improve our understanding of corrinoid physiology in this bacterium, whole-genome microarrays were applied to characterize the transcriptome during growth with excess and limiting concentrations of the corrinoid cyanocobalamin. Additional studies examined the effects of exposure to spent medium from a methanogenic chloroethene-dehalogenating enrichment culture (designated ANAS). Both excess cyanocobalamin and ANAS spent medium resulted in the downregulation of two genes (DET0125-0126) that are encoded downstream of a putative cobalamin riboswitch. In contrast, only ANAS spent medium resulted in the downregulation of three duplicated genes (DET0657-0659/DET0691-0693) encoded downstream of a second putative cobalamin riboswitch. These latter genes are predicted to be involved in synthesizing the lower ligand base that is attached to cobyric acid. It is also notable that only excess cyanocobalamin resulted in the downregulation of a predicted cobalamin transport system. Together, these results imply that ANAS spent medium contains corrinoid forms different from cyanocobalamin and that strain 195 adjusts its metabolism according to the corrinoid forms available for uptake. C1 [Johnson, David R.; Nemir, Audra; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Andersen, Gary L.; Alvarez-Cohen, Lisa] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Zinder, Stephen H.] Cornell Univ, Dept Microbiol, Ithaca, NY USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 726 Davis Hall, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Andersen, Gary/G-2792-2015 OI Andersen, Gary/0000-0002-1618-9827 FU National Science Foundation [BES 05-04244]; Superfund Basic Research Program [NIEHS ES04705] FX This work was supported by the National Science Foundation under grant BES 05-04244, and the Superfund Basic Research Program under grant NIEHS ES04705. We thank two anonymous reviewers for insightful comments and suggestions. NR 37 TC 33 Z9 33 U1 3 U2 13 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0378-1097 J9 FEMS MICROBIOL LETT JI FEMS Microbiol. Lett. PD MAY PY 2009 VL 294 IS 2 BP 198 EP 206 DI 10.1111/j.1574-6968.2009.01569.x PG 9 WC Microbiology SC Microbiology GA 431OG UT WOS:000265070600009 PM 19341394 ER PT J AU Forssen, C Christensson, J Navratil, P Quaglioni, S Reimann, S Vary, J Aberg, S AF Forssen, C. Christensson, J. Navratil, P. Quaglioni, S. Reimann, S. Vary, J. Aberg, S. TI The Ab Initio No-core Shell Model SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT Workshop on Critical Stability of Few-Body Quantum Systems CY OCT 10, 2008 CL Erice, ITALY SP Sch Crit Stabil AB This contribution reviews a number of applications of the ab initio no-core shell model (NCSM) within nuclear physics and beyond. We will highlight a nuclear-structure study of the A = 12 isobar using a chiral NN + 3NF interaction. In the spirit of this workshop we will also mention the new development of the NCSM formalism to describe open channels and to approach the problem of nuclear reactions. Finally, we will illustrate the universality of the many-body problem by presenting the recent adaptation of the NCSM effective-interaction approach to study the many-boson problem in an external trapping potential with short-range interactions. C1 [Forssen, C.] Chalmers, S-41296 Gothenburg, Sweden. [Christensson, J.; Reimann, S.; Aberg, S.] Lund Univ, LTH, S-22100 Lund, Sweden. [Navratil, P.; Quaglioni, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Vary, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Forssen, C (reprint author), Chalmers, S-41296 Gothenburg, Sweden. EM christian.forssen@chalmers.se RI Cremon, Jonas/F-5306-2010; Forssen, Christian/C-6093-2008 OI Forssen, Christian/0000-0003-3458-0480 NR 6 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD MAY PY 2009 VL 45 IS 2-4 BP 111 EP 114 DI 10.1007/s00601-009-0041-8 PG 4 WC Physics, Multidisciplinary SC Physics GA 440MM UT WOS:000265704400008 ER PT J AU Macek, JH AF Macek, J. H. TI Multiparticle Interactions of Zero-Range Potentials SO FEW-BODY SYSTEMS LA English DT Article; Proceedings Paper CT Workshop on Critical Stability of Few-Body Quantum Systems CY OCT 10, 2008 CL Erice, ITALY SP Sch Crit Stabil ID MODEL AB For two particles it is often convenient to replace local or non-local potentials by zero-range interactions. Since they are zero-range, these interactions can often be replaced by boundary conditions at a point where the separation between two particles vanishes. In either case, zero-range potentials are useful when the details of the interaction at small distances are not critical for the dynamics. The description of Bose condensates is an example where zero-range interactions are basic to theories of the condensed aggregates. These theories employ the model interactions to obtain a mean field description of large numbers of particles. On a more fundamental level, zero-range interactions are employed to model the interactions of three particles, where they have been used to study the properties of loosely bound Efimov states. Owning to their success in these areas they have been generalized to allow for multichannel interactions, interactions for states with non-zero angular momentum and energy dependent zero-range potentials. Properties of these generalized potentials and their applications will be illustrated for the interaction of three particles at vanishingly small kinetic energy. C1 [Macek, J. H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Macek, J. H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Macek, JH (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM jmacek@utk.edu NR 7 TC 4 Z9 4 U1 1 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD MAY PY 2009 VL 45 IS 2-4 BP 207 EP 210 DI 10.1007/s00601-009-0026-7 PG 4 WC Physics, Multidisciplinary SC Physics GA 440MM UT WOS:000265704400030 ER PT J AU Breshears, DD Myers, OB Meyer, CW Barnes, FJ Zou, CB Allen, CD McDowell, NG Pockman, WT AF Breshears, David D. Myers, Orrin B. Meyer, Clifton W. Barnes, Fairley J. Zou, Chris B. Allen, Craig D. McDowell, Nathan G. Pockman, William T. TI Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements SO FRONTIERS IN ECOLOGY AND THE ENVIRONMENT LA English DT Article ID PINYON-JUNIPER WOODLANDS; NORTHERN NEW-MEXICO; PINUS-EDULIS; FOREST; XYLEM; OSTEOSPERMA; LIMITS AB Global climate change is projected to produce warmer, longer, and more frequent droughts, referred to here as "global change-type droughts", which have the potential to trigger widespread tree die-off. However, drought-induced tree mortality cannot be predicted with confidence, because long-term field observations of plant water stress prior to, and culminating in, mortality are rare, precluding the development and testing of mechanisms. Here, we document plant water stress in two widely distributed, co-occurring species, pinon pine (Pinus edulis) and juniper (Juniperus monosperma), over more than a decade, leading up to regional-scale die-off of pinon pine trees in response to global change-related drought. Pinon leaf water potentials remained substantially below their zero carbon assimilation point for at least 10 months prior to dying, in contrast to those of juniper, which rarely dropped below their zero-assimilation point. These data suggest that pinon mortality was driven by protracted water stress, leading to carbon starvation and associated increases in susceptibility to other disturbances (eg bark beetles), a finding that should help to improve predictions of mortality during drought. C1 [Breshears, David D.] Univ Arizona, Sch Nat Resources, Inst Study Planet Earth, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Myers, Orrin B.] Univ New Mexico Hlth Sci, Div Epidemiol & Biostat, Albuquerque, NM USA. [Meyer, Clifton W.; Barnes, Fairley J.; McDowell, Nathan G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Allen, Craig D.] US Geol Survey, Jemez Mt Field Stn, Los Alamos, NM USA. [Pockman, William T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Breshears, DD (reprint author), Univ Arizona, Sch Nat Resources, Inst Study Planet Earth, Tucson, AZ 85721 USA. EM daveb@email.arizona.edu RI Myers, Orrin/F-1130-2010; Breshears, David/B-9318-2009; Pockman, William/D-4086-2014; Zou, Chris/A-5039-2010 OI Breshears, David/0000-0001-6601-0058; Pockman, William/0000-0002-3286-0457; Zou, Chris/0000-0003-0080-2866 FU Los Alamos National Lab (Environmental Restoration and LDRDDR); National Science Foundation [DEB0443526, EAR-9876800]; Arizona Agricultural Experiment Station [126-580]; DOE NICCR [FC02-06ER64159]; Office of Science (BER), Department of Energy [DE-FG0207ER 64393] FX The authors thank HD Adams, PC Beeson, J Davison, KA Dayem, MH Ebinger, JM Fair, MO Gard, KL Goddard, L Graumlich, CE Heil, SR Johnson, SA Kammerdiener, CP Kempes, SA Kurc, RJ Lucero, SN Martens, LJ Martinez, KD Reid, JA Salazar, N Stephanson, JC Villegas, H Wei, and BP Wilcox for data collection and discussion comments. Support was provided by Los Alamos National Lab (Environmental Restoration and LDRDDR), the National Science Foundation (NSF# DEB0443526; EAR-9876800), Arizona Agricultural Experiment Station (# 126-580), Bio-sphere 2 (B2 Earthscience via Philecology Foundation), DOE NICCR (Western Region; DE-FC02-06ER64159), and Office of Science (BER), Department of Energy Grant # DE-FG0207ER 64393. Data (monthly pre-dawn plant water potential values) provided in WebPanel 1. NR 23 TC 194 Z9 197 U1 11 U2 125 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 1540-9295 J9 FRONT ECOL ENVIRON JI Front. Ecol. Environ. PD MAY PY 2009 VL 7 IS 4 BP 185 EP 189 DI 10.1890/080016 PG 5 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 444HK UT WOS:000265971200017 ER PT J AU Shekhawat, D Berry, DA Haynes, DJ Spivey, JJ AF Shekhawat, Dushyant Berry, David A. Haynes, Daniel J. Spivey, James J. TI Fuel constituent effects on fuel reforming properties for fuel cell applications SO FUEL LA English DT Article DE Diesel fuel; Oxidative steam reforming; Fuel reforming; Diesel fuel composition; Partial oxidation ID CATALYTIC PARTIAL OXIDATION; AUXILIARY POWER UNITS; DIESEL FUEL; N-TETRADECANE; HYDROGEN GENERATION; HIGHER HYDROCARBONS; ZEOLITE CATALYSTS; TECHNOLOGY; AROMATICS; EMISSIONS AB The effect of different types of compounds commonly found in diesel fuel (e.g., paraffins, naphthenes, and aromatics), as well as their chemical structure (e.g., branched versus linear paraffins) on fuel reforming has been investigated. Diesel reforming is very complicated because diesel is a complex mixture of hundreds of compounds with greatly different reactivities. The syngas production rates at the same conditions were observed in this order: paraffins > naphthenes >> aromatics. Additionally, the type of reforming performed (OSR, CPOX, or SR) as well as the process parameters (space velocity and reaction temperature) significantly affected the syngas production rates as well as carbon formation. The reactivity of one fuel component can affect the conversion pattern of others, e.g., overall yields from the reforming of a fuel mixture are not additive of yields from individual fuel components, rather the more reactive component is consumed first. Furthermore, the type of substituent in aromatics and naphthenes, the carbon chain length in n-paraffins, branching in paraffins, and degree of aromatic saturation affect the overall hydrocarbon conversion, syngas selectivity, and carbon formation. The presence of sulfur compounds in the fuel caused significant drops in H(2) yields compared to CO yields. Published by Elsevier Ltd. C1 [Shekhawat, Dushyant; Berry, David A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Haynes, Daniel J.] Parsons, South Pk, PA 15129 USA. [Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. RP Shekhawat, D (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Dushyant.shekhawat@netl.doe.gov NR 42 TC 41 Z9 42 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAY PY 2009 VL 88 IS 5 BP 817 EP 825 DI 10.1016/j.fuel.2008.10.030 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 417PA UT WOS:000264087300007 ER PT J AU Pekney, NJ Martello, D Schroeder, K Granite, E AF Pekney, Natalie J. Martello, Donald Schroeder, Karl Granite, Evan TI Environmental chamber measurements of mercury flux from coal utilization by-products SO FUEL LA English DT Article DE Mercury; Coal utilization by-products; Flux chamber; Fly ash; Wallboard ID TERRESTRIAL BACKGROUND SURFACES; AIR/SURFACE EXCHANGE; ATMOSPHERIC MERCURY; ELEMENTAL MERCURY; EASTERN USA; FLY-ASH; SOILS; EMISSION; RELEASE; TEMPERATURE AB An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum. Published by Elsevier Ltd. C1 [Pekney, Natalie J.; Martello, Donald; Schroeder, Karl; Granite, Evan] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Pekney, NJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10940,626 Cohrans Mill Rd, Pittsburgh, PA 15236 USA. EM Natalie.Pekney@netl.doe.gov NR 32 TC 2 Z9 4 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAY PY 2009 VL 88 IS 5 BP 890 EP 897 DI 10.1016/j.fuel.2008.11.004 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 417PA UT WOS:000264087300016 ER PT J AU Kim, AG Hesbach, P AF Kim, Ann G. Hesbach, Peter TI Comparison of fly ash leaching methods SO FUEL LA English DT Article DE Serial batch leaching procedure; Synthetic groundwater leaching procedure; Mine water leaching procedure; 3TIER leaching protocol; TCLP ID METALS AB Five leaching methods (serial batch leaching procedure (SBLP), synthetic groundwater leaching procedure (SGLP), mine water leaching procedure (MWLP), 3 TIER integrated framework leaching protocol (3TIER), and toxicity characteristic leaching procedure (TCLP)) were compared using two samples, a class F fly and a class C fly ash. Each method was tested in triplicate, according to the published procedure, and leachate was analyzed for 23 elements. The procedures were compared on the basis of elemental availability, defined as the cumulative elemental release per kg of sample, and the variation in extraction with increased L/S as a surrogate for long term release. Higher availability values were obtained with the SBLP and MWLP, which cover a range of pH's and 3TIER, which uses EDTA to form soluble complexes. SGLP, a high pH procedure, and TCLP, mildly acidic, generally produced lower availability values. Cumulative elemental extraction as a function of L/S in SBLP, MWLP and 3TIER generally agreed within an order of magnitude. Published by Elsevier Ltd. C1 [Hesbach, Peter] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Kim, Ann G.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Hesbach, P (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM peter.hesbach@netl.doe.gov NR 24 TC 35 Z9 37 U1 1 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAY PY 2009 VL 88 IS 5 BP 926 EP 937 DI 10.1016/j.fuel.2008.11.013 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 417PA UT WOS:000264087300020 ER PT J AU Nagendran, S Hallen-Adams, HE Paper, JM Aslam, N Walton, JD AF Nagendran, Subashini Hallen-Adams, Heather E. Paper, Janet M. Aslam, Nighat Walton, Jonathan D. TI Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE Proteomics; Cellulase; Xylanase ID HYPOCREA-JECORINA; PHANEROCHAETE-CHRYSOSPORIUM; COCHLIOBOLUS-CARBONUM; FUSARIUM-GRAMINEARUM; MASS-SPECTROMETRY; LACCARIA-BICOLOR; BOTRYTIS-CINEREA; PROTEINS; ENDOPOLYGALACTURONASE; SYMBIOSIS AB Based on the analysis of its genome sequence, the ectomycorrhizal (ECM) basidiomycetous fungus Laccaria bicolor was shown to be lacking many of the major classes of secreted enzymes that depolymerize plant cell wall polysaccharides. To test whether this is also a feature of other ECM fungi, we searched a survey genome database of Amanita bisporigera with the proteins found in the secretome of Trichoderma reesei (syn. Hypocrea jecorina), a biochemically well-characterized industrial fungus. Additional proteins were also used as queries to compensate for major groups of cell-wall-degrading enzymes lacking in the secretome of T. reesei and to substantiate conclusions drawn from the T. reesei collection. By MS/MS-based "shotgun" proteomics, 80 proteins were identified in culture filtrates of T reesei strain RUTC30 grown on corn cell walls and in a commercial "cellulase" preparation, Spezyme CP. The two T reesei enzyme preparations were qualitatively and quantitatively similar, the most striking difference being the lack of at least five major peptidases from the commercial enzyme mixture. Based on our analysis of A. bisporigera, this ECM fungus is deficient in many major classes of cell-wall-degrading enzymes, including both glycosyl hydrolases and carbohydrate esterases. By comparison, the genomes of the saprophytic basidiomycetes Coprinopsis cinerea and Galerina marginata (using a genome survey sequence approximately equivalent in depth to that of A. bisporigera) have, like T. reesei, a much more complete complement of cell-wall-degrading enzymes. (C) 2009 Elsevier Inc. All rights reserved. C1 [Nagendran, Subashini; Hallen-Adams, Heather E.; Paper, Janet M.; Aslam, Nighat; Walton, Jonathan D.] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Nagendran, Subashini; Aslam, Nighat; Walton, Jonathan D.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Walton, JD (reprint author), Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. EM walton@msu.edu OI Hallen-Adams, Heather/0000-0002-1929-725X FU US Department of Energy; Energy Biosciences Program; DOE Great Lakes Bioenergy Research Center; MSU Strategic Partnership Grant FX We thank Curtis Wilkerson, Doug Whitten, Kevin Carr, Shari Tjugum-Holland, and Jeff Landgraf of the MSU Research Technology Support Facility for the proteomics analysis, 454 sequencing, and assembly. This work was supported by the US Department of Energy, Energy Biosciences Program, the DOE Great Lakes Bioenergy Research Center, and an MSU Strategic Partnership Grant. NR 46 TC 73 Z9 77 U1 2 U2 20 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD MAY PY 2009 VL 46 IS 5 BP 427 EP 435 DI 10.1016/j.fgb.2009.02.001 PG 9 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA 437EV UT WOS:000265470200009 PM 19373972 ER PT J AU Hamza, A Harding, D AF Hamza, Alex Harding, David TI EIGHTEENTH TARGET FABRICATION SPECIALISTS' MEETING PREFACE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Hamza, Alex] Lawrence Livermore Natl Lab, Livermore, CA USA. [Harding, David] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA. RP Hamza, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2009 VL 55 IS 4 BP V EP V PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438YM UT WOS:000265592700002 ER PT J AU Nguyen, AQL Eddinger, SA Huang, H Johnson, MA Lee, YT Montesanti, RC Moreno, KA Schoff, ME AF Nguyen, A. Q. L. Eddinger, S. A. Huang, H. Johnson, M. A. Lee, Y. T. Montesanti, R. C. Moreno, K. A. Schoff, M. E. TI CHARACTERIZATION OF ISOLATED DEFECTS FOR NIF TARGETS USING PSDI WITH AN ANALYSIS OF SHELL FLIPPING CAPABILITY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Target Fabrication Specialists Meeting CY MAY 11-15, 2008 CL Lake Tahoe, CA DE PDSI; isolated defect; shell flipper AB Capsules for the National Ignition Facility require measurement of isolated defects on the capsule surface. A phase-shifting diffraction interferometer (PSDI) is used to identify, locate, and measure defects by capturing 71 overlapping similar to 500-mu m-diam charge coupled device height maps for software analysis. Using capsules with drilled holes for the purpose of alignment, PSDI data were con firmed with atomic force microscopy by comparing defect data from corresponding equatorial bands. We explored the limitations of the PSDI resulting from unwrapping errors caused by defect slopes greater than the Nyquist sampling theorem. White light interferometry proved to be a useful complementary tool to measure defects that could not be unwrapped by the analysis software. Implementing the PSDI in conjunction with the shell flipper, both developed at Lawrence Livermore National Laboratory, allowed for full mapping of shell surfaces by mounting corresponding hemispheres onto the PSDI within a 2-deg accuracy. C1 [Nguyen, A. Q. L.; Eddinger, S. A.; Huang, H.; Lee, Y. T.; Moreno, K. A.] Gen Atom Co, San Diego, CA 92186 USA. [Johnson, M. A.; Montesanti, R. C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Schoff, M. E.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Nguyen, AQL (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM nguyena@fusion.gat.com NR 11 TC 15 Z9 15 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2009 VL 55 IS 4 BP 399 EP 404 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438YM UT WOS:000265592700009 ER PT J AU Lee, YT Nguyen, AQL Huang, H Moreno, KA Chen, KC Chen, C Johnson, MA Hughes, JD Montesanti, RC Phillion, DW AF Lee, Y. T. Nguyen, A. Q. L. Huang, H. Moreno, K. A. Chen, K. C. Chen, C. Johnson, M. A. Hughes, J. D. Montesanti, R. C. Phillion, D. W. TI INCREASING THE THROUGHPUT OF PHASE-SHIFTING DIFFRACTION INTERFEROMETER FOR QUANTITATIVE CHARACTERIZATION OF ICF ABLATOR CAPSULE SURFACES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Target Fabrication Specialists Meeting CY MAY 11-15, 2008 CL Lake Tahoe, CA DE phase-shifting interferometry; NIF capsule; surface metrology ID UPDATE; SHELLS AB A phase-shifting diffraction interferometer provides full surface mapping of National Ignition Facility (NIF) ablator capsules for surface finish and isolated defects. To integrate this new instrument into the NIF metrology work flow, the measurement must be both quick and accurate. In this work, we developed automated processing algorithms to streamline a large number of manual steps. This enables the process time to be reduced from 1 1/2 days to 2 h per shell, thus meeting the NIF throughput requirement of 20 capsules/week. We also developed methods to quantitatively report the isolated defects and surface roughness in formats that can be benchmarked against the NIF specifications. C1 [Lee, Y. T.; Nguyen, A. Q. L.; Huang, H.; Moreno, K. A.; Chen, K. C.; Chen, C.] Gen Atom Co, San Diego, CA 92186 USA. [Johnson, M. A.; Hughes, J. D.; Montesanti, R. C.; Phillion, D. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Lee, YT (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM leeyt@fusion.gat.com NR 12 TC 8 Z9 9 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2009 VL 55 IS 4 BP 405 EP 410 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438YM UT WOS:000265592700010 ER PT J AU Patterson, BM Obrey, KAD Havrilla, GJ Nikroo, A Huang, HB AF Patterson, Brian M. Obrey, Kimberly A. DeFriend Havrilla, George J. Nikroo, Abbas Huang, Haibo TI NONDESTRUCTIVE INVESTIGATIONS OF A COPPER- AND ARGON-DOPED SPUTTERED BERYLLIUM CAPSULE USING X-RAYS IN THREE DIMENSIONS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Target Fabrication Specialists Meeting CY MAY 11-15, 2008 CL Lake Tahoe, CA DE confocal micro X-ray fluorescence; 3-D imaging; X-ray tomography AB Three-dimensional (3-D) computed micro X-ray tomography (micro CT) and 3-D confocal micro X-ray fluorescence (MXRF) combined are very useful non-destructive metrology techniques for determining the unique compositional and morphological information of fusion targets and target materials. Micro CT and confocal MXRF are being used in concert to examine a beryllium ablator capsule that has been sputtered and graded doped with copper and argon. In this manuscript, we will show that two-dimensional (2-D) MXRF imaging in concert with a simple radiograph is very useful for approximating the copper and argon profiles in the x and y dimensions, but because of the lack of signal discriminant. on in the z direction, image "bleed" from the sample regions where the X-rays are out of focus is prevalent. Data collected using the micro CT and overlapped with the confocal MXRF data produce absorbance and elemental line profiles without the signal bleed. Overlapping the 3-D data from these techniques provides a more accurate picture of the composition of these capsules than 2-D nondestructive techniques. C1 [Patterson, Brian M.; Obrey, Kimberly A. DeFriend; Havrilla, George J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Nikroo, Abbas; Huang, Haibo] Gen Atom Co, San Diego, CA 92186 USA. RP Patterson, BM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bpatterson@lanl.gov NR 11 TC 10 Z9 11 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2009 VL 55 IS 4 BP 417 EP 423 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438YM UT WOS:000265592700012 ER PT J AU Obrey, KAD Day, RD Hatch, D Espinoza, BF Feng, SH Patterson, BM AF Obrey, Kimberly A. DeFriend Day, Robert D. Hatch, Doug Espinoza, Brent F. Feng, Shihai Patterson, Brian M. TI MANUFACTURING COMPLEX SILICA AEROGEL TARGET COMPONENTS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 18th Target Fabrication Specialists Meeting CY MAY 11-15, 2008 CL Lake Tahoe, CA DE aerogel machining; inertial confinement fusion; aerogel density ID LASER AB Aerogel is a material used in numerous components,for inertial confinement fusion and high-energy density physics targets. In the past, these components were molded into the proper shapes. Artifacts left in the parts from the molding process, contour irregularities from shrinkage, and density gradients caused by the skin have caused Los Alamos National Laboratory to pursue machining as a way to make the components. The machining of aerogel is an involved process, and many manufacturing aspects need to be considered including holding the material for machining, achieving the desired surface roughness and the desired dimensional accuracy, conceivably producing a part with enhanced dimensional tolerance and minimal density variations. Therefore, an effort has been established to develop a method to more accurately determine density errors, perform machining experiments, acquire physical property data, and model the machining process. C1 [Obrey, Kimberly A. DeFriend; Day, Robert D.; Hatch, Doug; Espinoza, Brent F.; Feng, Shihai; Patterson, Brian M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Obrey, KAD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM defriend@lanl.gov NR 16 TC 7 Z9 7 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD MAY PY 2009 VL 55 IS 4 BP 490 EP 498 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438YM UT WOS:000265592700024 ER PT J AU Yang, XH Jawdy, S Tschaplinski, TJ Tuskan, GA AF Yang, Xiaohan Jawdy, Sara Tschaplinski, Timothy J. Tuskan, Gerald A. TI Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus SO GENOMICS LA English DT Article DE Lineage-specific genes; Gene expression; Arabidopsis; Rice; Poplar; Perennial plants; Woody plants ID RICE GENOME; DRAFT SEQUENCE; PCR DATA; PLANTS; EVOLUTION; THALIANA; SATIVA; ASSEMBLIES; SOFTWARE; FAMILIES AB Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DC sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 165, 638 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research. (c) 2009 Elsevier Inc. All rights reserved. C1 [Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Tuskan, GA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM tuskanga@ornl.gov RI Tuskan, Gerald/A-6225-2011; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210; Tschaplinski, Timothy/0000-0002-9540-6622 FU U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Stan Wullschleger and Udaya Kalluri for reviewing the manuscript and valuable comments, and J.C. Tuskan for input Oil the design of the study. Funding for this research was provided by file U.S. Department of Energy, Office of Science, Biological and Environmental Research Carbon Sequestration Program. ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy Under Contract No. DE-AC05-00OR22725. NR 30 TC 28 Z9 30 U1 1 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0888-7543 J9 GENOMICS JI Genomics PD MAY PY 2009 VL 93 IS 5 BP 473 EP 480 DI 10.1016/j.ygeno.2009.01.002 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 441YI UT WOS:000265806100009 PM 19442640 ER PT J AU Evans, KA Gordon, RA Mavrogenes, JA Tailby, N AF Evans, K. A. Gordon, R. A. Mavrogenes, J. A. Tailby, N. TI The effect of CO2 on the speciation of RbBr in solution at temperatures to 579 degrees C and pressures to 0.26 GPa SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; SYNTHETIC FLUID INCLUSIONS; LODE-GOLD DEPOSITS; SUPERCRITICAL WATER; AQUEOUS-SOLUTIONS; PHASE-EQUILIBRIA; VOLUMETRIC PROPERTIES; SYSTEM H2O-CO2-NACL; IONIC ASSOCIATION; XAFS MEASUREMENTS AB Carbon dioxide- and salt-bearing solutions are common in granulite, ore-forming and magmatic environments. The presence of CO2 affects mineral solubilities, fluid miscibility, and viscosity and wetting properties, and is expected to affect salt speciation. EXAFS measurements of RbBr-H2O-CO2 fluids contained in corundum-osed synthetic fluid inclusions (SFL-INCs) have been used to investigate the effect of CO2 on salt speciation at temperatures to 579 degrees C and pressures to around 0.26 GPa. Forward modelling indicates that solute dehydration is difficult to distinguish from up to around 40% of Rb-Br ion-pairing, so results refer to the total number of nearest neighbours, which are likely to be mostly O present in waters of hydration, but may also include Br, if ion pairing is present. Additionally, results relate to the number of well-ordered neighbours in the first shell, because nearest neighbours with a high degree of disorder may be present but contribute minimally to the EXAFS signal. Analysis of the EXAFS results at the Rb edge for the CO2-free solution is consistent with previous work and shows that the number of nearest neighbours for Rb in CO2-free solutions decreases from 6 +/- 0.6 to 1.4 +/- 0.1 as temperature increases from 20 to 534 degrees C. The decrease is accompanied by a decrease in Rb-x bondlengths of 0.05 angstrom, where x is the first shell scatterer. Results for the CO2-bearing solution are different to those for the CO2-free solution. The number of nearest neighbours is 16 and 22% less than for the CO2-bearing solution at 312 and 445 degrees C respectively. Changes in the numbers of nearest neighbours correlate well with calculated changes in the bulk solution dielectric constant; CO2-bearing and CO2-free solutions lie on the same trend, which suggests that it may be possible to calculate the number of nearest neighbours from dielectric constant. Rb-x bondlengths for the CO2-bearing solution are statistically indistinguishable to those for the CO2-free inclusions. Results for Br are worse quality than for Rb so EXAFS analysis could not be completed, however XANES spectra for CO2-free and CO2-bearing solutions are consistent with solute dehydration similar to that recorded by the Rb spectra. The conclusions of this study provide support for the notion that CO2 has a fundamental effect on the mechanics of solubility, and that these effects should be incorporated into conceptual and quantitative thermodynamic models. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Evans, K. A.; Mavrogenes, J. A.; Tailby, N.] Australian Natl Univ, RSES, Canberra, ACT 0200, Australia. [Gordon, R. A.] Argonne Natl Lab, Adv Photon Source, PNC CAT, Argonne, IL 60439 USA. RP Evans, KA (reprint author), Curtin Univ Technol, Dept Appl Geol, GPO Box U1987, Bentley, WA 6845, Australia. EM k.evans@curtin.edu.au RI Evans, Katy/G-5748-2011 OI Evans, Katy/0000-0001-5144-4507 FU Commonwealth of Australia; US Department of Energy-Basic Energy Sciences; NSERC; University of Washington; Simon Fraser University; Advanced Photon Source; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Mike Shelley is thanked for silver oxalate synthesis and help with many other aspects of the work. Matt Newville is thanked for help with early investigations of quartz-hosted fluid inclusions and discussion of fluid properties. This work was performed with support from the Australian Synchrotron Research Program (ASRP), which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy-Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Denis Testemales and three anonymous reviewers are thanked for detailed and perceptive comments on an earlier version of this paper. David Cole and Frank Podosek are thanked for editorial handling. NR 56 TC 6 Z9 6 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 1 PY 2009 VL 73 IS 9 BP 2631 EP 2644 DI 10.1016/j.gca.2009.02.011 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 433TF UT WOS:000265228000011 ER PT J AU Corrigan, CM Chabot, NL Mccoy, TJ McDonough, WF Watson, HC Saslow, SA Ash, RD AF Corrigan, Catherine M. Chabot, Nancy L. McCoy, Timothy J. McDonough, William F. Watson, Heather C. Saslow, Sarah A. Ash, Richard D. TI The iron-nickel-phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID FE-NI ALLOYS; LIQUID-METAL; DISTRIBUTION COEFFICIENTS; S-P; FRACTIONATION; CRYSTALLIZATION; SOLIDIFICATION; SEGREGATION; PHASES; IIIAB AB To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (alpha)- and face-centered cubic (gamma)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/ liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting alpha and gamma Fe alloy solids produced partitioning ratios close to unity, indicating that an alpha versus gamma Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its alpha/gamma partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort. Published by Elsevier Ltd. C1 [Corrigan, Catherine M.; McCoy, Timothy J.] Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, Washington, DC 20560 USA. [Chabot, Nancy L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McDonough, William F.; Ash, Richard D.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA. [Watson, Heather C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Corrigan, CM (reprint author), Smithsonian Inst, Natl Museum Nat Hist, Dept Mineral Sci, 10th St & Constitut Ave NW, Washington, DC 20560 USA. EM corriganc@si.edu RI McDonough, William/C-4791-2009; Chabot, Nancy/F-5384-2015; McDonough, William/I-7720-2012; OI McDonough, William/0000-0001-9154-3673; Chabot, Nancy/0000-0001-8628-3176; McDonough, William/0000-0001-9154-3673; Watson, Heather/0000-0003-4307-6518 FU NASA [NNG06GF56G, NNG06GI13G, NNG04GG17G]; NSF [EAR0337621] FX We would like to thank John Jones (JSC) for discussion on experimental technique. Tim Gooding (NMNH) and Vern Lauer (JSC) for their assistance/instruction with vacuum sealing silica tubes, and Lisa Collins for weighing out and mixing powders. In addition, we would like to thank Jijin Yang, David Mittlefehldt and two anonymous reviewers for their comments and suggestions for improvements to this paper. This work was funded by NASA Grants NNG06GF56G to T.J. McCoy, NNG06GI13G to N.L. Chabot, NNG04GG17G to W.F. McDonough, and NSF EAR0337621 grant to W. F. McDonough. NR 39 TC 17 Z9 17 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD MAY 1 PY 2009 VL 73 IS 9 BP 2674 EP 2691 DI 10.1016/j.gca.2008.11.045 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 433TF UT WOS:000265228000014 ER PT J AU Xu, T Rose, P Fayer, S Pruess, K AF Xu, T. Rose, P. Fayer, S. Pruess, K. TI On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent SO GEOFLUIDS LA English DT Article DE chelating agent; chemical stimulation; Desert Peak; EGS; Enhanced Geothermal System; high pH solution ID REACTIVE GEOCHEMICAL TRANSPORT; FLUID-FLOW; PRECIPITATION; SIMULATION; MEDIA AB Dissolution of silica and calcite in the presence of a chelating agent (NTA) at a high pH was successfully demonstrated in laboratory experiments using a high-temperature flow reactor. (Note that the term 'silica' used here includes amorphous silica, quartz, and silicate glass bead.) The mineral dissolution and associated porosity enhancement in the experiments were reproduced by reactive transport modeling using TOUGHREACT. The chemical stimulation method was applied by numerical modeling to a field geothermal injection well system to investigate its effectiveness. Parameters applicable to the quartz monzodiorite unit at the Enhanced Geothermal Systems site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase, while avoiding precipitation of calcite at high temperature conditions. Consequently, reservoir porosity and permeability can be enhanced especially near the injection well. Injection at a lower temperature of 120 degrees C (temperature is over 160 degrees C in the base-case) results in a porosity increase that is smaller close to the injection point, but extends to a larger radial distance. A slower kinetic rate results in less aggressive mineral dissolution close to the injection point and larger extent along the flow path, which is favorable for chemical stimulation. C1 [Xu, T.; Pruess, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Rose, P.; Fayer, S.] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT USA. RP Xu, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM Tianfu_Xu@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231, DE-FG36-04GO14295] FX The first and fourth authors (Tianfu Xu and Karsten Pruess) were supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal Technologies, of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The second and third authors (Peter Rose and Scott Fayer) were supported by the same Agency under grant DE-FG36-04GO14295. NR 16 TC 7 Z9 11 U1 0 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1468-8115 EI 1468-8123 J9 GEOFLUIDS JI Geofluids PD MAY PY 2009 VL 9 IS 2 BP 167 EP 177 DI 10.1111/j.1468-8123.2009.00246.x PG 11 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA 441LX UT WOS:000265771700007 ER PT J AU Matmon, A Simhai, O Amit, R Haviv, I Porat, N McDonald, E Benedetti, L Finkel, R AF Matmon, Ari Simhai, Ori Amit, Rivka Haviv, Itai Porat, Naomi McDonald, Eric Benedetti, Lucilla Finkel, Robert TI Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article ID COSMOGENIC NUCLIDES; RIVER SEDIMENTS; EROSION RATES; LANDSCAPE DEVELOPMENT; AHKLUN MOUNTAINS; ATACAMA DESERT; NORTHERN CHILE; FAN SURFACES; MIOCENE AGE; REG SOILS AB All exposed rocks on Earth's surface experience erosion; the fastest rates are documented in rapidly uplifted monsoonal mountain ranges, and the slowest occur in extreme cold or warm deserts-millennial submeter-scale erosion may be approached only in the latter. The oldest previously reported exposure ages are from boulders and clasts of resistant lithologies lying at the surface, and the slowest reported erosion rates are derived from bedrock outcrops or boulders that erode more slowly than their surroundings; thus, these oldest reported ages and slowest erosion rates relate to outstanding features in the landscape, while the surrounding landscape may erode faster and be younger. We present erosion rate and exposure age data from the Paran Plains, a typical environment in the Near East where vast abandoned alluvial surfaces (10(2)-10(4) km(2)) are covered by well-developed desert pavements. These surfaces may experience erosion rates that are slower than those documented elsewhere on our planet and can retain their original geometry for more than 2 m.y. Major factors that reduce erosion converge in these regions: extreme hyperaridity, tectonic stability, flat and horizontal surfaces (i.e., no relief), and effective surface armoring by a clast mosaic of highly resistant lithology. The Be-10 concentrations in amalgamated desert pavement chert clasts collected from abandoned alluvial surfaces in the southern Negev, Israel (representing the Sahara-Arabia Deserts), indicate simple exposure ages of 1.5-1.8 Ma or correspond to maximum erosion rates of 0.25-0.3 m m.y.(-1). The Cl-36 in carbonate clasts, from the same pavement, weathers faster than the chert and yields simple exposure ages of 430-490 ka or maximum erosion rates of 0.7-0.8 m m.y.(-1). These ages and rates are exceptional because they represent an extensive landform. The Be-10 concentrations from samples collected at depth and optically stimulated luminescence (OSL) dating reveal a two-stage colluvial deposition history followed by eolian addition of 40 cm of silt during the past 170 k.y. Our results highlight the efficiency of desert pavement armor in protecting rocks from erosion and preserving such geomorphic surfaces for millions of years. C1 [Matmon, Ari; Simhai, Ori; Haviv, Itai] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [Simhai, Ori; Amit, Rivka; Porat, Naomi] Geol Survey Israel, IL-95501 Jerusalem, Israel. [McDonald, Eric] Desert Res Inst, Reno, NV 89512 USA. [Benedetti, Lucilla] Europole Mediterraneen Arbois, Ctr Europeen Rech & Enseignement Geosci Environm, F-13545 Aix En Provence 04, France. [Finkel, Robert] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Matmon, A (reprint author), Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. EM arimatmon@cc.huji.ac.il RI HAVIV, ITAI/F-1627-2012 FU U.S. Army Research Office [DAAD19-03-1-0159]; United States-Israel Binational Science Foundation [2006-221] FX We thank N. Teutsch, M. Harel, A. Lokshin, T. HaLevi, and D. Shtiber for laboratory assistance and inductively coupled plasma measurements. We thank J. Refael, J. Mizrahi, and R. Madmon for field assistance. We thank J. Gosse, M. Reheis, and an anonymous reviewer for excellent reviews and comments. This project was funded by the U.S. Army Research Office (DAAD19-03-1-0159) and by the United States-Israel Binational Science Foundation grant 2006-221. NR 74 TC 60 Z9 61 U1 3 U2 25 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 EI 1943-2674 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD MAY PY 2009 VL 121 IS 5-6 BP 688 EP 697 DI 10.1130/B26422.1 PG 10 WC Geosciences, Multidisciplinary SC Geology GA 438YH UT WOS:000265592200003 ER PT J AU Leakey, ADB Ainsworth, EA Bernard, SM Markelz, RJC Ort, DR Placella, SA Rogers, A Smith, MD Sudderth, EA Weston, DJ Wullschleger, SD Yuan, SH AF Leakey, Andrew D. B. Ainsworth, Elizabeth A. Bernard, Stephanie M. Markelz, R. J. Cody Ort, Donald R. Placella, Sarah A. Rogers, Alistair Smith, Melinda D. Sudderth, Erika A. Weston, David J. Wullschleger, Stan D. Yuan, Shenghua TI Gene expression profiling: opening the black box of plant ecosystem responses to global change SO GLOBAL CHANGE BIOLOGY LA English DT Article DE elevated CO2; genomic; microarray ID ELEVATED CO2; ECOLOGICAL GENOMICS; ARABIDOPSIS-THALIANA; MICROARRAY EXPERIMENTS; STOMATAL CONDUCTANCE; NITRATE REDUCTASE; GRAPHICAL MODELS; SYSTEMS BIOLOGY; THLASPI-ARVENSE; STRESS AB The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Because the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical, and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and nonmodel species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context. C1 [Leakey, Andrew D. B.; Ainsworth, Elizabeth A.; Markelz, R. J. Cody; Ort, Donald R.] Univ Illinois, Dept Plant Biol, Inst Genom Biol, Urbana, IL 61801 USA. [Ainsworth, Elizabeth A.; Ort, Donald R.] ARS, Photosynth Res Unit, USDA, Urbana, IL 61801 USA. [Bernard, Stephanie M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Berkeley, CA 94720 USA. [Placella, Sarah A.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Rogers, Alistair] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Rogers, Alistair] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. [Smith, Melinda D.; Yuan, Shenghua] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA. [Sudderth, Erika A.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Weston, David J.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Leakey, ADB (reprint author), Univ Illinois, Dept Plant Biol, Inst Genom Biol, Urbana, IL 61801 USA. EM leakey@life.uiuc.edu RI Weston, David/A-9116-2011; Wullschleger, Stan/B-8297-2012; Rogers, Alistair/E-1177-2011; Smith, Melinda/J-8987-2014; Leakey, Andrew/Q-9889-2016 OI Weston, David/0000-0002-4794-9913; Wullschleger, Stan/0000-0002-9869-0446; Rogers, Alistair/0000-0001-9262-7430; Leakey, Andrew/0000-0001-6251-024X FU U.S. Department of Energy (DOE); Office of Science, Biological and Environmental Research program; Program for Ecosystem Research [DE-FG02-04ER63849, DE-AC03-76SF00098]; Lawrence Berkeley National Laboratory [AC02-98CH10886]; Brookhaven National Laboratory [DE-AC05-00OR22725]; Oak Ridge National Laboratory for the DOE FX We acknowledge support from the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research program as part of its Program for Ecosystem Research. A. D. B. L., E. A. A., and D. R. O. were supported by grant no. DE-FG02-04ER63849. S. A. P., S. M. B., and E.A.S. were supported by contract no. DE-AC03-76SF00098 to Lawrence Berkeley National Laboratory. A. R. was supported by contract no. DE-AC02-98CH10886 to Brookhaven National Laboratory. D. J. W. and S. D. W. were supported by contract DE-AC05-00OR22725 to UT-Battelle, LLC, which manages Oak Ridge National Laboratory for the DOE. NR 90 TC 23 Z9 23 U1 2 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD MAY PY 2009 VL 15 IS 5 BP 1201 EP 1213 DI 10.1111/j.1365-2486.2008.01818.x PG 13 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 431AM UT WOS:000265033700011 ER PT J AU Fritz, BG AF Fritz, Brad G. TI Application of a Dry-Gas Meter for Measuring Air Sample Volumes in an Ambient Air Monitoring Network SO HEALTH PHYSICS LA English DT Article DE operational topics; air sampling; inhalation; radionuclides AB Ambient air monitoring for non-research applications (i.e., compliance) occurs throughout tire world, Often, air sampling systems employed for these purposes employ simple yet robust equipment capable of handling the rigors of demanding sampling schedules and harsh environments. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced an airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using tire original flow-rate method to the sample volume measured directly by tire dry-gas meter. The two methods provided sample volumes that were within 15% of each other 87% of the time. The results indicated that for instances where the sample volume measured by the two methods differed by more than 15%, the dry-gas meter method provided a more accurate sample volume measurement. The results of the evaluation further indicated that the dry-gas meters provided more accurate sample volumes for all samples, resulting in greater confidence in the calculated concentration results. Health Phys. 96(Supplement 2):S69-S75; 2009 C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Fritz, BG (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM bradley.fritz@pnl.gov FU U.S. Department of Energy [DE-AC0576RI,01830]; Hanford Site Surface Environmental Surveillance Project FX This work was funded by the U.S. Department of Energy under Contract DE-AC0576RI,01830 and conducted by the Hanford Site Surface Environmental Surveillance Project. NR 11 TC 1 Z9 1 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2009 VL 96 IS 5 SU S BP S69 EP S75 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 431NF UT WOS:000265067600006 PM 19359845 ER PT J AU McNaughton, MW AF McNaughton, Michael W. TI Measurement of the Activity Per Unit Mass with Hand-Held Alpha and Beta Detectors SO HEALTH PHYSICS LA English DT Article DE operational topics; alpha particles; beta particles; contamination AB This paper describes how to use hand-held alpha and beta detectors to measure volume or mass contamination (Bq g(-1)) instead of the usual surface activity (Bq cm(-2)). As a proof of principle, measurements with a hand-held detector of the specific activity of K-40 in potassium chloride yielded the expected result. Field measurements agree well with the results from analytical laboratories. Health whys. 96(Supplement 2): S46-S49; 2009 C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP McNaughton, MW (reprint author), Los Alamos Natl Lab, MS M992, Los Alamos, NM 87545 USA. EM mcnaught@lanl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAY PY 2009 VL 96 IS 5 SU S BP S46 EP S49 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 431NF UT WOS:000265067600002 PM 19359841 ER PT J AU Dahari, H Cotler, SJ Layden, TJ Perelson, AS AF Dahari, Harel Cotler, Scott J. Layden, Thomas J. Perelson, Alan S. TI Hepatitis B Virus Clearance Rate Estimates SO HEPATOLOGY LA English DT Letter ID COMBINATION THERAPY; VIRAL DYNAMICS; HALF-LIFE; LAMIVUDINE; PLASMA; INFECTION; VIRIONS C1 [Dahari, Harel; Cotler, Scott J.; Layden, Thomas J.] Univ Illinois, Dept Med, Chicago, IL 60607 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Dahari, H (reprint author), Univ Illinois, Dept Med, Chicago, IL 60607 USA. FU NCRR NIH HHS [RR06555]; NIAID NIH HHS [AI28433, AI065256] NR 11 TC 4 Z9 4 U1 0 U2 0 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0270-9139 J9 HEPATOLOGY JI Hepatology PD MAY PY 2009 VL 49 IS 5 BP 1779 EP 1780 DI 10.1002/hep.22874 PG 2 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 439ZX UT WOS:000265668500043 PM 19402118 ER PT J AU Ji, Y Vanska, E van Heiningen, A AF Ji, Yun Vanska, Emilia van Heiningen, Adriaan TI New kinetics and mechanisms of oxygen delignification observed in a continuous stirred tank reactor SO HOLZFORSCHUNG LA English DT Article DE kinetics; lignin; mechanism; oxygen delignification ID HEXENURONIC ACID; RESIDUAL LIGNIN; KAPPA NUMBER; KRAFT PULPS; CSTR AB Special oxygen delignification experiments were performed in a differentially operated continuous stirred tank reactor (CSTR). Because the dissolved oxygen and alkali concentrations in the reactor are constant, the rate of lignin removal may be determined from the dissolved lignin content in the outflow stream measured by UV absorption. The delignification kinetics were determined at different temperatures, oxygen pressures and caustic concentrations on softwood kraft pulps of different kappa numbers. The kinetics are first order in residual lignin content [hexenuronic acid (HexA) corrected], and follow a Langmuir-type behavior for adsorption of oxygen on the active aromatic lignin sites. The first order in residual lignin content implies that the active lignin sites are uniformly distributed and have the same reactivity. It is proposed that the active site is the 3 carbon of the aromatic ring, where oxygen reacts to form a hydroperoxide, with a pK(a) of almost 2 units higher than that of phenolic lignin. The kinetics of phenolic delignification can be described by assuming that the reaction between adsorbed oxygen and carbon 3 of the aromatic ring is the rate determining step. Alternatively, the decomposition of the hydroperoxide anion is rate determining. Peeling delignification has been proposed as an additional delignification route by peeling of hemicelluloses which have lignin fragments covalently bound to them. It is shown that the impact of peeling delignification is relatively small and limited to the initial delignification phase. Finally, data are presented showing that radicals may provide an essential contribution to delignification by their removal of non-lignin and non-HexA oxidizable structures contributing to the kappa number. C1 [van Heiningen, Adriaan] Univ Maine, Orono, ME 04469 USA. [Ji, Yun] Natl Renewable Energy Lab, Golden, CO USA. [Vanska, Emilia] Helsinki Univ Technol, FIN-02150 Espoo, Finland. RP van Heiningen, A (reprint author), Univ Maine, 5737 Jenness Hall, Orono, ME 04469 USA. EM avanheiningen@umche.maine.edu FU Technology Development Agency of Finland (TEKES); Helsinki University of Technology; Ober Chair FX Financial support by the Technology Development Agency of Finland (TEKES), Helsinki University of Technology and the Ober Chair is gratefully acknowledged. The discussions with Dr. Raymond Fort Jr. at the University of Maine were essential for our understanding of the mechanism and are greatly appreciated. NR 24 TC 8 Z9 9 U1 1 U2 13 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0018-3830 J9 HOLZFORSCHUNG JI Holzforschung PD MAY PY 2009 VL 63 IS 3 BP 264 EP 271 DI 10.1515/HF.2009.045 PG 8 WC Forestry; Materials Science, Paper & Wood SC Forestry; Materials Science GA 444YN UT WOS:000266016900002 ER PT J AU Mittal, A Chatterjee, SG Scott, GM Amidon, TE AF Mittal, Ashutosh Chatterjee, Siddharth G. Scott, Gary M. Amidon, Thomas E. TI Modeling xylan solubilization during autohydrolysis of sugar maple wood meal: Reaction kinetics SO HOLZFORSCHUNG LA English DT Article DE autohydrolysis; hemicellulose; hot-water extraction; hydrothermal processing; kinetics; modeling; xylan hydrolysis; xylooligomers; xylose ID SULFURIC-ACID PRETREATMENT; AUTO-HYDROLYSIS; CORN STOVER; LIGNOCELLULOSIC MATERIALS; STEAM EXPLOSION; HEMICELLULOSE; FRACTIONATION; BIOMASS; WATER; PREHYDROLYSIS AB The objective of this work was to study the kinetics of hemicelluloses extraction during hydrothermal pretreatment of sugar maple wood meal. Pretreatment was conducted in a batch reactor at 145-185 degrees C with reaction times up to 8 h and with liquor to solid ratio of 20:1. Under these conditions, hemicelluloses were selectively solubilized and little degradation (approximately 6-9% of the initial amount) of cellulose and lignin was observed. A kinetic model was developed. It was supposed that there are no diffusion limitations and that the reaction rate constants have first-order kinetics with Arrhenius-type temperature dependence. The model proposes the formation of xylose directly from wood xylan as well as from xylooligomers formed in the liquid phase by the hydrolysis of xylan. The model is able to correlate satisfactorily experimentally measured yields of residual xylan, xylooligomers, xylose, and furfural obtained during the pretreatment. C1 [Mittal, Ashutosh; Chatterjee, Siddharth G.; Scott, Gary M.; Amidon, Thomas E.] SUNY Coll Environm Sci & Forestry, Dept Paper & Bioproc Engn, Syracuse, NY 13210 USA. RP Mittal, A (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM mittal.ashutosh@gmail.com RI Mittal, Ashutosh/K-3190-2012; OI Chatterjee, Siddharth/0000-0002-6908-2214 NR 34 TC 46 Z9 46 U1 1 U2 19 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0018-3830 J9 HOLZFORSCHUNG JI Holzforschung PD MAY PY 2009 VL 63 IS 3 BP 307 EP 314 DI 10.1515/HF.2009.054 PG 8 WC Forestry; Materials Science, Paper & Wood SC Forestry; Materials Science GA 444YN UT WOS:000266016900008 ER PT J AU Johnston, LC Eberling, J Pivirotto, P Hadaczek, P Federoff, HJ Forsayeth, J Bankiewicz, KS AF Johnston, Louisa C. Eberling, Jamie Pivirotto, Philip Hadaczek, Piotr Federoff, Howard J. Forsayeth, John Bankiewicz, Krystof S. TI Clinically Relevant Effects of Convection-Enhanced Delivery of AAV2-GDNF on the Dopaminergic Nigrostriatal Pathway in Aged Rhesus Monkeys SO HUMAN GENE THERAPY LA English DT Article ID ADENOASSOCIATED VIRUS TYPE-2; NEUROTROPHIC FACTOR; PARKINSONS-DISEASE; GENE-THERAPY; TYROSINE-HYDROXYLASE; SUBSTANTIA-NIGRA; INTRAPUTAMENAL INFUSION; DOWN-REGULATION; PRIMATE MODELS; MOTOR DEFICITS AB Growth factor therapy for Parkinson's disease offers the prospect of restoration of dopaminergic innervation and/or prevention of neurodegeneration. Safety and efficacy of an adeno-associated virus (AAV2) encoding human glial cell-derived neurotrophic factor (GDNF) was investigated in aged nonhuman primates. Positron emission tomography with 6-[F-18]-fluoro-L-m-tyrosine (FMT-PET) in putamen was assessed 3 months before and after AAV2 infusion. In the right putamen, monkeys received either phosphate-buffered saline or low-dose (LD) or high-dose (HD) AAV2-GDNF. Monkeys that had received putaminal phosphate-buffered saline (PBS) infusions additionally received either PBS or HD AAV2-GDNF in the right substantia nigra (SN). The convection-enhanced delivery method used for infusion of AAV2-GDNF vector resulted in robust volume of GDNF distribution within the putamen. AAV2-GDNF increased FMT-PET uptake in the ipsilateral putamen as well as enhancing locomotor activity. Within the putamen and caudate, the HD gene transfer mediated intense GDNF fiber and extracellular immunoreactivity (IR). Retrograde and anterograde transport of GDNF to other brain regions was observed. AAV2-GDNF did not significantly affect dopamine in the ipsilateral putamen or caudate, but increased dopamine turnover in HD groups. HD putamen treatment increased the density of dopaminergic terminals in these regions. HD treatments, irrespective of the site of infusion, increased the number of nonpigmented TH-IR neurons in the SN. AAV2-GDNF gene transfer does not appear to elicit adverse effects, delivers therapeutic levels of GDNF within target brain areas, and enhances utilization of striatal dopamine and dopaminergic nigrostriatal innervation. C1 [Johnston, Louisa C.; Pivirotto, Philip; Hadaczek, Piotr; Forsayeth, John; Bankiewicz, Krystof S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94103 USA. [Eberling, Jamie] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Imaging & Neurosci, Berkeley, CA 94720 USA. [Federoff, Howard J.] Georgetown Univ, Med Ctr, Washington, DC 20007 USA. RP Bankiewicz, KS (reprint author), Univ Calif San Francisco, Dept Neurol Surg, 1855 Folsom St,MCB 226, San Francisco, CA 94103 USA. EM Krystof.Bankiewicz@ucsf.edu FU NINDS NIH HHS [U54 NS045309-010007, U54 NS045309-010002, U54 NS045309, U54 NS045309-010001] NR 60 TC 45 Z9 46 U1 0 U2 5 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1043-0342 EI 1557-7422 J9 HUM GENE THER JI Hum. Gene Ther. PD MAY PY 2009 VL 20 IS 5 BP 497 EP 510 DI 10.1089/hum.2008.137 PG 14 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA 445DU UT WOS:000266030700009 PM 19203243 ER PT J AU Eberling, JL Kells, AP Pivirotto, P Beyer, J Bringas, J Federoff, HJ Forsayeth, J Bankiewicz, KS AF Eberling, Jamie L. Kells, Adrian P. Pivirotto, Philip Beyer, Janine Bringas, John Federoff, Howard J. Forsayeth, John Bankiewicz, Krystof S. TI Functional Effects of AAV2-GDNF on the Dopaminergic Nigrostriatal Pathway in Parkinsonian Rhesus Monkeys SO HUMAN GENE THERAPY LA English DT Article ID NEUROTROPHIC FACTOR GDNF; CONVECTION-ENHANCED DELIVERY; GENE-THERAPY; ADENOASSOCIATED VIRUS; PRIMATE MODEL; INTRAPUTAMENAL INFUSION; HUMAN NEURTURIN; AAV-HAADC; DISEASE; MPTP AB We investigated the safety and neuroregenerative potential of an adeno-associated virus (AAV2) containing human glial cell line-derived neurotrophic factor (GDNF) in an MPTP primate model of Parkinson's disease. Dopaminergic function was evaluated by positron emission tomography with 6-[(18)F]fluoro-L-m-tyrosine (FMT) before and after AAV2-GDNF or phosphate-buffered saline infusion bilaterally into the putamen. FMT uptake was significantly increased bilaterally in the putamen of AAV2-GDNF but not phosphate-buffered saline-treated animals 6 months after infusion, indicating increased dopaminergic activity in the nigrostriatal pathways. AAV2-GDNF-treated animals also showed clinical improvement without adverse effects. These findings are consistent with our previous report in aged nonhuman primates that showed evidence of enhanced use of striatal dopamine and dopaminergic nigrostriatal innervation. Clinical improvement and evidence of functional recovery in the nigrostriatal pathway, and the absence of adverse effects, support the safety of this approach for the delivery of GDNF over a 6-month period. C1 [Eberling, Jamie L.; Kells, Adrian P.; Pivirotto, Philip; Beyer, Janine; Bringas, John; Forsayeth, John; Bankiewicz, Krystof S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94103 USA. [Eberling, Jamie L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Imaging & Neurosci, Berkeley, CA 94720 USA. [Federoff, Howard J.] Georgetown Univ, Med Ctr, Washington, DC 20007 USA. RP Bankiewicz, KS (reprint author), Univ Calif San Francisco, Dept Neurol Surg, 1855 Folsom St, San Francisco, CA 94103 USA. EM Krystof.Bankiewicz@ucsf.edu FU NIH-NINDS FX The authors thank Avigen for preparing the AAV2-GDNF. This work was supported under a U54 Cooperative Translational Research Program from NIH-NINDS. NR 43 TC 61 Z9 62 U1 0 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1043-0342 J9 HUM GENE THER JI Hum. Gene Ther. PD MAY PY 2009 VL 20 IS 5 BP 511 EP 518 DI 10.1089/hum.2008.201 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA 445DU UT WOS:000266030700010 PM 19254173 ER PT J AU Jang, WY Hayat, MM Tyo, JS Attaluri, RS Vandervelde, TE Sharma, YD Shenoi, R Stintz, A Cantwell, ER Bender, SC Lee, SJ Noh, SK Krishna, S AF Jang, Woo-Yong Hayat, Majeed M. Tyo, J. Scott Attaluri, Ram S. Vandervelde, Thomas E. Sharma, Yagya D. Shenoi, Rajeev Stintz, Andreas Cantwell, Elizabeth R. Bender, Steven C. Lee, Sang Jun Noh, Sam Kyu Krishna, Sanjay TI Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors SO IEEE JOURNAL OF QUANTUM ELECTRONICS LA English DT Article DE Algorithmic spectrometer; quantum-dots-in-a-well (DWELL) detectors; spectral sensors; spectral tuning ID INFRARED PHOTODETECTORS; PHOTOCONDUCTORS AB The quantum-confined Stark effect in intersublevel transitions present in quantum-dots-in-a-well (DWELL) detectors gives rise to a midIR spectral response that is dependent upon the detector's operational bias. The spectral responses resulting from different biases exhibit spectral shifts, albeit with significant spectral overlap. A postprocessing algorithm was developed by Sakoglu et A that exploited this bias-dependent spectral diversity to predict the continuous and arbitrary tunability of the DWELL detector within certain limits. This paper focuses on the experimental demonstration of the DWELL-based spectral tuning algorithm. It is shown experimentally that it is possible to reconstruct the spectral content of a target electronically without using any dispersive optical elements for tuning, thereby demonstrating a DWELL-based algorithmic spectrometer. The effects of dark current, detector temperature, and bias selection on the tuning capability are also investigated experimentally. C1 [Jang, Woo-Yong; Hayat, Majeed M.; Attaluri, Ram S.; Vandervelde, Thomas E.; Sharma, Yagya D.; Shenoi, Rajeev; Stintz, Andreas; Krishna, Sanjay] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Jang, Woo-Yong; Hayat, Majeed M.; Attaluri, Ram S.; Vandervelde, Thomas E.; Sharma, Yagya D.; Shenoi, Rajeev; Stintz, Andreas; Krishna, Sanjay] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87131 USA. [Tyo, J. Scott] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Cantwell, Elizabeth R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bender, Steven C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lee, Sang Jun; Noh, Sam Kyu] Korea Res Inst Stand & Sci, Taejon 305600, South Korea. RP Jang, WY (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. EM wjang@ece.unm.edu; hayat@ece.unm.edu; tyo@optics.arizona.edu; rsa407@lehigh.edu; tvanderv@chtm.unm.edu; yagya@chtm.unm.edu; rshenoi@ece.unm.edu; andreas@chtm.unm.edu; elz@ornl.gov; sbender@lanl.gov; sjlee@kriss.re.kr; sknoh@kriss.re.kr; skr-ishna@chtm.unm.edu RI Krishna, Sanjay /C-5766-2009; Hayat, Majeed/E-4924-2010; Sharma, Yagya/E-4921-2010; Vandervelde, Tom/I-3317-2013 FU National Science Foundation (NSF) [ECS-0401154, IIS-0434102]; Los Alamos National Laboratory (LANL) [57461-001-07]; Air Force Research Laboratory (AFRL) [FA9453-07-C-0171]; Korea Foundation for International Cooperation of Science and Technology (KICOS) [2007-00011] FX This work was supported by the National Science Foundation (NSF) under Grant ECS-0401154 and Grant IIS-0434102, by Los Alamos National Laboratory (LANL) under Grant 57461-001-07, by the Air Force Research Laboratory (AFRL) under Grant FA9453-07-C-0171, and by the Korea Foundation for International Cooperation of Science and Technology (KICOS) under a Grant 2007-00011 provided by the Korean Ministry of Education, Science and Technology. NR 24 TC 18 Z9 18 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9197 J9 IEEE J QUANTUM ELECT JI IEEE J. Quantum Electron. PD MAY-JUN PY 2009 VL 45 IS 5-6 BP 674 EP 683 DI 10.1109/JQE.2009.2013150 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 451EU UT WOS:000266454300031 ER PT J AU Siriani, DF Tan, MP Kasten, AM Harren, ACL Leisher, PO Sulkin, JD Raftery, JJ Danner, AJ Giannopoulos, AV Choquette, KD AF Siriani, Dominic F. Tan, Meng Peun Kasten, Ansas M. Harren, Ann C. Lehman Leisher, Paul O. Sulkin, Joshua D. Raftery, James J., Jr. Danner, Aaron J. Giannopoulos, Antonios V. Choquette, Kent D. TI Mode Control in Photonic Crystal Vertical-Cavity Surface-Emitting Lasers and Coherent Arrays SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Distributed Bragg reflector (DBR) lasers; laser modes; semiconductor laser arrays; semiconductor lasers ID VCSEL; POWER; OPERATION; FIBER; INDEX AB We demonstrate transverse mode control in vertical-cavity surface-emitting lasers (VCSELs) and 2-D VCSEL arrays. By etching a periodic arrangement of circular holes into the top distributed Bragg reflector mirror, we are able to control the lasing modes through index and loss confinement. Theoretical modeling of these confinement effects are shown to be consistent with experimental measurements. Photonic crystal etched patterns and ion-implanted photonic lattices have been employed to fabricate coherently-coupled 2-D arrays. Control of the array supermodes from the out-of-phase and in-phase conditions is discussed. Designs of photonic crystal coherent VCSEL arrays for high-power emission and beam steering applications are described. C1 [Siriani, Dominic F.; Tan, Meng Peun; Kasten, Ansas M.; Sulkin, Joshua D.; Giannopoulos, Antonios V.; Choquette, Kent D.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. [Harren, Ann C. Lehman] Sandia Natl Labs, Livermore, CA 94551 USA. [Leisher, Paul O.] nLight Corp, Vancouver, WA 98665 USA. [Raftery, James J., Jr.] US Mil Acad, West Point, NY 10996 USA. [Danner, Aaron J.] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore. RP Siriani, DF (reprint author), Univ Illinois, Dept Elect & Comp Engn, 1406 W Green St, Urbana, IL 61801 USA. EM siriani@illinois.edu; mengtan@illinois.edu; akasten@illinois.edu; alehman@sandia.gov; paul.leisher@nlight.net; sulkin@illinois.edu; jim.raftery@us.army.mil; adanner@nus.edu.sg; giannopo@illinois.edu; choquett@illinois.edu NR 43 TC 27 Z9 28 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD MAY-JUN PY 2009 VL 15 IS 3 BP 909 EP 917 DI 10.1109/JSTQE.2008.2012121 PG 9 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 457LE UT WOS:000266928700053 ER PT J AU Kroposki, B Margolis, R Ton, D AF Kroposki, Benjamin Margolis, Robert Ton, Dan TI Harnessing the Sun An Overview of Solar Technologies SO IEEE POWER & ENERGY MAGAZINE LA English DT Article ID ELECTRIC-POWER SYSTEMS; PHOTOVOLTAICS PV; LIMITS C1 [Ton, Dan] US DOE, Solar Energy Technol Program, Syst Integrat Team, Washington, DC 20585 USA. NR 7 TC 18 Z9 18 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD MAY-JUN PY 2009 VL 7 IS 3 BP 22 EP 33 DI 10.1109/MPE.2009.932305 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 438TH UT WOS:000265577800002 ER PT J AU Petersen, TH Carpenter, KH May, CM AF Petersen, Todd H. Carpenter, Kenneth H. May, Chadd M. TI Comparison of Experimental Measurements of Current Distribution in a Flat Conductor With Simulated Results From the Partial Inductance Method SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Circuit models; current distribution; magnetic probes ID INTERNAL IMPEDANCE AB The current distribution in a stripline is calculated by using a partial inductance formulation to produce a circuit model that is evaluated with the SPICE program. The program also simulates the signals produced in a recently invented magnetic current probe. Measurements using the current probe have been made over a wide range of frequencies and compared to the calculations. Agreement is achieved within the measurement accuracy. This technique can be used directly to find current distributions with pulse excitations. C1 [Petersen, Todd H.; Carpenter, Kenneth H.] Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA. [May, Chadd M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Petersen, TH (reprint author), Kansas State Univ, Dept Elect & Comp Engn, Manhattan, KS 66506 USA. FU U.S. Department of Energy [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory FX This work was supported by the U.S. Department of Energy under Contract DE-AC52-07NA27344 provided to Lawrence Livermore National Laboratory. NR 15 TC 1 Z9 1 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9375 J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD MAY PY 2009 VL 51 IS 2 BP 345 EP 350 DI 10.1109/TEMC.2009.2015939 PG 6 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 449LV UT WOS:000266333000020 ER PT J AU Wang, GB Schultz, LJ Qi, JY AF Wang, Guobao Schultz, Larry J. Qi, Jinyi TI Bayesian Image Reconstruction for Improving Detection Performance of Muon Tomography SO IEEE TRANSACTIONS ON IMAGE PROCESSING LA English DT Article DE Bayesian estimation; expectation maximization; image reconstruction; muon tomography; ROC analysis; shrinkage algorithm ID COSMIC-RAY MUONS; SCATTERING; RESOLUTION AB Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography. C1 [Wang, Guobao; Qi, Jinyi] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Schultz, Larry J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, GB (reprint author), Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. EM qi@ucdavis.edu RI Qi, Jinyi/A-1768-2010; Wang, Guobao/F-1771-2010 OI Qi, Jinyi/0000-0002-5428-0322; NR 14 TC 11 Z9 12 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7149 EI 1941-0042 J9 IEEE T IMAGE PROCESS JI IEEE Trans. Image Process. PD MAY PY 2009 VL 18 IS 5 BP 1080 EP 1089 DI 10.1109/TIP.2009.2014423 PG 10 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 431VG UT WOS:000265091700015 PM 19342340 ER PT J AU Du, Z Ozpineci, B Tolbert, LM Chiasson, JN AF Du, Zhong Ozpineci, Burak Tolbert, Leon M. Chiasson, John N. TI DC-AC Cascaded H-Bridge Multilevel Boost Inverter With No Inductors for Electric/Hybrid Electric Vehicle Applications SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article; Proceedings Paper CT 42nd Annual Meeting of the IEEE-Industry-Applications-Society CY SEP 23-27, 2007 CL New Orleans, LA SP IEEE Ind Applicat Soc DE Cascaded H-bridge multilevel boost inverter; electric vehicle (EV)/hybrid electric vehicle (HEV) ID HARMONIC ELIMINATION; GENERALIZED TECHNIQUES; THYRISTOR INVERTERS; MODULATION INDEXES; VOLTAGE CONTROL; CONVERTERS; DRIVES; MOTOR AB This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors, Currently available power inverter systems for HEVs use a dc-dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc-ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors. C1 [Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Machinery Res Ctr, Knoxville, TN 37932 USA. [Tolbert, Leon M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Chiasson, John N.] Boise State Univ, Boise, ID 83725 USA. RP Du, Z (reprint author), Parker Hannifin Corp, Olive Branch, MS 38654 USA. EM zhong.du@parker.com; ozpinecib@ornl.gov; tolbert@utk.edu; JohnChiasson@boisestate.edu OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X NR 29 TC 79 Z9 81 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD MAY-JUN PY 2009 VL 45 IS 3 BP 963 EP 970 DI 10.1109/TIA.2009.2018978 PG 8 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 451EE UT WOS:000266452700008 ER PT J AU Rodenbeck, CT Ferguson, AC Pankonin, JM AF Rodenbeck, Christopher T. Ferguson, Adam C. Pankonin, Jeffrey M. TI Monobit Subsampler for Digital Downconversion in Pulse-Doppler Radar Applications SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Analog-digital conversion; Doppler radar; RF integrated circuits (RFICs) ID RECEIVER; DESIGN AB This paper introduces a monobit RF subsampling technique for digital downconversion in pulse-Doppler radar systems. Design considerations for this application include the level of quantization imbalance given a noise-only input, the relation between input and output signal-to-noise ratio (SNR), the affect of jitter over the complete dynamic range of operation, and sensitivity to intermodulation distortion. An RF integrated circuit is designed to demonstrate the monobit subsampling approach. Measured results show excellent agreement with theoretical predictions. The device can detect a 495-MHz signal at input SNR levels less than -30 dB using a 1-MHz sampling clock. Excellent performance is maintained even in severe timing environments showing more than 400 ps of rms clock jitter. C1 [Rodenbeck, Christopher T.; Ferguson, Adam C.; Pankonin, Jeffrey M.