FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Baek, SH Curro, NJ Klimczuk, T Sakai, H Bauer, ED Ronning, F Thompson, JD AF Baek, S. -H. Curro, N. J. Klimczuk, T. Sakai, H. Bauer, E. D. Ronning, F. Thompson, J. D. TI Hybridization-driven gap in U3Bi4Ni3: A Bi-209 NMR/NQR study SO PHYSICAL REVIEW B LA English DT Article DE bismuth alloys; hyperfine interactions; Knight shift; Kondo effect; nickel alloys; nuclear quadrupole resonance; spin-lattice relaxation; uranium alloys ID SEMICONDUCTING PROPERTIES; HEAVY-FERMION; CE3BI4PT3; SMB6; CU AB We report Bi-209 nuclear-magnetic-resonance and nuclear-quadrupole-resonance measurements on a single crystal of the Kondo insulator U3Bi4Ni3. The Bi-209 nuclear-spin-lattice relaxation rate (T-1(-1)) shows activated behavior and is well fit by a spin gap of 220 K. The Bi-209 Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization. C1 [Baek, S. -H.; Klimczuk, T.; Sakai, H.; Bauer, E. D.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Baek, SH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Klimczuk, Tomasz/M-1716-2013; Baek, Seung-Ho/F-4733-2011; Curro, Nicholas/D-3413-2009 OI Klimczuk, Tomasz/0000-0003-2602-5049; Baek, Seung-Ho/0000-0002-0059-8255; Curro, Nicholas/0000-0001-7829-0237 NR 21 TC 4 Z9 4 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195120 DI 10.1103/PhysRevB.79.195120 PG 4 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300049 ER PT J AU Baranov, NV Proshkin, AV Czternasty, C Meissner, M Podlesnyak, A Podgornykh, SM AF Baranov, N. V. Proshkin, A. V. Czternasty, C. Meissner, M. Podlesnyak, A. Podgornykh, S. M. TI Butterflylike specific heat, magnetocaloric effect, and itinerant metamagnetism in (Er,Y)Co-2 compounds SO PHYSICAL REVIEW B LA English DT Article DE Curie temperature; entropy; erbium compounds; magnetocaloric effects; metamagnetism; specific heat; spin fluctuations; yttrium compounds ID HIGH MAGNETIC-FIELDS; ELECTRON METAMAGNETISM; SPIN FLUCTUATIONS; RCO(2) COMPOUNDS; RCO2 COMPOUNDS; TRANSITION; TEMPERATURE; CAPACITY; SYSTEM; ERCO2 AB The field-induced first-order phase transition in (Er1-xYx)Co-2 with the yttrium concentration x=0.45 is observed to be accompanied by a butterflylike behavior and significant irreversibility of the specific heat. The coefficient gamma of the T-linear specific heat decreases by similar to 48% under application and removal of a magnetic field up to 20 kOe. This behavior is attributed to the itinerant electron metamagnetism of Co 3d electrons. The isothermal magnetic entropy change Delta S-m in Er0.55Y0.45Co2 includes a large contribution associated with spin fluctuations induced by the f-d exchange interaction in the hybridized 3d-5d-electron subsystem. These spin fluctuations are suggested to contribute substantially to the magnetocaloric effect of the RCo2 type compounds. The maximal Delta S-m value observed for ErCo2 just above the Curie temperature is ascribed to the closeness of the T-C value to the spin-fluctuation temperature T-sf of itinerant Co 3d electrons. The nonmonotonous change in Delta S-m with the Curie temperature of (R1-xRxCo2)-Co-' compounds is explained by the temperature variation in the spin-fluctuation contribution to the magnetocaloric effect. C1 [Baranov, N. V.; Proshkin, A. V.] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia. [Baranov, N. V.; Proshkin, A. V.; Podgornykh, S. M.] Ural State Univ, Inst Phys & Appl Math, Ekaterinburg 620083, Russia. [Czternasty, C.; Meissner, M.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Podlesnyak, A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Baranov, NV (reprint author), Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia. EM nikolai.baranov@usu.ru RI Podlesnyak, Andrey/A-5593-2013; Podgornykh, Sergey/J-3583-2013; Proshkin, Alexey/J-7180-2013; C, Y/G-5456-2010; Baranov, Nikolai/J-5042-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Podgornykh, Sergey/0000-0002-4942-4862; Proshkin, Alexey/0000-0002-2631-6834; Baranov, Nikolai/0000-0002-9720-5314 FU RAS [01.2.006 13391]; Department of Energy [DE-AC05-00OR22725] FX This work was supported by the RAS Program (Project No. 01.2.006 13391). ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 53 TC 12 Z9 12 U1 4 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184420 DI 10.1103/PhysRevB.79.184420 PG 9 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200073 ER PT J AU Bartal, G Lerosey, G Zhang, X AF Bartal, Guy Lerosey, Geoffroy Zhang, Xiang TI Subwavelength dynamic focusing in plasmonic nanostructures using time reversal SO PHYSICAL REVIEW B LA English DT Article DE focusing; nanostructured materials; periodic structures; plasmonics ID DIFFRACTION LIMIT; OPTICAL SUPERLENS; SCATTERING; REFRACTION; ARRAYS; LIGHT AB We employ time reversal for deep subwavelength focusing in plasmonic periodic nanostructures. The strong anisotropy enables propagating modes with very large transverse wave vector and moderate propagation constant, facilitating transformation of diffraction-limited plane waves to high-K Bloch waves in the plasmonic nanostructure. Time reversal is used to excite the waves in the nanostructure at the exact amplitude and phase to focus the incident light to dimensions well below the diffraction limit at any point in the structure, exemplifying a true subdiffractional confinement and resolution. C1 [Bartal, Guy; Lerosey, Geoffroy; Zhang, Xiang] Univ Calif Berkeley, NSF, NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF, NSEC, 5130 Etcheverry Hall, Berkeley, CA 94720 USA. EM xzhang@me.berkeley.edu RI Zhang, Xiang/F-6905-2011 FU DARPA [HR0011-05-3-0002]; U.S. Army Research Office (ARO) MURI program [50432-PH-MUR]; NSF [CMMI-0751621] FX This work is supported by DARPA (Agreement No. HR0011-05-3-0002), the U.S. Army Research Office (ARO) MURI program 50432-PH-MUR, and the NSF under Grant No. CMMI-0751621. The authors thank Rupert Oulton and David Pile for stimulating discussions. NR 31 TC 44 Z9 44 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201103 DI 10.1103/PhysRevB.79.201103 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500003 ER PT J AU Begtrup, GE Gannett, W Meyer, JC Yuzvinsky, TD Ertekin, E Grossman, JC Zettl, A AF Begtrup, Gavi E. Gannett, Will Meyer, Jannik C. Yuzvinsky, Thomas D. Ertekin, Elif Grossman, Jeffrey C. Zettl, Alex TI Facets of nanotube synthesis: High-resolution transmission electron microscopy study and density functional theory calculations SO PHYSICAL REVIEW B LA English DT Article DE carbon nanotubes; catalysts; density functional theory; diffusion; iron; nanotechnology; transmission electron microscopy ID AUGMENTED-WAVE METHOD; CARBON; GROWTH; SCALE; IRON AB We report the presence of catalytically active facets on iron nanocrystals during carbon nanotube synthesis. Using real-time in situ high-resolution transmission electron microscopy, we observe the facets' formation and interaction with carbon feedstock and are able to infer carbon diffusion across the catalyst surface facilitating nanotube formation. The observations are supported by density functional theory calculations. C1 [Begtrup, Gavi E.; Gannett, Will; Meyer, Jannik C.; Yuzvinsky, Thomas D.; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Begtrup, Gavi E.; Gannett, Will; Meyer, Jannik C.; Yuzvinsky, Thomas D.; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yuzvinsky, Thomas D.; Grossman, Jeffrey C.; Zettl, Alex] Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Ertekin, Elif; Grossman, Jeffrey C.] Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA. RP Begtrup, GE (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Meyer, Jannik/H-8541-2012; Ertekin, Elif/D-6764-2013; Zettl, Alex/O-4925-2016; OI Meyer, Jannik/0000-0003-4023-0778; Zettl, Alex/0000-0001-6330-136X; Yuzvinsky, Thomas/0000-0001-5708-2877 FU (U. S.) Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science; NSF; Focus Center Research Program on Materials, Structures, and Devices FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the (U. S.) Department of Energy under Contract No. DE-AC02-05CH11231. A. Z. acknowledges support from the Miller Institute for Basic Research in Science. W. G. acknowledges support from the NSF Integrative Graduate Education and Research Traineeship (IGERT) Program. J. C. G. and E. E. acknowledge funding by the Focus Center Research Program on Materials, Structures, and Devices (FCRP/MSD). Computations were performed at the National Energy Research Scientific Computing Center. NR 18 TC 23 Z9 24 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205409 DI 10.1103/PhysRevB.79.205409 PG 6 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500090 ER PT J AU Caruso, AN Pokhodnya, KI Shum, WW Ching, WY Anderson, B Bremer, MT Vescovo, E Rulis, P Epstein, AJ Miller, JS AF Caruso, A. N. Pokhodnya, Konstantin I. Shum, William W. Ching, W. Y. Anderson, Bridger Bremer, M. T. Vescovo, E. Rulis, Paul Epstein, A. J. Miller, Joel S. TI Direct evidence of electron spin polarization from an organic-based magnet: [Fe-II(TCNE)(NCMe)(2)][(FeCl4)-Cl-III] SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; density functional theory; electron spin polarisation; exchange interactions (electron); Fermi level; magnetic semiconductors; organic semiconductors; photoemission ID MOLECULE-BASED MAGNETS; SPINTRONICS; PHOTOEMISSION; TRANSITION; FILMS AB Direct evidence of an organic-based magnet with a finite electron spin polarization at the Fermi edge is shown from spin-resolved photoemission of the [Fe-II(TCNE)(NCMe)(2)][(FeCl4)-Cl-III] organic-based magnet. The 23% majority-based spin polarization at the Fermi edge is observed at 80 K in zero applied field. Ab initio calculations at the density functional level (0 K) are in accord with a semiconductor with 100% majority-based electron spin polarization at the band edges, commensurate with our experimental results and model prediction for a half-semiconductor. Organic-based magnets may prove to be important for realizing polarized electron injection into semiconductors for magnetoelectronic applications. C1 [Caruso, A. N.; Ching, W. Y.; Rulis, Paul] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Pokhodnya, Konstantin I.; Shum, William W.; Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Pokhodnya, Konstantin I.; Anderson, Bridger; Bremer, M. T.] N Dakota State Univ, Ctr Nanoscale Sci & Engn, Fargo, ND 58102 USA. [Pokhodnya, Konstantin I.; Epstein, A. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Pokhodnya, Konstantin I.; Epstein, A. J.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Vescovo, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM carusoan@umkc.edu RI Ching, Wai-Yim/B-4686-2009 OI Ching, Wai-Yim/0000-0001-7738-8822 FU NSF [EPS-0447679]; DOE [DE-FG02-86ER45271, DE-FG02-84DR45170, DE-FG02-01ER45931]; AFOSR [F49620-03-1-01-75] FX This work was supported in part by the NSF (Contract No. EPS-0447679), the DOE (Contracts No. DE-FG02-86ER45271, No. DE-FG02-84DR45170, and No. DE-FG02-01ER45931), and the AFOSR (Contract No. F49620-03-1-01-75). NR 31 TC 8 Z9 8 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195202 DI 10.1103/PhysRevB.79.195202 PG 5 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300063 ER PT J AU Chanier, T Virot, F Hayn, R AF Chanier, T. Virot, F. Hayn, R. TI Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations SO PHYSICAL REVIEW B LA English DT Article DE cobalt; conduction bands; exchange interactions (electron); ferromagnetic materials; II-VI semiconductors; impurities; localised states; magneto-optical effects; manganese; photoemission; semiconductor doping; semimagnetic semiconductors; wide band gap semiconductors; zinc compounds ID DOPED ZNO; FERROMAGNETISM; METAL; SCATTERING; MN; SYSTEMS; ENERGY; FILMS AB We have calculated the chemical trend of magnetic exchange parameters (J(dd), N alpha, and N beta) of Zn-based II-VI semiconductors ZnA (A=O, S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the local spin-density approximation (LSDA)+U method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling J(dd) between localized 3d spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band N alpha are in good agreement with experiment as well. But the values for N beta (coupling to doped holes in the valence band) indicate a crossover from weak coupling (for A=Te and Se) to strong coupling (for A=O) and a localized hole state in ZnO:Mn. This hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn. C1 [Chanier, T.; Virot, F.; Hayn, R.] Fac Sci & Tech St Jerome, Inst Mat Microelect & Nanosci Provence, F-13397 Marseille 20, France. [Chanier, T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chanier, T (reprint author), Fac Sci & Tech St Jerome, Inst Mat Microelect & Nanosci Provence, Case 142, F-13397 Marseille 20, France. RI Virot, Francois/H-4079-2012; Chanier, Thomas/F-2768-2011 OI Chanier, Thomas/0000-0002-8222-2154 FU [14182XB] FX We thank Anatole Stepanov, Sergei Ryabchenko, and Roman Kuzian for useful discussions. Financial support from the "Dnipro" program (Grant No. 14182XB) is gratefully acknowledged. NR 54 TC 36 Z9 36 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205204 DI 10.1103/PhysRevB.79.205204 PG 8 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500051 ER PT J AU Cheng, XM Buchanan, KS Divan, R Guslienko, KY Keavney, DJ AF Cheng, X. M. Buchanan, K. S. Divan, R. Guslienko, K. Y. Keavney, D. J. TI Nonlinear vortex dynamics and transient domains in ferromagnetic disks SO PHYSICAL REVIEW B LA English DT Article DE iron alloys; magnetic relaxation; magnetisation; micromagnetics; nickel alloys; photoelectron microscopy; polarisation; vortices AB We report a time-resolved imaging and micromagnetic simulation study of the relaxation dynamics of a magnetic vortex in the nonlinear regime. We use time-resolved photoemission electron microscopy and micromagnetic calculations to examine the emergence of nonlinear vortex dynamics in patterned Ni(80)Fe(20) disks in the limit of long field pulses. We show for core shifts beyond similar to 20%-25% of the disk radius, the initial motion is characterized by distortions of the vortex, a transient cross-tie wall state, and instabilities in the core polarization that influence the core trajectories. C1 [Cheng, X. M.; Keavney, D. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Buchanan, K. S.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Buchanan, K. S.; Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Guslienko, K. Y.] Univ Basque Country, Dept Mat Phys, San Sebastian 20080, Spain. RP Cheng, XM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Cheng, Xuemei/D-2388-2010; OI Cheng, Xuemei/0000-0001-6670-4316; Buchanan, Kristen/0000-0003-0879-0038 FU U. S. Department of Energy [DE-AC02-06CH11357]; Ikerbasque Science Foundation FX The use of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. K. Y. G. acknowledges support by the Ikerbasque Science Foundation. NR 25 TC 22 Z9 22 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172411 DI 10.1103/PhysRevB.79.172411 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100017 ER PT J AU Cooper, VR Rabe, KM AF Cooper, Valentino R. Rabe, Karin M. TI Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; barium compounds; density functional theory; dielectric polarisation; ferroelectric materials; lead compounds; piezoelectricity; superlattices ID ENHANCEMENT AB Short-period ferroelectric/ferroelectric PbTiO3 (PTO)/BaTiO3 (BTO) superlattices are studied using density functional theory. Contrary to the trends in paraelectric/ferroelectric superlattices the polarization remains nearly constant for PTO concentrations below 50%. In addition, a significant decrease in the c/a ratio below the PTO values was observed. Using a first-principles superlattice model we predict an enhancement in the d(33) piezoelectric coefficient peaking at similar to 75% PTO concentration due to the different polarization-strain coupling in PTO and BTO layers. Further analysis reveals that these trends are bulk properties which are a consequence of the reduced P brought about by the polarization saturation in the BTO layers. C1 [Cooper, Valentino R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rabe, Karin M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Cooper, VR (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM coopervr@ornl.gov RI Cooper, Valentino /A-2070-2012 OI Cooper, Valentino /0000-0001-6714-4410 FU ONR [N0014-00-1-0261]; DOE, Division of Materials Sciences and Engineering FX We would like to thank David Vanderbilt and Scott Beckman for valuable discussions. This work was supported by ONR (Grant No. N0014-00-1-0261). Part of this work was carried out at the Aspen Center for Physics. Work at ORNL was supported by DOE, Division of Materials Sciences and Engineering. NR 21 TC 17 Z9 17 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180101 DI 10.1103/PhysRevB.79.180101 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200001 ER PT J AU Del Genio, CI Trenkler, J Bassler, KE Wochner, P Haeffner, DR Reiter, GF Bai, JM Moss, SC AF Del Genio, Charo I. Trenkler, Johann Bassler, Kevin E. Wochner, Peter Haeffner, Dean R. Reiter, George F. Bai, Jianming Moss, Simon C. TI Depth-dependent critical behavior in V2H SO PHYSICAL REVIEW B LA English DT Article DE critical phenomena; dislocation density; order-disorder transformations; vanadium compounds; X-ray scattering ID 2 LENGTH SCALES; X-RAY-SCATTERING; CRITICAL FLUCTUATIONS; NEUTRON-SCATTERING; PHASE-TRANSITIONS; SRTIO3; ORIGIN; DIFFRACTION; HOLMIUM AB Using x-ray diffuse scattering, we investigate the critical behavior of an order-disorder phase transition in a defective "skin layer" of V2H. In the skin layer, there exist walls of dislocation lines oriented normal to the surface. The density of dislocation lines within a wall decreases continuously with depth. We find that, because of this inhomogeneous distribution of defects, the transition effectively occurs at a depth-dependent local critical temperature. A depth-dependent scaling law is proposed to describe the corresponding critical ordering behavior. C1 [Del Genio, Charo I.; Trenkler, Johann; Bassler, Kevin E.; Reiter, George F.; Moss, Simon C.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Del Genio, Charo I.; Bassler, Kevin E.; Moss, Simon C.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Trenkler, Johann; Wochner, Peter] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Haeffner, Dean R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bai, Jianming] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Del Genio, CI (reprint author), Univ Houston, Dept Phys, 617 Sci & Res 1,4800 Calhoun Rd, Houston, TX 77204 USA. RI Del Genio, Charo/F-7249-2010; Bai, Jianming/O-5005-2015 OI Del Genio, Charo/0000-0001-9958-017X; FU NSF [DMR-0427538]; U. S. DOE, BES-DMS [W-31-109-ENG38] FX The authors would like to thank R. Hempelmann for loading the crystal used in these experiments and D. Lott, H. D. Carstanjen, P. C. Chow, D. De Fontaine, J. W. Cahn, and R. Barabash for help in the experiment or fruitful discussions. Furthermore, we thank G. Srajer and the beamline personnel at the APS at Argonne National Laboratory for assistance during the experiment. The work of C. I. D. G. and K. E. B. was supported by the NSF through Grant No. DMR-0427538. S. C. M. gratefully acknowledges the support of the Texas Center for Superconductivity of the University of Houston (TSuH).The Advanced Photon Source is supported by the U. S. DOE, BES-DMS, under Contract No. W-31-109-ENG38. NR 24 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184113 DI 10.1103/PhysRevB.79.184113 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200042 ER PT J AU Densmore, JM Das, P Rovira, K Blasius, TD DeBeer-Schmitt, L Jenkins, N Paul, DM Dewhurst, CD Bud'ko, SL Canfield, PC Eskildsen, MR AF Densmore, J. M. Das, P. Rovira, K. Blasius, T. D. DeBeer-Schmitt, L. Jenkins, N. Paul, D. McK. Dewhurst, C. D. Bud'ko, S. L. Canfield, P. C. Eskildsen, M. R. TI Small-angle neutron scattering study of the vortex lattice in superconducting LuNi2B2C SO PHYSICAL REVIEW B LA English DT Article DE boron compounds; flux-line lattice; lutetium compounds; neutron diffraction; nickel compounds ID FLUX-LINE-LATTICE; MAGNETIC-FIELD DISTRIBUTION; II SUPERCONDUCTORS; MIXED-STATE; SINGLE-CRYSTALS; TEMPERATURE; YNI2B2C; CORE; TRANSITION; DEPENDENCE AB We present studies of the magnetic field distribution around the vortices in LuNi2B2C. Small-angle neutron scattering measurements of the vortex lattice (VL) in this material were extended to unprecedentedly large values of the scattering vector q, obtained both by using high magnetic fields to decrease the VL spacing and by using higher order reflections. A square VL, oriented with the nearest-neighbor direction along the crystalline [110] direction, was observed up to the highest measured field. The first-order VL form factor, parallel to F(q(10))parallel to, was found to decrease exponentially with increasing magnetic field. Measurements of the higher-order form factors, parallel to F(q(hk))parallel to, reveal a significant in-plane anisotropy and also allow for a real-space reconstruction of the VL field distribution. C1 [Densmore, J. M.; Das, P.; Rovira, K.; Blasius, T. D.; DeBeer-Schmitt, L.; Eskildsen, M. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Jenkins, N.] Univ Geneva, DPMC, CH-1211 Geneva 4, Switzerland. [Paul, D. McK.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Dewhurst, C. D.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Rovira, K.] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Blasius, T. D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Densmore, JM (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM eskildsen@nd.edu RI Eskildsen, Morten/E-7779-2011; Das, Pinaki/C-2877-2012; Densmore, John/G-1228-2011; Canfield, Paul/H-2698-2014; DeBeer-Schmitt, Lisa/I-3313-2015 OI Densmore, John/0000-0003-2388-1413; DeBeer-Schmitt, Lisa/0000-0001-9679-3444 FU National Science Foundation [DMR-0804887, PHY-0552843]; Alfred P. Sloan Foundation; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We are grateful to Kazushige Machida, Masanori Ichioka, and Vladimir Kogan for stimulating discussions, and to Hazuki Kawano- Furukawa and Seiko Ohira- Kawamura for discussing their data on YNi2B2C with us prior to publication. This work was supported by the National Science Foundation through Grants No. DMR-0804887 (J.M.D. and M.R.E) and No. PHY-0552843 (K. R. and T. D. B.). M. R. E. acknowledges support by the Alfred P. Sloan Foundation. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 46 TC 10 Z9 10 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174522 DI 10.1103/PhysRevB.79.174522 PG 7 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100112 ER PT J AU Du, MH Singh, DJ AF Du, Mao-Hua Singh, David J. TI Hydrogen in anion vacancies of semiconductors SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; Fermi level; hydrogen; II-VI semiconductors; impurities; vacancies (crystal); wide band gap semiconductors; zinc compounds ID BONDS; GAN AB Density-functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either twofold or fourfold coordinated and has either amphoteric or shallow donor character. In general, the multicoordination of hydrogen in an anion vacancy is the indication of an anionic H, H(-) ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 29 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205201 DI 10.1103/PhysRevB.79.205201 PG 6 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500049 ER PT J AU Fister, TT Nagle, KP Vila, FD Seidler, GT Hamner, C Cross, JO Rehr, JJ AF Fister, Timothy T. Nagle, Kenneth P. Vila, Fernando D. Seidler, Gerald T. Hamner, Christopher Cross, Julie O. Rehr, John J. TI Intermediate-range order in water ices: Nonresonant inelastic x-ray scattering measurements and real-space full multiple scattering calculations SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; electronic structure; ice; Raman spectra; water; X-ray absorption spectra; X-ray scattering ID DENSITY-FUNCTIONAL THEORY; HYDROGEN-BOND NETWORK; ABSORPTION FINE-STRUCTURE; LIQUID WATER; RAMAN-SCATTERING; PHOTOELECTRON-SPECTROSCOPY; EXCITATION SPECTROSCOPY; ELECTRONIC-STRUCTURE; LOCAL-STRUCTURE; HIGH-PRESSURE AB We report measurements of the nonresonant inelastic x-ray scattering (NRIXS) from the O 1s orbitals in ice Ih, and also report calculations of the corresponding spectra for ice Ih and several other phases of water ice. We find that the intermediate-energy fine structure may be calculated well using an ab initio real-space full multiple scattering approach and that it provides a strong fingerprint of the intermediate-range order for some ice phases. Both experiment and theory find that the intermediate-range fine structure, unlike the near-edge structure, is independent of momentum transfer (q) to very high q. These results have important consequences for future NRIXS measurements of high-pressure phases of ice. C1 [Fister, Timothy T.; Nagle, Kenneth P.; Vila, Fernando D.; Seidler, Gerald T.; Hamner, Christopher; Rehr, John J.] Univ Washington, Dept Phys, Seattle, WA 98105 USA. [Fister, Timothy T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hamner, Christopher] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA. EM seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012 FU DOE; Basic Energy Science; Office of Science [DE-FGE03-97ER45628, W-31-109-ENG-38]; ONR [N00014-05-1-0843, DE-FG03-97ER5623]; NIH NCRR BTP [RR-01209]; Summer Research Institute Program at the Pacific Northwest National Laboratory; DOE Basic Energy Science, Office of Science [DE-FG03-97ER45629]; University of Washington; Natural Sciences and Engineering Research Council of Canad FX This research was supported by DOE, Basic Energy Science, Office of Science, Contracts No. DE-FGE03-97ER45628 and No. W-31-109-ENG-38, ONR Grant No. N00014-05-1-0843, Grant No. DE-FG03-97ER5623, NIH NCRR BTP Grant No. RR-01209 and the Summer Research Institute Program at the Pacific Northwest National Laboratory. The operation of Sector 20 PNC-CAT/XOR is supported by DOE Basic Energy Science, Office of Science, Contract No. DE-FG03-97ER45629, the University of Washington, and grants from the Natural Sciences and Engineering Research Council of Canada. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38. We thank Aleksi Soininen, Ed Stern, Josh Kas, and Micah Prange for stimulating discussions. NR 108 TC 20 Z9 20 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174117 DI 10.1103/PhysRevB.79.174117 PG 7 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100043 ER PT J AU Guo, HZ Gupta, A Varela, M Pennycook, S Zhang, JD AF Guo, Haizhong Gupta, Arunava Varela, Maria Pennycook, Stephen Zhang, Jiandi TI Local valence and magnetic characteristics of La2NiMnO6 SO PHYSICAL REVIEW B LA English DT Article DE Curie temperature; electron energy loss spectra; ferromagnetism; lanthanum compounds; magnetic circular dichroism; magnetic epitaxial layers; scanning-transmission electron microscopy; superexchange interactions; X-ray absorption spectra ID RAY CIRCULAR-DICHROISM; PEROVSKITES AB Epitaxial thin films of ordered double perovskite La2NiMnO6 have been studied by a combination of high-resolution scanning transmission electron microscopy, quantitative electron energy loss spectroscopy, x-ray absorption spectroscopy, and x-ray magnetic circular dichroism (XMCD) spectroscopy. Our results show the nominal oxidation states of Ni and Mn ions to be Ni2+ and Mn4+ thus the ferromagnetism in ground state is mainly due to Ni2+-O-Mn4+ superexchange interactions. In addition, short-range ferromagnetic correlations are observed above the Curie temperature (T-C similar to 280 K) from XMCD measurement, which are likely induced by antisite defects against long-range ordering of the Ni/Mn sublattice. The XMCD results also demonstrate that the Ni2+ and Mn4+ ions are ferromagnetically aligned but exhibit large differences in the spin and orbital contributions to their effective magnetic moments. C1 [Gupta, Arunava] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Varela, Maria; Pennycook, Stephen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Guo, Haizhong; Zhang, Jiandi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Gupta, Arunava] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. RP Guo, HZ (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM jiandiz@lsu.edu RI Guo, Haizhong/C-9817-2011; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Varela, Maria/0000-0002-6582-7004 FU NSF [DMR-0346826]; ONR [N000140610226]; NSF NIRT [CMS-0609377]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was supported by NSF under Grant No. DMR-0346826, ONR under Grant No. N000140610226, and NSF NIRT under Grant No. CMS-0609377. The research at ORNL was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The authors thank Y. Takamura for helping us in the XAS and XMCD measurements and J. Luck for specimen preparation for STEM. NR 28 TC 26 Z9 26 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172402 DI 10.1103/PhysRevB.79.172402 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100008 ER PT J AU Khasanov, R Kondo, T Strassle, S Heron, DOG Kaminski, A Keller, H Lee, SL Takeuchi, T AF Khasanov, R. Kondo, Takeshi Straessle, S. Heron, D. O. G. Kaminski, A. Keller, H. Lee, S. L. Takeuchi, Tsunehiro TI Zero-field superfluid density in a d-wave superconductor evaluated from muon-spin-rotation experiments in the vortex state SO PHYSICAL REVIEW B LA English DT Article DE bismuth compounds; d-wave superconductivity; high-temperature superconductors; lanthanum compounds; lead compounds; mixed state; muon probes; strontium compounds ID II SUPERCONDUCTORS; PENETRATION DEPTH; DEPENDENCE; TEMPERATURE; BI2.15SR1.85CACU2O8+DELTA; YBA2CU3O6.95; CROSSOVER; SYMMETRY; LATTICE AB We present an approach that allows the reconstruction of the zero-field magnetic penetration depth lambda(0) based on the results of muon-spin-rotation (mu SR) experiments conducted in a superconductor in the vortex state. It was successfully applied to describe the mu SR experiments in optimally doped (BiPb)(2)(SrLa)(2)CuO6+delta (OP Bi2201). We found that in unconventional d-wave superconductors (such as OP Bi2201) only at relatively low magnetic fields [B/B-c2 less than or similar to 10(-3); B-c2 is the upper critical field] the effective penetration depth lambda(eff), obtained in mu SR experiment, is a good measure of lambda(0). The high-field data need to be evaluated accounting for both the nonlinear and the nonlocal corrections. C1 [Khasanov, R.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Kondo, Takeshi; Kaminski, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kondo, Takeshi; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kondo, Takeshi; Takeuchi, Tsunehiro] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan. [Straessle, S.; Keller, H.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Heron, D. O. G.; Lee, S. L.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Takeuchi, Tsunehiro] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan. RP Khasanov, R (reprint author), Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. EM rustem.khasanov@psi.ch RI Lee, Stephen/G-9791-2016; Kondo, Takeshi/H-2680-2016; OI Lee, Stephen/0000-0002-2020-3310; Khasanov, Rustem/0000-0002-4768-5524 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; Swiss National Foundation (SNF) FX This work was performed at the Swiss Muon Source (S mu S), Paul Scherrer Institute (PSI, Switzerland). Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. The financial support of the Swiss National Foundation (SNF) is gratefully acknowledged. NR 32 TC 8 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180507 DI 10.1103/PhysRevB.79.180507 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200025 ER PT J AU Khomyakov, PA Giovannetti, G Rusu, PC Brocks, G van den Brink, J Kelly, PJ AF Khomyakov, P. A. Giovannetti, G. Rusu, P. C. Brocks, G. van den Brink, J. Kelly, P. J. TI First-principles study of the interaction and charge transfer between graphene and metals SO PHYSICAL REVIEW B LA English DT Article DE charge exchange; chemisorption; density functional theory; doping; electron transport theory; Fermi level; graphene; work function ID MASSLESS DIRAC FERMIONS; AUGMENTED-WAVE METHOD; SCHOTTKY-BARRIER; WORK FUNCTION; GRAPHITE; CARBON; SURFACES; JUNCTION; FILMS AB Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density-functional theory. The bonding of graphene to Al, Ag, Cu, Au, and Pt (111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function similar to 5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi-level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd, and Ti. This chemisorption involves hybridization between graphene p(z) states and metal d states that opens a band gap in graphene, and reduces its work function considerably. The supported graphene is effectively n-type doped because in a current-in-plane device geometry the work-function lowering will lead to electrons being transferred to the unsupported part of the graphene sheet. C1 [Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Kelly, P. J.] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands. [Giovannetti, G.; van den Brink, J.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. [van den Brink, J.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands. [van den Brink, J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [van den Brink, J.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Kelly, P. J.] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. RP Khomyakov, PA (reprint author), Univ Twente, Fac Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands. RI van den Brink, Jeroen/E-5670-2011; Kelly, Paul/G-4210-2010; Khomyakov, Petr/L-4550-2013; Giovannetti, Gianluca/L-4339-2013; Brocks, Geert/B-7919-2015 OI van den Brink, Jeroen/0000-0001-6594-9610; Kelly, Paul/0000-0001-9040-1868; NR 71 TC 546 Z9 548 U1 65 U2 505 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195425 DI 10.1103/PhysRevB.79.195425 PG 12 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300124 ER PT J AU Li, JY Jensen, TBS Andersen, NH Zarestky, JL McCallum, RW Chung, JH Lynn, JW Vaknin, D AF Li, Jiying Jensen, Thomas B. S. Andersen, Niels H. Zarestky, Jerel L. McCallum, R. William Chung, Jae-Ho Lynn, Jeffrey W. Vaknin, David TI Tweaking the spin-wave dispersion and suppressing the incommensurate phase in LiNiPO4 by iron substitution SO PHYSICAL REVIEW B LA English DT Article DE commensurate-incommensurate transformations; energy gap; exchange interactions (electron); frustration; Heisenberg model; iron compounds; lithium compounds; magnetic structure; magnetic transitions; neutron diffraction; nickel compounds; spin Hamiltonians; spin waves ID INELASTIC NEUTRON-SCATTERING; WEAK FERROMAGNETISM; MAGNETIC-PROPERTIES; ANTIFERROMAGNETISM; TRANSFORMATION; ANISOTROPY AB Elastic and inelastic neutron-scattering studies of Li(Ni1-xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at T-N=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes interplane and in-plane nearest- and next-nearest-neighbor couplings reveals frustration due to strong competing interactions between nearest- and next-nearest-neighbor sites, consistent with the observed incommensurate structure. The Fe substitution only slightly lowers the extent of the frustration, sufficient to suppress the incommensurate phase. An energy gap in the dispersion curves gradually decreases with the increase in Fe content from similar to 2 meV for the pure system (x=0) to similar to 0.9 meV for x=0.2. C1 [Li, Jiying; Zarestky, Jerel L.; McCallum, R. William; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, Jiying; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, Jiying; Lynn, Jeffrey W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Li, Jiying] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Jensen, Thomas B. S.; Andersen, Niels H.] Tech Univ Denmark, Mat Res Div, Riso DTU, DK-4000 Roskilde, Denmark. [McCallum, R. William] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Chung, Jae-Ho] Korea Univ, Dept Phys, Seoul 136713, South Korea. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Andersen, Niels/A-3872-2012; Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 NR 37 TC 9 Z9 9 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174435 DI 10.1103/PhysRevB.79.174435 PG 7 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100088 ER PT J AU Li, SL Chen, Y Chang, S Lynn, JW Li, LJ Luo, YK Cao, GH Xu, ZA Dai, PC AF Li, Shiliang Chen, Ying Chang, Sung Lynn, Jeffrey W. Li, Linjun Luo, Yongkang Cao, Guanghan Xu, Zhu'an Dai, Pengcheng TI Spin gap and magnetic resonance in superconducting BaFe1.9Ni0.1As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferrimagnetism; arsenic alloys; barium alloys; iron alloys; magnetic resonance; neutron spectra; nickel alloys; photoemission; superconducting energy gap; superconducting materials ID IRON-BASED SUPERCONDUCTORS; TEMPERATURE SUPERCONDUCTOR; NEUTRON-SCATTERING; BA0.6K0.4FE2AS2; EXCITATIONS; SPECTRA AB We use neutron spectroscopy to determine the nature of the magnetic excitations in superconducting BaFe1.9Ni0.1As2(T-c=20 K). Above T-c the excitations are gapless and centered at the commensurate antiferromagnetic wave vector of the parent compound, while the intensity exhibits a sinusoidal modulation along the c axis. As the superconducting state is entered a spin gap gradually opens, whose magnitude tracks the T dependence of the superconducting gap as observed by angle-resolved photoemission. Both the spin-gap and magnetic-resonance energies are temperature and wave-vector dependent, but their ratio is the same within uncertainties. These results suggest that the spin resonance is a singlet-triplet excitation related to electron pairing and superconductivity. C1 [Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chen, Ying; Chang, Sung; Lynn, Jeffrey W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Li, Linjun; Luo, Yongkang; Cao, Guanghan; Xu, Zhu'an] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Li, SL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Cao, Guanghan/C-4753-2008; Dai, Pengcheng /C-9171-2012 OI Dai, Pengcheng /0000-0002-6088-3170 FU U.S. DOE BES [DE-FG02-05ER46202]; NSF [DMR-0756568, DMR-0454672] FX We thank Songxue Chi, Jun Zhao, and Leland Harriger for coaligning some of the single crystals used in the present experiment. This work is supported by the U.S. DOE BES under Grant No. DE-FG02-05ER46202, NSF under Grant No. DMR-0756568, and in part by the U. S. DOE, Division of Scientific User Facilities. The work at Zhejiang University is supported by the NSF of China. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. NR 35 TC 56 Z9 56 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174527 DI 10.1103/PhysRevB.79.174527 PG 5 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100117 ER PT J AU Luo, JW Franceschetti, A Zunger, A AF Luo, J. W. Franceschetti, A. Zunger, A. TI Nonmonotonic size dependence of the dark/bright exciton splitting in GaAs nanocrystals SO PHYSICAL REVIEW B LA English DT Article DE Brillouin zones; conduction bands; exchange interactions (electron); excitons; gallium arsenide; III-V semiconductors; pseudopotential methods; wave functions ID HOLE EXCHANGE INTERACTION; CDSE QUANTUM DOTS; FINE-STRUCTURE; CONFINEMENT; DARK; SILICON; STATES; INP AB The dark/bright exciton splitting Delta(X) in semiconductor nanocrystals is usually caused by electron-hole exchange interactions. Since the electron-hole wave-function overlap is enhanced by quantum confinement, it is generally assumed that Delta(X) increases monotonically as the quantum-dot size decreases. Using atomistic pseudopotential calculations, we show that in GaAs nanocrystals Delta(X) scales nonmonotonically with the nanocrystal size. By analyzing the nanocrystal wave functions in terms of contributions from different k points in the bulk Brillouin zone, we identify the origin of such nonmonotonic behavior in a transition of the lowest conduction-band wave function from Gamma like to X like as the nanocrystal radius decreases below 19 A. The nonmonotonicity arises because the long-range component of the electron-hole exchange interaction all but vanishes when the electron wave function becomes X like. We also show that the direct/indirect transition induced in GaAs nanocrystals by external pressure results in a sudden reduction in Delta(X). C1 [Luo, J. W.; Franceschetti, A.; Zunger, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI LUO, JUN-WEI/A-8491-2010; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308] FX This work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC36-08GO28308 to NREL. NR 17 TC 11 Z9 11 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201301 DI 10.1103/PhysRevB.79.201301 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500012 ER PT J AU Magyar, RJ AF Magyar, R. J. TI Ground and excited-state fermions in a one-dimensional double-well: Exact and density-functional solutions SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; eigenvalues and eigenfunctions; excited states; fermions; ground states; Hubbard model; hydrogen neutral molecules; one-dimensional conductivity ID ELECTRON-GAS; SYSTEMS; MODEL AB Two of the most popular quantum-mechanical models of interacting fermions are compared to each other and to potentially exact solutions for a pair of contact-interacting fermions trapped in a one-dimensional (1D) double-well potential, a model of atoms in a quasi-1D optical lattice, or electrons of a hydrogen molecule in a strong magnetic field. An exact few-body Hamiltonian is solved numerically in momentum space yielding a highly correlated eigenspectrum. Additionally, approximate ground-state energies are obtained using both density-functional theory (DFT) functional and two-site Hubbard models. A 1D adiabatic local-density approximation kernel is constructed for use in time-dependent density-functional theory (TDDFT) and the resulting excited-state spectrum is compared to the exact and Hubbard results. DFT is shown to give accurate results for wells with small separations but fails to describe localization of opposite spin fermions to different sites. A locally cognizant density functional based on an effective local fermion number would provide a solution to this problem, and an approximate treatment presented here compares favorably to the exact and Hubbard results. The TDDFT excited-state spectrum is accurate in the small parameter regime with nonadiabatic effects accounting for any deviations. As expected, the ground-state Hubbard model outperforms DFT at large separations but breaks down at intermediate separations due to improper scaling to the united-atom limit. At strong coupling, both Hubbard and TDDFT methods fail to capture the appropriate energetics. C1 [Magyar, R. J.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Magyar, RJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 27 TC 9 Z9 9 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195127 DI 10.1103/PhysRevB.79.195127 PG 14 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300056 ER PT J AU McQueen, TM Klimczuk, T Williams, AJ Huang, Q Cava, RJ AF McQueen, T. M. Klimczuk, T. Williams, A. J. Huang, Q. Cava, R. J. TI Stoichiometry, spin fluctuations, and superconductivity in LaNiPO SO PHYSICAL REVIEW B LA English DT Article DE band structure; fluctuations in superconductors; lanthanum compounds; nickel compounds; specific heat; spin fluctuations; stoichiometry ID LAYERED QUATERNARY COMPOUND; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; PHASE-DIAGRAM; HEAT AB Superconductivity in LaNiPO is disrupted by small (similar to 5%) amounts of nonstoichiometry on the lanthanum site, even though the electronic contribution to the heat capacity increases with increasing nonstoichiometry. All samples also exhibit specific-heat anomalies consistent with the presence of ferromagnetic spin fluctuations (T(sf)approximate to 14 K). Comparison of layered nickel phosphide and nickel borocarbide superconductors reveals different structure-property correlations in the two families. C1 [McQueen, T. M.; Williams, A. J.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Klimczuk, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Huang, Q.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP McQueen, TM (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Klimczuk, Tomasz/M-1716-2013 OI Klimczuk, Tomasz/0000-0003-2602-5049 FU National Science Foundation Graduate Research Program; Department of Energy, Division of Basic Energy Sciences [DE-FG02-98ER45706] FX T. M. M. gratefully acknowledges support of the National Science Foundation Graduate Research Program. The work at Princeton was supported by the Department of Energy, Division of Basic Energy Sciences, under Grant No. DE-FG02-98ER45706. NR 34 TC 10 Z9 10 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172502 DI 10.1103/PhysRevB.79.172502 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100020 ER PT J AU Moore, RG Lumsden, MD Stone, MB Zhang, JD Chen, Y Lynn, JW Jin, R Mandrus, D Plummer, EW AF Moore, R. G. Lumsden, M. D. Stone, M. B. Zhang, Jiandi Chen, Y. Lynn, J. W. Jin, R. Mandrus, D. Plummer, E. W. TI Phonon softening and anomalous mode near the x(c)=0.5 quantum critical point in Ca2-xSrxRuO4 SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; critical points; doping; phonon dispersion relations; soft modes; solid-state phase transformations; strontium compounds ID STRUCTURAL PHASE-TRANSITIONS; MOTT TRANSITION; SOFT-PHONON; LA2CUO4; SUPERCONDUCTIVITY; CA2-XSR(X)RUO4; SR2IRO4 AB Inelastic neutron scattering is used to measure the temperature-dependent phonon dispersion in Ca2-xSrxRuO4 (x=0.4,0.6). The in-plane Sigma(4) octahedral tilt mode softens significantly at the zone boundary of the high-temperature tetragonal (HTT) I4(1)/acd structure as the temperature approaches the transition to a low-temperature orthorhombic (LTO) Pbca phase. This behavior is similar to that in La2CuO4, but an inelastic feature that is not found in the cuprate is present. An anomalous phonon mode is observed at energy transfers greater than the Sigma(4), albeit with similar dispersion. This anomalous phonon mode never softens below similar to 5 meV, even for temperatures below the HTT-LTO transition. This mode is attributed to the presence of intrinsic structural disorder within the I4(1)/acd tetragonal structure of the doped ruthenate. C1 [Lumsden, M. D.; Stone, M. B.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zhang, Jiandi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Chen, Y.; Lynn, J. W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jin, R.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Moore, R. G.; Jin, R.; Mandrus, D.; Plummer, E. W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Moore, RG (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RI Stone, Matthew/G-3275-2011; Mandrus, David/H-3090-2014; Lumsden, Mark/F-5366-2012 OI Stone, Matthew/0000-0001-7884-9715; Lumsden, Mark/0000-0002-5472-9660 FU NSF [DMR-0346826, DMR-0353108, DMR-0451163]; DOE [DE-FG02-04ER46125]; DOE DMS; ORAU faculty summer research program; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE [DE-AC05-00OR22725] FX We thank I. A. Sergienko for helpful discussions. This work was supported by NSF Grants No. DMR-0346826, No. DMR-0353108, and No. DMR-0451163; DOE Grant No. DE-FG02-04ER46125; DOE DMS; and ORAU faculty summer research program. A portion of this research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. The work at Oak Ridge National Laboratory was supported through the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE, under Contract No. DE-AC05-00OR22725. NR 25 TC 0 Z9 0 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172301 DI 10.1103/PhysRevB.79.172301 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100005 ER PT J AU Nath, R Singh, Y Johnston, DC AF Nath, R. Singh, Yogesh Johnston, D. C. TI Magnetic, thermal, and transport properties of layered arsenides BaRu2As2 and SrRu2As2 SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; electrical resistivity; magnetic susceptibility; magnetic transitions; ruthenium compounds; specific heat; strontium compounds; superconducting materials ID QUATERNARY COMPOUND; SUPERCONDUCTIVITY; EARTH AB The magnetic, thermal, and transport properties of polycrystalline BaRu2As2 and SrRu2As2 samples with the ThCr2Si2 structure were investigated by means of magnetic susceptibility chi(T), electrical resistivity rho(T), and heat capacity C-p(T) measurements. The temperature (T) dependence of rho indicates metallic character for both compounds with residual resistivity ratios rho(310 K)/rho(2 K) of 17 and 5 for the Ba and Sr compounds, respectively. The C-p(T) results reveal a low-T Sommerfeld coefficient gamma=4.9(1) and 4.1(1) mJ/mol K-2 and Debye temperature Theta(D)=271(7) and 271(4) K for the Ba and Sr compounds, respectively. The chi(T) was found to be diamagnetic with a small absolute value for both compounds. No transitions were found for BaRu2As2 above 1.8 K. The chi(T) data for SrRu2As2 exhibit a cusp at similar to 200 K, possibly an indication of a structural and/or magnetic transition. We discuss the properties of BaRu2As2 and SrRu2As2 in the context of other ThCr2Si2-type and ZrCuSiAs-type transition metal pnictides. C1 [Nath, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Nath, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Nath, Ramesh/C-9345-2011; singh, yogesh/F-7160-2016 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358.] FX Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 45 TC 23 Z9 23 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174513 DI 10.1103/PhysRevB.79.174513 PG 6 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100103 ER PT J AU Pieper, O Lake, B Daoud-Aladine, A Reehuis, M Prokes, K Klemke, B Kiefer, K Yan, JQ Niazi, A Johnston, DC Honecker, A AF Pieper, O. Lake, B. Daoud-Aladine, A. Reehuis, M. Prokes, K. Klemke, B. Kiefer, K. Yan, J. Q. Niazi, A. Johnston, D. C. Honecker, A. TI Magnetic structure and interactions in the quasi-one-dimensional antiferromagnet CaV2O4 SO PHYSICAL REVIEW B LA English DT Article DE antiferrimagnetism; calcium compounds; exchange interactions (electron); frustration; magnetic structure; neutron diffraction; thermomagnetic effects ID DIFFRACTION; VANADITE AB CaV2O4 is a spin-1 antiferromagnet, where the magnetic vanadium ions have an orbital degree of freedom and are arranged on quasi-one-dimensional zigzag chains. The first- and second-neighbor vanadium separations are approximately equal suggesting frustrated antiferromagnetic exchange interactions. High-temperature susceptibility and single-crystal neutron-diffraction measurements are used to deduce the dominant exchange paths and orbital configurations. The results suggest that at high temperatures CaV2O4 behaves as a Haldane chain, but at low temperatures, it is a spin-1 ladder. These two magnetic structures are explained by different orbital configurations and show how orbital ordering can drive a system from one exotic spin Hamiltonian to another. C1 [Pieper, O.; Lake, B.; Reehuis, M.; Prokes, K.; Klemke, B.; Kiefer, K.] Helmholtz Zentrum Berlin Mat & Energie HZB, D-14109 Berlin, Germany. [Pieper, O.; Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Daoud-Aladine, A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Reehuis, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Yan, J. Q.; Niazi, A.; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Yan, J. Q.; Niazi, A.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Honecker, A.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. RP Pieper, O (reprint author), Helmholtz Zentrum Berlin Mat & Energie HZB, Glienicker Str 100, D-14109 Berlin, Germany. EM oliver.pieper@helmholtz-berlin.de RI Honecker, Andreas/A-7941-2008; Kiefer, Klaus/J-3544-2013; Klemke, Bastian/J-4746-2013; Prokes, Karel/J-5438-2013; Reehuis, Manfred/J-3383-2013 OI Honecker, Andreas/0000-0001-6383-3200; Kiefer, Klaus/0000-0002-5178-0495; Lake, Bella/0000-0003-0034-0964; Klemke, Bastian/0000-0003-4560-6025; Prokes, Karel/0000-0002-7034-1738; Reehuis, Manfred/0000-0002-6461-4074 FU Deutsche Forschungsgemeinschaft [UL 164/4, HO 2325/4-1]; U. S. DOE [DE-AC02-07CH11358] FX We thank D. Khomskii and P. G. Radealli for their advice and R. J. McQueeney for supporting the crystal growth. M. R. and A. H. acknowledge funding from Deutsche Forschungsgemeinschaft (Grants No. UL 164/4 and No. HO 2325/4-1). Work at Ames was supported by the U. S. DOE (Contract No. DE-AC02-07CH11358). NR 26 TC 17 Z9 17 U1 3 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180409 DI 10.1103/PhysRevB.79.180409 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200014 ER PT J AU Pirogov, AN Park, JG Ermolenko, AS Korolev, AV Kuchin, AG Lee, S Choi, YN Park, J Ranot, M Yi, J Gerasimov, EG Dorofeev, YA Vokhmyanin, AP Podlesnyak, AA Swainson, IP AF Pirogov, A. N. Park, J. -G. Ermolenko, A. S. Korolev, A. V. Kuchin, A. G. Lee, Seongsu Choi, Y. N. Park, Junghwan Ranot, Mahipal Yi, Junghwan Gerasimov, E. G. Dorofeev, Yu. A. Vokhmyanin, A. P. Podlesnyak, A. A. Swainson, I. P. TI TbxEr1-xNi5 compounds: An ideal model system for competing Ising-XY anisotropy energies SO PHYSICAL REVIEW B LA English DT Article DE doping profiles; erbium alloys; Ising model; magnetic anisotropy; magnetic moments; magnetic structure; magnetic susceptibility; magnetic transitions; neutron diffraction; nickel alloys; space groups; specific heat; terbium alloys; X-Y model ID MAGNETIC PHASE-TRANSITIONS; RANDOMLY MIXED MAGNETS; MULTICRITICAL POINTS; NEUTRON-DIFFRACTION; SPIN ANISOTROPIES; ORDER PARAMETERS; SINGLE-CRYSTAL; RANDOM MIXTURE; ALLOYS; DIAGRAMS AB We have studied TbxEr1-xNi5 (x=0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.925, and 1.0) compounds by using several experimental techniques such as ac-susceptibility, heat-capacity, and neutron-diffraction measurements. All the compounds are found to crystallize in the CaCu5-type structure with space group P6/mmm. The a axis shows a linear increase with Tb concentration, whereas the c axis remains almost unchanged over the whole doping range. Our neutron-diffraction studies revealed that samples for 0 <= x <= 0.8 have a commensurate magnetic structure with k=0, whereas the two samples on the Tb-rich phase (x=0.925 and 1.0) have an incommensurate structure. Of particular interest is that individual Tb and Er moments keep their mutually orthogonal arrangement seen at the end-member compositions over the whole doping range, due to very strong magnetic anisotropy of single-ion nature. We have established a complete magnetic x-T phase diagram of TbxEr1-xNi5 to find that two straight lines of the ordering of the Tb and Er subsystems are persistently seen, which intersect at a tetracritical point. C1 [Pirogov, A. N.; Park, J. -G.; Lee, Seongsu; Park, Junghwan; Ranot, Mahipal; Yi, Junghwan] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Pirogov, A. N.; Ermolenko, A. S.; Korolev, A. V.; Kuchin, A. G.; Gerasimov, E. G.; Dorofeev, Yu. A.; Vokhmyanin, A. P.] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620041, Russia. [Park, J. -G.; Park, Junghwan] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Park, J. -G.] Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151712, South Korea. [Lee, Seongsu; Choi, Y. N.] Korea Atom Energy Res Inst, Div Neutron Sci, Taejon 305600, South Korea. [Podlesnyak, A. A.] Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Podlesnyak, A. A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Podlesnyak, A. A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Swainson, I. P.] Chalk River Labs, NRC, Chalk River, ON K0J 1J0, Canada. RP Pirogov, AN (reprint author), Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. EM pirogov05@gmail.com; jgpark@skku.edu RI Podlesnyak, Andrey/A-5593-2013; Gerasimov, Evgeny/J-3599-2013; Ermolenko, Alexander/J-3529-2013; Vokhmyanin, Alexandr/J-5536-2013; Pirogov, Alexander/K-8115-2013; Park, Je Geun/K-8571-2013; Kuchin, Anatoly/L-1388-2013; Alexander, Korolev/K-3036-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Gerasimov, Evgeny/0000-0002-1975-705X; Ermolenko, Alexander/0000-0003-0422-3271; Vokhmyanin, Alexandr/0000-0001-6076-4668; Pirogov, Alexander/0000-0001-7321-1245; Kuchin, Anatoly/0000-0002-8216-5276; Alexander, Korolev/0000-0002-5104-3997 FU RAS Program [01.2.006 13394]; Quantum physics of condensed matter [13/24]; SCOPES 2005-2008 [IB7420-110849]; Korea Research Foundation [KRF-2008-220-C00012]; Korea Science and Engineering Foundation [R17-2008-033-01000-0, R31-2008-000-10029-0]; CNRF project. Experiments at the KAERI; U.S. Department of Energy [DE-AC05-00OR22725] FX We acknowledge K. A. McEwen for useful comments. Work at the Institute of Metal Physics was performed with supports of RAS Program (Project No. 01.2.006 13394),Quantum physics of condensed matter (Project No. 13/24), and SCOPES 2005-2008 (Grant No. IB7420-110849). Work at SungKyunKwan University was supported by the Korea Research Foundation (Grant No. KRF-2008-220-C00012), the Korea Science and Engineering Foundation (Grants No. R17-2008-033-01000-0 and No. R31-2008-000-10029-0), and the CNRF project. Experiments at the KAERI were carried out through Neutron Science 21 program. ORNL/SNS is managed by UT-Battlelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 40 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174412 DI 10.1103/PhysRevB.79.174412 PG 9 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100065 ER PT J AU Qi, YN Zhu, JX Ting, CS AF Qi, Yunong Zhu, Jian-Xin Ting, C. S. TI Validity of the equation-of-motion approach to the Kondo problem in the large-N limit SO PHYSICAL REVIEW B LA English DT Article DE Anderson model; exchange interactions (electron); Green's function methods; Kondo effect; magnetic impurities; spin-orbit interactions ID DILUTE MAGNETIC-ALLOYS; DEGENERATE ANDERSON MODEL; RENORMALIZATION-GROUP APPROACH; SELF-CONSISTENT SOLUTION; NARROW CONDUCTION BANDS; LOCALIZED CORRELATIONS; STATIC PROPERTIES; FIELD; SUSCEPTIBILITY; EXPANSION AB The Anderson impurity model for Kondo problem is investigated for arbitrary spin-orbital degeneracy N of the magnetic impurity by the equation-of-motion method (EOM). By employing a different decoupling scheme, a set of self-consistent equations for the one-particle Green's function is derived and numerically solved in the large-N approximation. For the particle-hole symmetric Anderson model with finite Coulomb interaction U, we show that the Kondo resonance at the impurity site exists for all N >= 2. The approach removes the pathology in the standard EOM for N=2 and has the same level of applicability as noncrossing approximation. For N=2, an exchange field splits the Kondo resonance into only two peaks as predicted by a more rigorous numerical renormalization-group method. The temperature dependence of the Kondo resonance peak is also discussed. C1 [Qi, Yunong; Ting, C. S.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Qi, YN (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. EM yqi@mail.uh.edu; jxzhu@lanl.gov; csting@mail.uh.edu OI Zhu, Jianxin/0000-0001-7991-3918 NR 30 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205110 DI 10.1103/PhysRevB.79.205110 PG 5 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500037 ER PT J AU Reboredo, FA Hood, RQ Kent, PRC AF Reboredo, F. A. Hood, R. Q. Kent, P. R. C. TI Self-healing diffusion quantum Monte Carlo algorithms: Direct reduction of the fermion sign error in electronic structure calculations SO PHYSICAL REVIEW B LA English DT Article DE band structure; fermion systems; ground states; Monte Carlo methods; wave functions ID WAVE-FUNCTIONS; MOLECULES; SYSTEMS; GAS AB We develop a formalism and present an algorithm for optimization of the trial wave function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground-state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project out a multideterminant expansion of the fixed-node ground-state wave function and (ii) to define a cost function that relates the fixed-node ground-state and the noninteracting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust toward the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multideterminant expansions of the trial wave function. The method can be generalized to other wave-function forms such as pfaffians. We test the method in a model system where benchmark configuration-interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal noninteracting nodal potential of density-functional-like form whose existence was predicted in a previous publication [Phys. Rev. B 77, 245110 (2008)]. Tests of the method are extended to a model system with a conventional Coulomb interaction where we show we can obtain the exact Kohn-Sham effective potential from the DMC data. C1 [Reboredo, F. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Hood, R. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Reboredo, FA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Kent, Paul/A-6756-2008; Reboredo, Fernando/B-8391-2009 OI Kent, Paul/0000-0001-5539-4017; FU Division of Materials Sciences; Division of Scientific User Facilities U. S. Department of Energy; U. S. Department of Energy [DE-AC52-07NA27344] FX Research performed at the Materials Science and Technology Division and the Center of Nanophase Material Sciences at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and the Division of Scientific User Facilities U. S. Department of Energy. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors would like thank J. Kim for discussions and C. Umrigar for clarifications related to the use of Eq. (19). NR 35 TC 18 Z9 18 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195117 DI 10.1103/PhysRevB.79.195117 PG 15 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300046 ER PT J AU Sacchetti, A Condron, CL Gvasaliya, SN Pfuner, F Lavagnini, M Baldini, M Toney, MF Merlini, M Hanfland, M Mesot, J Chu, JH Fisher, IR Postorino, P Degiorgi, L AF Sacchetti, A. Condron, C. L. Gvasaliya, S. N. Pfuner, F. Lavagnini, M. Baldini, M. Toney, M. F. Merlini, M. Hanfland, M. Mesot, J. Chu, J. -H. Fisher, I. R. Postorino, P. Degiorgi, L. TI Pressure-induced quenching of the charge-density-wave state in rare-earth tritellurides observed by x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article DE cerium alloys; charge density waves; high-pressure effects; lanthanum alloys; lattice constants; tellurium alloys; X-ray diffraction AB We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe(3) and CeTe(3) compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave vector. We observe that the intensity of the CDW satellite peaks tend to zero with increasing pressure, thus providing direct evidence for a pressure-induced quenching of the CDW phase. Our findings further support the equivalence between chemical and applied pressures in RTe(3), put forward by our previous optical investigations, but reveal some subtle differences. We offer a possible explanation for these differences. C1 [Sacchetti, A.; Pfuner, F.; Lavagnini, M.; Degiorgi, L.] ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. [Condron, C. L.; Toney, M. F.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Gvasaliya, S. N.; Mesot, J.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Gvasaliya, S. N.; Mesot, J.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Baldini, M.; Postorino, P.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baldini, M.; Postorino, P.] Univ Roma La Sapienza, CNR, INFM Coherentia, I-00185 Rome, Italy. [Merlini, M.; Hanfland, M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Chu, J. -H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Chu, J. -H.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Sacchetti, A (reprint author), ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. FU Swiss National Foundation for the Scientific Research; NCCR MaNEP pool; (U.S.) Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX The authors wish to thank R. Monnier for fruitful discussions. This work was supported by the Swiss National Foundation for the Scientific Research as well as by the NCCR MaNEP pool and also by the (U.S.) Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. NR 20 TC 18 Z9 18 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201101 DI 10.1103/PhysRevB.79.201101 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500001 ER PT J AU Sasmal, K Lv, B Tang, ZJ Chen, F Xue, YY Lorenz, B Guloy, AM Chu, CW AF Sasmal, K. Lv, B. Tang, Z. J. Chen, F. Xue, Y. Y. Lorenz, B. Guloy, A. M. Chu, C. W. TI Unusual doping dependence of superconductivity in NayFeAs SO PHYSICAL REVIEW B LA English DT Article DE annealing; arsenic alloys; doping; iron alloys; sodium alloys; stoichiometry; superconducting materials; superconducting transitions AB Superconductivity and phase relationships were explored in the Na-Fe-As system. The PbFCl-type 111 phase is stable only within a Na stoichiometry range of 1.00 to similar to 0.85, and exhibits bulk superconductivity within an even narrower range around 0.90 in Na0.9FeAs. In particular, stoichiometric NaFeAs is not a bulk superconductor. The onset of the superconducting transition varies in a totally different way and the highest T-c occurs in multiphase samples with a nominal composition of Na:Fe:As=0.5:1:1, where the superconductive volume-fraction is almost zero. Such doping dependency is rather surprising and in disagreement with most expectations. C1 [Sasmal, K.; Chen, F.; Xue, Y. Y.; Lorenz, B.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Sasmal, K.; Lv, B.; Tang, Z. J.; Chen, F.; Xue, Y. Y.; Lorenz, B.; Guloy, A. M.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Lv, B.; Tang, Z. J.; Guloy, A. M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, C. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Sasmal, K (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. RI Lv, Bing/E-3485-2010 FU T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity; U.S. Air Force Office of Scientific Research; Lawrence Berkeley Laboratory; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC03-76SF00098]; NSF [CHE-0616805]; Robert A. Welch Foundation FX This work is supported in part by the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas through the Texas Center for Superconductivity, the U.S. Air Force Office of Scientific Research, and at Lawrence Berkeley Laboratory by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. A. M. G., Z.T. and B. L. acknowledge the support from the NSF (Grant No. CHE-0616805) and the Robert A. Welch Foundation. NR 16 TC 19 Z9 19 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184516 DI 10.1103/PhysRevB.79.184516 PG 5 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200101 ER PT J AU Sefat, AS Bud'ko, SL Canfield, PC AF Sefat, Athena S. Bud'ko, Sergey L. Canfield, Paul C. TI Properties of RRe2Al10 (R=Y, Gd-Lu) crystals SO PHYSICAL REVIEW B LA English DT Article DE aluminium alloys; antiferromagnetic materials; crystal growth from solution; crystal symmetry; dysprosium alloys; erbium alloys; ferromagnetic materials; gadolinium alloys; high-temperature effects; holmium alloys; lutetium alloys; magnetic moments; magnetic susceptibility; magnetisation; paramagnetism; rhenium alloys; specific heat; terbium alloys; thulium alloys; X-ray diffraction; ytterbium alloys; yttrium alloys ID PARAMAGNETIC-SUSCEPTIBILITY; CACR2AL10-TYPE STRUCTURE; MAGNETIC-PROPERTIES; RMN4AL8; FIELD; HEAT; SPIN; PR; MN; LA AB Large single crystals of rare-earth rhenium aluminide RRe2Al10, with R=Y, and Gd-Lu were grown out of an Al-rich solution. Single crystal x-ray diffraction data confirmed the orthorhombic Cmcm structure for all members: R=Gd-Dy with TbRe2Al10-structure type (formula unit per cell Z=8); R=Y, and Ho-Lu with LuRe2Al10-structure type (Z=12). There is no evidence of a localized 3d electron moment in R=Y and Lu; R=Yb is nonmagnetic down to 1.8 K, but develops an enhanced electronic specific heat of similar to 95 mJ mol(-1) K-2. Ordering temperatures range from ferromagnetic order in R=Gd with T-c=7.2(1) K, antiferromagnetic order in R=Tb at T-N=5.0(3) K, to R=Dy, Ho, and Er giving magnetic ordering temperatures of T-mag=1.7(1), <= 0.4, and 1.1(2) K, respectively. All compounds have effective moments close in value to that of free R3+ at high temperatures. C1 [Sefat, Athena S.; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RP Sefat, AS (reprint author), Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 NR 20 TC 3 Z9 3 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174429 DI 10.1103/PhysRevB.79.174429 PG 11 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100082 ER PT J AU Shu, L MacLaughlin, DE Beyermann, WP Heffner, RH Morris, GD Bernal, OO Callaghan, FD Sonier, JE Yuhasz, WM Frederick, NA Maple, MB AF Shu, Lei MacLaughlin, D. E. Beyermann, W. P. Heffner, R. H. Morris, G. D. Bernal, O. O. Callaghan, F. D. Sonier, J. E. Yuhasz, W. M. Frederick, N. A. Maple, M. B. TI Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4Sb12 SO PHYSICAL REVIEW B LA English DT Article DE antimony alloys; heavy fermion superconductors; muon probes; osmium alloys; penetration depth (superconductivity); praseodymium alloys ID CRYSTAL ELECTRIC-FIELD; SPIN-ROTATION; II SUPERCONDUCTORS; MAGNETIC-FIELD; PRNI5; SR; EXCITATIONS; STATE; MU(+); NMR AB Transverse-field muon spin rotation (TF-mu SR) experiments in the heavy-fermion superconductor PrOs4Sb12(T-c=1.85 K) suggest that the superconducting penetration depth lambda(T) is temperature independent at low temperatures, consistent with a gapped quasiparticle excitation spectrum. In contrast, radio frequency inductive measurements yield a stronger temperature dependence of lambda(T), indicative of point nodes in the gap. Muon Knight-shift measurements in the normal state of PrOs4Sb12 suggest that the perturbing effect of the muon charge on the neighboring Pr3+ crystalline electric field is negligibly small and therefore is unlikely to cause the difference between the TF-mu SR and rf results. The discrepancy appears to be related to multiband superconductivity in PrOs4Sb12. C1 [Shu, Lei; MacLaughlin, D. E.; Beyermann, W. P.] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. [Heffner, R. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Morris, G. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bernal, O. O.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Callaghan, F. D.; Sonier, J. E.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Shu, Lei; Yuhasz, W. M.; Frederick, N. A.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Yuhasz, W. M.; Frederick, N. A.; Maple, M. B.] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. RP Shu, L (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RI Yuhasz, William/C-9418-2009; Shu, Lei/E-7524-2012 FU U. S. NSF [0422674, 0604015, 0335173]; Canadian NSERC; CIAR (Burnaby); (U.S.) DOE [DE-FG-02-04ER46105] FX We are grateful for technical assistance from the TRIUMF Centre for Molecular and Materials Science during the experiments. This work was supported in part by the U. S. NSF under Grant Nos. 0422674 (Riverside), 0604015 (Los Angeles ), and 0335173 (SanDiego), by the Canadian NSERC and CIAR (Burnaby), and by the (U.S.) DOE under Grant No. DE-FG-02-04ER46105 (San Diego). Work at Los Alamos was performed under the auspices of the (U.S.) DOE. NR 59 TC 17 Z9 17 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174511 DI 10.1103/PhysRevB.79.174511 PG 10 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100101 ER PT J AU Singh, DJ AF Singh, D. J. TI Properties of KCo2As2 and alloys with Fe and Ru: Density functional calculations SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; cobalt alloys; density functional theory; electronic structure; Fermi surface; iron alloys; potassium alloys; ruthenium alloys; superconductivity ID BAAL4 THCR2SI2 STRUCTURE; UNIT-CELL DIMENSIONS; RARE-EARTH PHASES; IRON; SUPERCONDUCTIVITY; SILICON; COBALT AB Electronic-structure calculations are presented for KCo2As2 and alloys with KFe2As2 and KRu2As2. These materials show electronic structures characteristic of coherent alloys with a similar Fermi surface structure to that of the Fe-based superconductors when the d-electron count is near 6 per transition metal. However, they are less magnetic than the corresponding Fe compounds. These results are discussed in relation to superconductivity. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 29 TC 15 Z9 15 U1 5 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174520 DI 10.1103/PhysRevB.79.174520 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100110 ER PT J AU Steger, M Yang, A Karaiskaj, D Thewalt, MLW Haller, EE Ager, JW Cardona, M Riemann, H Abrosimov, NV Gusev, AV Bulanov, AD Kaliteevskii, AK Godisov, ON Becker, P Pohl, HJ AF Steger, M. Yang, A. Karaiskaj, D. Thewalt, M. L. W. Haller, E. E. Ager, J. W., III Cardona, M. Riemann, H. Abrosimov, N. V. Gusev, A. V. Bulanov, A. D. Kaliteevskii, A. K. Godisov, O. N. Becker, P. Pohl, H. -J. TI Shallow impurity absorption spectroscopy in isotopically enriched silicon SO PHYSICAL REVIEW B LA English DT Article DE binding energy; boron; elemental semiconductors; excited states; ground states; impurity absorption spectra; impurity states; infrared spectra; phosphorus; silicon; spectral line breadth; spectral line broadening ID PRECISE DETERMINATION; EXCITATION-SPECTRA; HIGH-RESOLUTION; SINGLE-CRYSTAL; PHONON; STATES; DONORS; SI-28; LINES; PHOTOLUMINESCENCE AB Inhomogeneous broadening due to isotopic randomness in natural Si has been shown to cause a broadening of many of the ground-state to excited-state infrared-absorption transitions of the shallow donor phosphorus and acceptor boron. Previously, it had been thought that the observed linewidths of shallow impurity transitions in silicon were at their fundamental lifetime limit. We report improved high-resolution infrared-absorption studies of these transitions in new samples of isotopically enriched (28)Si, (29)Si, and (30)Si. Some of the transitions in (28)Si show the narrowest linewidths ever reported for shallow donor and acceptor absorption transitions, and many higher excited states are now observed. The improved samples of (29)Si and (30)Si result in revised values for the dependence of shallow donor and acceptor binding energies on the average Si mass. C1 [Steger, M.; Yang, A.; Karaiskaj, D.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Haller, E. E.; Ager, J. W., III] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Riemann, H.; Abrosimov, N. V.] IKZ, D-12489 Berlin, Germany. [Gusev, A. V.; Bulanov, A. D.] RAS, IChHPS, Nizhnii Novgorod 603000, Russia. [Kaliteevskii, A. K.; Godisov, O. N.] Sci & Tech Ctr Centrotech, St Petersburg 198096, Russia. [Becker, P.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Pohl, H. -J.] VITCON Projectconsult GmbH, D-07743 Jena, Germany. [Haller, E. E.; Ager, J. W., III] LBNL, Berkeley, CA 94720 USA. RP Steger, M (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. EM thewalt@sfu.ca OI Ager, Joel/0000-0001-9334-9751 FU NSERC FX We acknowledge NSERC for financial support, and thank B. Pajot for several useful discussions. NR 29 TC 22 Z9 22 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205210 DI 10.1103/PhysRevB.79.205210 PG 7 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500057 ER PT J AU Swanson, M Haraldsen, JT Fishman, RS AF Swanson, M. Haraldsen, J. T. Fishman, R. S. TI Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; copper compounds; exchange interactions (electron); frustration; ground states; magnetic anisotropy; magnetic transitions; spin waves ID HEISENBERG-ANTIFERROMAGNET; PHASE-DIAGRAM; CUFEO2; STATE AB This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy. C1 [Swanson, M.; Haraldsen, J. T.; Fishman, R. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Swanson, M.] N Dakota State Univ, Fargo, ND 58105 USA. RP Swanson, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Haraldsen, Jason/B-9809-2012; Fishman, Randy/C-8639-2013 OI Haraldsen, Jason/0000-0002-8641-5412; NR 19 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184413 DI 10.1103/PhysRevB.79.184413 PG 6 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200066 ER PT J AU Tanatar, MA Kreyssig, A Nandi, S Ni, N Bud'ko, SL Canfield, PC Goldman, AI Prozorov, R AF Tanatar, M. A. Kreyssig, A. Nandi, S. Ni, N. Bud'ko, S. L. Canfield, P. C. Goldman, A. I. Prozorov, R. TI Direct imaging of the structural domains in the iron pnictides AFe(2)As(2) (A=Ca,Sr,Ba) SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; barium alloys; calcium alloys; crystal structure; high-temperature superconductors; iron alloys; magnetic transitions; optical microscopy; solid-state phase transformations; strontium alloys; superconducting transition temperature; twinning; X-ray diffraction ID SUPERCONDUCTIVITY; YBA2CU3O7-X AB The parent compounds of recently discovered iron-arsenide superconductors, AFe(2)As(2) with alkaline earth A=Ca,Sr,Ba, undergo simultaneous structural and magnetic phase transitions at a temperature T-SM. Using a combination of polarized light microscopy and spatially resolved high-energy synchrotron x-ray diffraction we show that the orthorhombic distortion leads to the formation of 45 degrees-type structural domains in all parent compounds. Domains penetrate through the sample thickness in the c direction and are not affected by crystal imperfections such as growth terraces. The domains form regular stripe patterns in the plane with a characteristic dimension of 10-50 mu m. The direction of the stripes is fixed with respect to the tetragonal (100) and (010) directions but can change by 90 degrees on thermal cycling through the transition. This domain pattern may have profound implications for intrinsic disorder and anisotropy of iron arsenides. C1 [Tanatar, M. A.; Kreyssig, A.; Nandi, S.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Kreyssig, A.; Nandi, S.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DEAC02-07CH11358]; U. S. DOE [DEAC02-06CH11357]; Alfred P. Sloan Foundation FX We thank Doug Robinson for the support of the high-energy x-ray measurements. Work at the Ames Laboratory and at the MUCAT sector was supported by the Department of Energy-Basic Energy Sciences under Contract No. DEAC02-07CH11358. The use of the Advanced Photon Source was supported by the U. S. DOE under Contract No. DEAC02-06CH11357. M. A. T. acknowledges continuing cross-appointment with the Institute of Surface Chemistry, National Ukrainian Academy of Sciences. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 26 TC 96 Z9 96 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180508 DI 10.1103/PhysRevB.79.180508 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200026 ER PT J AU Tiago, ML Reboredo, FA AF Tiago, Murilo L. Reboredo, Fernando A. TI Controlling the gap of fullerene microcrystals by applying pressure: Role of many-body effects SO PHYSICAL REVIEW B LA English DT Article DE energy gap; excited states; excitons; fullerene compounds; high-pressure effects; many-body problems; optical constants ID SOLID C-60; OPTICAL-SPECTRA; DOPED C-60; EXCITATIONS; CUBANE; SUPERCONDUCTIVITY; CARBON; PHASE; C60 AB We studied theoretically the optical properties of C(60) fullerene microcrystals as a function of hydrostatic pressure with first-principles many-body theories. Calculations of the electronic properties were done in the GW approximation. We computed electronic excited states in the crystal by diagonalizing the Bethe-Salpeter equation. Our results confirmed the existence of bound excitons in the crystal. Both the electronic gap and optical gap decrease continuously and nonlinearly as pressure of up to 6 GPa is applied. As a result, the absorption spectrum shows strong redshift. We also obtained that "negative" pressure shows the opposite behavior: the gaps increase and the optical spectrum shifts toward the blue end of the spectrum. Negative pressure can be realized by adding cubane (C(8)H(8)) or other molecules with similar size to the interstitials of the microcrystal. For the moderate lattice distortions studied here, we found that the optical properties of fullerene microcrystals with intercalated cubane are similar to the ones of an expanded undoped microcrystal. Based on these findings, we propose doped C(60) as an active element in piezo-optical devices. C1 [Tiago, Murilo L.; Reboredo, Fernando A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tiago, ML (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Reboredo, Fernando/B-8391-2009 FU National Energy Research Scientific Computing Center FX We would like to thank E. Schwegler, T. Oguitsu, and H. Whitley for discussions. Research sponsored by the Division of Materials Sciences and Engineering BES, U. S. DOE under contract with UT- Battelle, LLC. Computational support was provided by the National Energy Research Scientific Computing Center. NR 33 TC 3 Z9 3 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195410 DI 10.1103/PhysRevB.79.195410 PG 7 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300109 ER PT J AU van Heumen, E Muhlethaler, E Kuzmenko, AB Eisaki, H Meevasana, W Greven, M van der Marel, D AF van Heumen, E. Muhlethaler, E. Kuzmenko, A. B. Eisaki, H. Meevasana, W. Greven, M. van der Marel, D. TI Optical determination of the relation between the electron-boson coupling function and the critical temperature in high-T-c cuprates SO PHYSICAL REVIEW B LA English DT Article DE boson systems; carrier density; electron-phonon interactions; high-temperature superconductors; optical conductivity; phase diagrams; superconducting transition temperature ID NORMAL-STATE; SUPERCONDUCTORS; CONDUCTIVITY; BI2SR2CACU2O8+DELTA; SPECTRA; METALS AB We take advantage of the connection between the free-carrier optical conductivity and the glue function in the normal state, to reconstruct from the infrared optical conductivity the glue spectrum of ten different high-T-c cuprates revealing a robust peak in the 50-60 meV range and a broad continuum at higher energies for all measured charge-carrier concentrations and temperatures up to 290 K. We observe that the strong-coupling formalism accounts fully for the known strong temperature dependence of the optical spectra of the high-T-c cuprates, except for strongly underdoped samples. We observe a correlation between the doping trend of the experimental glue spectra and the critical temperature. The data obtained on the overdoped side of the phase diagram conclusively exclude the electron-phonon coupling as the main source of superconducting pairing. C1 [van Heumen, E.; Muhlethaler, E.; Kuzmenko, A. B.; van der Marel, D.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland. [Eisaki, H.] AIST, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Meevasana, W.; Greven, M.] Stanford Univ, Dept Appl Phys Sci, Stanford, CA 94305 USA. [Meevasana, W.; Greven, M.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP van Heumen, E (reprint author), Univ Geneva, Dept Phys Mat Condensee, Quai Ernest Ansermet 24, CH-1211 Geneva 4, Switzerland. RI van der Marel, Dirk/G-4618-2012 OI van der Marel, Dirk/0000-0001-5266-9847 NR 32 TC 73 Z9 73 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184512 DI 10.1103/PhysRevB.79.184512 PG 7 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200097 ER PT J AU Wilkins, SB Di Matteo, S Beale, TAW Joly, Y Mazzoli, C Hatton, PD Bencok, P Yakhou, F Brabers, VAM AF Wilkins, S. B. Di Matteo, S. Beale, T. A. W. Joly, Y. Mazzoli, C. Hatton, P. D. Bencok, P. Yakhou, F. Brabers, V. A. M. TI Critical reexamination of resonant soft x-ray Bragg forbidden reflections in magnetite SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; iron compounds; X-ray diffraction; X-ray scattering ID VERWEY TRANSITION; CHARGE; SUPERCONDUCTORS; SCATTERING; DICHROISM AB Magnetite, Fe(3)O(4), displays a highly complex low-temperature crystal structure that may be charge and orbitally ordered. Many of the recent experimental claims of such ordering rely on resonant soft x-ray diffraction at the oxygen K and iron L edges. We have reexamined this system and undertaken soft x-ray diffraction experiments on a high-quality single crystal. Contrary to previous claims in the literature, we show that the intensity observed at the Bragg forbidden (001/2)(c) reflection can be explained purely in terms of the low-temperature structural displacements around the resonant atoms. This does not necessarily mean that magnetite is not charge or orbitally ordered but rather that the present sensitivity of resonant soft x-ray experiments does not allow conclusive demonstration of such ordering. C1 [Wilkins, S. B.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Di Matteo, S.] Univ Rennes 1, Equipe Phys Surfaces & Interfaces, Inst Phys Rennes, CNRS,UMR 6251, F-35042 Rennes, France. [Beale, T. A. W.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Joly, Y.] CNRS, Inst Neel, F-38042 Grenoble 09, France. [Joly, Y.] Univ Grenoble 1, F-38042 Grenoble 09, France. [Mazzoli, C.; Bencok, P.; Yakhou, F.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Brabers, V. A. M.] Eindhoven Univ Technol, Dept Phys, NL-5600 MB Eindhoven, Netherlands. RP Wilkins, SB (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Mazzoli, Claudio/J-4360-2012; Hatton, Peter/J-8445-2014 FU (U.S.) Department of Energy [DE-AC02-98CH1-886]; EPSRC-GB FX Work at Brookhaven was supported by the (U.S.) Department of Energy under Contract No. DE-AC02-98CH1-886. S. B. W. would like to thank J.P. Hill for critical reading of the manuscript and S. R. Bland for helpful discussions. P. D. H. wishes to acknowledge EPSRC-GB for support. NR 21 TC 17 Z9 17 U1 3 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201102 DI 10.1103/PhysRevB.79.201102 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500002 ER PT J AU Wilson, SD Yamani, Z Rotundu, CR Freelon, B Bourret-Courchesne, E Birgeneau, RJ AF Wilson, Stephen D. Yamani, Z. Rotundu, C. R. Freelon, B. Bourret-Courchesne, E. Birgeneau, R. J. TI Neutron diffraction study of the magnetic and structural phase transitions in BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; arsenic alloys; barium alloys; iron alloys; Ising model; magnetic structure; magnetic transitions; neutron diffraction ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; DENSITY-WAVE ORDER; ISING-MODEL; ZERO-FIELD; DIAGRAM AB We present the results of an investigation of both the magnetic and structural phase transitions in a high quality single crystalline sample of the undoped iron pnictide compound BaFe2As2. Both phase transitions are characterized via neutron diffraction measurements which reveal simultaneous, continuous magnetic and structural orderings with no evidence of hysteresis, consistent with a single second-order phase transition. The onset of long-range antiferromagnetic order can be described by a simple power-law dependence phi(T)(2)proportional to(1-T/T-N)(2 beta) with beta=0.103 +/- 0.018; a value near the beta=0.125 expected for a two-dimensional Ising system. Biquadratic coupling between the structural and magnetic order parameters is also inferred along with evidence of three-dimensional critical scattering in this system. C1 [Wilson, Stephen D.; Rotundu, C. R.; Bourret-Courchesne, E.; Birgeneau, R. J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yamani, Z.] CNR, Canadian Neutron Beam Ctr, Chalk River Labs, Chalk River, ON K0J 1P0, Canada. [Freelon, B.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Wilson, SD (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI yamani, zahra/B-7892-2012; OI Rotundu, Costel/0000-0002-1571-8352 FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231, DE-AC03-76SF008] FX We would like to thank A. Aharony and C. W. Garland for helpful communications. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Office of Basic Energy Sciences U. S. DOE under Contract No. DE-AC03-76SF008. NR 48 TC 84 Z9 85 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184519 DI 10.1103/PhysRevB.79.184519 PG 10 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200104 ER PT J AU Xue, Y Zhang, Y Zhang, PH AF Xue, Yu Zhang, Yong Zhang, Peihong TI Theory of the color change of NaxWO3 as a function of Na-charge doping SO PHYSICAL REVIEW B LA English DT Article DE colour; doping profiles; sodium compounds ID SODIUM-TUNGSTEN BRONZES; OPTICAL-PROPERTIES; THIN-FILMS; WO3; ENERGY; ELECTROCHROMISM; PSEUDOPOTENTIALS; SPECTROSCOPY; MECHANISM; TRIOXIDE AB We report theoretical investigations of the coloration of WO3 upon charge insertion using sodium tungsten bronze (NaxWO3) as a model system. Our results explain well the systematic color change of NaxWO3 from dark blue to violet, red-orange, and finally to golden yellow as sodium concentration x increases from 0.3 to unity. Proper accounts for both the interband and the intraband contributions to the optical response are found to be very important for a detailed understanding of the coloration mechanism in this system. C1 [Xue, Yu; Zhang, Peihong] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Zhang, Yong] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xue, Y (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RI Zhang, Peihong/D-2787-2012 FU National Science Foundation [CBET-0844720]; UB 2020 Interdisciplinary Research Development Fund (IRDF); Center for Computational Research at the University at Buffalo, SUNY FX We thank M. D. Jones for his assistance in coding. This work was supported in part by the National Science Foundation under Grant No. CBET-0844720, and by the UB 2020 Interdisciplinary Research Development Fund (IRDF). We acknowledge the computational support provided by the Center for Computational Research at the University at Buffalo, SUNY. NR 35 TC 10 Z9 10 U1 4 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205113 DI 10.1103/PhysRevB.79.205113 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500040 ER PT J AU Zeng, ZH Da Silva, JLF Deng, HQ Li, WX AF Zeng, Zhen-Hua Da Silva, Juarez L. F. Deng, Hui-Qiu Li, Wei-Xue TI Density functional theory study of the energetics, electronic structure, and core-level shifts of NO adsorption on the Pt(111) surface SO PHYSICAL REVIEW B LA English DT Article DE adsorption; charge exchange; core levels; density functional theory; nitrogen compounds; platinum; pseudopotential methods; vibrational modes; work function ID GENERALIZED-GRADIENT-APPROXIMATION; AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; MOLECULAR ADSORPTION; ORDERED STRUCTURES; SITE PREFERENCE; METAL-SURFACES; SADDLE-POINTS; SPIN-DENSITY AB In this work, we report a first-principles investigation of the energetics, structures, electronic properties, and core-level shifts of NO adsorption on the Pt(111) surface. Our calculations are based on density functional theory within the framework of the ultrasoft pseudopotential plane-wave and the all-electron projected augmented-wave methods. We found that at 0.25, 0.50, and 0.75 monolayer, NO adsorbs preferentially in the fcc, fcc+top, and fcc+top+hcp sites, respectively. The geometric parameters, adsorption energies, vibrational frequencies, and work-function changes are in good agreement with the experimental data. The interaction between NO and Pt(111) was found to follow a donation-back-donation process, in which the NO sigma states donate electrons to the substrate Pt d states, while the substrate Pt d states back donate to the NO pi states. Though there is an overall net charge transfer from the substrate to the NO adsorbate regardless of the adsorption sites and coverages, the spatial redistribution of the transferred electron is site dependent. The charge accumulation for NO in the top sites occurs closer to the surface than NO in the hollow sites, which results in the reduction of the Pt(111) surface work function for the top NO but an increase for the hollow NO. The core-level shifts of the topmost surface Pt atoms coordinated with top and hollow NO molecules at different coverages are in excellent agreement with experiments. In contrast, the N 1s core-level shifts between top and hollow NO (similar to 0.7 eV) deviated significantly from the zero shift found in experiments. Our analysis indicates that the difference may come from the thermal vibration and rotation of adsorbed NO on the Pt(111) surface. C1 [Da Silva, Juarez L. F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zeng, Zhen-Hua; Li, Wei-Xue] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. [Zeng, Zhen-Hua; Li, Wei-Xue] Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Theoret & Computat Chem, Dalian 116023, Peoples R China. [Zeng, Zhen-Hua] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China. [Deng, Hui-Qiu] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. RP Da Silva, JLF (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RI Li, Wei-Xue/A-1414-2011; Deng, Huiqiu/A-9530-2009; Da Silva, Juarez L. F./D-1779-2011; Zeng, Zhenhua/E-1795-2012 OI Deng, Huiqiu/0000-0001-8986-104X; Da Silva, Juarez L. F./0000-0003-0645-8760; Zeng, Zhenhua/0000-0002-3087-8581 NR 79 TC 30 Z9 30 U1 4 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205413 DI 10.1103/PhysRevB.79.205413 PG 13 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500094 ER PT J AU Zhang, LJ Singh, DJ AF Zhang, Lijun Singh, D. J. TI Electronic structure of Ba(Fe,Ru)(2)As-2 and Sr(Fe,Ir)(2)As-2 alloys SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; band structure; barium alloys; density functional theory; Fermi level; iridium alloys; iron alloys; ruthenium alloys; strontium alloys; superconducting materials ID SUPERCONDUCTIVITY AB The electronic structures of Ba(Fe,Ru)(2)As-2 and Sr(Fe,Ir)(2)As-2 are investigated using density functional calculations. We find that these systems behave as coherent alloys from the electronic structure point of view. In particular, the isoelectronic substitution of Fe by Ru does not provide doping but rather suppresses the spin-density wave characteristic of the pure Fe compound by a reduction in the Stoner enhancement and an increase in the bandwidth due to hybridization involving Ru. The electronic structure near the Fermi level otherwise remains quite similar to that of BaFe2As2. The behavior of the Ir alloy is similar except that in this case there is additional electron doping. C1 [Zhang, Lijun; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions and assistance from A. Subedi. This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 31 TC 33 Z9 33 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174530 DI 10.1103/PhysRevB.79.174530 PG 5 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100120 ER PT J AU Allmond, JM Bernstein, LA Beausang, CW Phair, L Bleuel, DL Burke, JT Escher, JE Evans, KE Goldblum, BL Hatarik, R Jeppesen, HB Lesher, SR McMahan, MA Rasmussen, JO Scielzo, ND Wiedeking, M AF Allmond, J. M. Bernstein, L. A. Beausang, C. W. Phair, L. Bleuel, D. L. Burke, J. T. Escher, J. E. Evans, K. E. Goldblum, B. L. Hatarik, R. Jeppesen, H. B. Lesher, S. R. McMahan, M. A. Rasmussen, J. O. Scielzo, N. D. Wiedeking, M. TI Relative U-235(n,gamma) and (n,f) cross sections from U-235(d,p gamma) and (d,pf) SO PHYSICAL REVIEW C LA English DT Article ID TRANSFER-REACTION TH-232(HE-3; GENERATION; SURROGATE; PA-233(N; P)PA-234; CAPTURE; CLOVER AB The internal surrogate ratio method allows for the determination of an unknown cross section, such as (n,gamma), relative to a better-known cross section, such as (n,f), by measuring the relative exit-channel probabilities of a surrogate reaction that proceeds through the same compound nucleus. The validity of the internal surrogate ratio method is tested by comparing the relative gamma and fission exit-channel probabilities of a U-236(*) compound nucleus, formed in the U-235(d,p) reaction, to the known U-235(n,gamma) and (n,f) cross sections. A model-independent method for measuring the gamma-channel yield is presented and used. C1 [Allmond, J. M.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R.; Scielzo, N. D.; Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Phair, L.; Hatarik, R.; Jeppesen, H. B.; McMahan, M. A.; Rasmussen, J. O.; Wiedeking, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Evans, K. E.; Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Hatarik, R.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Allmond, JM (reprint author), Univ Richmond, Dept Phys, Richmond, VA 23173 USA. RI Escher, Jutta/E-1965-2013; Burke, Jason/I-4580-2012; OI Allmond, James Mitchell/0000-0001-6533-8721 FU National Science Foundation; US Department of Energy [DE-FG52-06NA26206, DE-FG02-05ER41379]; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Rutgers University [DE-FG52-03NA00143] FX The authors thank the 88-Inch Cyclotron operations and facilities staff for their help in performing this experiment and I. Y. Lee for useful discussions concerning the data analysis. This work was performed under the auspices of the National Science Foundation and the US Department of Energy by the University of Richmond under Grants DE-FG52-06NA26206 and DE-FG02-05ER41379, Lawrence Livermore National Laboratory under Contracts W-7405-Eng-48 and DE-AC52-07NA27344, Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, and Rutgers University under Contract DE-FG52-03NA00143. NR 30 TC 28 Z9 29 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054610 DI 10.1103/PhysRevC.79.054610 PG 9 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700059 ER PT J AU Chae, KY Bardayan, DW Blackmon, JC Chipps, KA Hatarik, R Jones, KL Kozub, RL Liang, JF Matei, C Moazen, BH Nesaraja, CD O'Malley, PD Pain, SD Pittman, ST Smith, MS AF Chae, K. Y. Bardayan, D. W. Blackmon, J. C. Chipps, K. A. Hatarik, R. Jones, K. L. Kozub, R. L. Liang, J. F. Matei, C. Moazen, B. H. Nesaraja, C. D. O'Malley, P. D. Pain, S. D. Pittman, S. T. Smith, M. S. TI Constraint on the astrophysical Ne-18(alpha,p)Na-21 reaction rate through a Mg-24(p,t)Mg-22 measurement SO PHYSICAL REVIEW C LA English DT Article ID X-RAY-BURSTS; MG-22 AB The Ne-18(alpha,p)Na-21 reaction plays a crucial role in the (alpha,p) process, which leads to the rapid proton capture process in x-ray bursts. The reaction rate depends upon properties of Mg-22 levels above the alpha threshold at 8.14 MeV. Despite recent studies of these levels, only the excitation energies are known for most with no constraints on the spins. We have studied the Mg-24(p,t)Mg-22 reaction at the Oak Ridge National Laboratory (ORNL) Holifield Radioactive Ion Beam Facility (HRIBF), and by measuring the angular distributions of outgoing tritons, we provide some of the first experimental constraints on the spins of astrophysically important Ne-18(alpha,p)Na-21 resonances. C1 [Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Nesaraja, C. D.; Pittman, S. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bardayan, D. W.; Blackmon, J. C.; Liang, J. F.; Nesaraja, C. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chipps, K. A.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Hatarik, R.; O'Malley, P. D.; Pain, S. D.