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Rodenbeck, CT (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM chris.rodenbeck@ieee.org NR 20 TC 4 Z9 4 U1 2 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD MAY PY 2009 VL 57 IS 5 BP 1036 EP 1043 DI 10.1109/TMTT.2009.2017255 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA 445HC UT WOS:000266040900003 ER PT J AU Yu, KK Zhang, GJ Zheng, N Raitses, Y Fisch, NJ AF Yu, Kai-Kun Zhang, Guan-Jun Zheng, Nan Raitses, Yevgeny Fisch, Nathaniel J. TI Monte Carlo Simulation of Surface-Charging Phenomena on Insulators Prior to Flashover in Vacuum SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Electron emission; flashover; Monte Carlo method; surface charging; vacuum insulation ID SECONDARY-ELECTRON EMISSION; SOLID INSULATORS; DIELECTRICS; INTERFACE; POLYMERS; BEHAVIOR; VOLTAGE; FIELD; GAPS AB Before flashover across an insulator under high electric field in vacuum, there are charging phenomena occurring on the insulator surface, which significantly affect the developing process of flashover. Based on the secondary-electron-emission-avalanche model and by using the Monte Carlo method, a 2-D analysis of surface charge density on cylindrical and conical insulators prior to flashover in vacuum has been performed under unipolar voltage. Different materials are employed, i.e., alumina ceramic, PTFE, PMMA, and PI. The influences of materials, voltage amplitudes, and coning angles on charge distribution are investigated. The results reveal that negative charges exist in a small surface region near the cathode, while the surface charges positive in a larger region away from the cathode. With increasing applied voltage, both the negative charge density and region decrease, and even vanish, whereas both the positive charge density and region increase, and the peaks of both regions move toward the cathode. For the conical insulator with a negative angle, the positive charge density is greater than that with a positive angle, and the simulation describes well experimental data relating the coning angle, the surface charge, and the flashover voltage. C1 [Yu, Kai-Kun; Zhang, Guan-Jun; Zheng, Nan] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Sch Elect Engn, Xian 710049, Peoples R China. [Zhang, Guan-Jun] N China Elect Power Univ, Beijing Key Lab High Voltage & EMC, Beijing 102206, Peoples R China. [Raitses, Yevgeny; Fisch, Nathaniel J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Yu, KK (reprint author), Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Sch Elect Engn, Xian 710049, Peoples R China. EM yukkun@mail.xjtu.edu.cn; gjzhang@mail.xjtu.edu.cn FU National Natural Science Foundation of China [50577054, 50777051]; Chinese Ministry of Education [NCET-04-0943] FX This work was supported in part by the National Natural Science Foundation of China under Grants 50577054 and 50777051 and in part by the Program for New Century Excellent Talents in University by the Chinese Ministry of Education under Grant NCET-04-0943. NR 29 TC 2 Z9 4 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD MAY PY 2009 VL 37 IS 5 BP 698 EP 704 DI 10.1109/TPS.2009.2015450 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 443UQ UT WOS:000265936700010 ER PT J AU Sioshansi, R Short, W AF Sioshansi, Ramteen Short, Walter TI Evaluating the Impacts of Real-Time Pricing on the Usage of Wind Generation SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Power system economics; real-time pricing; unit commitment; variable renewable energy resources; wind power generation ID ELECTRICITY MARKETS; EFFICIENCY; SYSTEMS; PRICES AB One of the impediments to large-scale use of wind generation within power systems is its nondispatchability and variable and uncertain real-time availability. Operating constraints on conventional generators such as minimum generation points, forbidden zones, and ramping limits as well as system constraints such as power flow limits and ancillary service requirements may force a system operator to curtail wind generation in order to ensure feasibility. Furthermore, the pattern of wind availability and electricity demand may not allow wind generation to be fully utilized in all hours. One solution to these issues, which could reduce these inflexibilities, is the use of real-time pricing (RTP) tariffs which can both smooth-out the diurnal load pattern in order to reduce the impact of binding unit operating and system constraints on wind utilization, and allow demand to increase in response to the availability of costless wind generation. We use and analyze a detailed unit commitment model of the Texas power system with different estimates of demand elasticities to demonstrate the potential increases in wind generation from implementing RTP. C1 [Sioshansi, Ramteen] Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. [Short, Walter] Natl Renewable Energy Lab, Strateg Energy Anal & Applicat Ctr, Golden, CO 80401 USA. RP Sioshansi, R (reprint author), Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. FU U.S. Department of Energy [DE-AC3699GO10337]; National Renewable Energy Laboratory [TPWRS-00245-2008] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC3699GO10337 with the National Renewable Energy Laboratory. Any opinions and conclusions expressed in this paper are those of the authors and do not necessarily represent those of the Department of Energy or the National Renewable Energy Laboratory. Paper no. TPWRS-00245-2008. NR 16 TC 84 Z9 87 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2009 VL 24 IS 2 BP 516 EP 524 DI 10.1109/TPWRS.2008.2012184 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 438AK UT WOS:000265528100003 ER PT J AU Wang, JH Shahidehpour, M Li, ZY Botterud, A AF Wang, Jianhui Shahidehpour, Mohammad Li, Zuyi Botterud, Audun TI Strategic Generation Capacity Expansion Planning With Incomplete Information SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE agent modeling; generation expansion; market design; market power; noncooperative game; physical withholding; power system planning ID ELECTRICITY; GAMES AB To study the competitive behavior among individual generating companies (GENCOs), an incomplete information game model is proposed in this paper in which each GENCO is modeled as an agent. Each agent makes strategic generation capacity expansion decisions based on its incomplete information on other GENCOs. The formation of this game model falls into a bi-level optimization problem. The upper level of this problem is the GENCOs' own decision on optimal planning strategies and energy/reserve bidding strategies. The lower-level problem is the ISO's market clearing problem that minimizes the cost to supply the load, which yields price signals for GENCOs to calculate their own payoffs. A co-evolutionary algorithm combined with pattern search is proposed to optimize the search for the Nash equilibrium of the competition game with incomplete information. The Nash equilibrium is obtained if all GENCOs reach their maximum expected payoff assuming the planning strategies of other GENCOs' remain unchanged. The physical withholding of capacity is considered in the energy market and the Herfindahl-Hirschman Index is utilized to measure the market concentration. The competitive behaviors are analyzed in three policy scenarios based on different market rules for reserve procurement and compensation. C1 [Wang, Jianhui; Botterud, Audun] Argonne Natl Lab, Div Decis & Informat Sci, Argonne, IL 60439 USA. [Shahidehpour, Mohammad; Li, Zuyi] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA. RP Wang, JH (reprint author), Argonne Natl Lab, Div Decis & Informat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jianhui.wang@anl.gov; ms@iit.edu; lizuyi@iit.edu; abotterud@anl.gov RI Dao, Rock/E-5736-2014 NR 20 TC 42 Z9 43 U1 1 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2009 VL 24 IS 2 BP 1002 EP 1010 DI 10.1109/TPWRS.2009.2017435 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 438AK UT WOS:000265528100054 ER PT J AU Makarov, YV Loutan, C Ma, J de Mello, P AF Makarov, Yuri V. Loutan, Clyde Ma, Jian de Mello, Phillip TI Operational Impacts of Wind Generation on California Power Systems SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Capacity; load following; load forecast; ramp rates; real-time dispatching; regulation; scheduling; swinging door algorithm; wind generation forecast; wind power ID INTEGRATION AB The paper analyzes the impact of integrating wind generation on the regulation and load following requirements of the California Independent System Operator (CAISO). These requirements are simulated and compared for the study cases with and without wind generation impacts included into the study for the years 2006 and 2010. Regulation and load following models were built based on hour-ahead and five-minute ahead load and wind generation forecasts. In 2006, the CAISO system peaked at 50270 MW. Wind generation (at the installed capacity of 2600 MW) had limited impact on the requirement of load following and regulation in the CAISO Balancing Authority. However, in 2010 (with an expected installed capacity of approximately 6700 MW), this impact will significantly increase. The results provide very useful information for the CAISO to adjust its scheduling and real-time dispatch systems to reliably accommodate future wind generation additions within the CAISO Balancing Authority. C1 [Makarov, Yuri V.; Ma, Jian] Pacific NW Natl Lab, Richland, WA 99354 USA. [Loutan, Clyde; de Mello, Phillip] Calif ISO, Folsom, CA 95630 USA. RP Makarov, YV (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM yuri.makarov@pnl.gov; cloutan@caiso.com; jian.ma@pnl.gov; pdemello@caiso.com NR 31 TC 220 Z9 230 U1 2 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD MAY PY 2009 VL 24 IS 2 BP 1039 EP 1050 DI 10.1109/TPWRS.2009.2016364 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 438AK UT WOS:000265528100058 ER PT J AU Wong, PC Schneider, K Mackey, P Foote, H Chin, G Guttromson, R Thomas, J AF Wong, Pak Chung Schneider, Kevin Mackey, Patrick Foote, Harlan Chin, George, Jr. Guttromson, Ross Thomas, Jim TI A Novel Visualization Technique for Electric Power Grid Analytics SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Data and knowledge visualization; information visualization; visualization techniques and methodologies; applications AB The application of information visualization holds tremendous promise for the electric power industry, but its potential has so far not been sufficiently exploited by the visualization community. Prior work on visualizing electric power systems has been limited to depicting raw or processed information on top of a geographic layout. Little effort has been devoted to visualizing the physics of the power grids, which ultimately determines the condition and stability of the electricity infrastructure. Based on this assessment, we developed a novel visualization system prototype, GreenGrid, to explore the planning and monitoring of the North American Electricity Infrastructure. This paper discusses the rationale underlying the GreenGrid design, describes its implementation and performance details, and assesses its strengths and weaknesses against the current geographic-based power grid visualization. We also present a case study using GreenGrid to analyze the information collected moments before the last major electric blackout in the Western United States and Canada and a usability study to evaluate the practical significance of our design in simulated real life situations. Our result indicates that many of the disturbance characteristics can be readily identified with the proper form of visualization. C1 [Wong, Pak Chung; Schneider, Kevin; Mackey, Patrick; Foote, Harlan; Chin, George, Jr.; Guttromson, Ross; Thomas, Jim] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wong, PC (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM pak.wong@pnl.gov; kevin.schneider@pnl.gov; patrick.mackey@pnl.gov; harlan.foote@pnl.gov; george.chin@pnl.gov; ross.guttromson@pnl.gov; jim.thomas@pnl.gov FU National Visualization and Analytics Center (NVAC), Pacific Northwest National Laboratory, Richland, Washington; US Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830] FX This work was supported in part by the National Visualization and Analytics Center (NVAC), Pacific Northwest National Laboratory, Richland, Washington and in part by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE). The Pacific Northwest National Laboratory is managed for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. NR 30 TC 24 Z9 27 U1 1 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD MAY-JUN PY 2009 VL 15 IS 3 BP 410 EP 423 DI 10.1109/TVCG.2008.197 PG 14 WC Computer Science, Software Engineering SC Computer Science GA 415CJ UT WOS:000263911600006 PM 19282548 ER PT J AU Melnitchouk, W AF Melnitchouk, W. TI Pion cloud and the sea of the nucleon SO INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE LA English DT Article DE Pion cloud; chiral symmetry; (d)over-bar-(u)over-bar asymmetry in proton; neutron electric form factor ID LIGHT-QUARK SEA; FLAVOR ASYMMETRY; FORM-FACTORS; CHIRAL CORRECTIONS; SYMMETRY-BREAKING; GOTTFRIED SUM; BAG MODEL; SCATTERING; DISTRIBUTIONS; MOMENTUM AB I review recent progress in understanding the structure of the nucleon sea and the role of the nucleon's pion cloud. In particular, I discuss the consequences of the pion cloud for the (d) over bar-(u) over bar asymmetry in the proton, the neutron's electric form factor, and the proton's electric to magnetic form factor ratio. C1 Jefferson Lab, Newport News, VA 23606 USA. RP Melnitchouk, W (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM wmelnitc@jlab.org FU DOE [DE-AC05-06OR23177] FX This work was supported by the DOE contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab. NR 47 TC 0 Z9 0 U1 0 U2 1 PU INDIAN ASSOC CULTIVATION SCIENCE PI KOLKATA PA INDIAN J PHYSICS, JADAVPUR, KOLKATA 700 032, INDIA SN 0973-1458 J9 INDIAN J PHYS JI Indian J. Phys. PD MAY PY 2009 VL 83 IS 5 BP 617 EP 628 PG 12 WC Physics, Multidisciplinary SC Physics GA 455XK UT WOS:000266801900003 ER PT J AU Willing, B Halfvarson, J Dicksved, J Rosenquist, M Jarnerot, G Engstrand, L Tysk, C Jansson, JK AF Willing, Ben Halfvarson, Jonas Dicksved, Johan Rosenquist, Magnus Jarnerot, Gunnar Engstrand, Lars Tysk, Curt Jansson, Janet K. TI Twin Studies Reveal Specific Imbalances in the Mucosa-associated Microbiota of Patients with Ileal Crohn's Disease SO INFLAMMATORY BOWEL DISEASES LA English DT Article DE monozygotic discordant twins; ileal Crohn's disease; Faecalibacterium prausnitzii; Escherichia coli; mucosa-associated microbiota ID INFLAMMATORY-BOWEL-DISEASE; GRADIENT GEL-ELECTROPHORESIS; INVASIVE ESCHERICHIA-COLI; INCREASED INTESTINAL PERMEABILITY; ULCERATIVE-COLITIS; FECAL MICROBIOTA; HIGH PREVALENCE; FLORA; MICROFLORA; DIVERSITY AB Background: Large interindividual variation in the composition of the intestinal microbiota between unrelated individuals has made it challenging to identify specific aspects of dysbiosis that lead to Crohn's disease (CD). Methods: To reduce variations in exposure establishment of the gut flora and the influence of genotype, we studied the mucosa-associated microbiota of monozygotic twin pairs that were discordant (n = 6) or concordant (n = 4) for CD. DNA was extracted front biopsies collected from 5 locations between file ileum and rectum. Bacterial 16S ribosomal RNA genes were amplified and community composition assessed by terminal-restriction fragment length polymorphism, cloning and sequencing, and quantitative real-time polymerase chain reaction (PCR). Results: The microbial compositions at all biopsy locations for each individual were similar, regardless of disease state. bill there were differences between individuals. In particular, individuals; with predominantly ileal CD had a dramatically lower abundance (P < 0.001) of Faecalibacterium prausnitzii and increased abundance (P < 0.03) of Escherichia coli compared to healthy cotwins and those with CD localized in the colon. This dysbiosis Was significantly Correlated to the disease phenotype rather than genotype. Conclusions: The reduced abundance of F. prausnitzii and increased abundance of E. coli are indicative of an ileal CD phenotype. distinct front colonic CD, and the relative abundances of these specific bacterial populations are promising biomarker candidates for differential diagnosis of CD and eventually customized treatment. C1 [Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Willing, Ben; Dicksved, Johan; Rosenquist, Magnus] Swedish Univ Agr Sci, Dept Microbiol, S-75007 Uppsala, Sweden. [Halfvarson, Jonas; Jarnerot, Gunnar; Tysk, Curt] Orebro Univ Hosp, Dept Med, Div Gastroenterol, Orebro, Sweden. [Rosenquist, Magnus] Univ Uppsala Hosp, Dept Oncol Radiol & Clin Immunol, Uppsala, Sweden. [Engstrand, Lars] Swedish Inst Infect Dis Control, Dept Bacteriol, Solna, Sweden. [Tysk, Curt] Univ Orebro, Sch Med & Hlth Sci, Orebro, Sweden. RP Jansson, JK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 70A-3317D, Berkeley, CA 94720 USA. EM jrjansson@lbl.gov OI Rosenquist, Magnus/0000-0001-7795-9728; Dicksved, Johan/0000-0002-7515-4480; Halfvarson, Jonas/0000-0003-0122-7234 FU Orebro University Hospital Rescarch Foundation; Orebro County Research Foundation; Bengt Ihre's Foundation; Uppsala BioX Micprof project; Swedish University of Agricultural Sciences; US Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Lahoratory FX Supported by the Orebro University Hospital Rescarch Foundation, Orebro County Research Foundation, Bengt Ihre's Foundation, the Uppsala BioX Micprof project, the Swedish University of Agricultural Sciences and, in parts by the US Department of Energy Contract DE-AC02-05CH11231 with Lawrence Berkeley National Lahoratory. NR 53 TC 222 Z9 228 U1 6 U2 34 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1078-0998 J9 INFLAMM BOWEL DIS JI Inflamm. Bowel Dis. PD MAY PY 2009 VL 15 IS 5 BP 653 EP 660 DI 10.1002/ibd.20783 PG 8 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 438FJ UT WOS:000265541000007 PM 19023901 ER PT J AU Peralta, P DiGiacomo, S Hashemian, S Luo, SN Paisley, D Dickerson, R Loomis, E Byler, D McClellan, KJ AF Peralta, P. DiGiacomo, S. Hashemian, S. Luo, S. -N. Paisley, D. Dickerson, R. Loomis, E. Byler, D. McClellan, K. J. TI Characterization of Incipient Spall Damage in Shocked Copper Multicrystals SO INTERNATIONAL JOURNAL OF DAMAGE MECHANICS LA English DT Article DE spall; crystallography; shock; grain size; damage nucleation; microstructure ID DYNAMIC FRACTURE; NIAL-BICRYSTALS; SINGLE-CRYSTALS; DEFORMATION; SIMULATION; STRENGTH; METALS AB Correlations between spall damage and local microstructure were investigated in multicrystalline copper samples via impact tests conducted with laser-driven plates at low pressures (2-6 GPa). The copper samples had a large grain size as compared to the thickness, which was either 200 or 1000 mm, to isolate the effects of microstructure on the local response. Velocity interferometry was used to measure the bulk response of the free-surface velocity of the samples to monitor traditional spall tensile failure and to examine heterogeneities on the shock response due to microstructure variability from sample to sample. The shock pressure, dynamic yield strength and spall strength were determined from the measured velocity history via standard hydrodynamic approximations, while the effect of strength was explored via 1D hydrocode calculations. Electron Backscattering Diffraction, both in-plane and through-thickness, was used to relate crystallography to the presence of porosity around microstructural features such as grain boundaries and triple points. It was found that the dynamic yield strength measured from velocity histories in different samples correlated well with the crystallographic dependence reported for the dynamic yield strength in single crystals. Transgranular damage dominated in thin specimens with 230 mm grain size, where porosity appeared close to, but not exactly at, grain boundaries. However, a transition to dominant intergranular damage was observed as the grain size was reduced to 150 mm. Thick specimens (450 mm grain size) showed both modes, with intergranular damage found mostly where grains were smaller than average and the sites for preferred damage nucleation in these samples included grain boundaries and triple points. In particular, twin boundaries, especially tips of terminated twins, showed a large mismatch in surface displacements on the diagnostic surface as compared to the surrounding grains as well as a tendency for damage localization on the through-thickness sections. C1 [Peralta, P.; DiGiacomo, S.; Hashemian, S.] Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. [Luo, S. -N.; Paisley, D.; Dickerson, R.; Loomis, E.; Byler, D.; McClellan, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Peralta, P (reprint author), Arizona State Univ, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. EM pperalta@asu.edu RI Luo, Sheng-Nian /D-2257-2010 OI Luo, Sheng-Nian /0000-0002-7538-0541 FU Los Alamos National Laboratory; Laboratory Directed Research and Development - Directed Research (LDRD-DR) program [20060021DR]; Department of Energy, National Nuclear Security Administration [DE-FG52-06NA26169] FX This work was supported by Los Alamos National Laboratory under the Laboratory Directed Research and Development - Directed Research (LDRD-DR) program, project # 20060021DR and by the Department of Energy, National Nuclear Security Administration under grant # DE-FG52-06NA26169. We also thank D. Swift at Lawrence Livermore National Laboratory for his help and useful discussions regarding the formulation of the hydrocode models. HD acknowledges sabbatical funding from Universidad Simon Bolivar and PP is grateful for sabbatical support from Arizona State University and Los Alamos National Laboratory. NR 23 TC 23 Z9 25 U1 0 U2 9 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1056-7895 J9 INT J DAMAGE MECH JI Int. J. Damage Mech. PD MAY PY 2009 VL 18 IS 4 BP 393 EP 413 DI 10.1177/1056789508097550 PG 21 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 434FG UT WOS:000265260000004 ER PT J AU Silin, D Patzek, TW Benson, SM AF Silin, Dmitriy Patzek, Tad W. Benson, Sally M. TI A one-dimensional model of vertical gas plume migration through a heterogeneous porous medium SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geologic sequestration; Buoyancy; Countercurrent flow; Plume migration ID FLOW AB This work is motivated by the growing interest in injecting carbon dioxide into deep geological formations as a means of avoiding its atmospheric emissions and consequent global warming. Ideally, the injected greenhouse gas stays in the injection zone for a geologic time, eventually dissolves in the formation brine and remains trapped by mineralization. However, one of the potential problems associated with the geologic method of sequestration is that naturally present or inadvertently created conduits in the cap rock may result in a gas leakage from primary storage. Even in supercritical state, the carbon dioxide viscosity and density are lower than those of the formation brine. Buoyancy tends to drive the leaked CO(2) plume upward. Theoretical and experimental studies of buoyancy-driven supercritical CO(2) flow, including estimation of time scales associated with plume evolution and migration, are critical for developing technology, monitoring policy, and regulations for safe carbon dioxide geologic sequestration. in this study, we obtain simple estimates of vertical plume propagation velocity taking into account the density and viscosity contrast between CO(2) and brine. We describe buoyancy-driven countercurrent flow of two immiscible phases by a Buckley-Leverett type model. The model predicts that a plume of supercritical carbon dioxide in a homogeneous water-saturated porous medium does not migrate upward like a bubble in bulk water. Rather, it spreads upward until it reaches a seal or until it becomes immobile. A simple formula requiring no complex numerical calculations describes the velocity of plume propagation. This solution is a simplification of a more comprehensive theory of countercurrent plume migration [Silin, D., Patzek, T.W., Benson, S.M., 2007. A Model of Buoyancy-driven Two-phase Countercurrent Fluid Flow. Laboratory Report LBNL-62607. Lawrence Berkeley National Laboratory, Berkeley, CA]. In a layered reservoir, the simplified solution predicts a slower plume front propagation relative to a homogeneous formation with the same harmonic mean permeability. in contrast, the model yields much higher plume propagation estimates in a high-permeability conduit like a vertical fracture. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Silin, Dmitriy] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Patzek, Tad W.] Univ Texas Austin, Dept Petr & Geosyst Engn, Austin, TX 78712 USA. [Benson, Sally M.] Stanford Univ, Energy Resources Engn Dept, Stanford, CA 94305 USA. RP Silin, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM DSilin@lbl.gov; patzek@mail.utexas.edu; SMBenson@stanford.edu FU U.S. Department of Energy; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy's Assistant Secretary for Coal through the Zero Emission Research and Technology Program under US Department of Energy contract no. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory (LBNL). The authors a grateful to Dr. Andrea Cortis and Dr. Stefan Finsterle of LBNL for reviewing the manuscript and suggesting numerous improvements. We also thank the anonymous reviewers for critical remarks and suggestions. NR 18 TC 15 Z9 15 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAY PY 2009 VL 3 IS 3 BP 300 EP 310 DI 10.1016/j.ijggc.2008.09.003 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 447GI UT WOS:000266179200006 ER PT J AU Belokopytov, BF Laurinavichius, KS Laurinavichene, TV Ghirardi, ML Seibert, M Tsygankov, AA AF Belokopytov, Boris F. Laurinavichius, Kestutis S. Laurinavichene, Tatyana V. Ghirardi, Maria L. Seibert, Michael Tsygankov, Anatoly A. TI Towards the integration of dark- and photo-fermentative waste treatment. 2. Optimization of starch-dependent fermentative hydrogen production SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen production; Starch degradation; Dark fermentation; Waste treatment ID BIOHYDROGEN PRODUCTION; GRANULAR SLUDGE; H-2 PRODUCTION; CLOSTRIDIUM-ACETOBUTYLICUM; PURE CULTURES; HEAVY-METALS; INHIBITION; WATER; PH; PHOTOPRODUCTION AB Eight natural microbial consortia collected from different sites were tested for dark, hydrogen production during starch degradation. The most active consortium was from silo pit liquid under mesophilic (37 degrees C) conditions. The fermentation medium for this consortium was optimized (Fe, NH(4)(+), phosphates, peptone, and starch content) for both dark fermentation and for subsequent purple photosynthetic bacterial H(2) photoproduction [Laurinavichene TV, Tekucheva DN, Laurinavichius KS, Ghirardi ML, Seibert M, Tsygankov AA. Towards the integration of dark and photo fermentative waste treatment. 1. Hydrogen photoproduction by purple bacterium Rhodobacter capsulatus using potential products of starch fermentation. Int J Hydrogen Energy 2008;33(23):7020-26], in the presence of the spent dark, fermentation effluent. The addition of Zn (10 mg L(-1)), as a methanogenesis inhibitor that does not inhibit purple bacteria at this concentration, also did not inhibit dark, fermentative H(2) production. The influence of various fermentation end products at different concentrations (up to 30 g L(-1)) on dark, H(2) production was also examined. Added lactate stimulated, but added isobutyrate and butanol strongly inhibited gas production. Under optimal conditions the fermentation of starch (30 g L(-1)) resulted in 5.7 L H(2)L(-1) of culture (1.6 mol H(2) per mole of hexose) with the co-production mainly of butyrate and acetate. (C) 2009 Published by Elsevier Ltd on behalf of international Association for Hydrogen Energy. C1 [Laurinavichene, Tatyana V.; Tsygankov, Anatoly A.] Russian Acad Sci, Inst Basic Biol Problems, Pushchino 142290, Moscow Region, Russia. [Belokopytov, Boris F.; Laurinavichius, Kestutis S.] Russian Acad Sci, Inst Biochem & Physiol Microorganisms, Pushchino 142290, Moscow Region, Russia. [Ghirardi, Maria L.; Seibert, Michael] Chem & Biosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Tsygankov, AA (reprint author), Russian Acad Sci, Inst Basic Biol Problems, Pushchino 142290, Moscow Region, Russia. EM ttt@issp.serpukhov.su RI Tsygankov, Anatoly/K-6541-2013 OI Tsygankov, Anatoly/0000-0003-2376-5658 FU Russian Academy of Sciences [19 (AAT)]; Russian Foundation of Basic Research [08-08-12196, AAT, 08-04-01004]; NREL [NFA-7-77613-01]; US Department of Energy's Hydrogen; Fuel Cell and Infrastructure Technologies Program (MS and MLG) FX This work was supported by the Program for Basic Research, Russian Academy of Sciences #19 (AAT); the Russian Foundation of Basic Research (08-08-12196; AAT; 08-04-01004; KSL); NREL subcontract NFA-7-77613-01 (Golden, CO, USA; AAT); and by the US Department of Energy's Hydrogen, Fuel Cell and Infrastructure Technologies Program (MS and MLG). NR 34 TC 23 Z9 25 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 8 BP 3324 EP 3332 DI 10.1016/j.ijhydene.2009.02.042 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 447FG UT WOS:000266176400012 ER PT J AU Elgowainy, A Gaines, L Wang, M AF Elgowainy, Amgad Gaines, Linda Wang, Michael TI Fuel-cycle analysis of early market applications of fuel cells: Forklift propulsion systems and distributed power generation SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Review DE Forklift; Distributed power generation; Hydrogen; Fuel cell; Fuel cycle ID EFFICIENCY AB Forklift propulsion systems and distributed power generation are identified as potential fuel cell applications for near-term markets. This analysis examines fuel cell forklifts and distributed power generators, and addresses the potential energy and environmental implications of substituting fuel-cell systems for existing technologies based on fossil fuels and grid electricity. Performance data and the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources. The greenhouse gas (GHG) impacts of fuel-cell forklifts using hydrogen from steam reforming of natural gas are considerably lower than those using electricity from the average U.S. grid. Fuel cell generators produce lower GHG emissions than those associated with the U.S. grid electricity and alternative distributed combustion technologies. If fuel-cell generation technologies approach or exceed the target efficiency of 40%, they offer significant reduction in energy use and GHG emissions compared to alternative combustion technologies. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Elgowainy, Amgad; Gaines, Linda; Wang, Michael] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Elgowainy, A (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aelgowainy@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This study was supported by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Fuel Cell and Hydrogen Infrastructure Program, under contract DE-AC02-06CH11357. We thank Fred joseck and Pete Devlin of the Fuel Cell and Hydrogen Infrastructure Program for their support and helpful input; many individuals at Plug Power, Raymond, Hydrogenics, Nuvera, MCFA, and Toyota who provided valuable information; and Dr. Hans Bosma at Han University in the Netherlands for helpful comments. NR 37 TC 25 Z9 25 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 3557 EP 3570 DI 10.1016/j.ijhydene.2009.02.075 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800001 ER PT J AU Gorensek, MB AF Gorensek, Maximilian B. TI SPECIAL ISSUE 2007 AIChE-ACS Management Conference Preface SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Editorial Material C1 Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Gorensek, MB (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. EM maximilian.gorensek@srnl.doe.gov RI Gorensek, Maximilian/B-5298-2012; OI Gorensek, Maximilian/0000-0002-4322-9062 NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4031 EP 4032 DI 10.1016/j.ijhydene.2009.01.019 PG 2 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800053 ER PT J AU O'Connell, JP Narkprasert, P Gorensek, MB AF O'Connell, John P. Narkprasert, Parinya Gorensek, Maximilian B. TI Process model-free analysis for thermodynamic efficiencies of sulfur-iodine processes for thermochemical water decomposition SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Thermodynamic efficiency; Thermochemical Decomposition; S-I process ID HYDROGEN; TECHNOLOGIES; CYCLE AB Material, energy, and entropy balances, which depend only on stream conditions and flows entering and leaving a system, have been used to evaluate different scenarios for thermochemical decomposition of water to manufacture hydrogen using the Sulfur-Iodine cycle. Energy efficiencies have been found for idealized systems with variable stream amounts, as well as for a common flowsheet, to locate the greatest effects on energy requirements and inefficiencies. Aspen Plus(R), OLI Engine, and ProSimPlus property models have been used on the sections of a General Atomics process to reveal the effects of differences in computed energies and entropy generation. While the calculated efficiencies are generally consistent with those of the literature, differences in stream properties and phase behaviors suggest that optimal process configurations from simulations may have significant uncertainties. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [O'Connell, John P.; Narkprasert, Parinya] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. [Gorensek, Maximilian B.] Westinghouse Savannah River Co, Savannah River Lab, Computat & Stat Sci Dept, Aiken, SC 29808 USA. RP O'Connell, JP (reprint author), Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. EM jpo2x@virginia.edu RI Gorensek, Maximilian/B-5298-2012; OI Gorensek, Maximilian/0000-0002-4322-9062 NR 28 TC 3 Z9 3 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4033 EP 4040 DI 10.1016/j.ijhydene.2008.08.024 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800054 ER PT J AU Petkovic, LM Ginosar, DM Rollins, HW Burch, KC Deiana, C Silva, HS Sardella, MF Granados, D AF Petkovic, Lucia M. Ginosar, Daniel M. Rollins, Harry W. Burch, Kyle C. Deiana, Cristina Silva, Hugo S. Sardella, Maria F. Granados, Dolly TI Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Thermochemical water splitting; Sulfur-iodine cycle; Hydrogen iodide decomposition; Hydrogen production; Activated carbon catalyst ID DECOMPOSITION; ADSORPTION; KINETICS AB Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydrogen iodide (HI) to produce hydrogen, a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of lignocellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a lignocellulosic chemically activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Boehm's titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Petkovic, Lucia M.; Ginosar, Daniel M.; Rollins, Harry W.; Burch, Kyle C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Deiana, Cristina; Silva, Hugo S.; Sardella, Maria F.; Granados, Dolly] Univ Nacl San Juan, Fac Ingn, Inst Ingn Quim, RA-5400 San Juan, Argentina. RP Ginosar, DM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM daniel.ginosar@inl.gov RI Petkovic, Lucia/E-9092-2011; Rollins, Harry/B-6327-2017; Ginosar, Daniel/C-2357-2017 OI Petkovic, Lucia/0000-0002-0870-3355; Rollins, Harry/0000-0002-3926-7445; Ginosar, Daniel/0000-0002-8522-1659 NR 21 TC 35 Z9 37 U1 0 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4057 EP 4064 DI 10.1016/j.ijhydene.2008.07.075 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800057 ER PT J AU Ginosar, DM Rollins, HW Petkovic, LM Burch, KC Rush, MJ AF Ginosar, Daniel M. Rollins, Harry W. Petkovic, Lucia M. Burch, Kyle C. Rush, Michael J. TI High-temperature sulfuric acid decomposition over complex metal oxide catalysts SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Thermochemical water splitting; Sulfur-based cycles; Sulfuric acid decomposition; Hydrogen production ID WATER-SPLITTING PROCESS; HYDROGEN-PRODUCTION; IODINE CYCLE; PERVAPORATION; MEMBRANES AB Activity and stability of FeTiO(3), MnTiO(3), NiFe(2)O(4), CuFe(2)O(4), NiCr(2)O(4), 2CuO center dot Cr(2)O(3), CuO and Fe(2)O(3) for the atmospheric decomposition of concentrated sulfuric acid in sulfur-based thermochemical water splitting cycles are presented. Catalyst activity was determined at temperatures from 725 to 900 degrees C. Catalytic stability was examined at 850 degrees C for up to 1 week of continuous operation. The results were compared to a 1.0 wt% Pt/TiO(2) catalyst. Surface area by nitrogen physisorption, X-ray diffraction analyses, and temperature programmed desorption and oxidation were used to characterize fresh and spent catalyst samples. Over the temperature range, the catalyst activity of the complex oxides followed the general trend: 2CuO center dot Cr(2)O(3) > CuFe(2)O(4) > NiCr(2)O(4) approximate to NiFe(2)O(4) > MnTiO(3) approximate to FeTiO(3). At temperatures less than 800 degrees C, the 1.0 wt% Pt/TiO(2) catalyst had higher activity than the complex oxides, but at temperatures above 850 degrees C, the 2CuO center dot Cr(2)O(3) and CuFe(2)O(4) samples had the highest activity. Surface area was found to decrease for all of the metal oxides after exposure to reaction conditions. In addition, the two complex metal oxides that contained chromium were not stable in the reaction environment; both leached chromium into the acid stream and decomposed into their individual oxides. The FeTiO(3) sample also produced a discoloration of the reactor due to minor leaching and converted to Fe(2)TiO(5). Fe(2)O(3), MnTiO(3) and NiFe(2)O(4) were relatively stable in the reaction environment. In addition, CuFe(2)O(4) catalyst appeared relatively promising due to its high activity and lack of any leaching issues; however it deactivated in week-long stability experiments. Complex metal oxides may provide an attractive alternative to platinum-based catalyst for the decomposition of sulfuric acid; however, the materials examined in this study all displayed shortcomings including material sintering, phase changes, low activity at moderated temperatures due to sulfate formation, and decomposition to their individual oxides. More effort is needed in this area to discover metal oxide materials that are less expensive, more active and more stable than platinum catalysts. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Ginosar, Daniel M.; Rollins, Harry W.; Petkovic, Lucia M.; Burch, Kyle C.; Rush, Michael J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ginosar, DM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM daniel.ginosar@inl.gov RI Petkovic, Lucia/E-9092-2011; Rollins, Harry/B-6327-2017; Ginosar, Daniel/C-2357-2017 OI Petkovic, Lucia/0000-0002-0870-3355; Rollins, Harry/0000-0002-3926-7445; Ginosar, Daniel/0000-0002-8522-1659 NR 24 TC 34 Z9 34 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4065 EP 4073 DI 10.1016/j.ijhydene.2008.09.064 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800058 ER PT J AU Orme, CJ Klaehn, JR Stewart, FF AF Orme, Christopher J. Klaehn, John R. Stewart, Frederick F. TI Membrane separation processes for the benefit of the sulfur-iodine and hybrid sulfur thermochemical cycles SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Sulfur-iodine cycle; Nafion; Membranes; Pervaporation; Hydrogen permeation; Polyimides ID PERFLUORINATED IONOMER MEMBRANES; SUSTAINABLE HYDROGEN-PRODUCTION; NITRIC-ACID; ELECTRO-ELECTRODIALYSIS; ELECTROCHEMICAL-CELL; CONCENTRATE HI; ACETIC-ACID; WATER; PERVAPORATION; DEHYDRATION AB Thermochemical cycles have been proposed as processes for the manufacture of hydrogen from water in which the only other effluent is oxygen. In this paper, membrane-based technologies are described that have the promise of enabling the further development of thermochemical cycle processes. Membranes have been studied for the concentration of hydriodic acid (HI) and sulfuric acid using pervaporation. In this work, Nafion(R) and sulfonated poly(ether ether ketone) (SPEEK) membranes have effectively concentrated HI at temperatures as high as 134 degrees C (407 K) without any significant degradation of transport behavior. Additionally, sulfuric acid has been concentrated using Nafion(R) membranes at 100 degrees C (373 K). Measured fluxes of water and separation factors are commercially competitive and have been characterized with respect to acid concentration in the feed streams. Further, hydrogen permeability is discussed at 300 degrees C (573 K) with the goal of providing a method for the removal of the product gas from HI in the decomposition step, thus increasing the productivity of the equilibrium-limited reaction. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Orme, Christopher J.; Klaehn, John R.; Stewart, Frederick F.] Idaho Natl Lab, Dept Chem Sci, Idaho Falls, ID 83415 USA. RP Stewart, FF (reprint author), Idaho Natl Lab, Dept Chem Sci, POB 1625, Idaho Falls, ID 83415 USA. EM frederick.stewart@inl.gov RI Klaehn, John/C-6011-2017 OI Klaehn, John/0000-0002-7077-4509 NR 37 TC 7 Z9 7 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4088 EP 4096 DI 10.1016/j.ijhydene.2008.06.046 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800060 ER PT J AU Gorensek, MB Summers, WA AF Gorensek, Maximilian B. Summers, William A. TI Hybrid sulfur flowsheets using PEM electrolysis and a bayonet decomposition reactor SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Hybrid sulfur; Hydrogen; SO(2)-depolarized; Proton exchange membrane; Electrolyzer; Efficiency; Silicon carbide; Bayonet; High-temperature; Decomposition; Reactor; Nuclear; Pinch analysis; Aspen Plus (TM); Flowsheet; Model; Vacuum distillation ID LIQUID EQUILIBRIA; PHASE-EQUILIBRIA; GAS-PHASE; DIOXIDE; WATER; ACID AB A conceptual design is presented for a hybrid sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO(2)-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the hightemperature heat requirement for sulfuric acid decomposition. An Aspen Plus(TM), model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H(2) product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Gorensek, Maximilian B.; Summers, William A.] Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. RP Gorensek, MB (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. EM maximilian.gorensek@srnl.doe.gov RI Gorensek, Maximilian/B-5298-2012; OI Gorensek, Maximilian/0000-0002-4322-9062 NR 33 TC 39 Z9 40 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4097 EP 4114 DI 10.1016/j.ijhydene.2008.06.049 PG 18 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800061 ER PT J AU Lewis, MA Masin, JG O'Hare, PA AF Lewis, Michele A. Masin, Joseph G. O'Hare, Patrick A. TI Evaluation of alternative thermochemical cycles, Part I: The methodology SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Thermochemical cycles; Hydrogen production; Efficiency calculations; Flowsheet analysis ID HYDROGEN AB The Nuclear Hydrogen Initiative (NHI) of the U.S. Department of Energy's Office of Nuclear Energy Science and Technology is supporting an effort to reevaluate thermochemical cycles reported in the literature as having both promising efficiencies and proof-of-concept results. Recognizing that the calculation of efficiencies was not always consistently done or well defined in the literature, we first developed a consistent methodology for reevaluating the candidate thermochemical cycles. This methodology was defined for three levels of maturity in process knowledge. Argonne National Laboratory and a group of universities recalculated the efficiency for each level and identified the most critical R&D necessary to further assess the cycles' potential. This methodology is illustrated with the Cu-Cl in Part I of this series of three papers. Cur-rent results of the analyses for all of the cycles are summarized in Part II. Part III contains a more detailed Level 3 analysis for the Cu-Cl cycle. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Lewis, Michele A.; Masin, Joseph G.; O'Hare, Patrick A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lewis, MA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lewism@cmt.anl.gov NR 29 TC 52 Z9 53 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4115 EP 4124 DI 10.1016/j.ijhydene.2008.06.045 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800062 ER PT J AU Lewis, MA Masin, JG AF Lewis, Michele A. Masin, Joseph G. TI The evaluation of alternative thermochemical cycles - Part II: The down-selection process SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Thermochemical cycles; Hydrogen production; Efficiency calculations; Flowsheet analysis ID VANADIUM CHLORINE CYCLE; HYDROGEN-PRODUCTION; EFFICIENCY; IODINE; ENERGY AB The Nuclear Hydrogen Initiative (NHI) of the U.S. Department of Energy's Office of Nuclear Energy Science and Technology is supporting an effort to reevaluate thermochemical cycles reported in the literature as having both promising efficiencies and proof-of-concept results. Nine cycles were identified. A group of universities was tasked with the evaluation of these cycles using the NHI consistent methodology for calculating efficiency and for recommending and conducting critical research needed to help in the down-selection process. Argonne National Laboratory coordinated these activities. This paper provides an overview of the program and summarizes the results of the down-selection process. Individual papers that contain the details of the research are provided by the universities. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Lewis, Michele A.; Masin, Joseph G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lewis, MA (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lewism@cmt.anl.gov NR 30 TC 43 Z9 43 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4125 EP 4135 DI 10.1016/j.ijhydene.2008.07.085 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800063 ER PT J AU Lewis, MA Ferrandon, MS Tatterson, DF Mathias, P AF Lewis, Michele A. Ferrandon, Magali S. Tatterson, David F. Mathias, Paul TI Evaluation of alternative thermochemical cycles - Part III further development of the Cu-Cl cycle SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Review DE Thermochemical cycles; Hydrogen production; Efficiency calculations; Flowsheet analysis AB This is the third in a series of papers on alternative cycle evaluation. Part I described the evaluation methodology. Part II described the down-selection process where the most promising of the nine alternative cycles was determined. The Cu-Cl cycle was selected for further development because it alone meets the four criteria used. The current results indicate that the cycle is chemically viable, feasible with respect to engineering, energy-efficient, and capable of meeting DOE's timeline for an Integrated Laboratory Scale (ILS) demonstration. All of the reactions have been proven and the remaining technical challenges should be met with current technologies. The maximum temperature requirement is around 550 degrees C (823 K), which can be obtained with a variety of heat sources. The lower temperature should mitigate the demands on the materials of construction. This paper, Part III, describes the procedure used to develop the Cu-Cl cycle beyond the relatively simple Level 3 efficiency calculation completed by the universities. The optimization process consisted of (i) updating the thermodynamic database used in the Aspen Plus' simulation, (ii) developing a robust flowsheet and optimizing the energy usage therein, (iii) designing a conceptual process incorporating the Aspen Plus' mass and energy flows, and then (iv) estimating the hydrogen production costs. The results presented here are preliminary because further optimization is ongoing. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Lewis, Michele A.; Ferrandon, Magali S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Tatterson, David F.] Orion Consulting Co, Downers Grove, IL 60515 USA. RP Lewis, MA (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 205, Argonne, IL 60439 USA. EM lewism@cmt.anl.gov FU U.S. Department of Energy's Office of Nuclear Energy Science and Technology FX This work was supported by the Nuclear Hydrogen Initiative Program of the U.S. Department of Energy's Office of Nuclear Energy Science and Technology. The authors also gratefully acknowledge the assistance provided by Laurie Carbaugh for clerical assistance. NR 18 TC 44 Z9 44 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4136 EP 4145 DI 10.1016/j.ijhydene.2008.09.025 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800064 ER PT J AU Lottes, SA Lyczkowski, RW Panchal, CB Doctor, RD AF Lottes, Steven A. Lyczkowski, Robert W. Panchal, Chandrakant B. Doctor, Richard D. TI Modeling and analysis of calcium bromide hydrolysis SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Computational fluid dynamics; Droplets; Bubbles; Water splitting; Surface reaction ID HYDROGEN-PRODUCTION PROCESS; PRODUCTION CYCLE; UT-3; SIMULATION; BUBBLES AB The main focus of this paper is the modeling, simulation, and analysis of the calcium bromide hydrolysis reactor stage in the calcium-bromine thermochemical water-splitting cycle for nuclear hydrogen production. One reactor concept is to use a spray of calcium bromide into steam, in which the heat of fusion supplies the heat of reaction. Droplet models were built up in a series of steps incorporating various physical phenomena, including droplet flow, heat transfer, phase change, and reaction, separately. Given the large heat reservoir contained in a pool of molten calcium bromide that allows bubbles to rise easily, using a bubble column reactor for the hydrolysis appears to be a feasible and promising alternative to the spray reactor concept. The two limiting cases of bubble geometry, spherical and spherical-cap, are considered in the modeling. Results for both droplet and bubble modeling with COMSOL MULTIPHYSICS(TM) are presented, with recommendations for the path forward. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Lottes, Steven A.; Lyczkowski, Robert W.; Panchal, Chandrakant B.; Doctor, Richard D.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Lyczkowski, RW (reprint author), Argonne Natl Lab, Div Energy Syst, Bldg 362,Room C349,9700 S Cass Ave, Argonne, IL 60439 USA. EM rlyczkowski@anl.gov NR 22 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4155 EP 4167 DI 10.1016/j.ijhydene.2008.07.127 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800066 ER PT J AU Hawkes, G O'Brien, J Stoots, C Hawkes, B AF Hawkes, Grant O'Brien, James Stoots, Carl Hawkes, Brian TI 3D CFD model of a multi-cell high-temperature electrolysis stack SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE CFD high-temperature steam electrolysis; Hydrogen production ID HYDROGEN-PRODUCTION; NUCLEAR-ENERGY; PERFORMANCE AB A three-dimensional (3D) computational fluid dynamics (CFDs) electrochemical model has been created to model high-temperature electrolysis stack performance and steam electrolysis in the Idaho National Laboratory (INL) Integrated Lab Scale (ILS) experiment. The model is made of 60 planar cells stacked on top of each other operated as solid oxide electrolysis cells (SOECs). Details of the model geometry are specific to a stack that was fabricated by Ceramatec, Inc. [References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or other-wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government, any agency thereof, or any company affiliated with the Idaho National Laboratory]. and tested at INL. Inlet and outlet plenum flow and distribution are considered. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. [References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government, any agency thereof, or any company affiliated with the Idaho National Laboratory]. A solid oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over potential, anode-side gas composition, cathode-side gas composition, current density, and hydrogen production over a range of stack operating conditions. Variations in flow distribution and species concentration are discussed. End effects of flow and per-cell voltage are also considered. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Hawkes, Grant; O'Brien, James; Stoots, Carl; Hawkes, Brian] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hawkes, G (reprint author), Idaho Natl Lab, POB 1625,MS 3870, Idaho Falls, ID 83415 USA. EM grant.hawkes@inl.gov OI Hawkes, Grant/0000-0003-3496-8100 NR 13 TC 30 Z9 30 U1 5 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4189 EP 4197 DI 10.1016/j.ijhydene.2008.11.068 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800069 ER PT J AU Mawdsley, JR Carter, JD Kropf, AJ Yildiz, B Maroni, VA AF Mawdsley, Jennifer R. Carter, J. David Kropf, A. Jeremy Yildiz, Bilge Maroni, Victor A. TI Post-test evaluation of oxygen electrodes from solid oxide electrolysis stacks SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Steam electrolysis; Stack; Oxygen electrode; Degradation ID HIGH-TEMPERATURE ELECTROLYSIS; NEAR-EDGE STRUCTURE; FUEL-CELLS; HYDROGEN-PRODUCTION; CHROMIUM; TRANSPORT; VAPORIZATION; PERFORMANCE; ZIRCONIA; CATHODE AB The oxygen electrodes from two solid oxide electrolysis stacks that performed high-temperature steam electrolysis (HTSE) and produced hydrogen for 1000 and 2000 h, respectively, were examined using X-ray fluorescence, X-ray absorption near edge structure (XANES), four-point resistivity, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman micro-spectroscopy to determine possible causes for the degradation in stack performance over the test periods. These techniques yielded information such as elemental distribution, oxidation state, phases present, electrode delamination, and porosity within the electrode layers. From these studies, we found two phenomena that were likely the cause of increasingly poor oxygen electrode performance over time. The first source of degradation was chromium substitution into the oxygen electrode bond layer, which serves to bond the cell to the flow field and interconnect. This is caused by migration of a chromium species from the bipolar plate. The effect of this is a significant increase in the electrical resistance of the bond layer material. The other source of degradation identified was oxygen electrode delamination. The cause of electrode delamination, which is locally catastrophic to the operation of the cell, is unclear; however, we will discuss two possible mechanisms that might cause this phenomenon. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Mawdsley, Jennifer R.; Carter, J. David; Kropf, A. Jeremy; Maroni, Victor A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Yildiz, Bilge] MIT, Nucl Sci & Engn Dept, Cambridge, MA 02139 USA. RP Mawdsley, JR (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mawdsley@anl.gov RI ID, MRCAT/G-7586-2011 NR 30 TC 95 Z9 95 U1 3 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4198 EP 4207 DI 10.1016/j.ijhydene.2008.07.061 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800070 ER PT J AU Stoots, C O'Brien, J Hartvigsen, J AF Stoots, Carl O'Brien, James Hartvigsen, Joseph TI Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Hydrogen; Carbon dioxide; Syngas; Electrolysis; Synfuels; Shift reaction; Methanation ID ELECTROLYSIS AB Some results of CO(2)/H(2)O electrolysis experiments performed to date using button cells and three different 10-cell planar solid oxide stacks are presented and discussed. These results include electrolysis performance at various temperatures, gas mixtures, and electrical settings. Product gas compositions, as measured via an in-line micro gas chromatograph (GC), are compared to predictions obtained from an INL-developed chemical equilibrium coelectrolysis model (CECM). Better understanding of the feasibility of producing syngas using high temperature electrolysis may initiate the systematic investigation of nuclear-powered synfuel production as a bridge to the future hydrogen economy and ultimate independence from foreign energy resources. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Stoots, Carl; O'Brien, James] Idaho Natl Lab & Safety Anal, Idaho Falls, ID 83415 USA. [Hartvigsen, Joseph] Ceramatec Inc, Salt Lake City, UT 84119 USA. RP Stoots, C (reprint author), Idaho Natl Lab & Safety Anal, 2525 Fremont Ave,MS 3870, Idaho Falls, ID 83415 USA. EM carl.stoots@inl.gov NR 6 TC 73 Z9 75 U1 2 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4208 EP 4215 DI 10.1016/j.ijhydene.2008.08.029 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800071 ER PT J AU O'Brien, JE McKellar, MG Stoots, CM Herring, JS Hawkes, GL AF O'Brien, J. E. McKellar, M. G. Stoots, C. M. Herring, J. S. Hawkes, G. L. TI Parametric study of large-scale production of syngas via high-temperature co-electrolysis SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE High-temperature electrolysis; Hydrogen; Syngas; Nuclear energy ID HYDROGEN-PRODUCTION; NUCLEAR-ENERGY; EFFICIENCY AB A process model has been developed to evaluate the potential performance of a large-scale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam/carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the UniSim system-analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom integral co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The integral co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the water-gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The integral electrolyzer model was validated by comparison with results obtained from a fully three-dimensional computational fluid dynamics model developed using FLUENT, and by comparison with experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW, co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The co-electrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate-neutral. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [O'Brien, J. E.; McKellar, M. G.; Stoots, C. M.; Herring, J. S.; Hawkes, G. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP O'Brien, JE (reprint author), Idaho Natl Lab, 2525 N Fremont Ave,MS 3870, Idaho Falls, ID 83415 USA. EM james.obrien@inl.gov OI Hawkes, Grant/0000-0003-3496-8100 NR 13 TC 47 Z9 48 U1 7 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4216 EP 4226 DI 10.1016/j.ijhydene.2008.12.021 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800072 ER PT J AU Gorensek, MB Forsberg, CW AF Gorensek, Maximilian B. Forsberg, Charles W. TI Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT AIChE Annual Meeting 2007 CY NOV 04-09, 2007 CL Salt Lake City, UT SP AIChE DE Hydrogen; Production; Economics; Nuclear; Renewable; Fossil; Comparison AB The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because "free" oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Gorensek, Maximilian B.] Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. [Forsberg, Charles W.] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Gorensek, MB (reprint author), Westinghouse Savannah River Co, Savannah River Lab, Aiken, SC 29808 USA. EM maximilian.gorensek@srnl.doe.gov RI Gorensek, Maximilian/B-5298-2012; OI Gorensek, Maximilian/0000-0002-4322-9062 NR 16 TC 14 Z9 14 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 9 BP 4237 EP 4242 DI 10.1016/j.ijhydene.2008.07.083 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 455RZ UT WOS:000266783800074 ER PT J AU Osborn, W Markmaitree, T Shaw, LL Hu, JZ Kwak, J Yang, ZG AF Osborn, William Markmaitree, Tippawan Shaw, Leon L. Hu, Jian-Zhi Kwak, JaHun Yang, Zhenguo TI Low temperature milling of the LiNH(2) + LiH hydrogen storage system SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage materials; Lithium amide; Hydride; Ball milling; Kinetics ID HYDROGEN-STORAGE MATERIALS; N-H SYSTEMS; MECHANICAL ACTIVATION; LITHIUM HYDRIDE; DESORPTION; LIH; AMIDE; DEHYDROGENATION; DEFORMATION; KINETICS AB Ball milling of the LiNH(2) + LiH storage system was performed at 20 degrees C, -40 degrees C, and -196 degrees C, and the resulting powders were analyzed using X-ray diffraction, scanning electron microscopy, nuclear magnetic resonance (NMR), specific surface area analysis, and kinetics cycling measurements. Ball milling at -40 degrees C showed no appreciable deviations from the 20 degrees C sample, but the -196 degrees C powder exhibited a significant increase in the hydrogen desorption kinetics. NMR analysis indicates that a possible explanation for the kinetics increase is the retention of internal defects generated during the milling process that are annealed at the collision site at higher milling temperatures. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All lights reserved. C1 [Osborn, William; Markmaitree, Tippawan; Shaw, Leon L.] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. [Hu, Jian-Zhi; Kwak, JaHun; Yang, Zhenguo] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shaw, LL (reprint author), Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. EM leon.shaw@uconn.edu RI Hu, Jian Zhi/F-7126-2012; Osborn, Will/G-4526-2012; Kwak, Ja Hun/J-4894-2014 NR 47 TC 20 Z9 22 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 10 BP 4331 EP 4339 DI 10.1016/j.ijhydene.2009.03.032 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 460FN UT WOS:000267173700011 ER PT J AU Wallner, T Lohse-Busch, H Shidore, N AF Wallner, Thomas Lohse-Busch, Henning Shidore, Neeraj TI Operating strategy for a hydrogen engine for improved drive-cycle efficiency and emissions behavior SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT 2nd World Hydrogen Technologies Convention CY NOV, 2007 CL Montecatini Terme, ITALY SP Int Assoc Hydrogen Energy DE Hydrogen; Combustion engine; Efficiency; Emissions; Operating strategy AB Due to their advanced state of development and almost immediate availability, hydrogen internal combustion engines could act as a bridging technology toward a wide-spread hydrogen infrastructure. Extensive research, development and steady-state testing of hydrogen internal combustion engines has been conducted to improve efficiency, emissions behavior and performance. This paper summarizes the steady-state test results of the supercharged hydrogen-powered four-cylinder engine operated on an engine dynamometer. Based on these results a shift strategy for optimized fuel economy is established and engine control strategies for various levels of hybridization are being discussed. The strategies are evaluated on the Urban drive cycle, differences in engine behavior are investigated and the estimated fuel economy and NO, emissions are calculated. Future work will include dynamic testing of these strategies and powertrain configurations as well as individual powertrain components on a vehicle platform, called 'Mobile Advanced Technology Testbed' (MATT), that was developed and built at Argonne National Laboratory. Published by Elsevier Ltd on behalf of International Association for Hydrogen Energy. C1 [Wallner, Thomas; Lohse-Busch, Henning; Shidore, Neeraj] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wallner, T (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 362, Argonne, IL 60439 USA. EM twallner@anl.gov NR 12 TC 13 Z9 13 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAY PY 2009 VL 34 IS 10 BP 4617 EP 4625 DI 10.1016/j.ijhydene.2008.07.099 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 460FN UT WOS:000267173700048 ER PT J AU Asner, DM Barnes, T Bian, JM Bigi, II Brambilla, N Boyko, IR Bytev, V Chao, KT Charles, J Chen, HX Chen, JC Chen, Y Chen, YQ Cheng, HY Dedovich, D Descotes-Genon, S Fu, CD Tormo, XGI Gao, YN He, KL He, ZG Hu, JF Hu, HM Huang, B Jia, Y Jin, HY Jin, S Kuang, YP Lacker, H Li, HB Li, JL Li, WD Li, XY Liu, BJ Liu, HH Liu, J Ma, HL Ma, JP Mao, YJ Mo, XH Olsen, SL Pich, A Pineda, A Ping, RG Qiao, CF Qin, G Qin, H Roney, JM Rong, G Roos, L Shen, XY Soto, J Stahl, A Sun, SS T'Jampens, S Vairo, A Wang, P Wang, YF Wang, YK Wu, N Wu, YL Xing, ZZ Xu, GF Xu, M Yang, M Yang, MZ Yang, YD Yuan, CZ Zhang, DH Zhang, DY Zhang, JY Zhang, ZX Zhang, XM Zhang, XY Zhang, YJ Zhao, Q Zhemchugov, A Zheng, HQ Zheng, YH Zhong, M Zhu, SL Zhu, YS Zhuravlov, V Zou, BS Zou, JH AF Asner, D. M. Barnes, T. Bian, J. M. Bigi, I. I. Brambilla, N. Boyko, I. R. Bytev, V. Chao, K. T. Charles, J. Chen, H. X. Chen, J. C. Chen, Y. Chen, Y. Q. Cheng, H. Y. Dedovich, D. Descotes-Genon, S. Fu, C. D. Garcia i Tormo, X. Gao, Y. -N. He, K. L. He, Z. G. Hu, J. F. Hu, H. M. Huang, B. Jia, Y. Jin, H. -Y. Jin, S. Kuang, Y. P. Lacker, H. Li, H. B. Li, J. L. Li, W. D. Li, X. Y. Liu, B. J. Liu, H. H. Liu, J. Ma, H. L. Ma, J. P. Mao, Y. J. Mo, X. H. Olsen, S. L. Pich, A. Pineda, A. Ping, R. G. Qiao, C. F. Qin, G. Qin, H. Roney, J. M. Rong, G. Roos, L. Shen, X. Y. Soto, J. Stahl, A. Sun, S. S. T'Jampens, S. Vairo, A. Wang, P. Wang, Y. F. Wang, Y. K. Wu, N. Wu, Y. L. Xing, Z. Z. Xu, G. F. Xu, M. Yang, M. Yang, M. Z. Yang, Y. D. Yuan, C. Z. Zhang, D. H. Zhang, D. Y. Zhang, J. Y. Zhang, Z. X. Zhang, X. M. Zhang, X. Y. Zhang, Y. J. Zhao, Q. Zhemchugov, A. Zheng, H. Q. Zheng, Y. H. Zhong, M. Zhu, S. -L. Zhu, Y. S. Zhuravlov, V. Zou, B. S. Zou, J. H. TI Physics at BES-III SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review ID PARTIAL-WAVE ANALYSIS; CHIRAL PERTURBATION-THEORY; CHARMED-BARYON DECAYS; RELATIVISTIC QUARK-MODEL; ELECTRON-POSITRON-ANNIHILATION; FINAL-STATE INTERACTIONS; NONLEPTONIC WEAK DECAYS; QCD SUM-RULES; MONTE-CARLO SIMULATION; TOTAL CROSS-SECTION AB There has recently been a dramatic renewal of interest in the subjects of hadron spectroscopy and charm physics. This renaissance has been driven in part by experimental reports of D-0(D) over bar (0) mixing and the discovery of narrow D-sJ states and a plethora of charmonium-like XY Z states at the B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESII. At the same time, lattice QCD is now coming of age, and we are entering a new era when precise, quantitative predictions from lattice QCD can be tested against experimental measurements. For example, the High Precision QCD (HPQCD) and United Kingdom QCD (UKQCD) collaboration's recent high-precision, unquenched calculation of f(D+) = 208 +/- 4 MeV has been found to agree with the CLEO-c collaboration measurement of f(D+) = 223 +/- 17 +/- 8 MeV - a precision level of similar to 8%. Intriguingly, this agreement does not extend to f(Ds), where the HPQCD + UKQCD result f(Ds) = 241 +/- 3 MeV is more than three standard deviations below the current world average experimental value f(Ds) = 276 +/- 9 MeV. Precision improvements, especially on the experimental measurements, are called for and will be of extreme interest. The BES-III experiment at BEPCII in Beijing, which will start operation in summer 2008, will accumulate huge data samples of 10 x 10(9) J/psi, 3 x 10(9) psi(2S), 30 million D (D) over bar or 2 million DS+DS--pairs per running year, respectively, running in the tau-charm theshold region. Coupled with currently available results from CLEO-c, BES-III will make it possible to study in detail, and with unprecedentedly high precision, light hadron spectroscopy in the decays of charmonium states and charmed mesons. In addition, about 90 million D (D) over bar pairs will be collected at BES-III in a three-year run at the psi(3770) peak. Many high precision measurements, including CKM matrix elements related to charm weak decays, decay constants f(D+) and f(Ds), Dalitz decays of three-body D meson decays, searches for CP violation in the charmed-quark sector, and absolute decay branching fractions, will be accomplished. BES-III analyses are likely to be essential in deciding if recently observed signs of mixing in the D-0(D) over bar (0) meson system are actually due to new physics or not. BES-III measurements of f(D+) and f(Ds) at the similar to 1% precision level will match the precision of lattice QCD calculations and provide the opportunity to probe the charged Higgs sector in some mass ranges that will be inaccessible to the LHC. With modern techniques and huge data samples, searches for rare, lepton-number violating, flavor violating and/or invisible decays of D-mesons, charmonium resonances, and tau-leptons will be possible. Studies of tau-charm physics could reveal or indicate the possible presence of new physics in the low energy region. This physics book provides detailed discussions on important topics in tau-charm physics that will be explored during the next few years at BES-III. Both theoretical and experimental issues are covered, including extensive reviews of recent theoretical developments and experimental techniques. Among the subjects covered are: innovations in Partial Wave Analysis (PWA), theoretical and experimental techniques for Dalitz-plot analyses, analysis tools to extract absolute branching fractions and measurements of decay constants, form factors, and CP-violation and D-0(D) over bar (0)-oscillation parameters. Programs of QCD studies and near-threshold tau-lepton physics measurements are also discussed. C1 [Asner, D. M.] Carleton Univ, Ottawa, ON K1S 5B6, Canada. [Stahl, A.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Barnes, T.; Garcia i Tormo, X.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Pineda, A.] Univ Autonoma Barcelona, Dept Phys, E-08193 Barcelona, Spain. [Zhang, J. Y.] China Ctr Adv Sci & Technol, Beijing 100080, Peoples R China. [Soto, J.] Univ Barcelona, Dept Estructura & Constituents Mat, E-08028 Barcelona, Catalonia, Spain. [Yang, Y. D.] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Charles, J.] CNRS Marseille Luminy, Ctr Phys Theor, F-13288 Marseille 9, France. [Li, J. L.; Qiao, C. F.; Zheng, Y. H.] Chinese Acad Sci, Grad Univ, Beijing 100039, Peoples R China. [Brambilla, N.; Vairo, A.] Univ Milan, Dipartimento Fis, Milan, Italy. [Brambilla, N.; Vairo, A.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Boyko, I. R.; Bytev, V.; Dedovich, D.; Zhemchugov, A.; Zhuravlov, V.] Joint Inst Nucl Res Dubna, Dubna 141980, Moscow Region, Russia. [Lacker, H.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Cheng, H. Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Chen, Y. Q.; Li, X. Y.; Ma, J. P.; Wu, Y. L.] Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China. [Yang, M. Z.] Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. [Bigi, I. I.] Univ Notre Dame Lac Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Roos, L.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, F-75252 Paris, France. Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Descotes-Genon, S.] Univ Paris 11, Phys Theor Lab, CNRS, F-91405 Orsay, France. [Chao, K. T.; He, Z. G.; Mao, Y. J.; Zhang, Y. J.; Zheng, H. Q.; Zhu, S. -L.] Peking Univ, Beijing 100871, Peoples R China. [T'Jampens, S.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Zhang, X. Y.; Zou, J. H.] Shandong Univ, Dept Phys, Jinan 250100, Shandong, Peoples R China. [Barnes, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hu, J. F.; Xu, M.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Fu, C. D.; Gao, Y. -N.; Kuang, Y. P.; Zhong, M.] Tsinghua Univ, Ctr High Energy Phys, Beijing 100084, Peoples R China. [Olsen, S. L.] Univ Hawaii, Honolulu, HI 96822 USA. [Wang, Y. K.] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China. [Pich, A.] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46071 Valencia, Spain. [Roney, J. M.] Univ Victoria, Dept Phys, Victoria, BC V8W 3P6, Canada. [Jin, H. -Y.] Zhejiang Univ, Inst Modern Phys, Hangzhou 310027, Peoples R China. [Zhong, M.] Natl Univ Def Technol, Dept Phys, Changsha 410073, Hunan, Peoples R China. [Bian, J. M.; Chen, H. X.; Chen, J. C.; Chen, Y.; He, K. L.; Hu, H. M.; Huang, B.; Jia, Y.; Jin, S.; Li, H. B.; Li, W. D.; Liu, B. J.; Liu, H. H.; Liu, J.; Ma, H. L.; Mo, X. H.; Olsen, S. L.; Ping, R. G.; Qin, G.; Qin, H.; Rong, G.; Shen, X. Y.; Sun, S. S.; Wang, P.; Wang, Y. F.; Wu, N.; Xing, Z. Z.] Inst High Energy Phys, Beijing 100049, Peoples R China. RP Asner, DM (reprint author), Carleton Univ, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. RI Stahl, Achim/E-8846-2011; yu, yan/C-2322-2012; Boyko, Igor/J-3659-2013; Descotes-Genon, Sebastien/N-3364-2013; Soto, Joan/F-5021-2016; Zhang, Yu-Jie/P-8159-2016 OI Stahl, Achim/0000-0002-8369-7506; Boyko, Igor/0000-0002-3355-4662; Descotes-Genon, Sebastien/0000-0001-7512-4970; Soto, Joan/0000-0001-5521-0900; Zhang, Yu-Jie/0000-0002-2748-3300 NR 1992 TC 185 Z9 185 U1 16 U2 47 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD MAY PY 2009 VL 24 SU 1 BP III EP + DI 10.1142/S0217751X09046400 PG 777 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 469AY UT WOS:000267868500001 ER PT J AU Proust, G Tome, CN Jain, A Agnew, SR AF Proust, Gwenaelle Tome, Carlos N. Jain, Ashutosh Agnew, Sean R. TI Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Twinning; Polycrystal modeling; Hardening; Hexagonal materials; Magnesium ID FINITE-ELEMENT ANALYSIS; HCP METALS; MECHANICAL RESPONSE; HARDENING EVOLUTION; TEXTURE DEVELOPMENT; MG ALLOY; NEUTRON-DIFFRACTION; PLASTIC-DEFORMATION; ELECTRON-MICROSCOPE; HEXAGONAL MATERIALS AB Hexagonal materials deform plastically by activating diverse slip and twinning modes. The activation of such modes depends on their relative critical stresses, and the orientation of the crystals with respect to the loading direction. To be reliable, a constitutive description of these materials has to account for texture evolution associated with reorientations due to both dislocation slip and twinning, and for the effect of the twin boundaries as barriers to dislocation propagation. We extend a previously introduced twin model, which accounts explicitly for the composite character of the grain formed by a matrix with embedded twin lamellae, to describe the influence of twinning on the mechanical behavior of the material. The role of the twins as barriers to dislocations is explicitly incorporated into the hardening description of slip deformation via a directional Hall-Petch mechanism. We introduce here an improved hardening law for twinning, which discriminates for specific twin/dislocation interactions, and a detwinning mechanism. We apply this model to the interpretation of compression and tension experiments done in rolled magnesium alloy AZ31B at room temperature. Particularly challenging cases involve strain-path changes that force strong interactions between twinning, detwinning, and slip mechanisms. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Proust, Gwenaelle] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. [Proust, Gwenaelle; Tome, Carlos N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jain, Ashutosh; Agnew, Sean R.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. RP Proust, G (reprint author), Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. EM G.Proust@usyd.edu.au RI Proust, Gwenaelle/A-3601-2010; Wagner, Martin/A-6880-2008; Tome, Carlos/D-5058-2013 FU Office of Basic Energy Sciences [FWP 06SCPE401]; National Science Foundation [DMI-0322917] FX This work was supported by the Office of Basic Energy Sciences, Project FWP 06SCPE401. This material is based in part upon work supported by the National Science Foundation under Grant No. DMI-0322917. The authors wish to thank Rupalee Mulay for the optical micrographs. NR 57 TC 267 Z9 276 U1 15 U2 142 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD MAY PY 2009 VL 25 IS 5 BP 861 EP 880 DI 10.1016/j.ijplas.2008.05.005 PG 20 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 433ZU UT WOS:000265245800009 ER PT J AU Ohashi, T Barabash, RI Pang, JWL Ice, GE Barabash, OM AF Ohashi, Tetsuya Barabash, R. I. Pang, J. W. L. Ice, G. E. Barabash, O. M. TI X-ray microdiffraction and strain gradient crystal plasticity studies of geometrically necessary dislocations near a Ni bicrystal grain boundary SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Crystal plasticity; Dislocations; Grain boundaries; Stress relaxation; Polycrystalline material ID METAL CRYSTALS; DYNAMIC RECRYSTALLIZATION; DEFORMATION STRUCTURES; EVOLUTION; NUCLEATION; DENSITY; COPPER; ALLOY; MICROSTRUCTURES; SUBDIVISION AB We compare experimental measurements of inhomogeneous plastic deformation in a Ni bicrystal with crystal plasticity simulations. Polychromatic X-ray microdiffraction, orientation imaging microscopy and scanning electron microscopy, were used to characterize the geometrically necessary dislocation distribution of the bicrystal after uniaxial tensile deformation. Changes in the local crystallographic orientations within the sample reflect its plastic response during the tensile test. Elastic strain in both grains increases near the grain boundary. Finite element simulations were used to understand the influence of initial grain orientation and structural inhomogeneities on the geometrically necessary dislocations arrangement and distribution and to understand the underlying materials physics. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Barabash, R. I.; Pang, J. W. L.; Ice, G. E.; Barabash, O. M.] Oak Ridge Natl Lab Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ohashi, Tetsuya] Kitami Inst Technol, Kitami, Hokkaido 0908507, Japan. RP Barabash, RI (reprint author), Oak Ridge Natl Lab Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM barabashr@ornl.gov RI Zhang, Jing/B-1421-2012 FU Ministry of education, culture, sports, science and technology [18062001] FX Experimental research is supported by the Division of Materials Science and Engineering, Office of Basic Energy Science and the ORNL SHARE user facility, US Department of Energy. Synchrotron measurements on Unicat beamline 34-ID at the Advanced Photon Source (APS), were also supported by the US Department of Energy, Office of Science. One of the authors (T.O.) acknowledges that finite element work was performed under financial support from the Ministry of education, culture, sports, science and technology under Grant No. 18062001. The author also acknowledges Dr. Ryouji Kondou for his effort in numerical analysis. NR 55 TC 36 Z9 37 U1 3 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD MAY PY 2009 VL 25 IS 5 BP 920 EP 941 DI 10.1016/j.ijplas.2008.04.009 PG 22 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 433ZU UT WOS:000265245800012 ER PT J AU Sunagawa, S DeSantis, TZ Piceno, YM Brodie, EL DeSalvo, MK Voolstra, CR Weil, E Andersen, GL Medina, M AF Sunagawa, Shinichi DeSantis, Todd Z. Piceno, Yvette M. Brodie, Eoin L. DeSalvo, Michael K. Voolstra, Christian R. Weil, Ernesto Andersen, Gary L. Medina, Monica TI Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata SO ISME JOURNAL LA English DT Article DE bacteria; coral; disease; diversity; Montastraea faveolata; PhyloChip ID DIFFERENTIAL GENE-EXPRESSION; BLACK BAND DISEASE; SP-NOV; POCILLOPORA-DAMICORNIS; CAUSATIVE AGENT; SURFACE MUCUS; FLORIDA-KEYS; INDO-PACIFIC; MICROARRAY; ECOLOGY AB Increasing evidence confirms the crucial role bacteria and archaea play within the coral holobiont, that is, the coral host and its associated microbial community. The bacterial component constitutes a community of high diversity, which appears to change in structure in response to disease events. In this study, we highlight the limitation of 16S rRNA gene (16S rDNA) clone library sequencing as the sole method to comprehensively describe coral-associated communities. This limitation was addressed by combining a high-density 16S rRNA gene microarray with, clone library sequencing as a novel approach to study bacterial communities in healthy versus diseased corals. We determined an increase in diversity as well as a significant shift in community structure in Montastraea faveolata colonies displaying phenotypic signs of White Plague Disease type II (WPD-II). An accumulation of species that belong to families that include known coral pathogens (Alteromonadaceae, Vibrionaceae), bacteria previously isolated from diseased, stressed or injured marine invertebrates (for example, Rhodobacteraceae), and other species (for example, Campylobacteraceae) was observed. Some of these species were also present in healthy tissue samples, but the putative primary pathogen, Aurantimonas corallicida, was not detected in any sample by either method. Although an ecological succession of bacteria during disease progression after causation by a primary agent represents a possible explanation for our observations, we also discuss the possibility that a disease of yet to be determined etiology may have affected M. faveolata colonies and resulted in (or be a result of) an increase in opportunistic pathogens. The ISME Journal (2009) 3, 512-521; doi:10.1038/ismej.2008.131; published online 8 January 2009 C1 [Sunagawa, Shinichi; DeSalvo, Michael K.; Voolstra, Christian R.; Medina, Monica] Univ Calif Merced, Sch Nat Sci, Merced, CA 95344 USA. [DeSantis, Todd Z.; Piceno, Yvette M.; Brodie, Eoin L.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. [Weil, Ernesto] Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00709 USA. RP Medina, M (reprint author), Univ Calif Merced, Sch Nat Sci, POB 2039, Merced, CA 95344 USA. EM mmedina@ucmerced.edu RI Sunagawa, Shinichi/D-9715-2011; Voolstra, Christian/H-7158-2014; Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016 OI Sunagawa, Shinichi/0000-0003-3065-0314; Voolstra, Christian/0000-0003-4555-3795; Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699 FU JGI-DOE [BIS 142 - 2007/2008]; GEF-World Bank CRTR [NA170P2919]; Department of Marine Sciences, UPRM; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; NSF [IOS-0644438, OCE-0313708] FX We thank: Jennifer Kuehl for technical assistance, Ed Kirton for providing Perl scripts, Olga Pantos for additional information on published sequences, JGI-DOE for sponsoring clone library sequencing, students from the Genome Biology class (BIS 142 - 2007/2008) at UC Merced for preliminary data analysis, and Falk Warnecke for discussion on microbial ecology. This research was performed by Shinichi Sunagawa in partial fulfillment of his doctoral dissertation in Quantitative and Systems Biology at UC Merced. Ernesto Weil was funded by the GEF-World Bank CRTR program through the disease-working group and a NOAA-CRES Grant (NA170P2919). Logistical support was provided by the Department of Marine Sciences, UPRM. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231. NSF Grants IOS-0644438 and OCE-0313708 provided funding for Monica Medina. NR 68 TC 153 Z9 155 U1 4 U2 47 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD MAY PY 2009 VL 3 IS 5 BP 512 EP 521 DI 10.1038/ismej.2008.131 PG 10 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 444DK UT WOS:000265960400002 PM 19129866 ER PT J AU Bevan, KH Low, T Guo, H AF Bevan, K. H. Low, Tony Guo, H. TI Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TIGHT-BINDING PARAMETERS; ROOM-TEMPERATURE; JUNCTIONS; MGO AB We present a real space density functional theory localized basis set semiempirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost SEPs extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play an important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3123204] C1 [Bevan, K. H.; Low, Tony] Purdue Univ, NSF Network Computat Nanotechnol, W Lafayette, IN 47907 USA. [Bevan, K. H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Bevan, K. H.; Guo, H.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Bevan, K. H.; Guo, H.] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada. RP Bevan, KH (reprint author), Purdue Univ, NSF Network Computat Nanotechnol, W Lafayette, IN 47907 USA. EM bevankh@ornl.gov RI Guo, Hong/A-8084-2010 NR 39 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093709 DI 10.1063/1.3123204 PG 9 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300078 ER PT J AU Binz, SM Hupalo, M Tringides, MC AF Binz, S. M. Hupalo, M. Tringides, M. C. TI Quantum size effect dependent critical size cluster and finite size effects SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METAL-FILMS; THIN-FILMS; GROWTH; NUCLEATION AB Pb nucleation on top of a unique Pb island grown on Si(7x7) (in the form of a "hub"-"moat"-ring) confirms that electron confinement causes large variations in critical size cluster i(c) with island height. Because of smaller radial dimensions (less than 20 nm), the large variation of the nucleated island density on different layers cannot be a result of differences in terrace diffusion coefficients but ic. These results have important implications on how adsorption can be dramatically modified by quantum size effects. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3121504] C1 [Tringides, M. C.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. Ames Lab, US DOE, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Iowa State Univ, Dept Phys, Ames, IA 50011 USA. EM tringides@ameslab.gov FU Department of Energy-Basic Sciences [DE-AC02_07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy-Basic Sciences under Grant No. DE-AC02_07CH11358. NR 23 TC 3 Z9 3 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 094307 DI 10.1063/1.3121504 PG 4 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300138 ER PT J AU Croft, M Shukla, V Akdogan, EK Jisrawi, N Zhong, Z Sadangi, R Ignatov, A Balarinni, L Horvath, K Tsakalakos, T AF Croft, M. Shukla, V. Akdogan, E. K. Jisrawi, N. Zhong, Z. Sadangi, R. Ignatov, A. Balarinni, L. Horvath, K. Tsakalakos, T. TI In situ strain profiling of elastoplastic bending in Ti-6Al-4V alloy by synchrotron energy dispersive x-ray diffraction SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FATIGUE; RADIATION AB Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to similar to 2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of similar to 0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core region remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/ tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5 x 10(-5) or better. c 2009 American Institute of Physics. [DOI: 10.1063/1.3122029] C1 [Croft, M.; Horvath, K.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Croft, M.; Zhong, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Shukla, V.; Akdogan, E. K.; Jisrawi, N.; Sadangi, R.; Ignatov, A.; Balarinni, L.; Tsakalakos, T.] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. [Jisrawi, N.] Univ Sharjah, Dept Appl Phys, Sharjah, U Arab Emirates. RP Croft, M (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. EM croft@physics.rutgers.edu FU Office of Naval Research (ONR) [N000140610880]; U. S. Department of Energy [DE-AC02-76CH00016] FX The authors acknowledge the support of the Office of Naval Research (ONR) under Contract No. N000140610880. Utilization of the NSLS was supported by U. S. Department of Energy Contract No. DE-AC02-76CH00016. The authors are grateful to L. Kabacoff of the ONR for his valuable technical feedback and support to this project. NR 22 TC 11 Z9 11 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093505 DI 10.1063/1.3122029 PG 7 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300031 ER PT J AU Grigsby, W Bowes, BT Dalton, DA Bernstein, AC Bless, S Downer, MC Taleff, E Colvin, J Ditmire, T AF Grigsby, W. Bowes, B. T. Dalton, D. A. Bernstein, A. C. Bless, S. Downer, M. C. Taleff, E. Colvin, J. Ditmire, T. TI Picosecond time scale dynamics of short pulse laser-driven shocks in tin SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EQUATION-OF-STATE; VELOCITY INTERFEROMETER SYSTEM; WAVE EXPERIMENTS; INDUCED SPALL; METALS; ALUMINUM; PHASE; STRENGTH; SURFACE; COMPRESSION AB The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3103602] C1 [Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Ditmire, T.] Univ Texas Austin, Dept Phys, Texas Ctr High Intens Laser Sci, Austin, TX 78712 USA. [Colvin, J.] Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94550 USA. RP Grigsby, W (reprint author), Univ Texas Austin, Dept Phys, Texas Ctr High Intens Laser Sci, 1 Univ Stn,C1510, Austin, TX 78712 USA. EM tditmire@physics.utexas.edu FU National Nuclear Security Administration [DE-FC52-03NA00156] FX This work was supported by the Army Research Office and the National Nuclear Security Administration under Cooperative Agreement No. DE-FC52-03NA00156. NR 43 TC 2 Z9 2 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093523 DI 10.1063/1.3103602 PG 10 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300049 ER PT J AU Hopkins, PE AF Hopkins, Patrick E. TI Effects of electron-boundary scattering on changes in thermoreflectance in thin metal films undergoing intraband excitations SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LORENTZ-DRUDE MODEL; INTERBAND-TRANSITIONS; OPTICAL-PROPERTIES; TEMPERATURE MEASUREMENT; GOLD; ALUMINUM; THERMALIZATION; TRANSPORT; DYNAMICS; AU AB As characteristic sizes and lengths scales continue to decrease in nanostructures, carrier scattering processes at the geometric boundaries and interfaces in nanosystems become more prevalent. These scattering events can lead to additional resistances. This paper investigates electron-boundary scattering processes by examining changes in thermoreflectance signals in thin films after short pulsed laser heating. To take electron-boundary scattering into account, an additional scattering term is introduced into the Drude model for the complex dielectric function. Using an intraband thickness-dependent reflectance model, transient thermoreflectance data of Au films subject to intraband excitations are analyzed with the electron-boundary scattering Drude model introduced in this work. The electron-boundary scattering rate is determined from Au thermoreflectance data, showing that after short pulsed laser heating, electron-boundary scattering rates can be almost three orders of magnitude greater than the electron-electron and electron-phonon scattering rates. The scattering rates determined from the thermoreflectance data agree well with the theoretical predictions for electron- boundary scattering calculated from an electron- boundary scattering model for disordered conductors in the event of an electron-phonon nonequilibrium. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3117486] C1 Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author is greatly appreciative for funding by the LDRD program through the Harry S. Truman Fellowship Program at Sandia National Laboratories. The author would also like to thank Justin R. Serrano for critical reading of this manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 41 TC 18 Z9 18 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093517 DI 10.1063/1.3117486 PG 6 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300043 ER PT J AU Kanevce, A Metzger, WK AF Kanevce, Ana Metzger, Wyatt K. TI The role of amorphous silicon and tunneling in heterojunction with intrinsic thin layer (HIT) solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CARRIER TRANSPORT MECHANISMS; DRIFT-MOBILITY; BAND OFFSETS; SI-H; INTERFACE AB This work analyzes heterojunction with intrinsic thin layer (HIT) solar cells using numerical simulations. The differences between the device physics of cells with p- and n-type crystalline silicon (c-Si) wafers are substantial. HIT solar cells with n-type wafers essentially form a n/p/n structure, where tunneling across the junction heterointerfaces is a critical transport mechanism required to attain performance exceeding 20%. For HIT cells with p- type wafers, only tunneling at the back-contact barrier may be important. For p- wafer cells, the hydrogenated amorphous silicon (a-Si: H) between the indium tin oxide (ITO) and crystalline silicon may act as a passivating buffer layer but, otherwise, does not significantly contribute to device performance. For n-wafer cells, the carrier concentration and band alignment of this a-Si: H layer are critical to device performance. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3106642] C1 [Kanevce, Ana; Metzger, Wyatt K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kanevce, Ana] Colorado State Univ, Ft Collins, CO 80523 USA. RP Kanevce, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM ana_kanevce@nrel.gov FU NREL [DE-AC36-08GO28308] FX We would like to thank Richard Crandall, Qi Wang, Howard Branz, and David Young of the NREL for valuable discussion and input. This work was supported under NREL Contract No. DE-AC36-08GO28308. NR 48 TC 56 Z9 56 U1 6 U2 88 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 094507 DI 10.1063/1.3106642 PG 7 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300167 ER PT J AU Kim, KH Camarda, GS Bolotnikov, AE James, RB Hong, J Kim, S AF Kim, K. H. Camarda, G. S. Bolotnikov, A. E. James, R. B. Hong, Jinki Kim, SunUng TI Improved carrier-transport properties of passivated CdMnTe crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CDTE CRYSTALS; DETECTORS; CDZNTE AB By analyzing photoconductive decay curves, we compared the surface recombination velocities of semi-insulating CdMnTe:In crystals grown by the vertical Bridgman method with or without surface passivation. Sulfur passivation effectively prevents the formation of a conductive Te oxide layer on the CdMnTe surface and reduces the surface recombination velocities by about one third. We demonstrated, from IR observations of the distribution maps of Te precipitates, that their configuration affects the anomalous photoconductive decay curves and the gamma-ray spectrum in some areas of the CdMnTe crystal. Notably, not only the size but also the spatial configuration of the Te precipitates modulates the carrier-transport properties. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3121502] C1 [Kim, K. H.; Camarda, G. S.; Bolotnikov, A. E.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hong, Jinki; Kim, SunUng] Korea Univ, Dept Display & Semicond Phys, Chungnam 339800, South Korea. RP Kim, KH (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM rjames@bnl.gov; ksu45112@chol.com FU U. S. Department of Energy; Office of Nonproliferation Research and Development; Brookhaven Science Associates [DE-AC0298CH1-886] FX This work was supported by the U. S. Department of Energy, Office of Nonproliferation Research and Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC0298CH1-886 with the U. S. Department of Energy. NR 10 TC 7 Z9 7 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093705 DI 10.1063/1.3121502 PG 4 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300074 ER PT J AU Kozioziemski, BJ Kucheyev, SO Lugten, JB Koch, JA Moody, JD Chernov, AA Mapoles, EA Hamza, AV Atherton, LJ AF Kozioziemski, B. J. Kucheyev, S. O. Lugten, J. B. Koch, J. A. Moody, J. D. Chernov, A. A. Mapoles, E. A. Hamza, A. V. Atherton, L. J. TI Plastic deformation of solid hydrogen in fusion targets SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TEMPERATURE; ROUGHNESS; CRYSTALS; STRESS; INSTABILITY; IGNITION; FACILITY AB Current baseline designs of ignitable inertial confinement fusion targets require smooth layers of solid hydrogen held at a few degrees below the melting temperature on the inner surface of thin-walled spherical capsules. The initially smooth solid/vapor interface of a presumably single crystalline (hexagonal closed packed) hydrogen layer grown from melt develops undesirable roughness on cooling. We attribute such roughness to plastic deformation relieving thermal-contraction-induced elastic stresses. In particular, we identify two major contributors to roughness: surface bands of the basal slip systems and thermal grooves formed on deformation-produced low-angle grain boundaries. These findings have important implications for designing strategies aimed at controlling uniformity of the hydrogen fuel layer in fusion targets. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3124362] C1 [Kozioziemski, B. J.; Kucheyev, S. O.; Lugten, J. B.; Koch, J. A.; Moody, J. D.; Chernov, A. A.; Mapoles, E. A.; Hamza, A. V.; Atherton, L. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM kucheyev@llnl.gov FU U. S. DOE [DE-AC52-07NA27344] FX This work was performed under the auspices of the U. S. DOE by LLNL under Contract No. DE-AC52-07NA27344. NR 31 TC 14 Z9 14 U1 6 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093512 DI 10.1063/1.3124362 PG 5 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300038 ER PT J AU Liu, M Vallery, RS Gidley, DW Launey, ME Kruzic, JJ AF Liu, M. Vallery, R. S. Gidley, D. W. Launey, M. E. Kruzic, J. J. TI Assessment of the fatigue transformation zone in bulk metallic glasses using positron annihilation spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FREE-VOLUME CHANGES; CRACK PROPAGATION; MATERIALS SCIENCE; BEHAVIOR; DEFORMATION; FRACTURE; EMBRITTLEMENT; ALLOY; ORDER AB Depth-profiled Doppler broadening spectroscopy of positron annihilation on fatigue fracture surfaces of two amorphous Zr(44)Ti(11)Ni(10)Cu(10)Be(25) metallic glass specimens reveals the presence of a layer of increased free volume induced by cyclic deformation, as compared to surfaces that have been etched to remove any surface damage. The damage layer, or fatigue transformation zone (FTZ), is generated by the propagating fatigue crack tip and the deduced size of that zone is similar to the predicted cyclic plastic zone size at a number of locations where the crack grew at different stress intensities. The presence of the FTZ is independent of the initial amount of bulk free volume, which was varied between the two specimens by structural relaxation via annealing, and the free volume sites generated in the zone are distinct from those typical of the bulk, as evidenced by the higher S parameter. Such observations support the concept that the mechanically induced free volume within the FTZ zone controls the fatigue crack growth rates rather than the initial free volume of the bulk material. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3120784] C1 [Kruzic, J. J.] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Liu, M.; Vallery, R. S.; Gidley, D. W.] Univ Michigan, Dept Phys, Randall Lab, Ann Arbor, MI 48109 USA. [Launey, M. E.] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kruzic, JJ (reprint author), Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. EM jamie.kruzic@oregonstate.edu RI Kruzic, Jamie/M-3558-2014; OI Kruzic, Jamie/0000-0002-9695-1921; Liu, Ming/0000-0002-4618-9537 FU University of Michigan FX M. E. L. and J. J. K. thank Dr. A. Peker and Dr. J. Schroers for supplying the material and Dr. R. Busch for many useful discussions. D. W. G. gratefully acknowledges the support of the University of Michigan for positron research. NR 38 TC 7 Z9 7 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093501 DI 10.1063/1.3120784 PG 6 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300027 ER PT J AU Oks, E Anders, A AF Oks, Efim Anders, Andre TI Evolution of the plasma composition of a high power impulse magnetron sputtering system studied with a time-of-flight spectrometer SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ENERGY-DISTRIBUTIONS; ION FLUX; DISCHARGES; DENSITIES; NITROGEN AB The plasma of a high power impulse magnetron sputtering system has been investigated using a time-of-flight spectrometer. The target materials included high sputter yield materials (Cu, Ag), transition metals (Nb, Cr, Ti), and carbon (graphite); the sputtering gases were argon, krypton, and nitrogen, and two different target thicknesses were selected to consider the role of the magnetic field strength. Measurements for selected combinations of those parameters give quantitative information on the transition from gas-dominated to metal-dominated (self-sputtering) plasma, on the fractions of ion charge states, and in the case of molecular gases, on the fraction of atomic and molecular ions. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3125443] C1 [Anders, Andre] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Oks, Efim] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. RP Anders, A (reprint author), Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Initiatives for Proliferation Prevention, under Contract No. DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory. NR 37 TC 19 Z9 19 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093304 DI 10.1063/1.3125443 PG 9 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300024 ER PT J AU Wang, XJ Zou, H Ocola, LE Divan, R Ji, Y AF Wang, X. J. Zou, H. Ocola, L. E. Divan, R. Ji, Y. TI Influence of dc bias currents on Co/Cu/Co nonlocal spin valves SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ROOM-TEMPERATURE; ACCUMULATION; MAGNETIZATION; INJECTION; CHARGE AB The spin signals of three Co/Cu/Co nonlocal spin valves have been measured as a function of a dc bias current. Both increases and decreases of spin signals have been observed. The increase in spin signal is attributed to the redistribution of the injection current at a high current density. A shift in effective injection point up to similar to 100 nm is estimated. The decrease in spin signals is attributed to structural change of the materials and interfaces due to the prolonged exposure to a high-density current. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3123255] C1 [Wang, X. J.; Zou, H.; Ji, Y.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Ocola, L. E.; Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Wang, XJ (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM yji@physics.udel.edu RI Ji, Yi/K-8027-2012 NR 24 TC 8 Z9 8 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 093907 DI 10.1063/1.3123255 PG 4 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300095 ER PT J AU Wu, LJ Zheng, JC Zhou, J Li, Q Yang, JH Zhu, YM AF Wu, Lijun Zheng, Jin-Cheng Zhou, Juan Li, Qiang Yang, Jihui Zhu, Yimei TI Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LATTICE THERMAL-CONDUCTIVITY; HIGH TEMPERATURES; SOLID-SOLUTIONS; STRAIN FIELDS; DISLOCATIONS; SCATTERING; FIGURE; MERIT; ALLOYS; IMPERFECTIONS AB Nanoparticles play key roles in reducing thermal conductivity, and hence increasing figure of merit for many thermoelectric materials. We have studied the structure of AgPb18SbTe20 (LAST-18) using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, and electron energy loss spectrum, and observed a range of nanoparticles with different sizes (from less than 1 nm to more than 10 nm) and shape (sphere, ellipse, square, etc.). The lattice parameters of the nanoparticles have a wide range from 0.601 to 0.655 nm, while those of the matrix have a range from 0.633 to 0.646 nm. The nanoparticles are formed due to the ordering of Pb and Ag-Sb. There are four ordered structures with primitive cubic, primitive tetragonal (T1, a approximate to a(0)/root 2, c approximate to a(0), here, a(0) is the lattice parameter of the rocksalt-type matrix), primitive tetragonal (T2, a approximate to a(0)/root 2, c approximate to 2a(0)), and body-centered tetragonal (T3, a approximate to a(0)/root 2, c approximate to 3a(0)) lattices, respectively. Antiphase domains, twins, and phase separations were often observed in the nanoparticles. The strain field in the surrounding matrix due to the presence of nanoparticles was retrieved from the high resolution images. The characteristic that the strain field is anisotropic and extends to large area is considered to enhance the scattering of the phonons. The results provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3124364] C1 [Wu, Lijun; Zheng, Jin-Cheng; Zhou, Juan; Li, Qiang; Zhu, Yimei] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zheng, Jin-Cheng] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China. [Zheng, Jin-Cheng] Xiamen Univ, Inst Theoret Phys & Astrophys, Xiamen 361005, Peoples R China. [Yang, Jihui] Gen Motors R& Ctr, Mat & Proc Lab, Warren, MI 48090 USA. RP Wu, LJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM ljwu@bnl.gov RI Yang, Jihui/A-3109-2009; Zheng, JC/G-3383-2010 OI Zheng, JC/0000-0002-6292-3236 FU U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886, DE-FC26-04NT42278] FX Work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. Work at GM was supported by GM and DOE under Cooperative Agreement No. DE-FC26-04NT42278. NR 31 TC 20 Z9 20 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAY 1 PY 2009 VL 105 IS 9 AR 094317 DI 10.1063/1.3124364 PG 8 WC Physics, Applied SC Physics GA 448LE UT WOS:000266263300148 ER PT J AU Huser, T Orme, CA Hollars, CW Corzett, MH Balhorn, R AF Huser, Thomas Orme, Christine A. Hollars, Christopher W. Corzett, Michele H. Balhorn, Rod TI Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells SO JOURNAL OF BIOPHOTONICS LA English DT Article DE Raman spectroscopy; human sperm cells; cell shape abnormalities; DNA packaging; sperm chromatin ID HEADED HUMAN SPERMATOZOA; SINGLE LIVING CELLS; B-DNA; CHROMATIN CONDENSATION; PROTAMINE; MICROSCOPY; CHROMOSOMES; SCATTERING; FERTILIZATION; INFERTILITY AB Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with mate infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization. (C) 2009 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Huser, Thomas; Hollars, Christopher W.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Huser, Thomas] Univ Calif Davis, Dept Internal Med, Sacramento, CA 95817 USA. [Orme, Christine A.; Corzett, Michele H.; Balhorn, Rod] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Huser, T (reprint author), Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. EM trhuser@ucdavis.edu RI Orme, Christine/A-4109-2009; Huser, Thomas/H-1195-2012 OI Huser, Thomas/0000-0003-2348-7416 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Livermore National Laboratory under the auspices of the U.S. Department of Energy under contract number DE-AC52-07NA27344. NR 48 TC 52 Z9 56 U1 1 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1864-063X J9 J BIOPHOTONICS JI J. Biophotonics PD MAY PY 2009 VL 2 IS 5 BP 322 EP 332 DI 10.1002/jbio.200910012 PG 11 WC Biochemical Research Methods; Biophysics; Optics SC Biochemistry & Molecular Biology; Biophysics; Optics GA 451IO UT WOS:000266464100011 PM 19373853 ER PT J AU Rhee, YM Casanova, D Head-Gordon, M AF Rhee, Young Min Casanova, David Head-Gordon, Martin TI Quartic-Scaling Analytical Gradient of Quasidegenerate Scaled Opposite Spin Second-Order Perturbation Corrections to Single Excitation Configuration Interaction SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SPATIALLY SEPARATED SYSTEMS; DENSITY-FUNCTIONAL METHODS; MOLLER-PLESSET THEORY; EXCITED-STATES; BASIS-SETS; LAPLACE TRANSFORM; IDENTITY APPROXIMATION; ENERGY CALCULATIONS; PERIODIC-SYSTEMS; MP2 ENERGY AB Quasidegenerate scaled second-order perturbation correction to single excitation configuration interaction (SOS-CIS(D(0))) is a viable method that can describe excited-state potential energy surfaces of various chemical systems both reliably and efficiently [J. Chem. Phys. 2008, 128, 164106]. In this work, its analytical gradient theory is developed and implemented into an efficient quartic-scaling algorithm. This low order scaling, as opposed to the traditional quintic scaling of various second-order perturbation methods, is attained by using the resolution-of-the-identity approximation and the Laplace transform. The efficiency of the method is demonstrated by calculating the excited-state gradients of molecules with varying sizes. The proposed gradient method will thus be useful in studying various chemical systems, ranging from finding the optimized stable geometry on the excited surface to elucidating interesting excited-state dynamics around the avoided crossing region. C1 [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu RI Casanova, David/F-9752-2011; Rhee, Young/E-9940-2012 OI Casanova, David/0000-0002-8893-7089; FU NIH SBIR; Office of Basic Energy Sciences of the U.S. Department of Energy; NERSC; Fulbright Fellowship FX This work was supported by a subcontract from Q-Chem Inc, from an NIH SBIR grant, and was also supported by the Office of Basic Energy Sciences of the U.S. Department of Energy through the LBL Ultrafast Center. We are grateful for a grant of Supercomputer time from NERSC. D.C. acknowledges financial support from a Fulbright Fellowship. M.H.G. is a part-owner of Q-Chem Inc. NR 59 TC 21 Z9 21 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAY PY 2009 VL 5 IS 5 BP 1224 EP 1236 DI 10.1021/ct800509z PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 444OT UT WOS:000265991000004 PM 26609713 ER PT J AU Stoupin, S AF Stoupin, Stanislav TI Influence of Adsorbate-Free Atoms on Delta-XANES Signatures SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID X-RAY-ABSORPTION; METHANOL FUEL-CELLS; NEAR-EDGE STRUCTURE; IN-SITU; ADSORPTION SITES; HYDROGEN ADSORPTION; SPECTROSCOPY; CLUSTERS; PTRU; ELECTRODES AB The use of differential X-ray Absorption Near Edge Spectroscopy (Delta-XANES) for analysis of site specific adsorption on metallic electrodes relies on theoretical Delta-XANES signatures for analysis of experimental Delta-XANES fingerprints. A simple model, currently used in the analysis, considers changes in X-ray absorption properties of adsorbing atoms only. This model has been extended to include changes in X-ray absorption for other atoms of the same type that remain adsorbate-free. Configurational averaging has been applied to calculate difference spectra of a Pt(6) cluster with an oxygen atom adsorbed at different sites. The extended theory shows that contribution of the adsorbate-free atoms might become significant as it affects the shape profiles of the theoretical signatures. The effect, most prominent at the absorption edge energy, is interpreted in terms of change in the electronic structure of the cluster due to oxygen adsorption. In addition to model dependence of the theoretical signatures, challenges to the application of Delta-XANES to the experimentally obtained fingerprints are discussed. C1 [Stoupin, Stanislav] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA. RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM sstoupin@aps.anl.gov NR 30 TC 7 Z9 7 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAY PY 2009 VL 5 IS 5 BP 1337 EP 1342 DI 10.1021/ct800544a PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 444OT UT WOS:000265991000015 PM 26609722 ER PT J AU Niu, SQ Nichols, JA Ichiye, T AF Niu, Shuqiang Nichols, Jeffrey A. Ichiye, Toshiko TI Optimization of Spin-Unrestricted Density Functional Theory for Redox Properties of Rubredoxin Redox Site Analogues SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID IRON-SULFUR PROTEINS; EXCHANGE-CORRELATION FUNCTIONALS; TRANSITION-METAL-COMPLEXES; BASIS-SETS; ELECTRONIC-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; ACTIVE-SITES; MOLECULAR CALCULATIONS; SYNTHETIC ANALOGS; CLUSTERS AB Quantum chemical calculations of metal clusters in proteins for redox studies require both computational feasibility as well as accuracies of at least similar to 50 mV for redox energies but only similar to 0.05 angstrom for bond lengths. Thus, optimization of spin-unrestricted density functional theory (DFT) methods, especially the hybrid generalized gradient approximation functionals, for energies while maintaining good geometries is essential. Here, different DFT functionals with effective core potential (ECP) and full core basis sets for [Fe(SCH3)(4)](2-/1-10) and [Fe(SCH3)(3)](1-/0), which are analogues of the iron-sulfur protein rubredoxin, are investigated in comparison to experiment as well as other more computationally intensive electron correlation methods. In particular, redox energies are calibrated against gas-phase photoelectron spectroscopy data so no approximations for the environment are needed. B3LYP gives the best balance of accuracy in energy and geometry as compared to B97gga1 and BHandH and is better for energies than Moller-Plesset perturbation theory series (MP2, MP3, MP4SDQ) and comparable to coupled cluster [CCSD, CCSD(T)] methods. Of the full core basis sets tested, the 6-31G** basis sets give good geometries, and addition of diffuse functions to only the sulfur significantly improves the energies. Moreover, a basis set with an ECP on only the iron gives less accurate but still reasonable geometries and energies. C1 [Niu, Shuqiang; Ichiye, Toshiko] Georgetown Univ, Dept Chem, Washington, DC 20057 USA. [Nichols, Jeffrey A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ichiye, T (reprint author), Georgetown Univ, Dept Chem, Washington, DC 20057 USA. EM ti9@georgetown.edu OI Nichols, Jeffrey/0000-0001-5454-9726 FU National Institutes of Health [GM45303]; Molecular Science Computing Facility (MSCF) [GC3565, GC20901]; U.S. DOE's Office of Biological and Environmental Research FX This work was supported by a grant from the National Institutes of Health (GM45303) and by a grant (GC3565 and GC20901) from the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (ENISL), a national user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for DOE by Battelle. We thank Dr. David Dixon, Prof. Lai-Sheng Wang, and Dr. Xubin Wang for helpful discussions. T.I. thanks Dr. Bernard R. Brooks at the NIH for his hospitality during part of these studies. NR 46 TC 11 Z9 11 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAY PY 2009 VL 5 IS 5 BP 1361 EP 1368 DI 10.1021/ct800357c PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 444OT UT WOS:000265991000018 PM 20161267 ER PT J AU Andrzejewska, A Gritti, F Guiochon, G AF Andrzejewska, Anna Gritti, Fabrice Guiochon, Georges TI Investigation of the adsorption mechanism of a peptide in reversed phase liquid chromatography, from pH controlled and uncontrolled solutions SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Acid-base equilibrium adsorption mechanism; Retention of acido-basic compounds RPLC; Tripeptides ID ANION-EXCHANGE CHROMATOGRAPHY; NONPOLAR STATIONARY PHASES; TRANSFER RATE COEFFICIENT; ION-PAIRING REAGENTS; BOVINE SERUM-ALBUMIN; MASS-TRANSFER; TRIFLUOROACETIC-ACID; CONCENTRATION-DEPENDENCE; RETENTION MECHANISM; ENERGY-DISTRIBUTION AB The single-component equilibrium adsorption of the tripeptide Leucyl-Leucyl-Leucine (LLL) on a high-efficiency Jupiter Proteo column (C(12)) was investigated experimentally and modeled theoretically. The experimental equilibrium isotherms of LLL for adsorption on a C12 packing material from an aqueous solution of methanol (48%) and trifluoroacetic acid (0.1%) were measured by frontal analysis (FA). The FA measurements were done with two solutions, one in which the pH was controlled, the other in which it was not. Two solutions of LLL in the mobile phase were prepared (4.3 and 5.4 g/L) and their pH measured (2.94 and 2.88). respectively. The first solution was titrated with TFA to match the pH of the mobile phase (2.03), so its pH was controlled. The pH of the other solution was left uncontrolled. In both cases the isotherms could be modeled by a bi-Langmuir equation, a choice consistent with the bimodal affinity energy distribution (AED) obtained for LLL The isotherm parameters derived from the inverse method (IM) of isotherm determination under controlled pH conditions (by fitting calculated profiles to experimental breakthrough profiles) are in a good agreement with those derived from the FA data. Under uncontrolled pH conditions, the application of IM suggests the coexistence of two different adsorption mechanisms. According to the isotherm parameters found by these three methods (FA, AED and IM), the C(12)-bonded silica can adsorb around 500 and 70 g/L of LLL under controlled and uncontrolled pH conditions, respectively. The adsorption of LLL on the C12 material strongly depends on the pH of the mobile phase and on the quantity of TFA added, which plays the role of an ion-pairing agent. (C) 2009 Elsevier B.V. All rights reserved. C1 [Andrzejewska, Anna; Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Andrzejewska, Anna; Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu FU National Science Foundation [CHE-06-08659]; University of Tennessee and the Oak Ridge National Laboratory FX This work was supported in part by grant CHE-06-08659 of the National Science Foundation and by the cooperative agreement between the University of Tennessee and the Oak Ridge National Laboratory. NR 60 TC 5 Z9 5 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD MAY 1 PY 2009 VL 1216 IS 18 BP 3992 EP 4004 DI 10.1016/j.chroma.2009.03.014 PG 13 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 440KT UT WOS:000265699900042 PM 19328489 ER PT J AU Koch, D Menon, S Del Genio, A Ruedy, R Alienov, I Schmidt, GA AF Koch, Dorothy Menon, Surabi Del Genio, Anthony Ruedy, Reto Alienov, Igor Schmidt, Gavin A. TI Distinguishing Aerosol Impacts on Climate over the Past Century SO JOURNAL OF CLIMATE LA English DT Article ID BLACK CARBON; SULFATE AEROSOLS; GREENHOUSE-GAS; GISS MODELE; ICE-SHEET; SIMULATION; SNOW; SENSITIVITY; PARAMETERIZATION; DEPOSITION AB Aerosol direct ( DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control (1890)-perturbation ( 1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG). Anew scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature ( SAT) changed by -0.2 degrees, -1.0 degrees, and +0.2 degrees C from the DE, IE, and BAE. Ice and snow cover increased 1% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20%, and on snow/ice cover by 50%; they also obscure the BAE on snow/ ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and longwave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm season but the associated SAT effect is delayed until winter. C1 [Koch, Dorothy; Del Genio, Anthony; Alienov, Igor; Schmidt, Gavin A.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Menon, Surabi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ruedy, Reto] Sigma Space Partners, New York, NY USA. RP Koch, D (reprint author), Columbia Univ, NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA. EM dkoch@giss.nasa.gov RI Del Genio, Anthony/D-4663-2012; Schmidt, Gavin/D-4427-2012 OI Del Genio, Anthony/0000-0001-7450-1359; Schmidt, Gavin/0000-0002-2258-0486 FU Clean Air Task Force; NASA FX We thank Stephen Warren for assistance in development of the model BC-albedo parameterization. Support for this research is from the Clean Air Task Force, the NASA Radiation Science Program, and the NASA Modeling, Analysis, and Prediction Program. NR 49 TC 68 Z9 68 U1 3 U2 23 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD MAY PY 2009 VL 22 IS 10 BP 2659 EP 2677 DI 10.1175/2008JCLI2573.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 453CG UT WOS:000266587200011 ER PT J AU Ahn, HT Shashkov, M AF Ahn, Hyung Taek Shashkov, Mikhail TI Adaptive moment-of-fluid method SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Interface reconstruction; Advection; Moment-of-fluid; Volume-of-fluid; Adaptive mesh refinement ID INCOMPRESSIBLE 2-PHASE FLOWS; MESH REFINEMENT; VOF METHOD; INTERFACE RECONSTRUCTION; LAGRANGIAN ADVECTION; CONSERVATION-LAWS; COMPRESSIBLE FLOW; EULER EQUATIONS; REPAIR PARADIGM; VOLUME AB A novel adaptive mesh refinement (AMR) strategy based on the moment-of-fluid (MOF) method for volume-tracking of evolving interfaces is presented. Moment-of-fluid method is a new interface reconstruction and volume advection method using volume fractions as well as material centroids. The mesh refinement criterion is based on the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. The centroid error indicator detects not only high curvature regions but also regions with complicated subcell structures like filaments. A new Lagrange + remap scheme is presented for advecting moments, which includes Lagrangian backtracking, polygon intersection-based remapping and forward tracking to define the material centroid. The effectiveness and efficiency of AMR-MOF method is demonstrated with classical test problems, such as Zalesak's disk and reversible vortex problem. The comparison with previously published results for these problems shows the superior accuracy of the AMR-MOF method over other methods. In addition, two new test cases with severe deformation rates are introduced, namely droplet deformation and S-shape deformation problems, for further demonstration of the capabilities of the AMR-MOF method. (C) 2009 Elsevier Inc. All rights reserved. C1 [Ahn, Hyung Taek] Univ Ulsan, Sch Naval Architecture & Ocean Engn, Ulsan 680749, South Korea. [Shashkov, Mikhail] Los Alamos Natl Lab, Div Theoret, Grp T5, Los Alamos, NM 87545 USA. RP Ahn, HT (reprint author), Univ Ulsan, Sch Naval Architecture & Ocean Engn, 102 Daehakro,Bldg 41,Room 320, Ulsan 680749, South Korea. EM htahn@ulsan.ac.kr; shashkov@lanl.gov FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC5206NA25396]; DOE Office of Science Advanced Scientific Computing Research (ASCR); Advanced Simulation and Computing (ASC) FX The authors thank Mark Christon, Dave Bailey, Milan Kucharik, Sam Schofield, Rao Garimella, and Christos Kavouklis for fruitful discussions and many useful comments. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC5206NA25396. Authors acknowledge partial support from the DOE Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research and Advanced Simulation and Computing (ASC) program at the Los Alamos National Laboratory. NR 53 TC 27 Z9 27 U1 1 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 1 PY 2009 VL 228 IS 8 BP 2792 EP 2821 DI 10.1016/j.jcp.2008.12.031 PG 30 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 426CK UT WOS:000264685000006 ER PT J AU Olson, GL AF Olson, Gordon L. TI Second-order time evolution of P-N equations for radiation transport SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Radiation transport; P-N method; Second order; Radiation diffusion; Flux-limited diffusion ID TEMPORAL ACCURACY; DIFFUSION; INTEGRATION; P-1 AB Using polynomials to represent the angular variation of the radiation intensity is usually referred to as the P-N or spherical harmonics method. For infinite order, the representation is an exact solution of the radiation transport solution. For finite N, in some physical situations there are oscillations in the solution that can make the radiation energy density be negative. For small N, the oscillations may be large enough to force the material temperature to numerically have non-physical negative values. The second-order time evolution algorithm presented here allows for more accurate solutions with larger time steps; however, it also can resolve the negativities that first-order time solutions smear out. Therefore, artificial scattering is studied to see how it can be used to decrease the oscillations in low-order solutions and prevent negativities. Small amounts of arbitrary, non-physical scattering can significantly improve the accuracy of the solution to test problems. Flux-limited diffusion solutions can also be improved by including artificial scattering. One- and two-dimensional test results are presented. (C) 2009 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Comp & Computat Sci Div, CCS 2, Madison, WI 53717 USA. RP Olson, GL (reprint author), Los Alamos Natl Lab, Comp & Computat Sci Div, CCS 2, 5 Foxglove Circle, Madison, WI 53717 USA. EM olson99@tds.net NR 21 TC 15 Z9 16 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAY 1 PY 2009 VL 228 IS 8 BP 3072 EP 3083 DI 10.1016/j.jcp.2009.01.012 PG 12 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 426CK UT WOS:000264685000020 ER PT J AU Mardon, J Nomura, Y Stolarski, D Thaler, J AF Mardon, Jeremy Nomura, Yasunori Stolarski, Daniel Thaler, Jesse TI Dark matter signals from cascade annihilations SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter; cosmic rays; neutrino and gamma astronomy; cosmology of theories beyond the SM ID ASTROPHYSICS; ELECTRONS; ENERGIES; EMISSION; PHYSICS; GALAXY; MODEL; RAYS AB A leading interpretation of the electron/positron excesses seen by PAMELA and ATIC is dark matter annihilation in the galactic halo. Depending on the annihilation channel, the electron/positron signal could be accompanied by a galactic gamma ray or neutrino flux, and the non-detection of such fluxes constrains the couplings and halo properties of dark matter. In this paper, we study the interplay of electron data with gamma ray and neutrino constraints in the context of cascade annihilation models, where dark matter annihilates into light degrees of freedom which in turn decay into leptons in one or more steps. Electron and muon cascades give a reasonable fit to the PAMELA and ATIC data. Compared to direct annihilation, cascade annihilations can soften gamma ray constraints from final state radiation by an order of magnitude. However, if dark matter annihilates primarily into muons, the neutrino constraints are robust regardless of the number of cascade decay steps. We also examine the electron data and gamma ray/neutrino constraints on the recently proposed "axion portal" scenario. C1 [Mardon, Jeremy] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Mardon, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM jmardon@berkeley.edu; YNomura@lbl.gov; danchus@berkeley.edu; jthaler@jthaler.net OI Stolarski, Daniel/0000-0002-1783-8163; Thaler, Jesse/0000-0002-2406-8160; Nomura, Yasunori/0000-0002-1497-1479 NR 95 TC 65 Z9 65 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAY PY 2009 IS 5 AR 016 DI 10.1088/1475-7516/2009/05/016 PG 33 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 467XF UT WOS:000267775700006 ER PT J AU Siranosian, AA Krstic, M Smyshlyaev, A Bement, M AF Siranosian, Antranik A. Krstic, Miroslav Smyshlyaev, Andrey Bement, Matt TI Motion Planning and Tracking for Tip Displacement and Deflection Angle for Flexible Beams SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE beams (structures); damping; displacement control; flexible structures; motion control; partial differential equations; position control ID DISTRIBUTED-PARAMETER SYSTEMS; BOUNDARY CONTROL; FEEDBACK; DYNAMICS AB Explicit motion-planning reference solutions are presented for flexible beams with Kelvin-Voigt (KV) damping. The goal is to generate periodic reference signals for the displacement and deflection angle at the free-end of the beam using only actuation at the base. The explicit deflection angle reference solution is found as a result of writing the shear beam model in a strict-feedback form. Special "partial differential equation (PDE) backstepping" transformations relate the strict-feedback model to a "target system," governed by an exponentially stable wave equation with KV damping, whose displacement reference solution is relatively easy to find. The explicit beam displacement reference solution is found using the target system solution and an inverse backstepping transformation. The explicit reference solutions for the wave equation and shear beam with KV damping are novel results. State-feedback tracking boundary controllers are found by extending previous PDE backstepping stabilization results. Application of the shear beam results to the more complicated Timoshenko beam is discussed. C1 [Siranosian, Antranik A.; Krstic, Miroslav; Smyshlyaev, Andrey] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Bement, Matt] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Siranosian, AA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM asiranosian@ucsd.edu OI Bement, Matthew/0000-0003-3577-3292 FU Los Alamos National Laboratory; National Science Foundation FX This research was supported by the Los Alamos National Laboratory and the National Science Foundation. NR 28 TC 5 Z9 5 U1 1 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD MAY PY 2009 VL 131 IS 3 AR 031009 DI 10.1115/1.3072152 PG 10 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 423UW UT WOS:000264522200009 ER PT J AU Willey, TM Lee, JRI Fabbri, JD Wang, D Nielsen, MH Randel, JC Schreiner, PR Fokin, AA Tkachenko, BA Fokina, NA Dahl, JEP Carlson, RMK Terminello, LJ Melosh, NA van Buuren, T AF Willey, Trevor M. Lee, Jonathan R. I. Fabbri, Jason D. Wang, Dongbo Nielsen, Michael H. Randel, Jason C. Schreiner, Peter R. Fokin, Andrey A. Tkachenko, Boryslav A. Fokina, Natalie A. Dahl, Jeremy E. P. Carlson, Robert M. K. Terminello, Louis J. Melosh, Nicholas A. van Buuren, Tony TI Determining orientational structure of diamondoid thiols attached to silver using near-edge X-ray absorption fine structure spectroscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE NEXAFS; Self-assembled monolayers; Diamondoids; Thiols; Molecular electronics; Nanodiamond ID SELF-ASSEMBLED MONOLAYERS; FUNCTIONALIZED NANODIAMONDS; AU(111); SPECTRA; GOLD; PHOTOEMISSION; DISPLACEMENT; DEPENDENCE; MOLECULES; BREAKDOWN AB Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoids, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials. (C) 2009 Published by Elsevier B.V. C1 [Willey, Trevor M.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Fabbri, Jason D.; Randel, Jason C.; Melosh, Nicholas A.] Stanford Univ, Stanford, CA 94305 USA. [Wang, Dongbo] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [Nielsen, Michael H.] Univ Calif Davis, Davis, CA 95616 USA. [Schreiner, Peter R.; Fokin, Andrey A.; Tkachenko, Boryslav A.; Fokina, Natalie A.] Univ Giessen, Inst Organ Chem, D-35392 Giessen, Germany. [Dahl, Jeremy E. P.; Carlson, Robert M. K.] Chevron Technol Ventures, MolecularDiamond Technol, Richmond, CA 94802 USA. RP Willey, TM (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, 7000 E Ave, Livermore, CA 94550 USA. EM willey1@llnl.gov RI Willey, Trevor/A-8778-2011; Fokin, Andrey/A-2869-2010; Schreiner, Peter Richard/A-4084-2008; Nielsen, Michael/D-1881-2015; OI Willey, Trevor/0000-0002-9667-8830; Schreiner, Peter Richard/0000-0002-3608-5515; Fokin, Andrey/0000-0002-6381-8948 FU Office of Basic Energy Sciences, Materials Sciences, U.S. Department of Energy [DE-AC52-07NA27344]; Fonds der Chemischen Industrie; Deutsche Forschungsgemeinschaft FX We thank the staff of SSRL especially Dan Brehmer and Curtis Troxel. We acknowledge assistance and advice in computing XAS spectra from the StoBe authors Klaus Hermann and Lars Pettersson. This work was funded by the Office of Basic Energy Sciences, Materials Sciences, U.S. Department of Energy. Research was performed at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. D.O.E., Office of Basic Energy Sciences. This work was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work performed at the Justus-Liebig University was supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft. NR 56 TC 11 Z9 11 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD MAY PY 2009 VL 172 IS 1-3 BP 69 EP 77 DI 10.1016/j.elspec.2009.03.011 PG 9 WC Spectroscopy SC Spectroscopy GA 465DH UT WOS:000267561500011 ER PT J AU Matthews, WJ More, KL Walker, LR AF Matthews, Wendy J. More, Karren L. Walker, Larry R. TI Long-Term Microturbine Exposure of an Advanced Alloy for Microturbine Primary Surface Recuperators SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT 53rd ASME Turbo Expo 2008 CY JUN 09-13, 2008 CL Berlin, GERMANY SP Int Gas Turbine Inst, ASME DE alloys; oxidation; protective coatings; turbines AB Haynes alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.) forms a protective oxide scale when exposed to the harsh operating environment of a microturbine primary surface recuperator. Primary surface recuperators manufactured from HR-120 are currently in use on the Capstone C65 MicroTurbine (MicroTurbine is a registered trademark of Capstone Turbine Corporation). Long-term microturbine tests of this alloy are currently being conducted at an elevated turbine exit temperature (similar to 100 degrees F higher than that in a normal operation) at Capstone Turbine Corporation. Alloy samples that have been tested under steady-state microturbine operating conditions are removed after predetermined exposure intervals for characterization by Capstone Turbine Corporation in collaboration with Oak Ridge National Laboratory. Such evaluations include the characterization of surface oxide scales and the associated alloy compositional changes following a steady-state operation ranging from 1800 h to 14,500 h. Results from the microstructural and compositional analyses of these long-term steady-state engine-tested HR-120 samples are used to illustrate the progression of alloy oxidation in the microturbine operating environment. C1 [Matthews, Wendy J.] Capstone Turbine Corp, Chatsworth, CA 91311 USA. [More, Karren L.; Walker, Larry R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Matthews, WJ (reprint author), Capstone Turbine Corp, Chatsworth, CA 91311 USA. RI More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 NR 23 TC 0 Z9 0 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD MAY PY 2009 VL 131 IS 3 AR 032301 DI 10.1115/1.2966419 PG 6 WC Engineering, Mechanical SC Engineering GA 409ST UT WOS:000263526800015 ER PT J AU Wallner, T Miers, SA McConnell, S AF Wallner, Thomas Miers, Scott A. McConnell, Steve TI A Comparison of Ethanol and Butanol as Oxygenates Using a Direct-Injection, Spark-Ignition Engine SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT ASME Internal Combustion Engine Division Sprint Technical Conference CY APR 27-30, 2008 CL Chicago, IL SP ASME, Internal Combust Engine Div DE additives; calibration; fuel; ignition; internal combustion engines AB This study was designed to evaluate a "what if" scenario in terms of using butanol as an oxygenate in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency, and emissions of pure gasoline, 10% ethanol, and 10% butanol blends in a modern direct-injection four-cylinder spark-ignition engine were analyzed. Data were taken at engine speeds of 1000 rpm up to 4000 rpm with load varying from 0 N m (idle) to 150 N m. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation in indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared with the gasoline baseline and, even more pronounced, compared with the ethanol blend. Brake specific volumetric fuel consumption, which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared with the ethanol blend, as expected, based on energy density differences. The results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NO(x) due to the high octane rating of ethanol and effective antiknock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol. C1 [Wallner, Thomas; Miers, Scott A.; McConnell, Steve] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wallner, T (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 19 TC 43 Z9 44 U1 6 U2 29 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD MAY PY 2009 VL 131 IS 3 AR 032802 DI 10.1115/1.3043810 PG 9 WC Engineering, Mechanical SC Engineering GA 409ST UT WOS:000263526800020 ER PT J AU Di Vittorio, AV AF Di Vittorio, Alan V. TI Pigment-based Identification of Ozone-Damaged Pine Needles as a Basis for Spectral Segregation of Needle Conditions SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID OPTICAL-PROPERTIES MODEL; ELEVATED CARBON-DIOXIDE; FOREST CROWN CONDITION; SIERRA-NEVADA; ENVIRONMENTAL-STRESS; NITROGEN DEPOSITION; TROPOSPHERIC OZONE; PONDEROSA PINE; CLIMATE-CHANGE; AMBIENT OZONE AB Air pollution affects large areas of forest, and field assessment of these effects is a costly, site-specific process. This paper establishes a biochemical basis for identifying ozone-damaged pine trees to facilitate efficient remote sensing assessment of air pollution damage. Several thousand live needles were collected From ponderosa pine (Pinus ponderosa) and Jeffrey pi tie (P. jeffreyi) trees at three sites in Plumas National Forest and Sequoia-Kings Canyon National Park. These needles were assembled into 504 samples (based on the abaxial surface) and grouped according to five dominant needle conditions (green, winter fleck, Sucking insect damage, scale insect damage, and ozone damage) and a random mixture of needles. Pigment concentrations per unit needle area of chlorophyll a, chlorophyll b, and total carotenoids were measured. The following pigment concentration ratios were calculated for all samples: chlorophyll a/tocal carotenoids, chlorophyll b/total carotenoids, total chlorophyll/carotenoids, chlorophyll a/chlorophyll b. The group of ozone-damaged needles had significantly lower mean pigment concentrations (family-wise p < 0.01) and significantly lower mean chlorophyll a/total carotenoid and total chlorophyll/total carotenoid ratios (family-wise p < 0.01) than all other groups of needles. Ozone-damaged needles had a significantly lower mean chlorophyll al chlorophyll b ratio than all other groups except one (family-wise p < 0.01). Linear discriminant analysis with three factors (chlorophyll a concentration, the chlorophyll a/carotenoid ratio, and the chlorophyll a/chlorophyll b ratio) and subsequent maximum likelihood classification of damaged and non-damaged needles gave an overall cross-validated accuracy of 96%. These ozone-damaged needles are biochemically unique in relation to other needle conditions in this study, and further research is needed to generalize these results. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Energy Biosci Inst, Berkeley, CA 94720 USA. RP Di Vittorio, AV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Energy Biosci Inst, 1 Cyclotron Rd,Mail Stop 90-1116, Berkeley, CA 94720 USA. EM adivi@nature.berkeley.edu RI Di Vittorio, Alan/M-5325-2013 OI Di Vittorio, Alan/0000-0002-8139-4640 NR 47 TC 2 Z9 2 U1 1 U2 14 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 J9 J ENVIRON QUAL JI J. Environ. Qual. PD MAY-JUN PY 2009 VL 38 IS 3 BP 855 EP 867 DI 10.2134/jeq2008.0260 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA 441FU UT WOS:000265755500002 PM 19329674 ER PT J AU Onys'ko, PP Kim, TV Kiseleva, OI Rassukana, YV Gakh, AA AF Onys'ko, Petro P. Kim, Tetyana V. Kiseleva, Olena I. Rassukana, Yuliya V. Gakh, Andrei A. TI Cascade iodination-fluori nation synthesis of 2-fluorothiophene and 5-fluoro-2-thienyliodonium salts SO JOURNAL OF FLUORINE CHEMISTRY LA English DT Article DE Iodonium salts; Thiophene; Fluorination; Iodination ID DIARYLIODONIUM SALTS AB The first synthesis of fluorine-containing 2-thienyliodonium salts was accomplished using cascade iodination-fluorination. According to this methodology, thiophene is first converted to bis(2-thienyl)iodonium hexafluorophosphate using an electrophilic iodination reaction. Upon heating with potassium fluoride, this salt undergoes regioselective fluorination producing 2-fluorothiophene. 2-Fluorothiophene is then iodinated again to yield fluorothienyliodonium salts. (C) 2009 Elsevier B.V. All rights reserved. C1 [Onys'ko, Petro P.; Kim, Tetyana V.; Kiseleva, Olena I.; Rassukana, Yuliya V.] Natl Acad Sci Ukraine, Inst Organ Chem, UA-02094 Kiev, Ukraine. [Gakh, Andrei A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Onys'ko, PP (reprint author), Natl Acad Sci Ukraine, Inst Organ Chem, 5 Murmanskaya St, UA-02094 Kiev, Ukraine. EM gakhaa@ornl.gov FU Science and Technology Center in Ukraine (STCU); U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Global IPP program through the Science and Technology Center in Ukraine (STCU). Oak Ridge National Laboratory is managed and operated by UT-Battelle, LLC, under U.S. Department of Energy contract DE-AC05-00OR22725. This paper is a contribution from the Discovery Chemistry Project. NR 11 TC 8 Z9 8 U1 2 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-1139 J9 J FLUORINE CHEM JI J. Fluor. Chem. PD MAY PY 2009 VL 130 IS 5 BP 501 EP 504 DI 10.1016/j.jfluchem.2009.02.001 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 457SM UT WOS:000266953500009 ER PT J AU Sun, X Tartakovsky, AM Khaleel, MA AF Sun, X. Tartakovsky, A. M. Khaleel, M. A. TI Probabilistic-Based Design Methodology for Solid Oxide Fuel Cell Stacks SO JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY LA English DT Article CT 2nd European Fuel Cell Technology and Applications Conference CY DEC, 2007 CL Rome, ITALY DE failure analysis; finite element analysis; probability; solid oxide fuel cells AB A probabilistic-based component design methodology is developed for a solid oxide fuel cell (SOFC) stack. This method takes into account the randomness in SOFC material properties as well as the stresses arising from different manufacturing and operating conditions. The purpose of this work is to provide the SOFC designers a design methodology so that the desired level of component reliability can be achieved with deterministic design functions using an equivalent safety factor to account for the uncertainties in material properties and structural stresses. Multiphysics-based finite element analyses were used to predict the electrochemical and thermal mechanical responses of SOFC stacks with different geometric variations and under different operating conditions. Failures in the anode and the seal were used as design examples. The predicted maximum principal stresses in the anode and the seal were compared with the experimentally determined strength characteristics for the anode and the seal, respectively. Component failure probabilities for the current design were then calculated under different operating conditions. It was found that anode failure probability is very low under all conditions examined. The seal failure probability is relatively high, particularly for high fuel utilization rate under low average cell temperature. Next, the procedures for calculating the equivalent safety factors for the anode and seal were demonstrated so that a uniform failure probability of the anode and seal can be achieved. Analysis procedures were also included for non-normal distributed random variables so that more realistic distributions of strength and stress can be analyzed using the proposed design methodology. C1 [Sun, X.; Tartakovsky, A. M.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, X (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. OI khaleel, mohammad/0000-0001-7048-0749 NR 9 TC 0 Z9 0 U1 0 U2 2 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1550-624X J9 J FUEL CELL SCI TECH JI J. Fuel Cell Sci. Technol. PD MAY PY 2009 VL 6 IS 2 AR 021004 DI 10.1115/1.2971054 PG 10 GA 416SD UT WOS:000264024900005 ER PT J AU Li, CJ Lu, ZM Ma, TH Zhu, XS AF Li, Changjiang Lu, Zhiming Ma, Tuhua Zhu, Xingsheng TI A simple kriging method incorporating multiscale measurements in geochemical survey SO JOURNAL OF GEOCHEMICAL EXPLORATION LA English DT Article DE Kriging; Simple multiscale kriging; Multiresolution data; Geochemical survey AB In this study, we propose a kriging algorithm, multiscale kriging model, to incorporate geochemical data observed at multiscales (multi resolutions). We assume that there are a number of measurements at different scales, and that the target scale at which the parameter values are needed may be different from the measurement scales. Several synthetic examples and the vanadium geochemical data from 8402 stream sediment samples in Zhejiang Province, China, have been used to illustrate the method. These examples demonstrate that, by incorporating measurements from all scales, the estimated field is better than the field estimated using measurements from any individual scale. This method also allows us to estimate a parameter field at the scale that does not have any measurements. Published by Elsevier B.V. C1 [Li, Changjiang; Ma, Tuhua; Zhu, Xingsheng] Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. [Lu, Zhiming] Los Alamos Natl Lab, Hydrol & Geochem Grp EES 6, Los Alamos, NM 87545 USA. RP Li, CJ (reprint author), Zhejiang Informat Ctr Land & Resources, Hangzhou 310007, Zhejiang, Peoples R China. EM zjigmr@mail.hz.zj.cn; zhiming@lanl.gov OI Lu, Zhiming/0000-0001-5800-3368 FU Los Alamos National Laboratory Directed Research and Development (LDRD) [20070441 ER] FX Contributions by Lu were partially supported by Los Alamos National Laboratory Directed Research and Development (LDRD) project (20070441 ER). We are grateful to Prof. Pengda Zhao for having provided a very helpful review of the manuscript. We would like to thank the J. Geochemical Exploration reviewers for their valuable comments, which have improved the paper significantly. NR 8 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-6742 J9 J GEOCHEM EXPLOR JI J. Geochem. Explor. PD MAY PY 2009 VL 101 IS 2 BP 147 EP 154 DI 10.1016/j.gexplo.2008.06.003 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 446NP UT WOS:000266128600002 ER PT J AU Chandy, AJ Glaze, DJ Frankel, SH AF Chandy, Abhilash J. Glaze, David J. Frankel, Steven H. TI A Hybrid Large Eddy Simulation/Filtered Mass Density Function for the Calculation of Strongly Radiating Turbulent Flames SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Western States Combustion Meeting 2007 CY MAR, 2007 CL San Diego, CA DE LES; FMDF method; soot; turbulence-radiation interactions ID FINITE-DIFFERENCE SCHEMES; DIFFUSION FLAMES; BOUNDARY-CONDITIONS; REACTING FLOWS; JET FLAMES; SOOT; MODEL; EXTINCTION; FRACTION; MIXTURE AB Due to the complex nonlinear coupling of turbulent flow, finite-rate combustion chemistry and thermal radiation from combustion products and soot, modeling, and/or simulation of practical combustors, or even laboratory flames undergoing strong soot formation, remain elusive. Methods based on the determination of the probability density function of the joint thermochemical scalar variables offer a promising approach for handling turbulence-chemistry-radiation interactions in flames. Over the past decade, the development and application of the filtered mass density function (FMDF) approach in the context of large eddy simulations (LES) of turbulent flames have gained considerable ground. The work described here represents the first application of the LES/FMDF approach to flames involving soot formation and luminous radiation. The initial focus here is on the use of a flamelet soot model in an idealized strongly radiating turbulent jet flame, which serves to detail the formulation, highlight the importance of turbulence-radiation interactions, and pave the way for the inclusion of a soot transport and finiterate kinetics model allowing for quantitative comparisons to laboratory scale sooting flames in the near future. [DOI:10.1115/1.3082405] C1 [Chandy, Abhilash J.; Frankel, Steven H.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Glaze, David J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chandy, AJ (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. NR 40 TC 5 Z9 5 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD MAY PY 2009 VL 131 IS 5 AR 051201 DI 10.1115/1.3082405 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 421QW UT WOS:000264374400002 ER PT J AU Atre, A Han, T Pascoli, S Zhang, B AF Atre, Anupama Han, Tao Pascoli, Silvia Zhang, Bin TI The search for heavy Majorana neutrinos SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Review DE Neutrino Physics; Rare Decays; Hadronic Colliders ID DOUBLE-BETA-DECAY; LEPTON-NUMBER VIOLATION; WARM DARK-MATTER; DOUBLY-CHARGED HIGGS; LEFT-RIGHT SYMMETRY; R-PARITY VIOLATION; STERILE NEUTRINOS; MASSIVE NEUTRINOS; FLAVOR VIOLATION; SO(10) MODEL AB The Majorana nature nature of neutrinos can be experimentally verified only via lepton-number violating processes involving charged leptons. We study 36 lepton-number violating (LV) processes from the decays of tau leptons and pseudoscalar mesons. These decays are absent in the Standard Model but, in presence of Majorana neutrinos in the mass range similar to 100 MeV to 5 GeV, the rates for these processes would be enhanced due to their resonant contribution. We calculate the transition rates and branching fractions and compare them to the current bounds from direct experimental searches for Delta L = 2 tau and rare meson decays. The experimental non-observation of such LV processes places stringent bounds on the Majorana neutrino mass and mixing and we summarize the existing limits. We also extend the search to hadron collider experiments. We find that, at the Tevatron with 8fb(-1) integrated luminosity, there could be 2 sigma (5 sigma) sensitivity for resonant production of a Major an a neutrino in the mu(+/-)mu(+/-) modes in the mass range of similar to 10 - 180 GeV (10 - 120 GeV). This reach can be extended to similar to 10 - 375 GeV (10 - 250 GeV) at the LHC of 14 TeV with 100 fb(-1). The production cross section at the LHC of 10 TeV is also presented for comparison. We study the mu(+/-)e(+/-) modes as well and find that the signal could be large enough even taking in to account the current bound from neutrinoless double-beta decay. The signal from the gauge boson fusion channel W+W+-> l(1)(+)l(2)(+) at the LHC is found to be very weak given the rather small mixing parameters. We comment on the search strategy when at lepton is involved in the final state. C1 [Han, Tao; Zhang, Bin] Tsinghua Univ, Dept Phys, Ctr High Energy Phys, Beijing 100084, Peoples R China. [Atre, Anupama] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Atre, Anupama; Han, Tao] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93107 USA. [Han, Tao] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Pascoli, Silvia] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. RP Zhang, B (reprint author), Tsinghua Univ, Dept Phys, Ctr High Energy Phys, Beijing 100084, Peoples R China. EM avatre@fnal.gov; than@hep.wisc.edu; silvia.pascoli@durham.ac.uk; zb@mail.tsinghua.edu.cn OI Han, Tao/0000-0002-5543-0716 NR 217 TC 180 Z9 180 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 030 DI 10.1088/1126-6708/2009/05/030 PG 69 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100030 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Romeo, GC Cindolo, F Corradi, M Iacobucci, G Margotti, A Massam, T Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A Palmonari, F De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Brook, NH Heath, GP Morris, JD Kaur, M Kaur, P Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Behnke, O Behrens, U Blohm, C Bonato, A Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Fourletova, J Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Rinaldi, L Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Ukleja, J Wolf, G Wrona, K Molina, AGY Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Dunne, W Forrest, M Rosin, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Foudas, C Fry, C Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Bachynska, O Borodin, M Kadenko, I Kozulia, A Libov, V Lontkovskyi, D Makarenko, I Sorokin, I Verbytskyi, A Volynets, O Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M Labarga, L del Peso, J Ron, E Soares, M Terron, J Uribe-Estrada, C Zambrana, M Corriveau, F Liu, C Schwartz, J Walsh, R Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Allfrey, PD Bell, MA Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Bellan, P Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Cole, JE Hart, JC Heusch, C Sadrozinski, H Seiden, A Wichmann, R Williams, DC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Kuze, M Maeda, J Hori, R Kagawa, S Okazaki, N Shimizu, S Tawara, T Hamatsu, R Kaji, H Kitamura, S Ota, O Ri, YD Cirio, R Costa, M Ferrero, MI Monaco, V Peroni, C Sacchi, R Sola, V Solano, A Cartiglia, N Maselli, S Staiano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Tymieniecka, T Zarnecki, AF Adamus, M Plucinski, P Ukleja, A Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Cui, Y Hartner, G Menary, S Noor, U Standage, J Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Romeo, G. Cara Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Massam, T. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. Palmonari, F. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Brook, N. H. Heath, G. P. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Behnke, O. Behrens, U. Blohm, C. Bonato, A. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Fourletova, J. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Rinaldi, L. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Ukleja, J. Wolf, G. Wrona, K. Molina, A. G. Yaguees Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Dunne, W. Forrest, M. Rosin, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Foudas, C. Fry, C. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Bachynska, O. Borodin, M. Kadenko, I. Kozulia, A. Libov, V. Lontkovskyi, D. Makarenko, I. Sorokin, Iu. Verbytskyi, A. Volynets, O. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. Labarga, L. del Peso, J. Ron, E. Soares, M. Terron, J. Uribe-Estrada, C. Zambrana, M. Corriveau, F. Liu, C. Schwartz, J. Walsh, R. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Allfrey, P. D. Bell, M. A. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Bellan, P. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Cole, J. E. Hart, J. C. Heusch, C. Sadrozinski, H. Seiden, A. Wichmann, R. Williams, D. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Kuze, M. Maeda, J. Hori, R. Kagawa, S. Okazaki, N. Shimizu, S. Tawara, T. Hamatsu, R. Kaji, H. Kitamura, S. Ota, O. Ri, Y. D. Cirio, R. Costa, M. Ferrero, M. I. Monaco, V. Peroni, C. Sacchi, R. Sola, V. Solano, A. Cartiglia, N. Maselli, S. Staiano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Tymieniecka, T. Zarnecki, A. F. Adamus, M. Plucinski, P. Ukleja, A. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Cui, Y. Hartner, G. Menary, S. Noor, U. Standage, J. Whyte, J. CA ZEUS Collaboration TI A measurement of the Q(2), W and t dependences of deeply virtual Compton scattering at HERA SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lepton-Nucleon Scattering ID CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; J/PSI MESONS; EXCLUSIVE ELECTROPRODUCTION; ELASTIC ELECTROPRODUCTION; LEADING PROTON; PHOTOPRODUCTION; CONSTRUCTION; DESIGN; IDENTIFICATION AB Deeply virtual Compton scattering, gamma*p -> gamma p, has been measured in e(+)p collisions at HERA with the ZEUS detector using an integrated luminosity of 61.1 pb(-1). Cross sections are presented as a function of the photon virtuality, Q(2), and photon-proton centre-of-mass energy, W, for a wide region of the phase space, Q(2) > 1.5GeV(2) and 40 < W < 170GeV. A subsample of events in which the scattered proton is measured in the leading proton spectrometer, corresponding to an integrated luminosity of 31.3 pb(-1), is used for the first direct measurement of the differential cross section as a function of t, where t is the square of the four-momentum transfer at the proton vertex. C1 [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Massam, T.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Palmonari, F.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; Palmonari, F.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Szuba, J.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland. [Behnke, O.; Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Ukleja, J.; Wolf, G.; Wrona, K.; Molina, A. G. Yaguees; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, I-50125 Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Aegean, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] Natl Lab High Energy Phys, KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 305, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Uribe-Estrada, C.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Heusch, C.; Sadrozinski, H.; Seiden, A.; Wichmann, R.; Williams, D. C.] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kaji, H.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Cirio, R.; Costa, M.; Ferrero, M. I.; Monaco, V.; Peroni, C.; Sacchi, R.; Sola, V.; Solano, A.; Cartiglia, N.; Maselli, S.; Staiano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Cirio, R.; Costa, M.; Ferrero, M. I.; Monaco, V.; Peroni, C.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletova, J.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Tymieniecka, T.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Ukleja, A.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Kaur, P.; Singh, I.; Abramowicz, H.] Max Planck Inst, Munich, Germany. [Nicholass, D.] UCL, London WC1E 6BT, England. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Tymieniecka, T.] Univ Podlasie, Siedlce, Poland. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. RP Chekanov, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio, Salvatore /G-5156-2010; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Tassi, Enrico/K-3958-2015; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Wiggers, Leo/0000-0003-1060-0520; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; FU DESY Directorate FX We thank the DESY Directorate for their support and encouragement. We are grateful for the support of the DESY computing and network services. We are specially grateful to the HERA machine group: collaboration with them was crucial to the successful installation and operation of the leading proton spectrometer. The design, construction and installation of the ZEUS detector were made possible by the ingenuity and effort of many people who are not listed as authors. NR 57 TC 35 Z9 35 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 108 DI 10.1088/1126-6708/2009/05/108 PG 26 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100108 ER PT J AU Delaunay, C Fox, PJ Perez, G AF Delaunay, Cedric Fox, Patrick J. Perez, Gilad TI Probing dark matter dynamics via earthborn neutrinos at IceCube SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Neutrino Detectors and Telescopes ID RAY POSITRON FRACTION; SUN; ANNIHILATIONS; CANDIDATES; SIGNATURES; ENERGIES; CAPTURE; SPECTRA; EXCESS AB Recent results from PAMELA and ATIC hint that O(TeV) dark matter (DM) is annihilating, in our galactic neighborhood, mainly to leptons. The present annihilation rate is larger than at freeze-out, possibly due to a low-velocity enhancement. In this case the rate of neutrino emission from the Earth, due to DM annihilation, may be greatly enhanced while the rate from the Sun is unaltered. Neutrino telescopes may see these earthborn neutrinos. Combining with the data from direct detection experiments will yield valuable information about the DM sector. C1 [Delaunay, Cedric; Perez, Gilad] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Fox, Patrick J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Delaunay, C (reprint author), Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. EM cedric.delaunay@weizmann.ac.il; gilad.perez@weizmann.ac.il; pjfox@fnal.gov NR 57 TC 17 Z9 17 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 099 DI 10.1088/1126-6708/2009/05/099 PG 12 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100099 ER PT J AU Goh, HS Hall, LJ Kumar, P AF Goh, Hock-Seng Hall, Lawrence J. Kumar, Piyush TI The leptonic Higgs as a messenger of dark matter SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Review DE Higgs Physics; Beyond Standard Model; Cosmology of Theories beyond the SM ID RAY POSITRON FRACTION; BOSONS; ENERGIES; PHYSICS; SEARCH; NEUTRINOS; MODELS; LHC; SUN AB We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC result from the annihilation or decay of dark matter particles via states of a leptonic Higgs doublet to tau leptons, linking cosmic ray signals of dark matter to LHC signals of the Higgs sector. The states of the leptonic Higgs doublet are lighter than about 200GeV, yielding large (tau) over bar tau and (tau) over bar tau(tau) over bar tau event rates at the LHC. Simple models are given for the dark matter particle and its interactions with the leptonic Higgs, for cosmic ray signals arising from both annihilations and decays in the galactic halo. For the case of annihilations, cosmic photon and neutrino signals are on the verge of discovery. C1 [Goh, Hock-Seng; Hall, Lawrence J.; Kumar, Piyush] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Hall, Lawrence J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Goh, HS (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM hsgoh@berkeley.edu; ljhall@lbl.gov; kpiyush@berkeley.edu OI Kumar, Piyush/0000-0003-4894-4468 FU U. S. Department of Energy [DE-AC02-05CH11231]; NSF [PHY-04-57315] FX We would like to thank Yasunori Nomura, Alessandro Strumia and Jesse Thaler for useful discussions. HG would like to thank the KITPC for their hospitality where part of his research was conducted. This work is supported by the U. S. Department of Energy under contract no. DE-AC02-05CH11231 and NSF grant PHY-04-57315 NR 103 TC 45 Z9 45 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 097 DI 10.1088/1126-6708/2009/05/097 PG 39 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100097 ER PT J AU Han, T Mahbubani, R Walker, DGE Wang, LT AF Han, Tao Mahbubani, Rakhi Walker, Devin G. E. Wang, Lian-Tao TI Top-quark pair plus large missing energy at the LHC SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Hadronic Colliders ID ELECTROWEAK SYMMETRY-BREAKING; HADRON COLLIDERS; MEASURING MASSES; STANDARD MODEL; SPIN; SUPERSYMMETRY; CONDENSATION; HIERARCHY; DYNAMICS AB We study methods of extracting new physics signals in final states with a top-quark pair plus large missing energy at the LHC. We consider two typical examples of such new physics: pair production of a fermionic top partner (a T' in Little Higgs models for example) and of a scalar top partner (a (t) over tilde in SUSY). With a commonly-adopted discrete symmetry under which non Standard Model particles are odd, the top partner is assumed to decay predominantly to a top quark plus a massive neutral stable particle A(0). We focus on the case in which one of the top quarks decays leptonically and the other decays hadronically, pp -> t (t) over barA(0)A(0)X -> bj(1)j(2) (b) over barl(-)(nu) over bar A(0)A(0) X + c.c., where the A(0)s escape detection. We identify a key parameter for the signal observation: the mass splitting between the top partner and the missing particle. We reconstruct a transverse mass for the lepton-missing transverse energy system to separate the real W background from the signal and propose a definition for the reconstructed top quark mass that allows it to take unphysical values as an indication of new physics. We perform a scan over the two masses to map out the discovery reach at the LHC in this channel. We also comment on the possibility of distinguishing between scalar and fermionic top partners using collider signatures. C1 [Han, Tao] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Han, Tao; Mahbubani, Rakhi; Walker, Devin G. E.; Wang, Lian-Tao] Univ Calif Santa Barbara, KITP, Santa Barbara, CA 93107 USA. [Mahbubani, Rakhi] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Walker, Devin G. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Walker, Devin G. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Wang, Lian-Tao] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Han, T (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM than@hep.wisc.edu; rakhi@fnal.gov; dgwalker@berkeley.edu; lianwang@princeton.edu OI Han, Tao/0000-0002-5543-0716 NR 63 TC 39 Z9 39 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 117 DI 10.1088/1126-6708/2009/05/117 PG 23 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100117 ER PT J AU Ho, CM Nakayama, Y AF Ho, Chiu Man Nakayama, Yu TI Unparticles and holographic renormalization group SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; AdS-CFT Correspondence; Renormalization Group AB We revisit the unparticle interactions and propagators from the AdS-CFT point of view, and we show how the contact terms and their renormalization group flow appear in the context of the holographic renormalization. We study both vector unparticles and unfermions, uncovering the relevant boundary conditions and renormalization group flows. C1 [Ho, Chiu Man; Nakayama, Yu] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ho, Chiu Man; Nakayama, Yu] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Ho, CM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM cmho@berkeley.edu; nakayama@berkeley.edu RI Ho, Chiu Man /C-2741-2013 FU NSF [PHY-0555662]; UC Berkeley Center for Theoretical Physics FX The research of Y. N. is supported in part by NSF grant PHY-0555662 and the UC Berkeley Center for Theoretical Physics. He also thanks the Yukawa Institute for Theoretical Physics at Kyoto University, where this work was presented at the YITP-W-08-04 on " Development of Quantum Field Theory and String Theory". C. M. Ho acknowledges the support from Berkeley Center for Theoretical Physics and the Croucher Foundation. NR 17 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 081 DI 10.1088/1126-6708/2009/05/081 PG 10 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100081 ER PT J AU Hornig, A Lee, C Ovanesyan, G AF Hornig, Andrew Lee, Christopher Ovanesyan, Grigory TI Effective predictions of event shapes: factorized, resummed and gapped angularity distributions SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jets; NLO Computations; QCD; Nonpertubative Effects ID E+E-ANNIHILATION; QUANTUM CHROMODYNAMICS; POWER CORRECTIONS; NNLO CALCULATION; PHOTON ENERGY; 2-LOOP RESULT; MESON DECAYS; WILSON LOOPS; RESUMMATION; QCD AB Using soft-collinear effective theory (SCET), which provides a unified for factorization, resummation of logarithms, and incorporation of universal functions in hard-scattering QCD cross-sections, we present a new prediction distributions in e(+)e(-) annihilation. Angularities tau(a) are an infinite class of which vary in their sensitivity to the substructure of jets in the final state, continuous parameter a < 2. We calculate angularity distributions for all a < 1 in the strong coupling alpha(s) and resum large logarithms in these distributions to-leading logarithmic (NLL) accuracy. Our expressions for the next-to-leading O(alpha(s)) partonic jet and soft functions in the factorization theorem for are given for the first time. We employ a model for the nonperturbative with a gap parameter which cancels the renormalon ambiguity in the We explore the relation between the SCET approach to resummation approaches in QCD, and discuss the advantages of the effective theory approach. In addition, we draw from the NLO calculations of the jet and soft functions and intuitive lesson about how factorization breaks down in the effective theory as a -> 1. C1 [Hornig, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. RP Hornig, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ahornig@berkeley.edu; clee@berkeley.edu; ovanesyan@berkeley.edu OI Lee, Christopher/0000-0003-2385-7536 NR 75 TC 35 Z9 35 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 122 DI 10.1088/1126-6708/2009/05/122 PG 52 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100122 ER PT J AU Kumar, K Tait, TMP Vega-Morales, R AF Kumar, Kunal Tait, Tim M. P. Vega-Morales, Roberto TI Manifestations of top compositeness at colliders SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Heavy Quark Physics; Hadronic Colliders; Techni-color and Composite Models ID QUARK PRODUCTION; MODEL; RESONANCES; TEVATRON AB We explore the possibility that the right-handed top quark is composite, identifying possible signatures of compositeness and how they might manifest themselves at the LHC and Tevatron. We perform a complete analysis of the dimension six modifications of the top coupling to gluons and find that cancellations among operators in the t (t) over bar rate allow for very low compositeness scales, but this can be drastically improved by looking at kinematic distributions. Turning to the LHC, we examine four top production from a dimension six four-top operator and estimate the LHC with 100 fb(-1) collected luminosity to be sensitive to compositeness scales as high as 5TeV. C1 [Kumar, Kunal; Tait, Tim M. P.; Vega-Morales, Roberto] Northwestern Univ, Evanston, IL 60208 USA. [Kumar, Kunal; Tait, Tim M. P.; Vega-Morales, Roberto] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Kumar, K (reprint author), Northwestern Univ, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM kunal.kunalkumar@gmail.com; tait@anl.gov; rvegamorales@gmail.com NR 52 TC 39 Z9 39 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 022 DI 10.1088/1126-6708/2009/05/022 PG 12 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100022 ER PT J AU Kumar, P AF Kumar, Piyush TI Neutrino masses, Baryon asymmetry, dark matter and the moduli problem - A complete framework SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Review DE Supersymmetry Phenomenology; Strings and branes phenomenology ID SUPERSYMMETRIC STANDARD MODEL; RIGHT-HANDED NEUTRINO; ELECTROWEAK BARYOGENESIS; COSMOLOGICAL IMPLICATIONS; FLAT DIRECTIONS; LEPTOGENESIS; BREAKING; MECHANISM; DECAY; COMPACTIFICATION AB Recent developments in string theory have led to "realistic" string compactifications which lead to moduli stabilization while generating a hierarchy between the Electroweak and Planck scales at the same time. However, this seems to suggest a rethink of our standard notions of cosmological evolution after the end of inflation and before the beginning of BBN. This epoch is crucial for addressing the issues of neutrino masses, baryon asymmetry, Dark Matter (DM) abundance and the moduli (gravitino) problem. We argue that within classes of realistic string compactifications as defined above, there generically exists a light modulus with a mass comparable to that of the gravitino which is typically much smaller than the Hubble parameter during inflation. Therefore, it is destabilized and generates a large late-time entropy when it decays. Thus, all known elegant mechanisms of generating the baryon asymmetry of the Universe in the literature have to take this fact into account. In this work, we find that it is still possible to naturally generate the observed baryon asymmetry of the Universe as well as light left-handed neutrino masses from a period of Affleck-Dine (AD) leptogenesis shortly after the end of inflation, in classes of realistic string constructions with a minimal extension of the MSSM below the unification scale (consisting only of right-handed neutrinos) and satisfying certain microscopic criteria described in the text. The AD mechanism has already been used to generate the baryon asymmetry in the literature; however in this work we have embedded the above mechanism within a framework well motivated from string theory and have tried to describe the epoch from the end of inflation to the beginning of BBN in a complete and self-consistent manner. The consequences of our analysis are as follows. The lightest left-handed neutrino is required to be virtually massless. The moduli (gravitino) problem can be naturally solved in this framework both within gravity and gauge mediation. The observed upper bound on the relic abundance constrains the moduli-matter and moduli-gravitino couplings since the DM is produced non-thermally within this framework. Finally, although not a definite prediction, the framework naturally allows a light right-handed neutrino and sneutrinos around the electroweak scale which could have important implications for the nature of DM as well as the LHC. C1 [Kumar, Piyush] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kumar, Piyush] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Kumar, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM kpiyush@berkeley.edu NR 110 TC 8 Z9 8 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 083 DI 10.1088/1126-6708/2009/05/083 PG 49 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100083 ER PT J AU Unsal, M AF Uensal, Mithat TI Deformed matrix models, supersymmetric lattice twists and N=1/4 supersymmetry SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Matrix Models; Extended Supersymmetry; Lattice Gauge Field Theories ID SUPER-YANG-MILLS; EXACT EXTENDED SUPERSYMMETRY; FIELD-THEORY; DIMENSIONS; DECONSTRUCTION; FORMULATION; DUALITY; SUSY AB A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N = (8, 8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q = 1 deformed matrix model regularization of N = 4 SYM in d = 4, which is equivalent to a non-commutative A(4)(*) orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N = 1/4 supersymmetry preserving deformation of N = 4 SYM theory on R-4. In this class of N = 1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation. C1 [Uensal, Mithat] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Uensal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Unsal, M (reprint author), Stanford Univ, SLAC, Stanford, CA 94305 USA. EM unsal@slac.stanford.edu FU U. S. Department of Energy [DE-AC02-76SF00515] FX I thank Takemichi Okui for his collaboration in the early stage of this work, regarding in particular the structure of the Brillouin zones and section 3 in general. I am thankful to David B. Kaplan for many discussions on lattice fermions, and Simon Catterall, Noboru Kawamoto, Kazuhiro Nagata for valuable comments on the draft. This work is supported by the U. S. Department of Energy Grant DE-AC02-76SF00515. NR 67 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAY PY 2009 IS 5 AR 082 DI 10.1088/1126-6708/2009/05/082 PG 46 WC Physics, Particles & Fields SC Physics GA 468BT UT WOS:000267789100082 ER PT J AU Abe, T Aihara, H Oulos, CA Ankowski, A Badertscher, A Battistoni, G Blondel, A Bouchez, J Bross, A Bueno, A Camilleri, L Campagne, JE Cazes, A Cervera-Villanueva, A De Lellis, G Di Capua, F Ellis, M Ereditato, A Esposito, LS Fukushima, C Gschwendtner, E Gomez-Cadenas, JJ Iwasaki, M Kaneyuki, K Karadzhov, Y Kashikhin, V Kawai, Y Komatsu, M Kozlovskaya, E Kudenko, Y Kusaka, A Kyushima, H Laing, A Long, K Longhin, A Marchionni, A Marotta, A McGrew, C Menary, S Meregaglia, A Mezzeto, M Migliozzi, P Mondal, NK Montanari, C Nakadaira, T Nakamura, M Nakumo, H Nakayama, H Nelson, J Nowak, J Ogawa, S Peltoniemi, J Pla-Dalmau, A Ragazzi, S Rubbia, A Sanchez, F Sarkamo, J Sato, O Selvi, M Shibuya, H Shozawa, M Sobczyk, J Soler, FJP Strolin, P Suyama, M Tanaka, M Terranova, F Tsenov, R Uchida, Y Weber, A Zlobin, A AF Abe, T. Aihara, H. Oulos, C. Andreop Ankowski, A. Badertscher, A. Battistoni, G. Blondel, A. Bouchez, J. Bross, A. Bueno, A. Camilleri, L. Campagne, J. E. Cazes, A. Cervera-Villanueva, A. De Lellis, G. Di Capua, F. Ellis, M. Ereditato, A. Esposito, L. S. Fukushima, C. Gschwendtner, E. Gomez-Cadenas, J. J. Iwasaki, M. Kaneyuki, K. Karadzhov, Y. Kashikhin, V. Kawai, Y. Komatsu, M. Kozlovskaya, E. Kudenko, Y. Kusaka, A. Kyushima, H. Laing, A. Long, K. Longhin, A. Marchionni, A. Marotta, A. McGrew, C. Menary, S. Meregaglia, A. Mezzeto, M. Migliozzi, P. Mondal, N. K. Montanari, C. Nakadaira, T. Nakamura, M. Nakumo, H. Nakayama, H. Nelson, J. Nowak, J. Ogawa, S. Peltoniemi, J. Pla-Dalmau, A. Ragazzi, S. Rubbia, A. Sanchez, F. Sarkamo, J. Sato, O. Selvi, M. Shibuya, H. Shozawa, M. Sobczyk, J. Soler, F. J. P. Strolin, P. Suyama, M. Tanaka, M. Terranova, F. Tsenov, R. Uchida, Y. Weber, A. Zlobin, A. CA ISS Detector Working Grp TI International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facilities SO JOURNAL OF INSTRUMENTATION LA English DT Review DE Large detector systems for particle and astroparticle physics; Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) ID CHARGED-CURRENT INTERACTIONS; TIME PROJECTION CHAMBER; LIQUID-ARGON TPC; SPHERICAL HYBRID PHOTODETECTOR; MINOS CALIBRATION DETECTOR; CROSS-SECTION MEASUREMENTS; ACTIVE PIXEL SENSOR; BASE-LINE; NUCLEON SCATTERING; NOMAD EXPERIMENT AB This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the delta-theta(13) parameter space. C1 [Laing, A.; Soler, F. J. P.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Abe, T.; Aihara, H.; Iwasaki, M.; Kaneyuki, K.; Kusaka, A.; Nakumo, H.; Nakayama, H.; Shozawa, M.] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Oulos, C. Andreop; Weber, A.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Badertscher, A.; Marchionni, A.; Meregaglia, A.; Rubbia, A.] Swiss Fed Inst Technol, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Battistoni, G.; Ragazzi, S.] Univ Milan, Dipartimento Fis, I-20123 Milan, Italy. [Battistoni, G.; Ragazzi, S.] Univ Milan, Ist Nazl Fis Nucl, I-20123 Milan, Italy. [Blondel, A.] Univ Geneva, Sect Phys, CH-1211 Geneva, Switzerland. [Bouchez, J.] Univ Paris Diderot Paris 7, Lab Astroparticule & Cosmol, F-75205 Paris, France. [Bouchez, J.] DAPNIA, CEA, F-91191 Gif Sur Yvette, France. [Camilleri, L.; Gschwendtner, E.] CERN, CH-1211 Geneva 23, Switzerland. [Bross, A.; Ellis, M.; Kashikhin, V.; Menary, S.; Pla-Dalmau, A.; Zlobin, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bueno, A.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Campagne, J. E.] Univ Paris 11, Lab Accelerateur Lineaire, CNRS, IN2P3, F-91898 Orsay, France. [Cazes, A.; Terranova, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Rome, Italy. [Cervera-Villanueva, A.; Gomez-Cadenas, J. J.] Univ Valencia, CSIC, Inst Fis Corpuscular, IFIC, E-46071 Valencia, Spain. [De Lellis, G.; Di Capua, F.; Marotta, A.; Migliozzi, P.; Strolin, P.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Ereditato, A.] Univ Bern, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Esposito, L. S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Fukushima, C.; Ogawa, S.; Shibuya, H.] Toho Univ, Dept Phys, Funabashi, Chiba 2748510, Japan. [Karadzhov, Y.; Tsenov, R.] Sofia Univ St Kliment Ohridski, Dept Atom Phys, BG-1164 Sofia, Bulgaria. [Kawai, Y.; Kyushima, H.; Suyama, M.] Hamamatsu Photon KK, Hamamatsu, Shizuoka, Japan. [Komatsu, M.; Nakamura, M.; Sato, O.] Nagoya Univ, Dept Phys, Nagoya, Aichi 46401, Japan. [Kozlovskaya, E.] Univ Oulu, Sodankyla Geophys Observ, Oulu, Finland. [Kudenko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Longhin, A.; Mezzeto, M.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Longhin, A.; Mezzeto, M.] Univ Padua, Ist Nazl Fis Nucl, I-35131 Padua, Italy. [McGrew, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Menary, S.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Montanari, C.] Univ Pavia, Dipartimento Fis Alessandro Volta, I-27100 Pavia, Italy. [Montanari, C.] Univ Pavia, Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Nakadaira, T.; Tanaka, M.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Nelson, J.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Peltoniemi, J.; Sarkamo, J.] Univ Oulu, Ctr Underground Phys, Oulu, Finland. [Sanchez, F.] Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. [Selvi, M.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. [Selvi, M.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Long, K.; Uchida, Y.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2BW, England. [Weber, A.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Ankowski, A.; Sobczyk, J.] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. [Nowak, J.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Soler, FJP (reprint author), Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. EM p.soler@physics.gla.ac.uk RI Ragazzi, Stefano/D-2463-2009; Aihara, Hiroaki/F-3854-2010; Gomez Cadenas, Juan Jose/L-2003-2014; Migliozzi, Pasquale/I-6427-2015; Soler, Paul/E-8464-2011; Sanchez, Federico/F-5809-2012; Bueno, Antonio/F-3875-2015; Nowak, Jaroslaw/P-2502-2016; Battistoni, Giuseppe/B-5264-2012; Selvi, Marco/D-9021-2013 OI Longhin, Andrea/0000-0001-9103-9936; Weber, Alfons/0000-0002-8222-6681; Ankowski, Artur/0000-0003-4073-8686; Ragazzi, Stefano/0000-0001-8219-2074; Aihara, Hiroaki/0000-0002-1907-5964; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Migliozzi, Pasquale/0000-0001-5497-3594; Soler, Paul/0000-0002-4893-3729; Sanchez, Federico/0000-0003-0320-3623; Bueno, Antonio/0000-0002-7439-4247; Nowak, Jaroslaw/0000-0001-8637-5433; Battistoni, Giuseppe/0000-0003-3484-1724; Selvi, Marco/0000-0003-0243-0840 NR 145 TC 49 Z9 49 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2009 VL 4 AR T05001 DI 10.1088/1748-0221/4/05/T05001 PG 87 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 469ZY UT WOS:000267942300023 ER PT J AU Adam, W Bergauer, T Dragicevic, M Friedl, M Fruhwirth, R Hansel, S Hrubec, J Krammer, M Oberegger, M Pernicka, M Schmid, S Stark, R Steininger, H Uhl, D Waltenberger, W Widl, E Van Mechelen, P Cardaci, M Beaumont, W de Langhe, E de Wolf, EA Delmeire, E Hashemi, M Bouhali, O Charaf, O Clerbaux, B Dewulf, JP Elgammal, S Hammad, G de Lentdecker, G Marage, P Vander Velde, C Vanlaer, P Wickens, J Adler, V Devroede, O De Weirdt, S D'Hondt, J Goorens, R Heyninck, J Maes, J Mozer, M Tavernier, S Van Lancker, L Van Mulders, P Villella, I Wastiels, C Bonnet, JL Bruno, G De Callatay, B Florins, B Giammanco, A Gregoire, G Keutgen, T Kcira, D Lemaitre, V Michotte, D Militaru, O Piotrzkowski, K Quertermont, L Roberfroid, V Rouby, X Teyssier, D Daubie, E Anttila, E Czellar, S Engstrom, P Harkonen, J Karimaki, V Kostesmaa, J Kuronen, A Lampen, T Linden, T Luukka, PR Maenpaa, T Michal, S Tuominen, E Tuominiemi, J Ageron, M Baulieu, G Bonnevaux, A Boudoul, G Chabanat, E Chabert, E Chierici, R Contardo, D Della Negra, R Dupasquier, T Gelin, G Giraud, N Guillot, G Estre, N Haroutunian, R Lumb, N Perries, S Schirra, F Trocme, B Vanzetto, S Agram, JL Blaes, R Drouhin, F Ernenwein, JP Fontaine, JC Berst, JD Brom, JM Didierjean, F Goerlach, U Graehling, P Gross, L Hosselet, J Juillot, P Lounis, A Maazouzi, C Olivetto, C Strub, R Van Hove, P Anagnostou, G Brauer, R Esser, H Feld, L Karpinski, W Klein, K Kukulies, C Olzem, J Ostapchuk, A Pandoulas, D Pierschel, G Raupach, F Schael, S Schwering, G Sprenger, D Thomas, M Weber, M Wittmer, B Wlochal, M Beissel, F Bock, E Flugge, G Gillissen, C Hermanns, T Heydhausen, D Jahn, D Kaussen, G Linn, A Perchalla, L Poettgens, M Pooth, O Stahl, A Zoeller, MH Buhmann, P Butz, E Flucke, G Hamdorf, R Hauk, J Klanner, R Pein, U Schleper, P Steinbruck, G Blum, P De Boer, W Dierlamm, A Dirkes, G Fahrer, M Frey, M Furgeri, A Hartmann, F Heier, S Hoffmann, KH Kaminski, J Ledermann, B Liamsuwan, T Muller, S Muller, T Schilling, FP Simonis, HJ Steck, P Zhukov, V Cariola, P De Robertis, G Ferorelli, R Fiore, L Preda, M Sala, G Silvestris, L Tempesta, P Zito, G Creanza, D De Filippis, N De Palma, M Giordano, D Maggi, G Manna, N My, S Selvaggi, G Albergo, S Chiorboli, M Costa, S Galanti, M Giudice, N Guardone, N Noto, F Potenza, R Saizu, MA Sparti, V Sutera, C Tricomi, A Tuve, C Brianzi, M Civinini, C Maletta, F Manolescu, F Meschini, M Paoletti, S Sguazzoni, G Broccolo, B Ciulli, V D'Alessandro, R Focardi, E Frosali, S Genta, C Landi, G Lenzi, P Macchiolo, A Magini, N Parrini, G Scarlini, E Cerati, G Azzi, P Bacchetta, N Candelori, A Dorigo, T Kaminsky, A Karaevski, S Khomenkov, V Reznikov, S Tessaro, M Bisello, D De Mattia, M Giubilato, P Loreti, M Mattiazzo, S Nigro, M Paccagnella, A Pantano, D Pozzobon, N Tosi, M Bilei, GM Checcucci, B Fano, L Servoli, L Ambroglini, F Babucci, E Benedetti, D Biasini, M Caponeri, B Covarelli, R Giorgi, M Lariccia, P Mantovani, G Marcantonini, M Postolache, V Santocchia, A Spiga, D Bagliesi, G Balestri, G Berretta, L Bianucci, S Boccali, T Bosi, F Bracci, F Castaldi, R Ceccanti, M Cecchi, R Cerri, C Cucoanes, AS Dell'Orso, R Dobur, D Dutta, S Giassi, A Giusti, S Kartashov, D Kraan, A Lomtadze, T Lungu, GA Magazzu, G Mammini, P Mariani, F Martinelli, G Moggi, A Palla, F Palmonari, F Petragnani, G Profeti, A Raffaelli, F Rizzi, D Sanguinetti, G Sarkar, S Sentenac, D Serban, AT Slav, A Soldani, A Spagnolo, P Tenchini, R Tolaini, S Venturi, A Verdini, PG Vos, M Zaccarelli, L Avanzini, C Basti, A Benucci, L Bocci, A Cazzola, U Fiori, F Linari, S Massa, M Messineo, A Segneri, G Tonelli, G Azzurri, P Bernardini, J Borrello, L Calzolari, F Foa, L Gennai, S Ligabue, F Petrucciani, G Rizzi, A Yang, Z Benotto, F Demaria, N Dumitrache, F Farano, R Borgia, MA Castello, R Costa, M Migliore, E Romero, A Abbaneo, D Abbas, M Ahmed, I Akhtar, I Albert, E Bloch, C Breuker, H Butt, S Buchmuller, O Cattai, A Delaere, C Delattre, M Edera, LM Engstrom, P Eppard, M Gateau, M Gill, K Giolo-Nicollerat, AS Grabit, R Honma, A Huhtinen, M Kloukinas, K Kortesmaa, J Kottelat, LJ Kuronen, A Leonardo, N Ljuslin, C Mannelli, M Masetti, L Marchioro, A Mersi, S Michal, S Mirabito, L Muffat-Joly, J Onnela, A Paillard, C Pal, I Pernot, JF Petagna, P Petit, P Piccut, C Pioppi, M Postema, H Ranieri, R Ricci, D Rolandi, G Ronga, F Sigaud, C Syed, A Siegrist, P Tropea, P Troska, J Tsirou, A Vander Donckt, M Vasey, F Alagoz, E Amsler, C Chiochia, V Regenfus, C Robmann, P Rochet, J Rommerskirchen, T Schmidt, A Steiner, S Wilke, L Church, I Cole, J Coughlan, J Gay, A Taghavi, S Tomalin, I Bainbridge, R Cripps, N Fulcher, J Hall, G Noy, M Pesaresi, M Radicci, V Raymond, DM Sharp, P Stoye, M Wingham, M Zorba, O Goitom, I Hobson, PR Reid, I Teodorescu, L Hanson, G Jeng, GY Liu, H Pasztor, G Satpathy, A Stringer, R Mangano, B Affolder, K Affolder, T Allen, A Barge, D Burke, S Callahan, D Campagnari, C Crook, A D'Alfonso, M Dietch, J Garberson, J Hale, D Incandela, H Incandela, J Jaditz, S Kalavase, P Kreyer, S Kyre, S Lamb, J Mc Guinness, C Mills, C Nguyen, H Nikolic, M Lowette, S Rebassoo, F Ribnik, J Richman, J Rubinstein, N Sanhueza, S Shah, Y Simms, L Staszak, D Stoner, J Stuart, D Swain, S Vlimant, JR White, D Ulmer, KA Wagner, SR Bagby, L Bhat, PC Burkett, K Cihangir, S Gutsche, O Jensen, H Johnson, M Luzhetskiy, N Mason, D Miao, T Moccia, S Noeding, C Ronzhin, A Skup, E Spalding, WJ Spiegel, L Tkaczyk, S Yumiceva, F Zatserklyaniy, A Zerev, E Anghel, I Bazterra, VE Gerber, CE Khalatian, S Shabalina, E Baringer, P Bean, A Chen, J Hinchey, C Martin, C Moulik, T Robinson, R Gritsan, AV Lae, CK Tran, NV Everaerts, P Hahn, KA Harris, P Nahn, S Rudolph, M Sung, K Betchart, B Demina, R Gotra, Y Korjenevski, S Miner, D Orbaker, D Christofek, L Hooper, R Landsberg, G Nguyen, D Narain, M Speer, T Tsang, KV AF Adam, W. Bergauer, T. Dragicevic, M. Friedl, M. Fruehwirth, R. Haensel, S. Hrubec, J. Krammer, M. Oberegger, M. Pernicka, M. Schmid, S. Stark, R. Steininger, H. Uhl, D. Waltenberger, W. Widl, E. Van Mechelen, P. Cardaci, M. Beaumont, W. de Langhe, E. de Wolf, E. A. Delmeire, E. Hashemi, M. Bouhali, O. Charaf, O. Clerbaux, B. Dewulf, J. -P. Elgammal, S. Hammad, G. de Lentdecker, G. Marage, P. Vander Velde, C. Vanlaer, P. Wickens, J. Adler, V. Devroede, O. De Weirdt, S. D'Hondt, J. Goorens, R. Heyninck, J. Maes, J. Mozer, M. Tavernier, S. Van Lancker, L. Van Mulders, P. Villella, I. Wastiels, C. Bonnet, J. -L. Bruno, G. De Callatay, B. Florins, B. Giammanco, A. Gregoire, G. Keutgen, Th. Kcira, D. Lemaitre, V. Michotte, D. Militaru, O. Piotrzkowski, K. Quertermont, L. Roberfroid, V. Rouby, X. Teyssier, D. Daubie, E. Anttila, E. Czellar, S. Engstroem, P. Harkonen, J. Karimaki, V. Kostesmaa, J. Kuronen, A. Lampen, T. Linden, T. Luukka, P. -R. Maenpaa, T. Michal, S. Tuominen, E. Tuominiemi, J. Ageron, M. Baulieu, G. Bonnevaux, A. Boudoul, G. Chabanat, E. Chabert, E. Chierici, R. Contardo, D. Della Negra, R. Dupasquier, T. Gelin, G. Giraud, N. Guillot, G. Estre, N. Haroutunian, R. Lumb, N. Perries, S. Schirra, F. Trocme, B. Vanzetto, S. Agram, J. -L. Blaes, R. Drouhin, F. Ernenwein, J. -P. Fontaine, J. -C. Berst, J. -D. Brom, J. -M. Didierjean, F. Goerlach, U. Graehling, P. Gross, L. Hosselet, J. Juillot, P. Lounis, A. Maazouzi, C. Olivetto, C. Strub, R. Van Hove, P. Anagnostou, G. Brauer, R. Esser, H. Feld, L. Karpinski, W. Klein, K. Kukulies, C. Olzem, J. Ostapchuk, A. Pandoulas, D. Pierschel, G. Raupach, F. Schael, S. Schwering, G. Sprenger, D. Thomas, M. Weber, M. Wittmer, B. Wlochal, M. Beissel, F. Bock, E. Flugge, G. Gillissen, C. Hermanns, T. Heydhausen, D. Jahn, D. Kaussen, G. Linn, A. Perchalla, L. Poettgens, M. Pooth, O. Stahl, A. Zoeller, M. H. Buhmann, P. Butz, E. Flucke, G. Hamdorf, R. Hauk, J. Klanner, R. Pein, U. Schleper, P. Steinbrueck, G. Bluem, P. De Boer, W. Dierlamm, A. Dirkes, G. Fahrer, M. Frey, M. Furgeri, A. Hartmann, F. Heier, S. Hoffmann, K. -H. Kaminski, J. Ledermann, B. Liamsuwan, T. Mueller, S. Mueller, Th. Schilling, F. -P. Simonis, H. -J. Steck, P. Zhukov, V. Cariola, P. De Robertis, G. Ferorelli, R. Fiore, L. Preda, M. Sala, G. Silvestris, L. Tempesta, P. Zito, G. Creanza, D. De Filippis, N. De Palma, M. Giordano, D. Maggi, G. Manna, N. My, S. Selvaggi, G. Albergo, S. Chiorboli, M. Costa, S. Galanti, M. Giudice, N. Guardone, N. Noto, F. Potenza, R. Saizu, M. A. Sparti, V. Sutera, C. Tricomi, A. Tuve, C. Brianzi, M. Civinini, C. Maletta, F. Manolescu, F. Meschini, M. Paoletti, S. Sguazzoni, G. Broccolo, B. Ciulli, V. D'Alessandro, R. Focardi, E. Frosali, S. Genta, C. Landi, G. Lenzi, P. Macchiolo, A. Magini, N. Parrini, G. Scarlini, E. Cerati, G. Azzi, P. Bacchetta, N. Candelori, A. Dorigo, T. Kaminsky, A. Karaevski, S. Khomenkov, V. Reznikov, S. Tessaro, M. Bisello, D. De Mattia, M. Giubilato, P. Loreti, M. Mattiazzo, S. Nigro, M. Paccagnella, A. Pantano, D. Pozzobon, N. Tosi, M. Bilei, G. M. Checcucci, B. Fano, L. Servoli, L. Ambroglini, F. Babucci, E. Benedetti, D. Biasini, M. Caponeri, B. Covarelli, R. Giorgi, M. Lariccia, P. Mantovani, G. Marcantonini, M. Postolache, V. Santocchia, A. Spiga, D. Bagliesi, G. Balestri, G. Berretta, L. Bianucci, S. Boccali, T. Bosi, F. Bracci, F. Castaldi, R. Ceccanti, M. Cecchi, R. Cerri, C. Cucoanes, A. S. Dell'Orso, R. Dobur, D. Dutta, S. Giassi, A. Giusti, S. Kartashov, D. Kraan, A. Lomtadze, T. Lungu, G. A. Magazzu, G. Mammini, P. Mariani, F. Martinelli, G. Moggi, A. Palla, F. Palmonari, F. Petragnani, G. Profeti, A. Raffaelli, F. Rizzi, D. Sanguinetti, G. Sarkar, S. Sentenac, D. Serban, A. T. Slav, A. Soldani, A. Spagnolo, P. Tenchini, R. Tolaini, S. Venturi, A. Verdini, P. G. Vos, M. Zaccarelli, L. Avanzini, C. Basti, A. Benucci, L. Bocci, A. Cazzola, U. Fiori, F. Linari, S. Massa, M. Messineo, A. Segneri, G. Tonelli, G. Azzurri, P. Bernardini, J. Borrello, L. Calzolari, F. Foa, L. Gennai, S. Ligabue, F. Petrucciani, G. Rizzi, A. Yang, Z. Benotto, F. Demaria, N. Dumitrache, F. Farano, R. Borgia, M. A. Castello, R. Costa, M. Migliore, E. Romero, A. Abbaneo, D. Abbas, M. Ahmed, I. Akhtar, I. Albert, E. Bloch, C. Breuker, H. Butt, S. Buchmuller, O. Cattai, A. Delaere, C. Delattre, M. Edera, L. M. Engstrom, P. Eppard, M. Gateau, M. Gill, K. Giolo-Nicollerat, A. -S. Grabit, R. Honma, A. Huhtinen, M. Kloukinas, K. Kortesmaa, J. Kottelat, L. J. Kuronen, A. Leonardo, N. Ljuslin, C. Mannelli, M. Masetti, L. Marchioro, A. Mersi, S. Michal, S. Mirabito, L. Muffat-Joly, J. Onnela, A. Paillard, C. Pal, I. Pernot, J. F. Petagna, P. Petit, P. Piccut, C. Pioppi, M. Postema, H. Ranieri, R. Ricci, D. Rolandi, G. Ronga, F. Sigaud, C. Syed, A. Siegrist, P. Tropea, P. Troska, J. Tsirou, A. Vander Donckt, M. Vasey, F. Alagoz, E. Amsler, C. Chiochia, V. Regenfus, C. Robmann, P. Rochet, J. Rommerskirchen, T. Schmidt, A. Steiner, S. Wilke, L. Church, I. Cole, J. Coughlan, J. Gay, A. Taghavi, S. Tomalin, I. Bainbridge, R. Cripps, N. Fulcher, J. Hall, G. Noy, M. Pesaresi, M. Radicci, V. Raymond, D. M. Sharp, P. Stoye, M. Wingham, M. Zorba, O. Goitom, I. Hobson, P. R. Reid, I. Teodorescu, L. Hanson, G. Jeng, G. -Y. Liu, H. Pasztor, G. Satpathy, A. Stringer, R. Mangano, B. Affolder, K. Affolder, T. Allen, A. Barge, D. Burke, S. Callahan, D. Campagnari, C. Crook, A. D'Alfonso, M. Dietch, J. Garberson, J. Hale, D. Incandela, H. Incandela, J. Jaditz, S. Kalavase, P. Kreyer, S. Kyre, S. Lamb, J. Mc Guinness, C. Mills, C. Nguyen, H. Nikolic, M. Lowette, S. Rebassoo, F. Ribnik, J. Richman, J. Rubinstein, N. Sanhueza, S. Shah, Y. Simms, L. Staszak, D. Stoner, J. Stuart, D. Swain, S. Vlimant, J. -R. White, D. Ulmer, K. A. Wagner, S. R. Bagby, L. Bhat, P. C. Burkett, K. Cihangir, S. Gutsche, O. Jensen, H. Johnson, M. Luzhetskiy, N. Mason, D. Miao, T. Moccia, S. Noeding, C. Ronzhin, A. Skup, E. Spalding, W. J. Spiegel, L. Tkaczyk, S. Yumiceva, F. Zatserklyaniy, A. Zerev, E. Anghel, I. Bazterra, V. E. Gerber, C. E. Khalatian, S. Shabalina, E. Baringer, P. Bean, A. Chen, J. Hinchey, C. Martin, C. Moulik, T. Robinson, R. Gritsan, A. V. Lae, C. K. Tran, N. V. Everaerts, P. Hahn, K. A. Harris, P. Nahn, S. Rudolph, M. Sung, K. Betchart, B. Demina, R. Gotra, Y. Korjenevski, S. Miner, D. Orbaker, D. Christofek, L. Hooper, R. Landsberg, G. Nguyen, D. Narain, M. Speer, T. Tsang, K. V. CA CMS Tracker Collaboration TI Stand-alone cosmic muon reconstruction before installation of the CMS silicon strip tracker SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Pattern recognition, cluster finding, calibration and fitting methods; Particle tracking detectors (Solid-state detectors); Large detector systems for particle and astroparticle physics AB The subsystems of the CMS silicon strip tracker were integrated and commissioned at the Tracker Integration Facility (TIF) in the period from November 2006 to July 2007. As part of the commissioning, large samples of cosmic ray data were recorded under various running conditions in the absence of a magnetic field. Cosmic rays detected by scintillation counters were used to trigger the readout of up to 15% of the final silicon strip detector, and over 4.7 million events were recorded. This document describes the cosmic track reconstruction and presents results on the performance of track and hit reconstruction as from dedicated analyses. C1 [Adam, W.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Haensel, S.; Hrubec, J.; Krammer, M.; Oberegger, M.; Pernicka, M.; Stark, R.; Steininger, H.; Uhl, D.; Waltenberger, W.; Widl, E.; Schmidt, A.] Osterreich Akad Wissensch HEPHY, Inst Hochenergiephys, Vienna, Austria. [Van Mechelen, P.; Cardaci, M.; Beaumont, W.; de Langhe, E.; de Wolf, E. A.; Delmeire, E.; Hashemi, M.] Univ Antwerp, Antwerp, Belgium. [Bouhali, O.; Charaf, O.; Clerbaux, B.; Dewulf, J. -P.; Elgammal, S.; Hammad, G.; de Lentdecker, G.; Marage, P.; Vander Velde, C.; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Devroede, O.; De Weirdt, S.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Maes, J.; Mozer, M.; Tavernier, S.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.] Vrije Univ Brussel, Brussels, Belgium. [Bonnet, J. -L.; Bruno, G.; De Callatay, B.; Florins, B.; Giammanco, A.; Gregoire, G.; Keutgen, Th.; Kcira, D.; Lemaitre, V.; Michotte, D.; Militaru, O.; Piotrzkowski, K.; Quertermont, L.; Roberfroid, V.; Rouby, X.; Teyssier, D.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Anttila, E.; Czellar, S.; Engstroem, P.; Harkonen, J.; Karimaki, V.; Kostesmaa, J.; Kuronen, A.; Lampen, T.; Linden, T.; Luukka, P. -R.; Maenpaa, T.; Michal, S.; Tuominen, E.; Tuominiemi, J.] Helsinki Inst Phys, Helsinki, Finland. [Ageron, M.; Baulieu, G.; Bonnevaux, A.; Boudoul, G.; Chabanat, E.; Chabert, E.; Chierici, R.; Contardo, D.; Della Negra, R.; Dupasquier, T.; Gelin, G.; Giraud, N.; Guillot, G.; Estre, N.; Haroutunian, R.; Lumb, N.; Perries, S.; Schirra, F.; Trocme, B.; Vanzetto, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Agram, J. -L.; Blaes, R.; Drouhin, F.; Ernenwein, J. -P.; Fontaine, J. -C.] Univ Haute Alsace, Grp Rech Phys Hautes Energies, Mulhouse, France. [Kuronen, A.; Michal, S.; Drouhin, F.; Abbaneo, D.; Abbas, M.; Ahmed, I.; Akhtar, I.; Albert, E.; Bloch, C.; Breuker, H.; Butt, S.; Buchmuller, O.; Cattai, A.; Delaere, C.; Delattre, M.; Edera, L. M.; Engstrom, P.; Eppard, M.; Gateau, M.; Gill, K.; Giolo-Nicollerat, A. -S.; Grabit, R.; Honma, A.; Huhtinen, M.; Kloukinas, K.; Kortesmaa, J.; Kottelat, L. J.; Leonardo, N.; Ljuslin, C.; Mannelli, M.; Masetti, L.; Marchioro, A.; Mersi, S.; Mirabito, L.; Muffat-Joly, J.; Onnela, A.; Paillard, C.; Pal, I.; Pernot, J. F.; Petagna, P.; Petit, P.; Piccut, C.; Pioppi, M.; Postema, H.; Ranieri, R.; Ricci, D.; Rolandi, G.; Ronga, F.; Sigaud, C.; Syed, A.; Siegrist, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vander Donckt, M.; Vasey, F.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Berst, J. -D.; Brom, J. -M.; Didierjean, F.; Goerlach, U.; Graehling, P.; Gross, L.; Hosselet, J.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Van Hove, P.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS, IN2P3, F-67070 Strasbourg, France. [Anagnostou, G.; Brauer, R.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Kukulies, C.; Olzem, J.; Ostapchuk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schwering, G.; Sprenger, D.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Beissel, F.; Bock, E.; Flugge, G.; Gillissen, C.; Hermanns, T.; Heydhausen, D.; Jahn, D.; Kaussen, G.; Linn, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Stahl, A.; Zoeller, M. H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R.; Hauk, J.; Klanner, R.; Pein, U.; Schleper, P.; Steinbrueck, G.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Bluem, P.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Fahrer, M.; Frey, M.; Furgeri, A.; Hartmann, F.; Heier, S.; Hoffmann, K. -H.; Kaminski, J.; Ledermann, B.; Liamsuwan, T.; Mueller, S.; Mueller, Th.; Schilling, F. -P.; Simonis, H. -J.; Steck, P.; Zhukov, V.] Karlsruhe IEKP, Karlsruhe, Germany. [Cariola, P.; De Robertis, G.; Ferorelli, R.; Fiore, L.; Preda, M.; Sala, G.; Silvestris, L.; Tempesta, P.; Zito, G.] INFN Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Creanza, D.; De Filippis, N.; De Palma, M.; Giordano, D.; Maggi, G.; Manna, N.; My, S.; Selvaggi, G.] Dipartimento Interateneo Fis, Bari, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Sparti, V.; Sutera, C.; Tricomi, A.; Tuve, C.] Univ Catania, I-95124 Catania, Italy. [Brianzi, M.; Civinini, C.; Maletta, F.; Manolescu, F.; Meschini, M.; Paoletti, S.; Sguazzoni, G.] INFN Firenze, Florence, Italy. [Broccolo, B.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Magini, N.; Parrini, G.; Scarlini, E.] Univ Florence, I-50121 Florence, Italy. [Cerati, G.] Univ Milano Bicocca, Milan, Italy. [Azzi, P.; Bacchetta, N.; Candelori, A.; Dorigo, T.; Kaminsky, A.; Karaevski, S.; Khomenkov, V.; Reznikov, S.; Tessaro, M.] INFN Padova, Padua, Italy. [Bisello, D.; De Mattia, M.; Giubilato, P.; Loreti, M.; Mattiazzo, S.; Nigro, M.; Paccagnella, A.; Pantano, D.; Pozzobon, N.; Tosi, M.] Univ Padua, I-35100 Padua, Italy. [Bilei, G. M.; Checcucci, B.; Fano, L.; Servoli, L.] INFN Perugia, Perugia, Italy. [Ambroglini, F.; Babucci, E.; Benedetti, D.; Biasini, M.; Caponeri, B.; Covarelli, R.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Marcantonini, M.; Postolache, V.; Santocchia, A.; Spiga, D.] Univ Perugia, I-06100 Perugia, Italy. [Bagliesi, G.; Balestri, G.; Berretta, L.; Bianucci, S.; Boccali, T.; Bosi, F.; Bracci, F.; Castaldi, R.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A. S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Lomtadze, T.; Lungu, G. A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Sentenac, D.; Serban, A. T.; Slav, A.; Soldani, A.; Spagnolo, P.; Tenchini, R.; Tolaini, S.; Venturi, A.; Verdini, P. G.; Vos, M.; Zaccarelli, L.; Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.; Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.] INFN Pisa, Pisa, Italy. [Avanzini, C.; Basti, A.; Benucci, L.; Bocci, A.; Cazzola, U.; Fiori, F.; Linari, S.; Massa, M.; Messineo, A.; Segneri, G.; Tonelli, G.] Univ Pisa, I-56100 Pisa, Italy. [Azzurri, P.; Bernardini, J.; Borrello, L.; Calzolari, F.; Foa, L.; Gennai, S.; Ligabue, F.; Petrucciani, G.; Rizzi, A.; Yang, Z.] Scuola Normale Super Pisa, Pisa, Italy. [Yang, Z.] Peking Univ, Beijing, Peoples R China. [Benotto, F.; Demaria, N.; Dumitrache, F.; Farano, R.] INFN Torino, Turin, Italy. [Borgia, M. A.; Castello, R.; Costa, M.; Migliore, E.; Romero, A.] Univ Turin, I-10124 Turin, Italy. [Alagoz, E.; Amsler, C.; Chiochia, V.; Regenfus, C.; Robmann, P.; Rochet, J.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Wilke, L.] Univ Zurich, CH-8006 Zurich, Switzerland. [Church, I.; Cole, J.; Coughlan, J.; Gay, A.; Taghavi, S.; Tomalin, I.] STFC, Rutherford Appleton Lab, Didcot, Oxon, England. [Bainbridge, R.; Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.; Pesaresi, M.; Radicci, V.; Raymond, D. M.; Sharp, P.; Stoye, M.; Wingham, M.; Zorba, O.] Univ London Imperial Coll Sci Technol & Med, London, England. [Goitom, I.; Hobson, P. R.; Reid, I.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hanson, G.; Jeng, G. -Y.; Liu, H.; Pasztor, G.; Satpathy, A.; Stringer, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Pasztor, G.] Res Inst Particle & Nucl Phys, Budapest, Hungary. [Mangano, B.] Univ Calif San Diego, San Diego, CA 92103 USA. [Affolder, K.; Affolder, T.; Allen, A.; Barge, D.; Burke, S.; Callahan, D.; Campagnari, C.; Crook, A.; D'Alfonso, M.; Dietch, J.; Garberson, J.; Hale, D.; Incandela, H.; Incandela, J.; Jaditz, S.; Kalavase, P.; Kreyer, S.; Kyre, S.; Lamb, J.; Mc Guinness, C.; Mills, C.; Nguyen, H.; Nikolic, M.; Lowette, S.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rubinstein, N.; Sanhueza, S.; Shah, Y.; Simms, L.; Staszak, D.; Stoner, J.; Stuart, D.; Swain, S.; Vlimant, J. -R.; White, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Bagby, L.; Bhat, P. C.; Burkett, K.; Cihangir, S.; Gutsche, O.; Jensen, H.; Johnson, M.; Luzhetskiy, N.; Mason, D.; Miao, T.; Moccia, S.; Noeding, C.; Ronzhin, A.; Skup, E.; Spalding, W. J.; Spiegel, L.; Tkaczyk, S.; Yumiceva, F.; Zatserklyaniy, A.; Zerev, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Anghel, I.; Bazterra, V. E.; Gerber, C. E.; Khalatian, S.; Shabalina, E.] Univ Illinois, Chicago, IL USA. [Baringer, P.; Bean, A.; Chen, J.; Hinchey, C.; Martin, C.; Moulik, T.; Robinson, R.] Univ Kansas, Lawrence, KS 66045 USA. [Gritsan, A. V.; Lae, C. K.; Tran, N. V.] Johns Hopkins Univ, Baltimore, MD USA. [Everaerts, P.; Hahn, K. A.; Harris, P.; Nahn, S.; Rudolph, M.; Sung, K.] MIT, Cambridge, MA 02139 USA. [Betchart, B.; Demina, R.; Gotra, Y.; Korjenevski, S.; Miner, D.; Orbaker, D.] Univ Rochester, New York, NY USA. [Christofek, L.; Hooper, R.; Landsberg, G.; Nguyen, D.; Narain, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. RP Adam, W (reprint author), Osterreich Akad Wissensch HEPHY, Inst Hochenergiephys, Vienna, Austria. EM wolfgang.adam@cern.ch RI Ligabue, Franco/F-3432-2014; Khomenkov, Volodymyr (Vladimir)/I-5957-2013; Ahmed, Ijaz/E-9144-2015; D'Alessandro, Raffaello/F-5897-2015; My, Salvatore/I-5160-2015; Sguazzoni, Giacomo/J-4620-2015; TUVE', Cristina/P-3933-2015; Leonardo, Nuno/M-6940-2016; Tuominen, Eija/A-5288-2017; Slav, Adrian/C-8364-2011; Stahl, Achim/E-8846-2011; Chen, Jie/H-6210-2011; Servoli, Leonello/E-6766-2012; Focardi, Ettore/E-7376-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Lungu, George/I-8729-2012; Venturi, Andrea/J-1877-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Krammer, Manfred/A-6508-2010 OI Vos, Marcel/0000-0001-8474-5357; Giubilato, Piero/0000-0003-4358-5355; Lenzi, Piergiulio/0000-0002-6927-8807; Gutsche, Oliver/0000-0002-8015-9622; Noto, Francesco/0000-0003-2926-7342; Bean, Alice/0000-0001-5967-8674; Boccali, Tommaso/0000-0002-9930-9299; Ligabue, Franco/0000-0002-1549-7107; Tricomi, Alessia Rita/0000-0002-5071-5501; CALZOLARI, FEDERICO/0000-0002-5510-3061; Demaria, Natale/0000-0003-0743-9465; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; D'Alessandro, Raffaello/0000-0001-7997-0306; My, Salvatore/0000-0002-9938-2680; Sguazzoni, Giacomo/0000-0002-0791-3350; TUVE', Cristina/0000-0003-0739-3153; Leonardo, Nuno/0000-0002-9746-4594; Tuominen, Eija/0000-0002-7073-7767; Landsberg, Greg/0000-0002-4184-9380; Petragnani, Giulio/0000-0002-0819-6509; Costa, Salvatore/0000-0001-9919-0569; Tonelli, Guido Emilio/0000-0003-2606-9156; Rizzi, Andrea/0000-0002-4543-2718; Stahl, Achim/0000-0002-8369-7506; Servoli, Leonello/0000-0003-1725-9185; Focardi, Ettore/0000-0002-3763-5267; Azzi, Patrizia/0000-0002-3129-828X; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Krammer, Manfred/0000-0003-2257-7751 FU Austrian Federal Ministry of Science and Research; Belgium Fonds de la Recherche Scientifique and Fonds voorWetenschappelijk Onderzoek; Academy of Finland and Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Bundesministerium fur Bildung und Forschung, Germany; Istituto Nazionale di Fisica Nucleare, Italy; Swiss Funding Agencies; Science and Technology Facilities Council, UK; US Department of Energy; National Science Foundation; Marie-Curie IEF program (European Union); A.P. Sloan Foundation FX We thank the administrative staff at CERN and other Tracker Institutes. This work was supported by: the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique and Fonds voorWetenschappelijk Onderzoek; the Academy of Finland and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; the Bundesministerium fur Bildung und Forschung, Germany; the Istituto Nazionale di Fisica Nucleare, Italy; the Swiss Funding Agencies; the Science and Technology Facilities Council, UK; the US Department of Energy, and National Science Foundation. Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation. NR 9 TC 9 Z9 9 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2009 VL 4 AR P05004 DI 10.1088/1748-0221/4/05/P05004 PG 41 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 469ZY UT WOS:000267942300019 ER PT J AU Ichimiya, R Apadula, N Akiba, Y Atomssa, E Chollet, S Drapier, O En'yo, H Fujiwara, K Gastaldi, F de Cassagnac, RG Kasai, M Kurita, K Kurosawa, M Mannel, EJ Ohnishi, H Onuki, Y Pak, R Pancake, C Sekimoto, M Shafto, E Sondheim, W Taketani, A AF Ichimiya, R. Apadula, N. Akiba, Y. Atomssa, E. Chollet, S. Drapier, O. En'yo, H. Fujiwara, K. Gastaldi, F. de Cassagnac, R. Granier Kasai, M. Kurita, K. Kurosawa, M. Mannel, E. J. Ohnishi, H. Onuki, Y. Pak, R. Pancake, C. Sekimoto, M. Shafto, E. Sondheim, W. Taketani, A. TI Status and overview of development of the silicon pixel detector for the PHENIX experiment at the BNL RHIC SO JOURNAL OF INSTRUMENTATION LA English DT Article CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE Particle tracking detectors; Instrumentation and methods for heavy-ion reactions and fission studies ID ELECTRONICS; VERTEX AB We have developed a silicon pixel detector to enhance the physics capabilities of the PHENIX experiment. This detector, consisting of two layers of sensors, will be installed around the beam pipe at the collision point and covers a pseudo-rapidity of vertical bar eta vertical bar < 1.2 and an azimuth angle of vertical bar phi vertical bar similar to 2 pi. The detector uses 200 mu m thick silicon sensors and readout chips developed for the ALICE experiment. In order to meet the PHENIX DAQ readout requirements, it is necessary to read out 4 readout chips in parallel. The physics goals of PHENIX require that radiation thickness of the detector be minimized. To meet these criteria, the detector has been designed and developed. In this paper, we report the current status of the development, especially the development of the low-mass readout bus and the front-end readout electronics. C1 [Ichimiya, R.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Kurosawa, M.; Ohnishi, H.; Onuki, Y.; Taketani, A.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Apadula, N.; Pancake, C.; Shafto, E.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Atomssa, E.; Chollet, S.; Drapier, O.; Gastaldi, F.; de Cassagnac, R. Granier] Ecole Polytech, CNRS, IN2P3, LLR, F-91128 Palaiseau, France. [Kasai, M.; Kurita, K.] Rikkyo Univ, Toshima Ku, Tokyo 171, Japan. [Mannel, E. J.] Columbia Univ, New York, NY 10027 USA. [Pak, R.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sekimoto, M.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Sondheim, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ichimiya, R (reprint author), RIKEN, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM ryo@riken.jp RI En'yo, Hideto/B-2440-2015; Taketani, Atsushi/E-1803-2017 OI Taketani, Atsushi/0000-0002-4776-2315 NR 7 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2009 VL 4 AR P05001 DI 10.1088/1748-0221/4/05/P05001 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 469ZY UT WOS:000267942300022 ER PT J AU Ron, G Piasetzky, E Wojtsekhowski, B AF Ron, G. Piasetzky, E. Wojtsekhowski, B. TI A concept for the experimental determination of the nucleon electric to magnetic form factor ratio at very low Q(2) SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Large detector systems for particle and astroparticle physics; Instrumentation for particle accelerators and storage rings -; low energy (linear accelerators, cyclotrons, electrostatic accelerators) ID GENERALIZED PARTON DISTRIBUTIONS; HYDROGEN; PROTON AB Stationary target measurements of the nucleon form factors have been performed with high precision down to Q(2) of similar to 0.01 GeV(2) for protons (G(E)(p)) and down to similar to 0.1 GeV(2) for neutrons (G(M)(n)). Conventional extraction using cross section and polarization measurement cannot be extended to very low values of Q(2) due to inherent experimental limitations. We present a proposal for a new approach to a measurement, using colliding beams, which will extend the range of possible measurement at low Q(2) by several orders of magnitude over stationary target limits. C1 [Ron, G.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Piasetzky, E.] Tel Aviv Univ, Beverly & Raymond Sackler Sch Exact Sci, IL-69978 Tel Aviv, Israel. [Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Ron, G (reprint author), Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. EM guy.ron@weizmann.ac.il NR 21 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2009 VL 4 AR P05005 DI 10.1088/1748-0221/4/05/P05005 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 469ZY UT WOS:000267942300018 ER PT J AU Wieman, HH Anderssen, E Greiner, L Matis, HS Ritter, HG Sun, X Szelezniak, M AF Wieman, H. H. Anderssen, E. Greiner, L. Matis, H. S. Ritter, H. G. Sun, X. Szelezniak, M. TI STAR PIXEL detector mechanical design SO JOURNAL OF INSTRUMENTATION LA English DT Article CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE Particle tracking detectors; Instrumentation and methods for heavy-ion reactions and fission studies AB A high resolution pixel detector is being designed for the STAR [1] experiment at RHIC. This device will use MAPS as the detector element and will have a pointing accuracy of similar to 25 microns. We will be reporting on the mechanical design required to support this resolution. The radiation length of the first layer (similar to 0.3% X(0)) and its distance from the interaction point (2.5 cm) determines the resolution. The design makes use of air cooling and thin carbon composite structures to limit the radiation length. The mechanics are being developed to achieve spatial calibrations and stability to 20 microns and to permit rapid detector replacement in event of radiation damage or other potential failures from operation near the beam. C1 [Wieman, H. H.; Anderssen, E.; Greiner, L.; Matis, H. S.; Ritter, H. G.; Sun, X.; Szelezniak, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wieman, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM hhwieman@lbl.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAY PY 2009 VL 4 AR P05015 DI 10.1088/1748-0221/4/05/P05015 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 469ZY UT WOS:000267942300008 ER PT J AU Hu, JZ Sears, JA Kwak, JH Hoyt, DW Wang, Y Peden, CHF AF Hu, Jian Zhi Sears, Jesse A. Kwak, Ja Hun Hoyt, David W. Wang, Yong Peden, Charles H. F. TI An isotropic chemical shift-chemical shift anisotropic correlation experiment using discrete magic angle turning SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE Isotropic-anisotropic chemical shift correlation; Discrete sample rotation; MAT; MAS; Magnetic susceptibility; High resolution spectrum; In situ detection ID HIGH-RESOLUTION H-1-NMR; MAGNETIC-RESONANCE-SPECTROSCOPY; TENSOR PRINCIPAL VALUES; SOLID-STATE NMR; SPINNING NMR; POWDER PATTERNS; IN-VIVO; SPECTRA; TISSUE AB An isotropic-anisotropic shift 2D correlation spectroscopy is introduced that combines the advantages of both magic angle turning (MAT) and magic angle hopping (MAH) technologies. In this new approach, denoted DMAT for "discrete magic angle turning", the sample rotates clockwise followed by an anticlockwise rotation of exactly the same amount with each rotation less or equal than 360 degrees but greater than 240 degrees, with the rotation speed being constant only for times related to the evolution dimension. This back and forth rotation is repeated and synchronized with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. For any spin-interaction of rank-2 such as chemical shift anisotropy, isotropic magnetic susceptibility interaction, and residual homo-nuclear dipolar interaction in biological fluid samples, the projection along the isotropic dimension is a high resolution spectrum. Since a less than 360 degrees sample rotation is involved, the design potentially allows for in situ control over physical parameters such as pressure, flow conditions, feed compositions, and temperature so that true in situ NMR investigations can be carried out. Published by Elsevier Inc. C1 [Hu, Jian Zhi; Sears, Jesse A.; Kwak, Ja Hun; Hoyt, David W.; Wang, Yong; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Intetfacia Catalysis, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, Inst Intetfacia Catalysis, Environm Mol Sci Lab, 902 Battelle Blvd,POB 999,MS K8-98, Richland, WA 99352 USA. EM jianzhi.Hu@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Wang, Yong/C-2344-2013; Hoyt, David/H-6295-2013; Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU Environmental Molecular Science Laboratory; DOE Office of Biological and Environmental Research; Pacific Northwest National Laboratory; DOE by Battelle Memorial Institute [DE-AC06-76RLO-1830] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, and by a Capability Development Project funded by the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at the Pacific Northwest National Laboratory. PNNL is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. The authors gratefully acknowledge Mr. Eric Y. Choi for his assistance in building the DMAT controller interface and driving software, Mr. R. James Ewin for his assistance in designing the DMAT probe, and the EMSL machine shop for constructing the DMAT probe. NR 48 TC 1 Z9 1 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 EI 1096-0856 J9 J MAGN RESON JI J. Magn. Reson. PD MAY PY 2009 VL 198 IS 1 BP 105 EP 110 DI 10.1016/j.jmr.2009.01.027 PG 6 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 433UU UT WOS:000265232100013 PM 19246221 ER PT J AU Carr, C Espy, M Nath, P Martin, SL Ward, MD Martin, J AF Carr, Chris Espy, Michelle Nath, Pulak Martin, Sara L. Ward, Michael D. Martin, John TI Design, fabrication and demonstration of a magnetophoresis chamber with 25 output fractions SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article; Proceedings Paper CT 7th International Conference on Scientific and Clinical Applications of Magnetic Carriers CY MAY 20-24, 2008 CL Vancouver, CANADA DE Field-flow fractionation; Magnetophoresis; Magnetic microparticle; Magnetic microsphere; Laser microfabrication ID FIELD-FLOW FRACTIONATION; MAGNETIC NANOPARTICLES; CELL-SEPARATION AB Our goal is to develop an instrument for parallel and multiplexed bioassay using magnetic labels. Toward this end we are developing a multi-outlet magnetophoresis instrument incorporating a fluidic flow chamber placed inside a magnetic field gradient. Magnetic microparticles are sorted by their magnetic moment for eventual use as biological labels based on magnetic signature. In this paper, we concentrate on developments in our flow chamber fabrication methods that have allowed us to scale the number of sorting channels from 8 to 25. We present data for instrument performance and reproducibility of sorting. Published by Elsevier B.V. C1 [Carr, Chris; Espy, Michelle; Nath, Pulak; Martin, Sara L.; Martin, John] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ward, Michael D.] Acoust Cytometry Syst Inc, Los Alamos, NM 87544 USA. [Ward, Michael D.] Life Technol, Eugene, OR 97403 USA. RP Espy, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM espy@lanl.gov FU NCRR NIH HHS [P41 RR001315, R21 RR019626, R33 RR019626, R33 RR019626-05] NR 15 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY PY 2009 VL 321 IS 10 BP 1440 EP 1445 DI 10.1016/j.jmmm.2009.02.064 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 434ME UT WOS:000265278000026 PM 20161205 ER PT J AU Adolphi, NL Huber, DL Jaetao, JE Bryant, HC Lovato, DM Fegan, DL Venturini, EL Monson, TC Tessier, TE Hathaway, HJ Bergemann, C Larson, RS Flynn, ER AF Adolphi, Natalie L. Huber, Dale L. Jaetao, Jason E. Bryant, Howard C. Lovato, Debbie M. Fegan, Danielle L. Venturini, Eugene L. Monson, Todd C. Tessier, Trace E. Hathaway, Helen J. Bergemann, Christian Larson, Richard S. Flynn, Edward R. TI Characterization of magnetite nanoparticles for SQUID-relaxometry and magnetic needle biopsy SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article; Proceedings Paper CT 7th International Conference on Scientific and Clinical Applications of Magnetic Carriers CY MAY 20-24, 2008 CL Vancouver, CANADA DE Magnetite; Nanoparticle; Magnetorelaxometry; SQUID detection; Susceptometry; Antibody-conjugation ID MAGNETORELAXOMETRY; RELAXATION; SYSTEMS AB Magnetite nanoparticles(Chemicell SiMAG-TCL) were characterized by SQUID-relaxometry, susceptometry, and TEM. The magnetization detected by SQUID-relaxometry was 0.33% of that detected by susceptometry, indicating that the sensitivity of SQUID-relaxometry could be significantly increased through improved control of nanoparticle size. The relaxometry data were analyzed by the moment superposition model(MSM) to determine the distribution of nanoparticle moments. Analysis of the binding of CD34-conjugated nanoparticles to U937 leukemia cells revealed 60,000 nanoparticles per cell, which were collected from whole blood using a prototype magnetic biopsy needle, with a capture efficiency of >65% from a 750 mu l sample volume in 1 min. (c) 2009 Elsevier B.V. All rights reserved. C1 [Adolphi, Natalie L.; Bryant, Howard C.; Fegan, Danielle L.; Tessier, Trace E.; Flynn, Edward R.] Senior Sci LLC, Albuquerque, NM 87111 USA. [Huber, Dale L.; Venturini, Eugene L.; Monson, Todd C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jaetao, Jason E.; Lovato, Debbie M.; Larson, Richard S.] Univ New Mexico, Dept Pathol, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Hathaway, Helen J.] Univ New Mexico, Dept Cell Biol & Physiol, Albuquerque, NM 87131 USA. [Bergemann, Christian] Chemicell GmbH, D-12103 Berlin, Germany. RP Adolphi, NL (reprint author), Senior Sci LLC, 11109 Country Club NE, Albuquerque, NM 87111 USA. EM nadolphi@nmr.org RI Huber, Dale/A-6006-2008; OI Huber, Dale/0000-0001-6872-8469; Monson, Todd/0000-0002-9782-7084 FU NCI NIH HHS [R44 CA123785-02, R44 CA096154, R44 CA096154-04, R44 CA105742, R44 CA105742-04, R44 CA123785]; NIAID NIH HHS [R44 AI066765, R44 AI066765-03] NR 18 TC 18 Z9 19 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY PY 2009 VL 321 IS 10 BP 1459 EP 1464 DI 10.1016/j.jmmm.2009.02.067 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 434ME UT WOS:000265278000029 PM 20161153 ER PT J AU Ferguson, RM Minard, KR Krishnan, KM AF Ferguson, R. Matthew Minard, Kevin R. Krishnan, Kannan M. TI Optimization of nanoparticle core size for magnetic particle imaging SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article; Proceedings Paper CT 7th International Conference on Scientific and Clinical Applications of Magnetic Carriers CY MAY 20-24, 2008 CL Vancouver, CANADA DE Magnetic nanoparticle; Magnetic particle imaging; Iron oxide nanoparticle; Contrast agent; Molecular imaging ID PARAMETERS AB Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging performance can be effectively optimized through rational core design. Modeling is performed using the properties of magnetite cores, since these are readily produced with a controllable size that facilitates quantitative imaging. Results show that very low detection thresholds (of a few nanograms Fe3O4) and sub-millimeter spatial resolution are possible with MPI. (c) 2009 Elsevier B.V. All rights reserved. C1 [Ferguson, R. Matthew; Krishnan, Kannan M.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Minard, Kevin R.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Krishnan, KM (reprint author), Univ Washington, Dept Mat Sci & Engn, Box 352120, Seattle, WA 98195 USA. EM kannanmk@u.washington.edu FU NHLBI NIH HHS [R01 HL073598-05, R01 HL073598, R01 HL073598-01A1, R01 HL073598-02, R01 HL073598-03, R01 HL073598-04]; NIBIB NIH HHS [R21 EB008192, R21 EB008192-01A1, R21 EB008192-02] NR 15 TC 100 Z9 101 U1 5 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAY PY 2009 VL 321 IS 10 BP 1548 EP 1551 DI 10.1016/j.jmmm.2009.02.083 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 434ME UT WOS:000265278000049 PM 19606261 ER PT J AU Liu, ZY Wu, Y Li, HX Bei, H Lu, ZP AF Liu, Z. Y. Wu, Y. Li, H. X. Bei, H. Lu, Z. P. TI Alloying effects of iridium on glass formation and glass-forming ability of the Zr-Cu-Al system SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID BULK METALLIC GLASSES AB Alloying effects of iridium on the glass formability (GFA) of the Zr-Ir-Cu-Al system have been investigated, and several new bulk metallic glasses (BMGs) with high GFA have been successfully developed. Additions of Ir in the Zr-Cu-Al system can yield a beneficial distribution in atomic sizes, but the strong chemical interaction of the Zr-Ir atomic pair limits the maximum addable Ir contents and the resultant GFA. Our analyses indicate that the optimum composition for alloying elements is determined by not only topological but also chemical factors. Phase competition upon solidification, rather than effects from individual affecting factors, dictates the GFA of BMG systems. C1 [Liu, Z. Y.; Wu, Y.; Li, H. X.; Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Bei, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lu, ZP (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM luzp@skl.ustb.edu.cn RI wu, yuan/E-8927-2010; Lu, Zhao-Ping/A-2718-2009; Wu, Yuan/C-4025-2015; OI Wu, Yuan/0000-0001-7857-0247; Bei, Hongbin/0000-0003-0283-7990 FU National Natural Science Foundation of China [50725104]; National Basic Research Program of China [2007CB613903] FX This research was Supported in part by National Natural Science Foundation of China under the contract 50725104, and the National Basic Research Program of China (973 program) under the contract 2007CB613903. Work in Oak Ridge National Laboratory was sponsored by the United States Department of Energy, Division of Materials Science and Engineering. NR 24 TC 5 Z9 5 U1 1 U2 4 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAY PY 2009 VL 24 IS 5 BP 1619 EP 1623 DI 10.1557/JMR.2009.0188 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 460SQ UT WOS:000267207800002 ER PT J AU Chang, WY King, AH Bowman, KJ AF Chang, Wonyoung King, Alexander H. Bowman, Keith J. TI Effects of residual (or internal) stress on ferroelectric domain wall motion in tetragonal lead titanate SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID ENGINEERING CERAMICS; SURFACE TEXTURE; PIEZOELECTRICS AB The effect of temperature on grinding-induced texture in tetragonal lead titanate (PT) has been investigated as a function of the magnitude of loading applied to the sample surface during grinding, using in situ x-ray diffraction (XRD) with an area detector. Compared to the ground PT under lower loading conditions (5 N), the ground PT under higher loading conditions (40 N) retains strong ferroelastic texture near the Curie temperature (T(C)) around 350 degrees C and undergoes smaller changes in lattice parameter or tetragonality versus temperature during in situ thermal cycling between room temperature and approximately 100 degrees C above the T(C). Inhibited depoling of ground PT materials investigated by in situ texture measurements demonstrates the effects of residual stresses. C1 [Bowman, Keith J.] Purdue Univ, W Lafayette, IN 47907 USA. [Chang, Wonyoung] Korea Inst Sci & Technol, Battery Res Ctr, Seoul 136791, South Korea. [King, Alexander H.] Ames Lab, Ames, IA 50011 USA. RP Bowman, KJ (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM kbowman@ecn.purdue.edu RI King, Alexander/B-3148-2012; King, Alexander/P-6497-2015 OI King, Alexander/0000-0001-9677-3769; King, Alexander/0000-0001-7101-6585 FU National Science Foundation [DMR-0224991] FX This work was supported by the National Science Foundation, DMR-0224991. Materials and assistance were provided by Piezo Technologies, Indianapolis, IN. Thanks also to Elliott B. Slamovich, William Shelley, and Jacob L. Jones for important discussions and suggestions. NR 12 TC 2 Z9 2 U1 3 U2 10 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAY PY 2009 VL 24 IS 5 BP 1803 EP 1809 DI 10.1557/JMR.2009.0218 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 460SQ UT WOS:000267207800030 ER PT J AU Parish, CM Snow, CS Brewer, LN AF Parish, Chad M. Snow, Clark S. Brewer, Luke N. TI The manifestation of oxygen contamination in ErD(2) thin films SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID RARE-EARTH DIHYDRIDES; METAL-SEMICONDUCTOR TRANSITIONS; ERBIUM-HYDRIDE FILMS; HYDROGEN STORAGE; ELECTRICAL-RESISTIVITY; HELIUM RELEASE; GROWTH; DECOMPOSITION; TEMPERATURE; DEPENDENCE AB Erbium dihydride Er(H,D,T)(2) is a fluorite structure rare-earth dihydride useful for the storage of hydrogen isotopes in the solid state. However, thermodynamic predictions indicate that erbium oxide formation will proceed readily during processing, which may detrimentally contaminate Er(H,D,T)(2) films. In this work, transmission electron microscopy (TEM) techniques including energy-dispersive x-ray spectroscopy, energy-filtered TEM, selected area electron diffraction, and high-resolution TEM are used to examine the manifestation of oxygen contamination in ErD(2) thin films. An oxide layer similar to 30-130 nm thick was found on top of the underlying ErD(2) film, and showed a cube-on-cube epitaxial orientation to the underlying ErD(2). Electron diffraction confirmed the oxide layer to be Er(2)O(3). While the majority of the film was observed to have the expected fluorite structure for ErD(2), secondary diffraction spots suggested the possibility of either nanoscale oxide inclusions or hydrogen ordering. In situ heating experiments combined with electron diffraction ruled out the possibility of hydrogen ordering, so epitaxial oxide nanoinclusions within the ErD(2) matrix are hypothesized. TEM techniques were applied to examine this oxide nanoinclusion hypothesis. C1 [Parish, Chad M.; Snow, Clark S.; Brewer, Luke N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Parish, CM (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM cmparis@sandia.gov RI Parish, Chad/J-8381-2013 FU Sandia Corporation [DE-AC0494AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC0494AL85000. Thanks to Ping Lu and Dan Kammler for critiquing the manuscript and to Bonnie McKenzie, Paul Kotula and Joe Michael for technical assistance. NR 46 TC 12 Z9 13 U1 0 U2 5 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAY PY 2009 VL 24 IS 5 BP 1868 EP 1879 DI 10.1557/JMR.2009.0217 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 460SQ UT WOS:000267207800037 ER PT J AU Engelbrektson, A Korzenik, JR Pittler, A Sanders, ME Klaenhammer, TR Leyer, G Kitts, CL AF Engelbrektson, Anna Korzenik, Joshua R. Pittler, Arlyn Sanders, Mary E. Klaenhammer, Todd R. Leyer, Gregory Kitts, Christopher L. TI Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy SO JOURNAL OF MEDICAL MICROBIOLOGY LA English DT Article ID GRADIENT GEL-ELECTROPHORESIS; 16S RIBOSOMAL-RNA; FRAGMENT-LENGTH-POLYMORPHISM; HUMAN INTESTINE; HUMAN FECES; TEMPORAL STABILITY; DIVERSITY; BACTERIA; COMMUNITIES; MICROFLORA AB A novel combination of culturing and DNA-based terminal restriction fragment length polymorphism (TRFLP) analysis was used to investigate the effect of probiotics on antibiotic-induced gut microbiota alterations to determine if a probiotic preparation containing bifidobacteria and lactobacilli, taken during and after antibiotic therapy, can minimize antibiotic disturbance of faecal microbiota. Healthy subjects administered amoxicillin/clavulanate were randomized and concomitantly received a placebo or probiotic mixture. The primary end point was similarity of faecal microbiota as determined by culturing and TRFLP from subjects taking, probiotics compared to those taking a placebo measured by comparing data from baseline to post-treatment for each subject. TRFLP analysis revealed a high subject to subject variation in the baseline faecal microbiota. The most common antibiotic-induced disturbance was a relative increase in Clostridium, Eubacterium, Bacteroides and Enterobacteraceae. The mean similarity to the baseline increased over time in both treatment groups, although the probiotic group was less disturbed according to both TRFLP and culture data. The culture method revealed that post-antibiotic faecal microbiota in probiotic-consuming subjects were more similar to the baseline microbiota than the control group (P=0.046). Changes in Enterobactereaceae (P=0.006) and Bifidobacterium (P=0.030) counts were significantly different between the groups. Analysis of TRFLP data reinforced the trend between groups but was not statistically significant (P=0.066). This study indicates this mixture of probiotics promotes a more rapid return to pre-antibiotic baseline faecal bacterial microbiota. C1 [Kitts, Christopher L.] Calif Polytech State Univ San Luis Obispo, Environm Biotechnol Inst, San Luis Obispo, CA 93407 USA. [Engelbrektson, Anna] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Korzenik, Joshua R.] Massachusetts Gen Hosp, Dept Med, Gastrointestinal Unit, Boston, MA 02114 USA. [Pittler, Arlyn] Washington Univ, Sch Med, Div Gastroenterol, St Louis, MO 63110 USA. [Sanders, Mary E.] Dairy & Food Culture Technol, Centennial, CO USA. [Klaenhammer, Todd R.] N Carolina State Univ, Raleigh, NC 27695 USA. [Leyer, Gregory] Cultures Div R&D, Madison, WI USA. RP Kitts, CL (reprint author), Calif Polytech State Univ San Luis Obispo, Environm Biotechnol Inst, San Luis Obispo, CA 93407 USA. EM ckitts@calpoly.edu RI Engelbrektson, Anna/K-5563-2012; Engelbrektson, Anna/F-1687-2013 FU Danisco USA, Inc.; North Carolina Dairy Foundation FX This study was funded by Danisco USA, Inc., and the North Carolina Dairy Foundation. The authors thank Rosemary Sanozky-Dawes (North Carolina State University) for her technical contributions to the microbiological aspects of this study. NR 20 TC 38 Z9 41 U1 4 U2 13 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 0022-2615 J9 J MED MICROBIOL JI J. Med. Microbiol. PD MAY PY 2009 VL 58 IS 5 BP 663 EP 670 DI 10.1099/jmm.0.47615-0 PG 8 WC Microbiology SC Microbiology GA 444ZH UT WOS:000266018900018 PM 19369530 ER PT J AU Zhao, H Baker, GA Song, ZY Olubajo, O Zanders, L Campbell, SM AF Zhao, Hua Baker, Gary A. Song, Zhiyan Olubajo, Olarongbe Zanders, Lavezza Campbell, Sophia M. TI Effect of ionic liquid properties on lipase stabilization under microwave irradiation SO JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC LA English DT Review DE Ionic liquid; Enzyme stabilization; Lipase; Microwave; Non-thermal effect; Solvent effect; log P ID WATER PARTITION-COEFFICIENTS; SOLVENT-SOLUTE INTERACTIONS; STATIC DIELECTRIC-CONSTANT; ORGANIC-SOLVENTS; CATALYZED REACTIONS; TRANSESTERIFICATION REACTIONS; ENZYME CATALYSIS; AMINO-ACIDS; 1-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICAL-PROPERTIES AB Ionic liquids (ILs) as neoteric solvents and microwave irradiation as alternative energy source are becoming two important tools for many enzymatic reactions. However, it is not well understood what properties of ILs govern the enzyme stabilization, and whether the microwave irradiation could activate enzymes in ILs. To tackle these two important issues, the synthetic activities of immobilized Candida antarctica lipase B (Novozyme 435) were examined in more than twenty ILs through microwave heating. Under microwave irradiation, enhanced enzyme activities were observed when the enzyme was surrounded by a layer of water molecules. However, such enhancement diminished when the reaction system was dried. TO understand the effect of IL properties, the enzyme activities under microwave irradiation were correlated with the viscosity, polarity and hydrophobicity (log P) of ILs, respectively. The initial reaction rates bear no direct relationship with the viscosity and polarity (in terms of dielectric constant and E(T)(N)) of ILs, but have a loose correlation (a bell curve) with log P values. The enzyme stabilization by ILs was explained from aspects of hydrogen-bond basicity of anions, dissolution of the enzyme, ionic association strength of anions, and substrate ground-state stabilization by ILs. (c) 2008 Elsevier B.V. All rights reserved. C1 [Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Zanders, Lavezza; Campbell, Sophia M.] Savannah State Univ, Chem Program, Savannah, GA 31404 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Zhao, H (reprint author), Savannah State Univ, Chem Program, Savannah, GA 31404 USA. EM zhaoh@savstate.edu; bakerga1@ornl.gov RI Baker, Gary/H-9444-2016; OI Baker, Gary/0000-0002-3052-7730; Zhao, Hua/0000-0002-5761-2089 FU Donors of the American Chemical Society Petroleum Research Fund [46776-GBI] FX Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (46776-GBI) for support of this research. NR 136 TC 69 Z9 74 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1177 J9 J MOL CATAL B-ENZYM JI J. Mol. Catal. B-Enzym. PD MAY PY 2009 VL 57 IS 1-4 BP 149 EP 157 DI 10.1016/j.molcatb.2008.08.006 PG 9 WC Biochemistry & Molecular Biology; Chemistry, Physical SC Biochemistry & Molecular Biology; Chemistry GA 429CS UT WOS:000264899000025 ER PT J AU Masiello, T Maki, A Blake, TA AF Masiello, Tony Maki, Arthur Blake, Thomas A. TI Analysis of the high-resolution infrared spectrum of cyclopropane SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Cyclopropane; Spectroscopy; Infrared; Difference band; High-resolution ID NU(1) CARS SPECTRUM; PERPENDICULAR BANDS; FOURIER-TRANSFORM; RAMAN-SPECTRUM; 4600 CM(-1); HOT BANDS; REGION; (BF3)-B-11; (SO3)-S-32-O-16; FUNDAMENTALS AB The high-resolution infrared spectrum of cyclopropane (C(3)H(6)) has been Measured from 100 cm(-1) to 2200 cm(-1). In that region we have identified 24 absorption bands attributed to six fundamental bands, five combination bands, three hot bands and 10 difference bands. Long pathlength spectra, up to 32 m, facilitated the identification and analysis of many previously unstudied infrared inactive, and Raman and infrared inactive vibrational states, including direct access to two forbidden fundamental states, v(4) and v(4). An improved set of constants for the ground vibrational state as well as for the fundamental vibrations v(7), v(9), v(10), v(11) are also reported. The spectral resolution of the Measurements varied from 0.002 cm(-1) to 0.004 cm(-1). (C) 2009 Elsevier Inc. All rights reserved. C1 [Masiello, Tony] Calif State Univ Hayward, Dept Chem Biochem, Hayward, CA 94542 USA. [Masiello, Tony; Blake, Thomas A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Masiello, T (reprint author), Calif State Univ Hayward, Dept Chem Biochem, East Bay,25800 Carlos Bee Blvd, Hayward, CA 94542 USA. EM tony.masiello@csueastbay.edu NR 36 TC 2 Z9 2 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAY PY 2009 VL 255 IS 1 BP 45 EP 55 DI 10.1016/j.jms.2009.02.005 PG 11 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 441GT UT WOS:000265758000007 ER PT J AU Maki, A Masiello, T Blake, TA Nibler, JW Weber, A AF Maki, Arthur Masiello, Tony Blake, Thomas A. Nibler, Joseph W. Weber, Alfons TI On the determination of C-0 (or A(0)), D-0(K), H-0(K), and some dark states for symmetric-top molecules from infrared spectra without the need for localized perturbations SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Spectroscopy; Infrared spectroscopy; Molecular structure; Rotational constants; Boron trifluoride; Sulfur trioxide; Cyclopropane; Allene ID MICROWAVE FOURIER-TRANSFORM; PURE ROTATIONAL SPECTRUM; DOUBLE-RESONANCE; 4600 CM(-1); SPECTROSCOPY; (BF3)-B-11; CONSTANTS; BANDS; AO; COMBINATION AB For symmetric-top molecules, the normal Delta k = 0, Delta l = 0 and Delta k = +/- 1, Delta l = +/- 1 selection rules for parallel and perpendicular bands, respectively, do not allow the determination of the K-dependent rotational constants, C-0 (or A(0)), D-0(K), H-0(K) However, we show here that several different combinations of allowed and apparently unperturbed rovibrational infrared transitions can give access to those constants. A necessary ingredient for the application of this technique is a band with selection rules Delta k = +/- 1 (or Delta k = 0). Delta l = -/+ 2, such as an overtone or difference band, and appropriate other bands. Bands with selection rules Delta k = +/- 2, Delta l = -/+ 1 are also useful but are seldom found. As a general rule, more than one vibrational transition is needed. Examples are given for boron trifluoride (BF3 Sulfur trioxide (SO3), and cyclopropane (C3H6) for which there are microwave measurements that provide a check on the derived constants. The technique is also extended to a D-2d molecule, allene, even though we have no measurements to use as an example, Examples are also given for the determination of dark states from difference bands, and/or hot bands, and also whole forbidden bands that arise from mixing with distant energy levels. (C) 2009 Elsevier Inc. All rights reserved. C1 [Masiello, Tony; Blake, Thomas A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Nibler, Joseph W.] Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA. [Weber, Alfons] Natl Inst Stand & Technol, Opt Technol Div, Gaithersburg, MD 20899 USA. RP Masiello, T (reprint author), Calif State Univ Hayward, Dept Chem, East Bay,25800 Carlos Bee Blvd, Hayward, CA 94542 USA. EM tony.masiello@csueastbay.edu FU Department of Energy's Office of Biological and Environmental Research; Pacific Northwest National Laboratory; United States Department of Energy; Battelle Memorial Institute [AC05-76RL01830] FX The research described here was performed in the Environmental Molecular Sciences Laboratory, a National Scientific User Facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the United States Department of Energy by the Battelle Memorial Institute Linder contract number AC05-76RL01830. NR 22 TC 5 Z9 5 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAY PY 2009 VL 255 IS 1 BP 56 EP 62 DI 10.1016/j.jms.2009.02.004 PG 7 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 441GT UT WOS:000265758000008 ER PT J AU Ye, SF Wu, FM Ye, XR Lin, YH AF Ye, Sufang Wu, Fengming Ye, Xiang-Rong Lin, Yuehe TI Supercritical Fluid Assisted Synthesis and Processing of Carbon Nanotubes SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Review DE Supercritical Fluid; Carbon Nanotubes; Synthesis; Processing; Functionalization; Modification; Drying ID ASSEMBLY SOLVOTHERMAL ROUTE; METHANOL FUEL-CELLS; LOW-TEMPERATURE; PALLADIUM NANOPARTICLES; HYDROTHERMAL SYNTHESIS; PLATINUM NANOPARTICLES; METAL NANOPARTICLES; OXYGEN REDUCTION; GATE DIELECTRICS; SENSOR MATERIAL AB Carbon nanotubes (CNTs) constitute one of the most fascinating nanomaterials with specific properties and enormous applications. Taking advantages of the unique properties of supercritical fluids (SCFs), various techniques have been developed to produce and process CNTs and related nanostructured materials when conventional techniques become unviable. Herein we propose a critical review of these SCF based techniques. The most relevant characteristics of each technique and the enabled novel structures and functions which are difficult to accomplish by traditional techniques are highlighted. C1 [Ye, Xiang-Rong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wu, Fengming] Zhejiang Normal Univ, Coll Math & Phys, Dept Phys, Hangzhou 321004, Zhejiang, Peoples R China. [Ye, Sufang] Jinhua Coll Profess & Technol, Chem Engn & Med Coll, Jinhua 321007, Zhejiang, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU Pacific National Laboratory (PNNL); Battelle for DOE [DE-AC05-76RL01830] FX This work was supported by a laboratory-directed research and development program at Pacific National Laboratory (PNNL). Xiang-Rong Ye would like to acknowledge a PNNL fellowship for his work at PNNL. PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 124 TC 2 Z9 2 U1 1 U2 16 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1533-4880 EI 1533-4899 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD MAY PY 2009 VL 9 IS 5 BP 2781 EP 2794 DI 10.1166/jnn.2009.1325 PG 14 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 433EJ UT WOS:000265186800001 PM 19452933 ER PT J AU Linos, K Homan, S Sheehan, C Hayner-Buchan, A Ross, J Qian, J Nazeer, T AF Linos, Konstantinos Homan, Suzanne Sheehan, Christine Hayner-Buchan, Alida Ross, Jeffrey Qian, Jiang Nazeer, Tipu TI Expression of NFATc1 in Primary CNS Lymphomas is Decreased in HIV-Positive Patients SO JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY LA English DT Meeting Abstract CT 85th Annual Meeting of the American-Association-of-Neuropathologists CY JUN 11-14, 2009 CL San Antonio, TX SP Amer Assoc Neuropathol C1 [Linos, Konstantinos; Hayner-Buchan, Alida; Ross, Jeffrey; Nazeer, Tipu] Albany Med Coll, APS, Albany, NY 12208 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0022-3069 J9 J NEUROPATH EXP NEUR JI J. Neuropathol. Exp. Neurol. PD MAY PY 2009 VL 68 IS 5 MA 47 BP 564 EP 564 PG 1 WC Clinical Neurology; Neurosciences; Pathology SC Neurosciences & Neurology; Pathology GA 441GZ UT WOS:000265758600058 ER PT J AU Aromando, RF Heber, EM Trivillin, VA Nigg, DW Schwint, AE Itoiz, ME AF Aromando, Romina F. Heber, Elisa M. Trivillin, Veronica A. Nigg, David W. Schwint, Amanda E. Itoiz, Maria E. TI Insight into the mechanisms underlying tumor response to boron neutron capture therapy in the hamster cheek pouch oral cancer model SO JOURNAL OF ORAL PATHOLOGY & MEDICINE LA English DT Article DE apoptosis; BNCT; DNA synthesis; hamster cheek pouch; oral cancer ID SQUAMOUS-CELL CARCINOMA; BUCCAL POUCH; GLIOBLASTOMA-MULTIFORME; NECK MALIGNANCIES; BNCT; HEAD; CARCINOGENESIS; BORONOPHENYLALANINE; BIODISTRIBUTION; RADIOBIOLOGY AB The therapeutic success of different boron neutron capture therapy (BNCT) protocols employing the hamster cheek pouch oral cancer model has been previously reported by our laboratory. The aim of this study was to explore potential mechanisms of BNCT-induced damage to tumor in terms of potential inhibition in DNA synthesis and induction of apoptosis in the tumors that underwent partial remission following application of the different BNCT protocols in this model. We evaluated DNA synthesis employing incorporation of 5-bromo-2'-deoxyuridine as an end-point. Apoptosis was evaluated by immunohistochemistry employing the deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling technique and Bax and Bcl-2 labeling. These studies were performed in tumors that underwent partial remission 1-30 days post-BNCT mediated by boronophenylalanine (BPA), GB-10 (Na(2)(10)B(10)H(10)) or (BPA + GB-10). BNCT exerted a marked inhibitory effect on DNA synthesis in tumors for all the protocols under study. The inhibitory effect of BPA-BNCT occurred as soon as 1 day post-treatment (P < 0.001). Conversely, the effect of GB-10-BNCT became apparent 7-14 days after therapy (P < 0.001) and was sustained until killed at 30 days post-treatment (P < 0.001). (GB-10 + BPA)-BNCT exerted a rapid and persistent effect, conceivably because of the combined effect of BNCT mediated by both boron compounds. The apoptosis studies did not show differences between the pre-treatment group and any of the BNCT groups. One of the mechanisms involved in BNCT-induced tumor control in our model would be an inhibitory effect on DNA synthesis. Apoptosis does not seem to have a significant role in BNCT-induced tumor control in our model. C1 [Aromando, Romina F.; Itoiz, Maria E.] Univ Buenos Aires, Fac Dent, Dept Oral Pathol, Buenos Aires, DF, Argentina. [Heber, Elisa M.; Trivillin, Veronica A.; Schwint, Amanda E.] Natl Atom Energy Commiss, Dept Radiobiol, San Martin, Buenos Aires, Argentina. [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID USA. RP Aromando, RF (reprint author), Fac Dent Oral Pathol, Marcelo T de Alvear 2142, RA-1117 Capital Fed Buenos Aires, Argentina. EM romina_aromando@yahoo.com.ar OI Schwint, Amanda Elena/0000-0001-6727-3669 NR 42 TC 7 Z9 7 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0904-2512 J9 J ORAL PATHOL MED JI J. Oral Pathol. Med. PD MAY PY 2009 VL 38 IS 5 BP 448 EP 454 DI 10.1111/j.1600-0714.2008.00720.x PG 7 WC Dentistry, Oral Surgery & Medicine; Pathology SC Dentistry, Oral Surgery & Medicine; Pathology GA 433ES UT WOS:000265187700009 PM 19141057 ER PT J AU Khatib, O Demircan, E De Sapio, V Sentis, L Besier, T Delp, S AF Khatib, O. Demircan, E. De Sapio, V. Sentis, L. Besier, T. Delp, S. TI Robotics-based synthesis of human motion SO JOURNAL OF PHYSIOLOGY-PARIS LA English DT Article DE Task-space framework; Human performance characterization; Robotics; Musculoskeletal dynamics; Human animation; Operational space formulation ID DYNAMIC SIMULATIONS; MOVEMENT; MANIPULATORS; EXTREMITY; SOFTWARE; MODEL; TASK; ARM AB The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Khatib, O.; Demircan, E.; De Sapio, V.; Sentis, L.] Stanford Univ, Artificial Intelligence Lab, Stanford, CA 94305 USA. [De Sapio, V.] Sandia Natl Labs, Livermore, CA 94551 USA. [Besier, T.] Human Performance Lab, Stanford, CA 94305 USA. [Delp, S.] Neuromuscular Biomech Lab, Stanford, CA 94305 USA. RP Khatib, O (reprint author), Stanford Univ, Artificial Intelligence Lab, Stanford, CA 94305 USA. EM khatib@cs.stanford.edu; emeld@cs.stanford.edu; vdesap@sandia.gov; lsentis@cs.stanford.edu; besier@stanford.edu; delp@stanford.edu OI Besier, Thor/0000-0003-0818-7554 FU Simbios National Center for Biomedical Computing; NIH [GM072970]; Honda Company and KAUST (King Abdullah University of Science and Technology) FX The financial support of the Simbios National Center for Biomedical Computing Grant (http://simbios.stanford.edu/, NIH GM072970), Honda Company and KAUST (King Abdullah University of Science and Technology) are gratefully acknowledged. Many thanks to Francois Conti and Jinsung Kwong for their valuable contributions to the preparation of this manuscript. NR 20 TC 32 Z9 32 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0928-4257 J9 J PHYSIOLOGY-PARIS JI J. Physiol.-Paris PD MAY-SEP PY 2009 VL 103 IS 3-5 BP 211 EP 219 DI 10.1016/j.jphysparis.2009.08.004 PG 9 WC Neurosciences; Physiology SC Neurosciences & Neurology; Physiology GA 514LJ UT WOS:000271395900009 PM 19665552 ER PT J AU Pullela, SR Shen, JY Marquez, M Cheng, ZD AF Pullela, Srinivasa R. Shen, Jingyi Marquez, Manuel Cheng, Zhengdong TI A Comparative Study of Temperature Dependence of Induction Time and Oscillatory Frequency in Polymer-Immobilized and Free Catalyst Belousov-Zhabotinsky Reactions SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE activation energy; Belousov-Zhabotinsky reaction; catalysts; induction time; microgels ID SOLUBLE-INSOLUBLE CHANGES; CHEMICAL OSCILLATION; SELF-OSCILLATION; MEMORY DEVICE; SYSTEM; WAVES; GEL; MOTION; PATTERNS; DRIVEN AB Environment-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgel particles with covalently bonded ruthenium(4-vinyl-4'-methyl-2,2'-bipyridine) bis (2,2'-bipyridine) [Ru(vmbipy)(bipy)(2)] display periodic size changes when placed in Belousov-Zhabotinsky (BZ) reaction substrates. The temperature dependency of the induction time and oscillatory frequency of the BZ reaction in this polymer-immobilized catalyst system were compared to the bulk BZ reaction with the catalyst in the solution phase. Prolonged induction times are observed for the immobilized catalyst, compared with free catalyst, while little difference is observed on the oscillation frequency. The Arrbenius frequency factor calculated using the induction time for the immobilized catalyst BZ reaction is about seven times smaller than that for the free catalyst Ru(bipy)(3)(2+) case. On the other hand, the Arrhenius frequency factors calculated using the oscillatory frequency are almost the same, showing similar reaction kinetics during the BZ oscillations. The tunability of the induction time using a polymer matrix, as we observed here, while maintaining similar oscillatory behavior, should provide a new dimension to control the self-assembling of BZ active particles. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part 13: Polym Phys 47: 847-854, C1 [Pullela, Srinivasa R.; Shen, Jingyi; Cheng, Zhengdong] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA. [Marquez, Manuel] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA. [Marquez, Manuel] NIST, Ctr Theoret & Computat Nanosci, Gaithersburg, MD 20899 USA. [Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Cheng, ZD (reprint author), Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA. EM zhengdong.cheng@chemail.tamu.edu FU Texas Engineering Experiment Station (TEES); Texas AM University FX The authors thank Professors Michael Bevan and Arul Jayaraman for sharing their research equipment, and the Materials Characterization Facilities (MCF) center at Texas A&M University for its research facilities. The authors are also grateful to our colleagues, Dr. Dawei Luo, Peng He, Shannon Eichmann, and Richard Beckbam, for their help with the equipment. This work is supported by the startup fund of Texas Engineering Experiment Station (TEES), and Texas A&M University. NR 46 TC 4 Z9 5 U1 1 U2 17 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD MAY 1 PY 2009 VL 47 IS 9 BP 847 EP 854 DI 10.1002/polb.21682 PG 8 WC Polymer Science SC Polymer Science GA 435AZ UT WOS:000265316900001 ER PT J AU Petritis, BO Qian, WJ Camp, DG Smith, RD AF Petritis, Brianne O. Qian, Wei-Jun Camp, David G., II Smith, Richard D. TI A Simple Procedure for Effective Quenching of Trypsin Activity and Prevention of (18)O-Labeling Back-Exchange SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Mass spectrometry; LC-MS, proteomics; sample preparation; (18)O-labeling; back-exchange; boiling ID MASS-SPECTROMETRY; QUANTITATIVE PROTEOMICS; LIQUID-CHROMATOGRAPHY; O-18; MIXTURES; STRATEGY AB Trypsin-catalyzed stable isotope (16)O/(18)O-labeling of the C-terminal carboxyl groups of peptides is increasingly used in shotgun proteomics for relative peptide/protein quantitation. However, precise quantitative measurements are often complicated by residual trypsin that can catalyze the back-exchange of (18)O with (16)O after labeling. Here, we demonstrate through a detailed evaluation that boiling the peptide sample for 10 min provides a simple means for completely quenching residual trypsin activity and preventing oxygen back-exchange in (18)O-labeled samples. We also observed that the presence of organic solvents such as acetonitrile made boiling less efficient for inactivating trypsin. Finally, current (18)O-labeling methods that typically employ immobilized trypsin result in significant sample losses due to nonspecific binding of peptides to the resin, making their application toward smaller biological samples increasingly impractical. We present here an improved (18)O-labeling protocol that is more applicable to microscale biological samples by using solution-phase trypsin instead of immobilized trypsin. The ability to generate stably (18)O-labeled samples without back-exchange should enable more effective applications of (18)O-labeling toward large-scale biomarker discovery and validations where an (18)O-labeled sample can be used as a common reference for quantitation. C1 Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MSIN K8-98, Richland, WA 99354 USA. EM rds@pnl.gov RI Qian, Weijun/C-6167-2011; Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU National Institute of General Medical Sciences [U54 GM-62119-02]; NIH National Center for Research Resources [1111018522]; Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy's (DOE); Battelle Memorial Institute for the DOE [DE-AC05-76RL01830] FX The authors thank the National Institute of General Medical Sciences (NIGMS, Large Scale Collaborative Research Grants U54 GM-62119-02) and NIH National Center for Research Resources (1111018522) for support of portions of this research and the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL), a national scientific user facility sponsored by the U.S. Department of Energy's (DOE) Office of Biological and Environmental Research, for the development and use of the instrumentation applied in this research. PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL01830. NR 23 TC 37 Z9 37 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAY PY 2009 VL 8 IS 5 BP 2157 EP 2163 DI 10.1021/pr800971w PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 441BW UT WOS:000265745300004 PM 19222237 ER PT J AU Springer, DL Miller, JH Spinelli, SL Pasa-Tolic, L Purvine, SO Daly, DS Zangar, RC Jin, SS Blumberg, N Francis, CW Taubman, MB Casey, AE Wittlin, SD Phipps, RP AF Springer, David L. Miller, John H. Spinelli, Sherry L. Pasa-Tolic, Ljiljana Purvine, Samuel O. Daly, Donald S. Zangar, Richard C. Jin, Shuangshuang Blumberg, Neil Francis, Charles W. Taubman, Mark B. Casey, Ann E. Wittlin, Steven D. Phipps, Richard P. TI Platelet Proteome Changes Associated with Diabetes and during Platelet Storage for Transfusion SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Proteomics; platelet storage; diabetes; transfusion; mass spectrometry ID HUMAN-BLOOD PLATELETS; ACUTE LUNG INJURY; CD40 LIGAND; MASS-SPECTROMETRY; ACCURATE MASS; STATISTICAL-MODEL; HIGH-THROUGHPUT; PROTEINS; COLLAGEN; IDENTIFICATION AB Human platelets Play a key role in hemostasis and thrombosis and have recently emerged as key regulators of inflammation. Platelets stored for transfusion produce pro-thrombotic and pro-inflammatory mediators implicated in adverse transfusion reactions. Correspondingly, these mediators are central players in pathological conditions including cardiovascular disease, the major cause of death in diabetics. In view of this, a mass spectrometry based proteomics study was performed on platelets collected from healthy and type-2 diabetics stored for transfusion. Strikingly, our innovative and sensitive proteomic approach identified 122 proteins that were either up- or down-regulated in type-2 diabetics relative to nondiabetic controls and 117 proteins whose abundances changed during a 5-day storage period. Notably, our studies are the first to characterize the proteome of platelets from diabetics before and after storage for transfusion. These identified differences allow us to formulate new hypotheses and experimentation to improve clinical outcomes by targeting "high risk platelets" that render platelet transfusion less effective or even unsafe. C1 [Springer, David L.; Pasa-Tolic, Ljiljana; Purvine, Samuel O.; Daly, Donald S.; Zangar, Richard C.] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. [Miller, John H.; Jin, Shuangshuang] Washington State Univ Tricities, Sch Elect Engn & Comp Sci, Richland, WA 99352 USA. [Spinelli, Sherry L.; Blumberg, Neil; Francis, Charles W.; Taubman, Mark B.; Casey, Ann E.; Wittlin, Steven D.; Phipps, Richard P.] Univ Rochester, Sch Med & Dent, Rochester, NY 14642 USA. RP Springer, DL (reprint author), Pacific NW Natl Lab, Div Biol Sci, K4-12, Richland, WA 99352 USA. EM david.springer@pnl.gov FU NCI NIH HHS [CA117378, U01 CA117378]; NHLBI NIH HHS [R21 HL086367, R21 HL086367-02, R01 HL078603, HL078603, R01 HL078603-04, HL086367]; NIEHS NIH HHS [P30 ES001247, ES01247, P30 ES001247-34] NR 52 TC 35 Z9 35 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAY PY 2009 VL 8 IS 5 BP 2261 EP 2272 DI 10.1021/pr800885j PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 441BW UT WOS:000265745300014 PM 19267493 ER PT J AU Landsberger, S Plionis, A AF Landsberger, S. Plionis, A. TI A web-based course in nuclear and radiochemistry SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd International Nuclear Chemistry Congress (2nd-INCC) CY APR 13-17, 2008 CL Cancun, MEXICO AB Over the last six years through a Department of Energy Radiochemistry Education Award Program (REAP) we have developed a completely web-based course in nuclear and radiochemistry given at the University of Texas at Austin. This course has had nuclear and radiation engineering and chemistry graduate students. While the course also has an extensive laboratory component only the lectures are web based. The lectures begin with a historical introduction of radiochemistry followed by two movies on Madame Curie. This is followed by the usual lectures on radioactivity, fundamental properties, radioactive decay, decay modes, and nuclear reactions. As section on radioactive waste management and nuclear fuel cycle is also presented. Lectures in neutron activation analysis, geo- and cosmochemistry, and plutonium chemistry have also been developed. All lectures are in power point with many animations and a significant number of solved problems. All students are required to make a short oral presentation on some aspect of nuclear and radiochemistry in their research or a chosen topic. C1 [Landsberger, S.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78712 USA. [Plionis, A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Landsberger, S (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, R-9000, Austin, TX 78712 USA. EM s.landsberger@mail.utexas.edu NR 1 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2009 VL 280 IS 2 BP 229 EP 231 DI 10.1007/s10967-009-0503-y PG 3 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 440QE UT WOS:000265714000004 ER PT J AU Lapka, JL Paulenova, A Alyapyshev, MY Babain, VA Herbst, RS Law, JD AF Lapka, J. L. Paulenova, A. Alyapyshev, M. Yu. Babain, V. A. Herbst, R. S. Law, J. D. TI Extraction of molybdenum and technetium with diamides of dipicolinic acid from nitric acid solutions SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd International Nuclear Chemistry Congress (2nd-INCC) CY APR 13-17, 2008 CL Cancun, MEXICO ID SOLVENT-EXTRACTION; MONONUCLEAR; ACTINIDES; WASTES; TODGA AB The concentration of molybdenum(VI) in dissolved spent nuclear fuel is comparable with the concentrations of Tc, and the minor actinides (Np, Am). Therefore it is of great interest to understand its behavior under conditions imposed by separation processes. The simultaneous extraction ability of ortho, meta, and para isomers of N,N'-diethyl-N,N'-ditolyl-dipicolinamide (EtTDPA) for molybdenum and technetium were investigated in a large range of nitric and hydrochloric acid conditions. Molybdenum shows no increase in extraction at higher concentrations of nitric acid giving a solvate number n=0 with all isomers of EtTDPA, while Mo shows great extractability from HCl. Technetium distribution ratios decrease with increasing concentrations of nitrate showing indication of ion exchange occurring between TcO(4) (-) and NO(3) (-) anions. Et(m)TDPA and Et(p)TDPA show the greatest extractability, with 60% of the total technetium extracted into the organic phase at 1M HNO(3). C1 [Lapka, J. L.; Paulenova, A.; Alyapyshev, M. Yu.] Oregon State Univ, Corvallis, OR 97331 USA. [Alyapyshev, M. Yu.; Babain, V. A.] VG Khlopin Radium Inst, St Petersburg 197022, Russia. [Herbst, R. S.; Law, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Lapka, JL (reprint author), Oregon State Univ, Corvallis, OR 97331 USA. EM alena.paulenova@oregonstate.edu OI Law, Jack/0000-0001-7085-7542 NR 29 TC 2 Z9 2 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2009 VL 280 IS 2 BP 307 EP 313 DI 10.1007/s10967-009-0518-4 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 440QE UT WOS:000265714000018 ER PT J AU Ermolaev, SV Zhuikov, BL Kokhanyuk, VM Abramov, AA Togaeva, NR Khamianov, SV Srivastava, SC AF Ermolaev, S. V. Zhuikov, B. L. Kokhanyuk, V. M. Abramov, A. A. Togaeva, N. R. Khamianov, S. V. Srivastava, S. C. TI Production of no-carrier-added Sn-117m from proton irradiated antimony SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd International Nuclear Chemistry Congress (2nd-INCC) CY APR 13-17, 2008 CL Cancun, MEXICO AB A method for production of no-carrier-added Sn-117m (NCA Sn-117m) has been developed. It includes proton irradiation of thick antimony targets and chemical recovery of Sn-117m by extraction of Sb with dibutyl ether and chromatographic purification on silica gel column. The method provides production of curie amounts of Sn-117m with specific activity about 1000 Ci/g and high radionuclidic purity. C1 [Ermolaev, S. V.; Zhuikov, B. L.; Kokhanyuk, V. M.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Abramov, A. A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Srivastava, S. C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ermolaev, SV (reprint author), Russian Acad Sci, Inst Nucl Res, Moscow, Russia. EM ermolaev@inr.ru NR 9 TC 11 Z9 11 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2009 VL 280 IS 2 BP 319 EP 324 DI 10.1007/s10967-009-0520-x PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 440QE UT WOS:000265714000020 ER PT J AU Tkac, P Paulenova, A Vandegrift, GF Krebs, JF AF Tkac, P. Paulenova, A. Vandegrift, G. F. Krebs, J. F. TI Distribution and identification of Plutonium(IV) species in tri-n-butyl phosphate/HNO3 extraction system containing acetohydroxamic acid SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article; Proceedings Paper CT 2nd International Nuclear Chemistry Congress (2nd-INCC) CY APR 13-17, 2008 CL Cancun, MEXICO ID NITRATE COMPLEXES; HYDROXAMIC ACIDS; SPECIATION; NEPTUNIUM; IONS AB There was a significant research progress achieved with the aim to modify conventional PUREX process by stripping of plutonium from the tri-n-butyl phosphate (TBP) extraction product in the form of non-extractable complexes upon addition of back-hold complexation agents. The present paper reports effects of such salt-free complexant, acetohydroxamic acid (HAHA), on distribution ratio of Pu(IV) under wide concentration of nitric acid and additional nitrate. General formula of plutonium species present in the organic phase can be described as Pu(OH)(x)(AHA)(y)(NO3)(4-x-y)center dot 2TBP center dot wHNO(3). C1 [Tkac, P.] Oregon State Univ, Ctr Radiat, Corvallis, OR 97331 USA. [Paulenova, A.] Oregon State Univ, Dept Nucl Engn & Radiat Hlth Phys, Corvallis, OR 97331 USA. [Vandegrift, G. F.; Krebs, J. F.] Argonne Natl Lab, Div Chem Technol, Argonne, IL 60439 USA. RP Tkac, P (reprint author), Oregon State Univ, Ctr Radiat, Corvallis, OR 97331 USA. EM Alena.Paulenova@oregonstate.edu RI Tkac, Peter/A-5680-2012 NR 24 TC 12 Z9 13 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAY PY 2009 VL 280 IS 2 BP 339 EP 342 DI 10.1007/s10967-009-0524-6 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 440QE UT WOS:000265714000024 ER PT J AU Haussener, S Hirsch, D Perkins, C Weimer, A Lewandowski, A Steinfeld, A AF Haussener, S. Hirsch, D. Perkins, C. Weimer, A. Lewandowski, A. Steinfeld, A. TI Modeling of a Multitube High-Temperature Solar Thermochemical Reactor for Hydrogen Production SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT Conference of the ASME Solar Energy Division and Advanced Energy Systems Division CY JUN 27-29, 2007 CL Long Beach, CA SP ASME, Solar Energy Div, ASME, Adv Energy Syst Div DE chemical reactors; computational fluid dynamics; heat transfer; hydrogen production; reaction kinetics; thermochemistry ID ZINC-OXIDE AB A solar reactor consisting of a cavity-receiver containing an array of tubular absorbers is considered for performing the ZnO-dissociation as part of a two-step H(2)O-splitting thermochemical cycle using concentrated solar energy. The continuity, momentum, and energy governing equations that couple the rate of heat transfer to the Arrhenius-type reaction kinetics are formulated for an absorbing-emitting-scattering particulate media and numerically solved using a computational fluid dynamics code. Parametric simulations were carried out to examine the influence of the solar flux concentration ratio (3000-6000 suns), number of tubes (1-10), ZnO mass flow rate (2-20 g/min per tube), and ZnO particle size (0.06-1 mu m) on the reactor's performance. The reaction extent reaches completion within 1 s residence time at above 2000 K, yielding a solar-to-chemical energy conversion efficiency of up to 29%. C1 [Haussener, S.; Steinfeld, A.] ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland. [Hirsch, D.; Perkins, C.; Weimer, A.] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA. [Lewandowski, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Steinfeld, A.] Paul Scherrer Inst, Solar Technol Lab, CH-5232 Villigen, Switzerland. RP Haussener, S (reprint author), ETH, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland. RI Haussener, Sophia/G-2509-2012; Steinfeld, Aldo/B-8869-2008 OI Steinfeld, Aldo/0000-0001-7797-686X NR 12 TC 16 Z9 16 U1 0 U2 16 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD MAY PY 2009 VL 131 IS 2 AR 024503 DI 10.1115/1.3097280 PG 5 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 433SI UT WOS:000265225700016 ER PT J AU Bennett, BC Wan, Q Ahmad, MF Langan, P Dealwis, CG AF Bennett, Brad C. Wan, Qun Ahmad, Md Faiz Langan, Paul Dealwis, Chris G. TI X-ray structure of the ternary MTX.NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Anthrax; X-ray crystallography; Nucleotide biosynthesis; Dual-site inhibition; Antifolate; Structure-based drug design; Cryocrystallography ID PROTEIN-LIGAND INTERACTIONS; BACILLUS-ANTHRACIS; ACETYLCHOLINESTERASE INHIBITORS; ANTIFOLATE RESISTANCE; ESCHERICHIA-COLI; SCORING FUNCTION; DRUG DESIGN; BINDING; METHOTREXATE; DOCKING AB For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of Bacillus anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate-binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures. the adenine moiety adopts an off-plane tilt of nearly 90 degrees and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3 angstrom resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor-binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor-binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low mu M concentrations. The apparent K(d) for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 mu M. (C) 2009 Elsevier Inc. All rights reserved. C1 [Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Dealwis, Chris G.] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA. [Langan, Paul] Los Alamos Natl Lab, Div B, Los Alamos, NM 87545 USA. RP Dealwis, CG (reprint author), Case Western Reserve Univ, Sch Med, Dept Pharmacol, HG Wood Bldg,Room W-302,10900 Euclid Ave, Cleveland, OH 44106 USA. EM chris.dealwis@case.edu RI Langan, Paul/N-5237-2015; OI Langan, Paul/0000-0002-0247-3122; Wan, Qun/0000-0002-8309-0341 FU DOE LDRD [20070131ER] FX We thank Dr. Hai Xu for technical help and useful discussion. We wish to acknowledge the BioCARS staff at the APS for assistance in X-ray data collection. BB, QW, PL and CD were funded by a DOE LDRD award 20070131ER. NR 46 TC 11 Z9 12 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD MAY PY 2009 VL 166 IS 2 BP 162 EP 171 DI 10.1016/j.jsb.2009.01.001 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 438NA UT WOS:000265560900007 PM 19374017 ER PT J AU Scheres, SHW Valle, M Grob, P Nogales, E Carazo, JM AF Scheres, Sjors H. W. Valle, Mikel Grob, Patricia Nogales, Eva Carazo, Jose-Maria TI Maximum likelihood refinement of electron microscopy data with normalization errors SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Single particle analysis; Structural heterogeneity; Classification; Expectation maximization ID SINGLE-PARTICLE RECONSTRUCTIONS; CRYOELECTRON MICROSCOPY; IMAGES; CLASSIFICATION; STATES; XMIPP; RNA AB Commonly employed data models for maximum likelihood refinement of electron microscopy images behave poorly in the presence of normalization errors. Small variations in background mean or signal brightness are relatively common in cryo-electron microscopy data, and varying signal-to-noise ratios or artifacts in the images interfere with standard normalization procedures. In this paper, a statistical data model that accounts for normalization errors is presented, and a corresponding algorithm for maximum likelihood classification of structurally heterogeneous projection data is derived. The extended data model has general relevance, since similar algorithms may be derived for other maximum likelihood approaches in the field. The potentials of this approach are illustrated for two structurally heterogeneous data sets: 70S E.coli ribosomes and human RNA polymerase 11 complexes. In both cases, maximum likelihood classification based on the conventional data model failed, whereas the new approach was capable of revealing previously unobserved conformations. (C) 2009 Elsevier Inc. All rights reserved. C1 [Scheres, Sjors H. W.; Carazo, Jose-Maria] Ctr Nacl Biotecnol CSIC, Madrid 28049, Spain. [Valle, Mikel] CICBiogune, Derio Bizkaia 48160, Spain. [Grob, Patricia; Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Mol & Cell Biol Dept QB3, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Scheres, SHW (reprint author), Ctr Nacl Biotecnol CSIC, Calle Darwin 3,Campus Univ Autonoma, Madrid 28049, Spain. EM scheres@cnb.csic.es RI Valle, Mikel/F-7598-2011; OI Valle, Mikel/0000-0001-8268-6912; Scheres, Sjors/0000-0002-0462-6540 FU Spanish Ministry of Science [CSD2006-00023, BIO2007-67150-C03-1/3]; Comunidad de Madrid [S-GEN-0166-2006]; European Union [FP6-502828]; US National Heart, Lung and Blood Institute; National Institutes of Health [R01 HL070472, R01 GM63072] FX We thank the Barcelona and the Galicia Supercomputing Centers (BSC-CNS and CESGA) for providing computer resources, James Goodrich for providing the human Alu RNA and Cameron L. Noland for his contribution to data collection in the hRNAPII study. Funding was provided by the Spanish Ministry of Science (CSD2006-00023, BIO2007-67150-C03-1/3) and Comunidad de Madrid (S-GEN-0166-2006), the European Union (FP6-502828), the US National Heart, Lung and Blood Institute and the National Institutes of Health (R01 HL070472, R01 GM63072). E.N. is a Howard Hughes Medical Institute investigator. The content of this work is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung and Blood Institute or the National Institutes of Health. NR 29 TC 15 Z9 15 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD MAY PY 2009 VL 166 IS 2 BP 234 EP 240 DI 10.1016/j.jsb.2009.02.007 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 438NA UT WOS:000265560900014 PM 19236920 ER PT J AU Dufresne, EM Dierker, SB Yin, Z Berman, L AF Dufresne, Eric M. Dierker, Steven B. Yin, Z. Berman, Lonny TI Development of new apertures for coherent X-ray experiments SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE XPCS; SAXS; Fraunhofer diffraction; coherence ID SCATTERING EXPERIMENTS; DIFFRACTION; SPECTROSCOPY; PINHOLES; DYNAMICS; SLITS AB When one performs a coherent small-angle X-ray scattering experiment, the incident beam must be spatially filtered by slits on a length scale smaller than the transverse coherence length of the source which is typically around 10 mm. The Fraunhofer diffraction pattern of the slit is one of the important sources of background in these experiments. New slits which minimize this parasitic background have been designed and tested. The slit configuration apodizes the beam by the use of partially transmitting inclined slit jaws. A model is presented which predicts that the high wavevector tails of the diffraction pattern fall as the inverse fourth power of the wavevector instead of the inverse second power that is observed for standard slits. Using cleaved GaAs single-crystal edges, Fraunhofer diffraction patterns from 3 and 5.5 keV X-rays were measured, in agreement with the theoretical model proposed. A novel phase-peak diffraction pattern associated with phase variations of the transmitted electric field was also observed. The model proposed adequately accounts for this phenomenon. C1 [Dufresne, Eric M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Dierker, Steven B.; Yin, Z.; Berman, Lonny] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Dufresne, Eric M.; Dierker, Steven B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Dufresne, EM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM dufresne@anl.gov FU National Science Foundation [DMR-92-17956]; US Department of Energy [DE-AC02-98CH10886] FX We thank Professor Roy Clarke for providing the thin GaAs wafers. We thank James Stathis, Mason Okubo and Ramin Ershadi from Newport Corp. for lending us an MM3000 controller and for their advice on the operation of the MM3000. The excellent technical support from Rick Greene and Tony Lenhard was greatly appreciated. EMD acknowledges the support of the Natural Science and Engineering Council of Canada. This work was supported by a National Science Foundation Grant No. DMR-92-17956, and the NSLS is operated under a US Department of Energy contract No DE-AC02-98CH10886. NR 17 TC 2 Z9 2 U1 1 U2 3 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2009 VL 16 BP 358 EP 367 DI 10.1107/S0909049509003720 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 433QJ UT WOS:000265220600007 PM 19395799 ER PT J AU Ejdrup, T Lemke, HT Haldrup, K Nielsen, TN Arms, DA Walko, DA Miceli, A Landahl, EC Dufresne, EM Nielsen, MM AF Ejdrup, T. Lemke, H. T. Haldrup, K. Nielsen, T. N. Arms, D. A. Walko, D. A. Miceli, A. Landahl, E. C. Dufresne, E. M. Nielsen, M. M. TI Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE time-resolved X-ray diffraction; pixel detector; alpha-perylene; PILATUS ID STRUCTURAL-CHANGES; CRYSTALLOGRAPHY; DIFFRACTION; SYNCHROTRON; BEAMLINE; PROTEIN; PULSES AB The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA. The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of alpha-perylene illustrates the possibility of reaching an X-ray pulse duration limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline. C1 [Ejdrup, T.; Lemke, H. T.; Haldrup, K.; Nielsen, T. N.; Nielsen, M. M.] Univ Copenhagen, Niels Bohr Inst, Danish Natl Res Fdn, Ctr Mol Movies, DK-2100 Copenhagen O, Denmark. [Arms, D. A.; Walko, D. A.; Miceli, A.; Dufresne, E. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Landahl, E. C.] De Paul Univ, Dept Phys, Chicago, IL 60614 USA. RP Ejdrup, T (reprint author), Univ Copenhagen, Niels Bohr Inst, Danish Natl Res Fdn, Ctr Mol Movies, Univ Pk 5, DK-2100 Copenhagen O, Denmark. EM ejdrup@fys.ku.dk RI Landahl, Eric/A-1742-2010; Haldrup, Kristoffer/J-6875-2013; Nielsen, Martin/A-5133-2009; Lemke, Henrik Till/N-7419-2016 OI Haldrup, Kristoffer/0000-0002-0565-6397; Nielsen, Martin/0000-0002-8135-434X; Lemke, Henrik Till/0000-0003-1577-8643 FU US Department of Energy [DE-AC02-06CH11357] FX This work was made possible through support from the Danish National Research Foundation, Centre for Molecular Movies. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank C. Bronnimann for valuable discussions regarding the PILATUS detector. NR 18 TC 31 Z9 34 U1 2 U2 13 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2009 VL 16 BP 387 EP 390 DI 10.1107/S0909049509004658 PG 4 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 433QJ UT WOS:000265220600011 PM 19395803 ER PT J AU Chaboy, J Laguna-Marco, MA Piquer, C Boada, R Plugaru, N Maruyama, H Kawamura, N AF Chaboy, Jesus Angeles Laguna-Marco, Maria Piquer, Cristina Boada, Roberto Plugaru, Neculai Maruyama, Hiroshi Kawamura, Naomi TI Origin of the X-ray magnetic circular dichroism at the L-edges of the rare-earths in RxR ' Al-1-x(2) systems SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray magnetic circular dichroism; rare-earth L-edges ID L-2-EDGE XMCD SPECTRA; K-EDGE; QUADRUPOLAR TRANSITIONS; ABSORPTION; METAL; MOMENT; INTERMETALLICS; PROBE; IRON; SPECTROSCOPY AB An X-ray magnetic circular dichroism (XMCD) study performed at the rare-earth L-2,L-3-edges in the RxR'Al-1-x(2) compounds is presented. It is shown that both R and R' atoms contribute to the XMCD recorded at the L-edges of the selected rare-earth, either R or R'. The amplitude of the XMCD signal is not directly correlated to the magnetization or to the value of the individual (R, R') magnetic moments, but it is related to the molecular field acting on the rare-earth tuned in the photoabsorption process. This result closes a longstanding study of the origin of the XMCD at the L-edge of the rare-earths in multi-component systems, allowing a full understanding of the exact nature of these signals. C1 [Chaboy, Jesus; Piquer, Cristina; Boada, Roberto] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Chaboy, Jesus] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain. [Angeles Laguna-Marco, Maria] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Piquer, Cristina; Plugaru, Neculai] Univ Zaragoza, Dept Ciencia & Tecnol Mat & Fluidos, E-50009 Zaragoza, Spain. [Plugaru, Neculai] Natl Inst Mat Phys, Bucharest, Romania. [Maruyama, Hiroshi] Hiroshima Univ, Grad Sch Sci, Higashihiroshima 7398526, Japan. [Kawamura, Naomi] Japan Synchrotron Radiat Res Inst SPring 8, Sayo, Hyogo 6795198, Japan. RP Chaboy, J (reprint author), Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. EM jchaboy@unizar.es RI Laguna-Marco, M. A./G-8042-2011; Boada, Roberto/H-5349-2015 OI Laguna-Marco, M. A./0000-0003-4069-0395; Boada, Roberto/0000-0003-4857-8402 FU Spanish CICYT [CICYT-MAT2008-06542-C04-01]; Ministerio de Eduacion y Ciencia of Spain FX This work was partially supported by a Spanish CICYT-MAT2008-06542-C04-01 grant. MALM and RB acknowledge the Ministerio de Eduacion y Ciencia of Spain for a Postdoctoral and a PhD grant, respectively. This study was performed with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposals No. 1999A0388 and 2001A0062). NR 56 TC 1 Z9 1 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2009 VL 16 BP 405 EP 412 DI 10.1107/S0909049509009807 PN 3 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 433QJ UT WOS:000265220600015 PM 19395807 ER PT J AU Harris, HH Vogt, S Lay, PA AF Harris, Hugh H. Vogt, Stefan Lay, Peter A. TI Response to Guzzi & Pigatto's Comments on Migration of mercury from dental amalgam through human teeth by H. H. Harris et al. (2008). J-Synchrotron Rad. 15, 123-128 SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Letter ID X-RAY-FLUORESCENCE C1 [Harris, Hugh H.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Lay, Peter A.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. RP Harris, HH (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. EM hugh.harris@adelaide.edu.au; p.lay@chem.usyd.edu.au RI Harris, Hugh/A-4983-2008; Lay, Peter/B-4698-2014; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Lay, Peter/0000-0002-3232-2720; Harris, Hugh/0000-0002-3472-8628 NR 14 TC 1 Z9 1 U1 0 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2009 VL 16 BP 437 EP 438 DI 10.1107/S0909049509005706 PG 2 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 433QJ UT WOS:000265220600021 ER PT J AU Marcus, MA Westphal, AJ Fakra, SC AF Marcus, Matthew A. Westphal, Andrew J. Fakra, Sirine C. TI Classification of Fe-bearing species from K-edge XANES data using two-parameter correlation plots (vol 15, pg 463, 2008) SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Correction C1 [Marcus, Matthew A.; Fakra, Sirine C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Westphal, Andrew J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Marcus, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, MS 6-2100, Berkeley, CA 94720 USA. EM mamarcus@lbl.gov NR 1 TC 1 Z9 1 U1 1 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAY PY 2009 VL 16 BP 439 EP 439 DI 10.1107/S0909049509007328 PG 1 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 433QJ UT WOS:000265220600022 ER PT J AU Geller, DA Swift, GW AF Geller, D. A. Swift, G. W. TI Thermoacoustic mixture separation with an axial temperature gradient SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article AB The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures. (C) 2009 Acoustical Society of America. [DOI: 10.1121/1.3097767] C1 [Geller, D. A.; Swift, G. W.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Geller, DA (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, MS K764, Los Alamos, NM 87545 USA. EM dgeller@lanl.gov OI Geller, Drew/0000-0001-8046-8495 FU Los Alamos National Laboratory FX This work was supported by Locally Directed R&D funds at Los Alamos National Laboratory. We are grateful to Mike Torrez and Carmen Espinoza for fabrication and assembly of the apparatus. NR 14 TC 2 Z9 2 U1 0 U2 4 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD MAY PY 2009 VL 125 IS 5 BP 2937 EP 2945 DI 10.1121/1.3097767 PG 9 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 443BH UT WOS:000265884700019 PM 19425637 ER PT J AU Gozalo, AS Rosenberg, HF Elkins, WR Montoya, EJ Weller, RE AF Gozalo, Alfonso S. Rosenberg, Helene F. Elkins, William R. Montoya, Enrique J. Weller, Richard E. TI Multisystemic Eosinophilia Resembling Hypereosinophilic Syndrome in a Colony-Bred Owl Monkey (Aotus vociferans) SO JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE LA English DT Article ID DISORDERS; THERAPY; DISEASE; EVOLUTION; IMATINIB; GENES; CATS AB In animals, multisystemic eosinophilic disease is a rare condition characterized by eosinophilic and lymphoplasmacytic infiltrates in various organs. This disorder resembles the human disease known as hypereosinophilic syndrome, a condition defined by prolonged peripheral eosinophilia in the absence of recognizable etiology and associated with end-organ damage. In this report we describe a research-naive, colony-born, juvenile female owl monkey (Aotus vociferans) who presented clinically with severe respiratory distress and histologically with multiple end-organ infiltration with phenotypically mature eosinophils, plasma cells, and lymphocytes. No tumors or infectious agents were noted either macroscopically or microscopically. Cultures from lung samples revealed no bacteria or fungi. Histologic examination of lung, heart, thymus, liver, spleen, kidney, adrenal, pancreas, stomach, small intestine, and colon revealed no migrating nematode larvae, other parasites, or foreign material that might trigger eosinophilia, nor was there any evidence of or history consistent with an allergic etiology. Given that we ruled out most exogenous and endogenous triggers of eosinophilia, the signs, symptoms, and pathologic findings support the diagnosis of multisystemic eosinophilic disease. To our knowledge, this report is the first description of presumptive hypereosinophilic syndrome in a nonhuman primate. C1 [Gozalo, Alfonso S.; Elkins, William R.] NIAID, Comparat Med Branch, NIH, Bethesda, MD 20892 USA. [Rosenberg, Helene F.] NIAID, Eosinophil Biol Sect, Lab Allerg Dis, NIH, Bethesda, MD 20892 USA. [Gozalo, Alfonso S.] SoBran, Bethesda, MD USA. [Montoya, Enrique J.] Univ Nacl Mayor San Marcos, Fac Med Vet, Vet Invest Trop & Altura, Iquitos, Peru. [Weller, Richard E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gozalo, AS (reprint author), NIAID, Comparat Med Branch, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA. EM gozaloa@niaid.nih.gov FU Peruvian Government; Pan American Health Organization [ICF-/ZNS/010]; National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID); Comparative Medicine Branch; Office of Research Support FX This Study was conducted as part of the activities of the Peruvian Primatological Project, Supported by the Peruvian Government and the Pan American Health Organization (ICF-/ZNS/010), and by the Intramural Research Program of the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID), Comparative Medicine Branch, the Office of Research Support, and a NIAID contract to SoBran. We thank Dr Carmen Michaud for photographic assistance. NR 23 TC 3 Z9 3 U1 1 U2 1 PU AMER ASSOC LABORATORY ANIMAL SCIENCE PI MEMPHIS PA 9190 CRESTWYN HILLS DR, MEMPHIS, TN 38125 USA SN 1559-6109 J9 J AM ASSOC LAB ANIM JI J. Amer. Assoc. Lab. Anim. Sci. PD MAY PY 2009 VL 48 IS 3 BP 303 EP 306 PG 4 WC Veterinary Sciences; Zoology SC Veterinary Sciences; Zoology GA 450HV UT WOS:000266392500011 PM 19476722 ER PT J AU Leavitt, CM Oomens, J Dain, RP Steill, J Groenewold, GS Van Stipdonk, MJ AF Leavitt, Christopher M. Oomens, Jos Dain, Ryan P. Steill, Jeffrey Groenewold, Gary S. Van Stipdonk, Michael J. TI IRMPD Spectroscopy of Anionic Group II Metal Nitrate Cluster Ions SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID PHOTON DISSOCIATION SPECTROSCOPY; ENERGY-ADJUSTED PSEUDOPOTENTIALS; RESONANCE MASS-SPECTROMETRY; GAS-PHASE; INFRARED-SPECTROSCOPY; VIBRATIONAL SPECTROSCOPY; PARAMETER SETS; COMPLEXES; SPECTRA; DENSITY AB Anionic group II metal nitrate clusters of the formula [M-2(NO3)(5)](-), where M-2 = Mg-2, MgCa, Ca-2, and Sr-2, are investigated by infrared Multiple photon dissociation (IRMPD) spectroscopy to obtain vibrational spectra in the mid-IR region. The IR spectra are dominated by the symmetric and the antisymmetric nitrate stretches, with the latter split into high and low-frequency components due to the distortion of nitrate anion symmetry by interactions with the cation. Density functional theory (DFT) is used to predict geometries and vibrational spectra for comparison to the experimental spectra. Calculations yield two stable isomers: the first one contains two terminal nitrate anions on each cation and a single bridging nitrate ("mono-bridging"), while the second structure features a single terminal nitrate on each cation with three bridging nitrate ligands ("tri-bridging"). The tri-bridging isomer is calculated to be lower in energy than the mono-bridging one for all species. Theoretical spectra of the tri-bridging structure provide a better qualitative match to the experimental infrared spectra of [Mg-2(NO3)(5)](-) and [MgCa(NO3)(5)](-). However, the profile of the low-frequency nu(3) band for the Mg-2 complex suggests a third possible isomer not predicted by theory. The IRMPD spectra of the Ca-2 and Sr-2 complexes are better reconciled by a weighted Summation of the spectra of both isomers suggesting that a mixture of structures is present. (J Am Soc Mass Spectrom 2009, 20, 772-782) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry C1 [Leavitt, Christopher M.; Dain, Ryan P.; Van Stipdonk, Michael J.] Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. [Oomens, Jos; Steill, Jeffrey] FOM Inst Plasma Phys Rijnhuizen, Nieuwegein, Netherlands. [Groenewold, Gary S.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Van Stipdonk, MJ (reprint author), Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. EM mike.vanstipdonk@wichita.edu RI Oomens, Jos/F-9691-2015 FU U.S. National Science Foundation [CAREER-0239800]; Fairmount College of Liberal Arts and Sciences of Wichita State University; NSF [EIA-0216178, EPS-0236913] FX Work by CML, RPD, and MVS is supported in part by a grant from the U.S. National Science Foundation (NSF grant CAREER-0239800) and the Fairmount College of Liberal Arts and Sciences of Wichita State University. Density functional theory calculations were performed at Wichita State University using resources of the High-Performance Computing Center (HIPECC), a facility supported by the NSF under grants EIA-0216178 and EPS-0236913 and matching support from the State of Kansas and HIPECC. Work by GSG (under the INL LDRD Program) and the use of the INL High-Performance Computing Cluster, are Supported by the U.S. Department of Energy, Idaho National Laboratory, DOE Idaho Operations Office contract DE AC07 05ID14517. JO and JS are Supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Construction and shipping of the FT-ICR-MS instrument was made possible through funding from the National High Field FT-ICR Facility (grant CHE-9909502) at the National High Magnetic Field Laboratory, Tallahassee, FL. The authors gratefully acknowledge the excellent Support by Dr. B. Redlich and others of the FELIX staff is. NR 36 TC 12 Z9 12 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD MAY PY 2009 VL 20 IS 5 BP 772 EP 782 DI 10.1016/j.jasms.2008.12.023 PG 11 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 439SU UT WOS:000265648100006 PM 19201616 ER PT J AU Chen, Z Speakman, S Howe, J Wang, H Porter, W Trice, R AF Chen, Zun Speakman, Scott Howe, Jane Wang, Hsin Porter, Wally Trice, Rodney TI Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE ZrO(2); Corrosion; V(2)O(5); Y(2)O(3) ID THERMAL-BARRIER COATINGS; HOT-CORROSION; RESISTANCE; PHASE; CONDUCTIVITY; CERAMICS; SCANDIA; SULFATE; ZRO2 AB The phase evolution occurring during the reaction between corrosive V(2)O(5) (T(m) = 690 degrees C) and a plas ma- sprayed 7 wt.% Y(2)O(3)-ZrO(2) (YSZ) coating from 700 to 900 degrees C has been investigated in situ by X-ray diffraction. The temperature and time of interaction between the V(2)O(5) and YSZ coating determines the phases observed. Between 700 and 750 degrees C, reaction products of ZrV(2)O(7) and YVO(4) were observed within minutes of reaching the test temperature. m-ZrO(2) was observed after 220 and 60 min at 700 and 750 degrees C, respectively. The simultaneous formation of both ZrV(2)O(7) and YVO(4) at the beginning of the reaction along with the delay of the m-ZrO(2) formation suggests similar reactivity between both Zr and Y with V(2)O(5). The weight percent of the ZrV(2)O(7) phase began to diminish after 150 and 60 min at 700 and 750 degrees C, respectively. For reaction temperatures of 800 and 900 degrees C, there is a rapid decrease in the amount of t'-ZrO(2) and a rapid increase in the amount of m-ZrO(2) with reaction time. YVO(4) was also observed at these reaction temperatures. SEM and TEM microstructural observations confirmed the phases detected from the in situ XRD experiments. Reactions between YSZ and V(2)O(5) suggest that the formation of a liquid phase due to the high solubility of both zirconia and yttria in vanadia is the dominate mechanism that damages the coating. The thermal conductivity of a plasma-sprayed YSZ coating reacted with up to 1 wt-% V(2)O(5) did not significantly change due to the small volume affected. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Chen, Zun; Trice, Rodney] Purdue Univ, W Lafayette, IN 47907 USA. [Speakman, Scott; Howe, Jane; Wang, Hsin; Porter, Wally] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Trice, R (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM rtrice@purdue.edu RI Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 FU Purdue Research Foundation; National Science Foundation [DMR-0134286]; Assistant Secretary for Energy Efficiency and Renewable Energy; Office of FreedomCAR and Vehicle Technologies; High Temperature Materials Laboratory User Program; Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by Purdue Research Foundation and by the National Science Foundation through DMR-0134286. Research sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Batelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. NR 27 TC 34 Z9 36 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD MAY PY 2009 VL 29 IS 8 BP 1403 EP 1411 DI 10.1016/j.jeurceramsoc.2008.09.016 PG 9 WC Materials Science, Ceramics SC Materials Science GA 437UM UT WOS:000265512400012 ER PT J AU Brochu, A Gauntt, BD Boyer, L Loehman, RE AF Brochu, A. Gauntt, B. D. Boyer, L. Loehman, R. E. TI Pressureless reactive sintering of ZrB2 ceramic SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Powders-solid-state reaction; Milling; Sintering; Borides; ZrB2 ID HIGH-TEMPERATURE CERAMICS; DIBORIDE-BASED CERAMICS; ZIRCONIUM DIBORIDE; MECHANICAL-PROPERTIES; OXIDATION; MICROSTRUCTURE; DENSIFICATION; COMPOSITES; CARBIDE; TIB2 AB Pressureless reactive sintering was investigated to fabricate ZrB2 from a mixture of elemental Zr and B powders. Both hand mixing and high-energy milling were used to blend the powders. The sintering experiments were carried out at 1800, 2000 and 2200 degrees C. The samples made from the high-energy milled powders had relative densities varying between 66 and 79%, while the relative densities of the hand mixed powders varied between 58 and 70%. The average grain size of the sintered ceramic was independent of the mixing procedure and increased with the sintering temperature (from 8.5 to 23.5 mu m for the hand mixed samples and from 4.6 to 34.9 mu m for the milled samples). (C) 2008 Elsevier Ltd. All rights reserved. C1 [Brochu, A.; Boyer, L.] McGill Univ, Montreal, PQ H3A 2B2, Canada. [Gauntt, B. D.; Boyer, L.; Loehman, R. E.] Sandia Natl Labs, Adv Mat Labs, Albuquerque, NM 87106 USA. RP Brochu, A (reprint author), McGill Univ, 3610 Univ, Montreal, PQ H3A 2B2, Canada. EM mathieu.brochu@mcgill.ca NR 28 TC 19 Z9 19 U1 0 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD MAY PY 2009 VL 29 IS 8 BP 1493 EP 1499 DI 10.1016/j.jeurceramsoc.2008.08.032 PG 7 WC Materials Science, Ceramics SC Materials Science GA 437UM UT WOS:000265512400024 ER PT J AU Kim, SH AF Kim, Sang-Ho TI Operational Experiences of the Spallation Neutron Source Superconducting Linac and Power Ramp Up SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Spallation; Superconducting linear accelerator; Accumulator ring; Neuron source AB The spallation neutron source (SNS) is a second generation pulsed neutron source and designed to provide a 1-GeV; 1.44-MW proton beam to a mercury target for neutron production. Since the commissioning of the accelerator complex in 2006, the SNS has started its operation for neutron production and beam power ramp-up has been in progress toward the design goal. All subsystems of the SNS were designed and developed for substantial improvements compared to existing accelerators because the design beam power is almost an order of magnitude higher compared to existing neutron facilities and the achievable neutron scattering performance will exceed present sources by more than a factor of 20 to 100 In this paper, the operational experiences with the SNS Superconducting Linac (SCL), Power Ramp-up Plan to reach the design goal and the Power Upgrade Plan (PUP) will be presented including machine subsystem, and beam related issues. C1 Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. RP Kim, SH (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. EM kimsh@ornl.gov NR 6 TC 3 Z9 3 U1 0 U2 1 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD MAY PY 2009 VL 54 IS 5 BP 1925 EP 1930 PG 6 WC Physics, Multidisciplinary SC Physics GA 446BB UT WOS:000266094100001 ER PT J AU Lee, YY Meng, WZ AF Lee, Y. Y. Meng, Wuzheng TI A Coil Construction Scheme for Rapid Cycling Magnet SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Rapid cycling synchrotron; Magnet; Coil AB One of the problems for a rapid cycling magnet, is power loss due to the eddy current in the conductor. The eddy current effect depends on the size of the conductor used. The usual method is to construct a cable consisting of many insulated wires wrapped around a cooling pipe like the one used at the JPARK booster magnet. A novel method of constructing the coil package is developed to use off the shelf small water-cooled copper conductor without increasing the inductance of the magnet. A numerical study of the coil package will be presented. C1 [Lee, Y. Y.; Meng, Wuzheng] Brookhaven Natl Lab, Upton, NY 11793 USA. RP Lee, YY (reprint author), Brookhaven Natl Lab, Upton, NY 11793 USA. EM jangjh@kaeri.re.kr NR 1 TC 0 Z9 0 U1 0 U2 0 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD MAY PY 2009 VL 54 IS 5 BP 1966 EP 1969 PG 4 WC Physics, Multidisciplinary SC Physics GA 446BB UT WOS:000266094100008 ER PT J AU Rycroft, CH Kamrin, K Bazant, MZ AF Rycroft, Chris H. Kamrin, Ken Bazant, Martin Z. TI Assessing continuum postulates in simulations of granular flow SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Granular materials; Numerical methods ID NUMERICAL-MODEL; COMPUTATION; STRESS; LOCALIZATION; KINEMATICS; PARTICLES; EQUATIONS; SMOOTH; MATTER; MEDIA AB Continuum mechanics relies on the fundamental notion of a mesoscopic volume "element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests that a continuum law may be inapplicable, revealing inhomogeneities at the particle level, Such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional discrete-element method (DEM) simulations of different granular flows and show that an approximate "granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships between average variables. Published by Elsevier Ltd. C1 [Rycroft, Chris H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. [Kamrin, Ken] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Bazant, Martin Z.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. [Bazant, Martin Z.] MIT, Dept Math, Cambridge, MA 02139 USA. [Bazant, Martin Z.] ESPCI, Gulliver CNRS, F-75005 Paris, France. RP Rycroft, CH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Math, Berkeley, CA 94720 USA. EM chr@math.berkeley.edu; kkamrin@seas.harvard.edu; bazant@mit.edu OI Rycroft, Chris/0000-0003-4677-6990 FU Director, Office of Science, Computational and Technology Research, US Department of Energy [DE-AC02-05CH11231, DE-FG02-02ER25530]; National Science Foundation [DMS-0410110, DMS-070590]; Norbert Weiner Research Fund; NEC Fund at MIT FX This work was supported by the Director, Office of Science, Computational and Technology Research, US Department of Energy, under Contract nos. DE-AC02-05CH11231 and DE-FG02-02ER25530: the National Science Foundation under Grants DMS-0410110 and DMS-070590; and also by the Norbert Weiner Research Fund and the NEC Fund at MIT. We thank the reviewers of this paper for their insightful and constructive criticism. NR 58 TC 24 Z9 29 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD MAY PY 2009 VL 57 IS 5 BP 828 EP 839 DI 10.1016/j.jmps.2009.01.009 PG 12 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 444OL UT WOS:000265990200003 ER PT J AU Hall, RO Tank, JL Sobota, DJ Mulholland, PJ O'Brien, JM Dodds, WK Webster, JR Valett, HM Poole, GC Peterson, BJ Meyer, JL McDowell, WH Johnson, SL Hamilton, SK Grimm, NB Gregory, SV Dahm, CN Cooper, LW Ashkenas, LR Thomas, SM Sheibley, RW Potter, JD Niederlehner, BR Johnson, LT Helton, AM Crenshaw, CM Burgin, AJ Bernot, MJ Beaulieu, JJ Arango, CP AF Hall, Robert O., Jr. Tank, Jennifer L. Sobota, Daniel J. Mulholland, Patrick J. O'Brien, Jonathan M. Dodds, Walter K. Webster, Jackson R. Valett, H. Maurice Poole, Geoffrey C. Peterson, Bruce J. Meyer, Judy L. McDowell, William H. Johnson, Sherri L. Hamilton, Stephen K. Grimm, Nancy B. Gregory, Stanley V. Dahm, Clifford N. Cooper, Lee W. Ashkenas, Linda R. Thomas, Suzanne M. Sheibley, Richard W. Potter, Jody D. Niederlehner, B. R. Johnson, Laura T. Helton, Ashley M. Crenshaw, Chelsea M. Burgin, Amy J. Bernot, Melody J. Beaulieu, Jake J. Arango, Clay P. TI Nitrate removal in stream ecosystems measured by N-15 addition experiments: Total uptake SO LIMNOLOGY AND OCEANOGRAPHY LA English DT Article ID GULF-OF-MEXICO; HEADWATER STREAMS; NUTRIENT-UPTAKE; NITROGEN SATURATION; TEMPORAL VARIATION; TRANSIENT STORAGE; NEW-ZEALAND; WATERSHEDS; RIVER; RETENTION AB We measured uptake length of (NO3)-N-15- in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO3- uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO3- concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO3- uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S-Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO3- concentrations, showing a loss in removal efficiency in streams with high NO3- concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO3- removal. The fraction of catchment area as agriculture and suburban urban land use weakly predicted NO3- uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO3- uptake lengths via directly increasing both gross primary production and NO3- concentration. Gross primary production shortened SWtot, while increasing NO3- lengthened SWtot resulting in no net effect of land use on NO3- removal. C1 [Hall, Robert O., Jr.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. [Tank, Jennifer L.; Johnson, Laura T.; Beaulieu, Jake J.; Arango, Clay P.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Sobota, Daniel J.; Gregory, Stanley V.; Ashkenas, Linda R.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. [Mulholland, Patrick J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mulholland, Patrick J.; Cooper, Lee W.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA. [O'Brien, Jonathan M.; Dodds, Walter K.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [O'Brien, Jonathan M.; Hamilton, Stephen K.; Burgin, Amy J.] Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Webster, Jackson R.; Valett, H. Maurice; Niederlehner, B. R.] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. [Poole, Geoffrey C.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Poole, Geoffrey C.; Meyer, Judy L.; Thomas, Suzanne M.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Peterson, Bruce J.; Helton, Ashley M.] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA. [McDowell, William H.; Potter, Jody D.] Univ New Hampshire, Dept Nat Resources, Durham, NC USA. [Johnson, Sherri L.] US Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA. [Grimm, Nancy B.; Sheibley, Richard W.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Dahm, Clifford N.; Crenshaw, Chelsea M.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Bernot, Melody J.] Ball State Univ, Dept Biol, Muncie, IN 47306 USA. RP Hall, RO (reprint author), Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. EM bhall@uwyo.edu RI O'Brien, Jonathan/G-6786-2012; Grimm, Nancy/D-2840-2009; Burgin, Amy/G-7444-2014; Hamilton, Stephen/N-2979-2014; McDowell, William/E-9767-2010; Burgin, Amy/C-1528-2010; Mulholland, Patrick/C-3142-2012; Cooper, Lee/E-5251-2012 OI Grimm, Nancy/0000-0001-9374-660X; Burgin, Amy/0000-0001-8489-4002; Hamilton, Stephen/0000-0002-4702-9017; Sheibley, Richard/0000-0003-1627-8536; Poole, Geoffrey/0000-0002-8458-0203; McDowell, William/0000-0002-8739-9047; Burgin, Amy/0000-0001-8489-4002; Cooper, Lee/0000-0001-7734-8388 FU U.S. National Science Foundation (NSF) [DEB-0111410]; University of Tennessee, Knoxville FX This work was supported by U.S. National Science Foundation (NSF) grant DEB-0111410 to the University of Tennessee, Knoxville, several NSF Long Term Ecological Research (LTER) grants to some of the individual sites, and numerous smaller grants and fellowships to a number of participating institutions. We thank more than 100 students and scientists who gathered data that contributed to this synthesis. We also thank the NSF LTER network, U. S. Forest Service, National Park Service, local municipalities, and many private landowners for permission to conduct experiments on lands they control. Dolly Gudder and two anonymous reviewers provided constructive comments that improved earlier versions of this manuscript. NR 53 TC 73 Z9 73 U1 6 U2 86 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0024-3590 EI 1939-5590 J9 LIMNOL OCEANOGR JI Limnol. Oceanogr. PD MAY PY 2009 VL 54 IS 3 BP 653 EP 665 DI 10.4319/lo.2009.54.3.0653 PG 13 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 474ZY UT WOS:000268325000001 ER PT J AU Mulholland, PJ Hall, RO Sobota, DJ Dodds, WK Findlay, SEG Grimm, NB Hamilton, SK McDowell, WH O'Brien, JM Tank, JL Ashkenas, LR Cooper, LW Dahm, CN Gregory, SV Johnson, SL Meyer, JL Peterson, BJ Poole, GC Valett, HM Webster, JR Arango, CP Beaulieu, JJ Bernot, MJ Burgin, AJ Crenshaw, CL Helton, AM Johnson, LT Niederlehner, BR Potter, JD Sheibley, RW Thomas, SM AF Mulholland, Patrick J. Hall, Robert O., Jr. Sobota, Daniel J. Dodds, Walter K. Findlay, Stuart E. G. Grimm, Nancy B. Hamilton, Stephen K. McDowell, William H. O'Brien, Jonathan M. Tank, Jennifer L. Ashkenas, Linda R. Cooper, Lee W. Dahm, Clifford N. Gregory, Stanley V. Johnson, Sherri L. Meyer, Judy L. Peterson, Bruce J. Poole, Geoffrey C. Valett, H. Maurice Webster, Jackson R. Arango, Clay P. Beaulieu, Jake J. Bernot, Melody J. Burgin, Amy J. Crenshaw, Chelsea L. Helton, Ashley M. Johnson, Laura T. Niederlehner, B. R. Potter, Jody D. Sheibley, Richard W. Thomas, Suzanne M. TI Nitrate removal in stream ecosystems measured by N-15 addition experiments: Denitrification SO LIMNOLOGY AND OCEANOGRAPHY LA English DT Article ID INLET MASS-SPECTROMETRY; TRANSIENT STORAGE; HEADWATER STREAMS; NITROGEN EXPORT; HYPORHEIC ZONE; REACH-SCALE; SEDIMENTS; NITRIFICATION; WATER; METABOLISM AB We measured denitrification rates using a field N-15-NO3- tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (S-Wden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N-2 production rates far exceeded N2O production rates in all streams. The fraction of total NO3- removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NH4+ concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO3- concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO3- concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis Menten equation. Although Uden increased with increasing NO3- concentration, the efficiency of NO3- removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO3- load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO3- concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO3- concentration. C1 [Mulholland, Patrick J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mulholland, Patrick J.; Cooper, Lee W.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA. [Hall, Robert O., Jr.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. [Sobota, Daniel J.; Ashkenas, Linda R.; Gregory, Stanley V.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. [Dodds, Walter K.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Findlay, Stuart E. G.] Cary Inst Ecosyst Studies, Millbrook, NY USA. [Grimm, Nancy B.; Sheibley, Richard W.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA. [Hamilton, Stephen K.; O'Brien, Jonathan M.; Burgin, Amy J.] Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [McDowell, William H.; Potter, Jody D.] Univ New Hampshire, Dept Nat Resources, Durham, NC USA. [Tank, Jennifer L.; Arango, Clay P.; Beaulieu, Jake J.; Johnson, Laura T.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Dahm, Clifford N.; Crenshaw, Chelsea L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Johnson, Sherri L.] US Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA. [Meyer, Judy L.; Poole, Geoffrey C.; Helton, Ashley M.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. [Peterson, Bruce J.; Thomas, Suzanne M.] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA. [Poole, Geoffrey C.] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA. [Valett, H. Maurice; Webster, Jackson R.; Niederlehner, B. R.] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. [Bernot, Melody J.] Ball State Univ, Dept Biol, Muncie, IN 47306 USA. RP Mulholland, PJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM mulhollandpj@ornl.gov RI Mulholland, Patrick/C-3142-2012; Cooper, Lee/E-5251-2012; O'Brien, Jonathan/G-6786-2012; Grimm, Nancy/D-2840-2009; Burgin, Amy/G-7444-2014; Hamilton, Stephen/N-2979-2014; McDowell, William/E-9767-2010; Burgin, Amy/C-1528-2010 OI Cooper, Lee/0000-0001-7734-8388; Grimm, Nancy/0000-0001-9374-660X; Burgin, Amy/0000-0001-8489-4002; Hamilton, Stephen/0000-0002-4702-9017; Sheibley, Richard/0000-0003-1627-8536; Poole, Geoffrey/0000-0002-8458-0203; McDowell, William/0000-0002-8739-9047; Burgin, Amy/0000-0001-8489-4002 FU National Science Foundation (NSF) [DEB-0111410]; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by National Science Foundation (NSF) grant DEB-0111410 to the University of Tennessee, NSF Long Term Ecological Research (LTER) grants to some of the individual sites, and numerous smaller grants and fellowships to other institutions. More than 100 students and scientists gathered the information for this synthesis paper. We thank Nathaniel Ostrom for assistance with stable isotope measurements of N2 and N2O and Wil Wollheim for initial development of the model that we modified to estimate denitrification rates from field data. We thank Charles Garten and two anonymous reviewers for comments that improved earlier versions of the manuscript. We also thank the NSF LTER network, U. S. Forest Service, National Park Service and many private landowners for permission to conduct experiments on their lands. Partial support to PJM during manuscript preparation was provided by the U.S. Department of Energy, Office of Science, Biological and Environmental Research under contract DE-AC05-00OR22725 with UT-Battelle LLC. NR 57 TC 90 Z9 90 U1 4 U2 79 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0024-3590 EI 1939-5590 J9 LIMNOL OCEANOGR JI Limnol. Oceanogr. PD MAY PY 2009 VL 54 IS 3 BP 666 EP 680 DI 10.4319/lo.2009.54.3.0666 PG 15 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 474ZY UT WOS:000268325000002 ER PT J AU Milhans, J Ahzi, S Garmestani, H Khaleel, MA Sun, X Koeppel, BJ AF Milhans, J. Ahzi, S. Garmestani, H. Khaleel, M. A. Sun, X. Koeppel, B. J. TI Modeling of the effective elastic and thermal properties of glass-ceramic solid oxide fuel cell seal materials SO MATERIALS & DESIGN LA English DT Article DE Effective properties; Glass ceramic; Homogenization ID FIBRE-STRENGTHENED MATERIALS; COMPOSITE-MATERIALS; MECHANICAL PROPERTIES; VARIATIONAL APPROACH; BEHAVIOUR; ENERGY AB In this study, the effective elastic properties and coefficients of thermal expansion (CTE) of a glass-ceramic were predicted using homogenization techniques. Using G18, a glass-ceramic solid oxide fuel cell (SOFC) sealant as an initial reference material, the effectiveness of different homogenization models was investigated for a two-phase glass-ceramic. The elastic properties and CTEs of the G18 amorphous phase are currently unknown. Thus, estimated values were used as an input to the models. The predictive model offers accurate macroscopic values on both the elastic modulus and the CTE of glass-ceramic materials, providing the estimated amorphous values are reasonable. This model can be used in designing glass-ceramic SOFC seal materials for its specific operation conditions. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Milhans, J.; Garmestani, H.] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA. [Ahzi, S.] Univ Strasbourg, IMFS UMR7507, F-67000 Strasbourg, France. [Khaleel, M. A.; Sun, X.; Koeppel, B. J.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99354 USA. RP Milhans, J (reprint author), Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA. EM Jackie.Milhans@gmail.com OI khaleel, mohammad/0000-0001-7048-0749 FU Pacific Northwest National Laboratory, Computational Sciences and Mathematics Division FX This research was supported by the Pacific Northwest National Laboratory, Computational Sciences and Mathematics Division. The authors Would like to thank D. jeulin, A. Thorel, E. Busso and the Ecole des Mines de Paris for their most helpful discussions and experimental assistance, NR 25 TC 13 Z9 13 U1 0 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-3069 EI 1873-4197 J9 MATER DESIGN JI Mater. Des. PD MAY PY 2009 VL 30 IS 5 BP 1667 EP 1673 DI 10.1016/j.matdes.2008.07.014 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 424JA UT WOS:000264561800034 ER PT J AU Stephenson, LD Kumar, A Hale, J Murray, JN AF Stephenson, L. D. Kumar, Ashok Hale, Jeremy Murray, J. N. TI Sensor System for Measurement of Corrosion Under Coatings SO MATERIALS PERFORMANCE LA English DT Article ID COPPER; IRON AB Corrosion rate measurements can reveal areas coated structure needing immediate attention and those needing maintenance later. Such measurements, using a very thin postage-stamp size corrosion sensor, have been evaluated in laboratory and field conditions. Data from bare steel sensors were also obtained Test results from bare and water-borne, epoxy-coated, steel sensors are presented and discussed C1 [Stephenson, L. D.; Kumar, Ashok; Hale, Jeremy] USA, Erdc, Champaign, IL USA. [Stephenson, L. D.; Hale, Jeremy] USA Corps Engineers, Erdc, Mat & Struct Branch, CERL,Oak Ridge Inst Sci & Educ, Champaign, IL USA. RP Stephenson, LD (reprint author), USA, Erdc, Champaign, IL USA. NR 9 TC 0 Z9 0 U1 0 U2 1 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0094-1492 J9 MATER PERFORMANCE JI Mater. Perform. PD MAY PY 2009 VL 48 IS 5 BP 36 EP 41 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA 442DJ UT WOS:000265819900013 ER PT J AU Anitescu, M Negrut, D Zapol, P El-Azab, A AF Anitescu, Mihai Negrut, Dan Zapol, Peter El-Azab, Anter TI A note on the regularity of reduced models obtained by nonlocal quasi-continuum-like approaches SO MATHEMATICAL PROGRAMMING LA English DT Article AB The paper investigates model reduction techniques that are based on a nonlocal quasi-continuum-like approach. These techniques reduce a large optimization problem to either a system of nonlinear equations or another optimization problem that are expressed in a smaller number of degrees of freedom. The reduction is based on the observation that many of the components of the solution of the original optimization problem are well approximated by certain interpolation operators with respect to a restricted set of representative components. Under certain assumptions, the "optimize and interpolate" and the "interpolate and optimize" approaches result in a regular nonlinear equation and an optimization problem whose solutions are close to the solution of the original problem, respectively. The validity of these assumptions is investigated by using examples from potential-based and electronic structure-based calculations in Materials Science models. A methodology is presented for using quasi-continuum-like model reduction for real-space DFT computations in the absence of periodic boundary conditions. The methodology is illustrated using a basic Thomas-Fermi-Dirac case study. C1 [Anitescu, Mihai; Negrut, Dan] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Zapol, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zapol, Peter] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [El-Azab, Anter] Florida State Univ, Coll Engn, Mat Theory Grp, Tallahassee, FL 32310 USA. RP Anitescu, M (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anitescu@mcs.anl.gov; negrut@mcs.anl.gov; zapol@anl.gov; anter@eng.fsu.edu RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 FU US Department of Energy [DE-AC02-06CH11357] FX The authors would like to thank Todd Munson for valuable input. Mihai Anitescu and Dan Negrut were supported by contract no. DE-AC02-06CH11357 of the US Department of Energy. We thank the anonymous referees for useful suggestions and pointing us to the work of the authors of [4,5,16,20]. NR 24 TC 5 Z9 5 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0025-5610 J9 MATH PROGRAM JI Math. Program. PD MAY PY 2009 VL 118 IS 2 BP 207 EP 236 DI 10.1007/s10107-007-0188-3 PG 30 WC Computer Science, Software Engineering; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Operations Research & Management Science; Mathematics GA 392QB UT WOS:000262316200001 ER PT J AU Williams, PT AF Williams, Paul T. TI Incident Diverticular Disease Is Inversely Related to Vigorous Physical Activity SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE EPIDEMIOLOGY; PREVENTION; EXERCISE; AGING; RUNNING ID CARDIORESPIRATORY FITNESS; TRANSIT-TIME; BODY-WEIGHT; EXERCISE; RISK; COLON; DIET; MEN; CHOLESTEROL; PERFORMANCE AB WILLIAMS, P. T. Incident Diverticular Disease Is Inversely Related to Vigorous Physical Activity. Med. Sci. Sports Exerc., Vol. 41, No. 5, pp. 1042-1047, 2009. Purpose: In 1995, the Health Professionals Follow-up Study published an isolated report of lower diverticular disease risk in physically active men, particularly among those who ran. The purpose of this article was to assess whether this finding can be verified among older men and women of the National Runners' Health Study. Methods: Survival analyses were applied to incident disease occurring during 7.7 yr of follow-up in 9072 men and 1664 women, representing 84% follow-up of the original >= 50-yr-old cohort. In addition to the usual running distance (km.d(-1)), 80% of the baseline respondents included 10-km footrace performance times (a measure of cardiorespiratory fitness). Results were adjusted for age, sex, and reported intakes of meat, fish, fruit, and alcohol. Results: A total of 127 men and 21 women reported clinically diagnosed diverticular disease since baseline. The risk for incident diverticular disease decreased 6.2% per km.d(-1) run (P = 0.04). Relative to men and women who ran <= 2 km.d(-1), those who ran an average of >8 km.d(-1) had 48% lower risk (P = 0.05). Each meter-per-second increment in the 10-km performance was associated with a 68% risk reduction (P = 0.04). Men and women who ran >4 m.s(-1) had 70% lower risk for diverticular disease than those who ran <= 2.8 m.s(-1) (P = 0.01), which persisted when adjusted for baseline body mass index (69% risk reduction, P = 0.02) or usual running distance (36% risk reduction, P = 0.03). Conclusion: These results demonstrate an inverse association between vigorous physical activity and incident diverticular disease among older men and women but are limited by their reliance on self-reported physician diagnosis. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU National Heart Lung and Blood Institute [AG032004, HL72110]; Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health [DK066738]; Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy) [DE-AC02-05CH11231] FX The results of the present study do not constitute endorsement by ACSM. NR 40 TC 15 Z9 16 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAY PY 2009 VL 41 IS 5 BP 1042 EP 1047 DI 10.1249/MSS.0b013e318192d02d PG 6 WC Sport Sciences SC Sport Sciences GA 435DS UT WOS:000265324500010 PM 19346983 ER PT J AU Hedstrom, P Lindgren, LE Almer, J Lienert, U Bernier, J Terner, M Oden, M AF Hedstrom, P. Lindgren, L. E. Almer, J. Lienert, U. Bernier, J. Terner, M. Oden, M. TI Load Partitioning and Strain-Induced Martensite Formation during Tensile Loading of a Metastable Austenitic Stainless Steel SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID DEFORMATION-INDUCED TRANSFORMATION; X-RAY-DIFFRACTION; TRIP STEELS; MECHANICAL-PROPERTIES; BEHAVIOR; KINETICS; FERRITE; STATE AB In-situ high-energy X-ray diffraction and material modeling are used to investigate the strain-rate dependence of the strain-induced martensitic transformation and the stress partitioning between austenite and alpha' martensite in a metastable austenitic stainless steel during tensile loading. Moderate changes of the strain rate alter the strain-induced martensitic transformation, with a significantly lower alpha' martensite fraction observed at fracture for a strain rate of 10(-2) s(-1), as compared to 10(-3) s(-1). This strain-rate sensitivity is attributed to the adiabatic heating of the samples and is found to be well predicted by the combination of an extended Olson-Cohen strain-induced martensite model and finite-element simulations for the evolving temperature distribution in the samples. In addition, the strain-rate sensitivity affects the deformation behavior of the steel. The alpha' martensite transformation at high strains provides local strengthening and extends the time to neck formation. This reinforcement is witnessed by a load transfer from austenite to alpha' martensite during loading. C1 [Hedstrom, P.; Terner, M.] Lules Univ Technol, Div Engn Mat, SE-97187 Lules, Sweden. [Hedstrom, P.] Royal Inst Technol KTH, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. [Lindgren, L. E.] Lules Univ Technol, Div Mat Mech, SE-97187 Lules, Sweden. [Almer, J.; Lienert, U.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bernier, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Terner, M.] Rolls Royce Fuel Cell Syst, Loughborough LE113GR, Leics, England. [Oden, M.] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden. EM pheds@kth.se RI Oden, Magnus/E-9662-2010; Hedstrom, Peter/F-8920-2010; Lindgren, Lars-Erik/E-5258-2011; OI Oden, Magnus/0000-0002-2286-5588; Hedstrom, Peter/0000-0003-1102-4342; Lindgren, Lars-Erik/0000-0002-2544-9168 FU United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Swedish Research Council; Outokumpu Research Foundation FX The authors acknowledge Advanced Materials Science and Engineering (AMASE) Master Programme student Tao Qian for the work done with material modeling. The work was financially supported by the Swedish Research Council and the Outokumpu Research Foundation. Use of the APS was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 38 TC 25 Z9 26 U1 2 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2009 VL 40A IS 5 BP 1039 EP 1048 DI 10.1007/s11661-009-9807-3 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 428XW UT WOS:000264886400008 ER PT J AU Burkes, DE Prabhakaran, R Jue, JF Rice, FJ AF Burkes, Douglas E. Prabhakaran, Ramprashad Jue, Jan-Fong Rice, Francine J. TI Mechanical Properties of DU-xMo Alloys with x=7 to 12 Weight Percent SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID IRRADIATION BEHAVIOR; URANIUM; MOLYBDENUM; TENSILE; FUELS AB Mechanical properties of six depleted uranium-molybdenum (U-Mo) alloys have been obtained using microhardness, quasistatic tensile tests, and scanning electron microscopy (SEM) failure analysis. U-Mo alloy foils are currently under investigation for potential conversion of high power research reactors to low enriched uranium fuel. Although mechanical properties take on a secondary effect during irradiation, an understanding of the alloy behavior during fabrication and the effects of irradiation on the integrity of the fuel is essential. In general, the microhardness, yield strength, Young's modulus, and ultimate tensile strength improved with increasing Mo content. Microhardness measurements were very sensitive to local composition, while the failure mode was significantly controlled by the impurity concentration of the alloy, especially carbon. Values obtained from literature are also provided with reasonable agreement, even though processing conditions and applications were quite different in some instances. C1 [Burkes, Douglas E.; Jue, Jan-Fong; Rice, Francine J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Prabhakaran, Ramprashad] Univ Idaho, Mat Sci & Engn Dept, Moscow, ID 83844 USA. RP Burkes, DE (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM douglas.burkes@inl.gov FU United States Department of Energy, Office of the National Nuclear Security Administration (NNSA) [DE-AC07-05ID14517]; FASB; EML FX Work supported by the United States Department of Energy, Office of the National Nuclear Security Administration (NNSA), under DOE Idaho Operations Office (Contract No. DE-AC07-05ID14517). The authors are especially grateful to the Fuels and Applied Sciences Building (FASB) and Electron Microscopy Laboratory (EML) staff. The authors specifically acknowledge Dr. Thomas Hartmann, Mr. Glenn Moore, Mr. Michael Chapple, Mr. Steven Stef. er, Mr. Blair Park, Mrs. Terri Dixon, and Ms. Kristine Baker for their assistance with fabrication, sample preparation, and material transfers related to these experiments. Finally, the authors acknowledge the Health and Physics staff for their continued support of this work in the FASB and EML facilities. NR 24 TC 10 Z9 10 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAY PY 2009 VL 40A IS 5 BP 1069 EP 1079 DI 10.1007/s11661-009-9805-5 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 428XW UT WOS:000264886400011 ER PT J AU Paque, JM Beckett, JR Ishii, HA Aleon-Toppani, A Burnett, DS Teslich, N Dai, ZR Bradley, JP AF Paque, J. M. Beckett, J. R. Ishii, H. A. Aleon-Toppani, A. Burnett, D. S. Teslich, N. Dai, Z. R. Bradley, J. P. TI The formation of boundary clinopyroxenes and associated glass veins in type B1 CAIs SO METEORITICS & PLANETARY SCIENCE LA English DT Review ID FOCUSED ION-BEAM; ALUMINUM-RICH INCLUSIONS; TRANSMISSION ELECTRON-MICROSCOPE; TEM-SPECIMEN PREPARATION; NINGQIANG CARBONACEOUS CHONDRITE; CALCIUM ALUMINOSILICATE PHASE; HOSTED MELT INCLUSIONS; REFRACTORY INCLUSIONS; TRACE-ELEMENT; ALLENDE INCLUSION AB We used focused ion beam thin section preparation and scanning transmission electron microscopy (FIB/STEM) to examine the interfacial region between spinel and host melilite for spinel grains in type B1 inclusions from the Allende and Leoville carbonaceous chondrites. Boundary clinopyroxenes decorating spinel surfaces have compositions similar to those of coarser clinopyroxenes from the same region of the inclusion, Suggesting little movement after formation. Host melilite displays no anomalous compositions near the interface and late-stage minerals are not observed, suggesting that boundary pyroxenes did not form by crystallization of residual liquid. Allende spinels display either direct spinel-melilite contact or an intervening boundary clinopyroxene between the two phases. Spinel-melilite interfacial regions in a Leoville B1 are more complex, with boundary clinopyroxene, as observed in Allende, but also variable amounts of glass, secondary calcite, perovskite, and an Mg-, Al-, OH-rich and Ca-, Si-poor crystalline phase that may be a layered double hydrate. One possible scenario of formation for the glass veins is that open system alteration of melilite produced a porous, hydrated aggregate of Mg-carpholite or sudoite + aluminous diopside that was shock melted and quenched to a glass. The hydrated crystalline phase we observed may have been a shocked remnant of the precursor phase assemblage, but is more likely to have formed later by alteration of the glass. In the mantle, boundary clinopyroxenes may have been crystallized from Ti-rich liquids formed by the direct dissolution of perovskite and an associated Sc-Zr-rich phase or as a reaction product between dissolving perovskite and liquid. In the core, any perovskite and associated Ti-enriched liquids that may have originally been present disappeared before the growth of boundary clinopyroxene, and the observed boundary clinopyroxene may have nucleated and grown from the liquid, along with the larger core clinopyroxene. C1 [Paque, J. M.; Beckett, J. R.; Burnett, D. S.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Ishii, H. A.; Aleon-Toppani, A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Aleon-Toppani, A.] Univ Paris 11, Inst Astrophys Spatiale, F-91405 Orsay, France. RP Paque, JM (reprint author), CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. EM julie@paque.com RI Dai, Zurong/E-6732-2010 FU NASA [NNG04GG14G, NNG05GH797, NAG5-11640]; U.S. Department of Energy by Lawrence Liver-more National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX Reviews by S. Simon and A. N. Krot were useful and appreciated. We thank Steve Simon and Larry Grossman for the loan of the section of TS-34 and Glenn MacPherson (Smithsonian Institution) for USNM Leoville 3537-2. This work was funded in part by NASA grants NNG04GG14G, NNG05GH797, and NAG5-11640. Portions of this work were also performed under the auspices of the U.S. Department of Energy by Lawrence Liver-more National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 108 TC 10 Z9 10 U1 0 U2 7 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAY PY 2009 VL 44 IS 5 BP 665 EP 687 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 477QA UT WOS:000268532400004 ER PT J AU Duffie, CV Glenn, TC Vargas, FH Parker, PG AF Duffie, Caroline V. Glenn, Travis C. Vargas, F. Hernan Parker, Patricia G. TI Genetic structure within and between island populations of the flightless cormorant (Phalacrocorax harrisi) SO MOLECULAR ECOLOGY LA English DT Article DE Galapagos; Pelecaniformes; Phalacrocorax harrisi; microsatellite markers; population genetics; Bayesian statistics ID HAWK BUTEO-GALAPAGOENSIS; MULTILOCUS GENOTYPE DATA; NANNOPTERUM-HARRISI; MICROSATELLITE DATA; ALLELE FREQUENCIES; F-STATISTICS; DIFFERENTIATION; CONSERVATION; INFERENCE; EXTINCTION AB We assessed colony- and island-level genetic differentiation for the flightless cormorant (Phalacrocorax harrisi), an endangered Galapagos endemic that has one of the most limited geographical distributions of any seabird, consisting of only two adjacent islands. We screened 223 individuals from both islands and nine colonies at five microsatellite loci, recovering 23 alleles. We found highly significant genetic differentiation throughout the flightless cormorant's range on Fernandina and Isabela Islands (global F(ST) = 0.097; P < 0.0003) both between islands (supported by Bayesian analyses, F(ST) and R(ST) values) and within islands (supported only by F(ST) and R(ST) values). An overall pattern of isolation-by-distance was evident throughout the sampled range (r = 0.4169, one-sided P <= 0.02) and partial Mantel tests of this relationship confirmed that ocean is a dispersal barrier (r = 0.500, one-sided P <= 0.003), especially across the 5-km gap between the two islands. The degree of detected genetic differentiation among colonies is surprising, given the flightless cormorant's limited range, and suggests a role for low vagility, behavioural philopatry, or both to limit dispersal where physical barriers are absent. We argue that this population should be managed as at least two genetic populations to better preserve the species-level genetic diversity, but, for demographic reasons, advocate the continued conservation of all breeding colonies. C1 [Duffie, Caroline V.; Parker, Patricia G.] Univ Missouri, Dept Biol R223, St Louis, MO 63121 USA. [Glenn, Travis C.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Vargas, F. Hernan] Charles Darwin Fdn, Isla Santa Cruz, Galapagos, Ecuador. [Vargas, F. Hernan] Univ Oxford, Wildlife Conservat Res Unit, Oxford, England. [Parker, Patricia G.] St Louis Zoo, St Louis, MO 63110 USA. RP Duffie, CV (reprint author), Natl Sci Fdn, Div Biol Infrastruct, 4201 Wilson Blvd, Arlington, VA 22230 USA. EM caroline.duffie@gmail.com RI Glenn, Travis/A-2390-2008 FU St Louis Zoo; University of Missouri-St Louis; E. Desmond Lee fund of Zoological Studies; International Center for Tropical Ecology; Darwin Initiative for the Conservation of Biodiversity, Swarovsky Company; US Department of Energy [DE-FC09-07SR22506] FX Disclaimer: 'This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.' NR 52 TC 15 Z9 15 U1 2 U2 15 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0962-1083 J9 MOL ECOL JI Mol. Ecol. PD MAY PY 2009 VL 18 IS 10 BP 2103 EP 2111 DI 10.1111/j.1365-294X.2009.04179.x PG 9 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 441MW UT WOS:000265774300006 PM 19635072 ER PT J AU Peters, MB Hagen, C Snyder, B Glenn, TC Gowaty, PA AF Peters, Maureen B. Hagen, Cris Snyder, Brian Glenn, Travis C. Gowaty, Patricia Adair TI Microsatellite markers isolated from Drosophila hydei SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE anisogamy; Drosophila hydei; microsatellites; parentage analysis; PCR; sexual selection AB We isolated and characterized 10 polymorphic microsatellite loci in Drosophila hydei. The number of alleles per locus ranged from 3 to 8 (N = 23 individuals). Polymorphic information content ranged from 0.316 to 0.750 and observed heterozygosity from 0.261 to 0.913. These markers will be valuable in studies of sexual selection and parental investment in D. hydei. C1 [Peters, Maureen B.; Hagen, Cris; Glenn, Travis C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Snyder, Brian] Univ Georgia, Inst Ecol, Athens, GA 30602 USA. [Gowaty, Patricia Adair] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Glenn, Travis C.] Univ Georgia, Coll Publ Hlth, Athens, GA 30602 USA. [Gowaty, Patricia Adair] Smithsonian Trop Res Inst, Unit 0948, APO, AA 34002 USA. RP Peters, MB (reprint author), Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM mbpeters@uga.edu RI Glenn, Travis/A-2390-2008 FU US Department of Energy [DE-FC09-07SR22506]; University of Georgia Research Foundation; National Science Foundation [0545597] FX Disclaimer: 'This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.' NR 9 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1755-098X J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD MAY PY 2009 VL 9 IS 3 BP 817 EP 819 DI 10.1111/j.1755-0998.2008.02266.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 443GC UT WOS:000265897200030 PM 21564754 ER PT J AU Peters, MB Hagen, C Whiteman, NK Parker, PG Glenn, TC AF Peters, Maureen B. Hagen, Cris Whiteman, Noah K. Parker, Patricia G. Glenn, Travis C. TI Characterization of 10 microsatellite loci in an avian louse, Degeeriella regalis (Phthiraptera: Ischnocera: Philopteridae) SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE avian louse; Degeeriella regalis; ectoparasite; Galapagos hawk; microsatellites; population genetics ID SOFTWARE AB We isolated and characterized 10 polymorphic microsatellite loci in an ischnoceran louse, Degeeriella regalis, which parasitizes the threatened Galapagos hawk (Buteo galapagoensis) and other falconiform birds. The loci were screened across 30 individuals from two island populations in the Galapagos Islands. The number of alleles per locus ranged from two to 28. Polymorphic information content ranged from 0.14 to 0.94 and observed heterozygosity ranged from 0 to 0.67. These markers will be valuable in comparative population genetics studies in this species, which is the focus of a long-term population and disease ecology research program. C1 [Whiteman, Noah K.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Peters, Maureen B.; Hagen, Cris; Glenn, Travis C.] Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. [Parker, Patricia G.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA. [Parker, Patricia G.] Univ Missouri, Harris World Ecol Ctr, St Louis, MO 63121 USA. [Glenn, Travis C.] Univ Georgia, Coll Publ Hlth, Environm Hlth Sci, Athens, GA 30602 USA. RP Whiteman, NK (reprint author), Harvard Univ, Dept Organism & Evolutionary Biol, 26 Oxford St, Cambridge, MA 02138 USA. EM nwhiteman@oeb.harvard.edu RI Glenn, Travis/A-2390-2008 FU US Department of Energy [DE-FC09-07SR22506]; University of Missouri System; National Science Foundation [INT-030759]; National Institutes of Allergy and Infectious Diseases [F32AI069732]; Field Research for Conservation Program (FRC) of the Saint Louis Zoo; Harris World Ecology (UM-St Louis); Sigma Xi FX Disclaimer: 'This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.' NR 9 TC 3 Z9 3 U1 0 U2 7 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1755-098X J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD MAY PY 2009 VL 9 IS 3 BP 882 EP 884 DI 10.1111/j.1755-0998.2008.02363.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 443GC UT WOS:000265897200053 PM 21564777 ER PT J AU Peters, MB Whiteman, NK Hagen, C Parker, PG Glenn, TC AF Peters, Maureen B. Whiteman, Noah K. Hagen, Cris Parker, Patricia G. Glenn, Travis C. TI Eight polymorphic microsatellite markers isolated from the widespread avian louse Colpocephalum turbinatum (Phthiraptera: Amblycera: Menoponidae) SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE avian louse; ectoparasite; Galapagos hawk; population genetics ID DNA LOCI AB We report eight novel microsatellite loci for Colpocephalum turbinatum, a parasitic louse of the endangered Galapagos hawk (Buteo galapagoensis). Two island populations of C. turbinatum (N = 30) were genotyped for each locus. We found between two and 12 alleles per locus, polymorphic information content from 0.268 to 0.798, observed heterozygosity from 0.067 to 0.667 and no linkage disequilibrium was detected between loci. These markers will be useful in understanding contemporary gene flow of C. turbinatum among islands in the Galapagos and in understanding transmission dynamics between B. galapagoensis hosts, within and between social groups. Because this louse is unusually widespread among avian host taxa, parasitizing at least 53 bird species in the Falconiformes, Strigiformes and Columbiformes, these markers are likely to be useful outside the context of the Galapagos Islands. C1 [Whiteman, Noah K.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Parker, Patricia G.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA. [Parker, Patricia G.] Univ Missouri, Harris World Ecol Ctr, St Louis, MO 63121 USA. [Peters, Maureen B.; Hagen, Cris] Univ Georgia, Savannah River Ecol Lab, Drawer E, Aiken, SC 29802 USA. [Glenn, Travis C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. RP Whiteman, NK (reprint author), Harvard Univ, Dept Organism & Evolutionary Biol, 26 Oxford St, Cambridge, MA 02138 USA. EM nwhiteman@oeb.harvard.edu RI Glenn, Travis/A-2390-2008 FU US Department of Energy [DE-FC09-07SR22506]; University of Missouri System; National Science Foundation [INT-030759]; National Institutes of Allergy and Infectious Diseases [F32AI069732]; Saint Louis Zoo; Harris World Ecology (UM-St. Louis); Sigma Xi FX This work was supported in part by the US Department of Energy, through Financial Assistance Award No. DE-FC09-07SR22506 to the University of Georgia Research Foundation, by a Research Board grant from the University of Missouri System, by the National Science Foundation (NSF; INT-030759), the National Institutes of Allergy and Infectious Diseases (F32AI069732), the Field Research for Conservation Program (FRC) of the Saint Louis Zoo, Harris World Ecology (UM-St. Louis), Sigma Xi, and the E. Desmond Lee Collaborative in Zoological Studies. TAME provided discounted roundtrip air-travel. For the Galapagos sampling and permits, we thank the Servicio Parque Nacional de Galapagos and the Charles Darwin Research Station. Tjitte de Vries and students (Pontificia Universidad Catolica del Ecuador) and Jennifer Bollmer (UM-St. Louis) provided help with fieldwork and advice. NR 16 TC 3 Z9 3 U1 0 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1755-098X J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD MAY PY 2009 VL 9 IS 3 BP 910 EP 912 DI 10.1111/j.1755-0998.2008.02473.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 443GC UT WOS:000265897200063 PM 21564787 ER PT J AU Devitt, TJ Pereira, R Jakkula, L Alexandrino, J Bardeleben, C Moritz, C AF Devitt, Thomas J. Pereira, Ricardo Jakkula, Lakshmi Alexandrino, Joao Bardeleben, Carolyne Moritz, Craig TI Isolation and characterization of 15 polymorphic microsatellites in the Plethodontid salamander Ensatina eschscholtzii SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE Ensatina; microsatellite; Plethodontidae; plethodontid; ring species; salamander ID TETRANUCLEOTIDE MICROSATELLITE; SPECIES FORMATION; COMPLEX; EVOLUTIONARY AB We developed 15 new polymorphic microsatellites for the plethodontid salamander Ensatina eschscholtzii. Loci were isolated from a genomic library from Ensatina eschscholtzii xanthoptica enriched for (AAAG)(n) repetitive elements. The number of alleles per locus ranged from 4 to 20 (mean 9) in the sampled population. Observed heterozygosity ranged from 0.37 to 1. None of the loci deviated from Hardy-Weinberg equilibrium or showed significant linkage disequilibrium after a Bonferroni correction for multiple comparisons. All loci amplified in the six other subspecies of the Ensatina eschscholtzii complex. These new markers will prove useful in measuring gene flow and population structure as well as patterns of mating and sperm use in Ensatina. C1 [Devitt, Thomas J.; Moritz, Craig] Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA. [Devitt, Thomas J.; Moritz, Craig] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Pereira, Ricardo] Univ Porto, CIBIO, Ctr Invest Biodiversidade & Recursos Genet, P-4485661 Vairao, Portugal. [Jakkula, Lakshmi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alexandrino, Joao] Univ Estadual Paulista, Inst Biociencias, Dept Zool, BR-13506900 Sao Paulo, Brazil. [Bardeleben, Carolyne] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. RP Devitt, TJ (reprint author), Univ Calif Berkeley, Museum Vertebrate Zool, 3101 Valley Life Sci Bldg, Berkeley, CA 94720 USA. EM tdevitt@berkeley.edu RI Moritz, Craig/A-7755-2012; Alexandrino, Joao/B-7603-2012; OI Pereira, Ricardo J/0000-0002-8076-4822 FU NSF [DEB 0641078] FX We thank Matthew K. Fujita for help with laboratory work. Funding for this work was provided in part by NSF DEB 0641078. NR 14 TC 2 Z9 3 U1 2 U2 8 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1755-098X J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD MAY PY 2009 VL 9 IS 3 BP 966 EP 969 DI 10.1111/j.1755-0998.2009.02518.x PG 4 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 443GC UT WOS:000265897200083 PM 21564807 ER PT J AU Hooker, JM Patel, V Kothari, S Schiffer, WK AF Hooker, Jacob M. Patel, Vinal Kothari, Shiva Schiffer, Wynne K. TI Metabolic Changes in the Rodent Brain after Acute Administration of Salvinorin A SO MOLECULAR IMAGING AND BIOLOGY LA English DT Article DE Salvia; Salvinorin A; Kappa opioid; Hallucinogen; Positron emission tomography ID KAPPA-OPIOID-RECEPTOR; PLANT-DERIVED HALLUCINOGEN; SALVIA-DIVINORUM; IN-VITRO; SELECTIVE AGONIST; RAT-BRAIN; A ANALOGS; POTENT; MICE; INVOLVEMENT AB Salvinorin A (SA) is a potent and highly selective kappa-opioid receptor (KOR) agonist with rapid kinetics and commensurate behavioral effects; however, brain regions associated with these effects have not been determined. Freely moving adult male rats were given SA intraperitoneally during uptake and trapping of the brain metabolic radiotracer, 2-deoxy-2-[F-18]fluoro-d-glucose (FDG), followed by image acquisition in a dedicated animal positron emission tomography (PET) system. Age-matched control animals received vehicle treatment. Animal behavior during FDG uptake was recorded digitally and later analyzed for locomotion. Group differences in regional FDG uptake normalized to whole brain were determined using Statistical Parametric Mapping (SPM) and verified by region of interest (ROI) analysis. SA-treated animals demonstrated significant increases in FDG uptake compared to controls in several brain regions associated with the distribution of KOR such as the periaqueductal grey, bed nucleus of the stria terminalis and the cerebellar vermis, as well as in the hypothalamus. Significant bilateral activations were also observed in the auditory, sensory, and frontal cortices. Regional decreases in metabolic demand were observed bilaterally in the dorsolateral striatum and hippocampus. Locomotor activity did not differ between SA and vehicle during FDG uptake. We have provided the first extensive maps of cerebral metabolic activation due to the potent kappa-opioid agonist, salvinorin A. A major finding from our small animal PET studies using FDG was that neural circuits affected by SA may not be limited to direct activation or inhibition of kappa-receptor-expressing cells. Instead, salvinorin A may trigger brain circuits that mediate the effects of the drug on cognition, mood, fear and anxiety, and motor output. C1 [Hooker, Jacob M.; Patel, Vinal; Kothari, Shiva; Schiffer, Wynne K.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Hooker, JM (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM hooker@bnl.gov; wynne@bnl.gov OI Hooker, Jacob/0000-0002-9394-7708 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; U. S. Department of Energy; Office of Biological and Environmental Research; NIH Postdoctoral Fellowship [1F32EB008320-01] FX This work was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U. S. Department of Energy and supported by its Office of Biological and Environmental Research. J. M. H. was supported by an NIH Postdoctoral Fellowship (1F32EB008320-01) and through the Goldhaber Distinguished Fellowship program at BNL. The authors are grateful to Dr. Stephen Dewey, NR 39 TC 15 Z9 15 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1536-1632 J9 MOL IMAGING BIOL JI Mol. Imaging. Biol. PD MAY PY 2009 VL 11 IS 3 BP 137 EP 143 DI 10.1007/s11307-008-0192-x PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 440FT UT WOS:000265686900001 PM 19132449 ER PT J AU Kuin, NPM Landsman, W Page, MJ Schady, P Still, M Breeveld, AA De Pasquale, M Roming, PWA Brown, PJ Carter, M James, C Curran, PA Cucchiara, A Gronwall, C Holland, ST Hoversten, EA Hunsberger, S Kennedy, T Koch, S Lamoureux, H Marshall, FE Oates, SR Parsons, A Palmer, DM Smith, PJ AF Kuin, N. P. M. Landsman, W. Page, M. J. Schady, P. Still, M. Breeveld, A. A. De Pasquale, M. Roming, P. W. A. Brown, P. J. Carter, M. James, C. Curran, P. A. Cucchiara, A. Gronwall, C. Holland, S. T. Hoversten, E. A. Hunsberger, S. Kennedy, T. Koch, S. Lamoureux, H. Marshall, F. E. Oates, S. R. Parsons, A. Palmer, D. M. Smith, P. J. TI GRB 081203A: Swift UVOT captures the earliest ultraviolet spectrum of a gamma-ray burst SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE instrumentation: spectrographs; gamma-rays: bursts ID TELESCOPE; DUST; ABSORPTION; GAS; SPECTROSCOPY; MISSION; STAR; HI AB We present the earliest ultraviolet (UV) spectrum of a gamma-ray burst (GRB) as observed with the Swift Ultra-Violet/Optical Telescope (UVOT). The GRB 081203A spectrum was observed for 50 s with the UV-grism starting 251 s after the Swift-Burst-Alert-Telescope (BAT) trigger. During this time, the GRB was approximate to 13.4 mag (u filter) and was still rising to its peak optical brightness. In the UV-grism spectrum, we find a damped Ly alpha line, Ly beta and the Lyman continuum break at a redshift z = 2.05 +/- 0.01. A model fit to the Lyman absorption implies a gas column density of log N(HI) = 22.0 +/- 0.1 cm(-2), which is typical of GRB host galaxies with damped Ly alpha absorbers. This observation of GRB 081203A demonstrates that for brighter GRBs (v approximate to 14 mag) with moderate redshift (0.5 < z < 3.5) the UVOT is able to provide redshifts, and probe for damped Ly alpha absorbers within 4-6 min from the time of the Swift-BAT trigger. C1 [Kuin, N. P. M.; Page, M. J.; Schady, P.; Still, M.; Breeveld, A. A.; De Pasquale, M.; Carter, M.; James, C.; Curran, P. A.; Kennedy, T.; Lamoureux, H.; Oates, S. R.; Smith, P. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Landsman, W.; Holland, S. T.; Marshall, F. E.; Parsons, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Roming, P. W. A.; Brown, P. J.; Cucchiara, A.; Gronwall, C.; Hoversten, E. A.; Hunsberger, S.; Koch, S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kuin, NPM (reprint author), Univ Coll London, Mullard Space Sci Lab, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM npmk@mssl.ucl.ac.uk RI Parsons, Ann/I-6604-2012; Curran, Peter/B-5293-2013 OI Curran, Peter/0000-0003-3003-4626 FU UK Science and Technology Facilities Council; NASA [NAS5-00136] FX This work was supported by the UK Science and Technology Facilities Council through a grant for Swift Post Launch Support at UCL-MSSL. This work is sponsored at PSU by NASA contract NAS5-00136. We acknowledge useful comments by the anonymous referee which led to improvement of the grism analysis. We would like to dedicate this Letter to the late Richard Bingham, whose visionary optical design for the UVOT grism made these observations possible. NR 27 TC 22 Z9 22 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAY 1 PY 2009 VL 395 IS 1 BP L21 EP L24 DI 10.1111/j.1745-3933.2009.00632.x PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 431QS UT WOS:000265078700005 ER PT J AU Park, CH Louie, SG AF Park, Cheol-Hwan Louie, Steven G. TI Making Massless Dirac Fermions from a Patterned Two-Dimensional Electron Gas SO NANO LETTERS LA English DT Article ID CARBON NANOTUBES; BACK SCATTERING; BERRYS PHASE; GRAPHENE; SUPERLATTICES; POTENTIALS; ABSENCE AB Analysis of the electronic structure of an ordinary two-dimensional electron gas (2DEG) under an appropriate external periodic potential of hexagonal symmetry reveals that massless Dirac fermions are generated near the corners of the supercell Brillouin zone. The required potential parameters are found to be achievable under or close to laboratory conditions. Moreover, the group velocity is tunable by changing either the effective mass of the 2DEG or the lattice parameter of the external potential, and it is insensitive to the potential amplitude. The finding should provide a new class of systems other than graphene for investigating and exploiting massless Dirac fermions using 2DEGs in semiconductors. C1 [Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Louie, SG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI Park, Cheol-Hwan/A-1543-2009 OI Park, Cheol-Hwan/0000-0003-1584-6896 FU NSF [DMR07-05941]; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy [AC0205CH 11231] FX We thank Kathryn Todd, Ileana Rau, Sami Amasha, Philip Kim, Yunchul Chung, Jiwoong Park, and Jannik Meyer for fruitful discussions. This work was supported by NSF Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC0205CH 11231. Computational resources have been provided by NPACI and NERSC. NR 28 TC 82 Z9 82 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2009 VL 9 IS 5 BP 1793 EP 1797 DI 10.1021/nl803706c PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 446YF UT WOS:000266157100012 PM 19338276 ER PT J AU Begtrup, GE Gannett, W Yuzvinsky, TD Crespi, VH Zettl, A AF Begtrup, G. E. Gannett, W. Yuzvinsky, T. D. Crespi, V. H. Zettl, A. TI Nanoscale Reversible Mass Transport for Archival Memory SO NANO LETTERS LA English DT Article ID CARBON NANOTUBE; FILAMENTS; MYOSIN; ACTIN AB We report on a simple electromechanical memory device in which an iron nanoparticle shuttle is controllably positioned within a hollow nanotube channel. The shuffle can be moved reversibly via an electrical write signal and can be positioned with nanoscale precision. The position of the shuttle can be read out directly via a blind resistance read measurement, allowing application as a nonvolatile memory element with potentially hundreds of memory states per device. The shuttle memory has application for archival storage, with information density as high as 10(12) bits/in(2), and thermodynamic stability in excess of one billion years. C1 [Begtrup, G. E.; Gannett, W.; Yuzvinsky, T. D.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Begtrup, G. E.; Gannett, W.; Yuzvinsky, T. D.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yuzvinsky, T. D.; Zettl, A.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Crespi, V. H.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Yuzvinsky, Thomas/0000-0001-5708-2877; Crespi, Vincent/0000-0003-3846-3193 FU Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation; Center of Integrated Nano-mechanical Systems FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract DE-AC02-05CH11231. T.Y. acknowledges support from the National Science Foundation within the Center of Integrated Nano-mechanical Systems, and W.G. acknowledges support from an IGERT Grant from the National Science Foundation. V.H.C. acknowledges support from the National Science Foundation. NR 20 TC 55 Z9 55 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2009 VL 9 IS 5 BP 1835 EP 1838 DI 10.1021/nl803800c PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 446YF UT WOS:000266157100019 PM 19400579 ER PT J AU Dayeh, SA Yu, ET Wang, DL AF Dayeh, Shadi A. Yu, Edward T. Wang, Deli TI Surface Diffusion and Substrate-Nanowire Adatom Exchange in InAs Nanowire Growth SO NANO LETTERS LA English DT Article ID FIELD-EFFECT TRANSISTORS; III-V NANOWIRES; TRANSPORT-PROPERTIES; WHISKER GROWTH; CORE-SHELL; HETEROSTRUCTURES; TEMPERATURE; MECHANISM; INDIUM AB We report new fundamental insights into InAs nanowire (NW) nucleation and evolution on InAs (111)B surfaces using organometallic vapor phase epitaxy and present the first experimental demonstration of two distinct NW growth regimes, defined by the direction of substrate-NW adatom exchange, that lead to nonlinear growth rates. We show that the NW elongation rate and morphology in these two growth regimes are governed by the relative difference between the In adatom diffusion lengths on the growth substrate surface and on the NW sidewalls, resulting in strong growth rate dependence on the NW length. These results indicate that surface solid-phase diffusion of In adatoms is a key process in InAs NW growth, which is also supported by diameter-dependent growth rates. These developments enable rational growth of axial and radial NW heterostructures. C1 [Dayeh, Shadi A.; Yu, Edward T.; Wang, Deli] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. RP Dayeh, SA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM shadi@lanl.gov RI Dayeh, Shadi/H-5621-2012; Yu, Edward/A-3515-2017 OI Yu, Edward/0000-0001-9900-7322 FU Office of Naval Research [N00014-05-1-0149]; National Science Foundation [ECS-0506902]; Department of Energy [DE-FG36-08GO18016] FX We acknowledge fruitful discussions with C. Soci and X.-Y. Bao. Part of this work was supported by the Office of Naval Research (N00014-05-1-0149), National Science Foundation (ECS-0506902), and the Department of Energy (DE-FG36-08GO18016). NR 39 TC 48 Z9 48 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2009 VL 9 IS 5 BP 1967 EP 1972 DI 10.1021/nl900191w PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 446YF UT WOS:000266157100042 PM 19397297 ER PT J AU Ko, H Lee, J Schubert, BE Chueh, YL Leu, PW Fearing, RS Javey, A AF Ko, Hyunhyub Lee, Jongho Schubert, Bryan E. Chueh, Yu-Lun Leu, Paul W. Fearing, Ronald S. Javey, Ali TI Hybrid Core-Shell Nanowire Forests as Self-Selective Chemical Connectors SO NANO LETTERS LA English DT Article ID GECKO FOOT-HAIR; ADHESIVE; STRENGTH; CONTACT; ARRAYS; ENERGY; MICRO AB Conventional connectors utilize mechanical, magnetic, or electrostatic interactions to enable highly specific and reversible binding of the components (i.e., mates) for a wide range of applications. As the connectors are miniaturized to small scales, a number of shortcomings, including low binding strength, high engagement/disengagement energies, difficulties with the engagement, fabrication challenges, and the lack of reliability are presented that limit their successful operation. Here, we report unisex, chemical connectors based on hybrid, inorganic/organic nanowire (NW) forests that utilize weak van der Waals bonding that is amplified by the high aspect ratio geometric configuration of the NWs to enable highly specific and versatile binding of the components. Uniquely, NW chemical connectors exhibit high macroscopic shear adhesion strength (similar to 163 N/cm(2)) with minimal binding to non-self-similar surfaces, anisotropic adhesion behavior (shear to normal strength ratio similar to 25), reusability (similar to 27 attach/detach cycles), and efficient binding for both micro- and macroscale dimensions. C1 [Ko, Hyunhyub; Schubert, Bryan E.; Chueh, Yu-Lun; Leu, Paul W.; Fearing, Ronald S.; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Ko, Hyunhyub; Chueh, Yu-Lun; Leu, Paul W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ko, Hyunhyub; Chueh, Yu-Lun; Leu, Paul W.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Lee, Jongho] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Fearing, RS (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ronf@eecs.berkeley.edu; ajavey@eecs.berkeley.edu RI Leu, Paul/B-9989-2008; Javey, Ali/B-4818-2013; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013; OI Leu, Paul/0000-0002-1599-7144; Chueh, Yu-Lun/0000-0002-0155-9987; Lee, Jongho/0000-0003-0398-4220 FU DARPA/DSO; NSF; Berkeley Sensor and Actuator Center; Lawrence Berkeley National Laboratory FX We thank J.C. Ho and Z. Zhang for useful discussions and technical help. This work was supported by DARPA/DSO, NSF, and Berkeley Sensor and Actuator Center. The nanowire synthesis part of this project was supported by a Laboratory Directed Research and Development grant from Lawrence Berkeley National Laboratory. NR 24 TC 43 Z9 43 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2009 VL 9 IS 5 BP 2054 EP 2058 DI 10.1021/nl900343b PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 446YF UT WOS:000266157100058 PM 19391600 ER PT J AU Galush, WJ Shelby, SA Mulvihill, MJ Tao, A Yang, PD Groves, JT AF Galush, William J. Shelby, Sarah A. Mulvihill, Martin J. Tao, Andrea Yang, Peidong Groves, Jay T. TI A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces SO NANO LETTERS LA English DT Article ID NANOSCALE OPTICAL BIOSENSOR; SUPPORTED LIPID-BILAYERS; PROTEIN-COUPLED RECEPTOR; RESONANCE SPECTROSCOPY; QUANTITATIVE INTERPRETATION; METAL NANOPARTICLES; SILVER NANOCRYSTALS; NANOMETRIC HOLES; DRUG DISCOVERY; GOLD AB Detection and characterization of molecular interactions on membrane surfaces is important to biological and pharmacological research. Here, silver nanocubes interfaced with glass-supported model membranes form a label-free sensor that measures protein binding to the membrane. The technique utilizes plasmon resonance scattering of nanocubes, which are chemically coupled to the membrane. In contrast to other plasmonic sensing techniques, this method features simple, solution-based device fabrication and readout. Static and dynamic protein/membrane binding are monitored and quantified. C1 [Galush, William J.; Mulvihill, Martin J.; Tao, Andrea; Yang, Peidong; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Shelby, Sarah A.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov RI Mulvihill, Martin/E-8009-2012 OI Mulvihill, Martin/0000-0002-6354-828X FU Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC03-76SF00098]; NIH FX This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy under Contract Number DE-AC03-76SF00098 and NIH. NR 48 TC 68 Z9 68 U1 6 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAY PY 2009 VL 9 IS 5 BP 2077 EP 2082 DI 10.1021/nl900513k PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 446YF UT WOS:000266157100062 PM 19385625 ER PT J AU Sivasankar, S Chu, S AF Sivasankar, Sanjeevi Chu, Steven TI Nanoparticle-Mediated Nonfluorescent Bonding of Microspheres to Atomic Force Microscope Cantilevers and Imaging Fluorescence from Bonded Cantilevers with Single Molecule Sensitivity SO NANO LETTERS LA English DT Article ID SURFACE-ROUGHNESS; PARTICLE ADHESION; BIOMOLECULES; CELLS AB A technique to attach silica and glass microspheres onto silicon or silicon nitride cantilevers using silica nanoparticle sol-gel chemistry is presented and a method to image the fluorescence background from the bonded cantilevers with single molecule sensitivity is described. The silica nanoparticles polymerize to form a highly branched network that covalently link the microsphere and cantilever together. The bonding is carried out at room temperature which preserves the integrity of the cantilevers and their reflective coating. Comparison of cantilever and single dye molecule fluorescence demonstrates that the cantilevers are nonfluorescent at the single molecule level. C1 [Sivasankar, Sanjeevi] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chu, Steven] US DOE, Washington, DC 20585 USA. [Sivasankar, Sanjeevi; Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. [Sivasankar, Sanjeevi; Chu, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Sivasankar, S (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM sivasank@iastate.edu FU NSF; NASA; AFOSR FX This work was supported in part by grants from NSF, NASA, and AFOSR. We thank Agilent Technologies for their generous loan of an AFM 5500 NR 21 TC 2 Z9 2 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2009 VL 9 IS 5 BP 2120 EP 2124 DI 10.1021/nl900616y PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 446YF UT WOS:000266157100070 PM 19435383 ER PT J AU Tao, F Dag, S Wang, LW Liu, Z Butcher, DR Salmeron, M Somorjai, GA AF Tao, Feng Dag, Sefa Wang, Lin-Wang Liu, Zhi Butcher, Derek R. Salmeron, Miquel Somorjai, Gabor A. TI Restructuring of hex-Pt(100) under CO Gas Environments: Formation of 2-D Nanoclusters SO NANO LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; PRESSURE GAP; SURFACE; PT(100); ADSORPTION; TRANSITION; PLATINUM; PT(100)-HEX-R0.7-DEGREES; SPECTROSCOPY; MECHANISM AB The atomic-scale restructuring of hex-Pt(100) induced by carbon monoxide with a wide pressure range was studied with a newly designed chamber-in-chamber high-pressure STM and theoretical calculations. Both experimental and DFT calculation results show that CO molecules are bound to Pt nanoclusters; through a tilted on-top configuration with a separation of similar to 3.7-4.1 angstrom. The phenomenon of restructuring of metal catalyst surfaces induced by adsorption and, in particular, the formation of small metallic clusters suggests the importance of studying structures of catalyst surfaces under high-pressure conditions for understanding catalytic mechanisms. C1 [Tao, Feng; Butcher, Derek R.; Salmeron, Miquel; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tao, Feng; Butcher, Derek R.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dag, Sefa; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Sources, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM MBSalmeron@lbl.gov; Somorjai@berkeley.edu RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering; Chemical Sciences; Office of Advanced Scientific Computing Research; Biosciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the director of the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering; and Chemical Sciences, by the Office of Advanced Scientific Computing Research; Geosciences, and by the Biosciences Division of the U.S. Department of Energy, under Contract DE-AC02-05CH11231. The computation of this work used the resources of the National Energy Research Scientific Computing Center (NERSC). NR 25 TC 39 Z9 40 U1 1 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAY PY 2009 VL 9 IS 5 BP 2167 EP 2171 DI 10.1021/nl900809u PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 446YF UT WOS:000266157100079 PM 19391609 ER PT J AU Ding, W Lenhart, S AF Ding, Wandi Lenhart, Suzanne TI OPTIMAL HARVESTING OF A SPATIALLY EXPLICIT FISHERY MODEL SO NATURAL RESOURCE MODELING LA English DT Article DE Optimal fishery harvesting; fisheries management; elliptic partial differential equations; variational inequality ID EQUATIONS AB We consider an optimal fishery harvesting problem using a spatially explicit model with a semilinear elliptic PDE, Dirichlet boundary conditions, and logistic population growth. We consider two objective functionals: maximizing the yield and minimizing the cost or the variation in the fishing effort (control). Existence, necessary conditions, and uniqueness for the optimal harvesting control for both cases are established. Results for maximizing the yield with Neumann (no-flux) boundary conditions are also given. The optimal control when minimizing the variation is characterized by a variational inequality instead of the usual algebraic characterization, which involves the solutions of an optimality system of nonlinear elliptic partial differential equations. Numerical examples are given to illustrate the results. C1 [Ding, Wandi] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. [Lenhart, Suzanne] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Lenhart, Suzanne] Oak Ridge Natl Lab, Knoxville, TN 37996 USA. RP Ding, W (reprint author), Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. EM wding@mtsu.edu; lenhart@math.utk.edu FU National Science Foundation (NSF) [ITR:0427471, MSBS:0532378] FX Ding's work was supported by National Science Foundation (NSF) Award ITR:0427471 and Lenhart's work was supported by NSF Award MSBS:0532378. We thank Mike Neubert and G. E. (Ta) Herrera for discussions and suggestions about this work. We also thank Chris Cosner, Steve Cantrell, R. Shivaji, and Aaron King for helpful discussions related to this work. NR 33 TC 6 Z9 6 U1 0 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0890-8575 J9 NAT RESOUR MODEL JI Nat. Resour. Model. PD MAY PY 2009 VL 22 IS 2 BP 173 EP 211 DI 10.1111/j.1939-7445.2008.00033.x PG 39 WC Environmental Sciences; Mathematics, Interdisciplinary Applications SC Environmental Sciences & Ecology; Mathematics GA 432PQ UT WOS:000265146700001 ER PT J AU Cziczo, DJ Stetzer, O Worringen, A Ebert, M Weinbruch, S Kamphus, M Gallavardin, SJ Curtius, J Borrmann, S Froyd, KD Mertes, S Mohler, O Lohmann, U AF Cziczo, Daniel J. Stetzer, Olaf Worringen, Annette Ebert, Martin Weinbruch, Stephan Kamphus, Michael Gallavardin, Stephane J. Curtius, Joachim Borrmann, Stephan Froyd, Karl D. Mertes, Stephan Moehler, Ottmar Lohmann, Ulrike TI Inadvertent climate modification due to anthropogenic lead SO NATURE GEOSCIENCE LA English DT Article ID ICE NUCLEATION; MODEL ECHAM5-HAM; MINERAL DUST; PARTICLES; NUCLEI; CHAMBER; CLOUDS; IODINE; AIDA AB Aerosol particles can interact with water vapour in the atmosphere, facilitating the condensation of water and the formation of clouds. At temperatures below 273 K, a fraction of atmospheric particles act as sites for ice-crystal formation. Atmospheric ice crystals-which are incorporated into clouds that cover more than a third of the globe(1)-are thought to initiate most of the terrestrial precipitation(2). Before the switch to unleaded fuel last century, the atmosphere contained substantial quantities of particulate lead; whether this influenced ice-crystal formation is not clear. Here, we combine field observations of ice-crystal residues with laboratory measurements of artificial clouds, to show that anthropogenic lead-containing particles are among the most efficient ice-forming substances commonly found in the atmosphere(3). Using a global climate model, we estimate that up to 0.8 Wm(-2) more long-wave radiation is emitted when 100% of ice-forming particles contain lead, compared with when no particles contain lead. We suggest that post-industrial emissions of particulate lead may have offset a proportion of the warming attributed to greenhouse gases. C1 [Cziczo, Daniel J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. [Cziczo, Daniel J.; Stetzer, Olaf; Gallavardin, Stephane J.; Lohmann, Ulrike] ETH, Inst Atmospher & Climate Sci, CH-8092 Zurich, Switzerland. [Worringen, Annette; Ebert, Martin; Weinbruch, Stephan] Tech Univ Darmstadt, Inst Appl Geosci, D-64287 Darmstadt, Germany. [Kamphus, Michael; Gallavardin, Stephane J.; Curtius, Joachim; Borrmann, Stephan] Johannes Gutenberg Univ Mainz, Inst Atmospher Phys, D-55099 Mainz, Germany. [Curtius, Joachim] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, D-60438 Frankfurt, Germany. [Borrmann, Stephan] Max Planck Inst Chem, Particle Chem Dept, D-55128 Mainz, Germany. [Froyd, Karl D.] Natl Ocean & Atmospher Adm, Div Chem Sci, Boulder, CO 80305 USA. [Mertes, Stephan] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany. [Moehler, Ottmar] Forschungszentrum Karlsruhe, Inst Meteorol & Climate Res, D-76021 Karlsruhe, Germany. RP Cziczo, DJ (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, 902 Battelle Blvd, Richland, WA 99354 USA. EM daniel.cziczo@pnl.gov RI Borrmann, Stephan/E-3868-2010; Curtius, Joachim/A-2681-2011; Froyd, Karl/H-6607-2013; Weinbruch, Stephan/E-6141-2014; Mohler, Ottmar/J-9426-2012; Lohmann, Ulrike/B-6153-2009; Manager, CSD Publications/B-2789-2015 OI Curtius, Joachim/0000-0003-3153-4630; Lohmann, Ulrike/0000-0001-8885-3785; FU High Altitude Research Foundation Gomergrat; Atmospheric Composition Change the European Network for Excellence; German Research Foundation FX We thank P. J. DeMott, D. M. Murphy and D. S. Thomson for their assistance with the measurements. We also acknowledge the effort of all of the participants of the INSPECT and CLACE field studies, the support of the High Altitude Research Foundation Gomergrat and Jungfraujoch and the experimental group at AIDA. This research was supported by the Atmospheric Composition Change the European Network for Excellence, ETH Zurich, the German Research Foundation and Pacific Northwest National Laboratory directed research funding. NR 30 TC 45 Z9 45 U1 0 U2 30 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD MAY PY 2009 VL 2 IS 5 BP 333 EP 336 DI 10.1038/NGEO499 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 452MA UT WOS:000266542900012 ER PT J AU Feibelman, PJ AF Feibelman, Peter J. TI SURFACE WATER Pentagonal ice in chains SO NATURE MATERIALS LA English DT News Item C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjfeibe@sandia.gov NR 5 TC 10 Z9 10 U1 0 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAY PY 2009 VL 8 IS 5 BP 372 EP 373 DI 10.1038/nmat2428 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 441QH UT WOS:000265783500013 PM 19387451 ER PT J AU Maye, MM Nykypanchuk, D Cuisinier, M van der Lelie, D Gang, O AF Maye, Mathew M. Nykypanchuk, Dmytro Cuisinier, Marine van der Lelie, Daniel Gang, Oleg TI Stepwise surface encoding for high-throughput assembly of nanoclusters SO NATURE MATERIALS LA English DT Article ID GOLD NANOPARTICLES; METAL NANOPARTICLES; MOLECULAR RULER; DNA; CRYSTALLIZATION; ARRAYS AB Self-assembly offers a promising method to organize functional nanoscale objects into two-dimensional (2D) and 3D superstructures for exploiting their collective effects(1-3). On the other hand, many unique phenomena emerge after arranging a few nanoscale objects into clusters, the so-called artificial molecules(4-10). The strategy of using biomolecular linkers between nanoparticles has proven especially useful for construction of such nanoclusters(4-6,11-16). However, conventional solution-based reactions typically yield a broad population of multimers or isomers of clusters; furthermore, the efficiency of fabrication is often limited(4-6,11-16). Here, we describe a novel high-throughput method for designing and fabricating clusters using DNA-encoded nanoparticles assembled on a solid support in a stepwise manner. This method efficiently imparts particles with anisotropy during their assembly and disassembly at a surface, generating remarkably high yields of well-defined dimer clusters and Janus (two-faced) nanoparticles. The method is scalable and modular, assuring large quantities of clusters of designated sizes and compositions. C1 [Maye, Mathew M.; Nykypanchuk, Dmytro; Cuisinier, Marine; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Maye, MM (reprint author), Syracuse Univ, Dept Chem, Syracuse, NY 13244 USA. EM ogang@bnl.gov OI Cuisinier, Marine/0000-0002-0690-9755 FU US DOE Office of Science and Office of Basic Energy Sciences [DE-AC-02-98CH10866]; Brookhaven Science Associates FX Research was supported by the US DOE Office of Science and Office of Basic Energy Sciences under contract No. DE-AC-02-98CH10866. M. M. M. acknowledges a Goldhaber Distinguished Fellowship at BNL sponsored by Brookhaven Science Associates. NR 30 TC 156 Z9 160 U1 11 U2 117 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAY PY 2009 VL 8 IS 5 BP 388 EP 391 DI 10.1038/NMAT2421 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 441QH UT WOS:000265783500016 PM 19329992 ER PT J AU Maiorov, B Baily, SA Zhou, H Ugurlu, O Kennison, JA Dowden, PC Holesinger, TG Foltyn, SR Civale, L AF Maiorov, B. Baily, S. A. Zhou, H. Ugurlu, O. Kennison, J. A. Dowden, P. C. Holesinger, T. G. Foltyn, S. R. Civale, L. TI Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7 SO NATURE MATERIALS LA English DT Article ID COLUMNAR DEFECTS; COATED CONDUCTORS; SUPERCONDUCTING WIRES; FILMS; CRYSTALS; NANOPARTICLES; LOCALIZATION; NANORODS; CREEP AB Retaining a dissipation-free state while carrying large electrical currents is a challenge that needs to be solved to enable commercial applications of high-temperature superconductivity. Here, we show that the controlled combination of two effective pinning centres (randomly distributed nanoparticles and self-assembled columnar defects) is possible and effective. By simply changing the temperature or growth rate during pulsed-laser deposition of BaZrO3-doped YBa2Cu3O7 films, we can vary the ratio of these defects, tuning the field and angular critical-current (I-c) performance to maximize Ic. We show that the defects' microstructure is governed by the growth kinetics and that the best results are obtained with a mixture of splayed columnar defects and random nanoparticles. The very high I-c arises from a complex vortex pinning landscape where columnar defects provide large pinning energy, while splay and nanoparticles inhibit flux creep. This knowledge is used to produce thick films with remarkable I-c(H) and nearly isotropic angle dependence. C1 [Maiorov, B.; Baily, S. A.; Zhou, H.; Ugurlu, O.; Kennison, J. A.; Dowden, P. C.; Holesinger, T. G.; Foltyn, S. R.; Civale, L.] Los Alamos Natl Lab, Superconductiv Technol Ctr, Los Alamos, NM 87545 USA. RP Maiorov, B (reprint author), Los Alamos Natl Lab, Superconductiv Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM maiorov@lanl.gov OI Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 FU US Department of Energy, Office of Electricity Delivery and Energy Reliability and User Cooperative; National High Magnetic Field Laboratory FX This work was supported by the US Department of Energy, Office of Electricity Delivery and Energy Reliability and User Cooperative Grant Program (formerly IHRP) of the National High Magnetic Field Laboratory. The authors thank J. MacManus-Driscoll (University of Cambridge) for fruitful discussions and D. Miller (Argonne National Laboratory) for his helpful suggestions regarding image analysis. NR 28 TC 264 Z9 266 U1 6 U2 53 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAY PY 2009 VL 8 IS 5 BP 398 EP 404 DI 10.1038/NMAT2408 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 441QH UT WOS:000265783500018 PM 19349971 ER PT J AU Garnett, EC Tseng, YC Khanal, DR Wu, JQ Bokor, J Yang, PD AF Garnett, Erik C. Tseng, Yu-Chih Khanal, Devesh R. Wu, Junqiao Bokor, Jeffrey Yang, Peidong TI Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements SO NATURE NANOTECHNOLOGY LA English DT Article ID IMPURITY ATOM DISTRIBUTIONS; FIELD-EFFECT TRANSISTORS; ELECTRICAL CHARACTERISTICS; SEMICONDUCTOR NANOWIRES; CARRIER MOBILITY; GROWTH; INTERFACE; NANOTUBES AB Silicon nanowires are expected to have applications in transistors, sensors, resonators, solar cells and thermoelectric systems(1-5). Understanding the surface properties and dopant distribution will be critical for the fabrication of high-performance devices based on nanowires(6). At present, determination of the dopant concentration depends on a combination of experimental measurements of the mobility and threshold voltage 7, 8 in a nanowire field-effect transistor, a calculated value for the capacitance, and two assumptions-that the dopant distribution is uniform and that the surface (interface) charge density is known. These assumptions can be tested in planar devices with the capacitance-voltage technique(9). This technique has also been used to determine the mobility of nanowires(10-13), but it has not been used to measure surface properties and dopant distributions, despite their influence on the electronic properties of nanowires(14,15). Here, we measure the surface (interface) state density and the radial dopant profile of individual silicon nanowire field-effect transistors with the capacitance-voltage technique. C1 [Garnett, Erik C.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tseng, Yu-Chih; Bokor, Jeffrey] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA. [Khanal, Devesh R.; Wu, Junqiao; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Khanal, Devesh R.; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Garnett, Erik/A-6847-2009; Tseng, Yu-Chih/G-4213-2011; Wu, Junqiao/G-7840-2011; Bokor, Jeffrey/A-2683-2011 OI Garnett, Erik/0000-0002-9158-8326; Wu, Junqiao/0000-0002-1498-0148; FU National Science Foundation by University of California Berkeley [0425914] FX E.C.G. would like to thank the National Center for Electron Microscopy for use of their facilities, M. Fardy for help Nvith FIB milling and Z. Zhang for help with imaging. Portions of this work were performed under the auspices of the National Science Foundation by University of California Berkeley under grant no. 0425914. The authors acknowledge the support ofthe MSD Focus Center, funded under the FCRP program ofthe Semiconductor Research Corporation. NR 28 TC 104 Z9 104 U1 3 U2 80 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD MAY PY 2009 VL 4 IS 5 BP 311 EP 314 DI 10.1038/NNANO.2009.43 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 447VT UT WOS:000266220800015 PM 19421217 ER PT J AU Vansteenkiste, A Chou, KW Weigand, M Curcic, M Sackmann, V Stoll, H Tyliszczak, T Woltersdorf, G Back, CH Schutz, G Van Waeyenberge, B AF Vansteenkiste, A. Chou, K. W. Weigand, M. Curcic, M. Sackmann, V. Stoll, H. Tyliszczak, T. Woltersdorf, G. Back, C. H. Schuetz, G. Van Waeyenberge, B. TI X-ray imaging of the dynamic magnetic vortex core deformation SO NATURE PHYSICS LA English DT Article AB Magnetic thin-film square-or disc-shaped nanostructures with adequate dimensions exhibit a magnetic vortex state: the magnetization vectors lie in the film plane and curl around the structure centre. At the very centre of the vortex, a small, stable core exists where the magnetization points either up or down(1,2). The discovery of an easy core reversal mechanism(3) did not only open the possibility of using such systems as magnetic memories, but also initiated the fundamental investigation of the core switching mechanism itself(4-15). Theoretical modelling predicted that the reversal is mediated by the creation and annihilation of a vortex-antivortex pair(3,4,16), but experimental support has been lacking until now. We used high-resolution time-resolved magnetic X-ray microscopy to experimentally reveal the first step of the reversal process: the dynamic deformation of the vortex core. In addition, we have measured a critical vortex velocity above which reversal must occur(5,17). Both observations support the previously proposed reversal mechanism. C1 [Vansteenkiste, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Chou, K. W.; Tyliszczak, T.] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Weigand, M.; Curcic, M.; Sackmann, V.; Stoll, H.; Schuetz, G.; Van Waeyenberge, B.] Max Planck Inst Met Res, D-70596 Stuttgart, Germany. [Woltersdorf, G.; Back, C. H.] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany. RP Vansteenkiste, A (reprint author), Univ Ghent, Dept Subatom & Radiat Phys, Proeftuinstr 86, B-9000 Ghent, Belgium. EM arne.vansteenkiste@ugent.be RI Back, Christian/A-8969-2012; Woltersdorf, Georg/C-7431-2014 OI Back, Christian/0000-0003-3840-0993; Woltersdorf, Georg/0000-0001-9299-8880 FU Science and Technology in Flanders (IWT-Flanders); Research Foundation Flanders (FWO-Flanders) [60170.06]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy FX Financial support by The Institute for the promotion of Innovation by Science and Technology in Flanders (IWT-Flanders) and by the Research Foundation Flanders (FWO-Flanders) through the research grant 60170.06 is gratefully acknowledged. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy. NR 29 TC 94 Z9 96 U1 0 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAY PY 2009 VL 5 IS 5 BP 332 EP 334 DI 10.1038/NPHYS1231 PG 3 WC Physics, Multidisciplinary SC Physics GA 448JA UT WOS:000266257700010 ER PT J AU Hodgkinson, JL Horsley, A Stabat, D Simon, M Johnson, S da Fonseca, PCA Morris, EP Wall, JS Lea, SM Blocker, AJ AF Hodgkinson, Julie L. Horsley, Ashley Stabat, David Simon, Martha Johnson, Steven da Fonseca, Paula C. A. Morris, Edward P. Wall, Joseph S. Lea, Susan M. Blocker, Ariel J. TI Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID III SECRETION SYSTEM; TRANSMISSION ELECTRON-MICROSCOPY; NEEDLE COMPLEX; SALMONELLA-TYPHIMURIUM; BACTERIAL FLAGELLA; SUPRAMOLECULAR STRUCTURE; NEISSERIA-MENINGITIDIS; STRUCTURAL INSIGHTS; MEMBRANE-PROTEIN; EPITHELIAL-CELLS AB Type III secretion systems (T3SSs) mediate bacterial protein translocation into eukaryotic cells, a process essential for virulence of many Gram-negative pathogens. They are composed of a cytoplasmic secretion machinery and a base that bridges both bacterial membranes, into which a hollow, external needle is embedded. When isolated, the latter two parts are termed the 'needle complex'. An incomplete understanding of the structure of the needle complex has hampered studies of T3SS function. To estimate the stoichiometry of its components, we measured the mass of its subdomains by scanning transmission electron microscopy (STEM). We determined subunit symmetries by analysis of top and side views within negatively stained samples in low-dose transmission electron microscopy (TEM). Application of 12-fold symmetry allowed generation of a 21-25-angstrom resolution, three-dimensional reconstruction of the needle complex base, revealing many new features and permitting tentative docking of the crystal structure of EscJ, an inner membrane component. C1 [Hodgkinson, Julie L.; Horsley, Ashley; Stabat, David; Johnson, Steven; Lea, Susan M.; Blocker, Ariel J.] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England. [Hodgkinson, Julie L.] Med Sch Hanover, Dept Mol & Cell Physiol, Hannover, Germany. [Simon, Martha; Wall, Joseph S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [da Fonseca, Paula C. A.; Morris, Edward P.] Inst Canc Res, Chester Beatty Labs, Struct Biol Sect, London SW3 6JB, England. [Blocker, Ariel J.] Univ Bristol, Dept Cellular & Mol Med, Bristol, Avon, England. [Blocker, Ariel J.] Univ Bristol, Dept Biochem, Bristol, Avon, England. RP Blocker, AJ (reprint author), Univ Oxford, Sir William Dunn Sch Pathol, S Parks Rd, Oxford OX1 3RE, England. EM ariel.blocker@bristol.ac.uk RI Lea, Susan/B-7678-2009; Johnson, Steven/F-9182-2016; Blocker, Ariel/Q-6617-2016 OI Lea, Susan/0000-0001-9287-8053; Johnson, Steven/0000-0002-7877-3543; FU UK Medical Research Council [G0401595, G0400389]; Deutsche Forschungsgemeinschaft [BR 849/29-1]; US National Institutes of Health; Department of Energy; Cancer Research UK FX We thank B. Lin (Brookhaven) for assistance with STEM sample preparation and P. Roversi ( Oxford) for the script to run the program for statistical assessment of docking of atomic structures to EM maps. We are indebted to N. Strynadka and co-workers ( British Columbia) for the EscJ ring coordinates and to D. DeRosier (Brandeis) and K. Namba (GSFBS, Osaka) for advice and encouragement at all key stages of this work. They, along with F. Booy ( Bristol), S. Daniell ( Bristol), A. Veenendaal ( Utrecht) and W. Steffen ( MHH, Hanover) are also thanked for critical comments on the manuscript. J. L. H. was funded by UK Medical Research Council project grant G0401595 to A. J. B. and Deutsche Forschungsgemeinschaft grant BR 849/29-1 to B. Brenner. A. J. B. was supported by the Guy G. F. Newton Senior Research Fellowship. S. J. was funded by UK Medical Research Council project grant G0400389 to S. M. L. J. S. W.' s laboratory is supported by the US National Institutes of Health and Department of Energy. P. C. A. d. F. and E. P. M. received funding from Cancer Research UK. NR 57 TC 83 Z9 83 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD MAY PY 2009 VL 16 IS 5 BP 477 EP 485 DI 10.1038/nsmb.1599 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 447VS UT WOS:000266220700012 PM 19396171 ER PT J AU Prudden, J Perry, JJP Arvai, AS Tainer, JA Boddy, MN AF Prudden, John Perry, J. Jefferson P. Arvai, Andrew S. Tainer, John A. Boddy, Michael N. TI Molecular mimicry of SUMO promotes DNA repair SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID CHECKPOINT KINASE CDS1; REPLICATION FORKS; FISSION YEAST; SACCHAROMYCES-CEREVISIAE; TELOMERE MAINTENANCE; UBIQUITIN; PROTEIN; BINDING; COMPLEX; DOMAIN AB Rad60 family members contain functionally enigmatic, integral SUMO-like domains (SLDs). We show here that despite their divergence from SUMO, each Rad60 SLD interacts with a subset of SUMO pathway enzymes: SLD2 specifically binds the SUMO E2 conjugating enzyme (Ubc9), whereas SLD1 binds the SUMO E1 (Fub2, also called Uba2) activating and E3 (Pli1, also called Siz1 and Siz2) specificity enzymes. The molecular basis of this selectivity is revealed by our 0.97-angstrom resolution crystal structure of Rad60 SLD2, which shows that apart from the conserved non-substrate SUMO: Ubc9 interface, the surface features of SLD2 are distinct from those of SUMO. Abrogation of the SLD2:Ubc9 FEG motif-dependent interaction results in hypersensitivity to genotoxic stress and an increase in spontaneous recombination associated with aberrant replication forks. Our results provide a mechanistic basis for the near-synonymous roles of Rad60 and SUMO in survival of genotoxic stress and suggest unprecedented DNA-damage-response functions for SLDs in regulating sumoylation. C1 [Prudden, John; Perry, J. Jefferson P.; Arvai, Andrew S.; Tainer, John A.; Boddy, Michael N.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Perry, J. Jefferson P.] Amrita Univ, Sch Biotechnol, Kollam, Kerala, India. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Mol Biol, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Dept Mol Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM jat@scripps.edu; nboddy@scripps.edu FU US National Institutes of Health [GM068608, GM081840, CA104660] FX We thank B. Arcangioli (Institut Pasteur, Paris), P. Russell (TSRI, La Jolla, California, USA), S. Pebernard ( TSRI) and G. Raffa (Universita di Roma La Sapienza, Rome) for generously providing fission yeast strains and additional reagents and The Scripps Cell Cycle Group for support and encouragement. This study was funded in part by US National Institutes of Health grants GM068608 and GM081840 awarded to M.N.B. and CA104660 to J.A.T. NR 53 TC 32 Z9 32 U1 0 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9993 EI 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD MAY PY 2009 VL 16 IS 5 BP 509 EP 516 DI 10.1038/nsmb.1582 PG 8 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 447VS UT WOS:000266220700017 PM 19363481 ER PT J AU Owen, BAL Lang, WH McMurray, CT AF Owen, Barbara A. L. Lang, Walter H. McMurray, Cynthia T. TI The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article ID DNA MISMATCH-REPAIR; SACCHAROMYCES-CEREVISIAE MSH2-MSH3; ATPASE ACTIVITY; CRYSTAL-STRUCTURE; PROTEIN MUTS; RECOGNITION; COMPLEX; HYDROLYSIS; ALPHA; HMSH2 AB Here we report that the human DNA mismatch complex MSH2-MSH3 recognizes small loops by a mechanism different from that of MSH2-MSH6 for single-base mismatches. The subunits MSH2 and MSH3 can bind either ADP or ATP with similar affinities. Upon binding to a DNA loop, however, MSH2-MSH3 adopts a single 'nucleotide signature', in which the MSH2 subunit is occupied by an ADP molecule and the MSH3 subunit is empty. Subsequent ATP binding and hydrolysis in the MSH3 subunit promote ADP-ATP exchange in the MSH2 subunit to yield a hydrolysis-independent ATP-MSH2-MSH3-ADP intermediate. Human MSH2-MSH3 and yeast Msh2-Msh6 both undergo ADP-ATP exchange in the Msh2 subunit but, apparently, have opposite requirements for ATP hydrolysis: ADP release from DNA-bound Msh2-Msh6 requires ATP stabilization in the Msh6 subunit, whereas ADP release from DNA-bound MSH2-MSH3 requires ATP hydrolysis in the MSH3 subunit. We propose a model in which lesion binding converts MSH2-MSH3 into a distinct nucleotide-bound form that is poised to be a molecular sensor for lesion specificity. C1 [Owen, Barbara A. L.; McMurray, Cynthia T.] Mayo Clin, Coll Med, Dept Biochem & Mol Biol, Rochester, MN 55905 USA. [Owen, Barbara A. L.] Mayo Clin, Coll Med, Dept Internal Med, Rochester, MN USA. [Lang, Walter H.; McMurray, Cynthia T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [McMurray, Cynthia T.] Mayo Clin, Coll Med, Dept Pharmacol & Expt Therapeut, Rochester, MN USA. [McMurray, Cynthia T.] Mayo Clin, Coll Med, Neurosci Program, Rochester, MN USA. RP McMurray, CT (reprint author), Mayo Clin, Coll Med, Dept Biochem & Mol Biol, Rochester, MN 55905 USA. EM mcmurray.cynthia@mayo.edu FU Mayo Foundation; US National Institutes of Health [NS40738, GM066359, CA092584] FX We thank R. Weinshilboum, T. C. Wood and L.J. Maher III, for providing access to crucial equipment and I. Kovtun and J. Trushina for helpful comments. This work was supported by the Mayo Foundation and the US National Institutes of Health grants NS40738 ( C. T. M.), GM066359 ( C. T. M.) and CA092584 ( C. T. M.). NR 32 TC 27 Z9 27 U1 1 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD MAY PY 2009 VL 16 IS 5 BP 550 EP 557 DI 10.1038/nsmb.1596 PG 8 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 447VS UT WOS:000266220700022 PM 19377479 ER PT J AU Volkow, ND Tomasi, D Wang, GJ Telang, F Fowler, JS Wang, RL Logan, J Wong, C Jayne, M Swanson, JM AF Volkow, Nora D. Tomasi, Dardo Wang, Gene-Jack Telang, Frank Fowler, Joanna S. Wang, Ruiliang L. Logan, Jean Wong, Christopher Jayne, Millard Swanson, James M. TI Hyperstimulation of striatal D2 receptors with sleep deprivation: Implications for cognitive impairment SO NEUROIMAGE LA English DT Article DE Dopamine D2 receptors; Raclopride; Visual attention; PET; fMRI; Default network; Thalamus ID DOPAMINE D-2/D-3 RECEPTORS; LATERAL GENICULATE-NUCLEUS; MEDIAL PREFRONTAL CORTEX; POSITRON-EMISSION-TOMOGRAPHY; EMOTION-INDUCED CHANGES; VISUAL-CORTEX; HUMAN BRAIN; WORKING-MEMORY; ATTENTIONAL IMPAIRMENTS; TASK-PERFORMANCE AB Sleep deprivation interferes with cognitive performance but the mechanisms are poorly understood. We recently reported that one night of sleep deprivation increased dopamine in striatum (measured with [(11)C] raclopride, a PET radiotracer that competes with endogenous dopamine for binding to D2 receptors) and that these increases were associated with impaired performance in a visual attention task. To better understand this association here we evaluate the relationship between changes in striatal dopamine (measured as changes in D2 receptor availability using PET and [(11)C] raclopride) and changes in brain activation to a visual attention task (measured with BOLD and fMRI) when performed during sleep deprivation versus during rested wakefulness. We find that sleep induced changes in striatal dopamine were associated with changes in cortical brain regions modulated by dopamine (attenuated deactivation of anterior cingulate gyrus and insula) but also in regions that are not recognized targets of dopaminergic modulation (attenuated activation of inferior occipital cortex and cerebellum). Moreover, the increases in striatal dopamine as well as its associated regional activation and deactivation patterns correlated negatively with performance accuracy. These findings therefore suggest that hyperstimulation of D2 receptors in striatum may contribute to the impairment in visual attention during sleep deprivation. Thus, while dopamine increases in prefrontal regions (including stimulation of D1 receptors) may facilitate attention our findings suggest that hyperstimulation of D2 receptors in striatum may impair it. Alternatively, these associations may reflect a compensatory striatal dopamine response (to maintain arousal) that is superimposed on a larger response to sleep deprivation. (C) 2009 Elsevier Inc. All rights reserved. C1 [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. [Volkow, Nora D.; Tomasi, Dardo; Telang, Frank; Jayne, Millard] NIAAA, Bethesda, MD 20892 USA. [Wang, Gene-Jack; Fowler, Joanna S.; Wang, Ruiliang L.; Logan, Jean; Wong, Christopher] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Swanson, James M.] Univ Calif Irvine, Child Dev Ctr, Irvine, CA 92612 USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, 6001 Execut Blvd,Room 5274,MSC 9581, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov RI Tomasi, Dardo/J-2127-2015; OI Logan, Jean/0000-0002-6993-9994 FU Intramural NIH HHS [Z01 AA000550-04] NR 68 TC 34 Z9 35 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD MAY 1 PY 2009 VL 45 IS 4 BP 1232 EP 1240 DI 10.1016/j.neuroimage.2009.01.003 PG 9 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 421SL UT WOS:000264378500020 PM 19349237 ER PT J AU Basunia, MS AF Basunia, M. S. TI Nuclear Data Sheets for A=187 SO NUCLEAR DATA SHEETS LA English DT Review ID NEUTRON-DEFICIENT ISOTOPES; ODD-A NUCLEI; FIRST EXCITED STATES; LIGHT GOLD ISOTOPES; EN RHENIUM 187; ALPHA-DECAY; HALF-LIVES; SHAPE COEXISTENCE; BETA-DECAY; COULOMB-EXCITATION AB Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for Hf-187, Ta-187, W-187, Re-187, Os-187, Ir-187, Pt-187, Au-187, Hg-187, Tl-187, Pb-187, Bi-187, and Po-187. This evaluation for A=187 supersedes the earlier one by R. B. Firestone (1991FiO(2)) published in Nuclear Data Sheets 62, 159 (1991) and the Tl-187 evaluation by C. M. Baglin (1999Ba24) published in Nuclear Data Sheets 86, 487 (1999). Highlights of this publication are the following: This evaluation includes first identifications of Hf-187, Ta-187 (1999Be63, 2000PoZY) and Po-187 (2006An11) nuclides. A B(E2)up arrow=0.080 12 was determined by 1967Bi10 for the 9/2+ state at 845 keV in Re-187 Coulomb Excitation. Using this B(E2) value and the adopted 845 gamma ray properties, a T-1/2=54 fs 34 can be deduced for the 845 keV level of Re-187. This T-1/2 Yields a large B(E2)(W.u.) = 1.3x10(5) for the 263 gamma (depopulating the same level) indicating either substantial unobserved feeding or incorrect g-ray branching intensities of this level. The decay of g.s. and isomer of Tl-187 are poorly known (please see Tl-187 epsilon decay (51 s+15.60 a)). Based on Po-191 alpha decay Studies, 2002An19 establishes a Pb-187 isomeric level energy at 2(15) keV and assigns J pi=13/2+ for the Pb-187 g.S. and J pi=3/2- for the isomeric state (inverse of the systematics of odd-mass Pb nuclei in this region). From Pb-187 and Pb-187(m) mass measurements, 2005We11 determined the isomeric level energy at 33(13) keV. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Basunia, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231] FX Research sponsored by Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC02-05CH11231. NR 314 TC 22 Z9 22 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAY PY 2009 VL 110 IS 5 BP 999 EP + DI 10.1016/j.nds.2009.04.001 PG 238 WC Physics, Nuclear SC Physics GA 443BZ UT WOS:000265886500001 ER PT J AU Pope, MA Lee, JI Hejzlar, P Driscoll, MJ AF Pope, Michael A. Lee, Jeong Ik Hejzlar, Pavel Driscoll, Michael J. TI Thermal hydraulic challenges of Gas Cooled Fast Reactors with passive safety features SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID HEAT-TRANSFER DTHT; CIRCULAR TUBE; UP-FLOW AB Transient response of a Gas Cooled Fast Reactor (GFR) coupled to a recompression supercritical CO(2) (S-CO(2)) power conversion system (PCS) in a direct cycle to a Loss of Coolant Accident (LOCA) and a Loss of Generator Load Accident is analyzed using RELAP5-3D. A number of thermal hydraulic challenges for GFR design are pointed out as the designers strive to accommodate cooling of the high power density core of a fast reactor by a gas with its inherently low heat transfer capability, in particular under post-LOCA events when system pressure is lost and when reliance on passive decay heat removal (DHR) is emphasized. Although it is possible to design a S-CO(2) cooled GFR that can survive LOCA by cooling the core through natural circulating loops between the core and elevated emergency cooling heat exchangers, it is not an attractive approach because of various bypass paths that can, depending on break location, degrade core cooling. Moreover, natural circulation gas loops can operate in deteriorated heat transfer regimes with substantial reduction of heat transfer coefficient: as low as 30% of forced convection values, and data and correlations in these regimes carry large uncertainties. Therefore, reliable battery powered blowers for post-LOCA decay heat removal that provide flow in well defined regimes with low uncertainty, and can be easily overdesigned to accommodate bypass flows were selected. The results confirm that a GFR with such a DHR system and negative coolant void worth can withstand LOCA with and without scram as well as loss of electrical load without exceeding core temperature and turbomachinery overspeed limits. Published by Elsevier B.V. C1 [Pope, Michael A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Hejzlar, Pavel; Driscoll, Michael J.] MIT, Ctr Adv Nucl Energy Syst, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Lee, Jeong Ik] Seoul Natl Univ, FNC Tech Co Ltd, Seoul 151742, South Korea. RP Pope, MA (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM michael.pope@inl.gov; jilee@alum.mit.edu; hejzlar@mit.edu; mickeyd@mit.edu RI Lee, Jeong Ik/C-1815-2011; Lee, Jeong Ik/N-9373-2016 OI Lee, Jeong Ik/0000-0002-0322-4275 NR 25 TC 14 Z9 16 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAY PY 2009 VL 239 IS 5 BP 840 EP 854 DI 10.1016/j.nucengdes.2008.10.023 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 442BV UT WOS:000265815700003 ER PT J AU Majeski, R Berzak, L Gray, T Kaita, R Kozub, T Levinton, F Lundberg, DP Manickam, J Pereverzev, GV Snieckus, K Soukhanovskii, V Spaleta, J Stotler, D Strickler, T Timberlake, J Yoo, J Zakharov, L AF Majeski, R. Berzak, L. Gray, T. Kaita, R. Kozub, T. Levinton, F. Lundberg, D. P. Manickam, J. Pereverzev, G. V. Snieckus, K. Soukhanovskii, V. Spaleta, J. Stotler, D. Strickler, T. Timberlake, J. Yoo, J. Zakharov, L. TI Performance projections for the lithium tokamak experiment (LTX) SO NUCLEAR FUSION LA English DT Article ID SIMULATION AB Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (< 0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized. C1 [Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Lundberg, D. P.; Manickam, J.; Snieckus, K.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Levinton, F.] Nova Photon, Princeton, NJ 08543 USA. [Pereverzev, G. V.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Majeski, R (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rmajeski@pppl.gov RI Stotler, Daren/J-9494-2015; OI Stotler, Daren/0000-0001-5521-8718; Yoo, Jongsoo/0000-0003-3881-1995 FU USDoE [DE-AC02-76-CH0-3073] FX This work was supported by USDoE contract No DE-AC02-76-CH0-3073. NR 17 TC 27 Z9 27 U1 1 U2 10 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2009 VL 49 IS 5 AR 055014 DI 10.1088/0029-5515/49/5/055014 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451ZA UT WOS:000266508200015 ER PT J AU Mazzucato, E Bell, RE Ethier, S Hosea, JC Kaye, SM LeBlanc, BP Lee, WW Ryan, PM Smith, DR Wang, WX Wilson, JR Yuh, H AF Mazzucato, E. Bell, R. E. Ethier, S. Hosea, J. C. Kaye, S. M. LeBlanc, B. P. Lee, W. W. Ryan, P. M. Smith, D. R. Wang, W. X. Wilson, J. R. Yuh, H. TI Study of turbulent fluctuations driven by the electron temperature gradient in the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article ID TOKAMAK PLASMA TURBULENCE; UHR BACKSCATTERING DIAGNOSTICS; WAVE-NUMBER TURBULENCE; DIII-D TOKAMAK; ELECTROMAGNETIC-WAVES; TRANSPORT; SCATTERING; ETG; COMPONENT AB Various theories and numerical simulations support the conjecture that the ubiquitous problem of anomalous electron transport in tokamaks may arise from a short-scale turbulence driven by the electron temperature gradient. To check whether this turbulence is present in plasmas of the National Spherical Torus Experiment, measurements of turbulent fluctuations were performed with coherent scattering of electromagnetic waves. Results from plasmas heated by high harmonic fast waves show the existence of density fluctuations in the range of wave numbers k(perpendicular to)rho(e) = 0.1-0.4, corresponding to a turbulence scale length of the order of the collisionless skin depth. Experimental observations and agreement with numerical results from the linear gyro-kinetic GS2 code indicate that the observed turbulence is driven by the electron temperature gradient. These turbulent fluctuations were not observed at the location of an internal transport barrier driven by a negative magnetic shear. C1 [Mazzucato, E.; Bell, R. E.; Ethier, S.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Lee, W. W.; Smith, D. R.; Wang, W. X.; Wilson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ryan, P. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yuh, H.] Nova Photon Inc, Princeton, NJ 08540 USA. RP Mazzucato, E (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mazzucato@pppl.gov FU US Department of Energy [DE-AC02-76CH03073] FX This work was supported by US Department of Energy Contract No DE-AC02-76CH03073. The authors would like to thank the entire NSTX operations, physics and engineering teams for their contributions to this effort. NR 31 TC 23 Z9 23 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2009 VL 49 IS 5 AR 055001 DI 10.1088/0029-5515/49/5/055001 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451ZA UT WOS:000266508200002 ER PT J AU Strauss, HR Sugiyama, L Park, GY Chang, CS Ku, S Joseph, I AF Strauss, H. R. Sugiyama, L. Park, G. Y. Chang, C. S. Ku, S. Joseph, I. TI Extended MHD simulation of resonant magnetic perturbations SO NUCLEAR FUSION LA English DT Article ID PLASMA; EQUILIBRIUM; FLOW AB Resonant magnetic perturbations (RMPs) have been found effective in suppressing edge localized modes (ELMs) in the DIII-D experiment (Evans et al 2006 Phys. Plasmas 13 056121, Moyer et al 2005 Phys. Plasmas 12 056119). Simulations with the M3D initial value code indicate that plasma rotation, due to an MHD toroidal rotation or to two-fluid drifts, has an essential effect on the RMP. When the flow is below a threshold, the RMP field can couple to a resistive mode with a helical structure, different from the usual ELM, that amplifies the non-axisymmetric field. The magnetic field becomes stochastic in the outer part of the plasma, causing density and temperature loss. At higher rotation speed, the resistive mode is stabilized and the applied RMP is screened from the plasma, so that the stochastic magnetic layer is thinner and the temperature remains similar to the initial unperturbed state. The rotational flow effects, along with the remnants of the screened RMP, cause a density loss which extends into the plasma core. The two-fluid model contains intrinsic drift motion and axisymmetric toroidal rotation may not be needed to screen the RMP nor stabilize the resistive mode. C1 [Strauss, H. R.; Park, G. Y.; Chang, C. S.; Ku, S.] NYU, Courant Inst Math Sci, New York, NY 10012 USA. [Sugiyama, L.] MIT, Cambridge, MA 02139 USA. [Joseph, I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Strauss, HR (reprint author), NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA. EM strauss@cims.nyu.edu RI Ku, Seung-Hoe/D-2315-2009 OI Ku, Seung-Hoe/0000-0002-9964-1208 FU USDOE FX This work was supported by the USDOE. NR 26 TC 35 Z9 35 U1 0 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2009 VL 49 IS 5 AR 055025 DI 10.1088/0029-5515/49/5/055025 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451ZA UT WOS:000266508200026 ER PT J AU Voitsekhovitch, I Alper, B Brix, M Budny, RV Buratti, P Challis, CD Ferron, J Giroud, C Joffrin, E Laborde, L Luce, TC McCune, D Menard, J Murakami, M Park, JM AF Voitsekhovitch, I. Alper, B. Brix, M. Budny, R. V. Buratti, P. Challis, C. D. Ferron, J. Giroud, C. Joffrin, E. Laborde, L. Luce, T. C. McCune, D. Menard, J. Murakami, M. Park, J. M. CA JET-EFDA Contributors TI Non-inductive current drive and transport in high beta(N) plasmas in JET SO NUCLEAR FUSION LA English DT Article ID STATE ADVANCED TOKAMAK; BOOTSTRAP CURRENT; DIII-D; ARBITRARY COLLISIONALITY; BARRIER OSCILLATIONS; ADVANCED SCENARIOS; ITER; OPERATION; PROGRESS; PROFILE AB A route to stationary MHD stable operation at high beta(N) has been explored at the Joint European Torus (JET) by optimizing the current ramp-up, heating start time and the waveform of neutral beam injection (NBI) power. In these scenarios the current ramp-up has been accompanied by plasma pre-heat (or the NBI has been started before the current flat-top) and NBI power up to 22 MW has been applied during the current flat-top. In the discharges considered transient total beta(N) approximate to 3.3 and stationary (during high power phase) beta(N) approximate to 3 have been achieved by applying the feedback control of beta(N) with the NBI power in configurations with monotonic or flat core safety factor profile and without an internal transport barrier (ITB). The transport and current drive in this scenario is analysed here by using the TRANSP and ASTRA codes. The interpretative analysis performed with TRANSP shows that 50-70% of current is driven non-inductively; half of this current is due to the bootstrap current which has a broad profile since an ITB was deliberately avoided. The GLF23 transport model predicts the temperature profiles within a +/- 22% discrepancy with the measurements over the explored parameter space. Predictive simulations with this model show that the E x B rotational shear plays an important role for thermal ion transport in this scenario, producing up to a 40% increase of the ion temperature. By applying transport and current drive models validated in self-consistent simulations of given reference scenarios in a wider parameter space, the requirements for fully non-inductive stationary operation at JET are estimated. It is shown that the strong stiffness of the temperature profiles predicted by the GLF23 model restricts the bootstrap current at larger heating power. In this situation full non-inductive operation without an ITB can be rather expensive strongly relying on the external non-inductive current drive sources. C1 [Voitsekhovitch, I.; Alper, B.; Brix, M.; Challis, C. D.; Giroud, C.; Laborde, L.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Budny, R. V.; McCune, D.; Menard, J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Buratti, P.] ENEA Fus, EURATOM Assoc, Frascati, Italy. [Ferron, J.; Luce, T. C.] Gen Atom Co, San Diego, CA 92186 USA. [Joffrin, E.] IRFM, DSM, CEA, EURATOM Assoc, F-13108 St Paul Les Durance, France. [Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Culham Sci Ctr, JET EFDA, Abingdon OX14 3DB, Oxon, England. RP Voitsekhovitch, I (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. OI Menard, Jonathan/0000-0003-1292-3286 FU United Kingdom Engineering and Physical Sciences Research Council; European Communities; US DoE [DE-AC02-76CH03073, E-FG02-07ER54927] FX Drs T. C. Hender, W. Morris, V. Pericoli- Ridolfini, F. Rimini, T. Tala and R. Kamendje are warmly acknowledged for useful comments leading to improvements in the manuscript. This work was partly funded by the United Kingdom Engineering and Physical Sciences Research Council and by the European Communities under the contract of Associations between EURATOM and UKAEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work has been carried out within the framework of the European Fusion Development Agreement. The contribution of the US co-authors to thiswork is supported by the US DoE contracts Nos DE-AC02-76CH03073 and E-FG02-07ER54927. NR 39 TC 10 Z9 10 U1 2 U2 14 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAY PY 2009 VL 49 IS 5 AR 055026 DI 10.1088/0029-5515/49/5/055026 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 451ZA UT WOS:000266508200027 ER PT J AU Weis, CD Schuh, A Batra, A Persaud, A Rangelow, IW Bokor, J Lo, CC Cabrini, S Olynick, D Duhey, S Schenkel, T AF Weis, C. D. Schuh, A. Batra, A. Persaud, A. Rangelow, I. W. Bokor, J. Lo, C. C. Cabrini, S. Olynick, D. Duhey, S. Schenkel, T. TI Mapping of ion beam induced current changes in FinFETs SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Beam Modification of Materials CY AUG 31-SEP 05, 2008 CL Dresden, GERMANY DE Ion beam induced charge (IBIC); IBIC mapping ID SILICON; MOSFETS; CDTE AB We report on progress in ion placement into silicon devices with scanning probe alignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lever of the SFM tip collimate the argon beam to sizes of 1.6 mu m and 100 nm in diameter. Ion impacts upset the channel current due to formation of positive charges in the oxide areas. The induced changes in the source-drain current are recorded in dependence of the ion beam position with respect to the FinFET. Maps of local areas responding to the ion beam are obtained. (C) 2009 Elsevier B.V. All rights reserved. C1 [Weis, C. D.; Schuh, A.; Batra, A.; Persaud, A.; Cabrini, S.; Olynick, D.; Duhey, S.; Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Weis, C. D.; Schuh, A.; Rangelow, I. W.] Tech Univ Ilmenau, D-98684 Ilmenau, Germany. [Bokor, J.; Lo, C. C.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Schenkel, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM T_Schenkel@LBL.gov RI Bokor, Jeffrey/A-2683-2011 NR 20 TC 9 Z9 9 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY 1 PY 2009 VL 267 IS 8-9 BP 1222 EP 1225 DI 10.1016/j.nimb.2009.01.019 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 452DL UT WOS:000266519900003 ER PT J AU Harriman, TA Lucca, DA Lee, JK Klopfstein, MJ Herrmann, K Nastasi, M AF Harriman, T. A. Lucca, D. A. Lee, J. -K. Klopfstein, M. J. Herrmann, K. Nastasi, M. TI Ion implantation effects in single crystal Si investigated by Raman spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Beam Modification of Materials CY AUG 31-SEP 05, 2008 CL Dresden, GERMANY DE Raman spectroscopy; Ion implantation; Si; Ar; Amorphization ID AMORPHOUS-SILICON; AMORPHIZATION; SCATTERING; ENERGIES; DEFECTS; ORDER AB A study of the effects of Ar ion implantation on the structural transformation of single crystal Si investigated by confocal Raman spectroscopy is presented. Implantation was performed at 77 K using 150 keV Ar(++) with fluences ranging from 2 x 10(13) to 1 x 10(15) ions/cm(2). The Raman spectra showed a progression from crystalline to highly disordered structure with increasing fluence. The 520 cm(-1) c-Si peak was seen to decrease in intensity, broaden and exhibit spectral shifts indicating an increase in lattice disorder and changes in the residual stress state. In addition, an amorphous Si band first appeared as a shoulder on the 520 cm-1 peak and then shifted to lower wavenumbers as a single broadband peak with a spectral center of 465 cm(-1). Additionally, the emergence of the a-Si TA phonon band and the decrease of the c-Si 2TA and 2TO phonon bands also indicated the same structural transition from crystalline to highly disordered. The Raman results were compared to those obtained by channeling RBS. (C) 2009 Elsevier B.V. All rights reserved. C1 [Harriman, T. A.; Lucca, D. A.] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. [Lee, J. -K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Klopfstein, M. J.] Univ Bremen, D-28359 Bremen, Germany. [Herrmann, K.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Nastasi, M.] Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. RP Lucca, DA (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74078 USA. EM lucca@okstate.edu NR 16 TC 6 Z9 6 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY 1 PY 2009 VL 267 IS 8-9 BP 1232 EP 1234 DI 10.1016/j.nimb.2009.01.021 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 452DL UT WOS:000266519900006 ER PT J AU Zhang, YW Weber, WJ AF Zhang, Yanwen Weber, William J. TI Response of materials to single ion events SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Beam Modification of Materials CY AUG 31-SEP 05, 2008 CL Dresden, GERMANY DE Single ion event; Ionization; Electronic energy loss; Time-of-flight ID ELECTRONIC STOPPING POWERS; HEAVY-IONS; DETECTOR RESPONSE; HIGH-PRECISION; RADIATION; SCINTILLATION; CERAMICS; SILICON AB Response of materials to single radiation events is fundamental to research and many technological applications that involve energetic particles. Ion-solid interactions lead to energy loss of ions, production of electron-hole pairs, and light emission from excitation-induced luminescence. Employing a unique time-of-flight system, material response to single ion irradiation has been utilized to measure electronic energy loss, and to evaluate materials performance for radiation detection. Measurements of electronic energy loss of single ions in a thin ZrO(2) foil over a continuous energy range exhibit good agreement with SRIM predictions for He and Be ions. For O and F ions, slight over- and under-estimation of SRIM prediction is evident at energies around 250 (near the stopping maximum) and above 800 keV/nucleon, respectively. For a Si semiconductor detector, its response to single ion irradiation shows that pulse height defect is clear for elements heavier than Si, and nonlinear energy response is significant for all elements at energies below similar to 100 keV/nucleon. For a single crystal CsI:Tl scintillator, the response to H ion events is used to determine relative light yield and absolute energy resolution over a wide energy region, where energy resolution of similar to 5.3% is achieved at 2 MeV. (C) 2009 Elsevier B.V. All rights reserved C1 [Zhang, Yanwen; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, YW (reprint author), Pacific NW Natl Lab, POB 999,MS K8-87, Richland, WA 99352 USA. EM Yanwen.Zhang@pnl.gov RI Weber, William/A-4177-2008 OI Weber, William/0000-0002-9017-7365 NR 30 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY 1 PY 2009 VL 267 IS 8-9 BP 1705 EP 1712 DI 10.1016/j.nimb.2009.01.104 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 452DL UT WOS:000266519900122 ER PT J AU Swaminarayan, S Nastasi, M AF Swaminarayan, S. Nastasi, M. TI Corrections to the Walker-Thompson estimate of the cascade volume SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article; Proceedings Paper CT 16th International Conference on Ion Beam Modification of Materials CY AUG 31-SEP 05, 2008 CL Dresden, GERMANY DE Monte Carlo; Simulation; Cascade; Volume correction AB Sigmund [P. Sigmund, Appl. Phys. Lett. 25 (1974) 169] analytically predicted that the ratio of cascade volume to energy distribution volume should follow a universal curve that is sigmoidal in shape. Subsequent Monte Carlo simulations by Walker and Thompson [R.S. Walker, D.A. Thompson, Radiat. Eff. 37 (1978) 113] showed that although this curve is sigmoidal in shape, the curve is different for different materials with large deviations from Sigmund's prediction at high M(2)/M(1). Our analysis of the Walker and Thompson approach has revealed an error in the analytical equations used. A correct analysis of volume ratios using a different set of equations is presented. Analysis of data produced by SRIM [J.F. Ziegler, J.P. Biersack, U. Littmark, in: The Stopping and Range of Ions in solids, Pergamon, New York, 1985] (Monte Carlo) simulations gives results that are in good agreement with Sigmund's predictions. Published by Elsevier B.V. C1 [Swaminarayan, S.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nastasi, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM nasty@lanl.gov NR 12 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD MAY 1 PY 2009 VL 267 IS 8-9 BP 1713 EP 1716 DI 10.1016/j.nimb.2009.01.153 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 452DL UT WOS:000266519900123 ER PT J AU Mueller, AH Shoshi, AI Xiao, BW AF Mueller, A. H. Shoshi, A. I. Xiao, Bo-Wen TI Deep inelastic and dipole scattering on finite length hot N=4 SYM matter SO NUCLEAR PHYSICS A LA English DT Article DE Deep inelastic scattering; Dipole scattering; Finite extent hot SYM plasma; Structure functions; Operator product expansion AB Deep inelastic scattering of R-currents and the scattering of a small dipole on finite length hot N = 4 SYM matter are discussed. In each case we find the scale when scattering becomes strong is determined by a saturation momentum Q(s)(2) similar to LT3/x where L is the length of the matter. For R-currents we analyze the operator product expansion. For infinite length matter the series generated by the OPE is not Borel summable but we are able to determine the exponential part of the tunneling amplitude determining F-2 when Q(2)/Q(s)(2) >> 1 from the position of the singularity closest to the origin on the real axis of the Borel plane. In finite length matter the OPE series is not convergent but it is Borel summable. When a small dipole. and the string connecting the ends of the dipole, pass through hot matter there is an induced motion of the string in the 5th dimension. When (TL)-L-4 cosh eta, with the eta the rapidity of the string, is large enough the string would normally break into several parts after leaving the medium, however, this cannot happen in tire classical approximation in which we work. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xiao, Bo-Wen] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Mueller, A. H.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Shoshi, A. I.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. RP Xiao, BW (reprint author), Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM Amh@phys.columbia.edu; shoshi@physik.uni-bielefeld.de; bxiao@lbl.gov FU US Department of Energy FX This work is supported in part by the US Department of Energy. NR 24 TC 19 Z9 19 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD MAY 1 PY 2009 VL 822 BP 20 EP 40 DI 10.1016/j.nuclphysa.2009.03.002 PG 21 WC Physics, Nuclear SC Physics GA 439IU UT WOS:000265621600002 ER PT J AU Carena, M Nardini, G Quiros, M Wagner, CEM AF Carena, M. Nardini, G. Quiros, M. Wagner, C. E. M. TI The baryogenesis window in the MSSM SO NUCLEAR PHYSICS B LA English DT Article ID ELECTROWEAK PHASE-TRANSITION; SUPERSYMMETRIC STANDARD MODEL; ELECTRIC-DIPOLE MOMENTS; FINITE-TEMPERATURE; BARYON ASYMMETRY; CP-VIOLATION; SPLIT SUPERSYMMETRY; DIMENSIONAL REDUCTION; HIGGS SEARCHES; EARLY UNIVERSE AB Electroweak baryogenesis provides an attractive explanation of the origin of the matter-anti matter asymmetry that relies on physics at the weak scale and thus it is testable at present and near future high-energy physics experiments. Although this scenario may not be realized within the Standard Model, it can be accommodated within the MSSM provided there are new CP-violating phases and the lightest stop mass is smaller than the top-quark mass. In this work we provide an evaluation of the values of the stop (m(i)) and Higgs (m(H)) masses consistent with the requirements of electroweak baryogenesis based on an analysis that makes use of the renormalization group improved Higgs and stop potentials, and including the dominant two-loop effects at high temperature. We find an allowed window in the (m(i), m(H))-plane, consistent with all present experimental data, where there is a strongly first-order electroweak phase transition and where the electroweak vacuum is metastable but sufficiently long-lived. In particular we obtain absolute upper bounds on the Higgs and stop masses, m(H) less than or similar to 127 GeV and m(i) less than or similar to 120 GeV, implying that this scenario will be probed at the LHC. (C) 2008 Elsevier B.V. All rights reserved. C1 [Nardini, G.; Quiros, M.] Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. [Carena, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Quiros, M.] ICREA, Barcelona 08010, Spain. [Quiros, M.] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. [Wagner, C. E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Carena, M.; Wagner, C. E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wagner, C. E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Carena, M.; Wagner, C. E. M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Nardini, G (reprint author), Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. EM germano@ifae.es NR 96 TC 121 Z9 122 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD MAY 1 PY 2009 VL 812 IS 1-2 BP 243 EP 263 DI 10.1016/j.nuclphysb.2008.12.014 PG 21 WC Physics, Particles & Fields SC Physics GA 411AN UT WOS:000263619800011 ER PT J AU D'Alessandro, R Adriani, O Bonechi, L Bongi, M Castellini, G Faus, DA Fukui, K Grandi, M Haguenauer, M Itow, Y Kasahara, K Macina, D Mase, T Masuda, K Matsubara, Y Menjo, H Mizuishi, M Muraki, Y Papini, P Perrot, AL Ricciarini, S Sako, T Shimizu, Y Taki, K Tamura, T Torii, S Tricomi, A Turner, WC Velasco, J Viciani, A Yoshida, K AF D'Alessandro, R. Adriani, O. Bonechi, L. Bongi, M. Castellini, G. Faus, D. A. Fukui, K. Grandi, M. Haguenauer, M. Itow, Y. Kasahara, K. Macina, D. Mase, T. Masuda, K. Matsubara, Y. Menjo, H. Mizuishi, M. Muraki, Y. Papini, P. Perrot, A. L. Ricciarini, S. Sako, T. Shimizu, Y. Taki, K. Tamura, T. Torii, S. Tricomi, A. Turner, W. C. Velasco, J. Viciani, A. Yoshida, K. TI The LHCf experiment at CERN: motivations and current status. SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Cosmic Ray International Seminar CY SEP 15-19, 2008 CL Malfa, ITALY AB LHCf is an experiment currently installed at CERN at the LHC complex. It consists of two small calorimeters each one placed 140 meters away from the ATLAS interaction point. Their purpose is to study forward production of neutral particles in proton-proton collisions at extremely low angles. The results will provide invaluable inputs to the many air-shower Monte Carlo codes currently used For modeling cosmic rays interactions in the Earth atmosphere. Depending on machine start up, data will be taken from 900 GeV in the centre of mass tip to 14 TeV (laboratory equivalent collision energy of 10(17) ev), thus covering an energy range up to and beyond the "knee" of the cosmic ray spectrum. C1 [D'Alessandro, R.; Adriani, O.; Bonechi, L.] Univ Florence, Florence, Italy. [D'Alessandro, R.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; Grandi, M.; Papini, P.; Ricciarini, S.; Viciani, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Castellini, G.] IFAC, CNR, Florence, Italy. [Faus, D. A.; Velasco, J.] UVEG, CSIC, Ctr Mixto, IFIC, Valencia, Spain. [Fukui, K.; Itow, Y.; Mase, T.; Masuda, K.; Matsubara, Y.; Menjo, H.; Sako, T.; Taki, K.] Nagoya Univ, Solar Terrestrial Environm Lab, Nagoya, Aichi 4648601, Japan. [Haguenauer, M.] Ecole Polytech, F-75230 Paris, France. [Kasahara, K.; Mizuishi, M.; Torii, S.] Waseda Univ, Res Inst Sci & Engn, Tokyo, Japan. [Macina, D.; Perrot, A. L.] CERN, Geneva, Switzerland. [Muraki, Y.] Konan Univ, Kobe, Hyogo, Japan. [Shimizu, Y.] Univ Tokyo, Inst Cosm Ray Res, Chiba, Japan. [Tamura, T.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Tricomi, A.] Univ Catania, Catania, Italy. [Tricomi, A.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Turner, W. C.] LBNL, Berkeley, CA USA. [Yoshida, K.] Shibaura Inst Technol, Saitama, Japan. RP D'Alessandro, R (reprint author), Univ Florence, Florence, Italy. EM candi@fi.infn.it RI Bongi, Massimo/L-9417-2015; OI Bongi, Massimo/0000-0002-6050-1937; Tricomi, Alessia Rita/0000-0002-5071-5501; Ricciarini, Sergio Bruno/0000-0001-6176-3368; Castellini, Guido/0000-0002-0177-0643; Papini, Paolo/0000-0003-4718-2895 NR 9 TC 2 Z9 2 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAY PY 2009 VL 190 BP 52 EP 58 DI 10.1016/j.nuclphysbps.2009.03.068 PG 7 WC Physics, Particles & Fields SC Physics GA 461HB UT WOS:000267254300009 ER PT J AU Pigni, MT Herman, M Oblozinsky, P AF Pigni, M. T. Herman, M. Oblozinsky, P. TI Extensive Set of Cross-Section Covariance Estimates in the Fast Neutron Region SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB We generated, for the first time, a very comprehensive set of estimates of cross-section covariance data in the neutron energy range of 5 keV to 20 MeV. The covariance matrices were obtained for 307 materials, from (19)F to (209)Bi, covering structural materials, fission products, and heavy nonfissile nuclei. These results offer model-based, consistent assessments of covariance data for nuclear criticality safety applications. The evaluation methodology combines the nuclear reaction model code EMPIRE, which calculates the sensitivity of the cross sections to nuclear reaction model parameters, and the Bayesian code KALMAN, which propagates uncertainties of the model parameters to these cross sections. Taking into account the large number of materials studied, we refer only marginally to experimental data. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities, and the strength of the preequilibrium emission. Our work represents the first attempt to generate neutron cross-section covariances on such a large scale. C1 [Pigni, M. T.; Herman, M.; Oblozinsky, P.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Pigni, MT (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM pigni@bnl.gov FU U.S. Department of Energy (DOE); National Nuclear Security Administration within the Nuclear Criticality Safety Program; Office of Nuclear Physics, Office of Science; DOE [DE-AC02-98CH10886]; Brookhaven Science Associates, LLC FX The present work was supported by the U.S. Department of Energy (DOE) National Nuclear Security Administration within the Nuclear Criticality Safety Program, and this support is gratefully acknowledged. The National Nuclear Data Center is sponsored by the Office of Nuclear Physics, Office of Science of the DOE under contract DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. NR 32 TC 4 Z9 4 U1 1 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2009 VL 162 IS 1 BP 25 EP 40 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 434SA UT WOS:000265293200002 ER PT J AU Xoubi, N Primm, RT Maldonado, GI AF Xoubi, Ned Primm, R. T., III Maldonado, G. Ivan TI Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry, (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safe(v basis. The simulations herein reported employed transport theory based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early, studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of (235)U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of similar to 23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel elements centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by similar to 50% and generate similar to 33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility. C1 [Xoubi, Ned] Univ Cincinnati, Cincinnati, OH 45221 USA. [Primm, R. T., III] Oak Ridge Natl Lab, Res Reactors Div, Oak Ridge, TN 37831 USA. [Maldonado, G. Ivan] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. RP Xoubi, N (reprint author), Univ Cincinnati, POB 210072, Cincinnati, OH 45221 USA. EM Ivan.Maldonado@utk.edu RI Johnson, Marilyn/E-7209-2011; Xoubi, Ned/K-2710-2015; OI Xoubi, Ned/0000-0001-6496-9193; Maldonado, Guillermo/0000-0001-7377-4494 NR 12 TC 1 Z9 1 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAY PY 2009 VL 162 IS 1 BP 87 EP 97 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 434SA UT WOS:000265293200006 ER PT J AU Li, SX Vaden, D Westphal, BR Frederickson, GL Benedict, RW Johnson, TA AF Li, S. X. Vaden, D. Westphal, B. R. Frederickson, G. L. Benedict, R. W. Johnson, T. A. TI INTEGRATED EFFICIENCY TEST FOR PYROCHEMICAL FUEL CYCLES SO NUCLEAR TECHNOLOGY LA English DT Article DE engineering-scale integrated efficiency; pyroprocessing fuel cycle; molten salt electrorefining AB An engineering-scale pyroprocessing integrated efficiency test was conducted with sodium-bonded, spent Experimental Breeder Reactor II drive fuel elements. The major pieces of equipment used to conduct the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four batches of the spent fuel (containing 50.4-kg heavy metal) were processed under a set of fixed operating parameters. The primary goal of the test was to demonstrate the actinide dissolution and recovery efficiencies typical of the fixed operating parameters that have been developed for this equipment based on over a decade's worth of processing experience. The total mass balance for the test was 101.28% (slightly more output than input). The uranium mass balance for the test was 100.13%. The test results indicate that 99.3 wt% of uranium in the feed was electrochemically dissolved and 98.4 wt% of the uranium was collected as metal ingots. The complexity of zirconium behavior during electrorefining was confirmed by the test results. More than 85 wt% of the zirconium was electrochemically dissolved during the later stages of the electrorefining process. However, only 33.7 wt% of the zirconium was collected as metal in the ingots. The balance of the zirconium is believed to reside in the cadmium pool. The test also identified that the dross streams from the cathode processor and casting furnace account for similar to 2.4 wt% of the uranium relative to the feed. C1 [Li, S. X.; Vaden, D.; Westphal, B. R.; Frederickson, G. L.; Benedict, R. W.; Johnson, T. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Li, SX (reprint author), Idaho Natl Lab, Mat & Fuels Complex,POB 1625, Idaho Falls, ID 83415 USA. EM shelly.li@inl.gov FU DOE's Office of Nuclear Energy, Science, and Technology [DE-AC07-05ID14517] FX The authors acknowledge the work performed by the staff of the Analytical Laboratory at INUs Materials and Fuels Complex and their important contributions to analytical procedures and sample analyses. Performing quantitative chemical analyses on highly radioactive samples is no trivial matter, and their effort and work is appreciated. This work was supported by the DOE's Office of Nuclear Energy, Science, and Technology under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. NR 10 TC 2 Z9 2 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAY PY 2009 VL 166 IS 2 BP 180 EP 186 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 436FN UT WOS:000265398200006 ER PT J AU Elias, DA Mukhopadhyay, A Joachimiak, MP Drury, EC Redding, AM Yen, HCB Fields, MW Hazen, TC Arkin, AP Keasling, JD Wall, JD AF Elias, Dwayne A. Mukhopadhyay, Aindrila Joachimiak, Marcin P. Drury, Elliott C. Redding, Alyssa M. Yen, Huei-Che B. Fields, Matthew W. Hazen, Terry C. Arkin, Adam P. Keasling, Jay D. Wall, Judy D. TI Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation SO NUCLEIC ACIDS RESEARCH LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; PROTEIN SUBCELLULAR-LOCALIZATION; TANDEM MASS-SPECTROMETRY; BACILLUS-SUBTILIS; VULGATIS HILDENBOROUGH; MOLECULAR FUNCTION; GENOME SEQUENCE; GLOBAL ANALYSIS; ACCURATE MASS; IDENTIFICATION AB Hypothetical (HyP) and conserved HyP genes account for >30% of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved HyP (9.5%) along with 887 HyP genes (24.4%). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 HyP and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. One thousand two hundred and twelve of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations. C1 [Elias, Dwayne A.; Drury, Elliott C.; Yen, Huei-Che B.; Wall, Judy D.] Univ Missouri, Dept Biochem, Virtual Inst Microbial Stress & Survival, Columbia, MO 65211 USA. [Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Redding, Alyssa M.; Arkin, Adam P.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys Biosci, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Fields, Matthew W.] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. [Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Earth Sci, Berkeley, CA 94720 USA. RP Elias, DA (reprint author), Univ Missouri, Dept Biochem, Virtual Inst Microbial Stress & Survival, 117 Schweitzer Hall, Columbia, MO 65211 USA. EM eliasd@missouri.edu RI Elias, Dwayne/B-5190-2011; Keasling, Jay/J-9162-2012; Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012 OI Elias, Dwayne/0000-0002-4469-6391; Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993 FU U. S. Department of Energy [GTL DE-AC02-05CH11231] FX Environmental Stress Pathways Project and the Virtual Institute for Microbial Stress and Survival (http://vimss.lbl.gov), supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program [GTL DE-AC02-05CH11231] between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. Funding for open access charge: Environmental Stress Pathways Project. NR 65 TC 15 Z9 15 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAY PY 2009 VL 37 IS 9 BP 2926 EP 2939 DI 10.1093/nar/gkp164 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 449UB UT WOS:000266354600014 PM 19293273 ER PT J AU Luo, ZC Yuan, ZJ Pan, YT Du, CW AF Luo, Zhongchi Yuan, Zhijia Pan, Yingtian Du, Congwu TI Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging SO OPTICS LETTERS LA English DT Article ID DIFFUSE-REFLECTANCE; FLOW; VOLUME; CORTEX AB A dual-wavelength laser speckle contrast imaging technique (DW-LSCI) is presented for simultaneous imaging of cerebral blood flow and hemoglobin oxygenation changes at high spatiotemporal resolutions. Experimental validation was performed using a rat transient forebrain ischemia model. The results showed that DW-LSCI was able to track detailed hemodynamic and metabolic changes induced by ischemia, i.e., decreased oxy- and total hemoglobin concentrations and blood flow as well as increased deoxy-hemoglobin concentration in the downstream regions, thus allowing us to distinguish cerebral arterial and venous flows. Simultaneous cerebral blood flow and oxygenation imaging at high spatiotemporal resolutions is crucial to the understanding of neural process and brain functions. (C) 2009 Optical Society of America C1 [Luo, Zhongchi; Du, Congwu] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Du, Congwu] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. RP Du, CW (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM yingtian.pan@sunysb.edu; congwu@bnl.gov RI yuan, zhijia/F-4314-2011 FU National Institutes of Health (NIH) [K25-DA021200, 2R01-DK059265] FX The authors acknowledge helpful discussions with N. Volkow of the National Institute on Drug Abuse (NIDA). This work was supported in part by National Institutes of Health (NIH) grants K25-DA021200 (C. D.) and 2R01-DK059265 (Y.P.). NR 9 TC 41 Z9 41 U1 0 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAY 1 PY 2009 VL 34 IS 9 BP 1480 EP 1482 PG 3 WC Optics SC Optics GA 451MT UT WOS:000266475000063 PM 19412312 ER PT J AU Chhabra, M Prausnitz, JM Radke, CJ AF Chhabra, Mahendra Prausnitz, John M. Radke, Clayton J. TI Modeling Corneal Metabolism and Oxygen Transport During Contact Lens Wear SO OPTOMETRY AND VISION SCIENCE LA English DT Article DE metabolism; contact lens; cornea; oxygen consumption; oxygen flux ID STEADY-STATE DISTRIBUTION; RABBIT CORNEA; NONINVASIVE MEASUREMENT; CARBONIC-ANHYDRASE; ANTERIOR-CHAMBER; LACTIC-ACID; VIVO CORNEA; CLOSED EYE; STROMAL-PH; IN-VITRO AB Purpose. A metabolic model is developed for cornea-contact-lens system to elucidate the role of glucose metabolism in oxygenation of the cornea and to gauge the role that contact lens oxygen transmissibility plays in avoiding hypoxia-induced corneal abnormalities for extended wear applications. Methods. Oxygen transport through the cornea and contact lens system is typically described by oxygen diffusion with reactive loss. Oxygen in the cornea, however, interacts with other metabolic species, specifically glucose, lactate ion, bicarbonate ion, hydrogen ion, and carbon dioxide via aerobic glycolysis (Krebs or tricarboxylic acid cycle) and anaerobic glycolysis. Here, corneal aerobic and anaerobic metabolic reactions are incorporated into a six-layer (endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film) steady-state continuum reaction-diffusion model to quantify oxygen transport. We also define a new index, the oxygen deficiency factor (ODF), for gauging corneal oxygenation. As opposed to other current gauges of hypoxia, ODF is a local and sensitive measure of both the extent and severity of corneal oxygen deprivation. Results. We calculate not only oxygenation of the cornea but also its coupled glucose, lactate, and acidosis behavior. For the first time, the metabolic shift from aerobic to anaerobic glycolysis is explicitly incorporated into the transport and consumption of oxygen in the cornea on closed-eye contact lens wear. Adoption of enzymatic Monod kinetics for the metabolic reactions permits realistic assessment of local species concentrations throughout the cornea. We find that anerobic-produced lactate transports out of the cornea into the anterior chamber, whereas buffering bicarbonate ion transports into the comea from the anterior chamber. Conclusions. The coupling of oxygen with other reactive species in corneal metabolism provides useful insight into the transport of oxygen in cornea-contact-lens system. Specifically, we find that in addition to oxygen depletion and acidosis in the cornea, lactate concentration increases while glucose and bicarbonate concentrations decrease from the endothelium toward the epithelium. Unlike other indices of corneal oxygenation, ODF is sensitive specifically to regions of cornea with local oxygen deficiency. Accordingly, ODF is a useful physiologic index to assess the extent and severity of hypoxia in the cornea. (Optom Vis Sci 2009;86:454-466) C1 [Chhabra, Mahendra; Prausnitz, John M.; Radke, Clayton J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Radke, Clayton J.] Univ Calif Berkeley, Vis Sci Grp, Berkeley, CA 94720 USA. RP Radke, CJ (reprint author), Univ Calif Berkeley, Dept Chem Engn, 101E Gilman Hall, Berkeley, CA 94720 USA. EM radke@berkeley.edu FU CIBA Vision Inc.; US. Department of Energy FX This research was partly supported by CIBA Vision Inc. JMP acknowledges support from the Basic Sciences Division of US. Department of Energy. NR 71 TC 15 Z9 18 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1040-5488 J9 OPTOMETRY VISION SCI JI Optom. Vis. Sci. PD MAY PY 2009 VL 86 IS 5 BP 454 EP 466 PG 13 WC Ophthalmology SC Ophthalmology GA 442AA UT WOS:000265810800006 PM 19357551 ER PT J AU Yanes, Y Tyler, CL AF Yanes, Yurena Tyler, Carrie L. TI DRILLING PREDATION INTENSITY AND FEEDING PREFERENCES BY NUCELLA (MURICIDAE) ON LIMPETS INFERRED FROM A DEAD-SHELL ASSEMBLAGE SO PALAIOS LA English DT Article ID FOSSIL RECORD; PREY; HOLES; COMMUNITY; SELECTION; BIVALVES; WHELKS; PATELLOGASTROPODA; EMARGINATA; NATICIDAE AB Although limpets are common in rocky intertidal shores, little is known about drilling predation on them. Drilling intensity and preferences by Nucella (Muricidae) on three Lottiidae species (Lottia pelta, L digitalis, and Tectura scutum) were explored in a modern limpet death assemblage from False Bay (San Juan Island, Washington, USA). Of the 1,531 shells, only 61 (4%) were drilled, with drilling frequencies of 5.9% (L. digitalis), 2.4% (L. pelta) and 0.5% (T scutum). The higher drilling frequency observed for L digitalis may reflect spatial differences in prey distribution within the intertidal zone. Hole diameter correlated positively with limpet size, suggesting that larger predators drill larger prey. No differences in drilling frequency were observed due to prey ornamentation or size; however, drill holes were never observed on the largest and thickest L pelta shells, suggesting a possible size refugium. The majority of holes occurred near the apex, indicating stereotypic attack behavior. Uniform frequency distributions across taphonomic grades and similar central tendencies between drilled and undrilled shells suggest that holes were not affected by taphonomic bias. The preservation of drilled and undrilled shells differed significantly, however; thus, drill holes may have negatively affected the preservation potential of shells, possibly by weakening the shell. Poor shell preservation indicates that biostratinomic effects may play a larger role in preservational biases and underestimation of predation frequencies than previously thought. Studies using drilling frequencies demand careful identification of predatory traces when shells are poorly preserved. In addition, careful evaluation of predation frequency is needed when predatory strategies that may not leave visible traces are possible. C1 [Yanes, Yurena] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Tyler, Carrie L.] Virginia Polytech Inst & State Univ, Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. RP Yanes, Y (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM yanes@uga.edu RI Yanes, Yurena/F-3218-2010 FU FHL FX This study was performed at Friday Harbor Laboratories (FHL), San Juan Island, Washington, during the summer course Predator-Prey Interactions of 2006. We thank FHL for providing funding and facilities that allowed us to participate in the course and conduct this research. Special thanks go to the instructors M. Kowalewski and L.R. Leighton, to I e teaching assistant J.W. Huntley, and to other classmates for their help and support during the development of this study, with thanks especially to J.D. Schiffbauer for helpful comments. All SEM analyses were conducted on the LEO (Zeiss) 1550 field-emission SEM at the Virginia Tech Institute for Critical Technology and Applied Science Nanoscale Characterization and Fabrication Laboratory, under the supervision and operation of S. McCartney and J.D. Schiffbauer. We thank G.J. Vermeij, E. Boulding, and A. Tomasovych for constructive comments on earlier stages of this study. Finally, we thank J. Nebelsick and an anonymous reviewer who greatly improved the quality of this manuscript. NR 42 TC 10 Z9 11 U1 0 U2 17 PU SEPM-SOC SEDIMENTARY GEOLOGY PI TULSA PA 6128 EAST 38TH ST, STE 308, TULSA, OK 74135-5814 USA SN 0883-1351 J9 PALAIOS JI Palaios PD MAY-JUN PY 2009 VL 24 IS 5-6 BP 280 EP 289 DI 10.2110/palo.2008.p08-074r PG 10 WC Geology; Paleontology SC Geology; Paleontology GA 454UE UT WOS:000266707400003 ER PT J AU Li, YH Mascagni, M Gorin, A AF Li, Yaohang Mascagni, Michael Gorin, Andrey TI A decentralized parallel implementation for parallel tempering algorithm SO PARALLEL COMPUTING LA English DT Article DE Markov Chain Monte Carlo; Parallel tempering; Parallel random numbers ID ROUGH ENERGY LANDSCAPE; MONTE-CARLO SCHEME; SYSTEMS; PROTEIN AB Parallel tempering (PT), also known as replica exchange, is a powerful Markov Chain Monte Carlo sampling approach, which aims at reducing the relaxation time in simulations of physical systems. In this paper, we present a novel decentralized parallel implementation of PT using the message passing interface (MPI) and the scalable parallel random number generators (SPRNG) library. By taking advantage of the characteristics of pseudo-random number generators, this implementation eliminates global synchronization and reduces the overhead caused by interprocessor communication in replica exchange in PT. Moreover, our proposed non-blocking replica exchange reduces communication overhead in pair-wise process replica exchanges by allowing the process reaching the replica exchange point to leap-ahead while waiting for the other one to reach the common replica exchange point. Also, temperature exchange instead of conformation replica exchange is proposed to reduce communication and achieve load balancing in the participating processors in the PT computation. All these enable one to efficiently apply PT to large-scale massively parallel systems. The efficiency of this parallel PT implementation is demonstrated in the context of minimizing various benchmark functions with complicated landscapes as objective functions. Our computational results and analysis have shown that the decentralized PT is scalable, reproducible, load-balanced, and yields insignificant communication overhead. (C) 2008 Elsevier B.V. All rights reserved. C1 [Li, Yaohang] N Carolina Agr & Tech State Univ, Dept Comp Sci, Greensboro, NC 27411 USA. [Mascagni, Michael] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Gorin, Andrey] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Li, YH (reprint author), N Carolina Agr & Tech State Univ, Dept Comp Sci, 1601 E Market St, Greensboro, NC 27411 USA. EM yaohang@ncat.edu RI Gorin, Andrey/B-1545-2014 FU NSF [CCF-0829382]; NCSA 2007 Summer Faculty Fellowship; ORAU/ORNL Summer Faculty Participation Program; LDRD Program of the Oak Ridge National Laboratory [DE-AC05-00OR22725] FX Special thanks to Rick Kufrin at NCSA for helpful discussion in performance tuning using MPIp. The work is partially supported by NSF under Grant number CCF-0829382 to Y. Li, NCSA 2007 Summer Faculty Fellowship to Y. Li, 2008 ORAU/ORNL Summer Faculty Participation Program to Y. Li, and LDRD Program of the Oak Ridge National Laboratory managed by LIT-Battelle, LLC, under Contract DE-AC05-00OR22725, to A. Gorin. NR 37 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD MAY PY 2009 VL 35 IS 5 BP 269 EP 283 DI 10.1016/j.parco.2008.12.009 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA 455NL UT WOS:000266767600002 ER PT J AU Chu, CW Chen, F Gooch, M Guloy, AM Lorenz, B Lv, B Sasmal, K Tang, ZJ Tapp, JH Xue, YY AF Chu, C. W. Chen, F. Gooch, M. Guloy, A. M. Lorenz, B. Lv, B. Sasmal, K. Tang, Z. J. Tapp, J. H. Xue, Y. Y. TI The synthesis and characterization of LiFeAs and NaFeAs SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Pnictide superconductors; LiFeAs; NaFeAs; Magnetization; Transport measurements ID CRYSTAL-STRUCTURE; SUPERCONDUCTIVITY; METAL AB The newest homologous series of superconducting Fe-pnictides. LiFeAs (Li111) and NaFeAs (Na111) have been synthesized and investigated. Both crystallize with the layered tetragonal anti-PbFCI-type structure in P4/nmm space group. Polycrystalline samples and single crystals of Li111 and Na111 display superconducting transitions at similar to 18 K and 12-25 K. respectively. No magnetic order has been found in either compound, although a weak magnetic background is clearly in evidence. The origin of the carriers and the stoichiometric compositions of Li111 and Na111 were explored. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chu, C. W.; Chen, F.; Gooch, M.; Lorenz, B.; Sasmal, K.; Xue, Y. Y.] Univ Houston, Texas Ctr Superconduct, Dept Phys, Houston, TX 77204 USA. [Chu, C. W.; Chen, F.; Gooch, M.; Guloy, A. M.; Lorenz, B.; Lv, B.; Sasmal, K.; Tang, Z. J.; Tapp, J. H.; Xue, Y. Y.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. [Guloy, A. M.; Lv, B.; Tang, Z. J.; Tapp, J. H.] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP Chu, CW (reprint author), Univ Houston, Texas Ctr Superconduct, Dept Phys, 202 Houston Sci Ctr, Houston, TX 77204 USA. EM cwchu@uh.edu RI Lv, Bing/E-3485-2010 FU NSF [CHE-0616805]; Robert A. Welch Foundation; T.L.L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through TCSUH; US Air Force Office of Scientific Research; LBNL through the US Department of Energy FX This work is supported in part by the T.L.L. Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas through TCSUH, the US Air Force Office of Scientific Research, and the LBNL through the US Department of Energy. A.M.G. and B.L. acknowledge the Support from the NSF (CHE-0616805) and the Robert A. Welch Foundation. NR 31 TC 99 Z9 100 U1 6 U2 87 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 326 EP 331 DI 10.1016/j.physc.2009.03.016 PG 6 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500003 ER PT J AU Sefat, AS Singh, DJ Jin, RY McGuire, MA Sales, BC Ronning, F Mandrus, D AF Sefat, Athena S. Singh, David J. Jin, Rongying McGuire, Michael A. Sales, Brian C. Ronning, Filip Mandrus, David TI BaT2As2 single crystals (T = Fe, Co, Ni) and superconductivity upon Co-doping SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Iron-based; Superconductors; BaFe2As2; Co-doping; ThCr2Si2-type ID METAL AB The crystal structure and physical properties of BaFe2As2, BaCo2As2, and BaNi2As2 single crystals are surveyed. BaFe2As2 gives a magnetic and structural transition at T-N = 132(1) K, BaCo2As2 is a paramagnetic metal, while BaNi2As2 has a structural phase transition at T-0 = 131 K, followed by superconductivity below T-c = 0.69 K. The bulk superconductivity in Co-doped BaFe2As2 below T-c = 22 K is demonstrated by resistivity, magnetic susceptibility, and specific heat data. In contrast to the cuprates, the Fe-based system appears to tolerate considerable disorder in the transition metal layers. First principles calculations for BaFe1.84Co0.16As2 indicate the inter-band scattering due to Co is weak. Published by Elsevier B.V. C1 [Sefat, Athena S.; Singh, David J.; Jin, Rongying; McGuire, Michael A.; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Ronning, Filip] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM sefata@ornl.gov RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences FX Research sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. Part of this research was performed by Eugene P. Wigner Fellows at ORNL. Work at Los Alamos was performed under the auspices of the US Department of Energy. NR 20 TC 28 Z9 28 U1 6 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 350 EP 354 DI 10.1016/j.physc.2009.03.025 PG 5 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500006 ER PT J AU Chu, CW Lorenz, B AF Chu, C. W. Lorenz, B. TI High pressure studies on Fe-pnictide superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Pnictide superconductors; Pressure effects; Phase diagrams ID T-C; CRYSTAL-STRUCTURE; 43 K; LIFEAS; TEMPERATURE; DEPENDENCE; METAL; RE AB A review of high pressure studies on Fe-pnictide superconductors is given. The pressure effects on the magnetic and superconducting transitions are discussed for different classes of doped and undoped FeAs-compounds: ROFeAs (R = rare-earth), AeFe(2)As(2) (Ae = Ca, Sr, Ba), and AFeAs (A = Li, Na). Pressure tends to decrease the magnetic transition temperature in the undoped or only slightly doped compounds. The Superconducting Tc increases with low pressure for uderdoped FeAs-pnictides, remains approximately constant for optimal doping, and decreases linearly in the overdoped range. The undoped LaOFeAs and AeFe(2)As(2) become superconducting under pressure although non-hydrostatic pressure condition seems to play a role in CaFe(2)As(2). The Superconductivity in the (undoped) AFeAs is explained as a chemical pressure effect due to the Volume contraction caused by the small ionic size of the A-elements. The binary FeSe shows the largest pressure coefficient of Tc in the Se-deficient superconducting phase. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chu, C. W.; Lorenz, B.] Univ Houston, Dept Phys, Texas Ctr Superconduct, Houston, TX 77204 USA. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Chu, CW (reprint author), Univ Houston, Dept Phys, Texas Ctr Superconduct, 202 Houston Sci Ctr, Houston, TX 77204 USA. EM cwchu@uh.edu FU TIL Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through TCSUH, the US Air Force Office of Scientific Research,; LBNL through the US Department of Energy FX This work is supported in part by the TIL Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas through TCSUH, the US Air Force Office of Scientific Research, and the LBNL through the US Department of Energy. NR 69 TC 72 Z9 74 U1 4 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 385 EP 395 DI 10.1016/j.physc.2009.03.030 PG 11 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500010 ER PT J AU Ronning, F Bauer, ED Park, T Kurita, N Klimczuk, T Movshovich, R Sefat, AS Mandrus, D Thompson, JD AF Ronning, F. Bauer, E. D. Park, T. Kurita, N. Klimczuk, T. Movshovich, R. Sefat, A. S. Mandrus, D. Thompson, J. D. TI Ni2X2 (X = pnictide, chalcogenide, or B) based superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Review DE Superconductors; Nickel-based ID LAYERED CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; TERNARY INTERMETALLICS; ELECTRONIC-STRUCTURE; ARSENIDES; SRNI2P2; SYSTEM; CU; TEMPERATURE; PEROVSKITE AB We review the properties of Ni-based superconductors which contain Ni2X2 (X = As, P, Bi, Si, Ge, B) planes, a common structural element found also in the recently discovered FeAs superconductors. Strong evidence for the fully gapped nature of the superconducting state has come from field dependent thermal conductivity results on BaNi2As2. Coupled with the lack of magnetism. the majority of evidence suggests that the Ni-based compounds are conventional elect ron-phonon mediated superconductors. However, the increase in T-c in LaNiAsO with doping is anomalous, and mimics the behavior in LaFeAsO. Furthermore, comparisons of the properties of Ni- and Fe-based systems show many similarities, particularly with regards to structure-property relationships. This suggests a deeper connection between the physics of the FeAs superconductors and the related Ni-based systems which deserves further investigation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ronning, F.; Bauer, E. D.; Park, T.; Kurita, N.; Klimczuk, T.; Movshovich, R.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, T.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Sefat, A. S.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ronning, F (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM fronning@lanl.gov RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; Klimczuk, Tomasz/M-1716-2013; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016; OI Klimczuk, Tomasz/0000-0003-2602-5049; Sefat, Athena/0000-0002-5596-3504; Ronning, Filip/0000-0002-2679-7957 NR 101 TC 42 Z9 43 U1 8 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 396 EP 403 DI 10.1016/j.physc.2009.03.031 PG 8 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500011 ER PT J AU Canfield, PC Bud'ko, SL Ni, N Kreyssig, A Goldman, AI McQueeney, RJ Torikachvili, MS Argyriou, DN Luke, G Yu, W AF Canfield, P. C. Bud'ko, S. L. Ni, N. Kreyssig, A. Goldman, A. I. McQueeney, R. J. Torikachvili, M. S. Argyriou, D. N. Luke, G. Yu, W. TI Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE CaFe2As2; Superconductivity; Pressure; Structural phase transition; Magnetic phase transition ID 43 K; TEMPERATURE; SINGLE; MGB2 AB At ambient pressure CaFe2As2 has been found to undergo a first order phase transition from a high temperature, tetragonal phase to a low-temperature orthorhombic/antiferromagnetic phase upon cooling through T similar to 170 K. With the application of pressure this phase transition is rapidly suppressed and by similar to 0.35 GPa it is replaced by a first order phase transition to a low-temperature collapsed tetragonal, non-magnetic phase. Further application of pressure leads to an increase of the tetragonal to collapsed tetragonal phase transition temperature, with it crossing room temperature by similar to 1.7 GPa. Given the exceptionally large and anisotropic change in unit cell dimensions associated with the collapsed tetragonal phase, the state of the pressure medium (liquid or solid) at the transition temperature has profound effects on the low-temperature state of the sample. For He-gas cells the pressure is as close to hydrostatic as possible and the transitions are sharp and the sample appears to be single phase at low temperatures. For liquid media cells at temperatures below media freezing, the CaFe2As2 transforms when it is encased by a frozen media and enters into a low-temperature multi-crystallographic-phase state, leading to what appears to be a strain stabilized superconducting state at low temperatures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Canfield, P. C.; Bud'ko, S. L.; Ni, N.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Canfield, P. C.; Bud'ko, S. L.; Ni, N.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Argyriou, D. N.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Luke, G.; Yu, W.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM canfield@ameslab.gov RI Yu, Weiqiang/E-9722-2012; Canfield, Paul/H-2698-2014; Luke, Graeme/A-9094-2010; McQueeney, Robert/A-2864-2016; OI McQueeney, Robert/0000-0003-0718-5602; Luke, Graeme/0000-0003-4762-1173 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; National Science Foundation [DMR-0306165, DMR-0805335]; NSERC; CIFAR FX The breadth and detail of work accomplished oil CaFe2As2 Was possible because of the highly integrated and collaborative Ames Laboratory research environment that epitomizes the best of research at a National Laboratory. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. M.S.T. gratefully acknowledges support of the National Science Foundation under No. DMR-0306165 and No. DMR-0805335. Research at McMaster University was Supported by NSERC and CIFAR. NR 29 TC 79 Z9 79 U1 6 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 404 EP 412 DI 10.1016/j.physc.2009.03.033 PG 9 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500012 ER PT J AU Singh, DJ AF Singh, D. J. TI Electronic structure of Fe-based superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Review DE Iron-pnictide; Electronic structure; Fermi surface; Magnetism ID HIGH-TEMPERATURE SUPERCONDUCTORS; FERMI-SURFACE; LAYERED SUPERCONDUCTOR; IRON; GAPS; SPECTROSCOPY; INSTABILITY; LIFEAS AB The electronic structure of the Fe-based superconductors is discussed, mainly from the point of view of first principles calculations in relation to experimental data. Comparisons and contrasts with cuprates are made. The problem of reconciling experiments indicating an s symmetry gap with experiments indicating line nodes is discussed and a possible resolution is given. (C) 2009 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM singhdj@ornl.gov RI Singh, David/I-2416-2012; Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions with I.I. Mazin, M.H. Du, H. Aoki, Alaska Subedi, Lijun Zhang, A.S. Sefat, D. Basov, D. Mandrus and B.C. Sales. This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 112 TC 101 Z9 104 U1 2 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 418 EP 424 DI 10.1016/j.physc.2009.03.035 PG 7 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500014 ER PT J AU Lu, DH Yi, M Mo, SK Analytis, JG Chu, JH Erickson, AS Singh, DJ Hussain, Z Geballe, TH Fisher, IR Shen, ZX AF Lu, D. H. Yi, M. Mo, S. -K. Analytis, J. G. Chu, J. -H. Erickson, A. S. Singh, D. J. Hussain, Z. Geballe, T. H. Fisher, I. R. Shen, Z. -X. TI ARPES studies of the electronic structure of LaOFe(P, As) SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Electronic structure; Fermi surface; Photoemission; Iron pnictides ID 43 K; SUPERCONDUCTIVITY; LAO1-XFXFEAS; COMPOUND; ORDER; METAL AB We report a comparison study of LaOFeP and LaOFeAs, two parent compounds of recently discovered iron-pnictide superconductors, using angle-resolved photoemission spectroscopy. Both systems exhibit some common features that are very different from well-studied cuprates. In addition, important differences have also been observed between these two ferrooxypnictides. For LaOFeP, quantitative agreement can be found between our photoemission data and the LDA band structure calculations, suggesting that a weak coupling approach based on an itinerant ground state may be more appropriate for understanding this new superconducting compound. In contrast, the agreement between LDA calculations and experiments in LaOFeAs is relatively poor, as highlighted by the unexpected Fermi surface topology around (pi, pi). Further investigations are required for a comprehensive understanding of the electronic structure of LaOFeAs and related compounds. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lu, D. H.] SLAC, Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Yi, M.; Analytis, J. G.; Chu, J. -H.; Erickson, A. S.; Geballe, T. H.; Fisher, I. R.; Shen, Z. -X.] SLAC, Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Yi, M.; Mo, S. -K.; Analytis, J. G.; Chu, J. -H.; Erickson, A. S.; Geballe, T. H.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Yi, M.; Mo, S. -K.; Analytis, J. G.; Chu, J. -H.; Erickson, A. S.; Geballe, T. H.; Fisher, I. R.; Shen, Z. -X.] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Mo, S. -K.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lu, DH (reprint author), SLAC, Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM dhlu@slac.stanford.edu RI Yi, Ming/E-3145-2010; Singh, David/I-2416-2012; Mo, Sung-Kwan/F-3489-2013 OI Mo, Sung-Kwan/0000-0003-0711-8514 FU DOE Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-76SF00515]; NSF FX We thank C. Cox, S.M. Kauzlarich and H. Hope for single crystal X-ray diffraction measurements, and H. Yao, S.A. Kivelson, R.M. Martin, S.C. Zhang, X.L. Qi and I.I. Mazin for discussions. ARPES experiments were performed at the Advance Light Source, which is operated by the Office of Basic Energy Science, US Department of Energy. The Stanford work is supported by DOE Office of Basic Energy Science, Division of Materials Science and Engineering, under contract DE-AC02-76SF00515. Work at ORNL was Supported by the DOE, Division of Materials Sciences and Engineering. M.Y. thanks NSF Graduate Research Fellowship for financial Support. NR 32 TC 60 Z9 61 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 452 EP 458 DI 10.1016/j.physc.2009.03.044 PG 7 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500018 ER PT J AU Carrington, A Coldea, AI Fletcher, JD Hussey, NE Andrew, CMJ Bangura, AF Analytis, JG Chu, JH Erickson, AS Fisher, IR McDonald, RD AF Carrington, A. Coldea, A. I. Fletcher, J. D. Hussey, N. E. Andrew, C. M. J. Bangura, A. F. Analytis, J. G. Chu, J. -H. Erickson, A. S. Fisher, I. R. McDonald, R. D. TI Quantum oscillation studies of the Fermi surface of LaFePO SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE LaFePO; Fermi surface; Band structure; Quantum oscillations ID ELECTRONIC-STRUCTURE; VAN-ALPHEN; SUPERCONDUCTORS; DEPENDENCE AB We review recent experimental measurements of the Fermi Surface of the iron-pnictide superconductor LaFeO using quantum oscillation techniques. These Studies show that the Fermi Surface topology is close to that predicted by first principles density functional theory Calculations, consisting of quasi-two-dimensional electron-like and hole-like sheets. The total volume of the two hole sheets is almost equal to that of the two electron sheets, and the hole and electron Fermi surface sheets are close to a nesting condition. No evidence for the predicted three-dimensional pocket arising from the Fe d(2)z band is found. Measurements of the effective Mass Suggest a renormalisation of around two, close to the value for the overall band renormalisation found in recent angle resolved photoemission measurements. (C) 2009 Elsevier B.V. All rights reserved. C1 [Carrington, A.; Coldea, A. I.; Fletcher, J. D.; Hussey, N. E.; Andrew, C. M. J.; Bangura, A. F.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Analytis, J. G.; Chu, J. -H.; Erickson, A. S.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Analytis, J. G.; Chu, J. -H.; Erickson, A. S.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [McDonald, R. D.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Carrington, A (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. EM A.Carrington@bristol.ac.uk RI Fletcher, Jonathan/J-9023-2012; McDonald, Ross/H-3783-2013; Hussey, Nigel/F-9699-2015; Coldea, Amalia/C-1106-2013; OI Fletcher, Jonathan/0000-0002-2386-9361; McDonald, Ross/0000-0002-0188-1087; Mcdonald, Ross/0000-0002-5819-4739 FU US DOE, Office of Basic Energy Sciences [DE-AC02-76SF00515]; NSF [DMR-0654118]; State of Florida FX We thank E.A. Yelland, N. Fox, and M.F. Haddow for technical help and I.I. Mazin and O.K. Andersen for helpful comments. This work was supported financially by EPSRC (UK) and the Royal Society. A.I.C. is grateful to the Royal Society for financial support. Work at Stanford was supported by the US DOE, Office of Basic Energy Sciences under Contract DE-AC02-76SF00515. Work performed at the NHMFL in Tallahassee, Florida, was supported by NSF Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the US DOE. NR 36 TC 20 Z9 20 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 459 EP 468 DI 10.1016/j.physc.2009.03.045 PG 10 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500019 ER PT J AU Lynn, JW Dai, PC AF Lynn, Jeffrey W. Dai, Pengcheng TI Neutron studies of the iron-based family of high T-C magnetic superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Iron superconductors; Neutron scattering; Crystal and magnetic structures; Spin dynamics ID SCATTERING AB We review neutron scattering investigations of the crystal structures, magnetic structures, and spin dynamics of the iron-based RFe(As, P)(O, F) (R = La, Ce. Pr, Nd), (Ba,Sr,Ca)Fe2As2, and Fe1+x(Te-Se) systems. On cooling from room temperature all the undoped materials exhibit universal behavior, where a tetragonal-to-orthorhombic/monoclinic structural transition Occurs, below which the systems become antiferromagnets. For the first two classes of materials the magnetic structure within the a-b plane consists of chains of parallel Fe spins that are coupled antiferromagnetically in the orthogonal direction, with an ordered moment typically less than one Bohr magneton. Hence these are itinerant electron magnets, with a spin structure that is consistent with Fermi-surface nesting and a very energetic spin wave bandwidth similar to 0.2 eV. With doping, the structural and magnetic transitions are suppressed in favor of superconductivity, with Superconducting transition temperatures up to approximate to 55 K. Magnetic correlations are observed in the Superconducting regime, With a Magnetic resonance that follows the Superconducting order parameter just like the cuprates. The rare earth moments order antiferromagnetically at low T like 'conventional' Magnetic Superconductors, while the Cc crystal field linewidths are affected when superconductivity sets in. The application of pressure in CaFe2As2 transforms the system from a magnetically ordered orthorhombic material to a 'collapsed' non-magnetic tetragonal system. Tetragonal Fe1+xTe transforms to a low T monoclinic structure at small x that changes to orthorhombic at larger x, which is accompanied by a crossover from commensurate to incommensurate magnetic order. Se doping Suppresses the magnetic order, while incommensurate magnetic correlations are observed in the superconducting regime. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lynn, Jeffrey W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Lynn, JW (reprint author), Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM Jeff.Lynn@nist.gov RI Dai, Pengcheng /C-9171-2012 OI Dai, Pengcheng /0000-0002-6088-3170 FU US Department of Energy, Division of Materials Science, Basic Energy Sciences [DE-FG02-05ER46202]; US National Science Foundation [DMR-0756568] FX The authors would like to express their sincere gratitude to all of their collaborators, as listed in the references, who have shared the research excitement of this new family Of Superconductors. We thank R.J. McQueeney for helpful discussions. P.D. is supported by the US Department of Energy, Division of Materials Science, Basic Energy Sciences, through DOE DE-FG02-05ER46202; and by the US National Science Foundation through DMR-0756568. This work is also Supported in part by the US Department of Energy, Division of Scientific User Facilities, Basic Energy Sciences. NR 52 TC 107 Z9 110 U1 4 U2 50 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 469 EP 476 DI 10.1016/j.physc.2009.03.046 PG 8 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500020 ER PT J AU Liu, C Kondo, T Palczewski, AD Samolyuk, GD Lee, Y Tillman, ME Ni, N Mun, ED Gordon, R Santander-Syro, AF Bud'ko, SL McChesney, JL Rotenberg, E Fedorov, AV Valla, T Copie, O Tanatar, MA Martin, C Harmon, BN Canfield, PC Prozorov, R Schmalian, J Kaminski, A AF Liu, Chang Kondo, Takeshi Palczewski, A. D. Samolyuk, G. D. Lee, Y. Tillman, M. E. Ni, Ni Mun, E. D. Gordon, R. Santander-Syro, A. F. Bud'ko, S. L. McChesney, J. L. Rotenberg, E. Fedorov, A. V. Valla, T. Copie, O. Tanatar, M. A. Martin, C. Harmon, B. N. Canfield, P. C. Prozorov, R. Schmalian, J. Kaminski, A. TI Electronic properties of iron arsenic high temperature superconductors revealed by angle resolved photoemission spectroscopy (ARPES) SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article ID FERMI-SURFACE; BI2SR2CACU2O8; INSTABILITY; COMPOUND; DENSITY; ENERGY AB We present an overview of the electronic properties of iron arsenic high temperature superconductors with emphasis on low energy band dispersion, Fermi surface and superconducting gap. ARPES data is compared with full-potential linearized plane wave (FLAPW) calculations. We focus on single layer NdFeAs0.9F0.1 (R11111) and two layer Ba1-x(,Fe2As2 (B1122) compounds. We find general similarities between experimental data and Calculations in terms of character of Fermi Surface pockets, and overall band dispersion. We also find a number of differences in details of the shape and size of the Fermi surfaces as well as the exact energy location of the bands, which indicate that magnetic interaction and ordering significantly affects the electronic properties of these materials. The Fermi surface consists of several hole pockets centered at Gamma and electron pockets located in zone corners. The size and shape of the Fermi surface changes significantly with doping. Emergence of a coherent peak below the critical temperature T-c and diminished spectral weight at the chemical potential above T-c closely resembles the spectral characteristics of the cuprates, however the nodeless superconducting gap clearly excludes the possibility of d-wave order parameter. Instead it points to s-wave or extended s-wave symmetry of the order parameter. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liu, Chang; Kondo, Takeshi; Palczewski, A. D.; Samolyuk, G. D.; Lee, Y.; Tillman, M. E.; Ni, Ni; Mun, E. D.; Gordon, R.; Bud'ko, S. L.; Tanatar, M. A.; Martin, C.; Harmon, B. N.; Canfield, P. C.; Prozorov, R.; Schmalian, J.; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Liu, Chang; Kondo, Takeshi; Palczewski, A. D.; Samolyuk, G. D.; Lee, Y.; Tillman, M. E.; Ni, Ni; Mun, E. D.; Gordon, R.; Bud'ko, S. L.; Tanatar, M. A.; Martin, C.; Harmon, B. N.; Canfield, P. C.; Prozorov, R.; Schmalian, J.; Kaminski, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Santander-Syro, A. F.] ESPCI, CNRS, UPR 5, Lab Photons & Mat, F-75231 Paris 5, France. [Santander-Syro, A. F.] Univ Paris 11, CNRS, UMR 8502, Phys Solides Lab, F-91405 Orsay, France. [McChesney, J. L.; Rotenberg, E.; Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Valla, T.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Copie, O.] CNRS Thales, Unite Mixte Phys, F-91767 Palaiseau, France. RP Kaminski, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM kaminski@ameslab.gov RI Rotenberg, Eli/B-3700-2009; Schmalian, Joerg/H-2313-2011; Santander-Syro, Andres/D-7017-2012; Prozorov, Ruslan/A-2487-2008; McChesney, Jessica/K-8911-2013; Canfield, Paul/H-2698-2014; Copie, Olivier/N-1398-2014; Kondo, Takeshi/H-2680-2016 OI Rotenberg, Eli/0000-0002-3979-8844; Santander-Syro, Andres/0000-0003-3966-2485; Prozorov, Ruslan/0000-0002-8088-6096; McChesney, Jessica/0000-0003-0470-2088; Copie, Olivier/0000-0002-4261-433X; NR 51 TC 19 Z9 20 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 491 EP 497 DI 10.1016/j.physc.2009.03.050 PG 7 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500023 ER PT J AU Osborn, R Rosenkranz, S Goremychkin, EA Christianson, AD AF Osborn, R. Rosenkranz, S. Goremychkin, E. A. Christianson, A. D. TI Inelastic neutron scattering studies of the spin and lattice dynamics in iron arsenide compounds SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Iron pnictide; Superconductivity; Magnetism; Inelastic neutron scattering ID MAGNETIC EXCITATIONS; SUPERCONDUCTIVITY; BA0.6K0.4FE2AS2; LAO1-XFXFEAS; TEMPERATURE; YBA2CU3O7; PHONON AB Although neutrons do not couple directly to the superconducting order parameter, they have nevertheless played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Measurements of the spin and lattice dynamics have been performed on non-superconducting 'parent' compounds based on the LaFeAsO ('1111') and BaFe2As2 ('122') crystal structures, and on electron and hole-doped superconducting compounds, using both polycrystalline and single crystal samples. Neutron measurements of the phonon density-of-state, subsequently supported by single crystal inelastic X-ray scattering, are in good agreement with ab initio calculations, provided the magnetism of the iron atoms is taken into account. However, when combined with estimates of the electron-phonon coupling, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order and a large anisotropy gap. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below T-c there is evidence in three '122' compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with T-c. Such resonances have been observed in the high-T-c copper oxides and a number of heavy fermion superconductors, where they are considered to be evidence of d-wave symmetry. In the iron arsenides, they also provide evidence of unconventional superconductivity, but a comparison with ARPES and other measurements, which indicate that the gaps are isotropic, suggests that the symmetry is more likely to be extended-s(+/-). wave in character. (C) 2009 Published by Elsevier B.V. C1 [Osborn, R.; Rosenkranz, S.; Goremychkin, E. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Christianson, A. D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Osborn, R (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rosborn@anl.gov RI Osborn, Raymond/E-8676-2011; Rosenkranz, Stephan/E-4672-2011; christianson, andrew/A-3277-2016 OI Osborn, Raymond/0000-0001-9565-3140; Rosenkranz, Stephan/0000-0002-5659-0383; christianson, andrew/0000-0003-3369-5884 FU US Department of Energy Office of Science [DE-AC02-06CH11357, DE-AC0500OR22725] FX We acknowledge valuable conversations with Michael Norman, David Singh,and Taner Yildirim in writing this review, and express gratitude for our many collaborators over the past year. This work was supported by the Division of Materials Sciences and Engineering Division and the Scientific User Facilities Division of the Office of Basic Energy Sciences, US Department of Energy Office of Science, under Contract Nos. DE-AC02-06CH11357 and DE-AC0500OR22725. NR 59 TC 15 Z9 16 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 498 EP 506 DI 10.1016/j.physc.2009.03.036 PG 9 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500024 ER PT J AU Samuely, P Pribulova, Z Szabo, P Pristas, G Bud'ko, SL Canfield, PC AF Samuely, P. Pribulova, Z. Szabo, P. Pristas, G. Bud'ko, S. L. Canfield, P. C. TI Point contact Andreev reflection spectroscopy of superconducting energy gaps in 122-type family of iron pnictides SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE 122-Type iron pnictides; Superconducting energy gaps ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; BA0.6K0.4FE2AS2 AB A brief overview of the superconducting energy gap studies on 122-type family of iron pnictides is given. It seems that the situation in the hole doped Ba1-xKxFe2As2 is well resolved. Most of the measurements including the presented here point contact Andreev reflection spectra agree on existence of multiple nodeless gaps in the excitation spectrum of this multiband system. The gaps have basically two sizes the small one with a strength up to the BCS weak coupling limit and the large one with a very strong coupling with 2 Delta(L)/kT(c) > 6-8. In the electron doped Ba(Fe1-xCox)(2)As-2 the most of the experiments including our point contact measurements reveal in quite broadened spectra only a single gap with a strong coupling strength. The high precision ARPES measurements on this system identified two gaps but very close to each other, both showing a strong coupling with 2 Delta/kT(c) similar to 5 and 6, respectively. (C) 2009 Elsevier B.V. All rights reserved. C1 [Samuely, P.; Pribulova, Z.; Szabo, P.; Pristas, G.] Slovak Acad Sci, Inst Expt Phys, Ctr Low Temp Phys, Kosice 04353, Slovakia. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Samuely, P (reprint author), Slovak Acad Sci, Inst Expt Phys, Ctr Low Temp Phys, Watsonova 47, Kosice 04353, Slovakia. EM samuely@saske.sk RI Canfield, Paul/H-2698-2014 FU Slovak R&D Agency [VVCE-0058-07, APVV-0346-07, LPP-0101-06]; US Steel Kosice; US Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX This work was supported by the Slovak R&D Agency under Contracts Nos. VVCE-0058-07, APVV-0346-07, and LPP-0101-06, and by the US Steel KoNce. Centre of Low Temperature Physics is operated as the Centre of Excellence of the Slovak Academy of Sciences. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. Valuable discussions with LL Mazin, A.A. Golubov and N.L. Wang are appreciated. NR 31 TC 53 Z9 53 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 507 EP 511 DI 10.1016/j.physc.2009.03.037 PG 5 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500025 ER PT J AU Eskildsen, MR Vinnikov, LY Veshchuno, IS Artemova, TM Blasius, TD Densmore, JM Dewhurst, CD Ni, N Kreyssig, A Bud'ko, SL Canfield, PC Goldman, AI AF Eskildsen, M. R. Vinnikov, L. Ya. Veshchuno, I. S. Artemova, T. M. Blasius, T. D. Densmore, J. M. Dewhurst, C. D. Ni, N. Kreyssig, A. Bud'ko, S. L. Canfield, P. C. Goldman, A. I. TI Vortex imaging in Co-doped BaFe2As2 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Vortex imaging; Pnictides ID FLUX-LINE-LATTICE; ANGLE NEUTRON-SCATTERING; SINGLE-CRYSTALS; TRANSITION; PHASE; STATE AB We review superconducting vortex imaging in Co-doped BaFe2As2 by Bitter decoration and small-angle neutron scattering (SANS). At all measured fields a highly disordered vortex configuration is observed, which is attributed to strong pinning. Further Support of this conclusion comes from the absence of a Meissner rim in decoration images obtained close to the sample edge. The evolution of the SANS scattering vector with increasing applied field indicates vortex lattice domains of(distorted) hexagonal symmetry. This is consistent with the decoration images which show small, six fold coordinated ordered vortex domains. The SANS scattered intensity is found to decrease rapidly with increasing field, exceeding the rate expected from estimates of the upper critical field. This is consistent with the large degree of vortex "lattice" disorder. (C) 2009 Elsevier B.V. All rights reserved. C1 [Eskildsen, M. R.; Blasius, T. D.; Densmore, J. M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Vinnikov, L. Ya.; Veshchuno, I. S.; Artemova, T. M.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow Region, Russia. [Dewhurst, C. D.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Ni, N.; Kreyssig, A.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Ni, N.; Kreyssig, A.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Eskildsen, MR (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM eskildsen@nd.edu; vinnik@issp.ac.ru RI Eskildsen, Morten/E-7779-2011; Densmore, John/G-1228-2011; Canfield, Paul/H-2698-2014 OI Densmore, John/0000-0003-2388-1413; FU National Science Foundation [DMR-0804887, PHY-0552843]; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; [RFBR 07-02-00174] FX This work is supported by the National Science Foundation through Grants DMR-0804887 (M.R.E, J.M.D.) and PHY-0552843 (T.D.B.). L.Y.V. and I.S.V. thank Grant RFBR 07-02-00174 for support. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 23 TC 21 Z9 21 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 529 EP 534 DI 10.1016/j.physc.2009.03.042 PG 6 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500028 ER PT J AU Welp, U Mu, G Xie, R Koshelev, AE Kwok, WK Luo, HQ Wang, ZS Cheng, P Fang, L Ren, C Wen, HH AF Welp, U. Mu, G. Xie, R. Koshelev, A. E. Kwok, W. K. Luo, H. Q. Wang, Z. S. Cheng, P. Fang, L. Ren, C. Wen, H. -H. TI Specific heat and phase diagrams of single crystal iron pnictide superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Iron-arsenide superconductor; Phase diagrams; Specific heat ID D-WAVE SUPERCONDUCTORS; QUASI-PARTICLE SPECTRUM; LAYERED SUPERCONDUCTOR; FIELD; YBA2CU3O7-DELTA; BA0.6K0.4FE2AS2; LAO1-XFXFEAS; TRANSITION; COMPOUND; GAPS AB We present specific heat measurements on single crystals of the pnictide superconductors NdFeAsO1-xFx and Ba1-xKxFe2As2. Low-temperature measurements on Ba1-xKxFe2As2 reveal that the Sommerfeld coefficient of the quasiparticle specific heat increases linearly with applied magnetic field. This is the signature of a fully gapped superconducting state as is expected for instance in the extended s-wave scenario. The large value of the normal state Sommerfeld coefficient indicates a large electronic density of states and significant mass enhancements. We determine the phase diagram using an entropy conserving construction, which does not require the choice of a resistivity criterion to define the transition temperature. Both materials display clear mean-field steps in the specific heat at T-c of 47 K and 34.6 K, respectively, proving bulk superconductivity. They are characterized by a low superconducting anisotropy near T-c of Gamma similar to 4 for NdFeAsO1-xFx and 2.6 for Ba1-xKxFe2As2, which is promising for potential applications. We observe extraordinarily high upper critical field slopes of mu(0)partial derivative H-c2(c)/partial derivative T = -6.5 T/K and mu(0)partial derivative H-c2(ab)/partial derivative T = -17.4 T/K for Ba(1-x)KxFe(2)As(2) which points to the emergence of paramagnetic limiting effects at low temperatures, A thermodynamic analysis reveals that this material is extreme type-II with kappa(c) similar to 100 and K-ab similar to 260. (C) 2009 Published by Elsevier B.V. C1 [Welp, U.; Xie, R.; Koshelev, A. E.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Mu, G.; Luo, H. Q.; Wang, Z. S.; Cheng, P.; Fang, L.; Ren, C.; Wen, H. -H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Xie, R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Welp, U (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM welp@anl.gov RI Mu, Gang/G-9407-2011; Luo, Huiqian/F-4049-2012; Fang, Lei /K-2017-2013; Koshelev, Alexei/K-3971-2013; CHENG, PENG/D-4679-2015; Wang, Zhaosheng/G-5162-2016; OI Mu, Gang/0000-0001-5676-4702; Koshelev, Alexei/0000-0002-1167-5906; Xie, Ruobing/0000-0003-0266-9122 FU US Department of Energy - Basic Energy Science [DE-AC02-06CH11357]; Natural Science Foundation of China; Ministry of Science and Technology of China [2006CB60100, 2006CB921802, 2006CB921107]; Chinese Academy of Sciences (Project ITSNEM). FX This work was supported by the US Department of Energy - Basic Energy Science - under Contract DE-AC02-06CH11357, by the Natural Science Foundation of China, the Ministry of Science and Technology of China (973 Project No. 2006CB60100, 2006CB921802, 2006CB921107) and the Chinese Academy of Sciences (Project ITSNEM). NR 49 TC 10 Z9 10 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 575 EP 581 DI 10.1016/j.physc.2009.03.011 PG 7 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500033 ER PT J AU Prozorov, R Tanatar, MA Gordon, RT Martin, C Kim, H Kogan, VG Ni, N Tillman, ME Bud'ko, SL Canfield, PC AF Prozorov, R. Tanatar, M. A. Gordon, R. T. Martin, C. Kim, H. Kogan, V. G. Ni, N. Tillman, M. E. Bud'ko, S. L. Canfield, P. C. TI Anisotropic London penetration depth and superfluid density in single crystals of iron-based pnictide superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Penetration depth; Anisotropy; Pairing symmetry; Pnictide ID LAYERED QUATERNARY COMPOUND; SMFEASO0.8F0.2; NODES; STATE AB In- and out-of-plane magnetic penetration depths were measured in three iron-based pnictide superconducting systems. The "122" system was represented by electron-doped Ba(Fe1-xCox)(2)As-2 with the doping through the whole phase diagram with x approximate to 0.038, 0.047, 0.058, 0.074 and 0.10 (T-c ranged from 13 to 24 K) and by hole-doped (Ba1-xKx)Fe2As2 with doping close to optimal, with measured x approximate to 0.45 (T-c approximate to 28 K) and an underdoped sample with x approximate to 0.15 (T-c approximate to 19 K). The "1111" system was represented by single crystals of NdFeAs(O1-xFx) with nominal x=0.1 (T-c approximate to 43 K). All studied samples of both 122 systems show a robust power-law behavior, lambda(T) proportional to T-n, with the sample-dependent exponent n = 2-2.5, which is indicative of unconventional pairing. This scenario could be possible either through scattering in a S+/- state or due to nodes in the superconducting gap. In the Nd-1111 system, the interpretation of the results is complicated by magnetism of the rare-earth ions. For all three systems, the anisotropy ratio, gamma(lambda) equivalent to lambda(c)/lambda(ab), was found to decrease with increasing temperature, whereas the anisotropy of the coherence lengths, gamma(zeta) equivalent to xi(ab)/xi(c) = H-c2(perpendicular to c)/H-c2(parallel to c), has been found to increase (both opposite to the trend in two-band MgB2). The overall anisotropy of the pnictide superconductors is small, in fact much smaller than that of the cuprates (except YBa2Cu3O7-x (YBCO)). The 1111 system is about two times more anisotropic than the 122 system. Our data and analysis suggest that the iron-based pnictides are complex superconductors in which a multiband three-dimensional electronic structure and strong magnetic fluctuations play important roles. (C) 2009 Elsevier B.V. All rights reserved. C1 [Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX We thank A. Carrington, A.V. Chubukov, J.R. Clem, P.J. Hirschfeld, A. Kaminski, I.I. Mazin, G.D. Samolyuk and J. Schmalian for discussions and comments. We thank A.V. Chubukov and A.B. Vorontsov for the permission to use (Fig. 6) and fitting our data. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R.P. acknowledges support from Alfred P. Sloan Foundation. M.A.T. acknowledges continuing cross-appointment with Institute of Surface Chemistry, NAS Ukraine. NR 58 TC 40 Z9 40 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 582 EP 589 DI 10.1016/j.physc.2009.03.012 PG 8 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500034 ER PT J AU Mazin, II Schmalian, J AF Mazin, I. I. Schmalian, J. TI Pairing symmetry and pairing state in ferropnictides: Theoretical overview SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Unconventional superconductivity; Pnictides; Superconductivity and magnetism ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; PNICTIDES; BA0.6K0.4FE2AS2; PARAMETERS; TRANSITION; SCATTERING; ELECTRONS; MODEL; GAPS AB We review the main ingredients for an unconventional pairing state in the ferropnictides, with particular emphasis on interband pairing due to magnetic fluctuations. Summarizing the key experimental prerequisites for such pairing, the electronic structure and nature of magnetic excitations, we discuss the properties of the s(+/-) state that emerges as a likely candidate pairing state for these materials and survey experimental evidence in favor of and against this novel state of matter. Published by Elsevier B.V. C1 [Mazin, I. I.] USN, Res Lab, Washington, DC 20375 USA. [Schmalian, J.] Iowa State Univ, Ames, IA 50011 USA. [Schmalian, J.] Ames Lab, Ames, IA 50011 USA. RP Mazin, II (reprint author), USN, Res Lab, Code 6391, Washington, DC 20375 USA. EM maxin@nrl.navy.mil RI Schmalian, Joerg/H-2313-2011; Mazin, Igor/B-6576-2008 FU Iowa State University [DE-AC02-07CH11358]; Office of Naval Research FX This research was supported by the Ames Laboratory, operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358 (J.S.), and by the Office of Naval Research (I.I.M.). The authors wish to thank all their friends and collaborators, without whom this works could not be accomplished, and their numerous colleagues who read the manuscript and sent us many useful and insightful comments. NR 99 TC 270 Z9 270 U1 2 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 614 EP 627 DI 10.1016/j.physc.2009.03.019 PG 14 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500038 ER PT J AU Prozorov, R Tanatar, MA Blomberg, EC Prommapan, P Gordon, RT Ni, N Bud'ko, SL Canfield, PC AF Prozorov, R. Tanatar, M. A. Blomberg, E. C. Prommapan, P. Gordon, R. T. Ni, N. Bud'ko, S. L. Canfield, P. C. TI Doping - Dependent irreversible magnetic properties of Ba(Fe1-xCox)(2)As-2 single crystals SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Vortex pinning; Magnetic hysteresis; Irreversibility; Fishtail; Magnetic relaxation ID LAYERED QUATERNARY COMPOUND; SUPERCONDUCTIVITY AB We discuss the irreversible magnetic properties of self-flux grown Ba(Fe1-xCox)(2)As-2 single crystals for a wide range of concentrations covering the whole phase diagram from the Underdoped to the overdoped regime, x = 0.038, 0.047, 0.058, 0.071. 0.074. 0.10, 0.106 and 0.118. Samples were characterized by a magneto-optical method and show excellent Spatial uniformity of the superconducting state down to at least the micrometer scale. The in-plane properties are isotropic, as expected for the tetragonal symmetry, and the overall behavior closely follows classical Bean model of the critical state. The field-dependent magnetization exhibits second peak at a temperature and doping - dependent magnetic field, H-p(T,x). The evolution of this fishtail feature with doping is discussed. In particular we find that H-p, measured at the same reduced temperature for different x, is a unique monotonic function of the superconducting transition temperature, T-c(x), across all dopings. Magnetic relaxation is time-logarithmic and unusually fast. Similar to cuprates, there is an apparent crossover from collective elastic to plastic flux creep above H-p. At high fields, the field dependence of the relaxation rate becomes doping independent. We discuss our results in the framework of the weak collective pinning and show that vortex physics in iron-based pnictide crystals is Much closer to high-T-c cuprates than to conventional s-wave (including MgB2) superconductors. Published by Elsevier B.V. C1 [Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P. Sloan Foundation FX We thank J.R. Clem, V.G. Kogan and A.E. Koshelev for useful discussions and comments. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R.P. acknowledges support from Alfred P. Sloan Foundation. M.A.T. acknowledges continuing cross-appointment with Institute of Surface Chemistry, NAS Ukraine. NR 30 TC 26 Z9 26 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 EI 1873-2143 J9 PHYSICA C JI Physica C PD MAY-JUN PY 2009 VL 469 IS 9-12 BP 667 EP 673 DI 10.1016/j.physc.2009.03.028 PG 7 WC Physics, Applied SC Physics GA 460MJ UT WOS:000267191500044 ER PT J AU Beiersdorfer, P AF Beiersdorfer, Peter TI Spectroscopy with trapped highly charged ions SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 9th International Conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasma CY AUG 07-10, 2007 CL Lund Univ, Lund Observatory & Phys Dept, Lund, SWEDEN HO Lund Univ, Lund Observatory & Phys Dept ID X-RAY SPECTROMETER; MAGNETIC DIPOLE TRANSITIONS; HYDROGEN-LIKE IONS; ELECTRON-BEAM; HIGH-RESOLUTION; LABORATORY MEASUREMENTS; EXTREME-ULTRAVIOLET; LINE EMISSION; FE-XVII; WAVELENGTH MEASUREMENTS AB We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics. C1 Lawrence Livermore Natl Lab, High Temp & Astrophys Div, Livermore, CA 94550 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, High Temp & Astrophys Div, 7000 E Ave L 260, Livermore, CA 94550 USA. EM beiersdorfer@llnl.gov NR 137 TC 20 Z9 20 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD MAY PY 2009 VL T134 AR 014010 DI 10.1088/0031-8949/2009/T134/014010 PG 13 WC Physics, Multidisciplinary SC Physics GA 465UG UT WOS:000267612800011 ER PT J AU Skinner, CH AF Skinner, Charles H. TI Atomic physics in the quest for fusion energy and ITER SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT 9th International Conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasma CY AUG 07-10, 2007 CL Lund Univ, Lund Observatory & Phys Dept, Lund, SWEDEN HO Lund Univ, Lund Observatory & Phys Dept ID BEAM ION-TRAP; IONIZED TUNGSTEN; TOKAMAKS; DIVERTOR; SPECTRA; EUV AB The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of the international thermonuclear experimental reactor (ITER). Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This paper will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data are needed. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Skinner, CH (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cskinner@pppl.edu NR 21 TC 40 Z9 40 U1 3 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD MAY PY 2009 VL T134 AR 014022 DI 10.1088/0031-8949/2009/T134/014022 PG 4 WC Physics, Multidisciplinary SC Physics GA 465UG UT WOS:000267612800023 ER PT J AU Nahar, SN Oelgoetz, J Pradhan, AK AF Nahar, S. N. Oelgoetz, J. Pradhan, A. K. TI Recombination rate coefficients for KLL dielectronic satellite lines of Fe XXV and Ni XXVII SO PHYSICA SCRIPTA LA English DT Article ID ELECTRON-ION RECOMBINATION; PHOTOIONIZATION CROSS-SECTIONS; ASTROPHYSICALLY ABUNDANT ELEMENTS; R-MATRIX APPROACH; HELIUM-LIKE IONS; K-ALPHA COMPLEX; HE-LIKE IRON; RELATIVISTIC CALCULATIONS; ATOMIC DATA; EXCITATION AB The unified method for total electron-ion recombination is extended to study the dielectronic satellite (DES) lines. These lines, formed from radiative decay of autoionizing states, are highly sensitive temperature diagnostics of astrophysical and laboratory plasma sources. The computation of the unified recombination rates is based on the relativistic Breit-Pauli R-matrix method and the close coupling approximation. As such unified recombination cross sections (sigma(RC)) include both the resonant and the non-resonant background contributions and the DES spectra correspond directly to resonances in sigma(RC). Extending the theoretical formulation developed earlier (Nahar and Pradhan 2006 Phys. Rev. A 73 062718-1) we present recombination rate coefficients for the 22 satellite lines of KLL complexes of helium-like Fe XXV and Ni XXVII. The isolated resonance approximation, commonly used throughout plasma modeling, treats these resonances essentially as bound features except for dielectronic capture into, and autoionization out of, these levels. A line profile or cross section shape is often assumed. On the other hand, by including the coupling between the autoionizing and continuum channels, the unified method gives the intrinsic spectrum of DES lines which includes not only the energies and strengths, but also the natural line or cross section shapes. A formulation is presented to derive autoionization rates from unified resonance strengths and enable correspondence with the isolated resonance approximation. While the rates compare very well with existing rates for the strong lines to <20%, the differences for weaker DES lines are larger. We also illustrate the application of the present results to the analysis of K alpha complexes observed in high-temperature x-ray emission spectra of Fe XXV and Ni XXVII. There are considerable differences with previous results in the total KLL intensity for Fe XXV at temperatures below the temperature of maximum abundance in coronal equilibrium. C1 [Nahar, S. N.; Pradhan, A. K.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Oelgoetz, J.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Nahar, SN (reprint author), Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. EM nahar@astronomy.ohio-state.edu; oelgoetz@lanl.gov; pradhan@astronomy.ohio-state.edu FU NASA Astrophysical Theory Program; Space Astrophysical Research and Analysis programs FX This work was supported partially by the NASA Astrophysical Theory Program and the Space Astrophysical Research and Analysis programs as well partially conducted under the auspices of the United States Department of Energy at Los Alamos National Laboratory. Much of the computational work was carried out at the Ohio Supercomputer Center in Columbus, Ohio. NR 26 TC 2 Z9 2 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD MAY PY 2009 VL 79 IS 5 AR 055301 DI 10.1088/0031-8949/79/05/055301 PG 12 WC Physics, Multidisciplinary SC Physics GA 439QK UT WOS:000265641900008 ER PT J AU Blair, MW Jacobsohn, LG Bennett, BL Tornga, SC Yukihara, EG McKigney, EA Muenchausen, RE AF Blair, Michael W. Jacobsohn, Luiz G. Bennett, Bryan L. Tornga, Stephanie C. Yukihara, Eduardo G. McKigney, Edward A. Muenchausen, Ross E. TI Luminescence and structural properties of oxyorthosilicate and Al2O3 nanophosphors SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 3rd International Conference on Optical, Optoelectronic and Photonic Materials and Applications CY JUL 20-25, 2008 CL Edmonton, CANADA ID SCINTILLATORS; SCIENCE; EPR AB A large amount of research has been conducted on semiconducting quantum dots exploring quantum confinement effects. On the other hand, nanophosphors - inorganic insulating nanostructured luminescent materials - have received considerably less attention. Our research involving nanomaterials has then focused on the question: How does reduced dimensionality affect the physical and chemical behaviour of nanophosphors? In order to partially answer this fundamental question, we have produced numerous oxides, among them Lu2SiO5:Ce (LSO), Y2SiO5:Ce (YSO), Gd(2)SlO(5):Ce (GSO), and Al2O3, and characterized their structural and luminescent properties. Structure, grain size, phase purity and crystallite morphology were determined using X-ray diffraction, transmission electron microscopy, and electron paramagnetic resonance. The luminescent properties of the nanophosphors were characterized by thermoluminescence, radioluminescence, photoluminescence, and optically stimulated luminescence. In this work, we will present an over-view of the field of nanophosphors, and summarize the results obtained in our laboratory with particular emphasis on the luminescent properties. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Blair, Michael W.; Jacobsohn, Luiz G.; Bennett, Bryan L.; Tornga, Stephanie C.; McKigney, Edward A.; Muenchausen, Ross E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yukihara, Eduardo G.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74978 USA. RP Blair, MW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mblair@lanl.gov RI Yukihara, Eduardo/F-1345-2014; OI Yukihara, Eduardo/0000-0002-4615-6698; Jacobsohn, Luiz/0000-0001-8991-3903 NR 17 TC 5 Z9 5 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1862-6300 EI 1862-6319 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD MAY PY 2009 VL 206 IS 5 BP 904 EP 909 DI 10.1002/pssa.200881275 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 451LQ UT WOS:000266472100025 ER PT J AU Contreras, MA Repins, I Metzger, WK Romero, M Abou-Ras, D AF Contreras, Miguel A. Repins, Ingrid Metzger, Wyatt K. Romero, Manuel Abou-Ras, Daniel TI Se activity and its effect on Cu(In,Ga)Se-2 photovoltaic thin films SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT 16th International Conference on Ternary and Multinary Compounds CY SEP 15-19, 2008 CL Berlin, GERMANY SP Deutsch Forschungsgemeinsch, Helmholtz Zentrum Berlin, WILEY VCH, PANalytical, Solarion, EFG Berlin ID SOLAR-CELLS AB We study some physical properties of CuIn1-xGaxSe2 thin-films fabricated by evaporation from elemental sources under various Selenium environments. Specifically, thin-films were fabricated under growth conditions such as Se deficiency, near stoichiometry and excess Se during coevaporation to investigate the impact of the Se environment on absorber film properties and ultimately the device performance. We determine the chemical activity of Se in the evaporation process has a strong influence on film macrostructure (prefered orientation) and microstructure, particularly at the grain and grain boundary level. It is shown that the optoelectronic properties at grain boundaries are affected by the Se environment used resulting in absorber thin-films with distictive defect distribution and defect density. Consequently, the performance of the solar cells fabricated from those films is also affected by the Se environment. These effects on solar cell performance and absorber properties are reported in a (i) structural analysis of the CuIn1-xGaxSe2/Mo/glass samples by X-ray and electron backscattering techniques; (ii) optolectronic radiative characteristics of the absorbers by cathode luminescence and photoluminescence studies and (iii) current-voltage, quantum efficiency and capacitance-voltage measurements for the solar cells made from the absorbers fabricated under the pre prescribed Se growth conditions. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Contreras, Miguel A.; Repins, Ingrid; Metzger, Wyatt K.; Romero, Manuel] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Abou-Ras, Daniel] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. RP Contreras, MA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM miguel_contreras@nrel.gov NR 15 TC 19 Z9 19 U1 1 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1862-6300 EI 1862-6319 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD MAY PY 2009 VL 206 IS 5 BP 1042 EP 1048 DI 10.1002/pssa.200881243 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 451LQ UT WOS:000266472100057 ER PT J AU Bahati, EM Fogle, M Vane, CR Bannister, ME Thomas, RD Zhaunerchyk, V AF Bahati, E. M. Fogle, M. Vane, C. R. Bannister, M. E. Thomas, R. D. Zhaunerchyk, V. TI Electron-impact dissociation of CD3+ and CH3+ ions producing CD2+, CH+ and C+ fragment ions SO PHYSICAL REVIEW A LA English DT Article DE bound states; carbon compounds; electron impact dissociation; molecule-electron collisions; positive ions; predissociation ID ABSOLUTE CROSS-SECTIONS; MOLECULAR-IONS; METHYL CATION; BRANCHING RATIOS; HYDROCARBON IONS; IONIZATION; RECOMBINATION; EXCITATION; COLLISION; SPECTROSCOPY AB Using a crossed electron-ion beams method, we measured absolute cross sections for electron-impact dissociation of the CD3+ molecular ions producing CD2+ fragment ions and CH3+ ions yielding CH+ and C+ fragment ions over a collision energy range from a few eV up to 100 eV. The total experimental uncertainties are about 12% at the maximum of the curves of cross sections (peak of the cross section for the CH+ channel). The obtained results suggest important roles played by predissociation of bound states in the production of both the CH+ and C+ fragment ions. Good agreement is found with other results reported for the CH+ fragment, but some differences are found for the CD2+ and C+ fragments. C1 [Bahati, E. M.; Fogle, M.; Vane, C. R.; Bannister, M. E.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Thomas, R. D.; Zhaunerchyk, V.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. RP Bahati, EM (reprint author), Amer Magnet, Oak Ridge, TN 37830 USA. EM bannisterme@ornl.gov RI Zhaunerchyk, Vitali/E-9751-2016; OI Bannister, Mark E./0000-0002-9572-8154 FU Office of Fusion Energy Sciences and the Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge Institute for Science and Education; Oak Ridge National Laboratory; European Community (EC) [HPRN-CT-2000-00142] FX This research was supported in part by the Office of Fusion Energy Sciences and the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. Two of the authors (E.M.B. and M. F.) gratefully acknowledge support from the ORNL Postdoctoral Research Associates Program administered jointly by the Oak Ridge Institute for Science and Education and Oak Ridge National Laboratory. R.D.T. acknowledges the support from the IHP program of the European Community (EC) under Contract No. HPRN-CT-2000-00142. We wish to thank A. C. H. Smith, P. Krstic, and P. Maskens for insightful discussions. NR 45 TC 4 Z9 4 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2009 VL 79 IS 5 AR 052703 DI 10.1103/PhysRevA.79.052703 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 451WF UT WOS:000266500900096 ER PT J AU Colgan, J Al-Hagan, O Madison, DH Kaiser, C Murray, AJ Pindzola, MS AF Colgan, J. Al-Hagan, O. Madison, D. H. Kaiser, C. Murray, A. J. Pindzola, M. S. TI Triple differential cross sections for the electron-impact ionization of H-2 molecules for equal and unequal outgoing electron energies SO PHYSICAL REVIEW A LA English DT Article DE electron impact ionisation; hydrogen neutral molecules; molecule-electron collisions ID CLOSE-COUPLING METHOD; PERPENDICULAR PLANE; SINGLE IONIZATION; VACUUM-SYSTEMS; HELIUM; SCATTERING; COPLANAR; HYDROGEN; TRANSLATOR; DESIGN AB A comprehensive theoretical and experimental investigation of the triple differential cross sections arising from the electron-impact ionization of molecular hydrogen is made, at an incident electron energy of 35.4 eV, for cases where the outgoing electrons have equal and unequal energies, and for a range of experimental geometries. Generally, good agreement is found between two theoretical approaches and experiment, with the best agreement arising for intermediate geometries with large gun angles and for the perpendicular geometry. C1 [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Al-Hagan, O.; Madison, D. H.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Kaiser, C.; Murray, A. J.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Colgan, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Colgan, James/0000-0003-1045-3858 FU U.S. Department of Energy [DE-AC5206NA25396]; NSF [PHY-0757749] FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. A portion of this work was performed through DOE and NSF grants to Auburn University. Computational work was carried out at the NCCS in Oak Ridge, TN, and through a LANL Institutional Computing Resources grant. A portion of this work was done under National Science Foundation under Grant No. PHY-0757749, and we acknowledge the EPSRC (U.K.) for additional support to C.K. NR 47 TC 25 Z9 26 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2009 VL 79 IS 5 AR 052704 DI 10.1103/PhysRevA.79.052704 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 451WF UT WOS:000266500900097 ER PT J AU Law, KJH Saxena, A Kevrekidis, PG Bishop, AR AF Law, K. J. H. Saxena, Avadh Kevrekidis, P. G. Bishop, A. R. TI Localized structures in kagome lattices SO PHYSICAL REVIEW A LA English DT Article DE crystal structure; optical lattices; optical modulation; optical solitons; optical vortices; photorefractive materials ID WAVE-GUIDE ARRAYS; 2-DIMENSIONAL PHOTONIC LATTICES; NONLINEAR SCHRODINGER LATTICES; SPATIAL OPTICAL SOLITONS; DISCRETE SOLITONS; STABILITY; BREATHERS; DIPOLE; EXISTENCE; VORTICES AB We investigate the existence and stability of gap vortices and multipole gap solitons in a kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anticontinuum (zero-coupling) limit. These predictions are then confirmed for a continuum model of an optically induced kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice. C1 [Law, K. J. H.; Kevrekidis, P. G.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Saxena, Avadh; Bishop, A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh; Bishop, A. R.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Law, KJH (reprint author), Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. RI Law, Kody/A-6375-2010 FU NSF [NSF-DMS-0619492, NSF-DMS-0806762]; NSF-CAREER; Alexander von Humboldt Foundation; U.S. Department of Energy FX K.J.H.L. gratefully acknowledges the warm hospitality of the Center for Nonlinear Studies at Los Alamos National Laboratory. P.G.K. acknowledges support from NSF Grants No. NSF-DMS-0619492 and No. NSF-DMS-0806762 and NSF-CAREER, as well as support from the Alexander von Humboldt Foundation. Work at LANL was supported in part by the U.S. Department of Energy. NR 54 TC 0 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2009 VL 79 IS 5 AR 053818 DI 10.1103/PhysRevA.79.053818 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 451WF UT WOS:000266500900188 ER PT J AU Miyabe, S McCurdy, CW Orel, AE Rescigno, TN AF Miyabe, S. McCurdy, C. W. Orel, A. E. Rescigno, T. N. TI Theoretical study of asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2 SO PHYSICAL REVIEW A LA English DT Article DE ab initio calculations; Auger effect; carbon compounds; molecule-photon collisions; photodissociation; photoelectron spectra; photoionisation; positive ions; vibrational states ID PHOTOIONIZATION AB We report the results of ab initio calculations of cross sections and molecular-frame photoelectron angular distributions for C 1s ionization of CO2 and propose a mechanism for the recently observed asymmetry of those angular distributions with respect to the CO+ and O+ ions produced by subsequent Auger decay. The fixed-nuclei, photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. We have also carried out electronic structure calculations which identify a dissociative state of the CO22+ dication that is likely populated following Auger decay and which leads to O++CO+ fragment ions. We show that a proper accounting of vibrational motion in the computation of the photoelectron angular distributions, along with reasonable assumptions about the nuclear dissociation dynamics, gives results in good agreement with recent experimental observations. We also demonstrate that destructive interference between different partial waves accounts for sudden changes with photon energy in the observed angular distributions. C1 [Miyabe, S.; McCurdy, C. W.; Rescigno, T. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Miyabe, S.; McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [McCurdy, C. W.; Orel, A. E.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Miyabe, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences; National Science Foundation [PHY-0604628, PHY-05-55401] FX This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the U.S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences. C. W. M. acknowledges support from the National Science Foundation (Grant No. PHY-0604628). A.E.O. acknowledges support from the National Science Foundation (Grant No. PHY-05-55401). NR 18 TC 16 Z9 16 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2009 VL 79 IS 5 AR 053401 DI 10.1103/PhysRevA.79.053401 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 451WF UT WOS:000266500900110 ER PT J AU Rohringer, N Santra, R AF Rohringer, Nina Santra, Robin TI Multichannel coherence in strong-field ionization SO PHYSICAL REVIEW A LA English DT Review DE atom-photon collisions; ground states; neon; photoionisation; positive ions; xenon ID ABOVE-THRESHOLD IONIZATION; HIGH-HARMONIC-GENERATION; NONSEQUENTIAL DOUBLE-IONIZATION; MULTIPHOTON IONIZATION; LASER-PULSES; RARE-GASES; X-RAYS; MULTIPLE IONIZATION; MOLECULAR-DYNAMICS; 1064-NM RADIATION AB Atomic and molecular ions generated by a strong optical laser pulse are not in general in the electronic ground state. The density matrix for such ions is characterized by the electronic quantum-state populations and by the coherences among the electronic quantum states. Nonvanishing coherences signal the presence of coherent electronic wave-packet dynamics in the laser-generated ions. For noble-gas atoms heavier than helium, the most important channels populated via strong-field ionization are the outer-valence single-hole states with a total angular momentum of j=3/2 or j=1/2. For this case, we develop a time-dependent multichannel theory of strong-field ionization. We derive the ion density matrix and express the hole density in terms of the elements of the ion density matrix. Our wave-packet calculations demonstrate that neon ions generated in a strong optical field (800 nm) are almost perfectly coherent. In strong-field-generated xenon ions, however, the coherence is substantially suppressed. C1 [Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Rohringer, Nina] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Santra, R (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Rohringer, Nina/B-8030-2012; Santra, Robin/E-8332-2014; Rohringer, Nina/N-3238-2014 OI Santra, Robin/0000-0002-1442-9815; Rohringer, Nina/0000-0001-7905-3567 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, DE-AC02-06CH11357]; Office of Basic Energy Sciences FX We thank Zhi-Heng Loh, Stephen R. Leone, Eleftherios Goulielmakis, and Ferenc Krausz for discussions. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. R. S. was supported by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. NR 123 TC 65 Z9 65 U1 4 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAY PY 2009 VL 79 IS 5 AR 053402 DI 10.1103/PhysRevA.79.053402 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 451WF UT WOS:000266500900111 ER PT J AU Abramavicius, D Ma, YZ Graham, MW Valkunas, L Fleming, GR AF Abramavicius, Darius Ma, Ying-Zhong Graham, Matthew W. Valkunas, Leonas Fleming, Graham R. TI Dephasing in semiconducting single-walled carbon nanotubes induced by exciton-exciton annihilation SO PHYSICAL REVIEW B LA English DT Article DE carbon nanotubes; excitons; photon echo; semiconductor nanotubes ID SOLVATION DYNAMICS; NONLINEAR OPTICS; PHOTON-ECHO; SPECTROSCOPY; NANOSTRUCTURES AB Three-pulse photon echo peak-shift measurements were performed on semiconducting single-walled carbon nanotubes embedded in a polymer matrix at room temperature. We found a striking dependence of the peak shift on the excitation intensity. Numerical simulations based on an interacting-boson model demonstrate that the intensity dependence originates from a highly nonlinear optical response initiated by exciton-exciton annihilation. C1 [Abramavicius, Darius; Valkunas, Leonas] Vilnius State Univ, Dept Theoret Phys, Fac Phys, LT-10222 Vilnius, Lithuania. [Abramavicius, Darius; Valkunas, Leonas] Inst Phys, LT-02300 Vilnius, Lithuania. [Ma, Ying-Zhong; Graham, Matthew W.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ma, Ying-Zhong; Graham, Matthew W.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Abramavicius, D (reprint author), Vilnius State Univ, Dept Theoret Phys, Fac Phys, Sauletekio Ave 9,Bldg 3, LT-10222 Vilnius, Lithuania. RI Abramavicius, Darius/G-2682-2010; Ma, Yingzhong/L-6261-2016 OI Abramavicius, Darius/0000-0003-0087-9791; Ma, Yingzhong/0000-0002-8154-1006 FU NSF; Lithuanian State Science and Studies Foundation FX The work at Berkeley was supported by the NSF. D.A. and L.V. acknowledge the Lithuanian State Science and Studies Foundation for financial support. NR 28 TC 19 Z9 20 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195445 DI 10.1103/PhysRevB.79.195445 PG 6 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300144 ER EF