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Chae, KY (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; Matei, Catalin/B-2586-2008 OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Matei, Catalin/0000-0002-2254-3853 FU National Science Foundation [PHY-00-98800]; US Department of Energy [DE-FG02-96ER40983]; University of Tennessee [DE-AC05-00OR22725] FX The authors thank B. Oginni and S. M. Grimes for help with running the Hauser- Feshbach code. This work was supported in part by the National Science Foundation under Contract NSF-PHY-00-98800; the US Department of Energy under Contract DE-FG02-96ER40983 with University of Tennessee and Contract DE-AC05-00OR22725 with ORNL. NR 20 TC 16 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055804 DI 10.1103/PhysRevC.79.055804 PG 5 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700092 ER PT J AU Close, FE Melnitchouk, W AF Close, F. E. Melnitchouk, W. TI Duality in semi-inclusive pion electroproduction SO PHYSICAL REVIEW C LA English DT Article ID QUARK-HADRON DUALITY; CONSTITUENT QUARKS; FORM-FACTORS; MODEL; SCATTERING; BARYONS; PROTON AB We explore quark-hadron duality in semi-inclusive pion electroproduction on proton and neutron targets. Using the spin-flavor symmetric quark model, we compute ratios of pi(+) and pi(-) cross sections for both unpolarized and polarized scattering and discuss realizations of duality in several symmetry-breaking scenarios. The model calculations allow one to understand some of the key features of recent data on semi-inclusive pion production at low energies. C1 [Close, F. E.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. RP Close, FE (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. NR 30 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055202 DI 10.1103/PhysRevC.79.055202 PG 9 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700080 ER PT J AU Crawford, HL Mantica, PF Berryman, JS Broda, R Fornal, B Hoffman, CR Hoteling, N Janssens, RVF Lenzi, SM Pereira, J Stoker, JB Tabor, SL Walters, WB Wang, X Zhu, S AF Crawford, H. L. Mantica, P. F. Berryman, J. S. Broda, R. Fornal, B. Hoffman, C. R. Hoteling, N. Janssens, R. V. F. Lenzi, S. M. Pereira, J. Stoker, J. B. Tabor, S. L. Walters, W. B. Wang, X. Zhu, S. TI Low-energy structure of Mn-61 populated following beta decay of Cr-61 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH ISOTOPES; SHAPE TRANSITION; NUCLEI; DEFORMATION; ZIRCONIUM; GERMANIUM; REGION; BEAMS; IRON; MASS AB beta decay of the Cr-61(37) ground state has been studied. A new half-life of 233 +/- 11 ms has been deduced, and seven delayed gamma rays have been assigned to the daughter Mn-61(36). The low-energy level structure of Mn-61(36) is similar to that of the less neutron-rich Mn-57,Mn-59 nuclei. The odd-A(25)Mn isotopes follow the systematic trend in the yrast states of the even-even, Z+1 Fe-26 isotopes, and not that of the Z-1 Cr-24 isotopes, where a possible onset of collectivity has been suggested to occur already at N=36. C1 [Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Stoker, J. B.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Pereira, J.; Stoker, J. B.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Broda, R.; Fornal, B.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Hoffman, C. R.; Tabor, S. L.] Florida State Univ, Dept Phys & Astron, Tallahassee, FL 32306 USA. [Hoteling, N.; Janssens, R. V. F.; Wang, X.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60429 USA. [Hoteling, N.; Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Lenzi, S. M.] Univ Padua, Dept Phys, I-35131 Padua, Italy. [Lenzi, S. M.] Natl Inst Nucl Phys, Padova Sect, I-35131 Padua, Italy. [Pereira, J.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Wang, X.] Univ Notre Dame, Dept Phys, South Bend, IN 46556 USA. RP Crawford, HL (reprint author), Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RI Crawford, Heather/E-2208-2011; Lenzi, Silvia/I-6750-2012 FU National Science Foundation [PHY-06-06007]; US Department of Energy; Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834]; Polish Academy of Sciences [1PO3B 059 29]; Natural Science and Engineering Research Council (NSERC) of Canada FX The authors thank the NSCL operations staff for providing the primary and secondary beams for this experiment and the NSCL. group for assistance in setting up the Ge detectors from SeGA. This work was supported in part by the National Science Foundation, Grant PHY-06-06007; the US Department of Energy, Office of Nuclear Physics, under Contracts DE-AC02-06CH11357 and DE-FG02-94ER40834; and the Polish Academy of Sciences, Grant 1PO3B 059 29. H. L. C. acknowledges support from the Natural Science and Engineering Research Council (NSERC) of Canada. NR 41 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054320 DI 10.1103/PhysRevC.79.054320 PG 7 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700037 ER PT J AU El-Bennich, B Lacombe, M Loiseau, B Wycech, S AF El-Bennich, B. Lacombe, M. Loiseau, B. Wycech, S. TI Paris NN potential constrained by recent antiprotonic-atom data and np total cross sections SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON INTERACTION; LEVEL SHIFTS; LOW-ENERGY; SCATTERING; PROTONIUM; HYDROGEN AB We report on an updated Paris NN optical potential. The long- and intermediate-range real parts are obtained by G-parity transformation of the Paris NN potential based on a theoretical dispersion-relation treatment of the correlated and uncorrelated two-pion exchange. The short-range imaginary potential parametrization results from the calculation of the NN annihilation box diagram into two mesons with a nucleon-antinucleon intermediate state in the crossed channel. The parametrized real and imaginary short range parts are determined by fitting not only the existing experimental data included in the 1999 version of the Paris NN potential, but also the recent antiprotonic-hydrogen data and np total cross sections. The description of these new observables is improved. Only this readjusted potential generates an isospin zero (1)S(0), 52 MeV broad quasibound state at 4.8 MeV below the threshold. Recent BES data on J/psi decays could support the existence of such a state. C1 [El-Bennich, B.; Lacombe, M.; Loiseau, B.] Univ Paris 06, CNRS, Theory Grp, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [El-Bennich, B.; Lacombe, M.; Loiseau, B.] Univ Paris Diderot, CNRS, Theory Grp, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Wycech, S.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. RP El-Bennich, B (reprint author), Univ Paris 06, CNRS, Theory Grp, Lab Phys Nucl & Hautes Energies,IN2P3, 4 Pl Jussieu, F-75252 Paris, France. FU Department of Energy; Office of Nuclear Physics [DEAC02- 06CH11357]; IN2P3-Polish Laboratory Convention [05-115] FX We acknowledge useful discussions on quasibound states and resonances with B. Moussallam. We also thank J.-P. Dedonder and O. Leitner for helpful comments. M. L. and B. L. are grateful for valuable exchanges with Yupeng Yan. This work was supported in part by the Department of Energy, Office of Nuclear Physics, Contract No. DEAC02- 06CH11357. This research was also performed in the framework of the IN2P3-Polish Laboratory Convention (Collaboration No. 05-115). NR 24 TC 23 Z9 23 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054001 DI 10.1103/PhysRevC.79.054001 PG 9 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700009 ER PT J AU Gavin, S McLerran, L Moschelli, G AF Gavin, Sean McLerran, Larry Moschelli, George TI Long range correlations and the soft ridge in relativistic nuclear collisions SO PHYSICAL REVIEW C LA English DT Article ID TRANSVERSE-MOMENTUM; ANGULAR-CORRELATIONS; AU COLLISIONS; MODEL; DEPENDENCE; 2-PARTICLE; RHIC/LHC; HADRONS AB Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the untriggered ridge arises when particles formed by flux tubes in an early Glasma stage later manifest transverse flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the Glasma, we find excellent agreement with current data. C1 [Gavin, Sean; Moschelli, George] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, Brookhaven Res Ctr, RIKEN, Upton, NY 11973 USA. RP Gavin, S (reprint author), Wayne State Univ, Dept Phys & Astron, 666 W Hancock, Detroit, MI 48202 USA. FU US NSF PECASE/CAREER [PHY-0348559]; US DOE [DE-AC0298CH10886] FX S. G. thanks the nuclear theory groups at Brookhaven and University of Minnesota for their hospitality. We thank M. Baker, R. Bellwied, C. De Silva, A. Dumitru, F. Gelis, J. Kapusta, L. Ray, T. Springer, P. Sorenson, P. Steinberg, R. Venugopalan, and S. Voloshin. This work was supported in part by US NSF PECASE/CAREER Grant PHY-0348559 (S. G. and G. M.) and US DOE Contract No. DE-AC0298CH10886 (L. M.). NR 37 TC 107 Z9 108 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 051902 DI 10.1103/PhysRevC.79.051902 PG 4 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700008 ER PT J AU Gu, L Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Liu, SH Wang, JG Luo, YX Rasmussen, JO Lee, IY Che, XL Ding, HB Li, K Xu, Q Yang, YY Ma, WC AF Gu, L. Zhu, S. J. Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Liu, S. H. Wang, J. G. Luo, Y. X. Rasmussen, J. O. Lee, I. Y. Che, X. L. Ding, H. B. Li, K. Xu, Q. Yang, Y. Y. Ma, W. C. TI Collective band structures in neutron-rich Tc-106,Tc-107 SO PHYSICAL REVIEW C LA English DT Article ID ROTATIONAL BANDS; DEFORMATION; FISSION; NUCLEI; IDENTIFICATION; EVOLUTION; ISOTOPES; REGION; MO-106; STATES AB The high spin states of neutron-rich Tc-106,Tc-107 nuclei have been reinvestigated by observing prompt gamma rays from the spontaneous fission of Cf-252. In Tc-106, a previously known collective band is expanded, and a new collective band is identified. In Tc-107, a collective band based on the pi 5/2(-)[303] orbital is confirmed and extended. Inconsistencies in the configuration assignments for positive parity bands in Tc-105,Tc-107 in the previous reports are clarified. The spins and parities as well as the configurations for the two bands in Tc-106 are assigned according to the angular momentum alignments and g-factor calculations. Other characteristics for the observed bands are discussed. C1 [Gu, L.; Zhu, S. J.; Wang, J. G.; Che, X. L.; Ding, H. B.; Xu, Q.; Yang, Y. Y.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu, S. J.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Liu, S. H.; Luo, Y. X.; Li, K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. RP Gu, L (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn RI Gu, Lin/F-3980-2010 FU National Natural Science Foundation of China [10775078, 10575057]; Major State Basic Research Development Program [2007CB815005]; Special Program of Higher Education Science Foundation [20070003149]; Vanderbilt University, Mississippi State University; Lawrence Berkeley National Laboratory; US Department of Energy [DE-FG05-88ER40407, FG02-95ER40939, DE-AC03-76SF00098] FX The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grant Nos. 10775078 and 10575057, the Major State Basic Research Development Program under Grand No. 2007CB815005, and the Special Program of Higher Education Science Foundation under Grant No. 20070003149. The work at Vanderbilt University, Mississippi State University, and Lawrence Berkeley National Laboratory was supported by the US Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, FG02-95ER40939,and DE-AC03-76SF00098, respectively. NR 29 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054317 DI 10.1103/PhysRevC.79.054317 PG 8 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700034 ER PT J AU Guiseppe, VE Devlin, M Elliott, SR Fotiades, N Hime, A Mei, DM Nelson, RO Perepelitsa, DV AF Guiseppe, V. E. Devlin, M. Elliott, S. R. Fotiades, N. Hime, A. Mei, D. -M. Nelson, R. O. Perepelitsa, D. V. TI Neutron inelastic scattering and reactions in natural Pb as a background in neutrinoless double-beta-decay experiments SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTIONS; MASS; GERMANIUM; ENERGIES; GE-76 AB Inelastic neutron scattering and reactions on Pb isotopes can result in gamma rays near the signature end-point energy in a number of beta beta isotopes. In particular, there are gamma-ray transitions in (206,207,208)Pb that might produce energy deposits at the (76)GeQ(beta beta) in Ge detectors used for 0 nu beta beta searches. The levels that produce these gamma rays can be excited by (n,n(')gamma) or (n,xn gamma) reactions, but the cross sections are small and previously unmeasured. This work uses the pulsed neutron beam at the Los Alamos Neutron Science Center to directly measure reactions of interest to beta beta-decay experiments. The cross section on (nat)Pb to produce the 2041-keV gamma ray from (206)Pb is measured to be 3.6 +/- 0.7 (stat.) +/- 0.3 (syst.) mb at approximate to 9.6 MeV. The cross section on (nat)Pb to produce the 3061,3062-keV gamma rays from (207)Pb and (208)Pb is measured to be 3.9 +/- 0.8 (stat.) +/- 0.4 (syst.) mb at the same energy. We report cross sections or place upper limits on the cross sections for exciting some other levels in Pb that have transition energies corresponding to Q(beta beta) in other beta beta isotopes. C1 [Guiseppe, V. E.; Devlin, M.; Elliott, S. R.; Fotiades, N.; Hime, A.; Nelson, R. O.; Perepelitsa, D. V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mei, D. -M.] Univ S Dakota, Dept Earth Sci & Phys, Vermillion, SD 57069 USA. RP Guiseppe, VE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM guiseppe@lanl.gov RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 FU Laboratory Directed Research and Development; National Science Foundation [0758120]; US Department of Energy [DE-AC52-06NA25396] FX This work was supported in part by Laboratory Directed Research and Development at Los Alamos National Laboratory and National Science Foundation Grant 0758120. This work benefited from the use of the Los Alamos Neutron Science Center, funded by the US Department of Energy under Contract DE-AC52-06NA25396. We thank Toshihiko Kawano for discussions related to the use of TALYS. NR 31 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054604 DI 10.1103/PhysRevC.79.054604 PG 7 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700053 ER PT J AU Guzey, V Thomas, AW Tsushima, K AF Guzey, V. Thomas, A. W. Tsushima, K. TI Medium modifications of the bound nucleon generalized parton distributions and the quark contribution to the spin sum rule SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY; EMC AB We estimate the nuclear medium modifications of the quark contribution to the bound nucleon spin sum rule, J(q*), as well the separate helicity, Delta Sigma(*), and the angular momentum, L(q*), contributions to J(q*). For the calculation of the bound nucleon generalized parton distributions (GPDs), we use as input the bound nucleon elastic form factors predicted in the quark-meson coupling model. Our model for the bound nucleon GPDs is relevant for incoherent deeply virtual Compton scattering (DVCS) with nuclear targets. We find that the medium modifications increase J(q*) and L(q*) and decrease Delta Sigma(*) compared to the free nucleon case. The effect is large and increases with increasing nuclear density rho. For instance, at rho=rho(0)=0.15 fm(-3),J(q*) increases by 7%, L(q*) increases by 20%, and Delta Sigma(*) decreases by 17%. These in-medium modifications of the bound nucleon spin properties are a general feature of relativistic mean-field quark models and may be understood qualitatively in terms of the enhancement of the lower component of the quark Dirac spinor in the nuclear medium. C1 [Guzey, V.; Thomas, A. W.; Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23178 USA. [Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. RP Guzey, V (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. EM vguzey@jlab.org; awthomas@jlab.org; tsushima@jlab.org RI Thomas, Anthony/G-4194-2012; OI Thomas, Anthony/0000-0003-0026-499X; Guzey, Vadim/0000-0002-2393-8507 FU Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX This work was authored by Jefferson Science Associates, LLC, under US DOE Contract DE-AC05-06OR23177. NR 39 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055205 DI 10.1103/PhysRevC.79.055205 PG 6 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700083 ER PT J AU Randrup, J AF Randrup, Jorgen TI Phase transition dynamics for baryon-dense matter SO PHYSICAL REVIEW C LA English DT Article ID ENERGY; DECOMPOSITION; LATTICE; QCD AB We construct a simple two-phase equation of state intended to resemble that of compressed baryon-rich matter and then introduce a gradient term in the compressional energy density to take account of finite-range effects in nonuniform configurations. With this model we study the interface between the two coexisting phases and obtain estimates for the associated interface tension. Subsequently, we incorporate the finite-range equation of state into ideal or viscous fluid dynamics and derive the collective dispersion relation for the mechanically unstable modes of bulk matter in the spinodal region of the thermodynamic phase diagram. Combining these results with time scales extracted from existing dynamical transport simulations, we discuss the prospects for spinodal phase separation to occur in nuclear collisions. We argue that these can be optimized by a careful tuning of the collision energy to maximize the time spent by the bulk of the system inside the mechanically unstable spinodal region of the phase diagram. Our specific numerical estimates suggest cautious optimism that this phenomenon may in fact occur, though a full dynamical simulation is needed for a detailed assessment. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Randrup, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 23 TC 56 Z9 59 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054911 DI 10.1103/PhysRevC.79.054911 PG 13 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700075 ER PT J AU Tang, ZB Xu, YC Ruan, LJ van Buren, G Wang, FQ Xu, ZB AF Tang, Zebo Xu, Yichun Ruan, Lijuan van Buren, Gene Wang, Fuqiang Xu, Zhangbu TI Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM; NUCLEAR COLLISIONS; AU+AU COLLISIONS; D+AU COLLISIONS; COLLABORATION; DISTRIBUTIONS; FLUCTUATIONS; MATTER; P+P AB We have implemented the Tsallis statistics in a Blast-Wave model (TBW) and applied it to midrapidity transverse-momentum spectra of identified particles measured at BNL Relativistic Heavy Ion Collider (RHIC). This new TBW function fits the RHIC data very well for p(T)< 3 GeV/c. We observed that the collective flow velocity starts from zero in p+p and peripheral Au+Au collisions and grows to 0.470 +/- 0.009c in central Au+Au collisions. The resulting (q-1) parameter, which characterizes the degree of nonequilibrium in a system, indicates an evolution from a highly nonequilibrated system in p+p collisions toward an almost thermalized system in central Au+Au collisions. The temperature and collective velocity are well described by a quadratic dependence on (q-1). Two sets of parameters in our TBW are required to describe the meson and baryon groups separately in p+p collisions while one set appears to fit all spectra in central Au+Au collisions. C1 [Tang, Zebo; Xu, Yichun] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Ruan, Lijuan; van Buren, Gene; Xu, Zhangbu] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wang, Fuqiang] Purdue Univ, W Lafayette, IN 47907 USA. RP Tang, ZB (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China. EM xzb@bnl.gov RI Tang, Zebo/A-9939-2014 OI Tang, Zebo/0000-0002-4247-0081 FU US DOEOffice of Science [DE-FG02-88ER40412, DE-AC02-98CH10886]; National Natural Science Foundation of China [10610286, 10610285, 10475071, 10575101, 10805046]; Knowledge Innovation Project; Chinese Academy of Sciences [KJCX2-YW-A14] FX The authors thank Drs. Aihong Tang, Bedanga Mohanty, James Dunlop, Paul Sorensen, Hank Crawford, and Mike Lisa for valuable discussions. We thank the STAR Collaboration and the RCF at BNL for their support. This work was supported in part by the Offices of NP and HEP within the US DOEOffice of Science under Contracts DE-FG02-88ER40412 and DE-AC02-98CH10886. Authors Yichun Xu and Zebo Tang are supported in part by the National Natural Science Foundation of China under Grants 10610286 (10610285), 10475071, 10575101, and 10805046 and the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant KJCX2-YW-A14. Lijuan Ruan is supported in part by the Battelle Memorial Institute and Stony Brook University. Zhangbu Xu is supported in part by the PECASE Grant. NR 50 TC 64 Z9 65 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 051901 DI 10.1103/PhysRevC.79.051901 PG 5 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700007 ER PT J AU Tjon, JA Blunden, PG Melnitchouk, W AF Tjon, J. A. Blunden, P. G. Melnitchouk, W. TI Detailed analysis of two-boson exchange in parity-violating e-p scattering SO PHYSICAL REVIEW C LA English DT Article ID RADIATIVE-CORRECTIONS; NEUTRAL-CURRENT; FORM-FACTORS AB We present a comprehensive study of two-boson exchange (TBE) corrections in parity-violating electron-proton elastic scattering. Within a hadronic framework, we compute contributions from box (and crossed box) diagrams in which the intermediate states are described by nucleons and Delta baryons. The Delta contribution is found to be much smaller than the nucleon one at backward angles (small epsilon), but becomes dominant in the forward scattering limit (epsilon -> 1), where the nucleon contribution vanishes. The dependence of the corrections on the input hadronic form factors is small for Q(2)less than or similar to 1 GeV2, but becomes significant at larger Q(2). We compute the nucleon and Delta TBE corrections relevant for recent and planned parity-violating experiments, with the total corrections ranging from -1% for forward angles to 1-2% at backward kinematics. C1 [Tjon, J. A.] Univ Utrecht, Dept Phys, NL-3508 TC Utrecht, Netherlands. [Blunden, P. G.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. RP Tjon, JA (reprint author), Univ Utrecht, Dept Phys, NL-3508 TC Utrecht, Netherlands. FU DOE; [DE-AC05-06OR23177] FX We are grateful to O. Lalakulich, V. Pascalutsa, and E. Paschos for helpful discussions and communications. W.M. is supported by DOE Contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. NR 42 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055201 DI 10.1103/PhysRevC.79.055201 PG 12 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700079 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, JA Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, I Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. A. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, I. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of the b-hadron production cross section using decays to mu(-DX)-X-0 final states in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID BOTTOM-QUARK PRODUCTION; BRANCHING FRACTIONS; ROOT-S; MESONS AB We report a measurement of the production cross section for b hadrons in p (p) over bar collisions at root s = 1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb(-1) collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, H-b, partially reconstructed in the semileptonic decay mode H-b -> mu(-DX)-X-0. Our measurement of the inclusive production cross section for b hadrons with transverse momentum p(T) > 9 GeV/c and rapidity vertical bar y vertical bar < 0.6 is sigma 1.30 mu b +/- 0.05 mu b(stat) +/- 0.14 mu b(syst) +/- 0.07 mu b(B), where the uncertainties are statistical, systematic, and from branching fractions, respectively. The differential cross sections d sigma/dp(T) are found to be in good agreement with recent measurements of the Hb cross section and well described by fixed-order next-to-leading logarithm predictions. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, I.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Kraus, J. A.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Mulmenstadt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Carls, B.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Flanagan, G.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-34100 Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014 OI Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330 FU U. S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 49 TC 21 Z9 21 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092003 DI 10.1103/PhysRevD.79.092003 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800007 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Bradley, L Braun, J Breder, D Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cohen, S Cowen, DF D'Agostino, MV Danninger, M Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hasegawa, Y Heise, J Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Klepser, S Knops, S Kohnen, G Kolanoski, H Kopke, L Kowalski, M Kowarik, T Krasberg, M Kuehn, K Kuwabara, T Labare, M Laihem, K Landsman, H Lauer, R Leich, H Lennarz, D Lucke, A Lundberg, J Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Merck, M Meszaros, P Middell, E Milke, N Miyamoto, H Mohr, A Montaruli, T Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Satalecka, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Swillens, Q Taboada, I Tarasova, O Tepe, A Ter-Antonyan, S Terranova, C Tilav, S Tluczykont, M Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Walck, C Waldenmaier, T Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebusch, CH Wiedemann, A Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Bradley, L. Braun, J. Breder, D. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cohen, S. Cowen, D. F. D'Agostino, M. V. Danninger, M. Day, C. T. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hasegawa, Y. Heise, J. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Klepser, S. Knops, S. Kohnen, G. Kolanoski, H. Koepke, L. Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Lauer, R. Leich, H. Lennarz, D. Lucke, A. Lundberg, J. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Merck, M. Meszaros, P. Middell, E. Milke, N. Miyamoto, H. Mohr, A. Montaruli, T. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Satalecka, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. Sullivan, G. W. Swillens, Q. Taboada, I. Tarasova, O. Tepe, A. Ter-Antonyan, S. Terranova, C. Tilav, S. Tluczykont, M. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Walck, C. Waldenmaier, T. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebusch, C. H. Wiedemann, A. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. CA IceCube Collaboration TI Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II SO PHYSICAL REVIEW D LA English DT Article ID LORENTZ INVARIANCE VIOLATION; QUANTUM DECOHERENCE; CONFIDENCE-INTERVALS; SMALL SIGNALS; OSCILLATIONS; TELESCOPE; GRAVITY; SENSITIVITY; SCATTERING; GENERATOR AB The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV. C1 [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Danninger, M.; Gross, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Kuehn, K.; Rott, C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Becker, J. K.; Dreyer, J.; Milke, N.; Muenich, K.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Abdou, Y.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Demiroers, L.; Ribordy, M.; Terranova, C.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Gozzini, R.; Griesel, T.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Cohen, S.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Burgess, T.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Utrecht Univ SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Gesamthsch Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Bolmont, J.; Boeser, S.; Franke, R.; Kislat, F.; Klepser, S.; Lauer, R.; Leich, H.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Pieloth, D.; Satalecka, K.; Schlenstedt, S.; Spiering, C.; Sulanke, K. -H.; Tarasova, O.; Tluczykont, M.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Bissok, M.; Euler, S.; Huelss, J. -P.; Knops, S.; Laihem, K.; Lennarz, D.; Schukraft, A.; Schunck, M.; Wiebusch, C. H.; Wissing, H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Kuehn, K.; Rott, C.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bai, X.; Clem, J.; Cohen, S.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. RP Kelley, JL (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM jkelley@icecube.wisc.edu RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X NR 88 TC 52 Z9 52 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 102005 DI 10.1103/PhysRevD.79.102005 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900011 ER PT J AU Abraham, J Abreu, P Aglietta, M Aguirre, C Ahn, EJ Allard, D Allekotte, I Allen, J Allison, P Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anzalone, A Aramo, C Argiro, S Arisaka, K Arneodo, F Arqueros, F Asch, T Asorey, H Assis, P Aublin, J Ave, M Avila, G Backer, T Badagnani, D Barber, KB Barbosa, AF Barroso, SLC Baughman, B Bauleo, P Beatty, JJ Beau, T Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bernardini, P Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Bleve, C Blumer, H Bohacova, M Bonifazi, C Bonino, R Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Caramete, L Caruso, R Carvalho, W Castellina, A Catalano, O Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Chye, J Clay, RW Colombo, E Conceicao, R Connolly, B Contreras, F Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM de Mello Neto, JRT De Mitri, I de Souza, V Decerprit, G del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dornic, D Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Engel, R Erdmann, M Escobar, CO Etchegoyen, A Luis, PFS Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrer, F Ferrero, A Fick, B Filevich, A Filipcic, A Fleck, I Fliescher, S Fracchiolla, CE Fraenkel, ED Fulgione, W Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Gelmini, G Gemmeke, H Ghia, PL Giaccari, U Giller, M Glass, H Goggin, LM Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P do Amaral, MG Gonzalez, D Gonzalez, JG Gora, D Gorgi, A Gouffon, P Grebe, S Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Gutierrez, J Hague, JD Halenka, V Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Healy, MD Hebbeker, T Hebrero, G Heck, D Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Jiraskova, S Kaducak, M Kampert, KH Karova, T Kasper, P Kegl, B Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Krieger, A Kromer, O Kruppke, D Kuempel, D Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Leao, MSAB Lebrun, D Lebrun, P Lee, J de Oliveira, MAL Lemiere, A Letessier-Selvon, A Leuthold, M Lhenry-Yvon, I Lopez, R Aguera, AL Bahilo, JL Lucero, A Garcia, RL Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Maris, IC Falcon, HRM Martello, D Martinez, J Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McEwen, M McNeil, RR Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Meyhandan, R Micheletti, MI Miele, G Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Morris, C Mostafa, M Mueller, S Muller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Newman-Holmes, C Newton, D Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Oehlschlager, J Olinto, A Olmos-Gilbaja, VM Ortiz, M Ortolani, F Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Parente, G Parizot, E Parlati, S Pastor, S Patel, M Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Pichel, A Piegaia, R Pierog, T Pimenta, M Pinto, T Pirronello, V Pisanti, O Platino, M Pochon, J Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravignani, D Redondo, A Reucroft, S Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Riviere, C Rizi, V Robledo, C Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schussler, F Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shellard, RC Sidelnik, I Siffert, BB De Grande, NS Smialkowski, A Smida, R Smith, BE Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Tamashiro, A Tamburro, A Tarutina, T Tascau, O Tcaciuc, R Tcherniakhovski, D Thao, NT Thomas, D Ticona, R Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Torres, I Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tuci, V Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM van Elewyck, V Vazquez, RA Veberic, D Velarde, A Venters, T Verzi, V Videla, M Villasenor, L Vorobiov, S Voyvodic, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Wileman, C Winnick, MG Wu, H Wundheiler, B Younk, P Yuan, G Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abraham, J. Abreu, P. Aglietta, M. Aguirre, C. Ahn, E. J. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anzalone, A. Aramo, C. Argiro, S. Arisaka, K. Arneodo, F. Arqueros, F. Asch, T. Asorey, H. Assis, P. Aublin, J. Ave, M. Avila, G. Baecker, T. Badagnani, D. Barber, K. B. Barbosa, A. F. Barroso, S. L. C. Baughman, B. Bauleo, P. Beatty, J. J. Beau, T. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bernardini, P. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Bleve, C. Bluemer, H. Bohacova, M. Bonifazi, C. Bonino, R. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Caramete, L. Caruso, R. Carvalho, W. Castellina, A. Catalano, O. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Chye, J. Clay, R. W. Colombo, E. Conceicao, R. Connolly, B. Contreras, F. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello, W. J. M., Jr. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. Decerprit, G. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dornic, D. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. San Luis, P. Facal Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrer, F. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Fulgione, W. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Garrido, X. Gelmini, G. Gemmeke, H. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Goggin, L. M. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. do Amaral, M. Goncalves Gonzalez, D. Gonzalez, J. G. Gora, D. Gorgi, A. Gouffon, P. Grebe, S. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Gutierrez, J. Hague, J. D. Halenka, V. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Healy, M. D. Hebbeker, T. Hebrero, G. Heck, D. Hojvat, C. Holmes, V. C. Homola, P. Hoerandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kaducak, M. Kampert, K. H. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Krieger, A. Kroemer, O. Kruppke, D. Kuempel, D. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Lee, J. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Leuthold, M. Lhenry-Yvon, I. Lopez, R. Lopez Agueera, A. Lozano Bahilo, J. Lucero, A. Luna Garcia, R. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Maris, I. C. Marquez Falcon, H. R. Martello, D. Martinez, J. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McEwen, M. McNeil, R. R. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Meyhandan, R. Micheletti, M. I. Miele, G. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Morris, C. Mostafa, M. Mueller, S. Muller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Newman-Holmes, C. Newton, D. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Oehlschlaeger, J. Olinto, A. Olmos-Gilbaja, V. M. Ortiz, M. Ortolani, F. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Parente, G. Parizot, E. Parlati, S. Pastor, S. Patel, M. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Pichel, A. Piegaia, R. Pierog, T. Pimenta, M. Pinto, T. Pirronello, V. Pisanti, O. Platino, M. Pochon, J. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravignani, D. Redondo, A. Reucroft, S. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Riviere, C. Rizi, V. Robledo, C. Rodriguez, G. Martino, J. Rodriguez Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuessler, F. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Smetniansky De Grande, N. Smialkowski, A. Smida, R. Smith, B. E. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Tamashiro, A. Tamburro, A. Tarutina, T. Tascau, O. Tcaciuc, R. Tcherniakhovski, D. Thao, N. T. Thomas, D. Ticona, R. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Torres, I. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tuci, V. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. van Elewyck, V. Vazquez, R. A. Veberic, D. Velarde, A. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Wileman, C. Winnick, M. G. Wu, H. Wundheiler, B. Younk, P. Yuan, G. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory SO PHYSICAL REVIEW D LA English DT Article ID ACTIVE GALACTIC NUCLEI; COSMIC-RAYS; AIR-SHOWERS; PERFORMANCE; ASTROPHYSICS; OSCILLATIONS; PROPAGATION; TELESCOPES; SPECTRUM; SEARCH AB Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming nu(tau) may interact in the Earth's crust and produce a tau lepton by means of charged-current interactions. The tau lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by tau decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is detailed. Systematic uncertainties in the exposure from the detector, the analysis, and the involved physics are discussed. No tau neutrino candidates have been found. For neutrinos in the energy range 2x10(17) eV < E-nu < 2x10(19) eV, assuming a diffuse spectrum of the form E-nu(-2), data collected between 1 January 2004 and 30 April 2008 yield a 90% confidence-level upper limit of E(nu)(2)dN(nu tau)/dE(nu)< 9x10(-8) GeV cm(-2) s(-1) sr(-1). C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Colombo, E.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Krieger, A.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sidelnik, I.; Smetniansky De Grande, N.; Suarez, F.; Wainberg, O.; Wundheiler, B.] Comis Nacl Energia Atom CONICET UTN FRBA, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Pichel, A.; Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Abraham, J.; De La Vega, G.; Garcia, B.; Videla, M.] UTN FRM CONICET CNEA, Observ Meteorol Parque Gral San Martin, Mendoza, Argentina. [Contreras, F.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Pierre Auger So Observ & Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Dawson, B. R.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Aguirre, C.] Univ Catolica Bolivia, La Paz, Bolivia. [Barbosa, A. F.; Bonifazi, C.; dos Anjos, J. C.; Rezende, F. A. S.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Fracchiolla, C. E.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [Carvalho, W.; de Souza, V.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello, W. J. M., Jr.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Peixoto, C. J. Todero] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Santana, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [de Mello Neto, J. R. T.; Lago, B. L.; Santos, E. M.; Siffert, B. B.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [do Amaral, M. Goncalves] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Halenka, V.; Hrabovsky, M.] Palacky Univ, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dornic, D.; Ghia, P. L.; Lemiere, A.; Lhenry-Yvon, I.; Suomijaervi, T.; van Elewyck, V.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay IPNO, F-91405 Orsay, France. [Allard, D.; Beau, T.; Busca, N. G.; Decerprit, G.; Lachaud, C.; Parizot, E.; Rouille-d'Orfeuil, B.; Semikoz, D.; Tristram, G.] Univ Paris 07, CNRS, IN2P3, Lab AstroParticule & Cosmol APC, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Ragaigne, D. Monnier; Strazzeri, E.; Urban, M.; Wu, H.] Univ Paris 11, CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 06, Lab Phys Nucl & Hautes Energies LPNHE, Paris 05, France. [Belletoile, A.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, Grenoble, France. [Revenu, B.] SUBATECH, Nantes, France. [Becker, K. H.; Kampert, K. H.; Kruppke, D.; Kuempel, D.; Nierstenhoefer, N.; Rautenberg, J.; Risse, M.; Scherini, V.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Bluemer, H.; Daumiller, K.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Schieler, H.; Schroeder, F.; Schuessler, F.; Ulrich, R.; Unger, M.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Asch, T.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Schmidt, A.; Tcherniakhovski, D.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Leuthold, M.; Scharf, N.; Schiffer, P.; Schulte, S.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Bluemer, H.; Caballero-Mora, K. S.; Gonzalez, D.; Gora, D.; Maris, I. C.; Melissas, M.; Schmidt, T.; Tamburro, A.] Univ Karlsruhe TH, Inst Expt Kernphys, Karlsruhe, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Grebe, S.; Pontz, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Dipartimento Fis Univ, Genoa, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [De Donato, C.; Miramonti, L.] Univ Milan, Milan, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario, Turin, Italy. [Arneodo, F.; Grillo, A. F.; Parlati, S.] INFN, Lab Nazl Gran Sasso, Laquila, Italy. [Lopez, R.; Martinez Bravo, O.; Robledo, C.; Salazar, H.; Torres, I.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Luna Garcia, R.; Martinez, J.] IPN, Ctr Invest Computo, Mexico City 07738, DF, Mexico. [Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Zepeda, A.] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico. [Pelayo, R.] IPN, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City 07738, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.; Supanitsky, A. D.; Valdes Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Horneffer, A.; Jiraskova, S.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands. [Fraenkel, E. D.; Harmsma, S.; Meyhandan, R.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Schoorlemmer, H.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Gora, D.; Homola, P.; Pekala, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.; Pinto, T.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Monasor, M.; Ortiz, M.; Ros, G.; Rosado, J.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Gutierrez, J.; Hebrero, G.; McEwen, M.; Pacheco, N.; Redondo, A.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Alvarez-Muniz, J.; San Luis, P. Facal; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Rodriguez-Cabo, I.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferrer, F.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Harton, J. L.; Knapik, R.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Newman-Holmes, C.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Dorofeev, A.; Gonzalez, J. G.; Matthews, J.; McNeil, R. R.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chye, J.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Bellido, J. A.; Coutu, S.; Criss, A.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Gelmini, G.; Healy, M. D.; Kusenko, A.; Lee, J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Bohacova, M.; Cazon, L.; Cronin, J.; San Luis, P. Facal; Ionita, F.; Olinto, A.; Pavlidou, V.; Privitera, P.; Schmidt, F.; Venters, T.; Wundheiler, B.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM USA. [Connolly, B.] Univ Penn, Philadelphia, PA 19104 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Goggin, L. M.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol INST, Hanoi, Vietnam. [Bruijn, R.; Knapp, J.; Newton, D.; Patel, M.; Smith, B. E.; Watson, A. A.; Wileman, C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Aglietta, M.; Argiro, S.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [De Donato, C.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] INFN, Laquila, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 07, Lab Phys & Hautes Energies LPNHE, Paris 05, France. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Pichel, A.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. RP Abraham, J (reprint author), CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. RI Arneodo, Francesco/E-5061-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; Navas, Sergio/N-4649-2014; De Donato, Cinzia/J-9132-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Ros, German/L-4764-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Di Giulio, Claudio/B-3319-2015; Pavlidou, Vasiliki/C-2944-2011; Anjos, Joao/C-8335-2013; Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Petrolini, Alessandro/H-3782-2011; Miele, Gennaro/F-3628-2010; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; De Domenico, Manlio/D-1966-2009; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Dias, Sandra/F-8134-2010; Dutan, Ioana/C-2337-2011; Caramete, Laurentiu/C-2328-2011; Venters, Tonia/D-2936-2012; Fauth, Anderson/F-9570-2012; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Assis, Pedro/D-9062-2013; Arqueros, Fernando/K-9460-2014; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; De Domenico, Manlio/B-5826-2014; Lozano-Bahilo, Julio/F-4881-2016; ORTOLANI, FABRIZIO/F-7271-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Abreu, Pedro/L-2220-2014 OI Arneodo, Francesco/0000-0002-1061-0510; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; Navas, Sergio/0000-0003-1688-5758; De Donato, Cinzia/0000-0002-9725-1281; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Ros, German/0000-0001-6623-1483; Ridky, Jan/0000-0001-6697-1393; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Di Giulio, Claudio/0000-0002-0597-4547; Pavlidou, Vasiliki/0000-0002-0870-1368; Schussler, Fabian/0000-0003-1500-6571; Goncalves, Patricia /0000-0003-2042-3759; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Shellard, Ronald/0000-0002-2983-1815; Petrolini, Alessandro/0000-0003-0222-7594; Miele, Gennaro/0000-0002-2028-0578; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Rizi, Vincenzo/0000-0002-5277-6527; Horandel, Jorg/0000-0001-6604-547X; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Segreto, Alberto/0000-0001-7341-6603; Knapp, Johannes/0000-0003-1519-1383; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Andringa, Sofia/0000-0002-6397-9207; Mantsch, Paul/0000-0002-8382-7745; Anzalone, Anna/0000-0003-1849-198X; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; Yuan, Guofeng/0000-0002-1907-8815; de Jong, Sijbrand/0000-0002-3120-3367; La Rosa, Giovanni/0000-0002-3931-2269; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Aglietta, Marco/0000-0001-8354-5388; Asorey, Hernan/0000-0002-4559-8785; Gomez Berisso, Mariano/0000-0001-5530-0180; Aramo, Carla/0000-0002-8412-3846; maldera, simone/0000-0002-0698-4421; Ravignani, Diego/0000-0001-7410-8522; Matthews, James/0000-0002-1832-4420; Assis, Pedro/0000-0001-7765-3606; Arqueros, Fernando/0000-0002-4930-9282; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; De Domenico, Manlio/0000-0001-5158-8594; Lozano-Bahilo, Julio/0000-0003-0613-140X; ORTOLANI, FABRIZIO/0000-0003-4527-1843; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Abreu, Pedro/0000-0002-9973-7314 NR 79 TC 81 Z9 81 U1 0 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 102001 DI 10.1103/PhysRevD.79.102001 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900007 ER PT J AU Alekseev, IG Bravar, A Bunce, G Dhawan, S Eyser, KO Gill, R Haeberli, W Huang, H Jinnouchi, O Kponou, A Makdisi, Y Nakagawa, I Nass, A Okada, H Saito, N Stephenson, EJ Svirida, DN Wise, T Wood, J Zelenski, A AF Alekseev, I. G. Bravar, A. Bunce, G. Dhawan, S. Eyser, K. O. Gill, R. Haeberli, W. Huang, H. Jinnouchi, O. Kponou, A. Makdisi, Y. Nakagawa, I. Nass, A. Okada, H. Saito, N. Stephenson, E. J. Svirida, D. N. Wise, T. Wood, J. Zelenski, A. TI Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target SO PHYSICAL REVIEW D LA English DT Article ID INTERSECTING STORAGE-RINGS; PROTON-PROTON SCATTERING; DELTA-SIGMA-T; TOTAL CROSS-SECTION; SMALL-ANGLE PPBAR; HIGH-ENERGIES; IMPACT-PICTURE; HADRONIC INTERFERENCE; SLOPE PARAMETER; ROOT-S=200 GEV AB Precise measurements of the single spin asymmetry AN, and the double spin asymmetry ANN, in proton-proton (pp) elastic scattering in the region of four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c)(2) have been performed using a polarized atomic hydrogen gas jet target and the Relativistic Heavy Ion Collider (RHIC) polarized proton beam. We present measurements of A(N) and A(NN) at center-of-mass energies root s = 6.8 and 13.7 GeV. These spin-dependent observables are sensitive to the poorly known hadronic spin-dependent amplitudes. Comparing A(N) at different energies, a root s dependence of the hadronic single spin-flip amplitude is suggested. A hadronic double spin-flip amplitude from the A(NN) data is consistent with zero within a 2-sigma level. We also present Delta(sigma T), estimated from the measured A(NN) data. The results for Delta(sigma T) are consistent with zero. Our results provide significant constraints toward a comprehensive understanding of the reaction mechanism for pp elastic scattering. C1 [Bunce, G.; Jinnouchi, O.] RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Stephenson, E. J.] Indiana Univ Cyclotron Facil, Bloomington, IN 47408 USA. [Alekseev, I. G.; Svirida, D. N.] ITEP, Moscow 117259, Russia. [Nakagawa, I.; Okada, H.; Saito, N.] RIKEN, Wako, Saitama 3510198, Japan. SUNY Stony Brook, Stony Brook, NY 11794 USA. [Haeberli, W.; Wise, T.] Univ Wisconsin, Madison, WI 53706 USA. [Dhawan, S.] Yale Univ, New Haven, CT 06520 USA. [Eyser, K. O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Okada, H.; Saito, N.] Kyoto Univ, Sakyo Ku, Kyoto 6068502, Japan. [Bravar, A.; Bunce, G.; Gill, R.; Huang, H.; Kponou, A.; Makdisi, Y.; Nass, A.; Wood, J.; Zelenski, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Okada, H (reprint author), KEK, Tsukuba, Ibaraki 3050831, Japan. EM hiromi@post.kek.jp RI Alekseev, Igor/J-8070-2014; Svirida, Dmitry/R-4909-2016 OI Alekseev, Igor/0000-0003-3358-9635; FU U.S. DOE [DE-AC02-98CH10886, W-31-109-ENG-38, DE-FG0288ER40438]; NSF [PHY-0100348]; RIKEN, Japan FX We would like to thank the Instrumentation Division and Collider Accelerator Department at BNL for their work on the silicon detectors, electronics, and the RHIC polarized proton beam. We also would like to thank T. L. Trueman for useful discussions. This work is performed under the auspices of U.S. DOE Contract No. DE-AC02-98CH10886 and No. W-31-109-ENG-38, DOE Grant No. DE-FG0288ER40438, NSF Grant No. PHY-0100348, and with support from RIKEN, Japan. NR 62 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094014 DI 10.1103/PhysRevD.79.094014 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800033 ER PT J AU Artamonov, AV Bassalleck, B Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, IA Cooper, PS Diwan, MV Frank, JS Fujiwara, T Hu, J Ives, J Jaffe, DE Kabe, S Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kozhevnikov, AP Kudenko, YG Kushnirenko, A Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Mukhin, VA Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Petrenko, SV Poutissou, R Ramberg, EJ Redlinger, G Sato, T Sekiguchi, T Shinkawa, T Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Wang, Z Yershov, NV Yoshimura, Y Yoshioka, T AF Artamonov, A. V. Bassalleck, B. Bhuyan, B. Blackmore, E. W. Bryman, D. A. Chen, S. Chiang, I. -H. Christidi, I. -A. Cooper, P. S. Diwan, M. V. Frank, J. S. Fujiwara, T. Hu, J. Ives, J. Jaffe, D. E. Kabe, S. Kettell, S. H. Khabibullin, M. M. Khotjantsev, A. N. Kitching, P. Kobayashi, M. Komatsubara, T. K. Konaka, A. Kozhevnikov, A. P. Kudenko, Yu. G. Kushnirenko, A. Landsberg, L. G. Lewis, B. Li, K. K. Littenberg, L. S. Macdonald, J. A. Mildenberger, J. Mineev, O. V. Miyajima, M. Mizouchi, K. Mukhin, V. A. Muramatsu, N. Nakano, T. Nomachi, M. Nomura, T. Numao, T. Obraztsov, V. F. Omata, K. Patalakha, D. I. Petrenko, S. V. Poutissou, R. Ramberg, E. J. Redlinger, G. Sato, T. Sekiguchi, T. Shinkawa, T. Strand, R. C. Sugimoto, S. Tamagawa, Y. Tschirhart, R. Tsunemi, T. Vavilov, D. V. Viren, B. Wang, Zhe Yershov, N. V. Yoshimura, Y. Yoshioka, T. CA E949 Collaboration TI Study of the decay K+ -> pi(+) nu(nu)over-bar in the momentum region 140 < P-pi < 199 MeV/c SO PHYSICAL REVIEW D LA English DT Article ID ENDCAP PHOTON DETECTOR; GAUGE-THEORIES; 500 MHZ; RARE K; SEARCH; MODEL; PHYSICS AB Experiment E949 at Brookhaven National Laboratory has observed three new events consistent with the decay K+ -> pi(+) nu(nu) over bar in the pion momentum region 140 < P-pi < 199 MeV/c in an exposure of 1.71 x 10(12) stopped kaons with an estimated total background of 0.93 +/- 0.17(stat)(-0.24)(+0.32) (syst) events. This brings the total number of observed K+ -> pi(+)nu(nu) over bar events to seven. Combining this observation with previous results, assuming the pion spectrum predicted by the standard model, results in a branching ratio of B(K+ -> pi(+)nu(nu) over bar) = 1.73(+1.15)(-1.05) x 10(-10). An interpretation of the results for alternative models of the decay K+ -> pi(+) + nothing is also presented. C1 [Artamonov, A. V.; Kozhevnikov, A. P.; Landsberg, L. G.; Mukhin, V. A.; Obraztsov, V. F.; Patalakha, D. I.; Petrenko, S. V.; Vavilov, D. V.] Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. [Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Bhuyan, B.; Chiang, I. -H.; Diwan, M. V.; Frank, J. S.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.; Wang, Zhe] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blackmore, E. W.; Chen, S.; Hu, J.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bryman, D. A.; Ives, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chen, S.; Wang, Zhe] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Cooper, P. S.; Kushnirenko, A.; Ramberg, E. J.; Tschirhart, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fujiwara, T.; Mizouchi, K.; Nomura, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kabe, S.; Kobayashi, M.; Komatsubara, T. K.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Yershov, N. V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kitching, P.] Univ Alberta, Ctr Subatom Res, Edmonton, AB T6G 2N5, Canada. [Miyajima, M.; Tamagawa, Y.] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan. [Muramatsu, N.; Nakano, T.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Nomachi, M.] Osaka Univ, Nucl Studies Lab, Osaka 5600043, Japan. [Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Kanagawa 2398686, Japan. RP Artamonov, AV (reprint author), Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. RI Khabibullin, Marat/O-1076-2013 FU U.S. Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council; National Research Council of Canada; Russian Federation State Scientific Center Institute for High Energy Physics; Ministry of Science and Education of the Russian Federation; Chinese Ministry of Education FX We gratefully acknowledge the support and efforts of the BNL Collider-Accelerator Department for the high quality K+ beam delivered. We also recognize the substantial contributions made by the participants of E787 without which this work would not have been feasible, as well as the excellent technical and engineering support provided by all collaborating institutions including P. Bichoneau, R. Bula, M. Burke, M. Constable, H. Coombes, J. Cracco, A. Daviel, H. Diaz, C. Donahue, E. Garber, C. Lim, A. Mango, G. Munoz, H. Ratzke, H. Sauter, W. Smith, E. Stein, and A. Stillman, This research was supported in part by the U.S. Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics and under Grant-in-Aids for Scientific Research, the Natural Sciences and Engineering Research Council and the National Research Council of Canada, the Russian Federation State Scientific Center Institute for High Energy Physics, and the Ministry of Science and Education of the Russian Federation. S. Chen was also supported by the Program for New Century Excellent Talents in University from the Chinese Ministry of Education. NR 61 TC 96 Z9 96 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092004 DI 10.1103/PhysRevD.79.092004 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800008 ER PT J AU Arvanitaki, A Dimopoulos, S Dubovsky, S Graham, PW Harnik, R Rajendran, S AF Arvanitaki, Asimina Dimopoulos, Savas Dubovsky, Sergei Graham, Peter W. Harnik, Roni Rajendran, Surjeet TI Astrophysical probes of unification SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER HALOS; CP INVARIANCE; GAMMA-RAYS; GALAXIES; SUPERSYMMETRY; PARTICLES; LITHIUM; STARS AB Traditional ideas for testing unification involve searching for the decay of the proton and its branching modes. We point out that several astrophysical experiments are now reaching sensitivities that allow them to explore supersymmetric unified theories. In these theories the electroweak-mass dark matter particle can decay, just like the proton, through dimension 6 operators with lifetime similar to 10(26) s. Interestingly, this time scale is now being investigated in several experiments including ATIC, PAMELA, HESS, and Fermi. Positive evidence for such decays may be opening our first direct window to physics at the supersymmetric unification scale of M(GUT)similar to 10(16) GeV, as well as the TeV scale. Moreover, in the same supersymmetric unified theories, dimension 5 operators can lead a weak-scale superparticle to decay with a lifetime of similar to 100 s. Such decays are recorded by a change in the primordial light element abundances and may well explain the present discord between the measured Li abundances and standard big bang nucleosynthesis, opening another window to unification. These theories make concrete predictions for the spectrum and signatures at the LHC as well as Fermi. C1 [Arvanitaki, Asimina] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Arvanitaki, Asimina] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Dimopoulos, Savas; Dubovsky, Sergei; Graham, Peter W.; Harnik, Roni; Rajendran, Surjeet] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Dubovsky, Sergei] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Rajendran, Surjeet] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Arvanitaki, A (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. OI Graham, Peter/0000-0002-1600-1601 FU NSF [PHY-0503584] FX We would like to thank Nima Arkani-Hamed, Douglas Finkbeiner, Raphael Flauger, Stefan Funk, Lawrence Hall, David Jackson, Karsten Jedamzik, Graham Kribs, John March-Russell, Igor Moskalenko, Peter Michelson, Hitoshi Murayama, Michele Papucci, Stuart Raby, Graham Ross, Martin Schmaltz, Philip Schuster, Natalia Toro, Jay Wacker, Robert Wagoner, and Neal Weiner for valuable discussions. P. W. G. acknowledges the hospitality of the Institute for Advanced Study and was partially supported by NSF Grant No. PHY-0503584. NR 78 TC 97 Z9 98 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105022 DI 10.1103/PhysRevD.79.105022 PG 35 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900105 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of the semileptonic decays (B)over-bar -> D tau(-)(nu)over-bar(tau) and (B)over-bar -> D*tau(-)(nu)over-bar(tau) SO PHYSICAL REVIEW D LA English DT Article ID B-MESON DECAYS; FORM-FACTORS; BRANCHING RATIO; PARTICLE PHYSICS; HEAVY MESONS; MODEL AB We present measurements of the semileptonic decays B- -> D-0 tau(-)(nu) over bar (tau), B- -> D*(0)tau(-)(nu) over bar tau, (B) over bar (0) -> D+tau(-)(nu) over bar (tau), and (B) over bar (0) -> D*(+)tau(-)(nu) over bar (tau), which are sensitive to non-standard model amplitudes in certain scenarios. The data sample consists of 232 x 10(6) Y(4S) -> B (B) over bar decays collected with the BABAR detector at the PEP-II e(+)e(-) squared to distinguish signalcollider. We select events with a D or D* meson and a light lepton (l = e or mu) recoiling against a fully reconstructed B meson. We perform a fit to the joint distribution of lepton momentum and missing mass (B) over bar -> D-(*())tau(-)(nu) over bar (tau) events from the backgrounds, predominantly R(D*) equivalent to B((B) over bar -> D*tau(-)(nu) over bar (tau))/B((B) over bar -> D*l(-)(nu) over bar (l)) and, from a combined fit to B- and (B) over bar (0) channels, obtain the results R(D) = (41.6 +/- 11.7 +/- 5.2)% and R(D*) = (29.7 +/- 5.6 +/- 1.8)%, where the uncertainties are statistical and systematic. Normalizing to measured B- -> D-(*()0)l(-)(nu) over bar (l) branching fractions, we obtain B((B) over bar -> D tau(-)(nu) over bar (tau)) = (0.86 +/- 0.24 +/- 0.06)% and B((B) over bar -> D*tau(-)(nu) over bar (tau)) = (1.62 +/- 0.31 +/- 0.10 +/- 0.05)%, where the additional third uncertainty is from the normalization mode. We also present, for the first time, distributions of the lepton momentum vertical bar P-l*vertical bar, and the squared momentum transfer, q(2). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963 FU US Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 51 TC 29 Z9 29 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092002 DI 10.1103/PhysRevD.79.092002 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800006 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Exclusive initial-state-radiation production of the D(D)over-bar, D*(D)over-bar and D*(D)over-bar* systems SO PHYSICAL REVIEW D LA English DT Article ID Y(4260); CHARMONIUM; BABAR AB We perform a study of the exclusive production of in initial-state-radiation events, from e(+)e(-) annihilations at a center-of-mass energy near 10.58 GeV, to search for charmonium and possible new resonances. The data sample corresponds to an integrated luminosity of 384 fb(-1) and was recorded by the BABAR experiment at the PEP-II storage rings. The D (D) over bar, D*(D) over bar, D*(D) over bar* mass spectra show clear evidence of several psi resonances. However, there is no evidence for Y(4260) -> D*(D) over bar or Y(4260) -> D*(D) over bar*. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Wright, D. M.; Bingham, I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. RP Aubert, B (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Bellini, Fabio/D-1055-2009; Luppi, Eleonora/A-4902-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Frey, Raymond/0000-0003-0341-2636; Cavoto, Gianluca/0000-0003-2161-918X; Raven, Gerhard/0000-0002-2897-5323; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Luppi, Eleonora/0000-0002-1072-5633; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU U. S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U. S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 24 TC 33 Z9 33 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092001 DI 10.1103/PhysRevD.79.092001 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800005 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, J Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Search for the rare leptonic decays B+ -> l(+) nu(l) (l = e, mu) SO PHYSICAL REVIEW D LA English DT Article AB We have performed a search for the rare leptonic decays B+ -> l(+) nu(l)(l = e, mu), using data collected at the Upsilon(4S) resonance by the BABAR detector at the PEP-II storage ring. In a sample of 468 x 10(6) B (B) over bar pairs we find no evidence for a signal and set an upper limit on the branching fractions B(B+ -> mu(+)nu(mu)) < 1.0 x 10(-6) and B(B+ -> e(+) nu(e)) < 1.9 x 10(-6) at the 90% confidence level, using a Bayesian approach. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Stoker, D. P.; Martinez, A. J.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Denmark, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-010602 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.; Jessop, C. P.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Lu, C.] Univ Oregon, Eugene, OR 97403 USA. [Strom, D.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 06, Univ Paris 07, Lab Phys Nucl & Hautes Energies, IN2P3,CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Morganti, S.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroder, H.; Waldi, R.; Adye, T.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Ctr Saclay, SPP, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Saeed, M. A.; Zain, S. B.; Pan, Y.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Sassari, I-07100 Sassari, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. RP Aubert, B (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Corwin, Luke/0000-0001-7143-3821; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Martinelli, Maurizio/0000-0003-4792-9178; Wilson, Robert/0000-0002-8184-4103; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC ( United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 21 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 091101 DI 10.1103/PhysRevD.79.091101 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800001 ER PT J AU Bai, Y Han, ZY AF Bai, Yang Han, Zhenyu TI Unified dark matter model in a singlet extension of the universal extra dimension model SO PHYSICAL REVIEW D LA English DT Article DE cosmic ray energy spectra; cosmology; dark matter; electrons; galaxies; neutrinos; standard model ID ENERGIES; HIGGS AB We propose a dark matter model with standard model singlet extension of the universal extra dimension model to explain the recent observations of ATIC, PPB-BETS, PAMELA, and DAMA. Other than the standard model fields propagating in the bulk of a five-dimensional space, one fermion field and one scalar field are introduced and both are standard model singlets. The zero mode of the new fermion is identified as the right-handed neutrino, while its first Klein-Kaluza (KK) mode is the lightest KK-odd particle and the dark matter candidate. The cosmic ray spectra from ATIC and PPB-BETS determine the dark matter particle mass and hence the fifth dimension compactification scale to be 1.0-1.6 TeV. The zero mode of the singlet scalar field with a mass below 1 GeV provides an attractive force between dark matter particles, which allows a Sommerfeld enhancement to boost the annihilation cross section in the Galactic halo to explain the PAMELA data. The DAMA annual modulation results are explained by coupling the same scalar field to the electron via a higher-dimensional operator. We analyze the model parameter space that can satisfy the dark matter relic abundance and accommodate all the dark matter detection experiments. We also consider constraints from the diffuse extragalactic gamma-ray background, which can be satisfied if the dark matter particle and the first KK mode of the scalar field have highly degenerate masses. C1 [Bai, Yang] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Han, Zhenyu] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Bai, Y (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bai@fnal.gov; zhenyuhan@physics.ucdavis.edu FU United States Department of Energy [DE-FG03-91ER40674]; LLC [DE-AC02-07CH11359]; United States Department of Energy FX Many thanks to Patrick Fox for interesting discussions and Marco Cirelli for useful correspondences. Z. H. is supported in part by the United States Department of Energy Grant No. DE-FG03-91ER40674. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 57 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095023 DI 10.1103/PhysRevD.79.095023 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800080 ER PT J AU Carena, M Medina, AD Shah, NR Wagner, CEM AF Carena, Marcela Medina, Anibal D. Shah, Nausheen R. Wagner, Carlos E. M. TI Gauge-Higgs unification, neutrino masses, and dark matter in warped extra dimensions SO PHYSICAL REVIEW D LA English DT Article ID RANDALL-SUNDRUM MODEL; FERMION MASSES; HIERARCHY; SYMMETRY; FIELDS; SCATTERING; MECHANISM; ENERGIES; GEOMETRY; S-1/Z(2) AB Gauge-Higgs unification in warped extra dimensions provides an attractive solution to the hierarchy problem. The extension of the standard model gauge symmetry to SO(5)xU(1)(X) allows the incorporation of the custodial symmetry SU(2)(R) plus a Higgs boson doublet with the right quantum numbers under the gauge group. In the minimal model, the Higgs mass is in the range 110-150 GeV, while a light Kaluza-Klein excitation of the top quark appears in the spectrum, providing agreement with precision electroweak measurements and a possible test of the model at a high luminosity LHC. The extension of the model to the lepton sector has several interesting features. We discuss the conditions necessary to obtain realistic charged lepton and neutrino masses. After the addition of an exchange symmetry in the bulk, we show that the odd neutrino Kaluza-Klein modes provide a realistic dark-matter candidate, with a mass of the order of 1 TeV, which will be probed by direct dark-matter detection experiments in the near future. C1 [Carena, Marcela] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Carena, Marcela; Shah, Nausheen R.; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Medina, Anibal D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. OI Medina, Anibal/0000-0003-3662-4352 NR 69 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 096010 DI 10.1103/PhysRevD.79.096010 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800092 ER PT J AU Csaki, C Heinonen, J Hubisz, J Shirman, Y AF Csaki, Csaba Heinonen, Johannes Hubisz, Jay Shirman, Yuri TI Odd decays from even anomalies: Gauge mediation signatures without supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID PARTICLE PHYSICS; BREAKING; BOSON; AXION; MODEL; SPIN; LHC AB We analyze the theory and phenomenology of anomalous global chiral symmetries in the presence of an extra dimension. We propose a simple extension of the standard model in 5D whose signatures closely resemble those of supersymmetry with gauge mediation, and we suggest a novel scalar dark matter candidate. C1 [Csaki, Csaba; Heinonen, Johannes] Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. [Hubisz, Jay] Argonne Natl Lab, Argonne, IL 60439 USA. [Hubisz, Jay] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Shirman, Yuri] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. RP Csaki, C (reprint author), Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. EM csaki@cornell.edu; jh337@cornell.edu; jhubisz@physics.syr.edu; yshirman@uci.edu FU NSF [PHY-0355005, PHYa0653656]; DOE [DE-AC02-06CH11357]; Syracuse University College of Arts and Sciences FX We thank Jonathan Feng, Gero von Gersdorff, Mark Trodden, Itay Yavin, and Kathryn Zurek for useful discussions and the Kavli Institute for Theoretical Physics at Santa Barbara for their hospitality while this work was initiated. We also thank Hsin-Chia Cheng for reading this manuscript prior to submission and K. C. Kong for pointing out a mistake in the relic density calculation in the first version of this paper. The work of C. C. is supported in part by the NSF under Grant No. PHY-0355005 and by a U.S.-Israeli BSF grant. J. He. was supported in part by the NSF under Grant No. PHY-0355005. J. Hu. was supported at Argonne National Laboratory under DOE Contract No. DE-AC02-06CH11357, and by the Syracuse University College of Arts and Sciences. Y.S. was supported in part by the NSF under Grant No. PHYa0653656. NR 60 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105016 DI 10.1103/PhysRevD.79.105016 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900099 ER PT J AU Davoudiasl, H Huber, P AF Davoudiasl, Hooman Huber, Patrick TI Thermal production of axions in the Earth SO PHYSICAL REVIEW D LA English DT Article ID INVISIBLE AXION; CP CONSERVATION; CONSTRAINTS; MANTLE; CORE AB We estimate the production rate of axion-type particles in the core of the Earth, at a temperature T approximate to 5000 K. We constrain thermal geo-axion emission by demanding a core-cooling rate less than O(100) K/Gyr, as suggested by geophysics. This yields a "nonstellar" (unaffected by extreme stellar temperatures or densities) bound on the axion-electron (ae) fine structure constant, alpha(ae)less than or similar to 10(-18), stronger than the existing accelerator (vacuum) bound by 4 orders of magnitude. We consider the prospects for measuring the geo-axion flux through conversion into photons in a geoscope; such measurements can further constrain alpha(ae). C1 [Davoudiasl, Hooman] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Huber, Patrick] Virginia Tech, Dept Phys, IPNAS, Blacksburg, VA 24061 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov; pahuber@vt.edu FU U. S. Department of Energy [DE-AC02-98CH10886] FX We would like to thank G. Khodaparast, S. King, and Y. Semertzidis for useful discussions. The work of H. D. is supported in part by the U. S. Department of Energy underContract No. DE-AC02-98CH10886. NR 33 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095024 DI 10.1103/PhysRevD.79.095024 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800081 ER PT J AU Dawson, S Yan, WB AF Dawson, Sally Yan, Wenbin TI Hiding the Higgs boson with multiple scalars SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; RADIATIVE-CORRECTIONS; ONE-LOOP; PHYSICS AB We consider models with multiple Higgs scalar gauge singlets and the resulting restrictions on the parameters from precision electroweak measurements. In these models, the scalar singlets mix with the SU(2)(L) Higgs doublet, potentially leading to reduced couplings of the scalars to fermions and gauge bosons relative to the standard model Higgs boson couplings. Such models can make the Higgs sector difficult to explore at the LHC. We emphasize the new physics resulting from the addition of at least two scalar Higgs singlets. C1 [Dawson, Sally] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Yan, Wenbin] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Dawson, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM dawson@bnl.gov; wenbin.yan@stonybrook.edu OI Dawson, Sally/0000-0002-5598-695X FU U.S. Department of Energy [DE-AC02-98CH10886] FX The work of S. D. is supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886. NR 32 TC 30 Z9 30 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095002 DI 10.1103/PhysRevD.79.095002 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800059 ER PT J AU Deka, M Streuer, T Doi, T Dong, SJ Draper, T Liu, KF Mathur, N Thomas, AW AF Deka, M. Streuer, T. Doi, T. Dong, S. J. Draper, T. Liu, K. F. Mathur, N. Thomas, A. W. TI Moments of nucleon's parton distribution for the sea and valence quarks from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; DEEP-INELASTIC SCATTERING; FORM-FACTOR; WILSON FERMIONS; ANTIQUARK ASYMMETRY; SYMMETRY-BREAKING; MATRIX-ELEMENTS; STRANGE SEA; OPERATORS; REPRESENTATIONS AB We extend the study of lowest moments, < x > and < x(2)>, of the parton distribution function of the nucleon to include those of the sea quarks; this entails a disconnected insertion calculation in lattice QCD. This is carried out on a 16(3) x 24 quenched lattice with Wilson fermion. The quark loops are calculated with Z(2) noise vectors and unbiased subtractions, and multiple nucleon sources are employed to reduce the statistical errors. We obtain 5 sigma signals for < x > for the u, d, and s quarks, but < x(2)> i is consistent with zero within errors. We provide results for both the connected and disconnected insertions. The perturbatively renormalized < x > for the strange quark at mu = 2 GeV is < x >(s+(s) over bar) = 0.027 +/- 0.006 which is consistent with the experimental result. The ratio of < x > for s vs u/d in the disconnected insertion with quark loops is calculated to be 0.88 +/- 0.07. This is about twice as large as the phenomenologically fitted < x >(s+($) over bar)/< x >((u) over bar)+< x >((d) over bar) from experiments where (u) over bar and (d) over bar include both the connected and disconnected insertion parts. We discuss the source and implication of this difference. C1 [Deka, M.; Doi, T.; Dong, S. J.; Draper, T.; Liu, K. F.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Streuer, T.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Mathur, N.] Tata Inst Fundamental Res, Dept Theoret Phys, Mumbai 40005, Maharashtra, India. [Thomas, A. W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Deka, M (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM mpdeka@pa.uky.edu RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X NR 83 TC 24 Z9 24 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094502 DI 10.1103/PhysRevD.79.094502 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800051 ER PT J AU Detmold, W Tiburzi, BC Walker-Loud, A AF Detmold, W. Tiburzi, B. C. Walker-Loud, A. TI Extracting electric polarizabilities from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID MAGNETIC-FIELDS; MASSES; LOOPS AB Charged and neutral, pion and kaon electric polarizabilities are extracted from lattice QCD using an ensemble of anisotropic gauge configurations with dynamical clover fermions. We utilize classical background fields to access the polarizabilities from two-point correlation functions. Uniform background fields are achieved by quantizing the electric field strength with the proper treatment of boundary flux. These external fields, however, are implemented only in the valence quark sector. A novel method to extract charge particle polarizabilities is successfully demonstrated for the first time. C1 [Detmold, W.; Walker-Loud, A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Detmold, W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Tiburzi, B. C.] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. RP Detmold, W (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. EM wdetmold@wm.edu; bctiburz@umd.edu; walkloud@wm.edu OI Tiburzi, Brian/0000-0001-8696-2902; Detmold, William/0000-0002-0400-8363 FU U.S. Department of Energy [DE-AC05-06OR-23177, DE-FG02-93ER-40762, DE-FG0207ER-41527]; Jefferson Science Associates, LLC FX These calculations were performed using the CHROMA software suite [36] on the computing clusters at Jefferson Laboratory. Time on the clusters was awarded through the USQCD collaboration, and made possible by the SciDAC Initiative. This work is supported in part by Jefferson Science Associates, LLC under U. S. Department of Energy contract No. DE-AC05-06OR-23177 (W. D.). Additional support provided by the U.S. Department of Energy, under Grants No. DE-FG02-04ER-41302 (W. D.), No. DE-FG02-93ER-40762 (B. C. T.), and No. DE-FG0207ER-41527 (A. W.-L.). NR 36 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094505 DI 10.1103/PhysRevD.79.094505 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800054 ER PT J AU Dudek, JJ Edwards, RG Thomas, CE AF Dudek, Jozef J. Edwards, Robert G. Thomas, Christopher E. TI Exotic and excited-state radiative transitions in charmonium from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID MODEL; DECAYS; J/PSI AB We compute, for the first time using lattice QCD methods, charmonium radiative transition rates involving states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited-state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exotic 1(-+) eta(c1) radiative decay, we find a large partial width Gamma(eta(c1) -> J/psi gamma) similar to 100 keV. We find clear signals for electric dipole and magnetic quadrupole transition form factors in chi(c2) -> J/psi gamma, calculated for the first time in this framework, and study transitions involving excited psi and chi(c1,2) states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a nonexotic vector hybrid candidate Y(hyb?) -> eta(c)gamma. As well as comparison to experimental data, we discuss in some detail the phenomenology suggested by our results and the extent to which it mirrors that of quark-potential models, and make suggestions for the interpretation of our results involving exotic quantum numbered states. C1 [Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.] Jefferson Lab, Newport News, VA 23606 USA. [Dudek, Jozef J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Dudek, JJ (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM dudek@jlab.org NR 34 TC 61 Z9 61 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094504 DI 10.1103/PhysRevD.79.094504 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800053 ER PT J AU El-Bennich, B Furman, A Kaminski, R Lesniak, L Loiseau, B Moussallam, B AF El-Bennich, B. Furman, A. Kaminski, R. Lesniak, L. Loiseau, B. Moussallam, B. TI CP violation and kaon-pion interactions in B -> K pi(+)pi(-) decays SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; LOW-ENERGY EXPANSION; FORM-FACTORS; 11 GEV/C; QCD FACTORIZATION; K SCATTERING; SUM-RULES; SYMMETRY; LATTICE; BOSON AB We study CP violation and the contribution of the strong kaon-pion interactions in the three-body B -> K pi(+)pi(-) decays. We extend our recent work on the effect of the two-pion S- and P-wave interactions to that of the corresponding kaon-pion ones. The weak amplitudes have a first term derived in QCD factorization and a second one as a phenomenological contribution added to the QCD penguin amplitudes. The effective QCD coefficients include the leading order contributions plus next-to-leading order vertex and penguins corrections. The matrix elements of the transition to the vacuum of the kaon-pion pairs, appearing naturally in the factorization formulation, are described by the strange K pi scalar (S-wave) and vector (P-wave) form factors. These are determined from Muskhelishvili-Omnes coupled channel equations using experimental kaon-pion T-matrix elements, together with chiral symmetry and asymptotic QCD constraints. From the scalar form factor study, the modulus of the K-0*(1430)decay constant is found to be (32 +/- 5) MeV. The additional phenomenological amplitudes are fitted to reproduce the K pi effective mass and helicity angle distributions, the B -> K*(892)pi branching ratios and the CP asymmetries of the recent data from Belle and BABAR collaborations. We use also the new measurement by the BABAR group of the phase difference between the B-0 and (B) over bar (0) decay amplitudes to K*(892)pi. Our predicted B-+/- -> K-0*(1430)pi(+/-), K-0*(1430) -> K-+/-pi(-/+) branching fraction, equal to (11.6 +/- 0.6) x 10(-6), is smaller than the result of the analyzes of both collaborations. For the neutral B0 decays, the predicted value is (11.1 +/- 0.5) x 10(-6). In order to reduce the large systematic uncertainties in the experimental determination of the B -> K-0*(1430)pi branching fractions, a new parametrization is proposed. It is based on the K pi scalar form factor, well constrained by theory and experiments other than those of B decays. C1 [El-Bennich, B.; Loiseau, B.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3,Grp Theorie, F-75252 Paris, France. [El-Bennich, B.; Loiseau, B.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3,Grp Theorie, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kaminski, R.; Lesniak, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Div Theoret Phys, PL-31342 Krakow, Poland. [Moussallam, B.] Univ Paris 11, Inst Phys Nucl, CNRS, Grp Phys Theor,IN2P3, F-91406 Orsay, France. RP El-Bennich, B (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. NR 82 TC 45 Z9 45 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094005 DI 10.1103/PhysRevD.79.094005 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800024 ER PT J AU Gelis, F Lappi, T Venugopalan, R AF Gelis, Francois Lappi, Tuomas Venugopalan, Raju TI High energy factorization in nucleus-nucleus collisions. III. Long range rapidity correlations SO PHYSICAL REVIEW D LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; RENORMALIZATION-GROUP; TRANSVERSE-MOMENTUM; PERTURBATIVE QCD; SMALL-X; EVOLUTION; EQUATION; FEATURES; POMERON AB We obtain a novel result in QCD for long range rapidity correlations between gluons produced in the collision of saturated high energy hadrons or nuclei. This result, obtained in a high energy factorization framework, provides strong justification for the Glasma flux tube picture of coherent strong color fields. Our formalism can be applied to "near side ridge'' events at the Relativistic Heavy Ion Collider and in future studies of long range rapidity correlations at the LHC. C1 [Gelis, Francois] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Gelis, Francois; Lappi, Tuomas] CEA Saclay, DSM,URA 2306, CNRS, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gelis, F (reprint author), CERN, PH TH, Div Theory, Case C01600, CH-1211 Geneva 23, Switzerland. FU U. S. Department of Energy [DE-AC02-98CH10886]; Agence Nationale de la Recherche via the programme [ANR-06-BLAN-0285-01] FX We thank the Center for Theoretical Sciences of the Tata Institute for Fundamental Research for their support during the program "Initial Conditions in Heavy Ion Collisions.'' R.V.'s research is supported by the U. S. Department of Energy under DOE Contract No. DE-AC02-98CH10886. F.G.' s work is supported in part by Agence Nationale de la Recherche via the programme ANR-06-BLAN-0285-01. NR 38 TC 57 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094017 DI 10.1103/PhysRevD.79.094017 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800036 ER PT J AU Harnik, R Kribs, GD AF Harnik, Roni Kribs, Graham D. TI Effective theory of Dirac dark matter SO PHYSICAL REVIEW D LA English DT Article ID COSMIC-RAY ELECTRONS; EARLY UNIVERSE; POSITRONS; ENERGY; SUPERSYMMETRY; SPECTRA; MASS AB A stable Dirac fermion with four-fermion interactions to leptons suppressed by a scale Lambda similar to 1 TeV is shown to provide a viable candidate for dark matter. The thermal relic abundance matches cosmology, while nuclear recoil direct detection bounds are automatically avoided in the absence of (large) couplings to quarks. The annihilation cross section in the early Universe is the same as the annihilation in our Galactic neighborhood. This allows Dirac fermion dark matter to naturally explain the positron ratio excess observed by PAMELA with a minimal boost factor, given present astrophysical uncertainties. We use the GALPROP program for propagation of signal and background; we discuss in detail the uncertainties resulting from the propagation parameters and, more importantly, the injected spectra. Fermi/GLAST has an opportunity to see a feature in the gamma-ray spectrum at the mass of the Dirac fermion. The excess observed by ATIC/PPB-BETS may also be explained with Dirac dark matter that is heavy. A super-symmetric model with a Dirac bino provides a viable UV model of the effective theory. The dominance of the leptonic operators, and thus the observation of an excess in positrons and not in antiprotons, is naturally explained by the large hypercharge and low mass of sleptons as compared with squarks. Minimizing the boost factor implies the right- handed selectron is the lightest slepton, which is characteristic of our model. Selectrons (or sleptons) with mass less than a few hundred GeV are an inescapable consequence awaiting discovery at the LHC. C1 [Harnik, Roni] Stanford Univ, Dept Phys, SITP, Stanford, CA 94305 USA. [Kribs, Graham D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Kribs, Graham D.] Univ Oregon, Inst Theoret Sci, Eugene, OR 97403 USA. [Harnik, Roni] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Harnik, R (reprint author), Stanford Univ, Dept Phys, SITP, Stanford, CA 94305 USA. FU Department of Energy [DE-AC02-76SF00515, DE-FG02-96ER40969] FX The authors thank I. Moskalenko and A. Strong for help in understanding the physics and output of their GALPROP program; J. Schombert for teaching us how to read FITS files; and N. Weiner for useful discussions at an early stage in the project. The authors also thank the Aspen Center for Physics where this work was initiated. This work was supported in part by the Department of Energy under Grant Nos. DE-AC02-76SF00515 (R.H.) and DE-FG02-96ER40969 (G.D.K.). NR 76 TC 61 Z9 61 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095007 DI 10.1103/PhysRevD.79.095007 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800064 ER PT J AU Hooper, D Zurek, KM AF Hooper, Dan Zurek, Kathryn M. TI PAMELA and ATIC signals from Kaluza-Klein dark matter SO PHYSICAL REVIEW D LA English DT Article ID RAY POSITRON FRACTION; ELECTRONS; ENERGIES AB We study the possibility that Kaluza-Klein dark matter in a model with one universal extra dimension is responsible for the recent observations of the PAMELA and ATIC experiments. In this model, the dark matter particles annihilate largely to charged leptons, which enables them to produce a spectrum of cosmic ray electrons and positrons consistent with the PAMELA and ATIC measurements. To normalize to the observed signal, however, large boost factors (similar to 10(3)) are required. Despite these large boost factors and significant annihilation to hadronic modes (35%), we find that the constraints from cosmic ray antiproton measurements can be satisfied. Relic abundance considerations in this model force us to consider a rather specific range of masses (approximately 600-900 GeV) which is very similar to the range required to generate the ATIC spectral feature. The results presented here can also be used as a benchmark for model-independent constraints on dark matter annihilation to hadronic modes. C1 [Hooper, Dan; Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Zurek, Kathryn M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU U. S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank Joakim Edsjo for his help with DARKSUSY. This work has been supported by the U. S. Department of Energy Grant No. DE-FG02-95ER40896 and by NASA Grant No. NAG5-10842. NR 44 TC 43 Z9 43 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 103529 DI 10.1103/PhysRevD.79.103529 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900049 ER PT J AU Hooper, D Stebbins, A Zurek, KM AF Hooper, Dan Stebbins, Albert Zurek, Kathryn M. TI Excesses in cosmic ray positron and electron spectra from a nearby clump of neutralino dark matter SO PHYSICAL REVIEW D LA English DT Article ID EGRET OBSERVATIONS; EMISSION AB In this letter, we suggest that a nearby clump of 600-1000 GeV neutralinos may be responsible for the excesses recently observed in the cosmic ray positron and electron spectra by the PAMELA and ATIC experiments. Although neutralino dark matter annihilating throughout the halo of the Milky Way is predicted to produce a softer spectrum than is observed, and violate constraints from cosmic ray antiproton measurements, a large nearby (within 1-2 kiloparsecs of the Solar System) clump of annihilating neutralinos can lead to a spectrum which is consistent with PAMELA and ATIC, while also producing an acceptable antiproton flux. Furthermore, the presence of a large dark matter clump can potentially accommodate the very large annihilation rate required to produce the PAMELA and ATIC signals. We estimate the probability of a sufficiently large clump being present to be similar to 10(-3) or less. C1 [Hooper, Dan; Stebbins, Albert; Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU US Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX This work has been supported by the US Department of Energy, including grant DE-FG02-95ER40896, and by NASA grant NAG5-10842. NR 40 TC 68 Z9 68 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 103513 DI 10.1103/PhysRevD.79.103513 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900033 ER PT J AU Ibe, M Murayama, H Yanagida, TT AF Ibe, Masahiro Murayama, Hitoshi Yanagida, T. T. TI Breit-Wigner enhancement of dark matter annihilation SO PHYSICAL REVIEW D LA English DT Article ID ABUNDANCES; ENERGIES AB We point out that annihilation of dark matter in the galactic halo can be enhanced relative to that in the early Universe due to a Breit-Wigner tail, if the dark matter annihilates through a pole just below the threshold. This provides a new explanation to the "boost factor" which is suggested by the recent data of the PAMELA, ATIC and PPB-BETS cosmic ray experiments. C1 [Ibe, Masahiro] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Murayama, Hitoshi; Yanagida, T. T.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Yanagida, T. T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Ibe, M (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RI Yanagida, Tsutomu/A-4394-2011; Murayama, Hitoshi/A-4286-2011 FU U. S. Department of Energy [DE-AC02-76SF00515]; MEXT, Japan; U.S. DOE [DE-AC03-76SF00098]; NSF [PHY-04-57315] FX The work of M. I. was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. The work of H. M. and T. T. Y. was supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The work of H. M. was also supported in part by the U.S. DOE under Contract No. DE-AC03-76SF00098, and in part by the NSF under Grant No. PHY-04-57315. NR 15 TC 118 Z9 119 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095009 DI 10.1103/PhysRevD.79.095009 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800066 ER PT J AU Martin, SP AF Martin, Stephen P. TI Nonuniversal gaugino masses from nonsinglet F-terms in nonminimal unified models SO PHYSICAL REVIEW D LA English DT Article ID GRAND-UNIFICATION; SUPERSYMMETRIC SU(5); PROTON-DECAY; SCALE; GUTS; PREDICTIONS; NATURALNESS; SPECTRUM; SO(10) AB In phenomenological studies of low-energy supersymmetry, running gaugino masses are often taken to be equal near the scale of apparent gauge coupling unification. However, many known mechanisms can avoid this universality, even in models with unified gauge interactions. One example is an F-term vacuum expectation value that is a singlet under the standard model gauge group but transforms nontrivially in the symmetric product of two adjoint representations of a group that contains the standard model gauge group. Here, I compute the ratios of gaugino masses that follow from F-terms in nonsinglet representations of SO(10) and E(6) and their subgroups, extending well-known results for SU(5). The SO(10) results correct some long-standing errors in the literature. C1 [Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-0757325] FX This work was supported in part by National Science Foundation Grant No. PHY-0757325. NR 55 TC 76 Z9 76 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095019 DI 10.1103/PhysRevD.79.095019 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800076 ER PT J AU Quigg, C Shrock, R AF Quigg, Chris Shrock, Robert TI Gedanken worlds without Higgs fields: QCD-induced electroweak symmetry breaking SO PHYSICAL REVIEW D LA English DT Review ID CHIRAL PERTURBATION-THEORY; PROTON MASS DIFFERENCE; MODEL PADE CALCULATION; REAL SCALAR FIELD; WEAK INTERACTIONS; STANDARD MODEL; SIGMA-MODEL; BOSON MASS; BROKEN SYMMETRIES; TECHNICOLOR THEORIES AB To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) gauge symmetry and fermion content similar to that of the standard model. The first class-like the standard electroweak theory-contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3)(c)circle times SU(2)(L)circle times SU(2)(R)circle times U(1) gauge group. In a fourth class of models, built on SU(4)(PS)circle times SU(2)(L)circle times SU(2)(R) gauge symmetry, the lepton number is treated as a fourth color and the color gauge group is enlarged to the SU(4)(PS) of Pati and Salam (PS). Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world. C1 [Quigg, Chris] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Quigg, Chris] Univ Karlsruhe, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany. [Shrock, Robert] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Quigg, C (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. NR 140 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 096002 DI 10.1103/PhysRevD.79.096002 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800084 ER PT J AU Shifman, M Unsal, M AF Shifman, M. Unsal, Mithat TI Yang-Mills theories with chiral matter at strong coupling SO PHYSICAL REVIEW D LA English DT Article ID LARGE-N EXPANSION; FIELD-THEORIES; GAUGE-THEORIES; LATTICE; CONDENSATE; SYMMETRY; MODEL AB Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address nonperturbative properties of chiral, nonsupersymmetric gauge theories, in particular, chiral quiver theories on S(1)xR(3). Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect small-r(S(1)) to large-r(S(1)) physics (R(4) is the limiting case) where the double-trace deformations are switched off. In particular, the occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the monopole-ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence may open new perspectives on strong coupling chiral gauge theories on R(4). C1 [Shifman, M.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Shifman, M.] Univ Paris 11, Phys Theor Lab, CNRS, Unite Mixte Rech,UMR 8627, F-91405 Orsay, France. [Unsal, Mithat] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Unsal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Shifman, M (reprint author), Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. FU DOE [DE-FG02-94ER40823]; Chaire Internationalle de Recherche Blaise Pascal de l'Etat et de la Regoin d'Ille-de-France, geree par la Fondation de l'Ecole Normale Superieure; U.S. Department of Energy [DE-AC02-76SF00515] FX We thank E. Poppitz for sharing with us his unpublished notes on chiral determinants, and useful remarks on the paper. M. S. is grateful to G. Korchemsky and A. Vainshtein for discussions. M. U. thanks S. Dimopoulos, M. Peskin, E. Poppitz, and M. Golterman for illuminating conversations about chiral gauge theories. We thank the Galileo Galilei Institute for Theoretical Physics in Florence for their hospitality and INFN for partial support at the final stages of this work. The work of M. S. is supported in part by DOE Grant No. DE-FG02-94ER40823 and by Chaire Internationalle de Recherche Blaise Pascal de l'Etat et de la Regoin d'Ille-de-France, geree par la Fondation de l'Ecole Normale Superieure. The work of M. U. is supported by the U.S. Department of Energy Grant No. DE-AC02-76SF00515. NR 43 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105010 DI 10.1103/PhysRevD.79.105010 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900093 ER PT J AU Smith, CJ Fuller, GM Smith, MS AF Smith, Christel J. Fuller, George M. Smith, Michael S. TI Big bang nucleosynthesis with independent neutrino distribution functions SO PHYSICAL REVIEW D LA English DT Article ID WEAK-INTERACTION RATES; INTERMEDIATE-MASS NUCLEI; PROBE WMAP OBSERVATIONS; DECAYING DARK-MATTER; PRIMORDIAL NUCLEOSYNTHESIS; STERILE NEUTRINOS; EARLY UNIVERSE; X-RAY; TAU-NEUTRINOS; OSCILLATIONS AB We have performed new big bang nucleosynthesis calculations, which employ arbitrarily specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate, and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early Universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally determined primordial helium and deuterium abundances. We have modified a standard big bang nucleosynthesis code to perform these calculations and have made it available to the community. C1 [Smith, Christel J.; Fuller, George M.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Smith, Michael S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Smith, CJ (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. FU U.S. DOE [DE-AC05-00OR22725]; NSF [PHY-0653626]; UC/LANL CARE grant at UCSD FX We would like to acknowledge discussions with Chad Kishimoto and Kevork Abazajian. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. The work of G. M. F. and C. J. S. was supported in part by NSF Grant No. PHY-0653626 and a UC/LANL CARE grant at UCSD. NR 73 TC 15 Z9 15 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105001 DI 10.1103/PhysRevD.79.105001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900084 ER PT J AU Vogelsang, W Yuan, F AF Vogelsang, Werner Yuan, Feng TI Next-to-leading order calculation of the single transverse spin asymmetry in the Drell-Yan process SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; STRUCTURE-FUNCTION G2(X; PARTON DISTRIBUTIONS; QUANTUM CHROMODYNAMICS; HADRONIC SCATTERING; EVOLUTION-EQUATIONS; POLARIZED NUCLEON; POWER CORRECTIONS; HIGHER-TWIST AB We calculate the next-to-leading order perturbative QCD corrections to the transverse momentum weighted single transverse spin asymmetry in Drell-Yan lepton pair production in hadronic collisions. We identify the splitting function relevant for the scale evolution of the twist-three quark-gluon correlation function. We comment on the consequences of our results for phenomenology. C1 [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Vogelsang, W (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM vogelsan@quark.phy.bnl.gov; fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013 FU U.S. Department of Energy [DE-AC0205CH11231, DE-AC02-98CH10886]; RIKEN, Brookhaven National Laboratory FX We thank Zhongbo Kang, Jianwei Qiu, and Jian Zhou for useful comments and valuable discussions. W. V. is grateful to V. Braun, M. Diehl, and D. Muller for useful discussions. This work was supported in part by the U.S. Department of Energy under grant Contract No. DE-AC0205CH11231. F. Y. and W. V. thank RIKEN, Brookhaven National Laboratory and the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of their work. NR 56 TC 52 Z9 52 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094010 DI 10.1103/PhysRevD.79.094010 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800029 ER PT J AU Wang, P Leinweber, DB Thomas, AW Young, RD AF Wang, P. Leinweber, D. B. Thomas, A. W. Young, R. D. TI Chiral extrapolation of octet-baryon charge radii SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; PERTURBATION-THEORY; QUARK-MODEL; NUCLEON; LATTICE; CONVERGENCE; COVARIANT; SYMMETRY AB The charge radii of octet-baryons obtained in quenched lattice-QCD calculations are extrapolated within heavy-baryon chiral perturbation theory. Finite-range regularization is applied to improve the convergence of the chiral expansion and to provide estimates of quenching artifacts. Lattice values of quark distribution radii and baryon charge radii for m(pi)(2) in the range (0.1,0.7) GeV2 are described very well with finite-range regularization. Upon estimating corrections for both finite-volume and quenching effects, the obtained charge radii of the proton, neutron and Sigma(-) are in good agreement with experimental measurements. The predicted charge radii of the remaining octet-baryons have not yet been measured and present a challenge to future experiments. C1 [Wang, P.; Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Leinweber, D. B.] Univ Adelaide, Special Res Ctr Subatom Struct Matter CSSM, Adelaide, SA 5005, Australia. [Leinweber, D. B.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Thomas, A. W.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Young, R. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Wang, P (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012; Leinweber, Derek/J-6705-2013 OI Thomas, Anthony/0000-0003-0026-499X; Leinweber, Derek/0000-0002-4745-6027 FU Australian Partnership for Advanced Computing (APAC); eResearch South Australia for supercomputer; Australian Research Council; U.S. DOE [DE-AC05-06OR23177] FX We thank the Australian Partnership for Advanced Computing (APAC) and eResearch South Australia for supercomputer support enabling this project. This work is supported by the Australian Research Council and by U.S. DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory, and Contract No. DE-AC02-06CH11357, under which UChicago Argonne, LLC operates Argonne National Laboratory. NR 53 TC 34 Z9 34 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094001 DI 10.1103/PhysRevD.79.094001 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800020 ER PT J AU Yamazaki, T AF Yamazaki, Takeshi TI On-shell Delta I=3/2 kaon weak matrix elements with nonzero total momentum SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; PION-SCATTERING LENGTH; QUANTUM-FIELD THEORIES; TO-LEADING ORDER; LATTICE CALCULATION; ANISOTROPIC LATTICES; FINAL-STATE; ONE-LOOP; FERMIONS; DECAYS AB We present our results for the on-shell Delta I=3/2 kaon decay matrix elements using domain wall fermions and the DBW2 gauge action at one coarse lattice spacing corresponding to a(-1)=1.31 GeV in the quenched approximation. The on-shell matrix elements are evaluated in two different frames: the center-of-mass frame and nonzero total-momentum frame. We employ the formula proposed by Lellouch and Luscher in the center-of-mass frame, and its extension for a nonzero total-momentum frame to extract the infinite volume, on-shell, center- of-mass frame decay amplitudes. We determine the decay amplitude at the physical pion mass and momentum from the chiral extrapolation and an interpolation of the relative momentum using the results calculated in the two frames. We have obtained ReA(2) = 1.66(23)((+48)(-03)) x ((+53)(-0)) x 10(-8) GeV and ImA(2) = -1.181(26)((+141)(-014)) ((+44)(-0)) x 10(-12) GeV at the physical point, using the data at the relatively large pion mass, m(pi) > 0.35 GeV. The first error is statistic, and the second and third are systematic. The second error is estimated with several fits of the chiral extrapolation including the (quenched) chiral perturbation formula at next to leading order using only lighter pion masses. The third one is estimated with an analysis using the lattice dispersion relation. The result of ReA(2) is reasonably consistent with experiment. C1 [Yamazaki, Takeshi] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Yamazaki, Takeshi] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Yamazaki, T (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. NR 70 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094506 DI 10.1103/PhysRevD.79.094506 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800055 ER PT J AU Daligault, J Dimonte, G AF Daligault, Jerome Dimonte, Guy TI Correlation effects on the temperature-relaxation rates in dense plasmas SO PHYSICAL REVIEW E LA English DT Article DE hydrogen; molecular dynamics method; plasma density; plasma interactions; plasma temperature ID CONDUCTIVITIES; HYDROGEN; LIQUIDS; STATE AB We present a model for the rate of temperature relaxation between electrons and ions in plasmas. The model includes self-consistently the effects of particle screening, electron degeneracy, and correlations between electrons and ions. We successfully validate the model over a wide range of plasma coupling against molecular-dynamics simulations of classical plasmas of like-charged electrons and ions. We present calculations of the relaxation rates in dense hydrogen and show that, while electron-ion correlation effects are indispensable in classical, like-charged plasmas at any density and temperature, quantum diffraction effects prevail over electron-ion correlation effects in dense hydrogen plasmas. C1 [Daligault, Jerome; Dimonte, Guy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Daligault, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM daligaul@lanl.gov NR 30 TC 29 Z9 29 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 056403 DI 10.1103/PhysRevE.79.056403 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WE UT WOS:000266500800064 PM 19518572 ER PT J AU Lane, JMD Ismail, AE Chandross, M Lorenz, CD Grest, GS AF Lane, J. Matthew D. Ismail, Ahmed E. Chandross, Michael Lorenz, Christian D. Grest, Gary S. TI Forces between functionalized silica nanoparticles in solution SO PHYSICAL REVIEW E LA English DT Article DE coatings; flocculation; liquid theory; molecular dynamics method; nanoparticles; phase separation; polymers; silicon compounds; surfactants; water ID MOLECULAR-DYNAMICS SIMULATION; POLY(ETHYLENE OXIDE); QUANTUM-CHEMISTRY; SHEAR; SURFACE; LIQUID; WATER AB To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5-nm-diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, macroscale fluid theory accurately predicts the drag on these nanoscale particles. Good agreement is seen with Brenner's analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres. C1 [Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorenz, Christian D.] Kings Coll London, Mat Res Grp, London WC2R 2LS, England. RP Lane, JMD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Ismail, Ahmed/B-7790-2009; Lorenz, Christian/A-6996-2017 OI Ismail, Ahmed/0000-0001-9929-5598; Lorenz, Christian/0000-0003-1028-4804 FU Laboratory Directed Research and Development; Sandia Corporation; Lockheed Martin Co.; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Frank van Swol and Burkhard Dunweg for useful discussions. We thank the New Mexico Computing Application Center (NMCAC) for generous allocation of computer time. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 28 TC 29 Z9 29 U1 2 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 050501 DI 10.1103/PhysRevE.79.050501 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WD UT WOS:000266500700010 PM 19518405 ER PT J AU Mamontov, E Vlcek, L Wesolowski, DJ Cummings, PT Rosenqvist, J Wang, W Cole, DR Anovitz, LM Gasparovic, G AF Mamontov, Eugene Vlcek, Lukas Wesolowski, David J. Cummings, Peter T. Rosenqvist, Joergen Wang, Wei Cole, David R. Anovitz, Lawrence M. Gasparovic, Goran TI Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile SO PHYSICAL REVIEW E LA English DT Article DE molecular dynamics method; solvation; surface waves (fluid); titanium compounds; water ID BACKSCATTERING NEUTRON SPECTROSCOPY; MOLECULAR-DYNAMICS; PROTEIN HYDRATION; CONFINED WATER; DIELECTRIC-RELAXATION; SILICA MATRICES; SCATTERING; CROSSOVER; LYSOZYME; SYSTEMS AB Our quasielastic neutron-scattering experiments and molecular-dynamics simulations probing surface water on rutile (TiO2) have demonstrated that a sufficiently high hydration level is a prerequisite for the temperature-dependent crossover in the nanosecond dynamics of hydration water. Below the monolayer coverage of mobile surface water, a weak temperature dependence of the relaxation times with no apparent crossover is observed. We associate the dynamic crossover with interlayer jumps of the mobile water molecules, which become possible only at a sufficiently high hydration level. C1 [Mamontov, Eugene] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Vlcek, Lukas; Cummings, Peter T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Wesolowski, David J.; Rosenqvist, Joergen; Cole, David R.; Anovitz, Lawrence M.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Wei] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Gasparovic, Goran] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Gasparovic, Goran] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Mamontov, E (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Wang, Wei/B-5924-2012; Cummings, Peter/B-8762-2013; Vlcek, Lukas/N-7090-2013; Mamontov, Eugene/Q-1003-2015; Anovitz, Lawrence/P-3144-2016 OI Cummings, Peter/0000-0002-9766-2216; Vlcek, Lukas/0000-0003-4782-7702; Mamontov, Eugene/0000-0002-5684-2675; Anovitz, Lawrence/0000-0002-2609-8750 FU U. S. DOE, BES, Division of Chemical Sciences, Geosciences, and Biosciences [ERKCC41]; Oak Ridge National Laboratory; U. S. DOE [DE-AC05-00OR22725] FX The authors are thankful to K. W. Herwig and M. Zamponi for critical reading of the paper. We used the resource of the Computing Center for Research and Education at Vanderbilt University and the Institutional Computational Cluster at ORNL's Chemical Sciences Division. This work was supported by the U. S. DOE, BES, Division of Chemical Sciences, Geosciences, and Biosciences through the project "Nanoscale Complexity at the Oxide/Water Interface" (Project No. ERKCC41) and by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. DOE under Contract No. DE-AC05-00OR22725. NR 48 TC 39 Z9 39 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 051504 DI 10.1103/PhysRevE.79.051504 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WD UT WOS:000266500700064 PM 19518459 ER PT J AU Wallace, DC Chisolm, ED Bock, N AF Wallace, Duane C. Chisolm, Eric D. Bock, Nicolas TI Improved model for the transit entropy of monatomic liquids SO PHYSICAL REVIEW E LA English DT Article DE ab initio calculations; copper; density functional theory; entropy; liquid theory; melting; sodium; vibrational modes ID INITIO MOLECULAR-DYNAMICS; HIGH PRESSURES; ALKALI-METALS; DEGREES C; COMPRESSIBILITY; TEMPERATURES; VELOCITY; SODIUM; SOUND; DENSITIES AB In the original formulation of vibration-transit (V-T) theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of +/- 2% among elemental liquids and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of +/- 0.1% to the available experimental high-temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution S(vib)(T/theta(0)), where T is temperature and theta(0) is the vibrational characteristic temperature, and (b) the transit contribution S(tr)(T/theta(tr)), where theta(tr) is a scaling temperature for each liquid. The appearance of a common functional form of S(tr) for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting S(tr) implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived in a single formula applying to normal and anomalous melting alike. An ab initio calculation of theta(0), based on density-functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory. C1 [Wallace, Duane C.; Chisolm, Eric D.; Bock, Nicolas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wallace, DC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 55 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 051201 DI 10.1103/PhysRevE.79.051201 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WD UT WOS:000266500700046 PM 19518441 ER PT J AU Chan, TL Wang, CZ Ho, KM Chelikowsky, JR AF Chan, T. -L. Wang, C. Z. Ho, K. M. Chelikowsky, James R. TI Efficient First-Principles Simulation of Noncontact Atomic Force Microscopy for Structural Analysis SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; TIO2(110) SURFACE; SI(111); RESOLUTION; IMAGE AB We propose an efficient scheme to simulate noncontact atomic force microscopy images by using first-principles self-consistent potential from the sample as input without explicit modeling of the atomic force microscopy tip. Our method is applied to various types of semiconductor surfaces including Si(111)-(7 x 7), TiO2(110)-(1 x 1), Ag/Si(111)-(root 3 x root 3)R30 degrees, and Ge/Si(105)-(1 x 2) surfaces. We obtain good agreement with experimental results and previous theoretical studies, and our method can aid in identifying different structural models for surface reconstruction. C1 [Chan, T. -L.; Chelikowsky, James R.] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. [Chan, T. -L.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chan, T. -L.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Chan, TL (reprint author), Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. RI Chan, Tzu-Liang/C-3260-2015; OI Chan, Tzu-Liang/0000-0002-9655-0917; Wang, Chong/0000-0003-4489-4344 FU Director for Energy Research; Office of Basic Energy Sciences; National Energy Research Scientific Computing Center and the Texas Advanced Computing Center; National Science Foundation [DMR-0551195]; U. S. DOE [DE-FG02-06ER46286, DE-FG02-06ER15760] FX Ames Laboratory is operated for the U. S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Scientific Computing Center and the Texas Advanced Computing Center. T. L. C. and J. R. C. acknowledge support from the National Science Foundation under DMR-0551195 and the U. S. DOE under DE-FG02-06ER46286 and DE-FG02-06ER15760. NR 35 TC 14 Z9 14 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 176101 DI 10.1103/PhysRevLett.102.176101 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300036 PM 19518799 ER PT J AU Hoblit, S Sandorfi, AM Ardashev, K Bade, C Bartalini, O Blecher, M Caracappa, A D'Angelo, A d'Angelo, A Di Salvo, R Fantini, A Gibson, C Gluckler, H Hicks, K Honig, A Kageya, T Khandaker, M Kistner, OC Kizilgul, S Kucuker, S Lehmann, A Lowry, M Lucas, M Mahon, J Miceli, L Moricciani, D Norum, B Pap, M Preedom, B Seyfarth, H Schaerf, C Stroher, H Thorn, CE Whisnant, CS Wang, K Wei, X AF Hoblit, S. Sandorfi, A. M. Ardashev, K. Bade, C. Bartalini, O. Blecher, M. Caracappa, A. D'Angelo, A. d'Angelo, A. Di Salvo, R. Fantini, A. Gibson, C. Glueckler, H. Hicks, K. Honig, A. Kageya, T. Khandaker, M. Kistner, O. C. Kizilgul, S. Kucuker, S. Lehmann, A. Lowry, M. Lucas, M. Mahon, J. Miceli, L. Moricciani, D. Norum, B. Pap, M. Preedom, B. Seyfarth, H. Schaerf, C. Stroeher, H. Thorn, C. E. Whisnant, C. S. Wang, K. Wei, X. TI Measurements of HD(gamma,pi) and Implications for the Convergence of the Gerasimov-Drell-Hern Integral SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUM-RULE; MAGNETIC MOMENTS; PHOTOPRODUCTION; DEUTERON; NUCLEI AB We report new measurements of inclusive pi production from frozen-spin HD for polarized photon beams covering the Delta(1232) resonance. These provide data simultaneously on both H and D with nearly complete angular distributions of the spin-difference cross sections entering the Gerasimov-Drell-Hearn (GDH) sum rule. Recent results from Mainz and Bonn exceed the GDH prediction for the proton by 22 mu b, suggesting as yet unmeasured high-energy components. Our pi(0) data reveal a different angular dependence than assumed in Mainz analyses and integrate to a value that is 18 mu b lower, suggesting a more rapid convergence. Our results for deuterium are somewhat lower than published data, considerably more precise, and generally lower than available calculations. C1 [Hoblit, S.; Ardashev, K.; Norum, B.; Wang, K.] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. [Hoblit, S.; Sandorfi, A. M.; Caracappa, A.; Kistner, O. C.; Lowry, M.; Miceli, L.; Thorn, C. E.; Wei, X.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Ardashev, K.; Gibson, C.; Lehmann, A.; Preedom, B.] Univ S Carolina, Dept Phys, Columbia, SC 29208 USA. [Bade, C.; Hicks, K.; Kizilgul, S.; Lucas, M.; Mahon, J.] Ohio Univ, Dept Phys, Athens, OH 45701 USA. [Bartalini, O.; D'Angelo, A.; d'Angelo, A.; Di Salvo, R.; Fantini, A.; Moricciani, D.; Schaerf, C.] Univ Roma Tor Vergata, Rome, Italy. [Bartalini, O.; D'Angelo, A.; d'Angelo, A.; Di Salvo, R.; Fantini, A.; Moricciani, D.; Schaerf, C.] Ist Nazl Fis Nucl, Sez Roma2, Rome, Italy. [Blecher, M.; Kageya, T.] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA. [Glueckler, H.; Pap, M.; Stroeher, H.] Forschungszentrum Julich, D-52425 Julich, Germany. [Honig, A.] Syracuse Univ, Dept Phys, Syracuse, NY 13210 USA. [Khandaker, M.] Norfolk State Univ, Norfolk & Jefferson Lab, Newport News, VA 23606 USA. [Whisnant, C. S.] James Madison Univ, Harrisonburg, VA 22807 USA. RP Hoblit, S (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. EM hoblit@bnl.gov; sandorfi@jlab.org RI Fantini, Alessia/J-2478-2012; moricciani, dario/C-5002-2014; D'Angelo, Annalisa/A-2439-2012; OI Fantini, Alessia/0000-0002-4643-4731; moricciani, dario/0000-0002-1737-8857; D'Angelo, Annalisa/0000-0003-3050-4907; Di Salvo, Rachele/0000-0002-2162-714X FU U. S. Department of Energy [DE-AC02-98-CH10886]; Istituto Nazionale di Fisica Nucleare, Italy; U. S. National Science Foundation FX This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-98-CH10886, by the Istituto Nazionale di Fisica Nucleare, Italy, and by the U. S. National Science Foundation. We are indebted to Mr. F. Lincoln for his technical assistance. We thank Doctors C. Commeaux, J.-P. Didelez, and G. Rouille for their collaboration during the early stages of HD target development. One of us (A. M. S.) would like to thank Doctors A. Fix and H. Arenhovel for supplying their deuteron calculations. NR 22 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 172002 DI 10.1103/PhysRevLett.102.172002 PG 5 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300010 PM 19518773 ER PT J AU Kofu, M Ueda, H Nojiri, H Oshima, Y Zenmoto, T Rule, KC Gerischer, S Lake, B Batista, CD Ueda, Y Lee, SH AF Kofu, M. Ueda, H. Nojiri, H. Oshima, Y. Zenmoto, T. Rule, K. C. Gerischer, S. Lake, B. Batista, C. D. Ueda, Y. Lee, S. -H. TI Magnetic-Field Induced Phase Transitions in a Weakly Coupled s=1/2 Quantum Spin Dimer System Ba3Cr2O8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; CRITICAL-POINT; TLCUCL3; STATES; ESR AB By using bulk magnetization, electron spin resonance (ESR), heat capacity, and neutron scattering techniques, we characterize the thermodynamic and quantum phase diagrams of Ba3Cr2O8. Our ESR measurements indicate that the low field paramagnetic ground state is a mixed state of the singlet and the S-z=0 triplet for H perpendicular to c. This suggests the presence of an intradimer Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the c axis. C1 [Kofu, M.; Lee, S. -H.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Ueda, H.; Ueda, Y.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Nojiri, H.; Oshima, Y.; Zenmoto, T.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9800821, Japan. [Rule, K. C.; Gerischer, S.; Lake, B.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kofu, M (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. EM shlee@virginia.edu RI Nojiri, Hiroyuki/B-3688-2011; Oshima, Yugo/H-1031-2013; Batista, Cristian/J-8008-2016; OI Oshima, Yugo/0000-0001-9822-8262; Lake, Bella/0000-0003-0034-0964 FU U. S. DOE [DE-FG0207ER46384]; ICC-IMR [KAKENHI20244052] FX We thank M. Tachiki, S. Haas, Y. B. Kim, S. Ishihara, and O. Nohadni for helpful discussions, and C. Stock and V. G. Sakai for crystal alignment for neutron scattering measurements. Work at the University of Virginia was supported by the U. S. DOE through DE-FG0207ER46384. S.- H. L. thanks the WPI- Advanced Institute for Materials Research at Tohoku University for their hospitality during his stay when this work was partially done. H. N. was supported by ICC-IMR and KAKENHI20244052. NR 21 TC 23 Z9 23 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 177204 DI 10.1103/PhysRevLett.102.177204 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300060 PM 19518823 ER PT J AU Langner, MC Kantner, CLS Chu, YH Martin, LM Yu, P Seidel, J Ramesh, R Orenstein, J AF Langner, M. C. Kantner, C. L. S. Chu, Y. H. Martin, L. M. Yu, P. Seidel, J. Ramesh, R. Orenstein, J. TI Observation of Ferromagnetic Resonance in SrRuO3 by the Time-Resolved Magneto-Optical Kerr Effect SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN-WAVES; MAGNETIZATION; DYNAMICS; BEHAVIOR AB We report the observation of ferromagnetic resonance (FMR) in SrRuO3 using the time-resolved magneto-optical Kerr effect. The FMR oscillations in the time-domain appear in response to a sudden, optically induced change in the direction of easy-axis anisotropy. The high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha approximate to 1, are consistent with strong spin-orbit coupling. We find that the parameters associated with the magnetization dynamics, including alpha, have a nonmonotonic temperature dependence, suggestive of a link to the anomalous Hall effect. C1 [Langner, M. C.; Kantner, C. L. S.; Yu, P.; Ramesh, R.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Langner, M. C.; Kantner, C. L. S.; Martin, L. M.; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chu, Y. H.; Seidel, J.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Langner, MC (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Yu, Pu/F-1594-2014; Orenstein, Joseph/I-3451-2015 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; FU U. S. Department of Energy; Office of Science; National Science Council FX This research is supported by the U. S. Department of Energy, Office of Science. Y. H. C. acknowledges the support of the National Science Council, R. O. C. NR 26 TC 24 Z9 25 U1 7 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 177601 DI 10.1103/PhysRevLett.102.177601 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300070 PM 19518833 ER PT J AU Robel, I Gresback, R Kortshagen, U Schaller, RD Klimov, VI AF Robel, Istvan Gresback, Ryan Kortshagen, Uwe Schaller, Richard D. Klimov, Victor I. TI Universal Size-Dependent Trend in Auger Recombination in Direct-Gap and Indirect-Gap Semiconductor Nanocrystals SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; QUANTUM DOTS; OPTICAL NONLINEARITIES; SILICON NANOCRYSTALS; CARRIER DYNAMICS; BAND; EMISSION; GAIN; PBSE AB We report the first experimental observation of a striking convergence of Auger recombination rates in nanocrystals of both direct- (InAs, PbSe, CdSe) and indirect-gap (Ge) semiconductors, which is in contrast to a dramatic difference (by up to 4-5 orders of magnitude) in the Auger decay rates in respective bulk solids. To rationalize this finding, we invoke the effect of confinement-induced mixing between states with different translational momenta, which diminishes the impact of the bulk-semiconductor band structure on multiexciton interactions in nanocrystalline materials. C1 [Robel, Istvan; Schaller, Richard D.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Gresback, Ryan; Kortshagen, Uwe] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. RP Robel, I (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM rdsx@lanl.gov; klimov@lanl.gov RI Robel, Istvan/D-4124-2011; Gresback, Ryan/A-6785-2013; Kortshagen, Uwe/B-8744-2016; OI Robel, Istvan/0000-0002-9738-7728; Kortshagen, Uwe/0000-0001-5944-3656; Klimov, Victor/0000-0003-1158-3179 FU MRSEC Program of the National Science Foundation [DMR-0212302, DMR-0819885]; Office of Basic Energy Sciences; U. S. Department of Energy (DOE); Los Alamos LDRD funds; DOE Center for Integrated Nanotechnologies FX This work was supported by the Office of Basic Energy Sciences, U. S. Department of Energy ( DOE) and Los Alamos LDRD funds and is part of the user program of the DOE Center for Integrated Nanotechnologies. R. G. and U. K. acknowledge partial support by the MRSEC Program of the National Science Foundation (DMR-0212302 and DMR-0819885). NR 30 TC 120 Z9 121 U1 6 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 177404 DI 10.1103/PhysRevLett.102.177404 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300068 PM 19518831 ER PT J AU Sitte, M Rosch, A Meyer, JS Matveev, KA Garst, M AF Sitte, M. Rosch, A. Meyer, J. S. Matveev, K. A. Garst, M. TI Emergent Lorentz Symmetry with Vanishing Velocity in a Critical Two-Subband Quantum Wire SO PHYSICAL REVIEW LETTERS LA English DT Article AB We consider a quantum wire with two subbands of spin-polarized electrons in the presence of strong interactions. We focus on the quantum phase transition when the second subband starts to get filled as a function of gate voltage. Performing a one-loop renormalization group analysis of the effective Hamiltonian, we identify the critical fixed-point theory as a conformal field theory having an enhanced SU(2) symmetry and central charge 3/2. While the fixed point is Lorentz invariant, the effective "speed of light" nevertheless vanishes at low energies due to marginally irrelevant operators leading to a diverging critical specific heat coefficient. C1 [Sitte, M.; Rosch, A.; Garst, M.] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany. [Meyer, J. S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Matveev, K. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Sitte, M (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany. RI Rosch, Achim/A-2962-2009; Sitte, Matthias/F-8658-2011; Garst, Markus/B-6740-2012; Meyer, Julia/G-4690-2016 OI Rosch, Achim/0000-0002-6586-5721; Sitte, Matthias/0000-0001-6004-7861; Garst, Markus/0000-0001-5390-3316; FU DFG [SFB 608]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357, E-FG02-07ER46424] FX We thank N. Andrei, L. Balents, T. Senthil, and M. Vojta for useful discussions. This work was supported by the DFG through SFB 608 and by the U. S. Department of Energy, Office of Science, under Contracts No. DE-AC02-06CH11357 and No. DE-FG02-07ER46424. NR 10 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 176404 DI 10.1103/PhysRevLett.102.176404 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300041 PM 19518804 ER PT J AU Anderson, OA LoDestro, LL AF Anderson, O. A. LoDestro, L. L. TI Exact solution of the envelope equations for a matched quadrupole-focused beam in the zero space-charge limit SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The Kapchinskij-Vladimirskij equations are widely used to study the evolution of the beam envelopes in a periodic system of quadrupole focusing cells. In this paper, we analyze the case of a matched beam. Our model is analogous to that used by Courant and Snyder [E. D. Courant and H. S. Snyder, Ann. Phys. (Paris) 3, 1 ( 1958)], who obtained a first-order approximate solution for a synchrotron. Here, we treat a linear machine and obtain an exact solution. The model uses a full occupancy, piecewise-constant focusing function and neglects space charge. There are solutions in an infinite number of bands as the focus strength is increased. All these bands are stable. Our explicit results for the phase advance sigma and the envelopes a(z) and b(z) are exact for all phase advances except multiples of 180 degrees, where the behavior is singular. We find that the peak envelope size is minimized for sigma similar to 81 degrees. Actual operation in the higher bands would require very large, very accurate field strengths and would produce significantly larger envelope excursions. If such operation were found to be feasible, there would be interesting applications which we discuss. C1 [Anderson, O. A.] LBNL, Berkeley, CA 94720 USA. [LoDestro, L. L.] LLNL, Livermore, CA 94551 USA. RP Anderson, OA (reprint author), LBNL, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank S. M. Lund for many useful comments and editing help, E. P. Lee for suggestions on an early version, and the referees for improving the final product. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054201 DI 10.1103/PhysRevSTAB.12.054201 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700014 ER PT J AU Chung, M Gilson, EP Davidson, RC Efthimion, PC Majeski, R AF Chung, Moses Gilson, Erik P. Davidson, Ronald C. Efthimion, Philip C. Majeski, Richard TI Experimental investigation of random noise-induced beam degradation in high-intensity accelerators using a linear Paul trap SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HALO FORMATION; SIMULATOR EXPERIMENT; PROPAGATION AB A random noise-induced beam degradation that could affect intense beam transport over long propagation distances has been experimentally investigated by making use of the transverse beam dynamics equivalence between an alternating-gradient focusing system and a linear Paul trap system. For the present study, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously increases the rms radius, transverse emittance, and nonthermal tail of the trapped charge bunch almost linearly with the duration of the noise. The combined effects of collective modes and colored noise are also investigated and compared with numerical simulations. C1 [Chung, Moses] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chung, M (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. The authors would like to thank Andy Carpe for his excellent technical support, and Mikhail Dorf for useful discussions regarding the WARP simulations. The research was carried out at Plasma Physics Laboratory while the corresponding author (Moses Chung) was at Princeton University. NR 37 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054203 DI 10.1103/PhysRevSTAB.12.054203 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700016 ER PT J AU Jeon, D Groening, L Franchetti, G AF Jeon, D. Groening, L. Franchetti, G. TI Fourth order resonance of a high intensity linear accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HALO FORMATION AB It is discovered that, for a high intensity beam, the 4 sigma = 360 degrees (or 4 nu = 1) resonance of a linear accelerator is manifested through the octupolar term of space charge potential when the depressed phase advance per cell sigma is close to and below 90 degrees but no resonance effect is observed when sigma is just above 90 degrees. To verify that this is a resonance, a frequency analysis is performed and a study of resonance crossing from above and from below the resonance is conducted. It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. The simulation study shows a clear emittance growth by this resonance and its stop band. A proposal to GSI was made to perform an experiment to measure the stop band of this resonance using the UNILAC. The experiment confirmed this resonance and will be published in a separate paper. C1 [Jeon, D.] Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. [Groening, L.; Franchetti, G.] GSI, Darmstadt, Germany. RP Jeon, D (reprint author), Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. EM jeond@ornl.gov RI Jeon, Dong-O/S-2137-2016 OI Jeon, Dong-O/0000-0001-6482-5878 FU EU-FP6 CARE-HIPPI [RII3-CT-2003-506395]; SNS; U.S. Department of Energy [DE-AC05-00OR22725] FX This work is a result of the collaboration between GSI-FAIR and SNS. The authors would like to express their gratitude to Professor I. Hofmann for his advice and comments. One of the authors (D.J.) is grateful for the hospitality of GSI and the partial support through the EU-FP6 CARE-HIPPI (Contract No. RII3-CT-2003-506395). He also is very grateful for the support of the SNS management. SNS is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. NR 15 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054204 DI 10.1103/PhysRevSTAB.12.054204 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700017 ER PT J AU Kim, AA Mazarakis, MG Sinebryukhov, VA Kovalchuk, BM Visir, VA Volkov, SN Bayol, F Bastrikov, AN Durakov, VG Frolov, SV Alexeenko, VM McDaniel, DH Fowler, WE LeChien, K Olson, C Stygar, WA Struve, KW Porter, J Gilgenbach, RM AF Kim, A. A. Mazarakis, M. G. Sinebryukhov, V. A. Kovalchuk, B. M. Visir, V. A. Volkov, S. N. Bayol, F. Bastrikov, A. N. Durakov, V. G. Frolov, S. V. Alexeenko, V. M. McDaniel, D. H. Fowler, W. E. LeChien, K. Olson, C. Stygar, W. A. Struve, K. W. Porter, J. Gilgenbach, R. M. TI Development and tests of fast 1-MA linear transformer driver stages SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this article we present the design and test results of the most powerful, fast linear transformer driver (LTD) stage developed to date. This 1-MA LTD stage consists of 40 parallel RLC (resistor R, inductor L, and capacitor C) circuits called "bricks'' that are triggered simultaneously; it is able to deliver similar to 1 MA current pulse with a rise time of similar to 100 ns into the similar to 0.1-Ohm matched load. The electrical behavior of the stage can be predicted by using a simple RLC circuit, thus simplifying the designing of various LTD-based accelerators. Five 1-MA LTD stages assembled in series into a module have been successfully tested with both resistive and vacuum electron-beam diode loads. C1 [Kim, A. A.; Sinebryukhov, V. A.; Kovalchuk, B. M.; Visir, V. A.; Volkov, S. N.; Bastrikov, A. N.; Durakov, V. G.; Frolov, S. V.; Alexeenko, V. M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Mazarakis, M. G.; McDaniel, D. H.; Fowler, W. E.; LeChien, K.; Olson, C.; Stygar, W. A.; Struve, K. W.; Porter, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bayol, F.] Int Technol High Pulsed Power, F-46500 Thegra, France. [Gilgenbach, R. M.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Kim, AA (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. NR 25 TC 59 Z9 83 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 050402 DI 10.1103/PhysRevSTAB.12.050402 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700004 ER PT J AU Kirby, N Blumenfeld, I Clayton, CE Decker, FJ Hogan, MJ Huang, C Ischebeck, R Iverson, RH Joshi, C Katsouleas, T Lu, W Marsh, KA Martins, SF Mori, WB Muggli, P Oz, E Siemann, RH Walz, DR Zhou, M AF Kirby, N. Blumenfeld, I. Clayton, C. E. Decker, F. J. Hogan, M. J. Huang, C. Ischebeck, R. Iverson, R. H. Joshi, C. Katsouleas, T. Lu, W. Marsh, K. A. Martins, S. F. Mori, W. B. Muggli, P. Oz, E. Siemann, R. H. Walz, D. R. Zhou, M. TI Transverse emittance and current of multi-GeV trapped electrons in a plasma wakefield accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID LASER WAKEFIELD; BEAMS AB Multi-GeV trapped electron bunches in a plasma wakefield accelerator (PWFA) are observed with normalized transverse emittance divided by peak current, epsilon(N,x)/I(t), below the level of 0.2 mu m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that emittance scales inversely with the square root of the plasma density in the nonlinear "bubble'' regime of the PWFA. This model and simulations indicate that the observed values of epsilon(N,x)/I(t) result from multi-GeV trapped electron bunches with emittances of a few mu m and multi-kA peak currents. C1 [Kirby, N.; Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Siemann, R. H.; Walz, D. R.] SLAC, Menlo Pk, CA 94025 USA. [Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Katsouleas, T.; Muggli, P.; Oz, E.] Univ So Calif, Los Angeles, CA 90089 USA. RP Kirby, N (reprint author), SLAC, Menlo Pk, CA 94025 USA. RI Lu, Wei/F-2504-2016 FU Department of Energy [DE-AC02-76SF00515, DE-FG02-93ER40745, DE-FG03-92ER40727, DE-FG52-06NA26195, DE-FC02-07ER41500, DE-FG02-03ER54721, DE-FG02-92ER40727]; National Science Foundation [NSF-Phy-0321345]; FCT (Portugal) FX The authors would like to thank Melissa Berry and Professor Alexander Chao. The Dawson cluster (UCLA) produced the OSIRIS simulations. This work was supported by Department of Energy Contracts No. DE-AC02-76SF00515, No. DE-FG02-93ER40745, No. DE-FG03-92ER40727, No. DE-FG52-06NA26195, No. DE-FC02-07ER41500, No. DE-FG02-03ER54721, No. DE-FG02-92ER40727, National Science Foundation Grant No. NSF-Phy-0321345, and by FCT (Portugal). NR 26 TC 11 Z9 11 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 051302 DI 10.1103/PhysRevSTAB.12.051302 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700011 ER PT J AU Liu, WM Gai, W AF Liu, Wanming Gai, Wei TI Wakefield generation by a relativistic ring beam in a coaxial two-channel dielectric loaded structure SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this paper, we give a complete analytical solution for wakefields generated by an azimuthally symmetric ring beam propagating in a coaxial two-channel dielectric structure. This wakefield can be used to accelerate a witness beam in the central channel. The ratio of the peak accelerating field in the center channel to the decelerating field in the ring channel (defined as transformer ratio R) is also derived. We find that, by appropriate choice of parameters, R can be much greater than 2, the limiting value for collinear wakefield accelerators. C1 [Liu, Wanming; Gai, Wei] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Liu, WM (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. FU High Energy Physics Division, DOE [DE-AC02-06CH11357] FX We would like to thank Dr. Jay Hirshfield of Yale University for suggesting the coaxial dielectric wakefield experiment and bringing it to our attention. This work is supported by the High Energy Physics Division, DOE under Contract No. DE-AC02-06CH11357. NR 13 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 051301 DI 10.1103/PhysRevSTAB.12.051301 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700010 ER PT J AU Lumpkin, AH Dejus, RJ Sereno, NS AF Lumpkin, A. H. Dejus, R. J. Sereno, N. S. TI Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams (vol 12, 040704, 2009) SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Correction C1 [Dejus, R. J.] Argonne Natl Lab, Argonne, IL 60439 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 059901 DI 10.1103/PhysRevSTAB.12.059901 PG 1 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700018 ER PT J AU Mazarakis, MG Fowler, WE Kim, AA Sinebryukhov, VA Rogowski, ST Sharpe, RA McDaniel, DH Olson, CL Porter, JL Struve, KW Stygar, WA Woodworth, JR AF Mazarakis, Michael G. Fowler, William E. Kim, Alexander A. Sinebryukhov, Vadim A. Rogowski, Sonrisa T. Sharpe, Robin A. McDaniel, Dillon H. Olson, Craig L. Porter, John L. Struve, Kenneth W. Stygar, William A. Woodworth, Joseph R. TI High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The linear transformer driver (LTD) is a new method for constructing high current, high-voltage pulsed accelerators. The salient feature of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. Sandia National Laboratories are actively pursuing the development of a new class of accelerator based on the LTD technology. Presently, the high current LTD experimental research is concentrated on two aspects: first, to study the repetition rate capabilities, reliability, reproducibility of the output pulses, switch prefires, jitter, electrical power and energy efficiency, and lifetime measurements of the cavity active components; second, to study how a multicavity linear array performs in a voltage adder configuration relative to current transmission, energy and power addition, and wall plug to output pulse electrical efficiency. Here we report the repetition rate and lifetime studies performed in the Sandia High Current LTD Laboratory. We first utilized the prototype similar to 0.4-MA, LTD I cavity which could be reliably operated up to +/-90-kV capacitor charging. Later we obtained an improved 0.5-MA, LTD II version that can be operated at +/-100 kV maximum charging voltage. The experimental results presented here were obtained with both cavities and pertain to evaluating the maximum achievable repetition rate and LTD cavity performance. The voltage adder experiments with a series of double sized cavities (1 MA, +/-100 kV) will be reported in future publications. C1 [Mazarakis, Michael G.; Fowler, William E.; Rogowski, Sonrisa T.; Sharpe, Robin A.; McDaniel, Dillon H.; Olson, Craig L.; Porter, John L.; Struve, Kenneth W.; Stygar, William A.; Woodworth, Joseph R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kim, Alexander A.; Sinebryukhov, Vadim A.] HCEI, Tomsk, Russia. RP Mazarakis, MG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 20 TC 43 Z9 58 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 050401 DI 10.1103/PhysRevSTAB.12.050401 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700003 ER PT J AU Pozdeyev, E Rodriguez, JA Marti, F York, RC AF Pozdeyev, E. Rodriguez, J. A. Marti, F. York, R. C. TI Longitudinal beam dynamics studies with space charge in small isochronous ring SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Studies of the longitudinal beam dynamics in the small isochronous ring (SIR) at Michigan State University revealed a fast, space-charge driven instability that did not fit the model of the negative mass instability. The observed beam behavior can be explained by the transverse horizontal component of the coherent space- charge force and its effect on the longitudinal motion. This force effectively modifies the slip factor, shifting the isochronous point and enhancing the negative mass instability. This paper presents results of numerical and experimental studies of the longitudinal beam dynamics in SIR and proposes a simple analytical model explaining these results. C1 [Pozdeyev, E.] BNL, Upton, NY 11973 USA. [Rodriguez, J. A.] CERN, Geneva, Switzerland. [Marti, F.; York, R. C.] MSU, NSCL, Lansing, MI 48824 USA. RP Pozdeyev, E (reprint author), BNL, Upton, NY 11973 USA. EM pozdeyev@bnl.gov NR 6 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054202 DI 10.1103/PhysRevSTAB.12.054202 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700015 ER PT J AU Wang, X Muggli, P Katsouleas, T Joshi, C Mori, WB Ischebeck, R Hogan, MJ AF Wang, X. Muggli, P. Katsouleas, T. Joshi, C. Mori, W. B. Ischebeck, R. Hogan, M. J. TI Optimization of positron trapping and acceleration in an electron-beam-driven plasma wakefield accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Positron trapping and acceleration in a plasma wake using a four-bunch scheme [X. Wang et al., Phys. Rev. Lett. 101, 124801 (2008)] is numerically investigated through 2D particle-in-cell simulations. This scheme that integrates positron generation, trapping, and acceleration into a single stage is a promising approach for investigating positron acceleration in an electron-beam-driven wake. It consists of a plasma with an embedded thin foil target into which two closely spaced electron beams are shot. The first beam creates a region for accelerating and focusing positrons and the second beam provides positrons to be accelerated. Some of the outstanding issues related to the quality of the accelerated positron beam load are discussed as a function of the beam and plasma parameters. Simulations show that a large number of positrons (10(7)-10(8)) can be trapped when the plasma wake is modestly nonlinear, and the positron-generating foil target must be immersed into the plasma. Beam loading can reduce the energy spread of the positron beam load. The quality of the positron beam load is not very sensitive to the exact bunch spacing between the drive electron bunch and the positron beam load. C1 [Wang, X.; Muggli, P.; Katsouleas, T.] Univ So Calif, Los Angeles, CA 90089 USA. [Joshi, C.; Mori, W. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ischebeck, R.; Hogan, M. J.] Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. RP Wang, X (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. FU Department of Energy [DE-FC02-01ER41192, DE-AC02-76SF00515, DE-FG03-92ER40745, DE-FG52-06NA26195, DE-FG0392ER40727, DE-AC-0376SF0098, DE-FG02-03ER54721]; National Science Foundation [ECS-9632735, DMS-9722121, PHY-0078715] FX This work was supported by Department of Energy Contracts No. DE-FC02-01ER41192, No. DE-AC02-76SF00515 (SLAC), No. DE-FG03-92ER40745, No. DE-FG52-06NA26195, No. DE-FG0392ER40727, No. DE-AC-0376SF0098, No. DE-FG02-03ER54721, and National Science Foundation Grants No. ECS-9632735, No. DMS-9722121, and No. PHY-0078715. Simulations were done at the USC Center for High Performance Computing and Communications (HPCC). Useful discussions with the members of the E-167 collaboration at SLAC are greatly acknowledged. NR 25 TC 5 Z9 5 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 051303 DI 10.1103/PhysRevSTAB.12.051303 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700012 ER PT J AU Connington, K Kang, QJ Viswanathan, H Abdel-Fattah, A Chen, SY AF Connington, Kevin Kang, Qinjun Viswanathan, Hari Abdel-Fattah, Amr Chen, Shiyi TI Peristaltic particle transport using the lattice Boltzmann method SO PHYSICS OF FLUIDS LA English DT Article DE lattice Boltzmann methods; multiphase flow; peristaltic flow; pipe flow ID NAVIER-STOKES EQUATION; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; SOLID PARTICLES; REYNOLDS-NUMBER; FLOW; MOTION; FLUID; CHANNEL; WALLS AB Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels. C1 [Connington, Kevin; Chen, Shiyi] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Connington, Kevin; Kang, Qinjun; Viswanathan, Hari; Abdel-Fattah, Amr] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Chen, Shiyi] Peking Univ, CoE, Beijing, Peoples R China. [Chen, Shiyi] Peking Univ, CCSE, Beijing, Peoples R China. RP Connington, K (reprint author), Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. EM kconnin1@jhu.edu RI Chen, Shiyi/A-3234-2010; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 NR 56 TC 20 Z9 20 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2009 VL 21 IS 5 AR 053301 DI 10.1063/1.3111782 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 451WB UT WOS:000266500500019 ER PT J AU Cook, AW AF Cook, Andrew W. TI Enthalpy diffusion in multicomponent flows SO PHYSICS OF FLUIDS LA English DT Article DE combustion; diffusion; enthalpy; Navier-Stokes equations; turbulence ID RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITY; EFFECTIVE BINARY DIFFUSION; GAS-MIXTURES; NUMERICAL-SIMULATION; SHOCK-WAVES; RESOLUTION; CONSISTENT; DYNAMICS; SCHEMES AB The enthalpy diffusion flux in the multicomponent energy equation is a well-known yet frequently neglected term. It accounts for energy changes associated with compositional changes resulting from species diffusion. The term prevents local violations of the entropy condition in flows where significant mixing occurs between species of dissimilar molecular weight. In simulations of nonpremixed combustion, omission of the enthalpy flux can lead to anomalous temperature gradients, which may cause mixing regions to exceed ignition conditions. The term can also play a role in generating acoustic noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to blend fluids at the grid scale cannot reliably predict temperatures in mixing regions. On the other hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much more accurate results. In constructing turbulence closures for high Reynolds number mixing, the same turbulent diffusion model that appears in the species mass transport equation should also appear in the energy equation as part of a "turbulent enthalpy diffusion;" otherwise the energy and species transport equations will not be consistent. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cook, AW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM awcook@llnl.gov NR 49 TC 37 Z9 37 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2009 VL 21 IS 5 AR 055109 DI 10.1063/1.3139305 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 451WB UT WOS:000266500500040 ER PT J AU Bailey, JE Rochau, GA Mancini, RC Iglesias, CA MacFarlane, JJ Golovkin, IE Blancard, C Cosse, P Faussurier, G AF Bailey, J. E. Rochau, G. A. Mancini, R. C. Iglesias, C. A. MacFarlane, J. J. Golovkin, I. E. Blancard, C. Cosse, Ph. Faussurier, G. TI Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas SO PHYSICS OF PLASMAS LA English DT Article DE opacity; plasma inertial confinement; plasma light propagation; plasma transport processes; stellar internal processes; Z pinch ID X-RAY RESPONSE; ABSORPTION-SPECTROSCOPY; RADIATIVE ACCELERATIONS; SOLAR ABUNDANCES; CONSTRAINED SAMPLES; PHOTOGRAPHIC FILMS; THIN FOILS; Z PINCHES; HELIOSEISMOLOGY; ALUMINUM AB Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen , Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156 +/- 6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques. C1 [Bailey, J. E.; Rochau, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mancini, R. C.] Univ Nevada, Reno, NV 89557 USA. [Iglesias, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [MacFarlane, J. J.; Golovkin, I. E.] Prism Computat Sci, Madison, WI 53703 USA. [Blancard, C.; Cosse, Ph.; Faussurier, G.] DIF, DAM, CEA, F-91297 Arpajon, France. RP Bailey, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 99 TC 66 Z9 68 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 058101 DI 10.1063/1.3089604 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600140 ER PT J AU Bhattacharjee, A Davidson, RC AF Bhattacharjee, Amitava Davidson, Ronald C. TI Foreword to Special Issue: Papers from the 50th Annual Meeting of the APS Division of Plasma Physics, Dallas, Texas, 2008 SO PHYSICS OF PLASMAS LA English DT Editorial Material DE plasma AB The year 2008 marked the 50th Anniversary of the Division of Plasma Physics (DPP) of the American Physical Society. This Special Issue presents many of the Review, Tutorial, and Invited papers that were presented at the 2008 Annual Meeting of the DPP, which was held 17-21 November, in Dallas, Texas. We are very pleased that many of the speakers have submitted an archival-quality version of their presentation for peer review and publication in Physics of Plasmas. C1 [Bhattacharjee, Amitava] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Bhattacharjee, Amitava] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Davidson, Ronald C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bhattacharjee, A (reprint author), Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055301 DI 10.1063/1.3127488 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600078 ER PT J AU Boehly, TR Munro, D Celliers, PM Olson, RE Hicks, DG Goncharov, VN Collins, GW Robey, HF Hu, SX Morozas, JA Sangster, TC Landen, OL Meyerhofer, DD AF Boehly, T. R. Munro, D. Celliers, P. M. Olson, R. E. Hicks, D. G. Goncharov, V. N. Collins, G. W. Robey, H. F. Hu, S. X. Morozas, J. A. Sangster, T. C. Landen, O. L. Meyerhofer, D. D. TI Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE explosions; plasma inertial confinement; plasma shock waves ID DRIVEN AB A high-performance inertial confinement fusion capsule is compressed by multiple shock waves before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of those shock waves must be accurately controlled. Ignition experiments at the National Ignition Facility (NIF) will employ surrogate targets designed to mimic ignition targets while making it possible to measure the shock velocities inside the capsule. A series of experiments on the OMEGA laser facility [Boehly , Opt. Commun. 133, 495 (1997)] validated those targets and the diagnostic techniques proposed. Quartz was selected for the diagnostic window and shock-velocity measurements were demonstrated in Hohlraum targets heated to 180 eV. Cryogenic experiments using targets filled with liquid deuterium further demonstrated the entire timing technique in a Hohlraum environment. Direct-drive cryogenic targets with multiple spherical shocks were used to further validate this technique, including convergence effects at relevant pressures (velocities) and sizes. These results provide confidence that shock velocity and timing can be measured in NIF ignition targets, allowing these critical parameters to be optimized. C1 [Boehly, T. R.; Goncharov, V. N.; Hu, S. X.; Morozas, J. A.; Sangster, T. C.; Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, New York, NY 14645 USA. [Munro, D.; Celliers, P. M.; Hicks, D. G.; Collins, G. W.; Robey, H. F.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Olson, R. E.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Goncharov, V. N.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, New York, NY 14645 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, New York, NY 14645 USA. RP Boehly, TR (reprint author), Univ Rochester, Laser Energet Lab, New York, NY 14645 USA. RI Hu, Suxing/A-1265-2007; Collins, Gilbert/G-1009-2011; Goncharov, Valeri/H-4471-2011; Hicks, Damien/B-5042-2015 OI Hu, Suxing/0000-0003-2465-3818; Hicks, Damien/0000-0001-8322-9983 NR 18 TC 61 Z9 64 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056302 DI 10.1063/1.3078422 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600115 ER PT J AU Chang, CS Ku, S Diamond, PH Lin, Z Parker, S Hahm, TS Samatova, N AF Chang, C. S. Ku, S. Diamond, P. H. Lin, Z. Parker, S. Hahm, T. S. Samatova, N. TI Compressed ion temperature gradient turbulence in diverted tokamak edge SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma boundary layers; plasma density; plasma instability; plasma simulation; plasma toroidal confinement; plasma transport processes; plasma turbulence; Tokamak devices ID GYROKINETIC PARTICLE SIMULATION; POLOIDAL ELECTRIC-FIELD; NEOCLASSICAL TRANSPORT; ZONAL FLOWS; PLASMA; GEOMETRY; ROTATION AB It is found from a heat-flux-driven full-f gyrokinetic particle simulation that there is ion temperature gradient (ITG) turbulence across an entire L-mode-like edge density pedestal in a diverted tokamak plasma in which the ion temperature gradient is mild without a pedestal structure, hence the normalized ion temperature gradient parameter eta(i)=(d log T(i)/dr)/(d log n/dr) varies strongly from high (>4 at density pedestal top/shoulder) to low (< 2 in the density slope) values. Variation of density and eta(i) is in the same scale as the turbulence correlation length, compressing the turbulence in the density slope region. The resulting ion thermal flux is on the order of experimentally inferred values. The present study strongly suggests that a localized estimate of the ITG-driven chi(i) will not be valid due to the nonlocal dynamics of the compressed turbulence in an L-mode-type density slope. While the thermal transport and the temperature profile saturate quickly, the ExB rotation shows a longer time damping during the turbulence. In addition, a radially in-out mean potential variation is observed. C1 [Chang, C. S.; Ku, S.] NYU, Courant Inst Math Sci, New York, NY 10012 USA. [Chang, C. S.] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Diamond, P. H.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Diamond, P. H.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Lin, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Parker, S.] Univ Colorado, Boulder, CO 80309 USA. [Hahm, T. S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Samatova, N.] N Carolina State Univ, Raleigh, NC 27695 USA. [Samatova, N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chang, CS (reprint author), NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA. EM cschang@cims.nyu.edu RI Ku, Seung-Hoe/D-2315-2009 OI Ku, Seung-Hoe/0000-0002-9964-1208 NR 39 TC 37 Z9 37 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056108 DI 10.1063/1.3099329 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600101 ER PT J AU Choi, M Chan, VS Berry, LA Jaeger, EF Green, D Bonoli, P Wright, J AF Choi, M. Chan, V. S. Berry, L. A. Jaeger, E. F. Green, D. Bonoli, P. Wright, J. CA RF SciDAC Team TI Comparison of the Monte Carlo ion cyclotron heating model with the full-wave linear absorption model SO PHYSICS OF PLASMAS LA English DT Article DE Monte Carlo methods; plasma electromagnetic wave propagation; plasma simulation; plasma waves ID PLASMAS; TOKAMAK AB To fully account for the wave-particle interaction physics in ion cyclotron resonant frequency (ICRF) heating experiment, finite orbit effects and non-Maxwellian distribution have to be self-consistently coupled with full-wave solutions. For this purpose, the five-dimensional Monte Carlo code ORBIT-RF [M. Choi , Phys. Plasmas 12, 1 (2005)] is being coupled with the two-dimensional full-wave code AORSA [E. F. Jaeger , Phys. Plasmas 13, 056101 (2006)] to iteratively evolve the ion distribution in four-dimensional spatial velocity space that is used to update the dielectric tensor in AORSA for evaluating the full-wave fields. In this paper, it is demonstrated that using the full-wave fields from a Maxwellian dielectric tensor in AORSA and confining the resonant ions to their initial orbits in ORBIT-RF, ORBIT-RF largely reproduces the AORSA linear wave absorption profiles for fundamental and higher harmonic ICRF heating. An exception is an observed inward shift in the ORBIT-RF absorption peak for high harmonics near the magnetic axis compared with that of AORSA, which can be attributed to a finite orbit width effect. The success of this verification supports the validity of the Monte Carlo wave-particle interaction model and the readiness of the iterative coupling between ORBIT-RF and AORSA for an improved modeling of ICRF heating experiments. C1 [Choi, M.; Chan, V. S.] Gen Atom Co, San Diego, CA 92186 USA. [Berry, L. A.; Jaeger, E. F.; Green, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Bonoli, P.; Wright, J.] MIT, Cambridge, MA 02139 USA. RP Choi, M (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU U.S. Department of Energy [DE-FG03-95ER54309, DE-AC05-00OR22725] FX This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-FG03-95ER54309 and DE-AC05-00OR22725. The authors would like to thank Professor M. Porkolab at MIT for his many discussions. NR 18 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052513 DI 10.1063/1.3138745 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600038 ER PT J AU Edlund, EM Porkolab, M Kramer, GJ Lin, L Lin, Y Wukitch, SJ AF Edlund, E. M. Porkolab, M. Kramer, G. J. Lin, L. Lin, Y. Wukitch, S. J. TI Phase contrast imaging measurements of reversed shear Alfven eigenmodes during sawteeth in Alcator C-Mod SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys ID SAFETY-FACTOR PROFILE; TOKAMAK; WAVES; PLASMAS; JET AB Reversed shear Alfven eigenmodes (RSAEs) have been observed with the phase contrast imaging diagnostic and Mirnov coils during the sawtooth cycle in Alcator C-mod [M. Greenwald et al., Nucl. Fusion 45, S109 (2005)] plasmas with minority ion-cyclotron resonance heating. Both down-chirping RSAEs and up-chirping RSAEs have been observed during the sawtooth cycle. Experimental measurements of the spatial structure of the RSAEs are compared to theoretical models based on the code NOVA [C. Z. Cheng and M. S. Chance, J. Comput. Phys. 71, 124 (1987)] and used to derive constraints on the q profile. It is shown that the observed RSAEs can be understood by assuming a reversed shear q profile (up chirping) or a q profile with a local maximum (down chirping) with q approximate to 1. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3086869] C1 [Edlund, E. M.; Porkolab, M.; Lin, L.; Lin, Y.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Edlund, EM (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Lin, Liang/H-2255-2011 NR 34 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056106 DI 10.1063/1.3086869 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600099 ER PT J AU Egedal, J Daughton, W Drake, JF Katz, N Le, A AF Egedal, J. Daughton, W. Drake, J. F. Katz, N. Le, A. TI Formation of a localized acceleration potential during magnetic reconnection with a guide field SO PHYSICS OF PLASMAS LA English DT Article DE magnetic reconnection ID PARTICLE-ACCELERATION; ISLANDS AB Magnetic reconnection near the surface of the sun and in the Earth's magnetotail is associated with the production of highly energetic electrons. Direct acceleration in the reconnection electric field has been proposed as a possible mechanism for energizing these electrons. Here, however, we use kinetic simulations of guide-field reconnection to show that in two-dimensional (2D) reconnection the parallel electric field, E(parallel to) in the reconnection region is localized and its structure does not permit significant energization of the electrons. Rather, a large fraction of the electrons become trapped due to a sign reversal in E(parallel to), imposing strict constraints on their motions and energizations. Given these new results, simple 2D models, which invoke direct acceleration for energizing electrons during a single encounter with a reconnection region, need to be revised. C1 [Egedal, J.; Katz, N.; Le, A.] MIT, Cambridge, MA 02139 USA. [Drake, J. F.] Univ Maryland, College Pk, MD 20742 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Egedal, J (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Daughton, William/L-9661-2013 FU DOE Junior Faculty [DE-FG02-06ER54878] FX This work was funded in part by DOE Junior Faculty Grant No. DE-FG02-06ER54878. NR 16 TC 33 Z9 33 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 050701 DI 10.1063/1.3130732 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600001 ER PT J AU Ernst, DR Lang, J Nevins, WM Hoffman, M Chen, Y Dorland, W Parker, S AF Ernst, D. R. Lang, J. Nevins, W. M. Hoffman, M. Chen, Y. Dorland, W. Parker, S. TI Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulation SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma flow; plasma instability; plasma kinetic theory; plasma nonlinear processes; plasma simulation; plasma turbulence ID INTERNAL TRANSPORT BARRIER; ALCATOR-C-MOD; TOKAMAK; PLASMAS; INSTABILITY; GENERATION; STABILITY AB Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at eta(e)=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of eta(e) reveals fine scale structure for eta(e)greater than or similar to 1, consistent with linear expectation. For eta(e)< 1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to eta(e). For eta(e)>1, zonal flows are weak, and TEM transport falls inversely with a power law in eta(e). The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of eta(e)=d ln T(e)/d ln n(e) values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter eta(e) for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence. C1 [Ernst, D. R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Lang, J.; Chen, Y.; Parker, S.] Univ Colorado, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA. [Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hoffman, M.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Hoffman, M.] Missouri Univ Sci & Technol, Dept Nucl Engn, Rolla, MO 65409 USA. [Dorland, W.] Univ Maryland, Inst Res Elect & Appl Phys, Dept Phys, College Pk, MD 20742 USA. [Dorland, W.] Univ Maryland, Ctr Sci Computat & Math Modelling, College Pk, MD 20742 USA. RP Ernst, DR (reprint author), MIT, Plasma Sci & Fus Ctr, 167 Albany St,NW16-258, Cambridge, MA 02139 USA. EM dernst@psfc.mit.edu RI Ernst, Darin/A-1487-2010; Dorland, William/B-4403-2009 OI Ernst, Darin/0000-0002-9577-2809; Dorland, William/0000-0003-2915-724X NR 28 TC 29 Z9 29 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055906 DI 10.1063/1.3116282 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600093 ER PT J AU Fournier, KB Satcher, JH May, MJ Poco, JF Sorce, CM Colvin, JD Hansen, SB MacLaren, SA Moon, SJ Davis, JF Girard, F Villette, B Primout, M Babonneau, D Coverdale, CA Beutler, DE AF Fournier, K. B. Satcher, J. H. May, M. J. Poco, J. F. Sorce, C. M. Colvin, J. D. Hansen, S. B. MacLaren, S. A. Moon, S. J. Davis, J. F. Girard, F. Villette, B. Primout, M. Babonneau, D. Coverdale, C. A. Beutler, D. E. TI Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels SO PHYSICS OF PLASMAS LA English DT Article DE aerogels; electron density; plasma density; plasma heating by laser; plasma instability; plasma X-ray sources ID NATIONAL-IGNITION-FACILITY; CONVERSION EFFICIENCY; OMEGA LASER; PLASMAS; SYSTEM; TARGETS AB The x-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas have been measured in the energy range from sub-keV to approximate to 15 keV at the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The targets' x-ray yields have been studied for variation in target size, aerogel density, laser pulse length, and laser intensity. For targets that result in plasmas with electron densities in the range of approximate to 10% of the critical density for 3 omega light, one can expect 10-11 J/sr of x rays with energies above 9 keV, and 600-800 J/sr for energies below 3.5 keV. In addition to the x-ray spectral yields, the x-ray temporal waveforms have been measured and it is observed that the emitted x rays generally follow the delivered laser power, with late-time enhancements of emitted x-ray power correlated with hydrodynamic compression of the hot plasma. Further, the laser energy reflected from the target by plasma instabilities is found to be 2%-7% of the incident energy for individual beam intensities approximate to 10(14)-10(15) W/cm(2). The propagation of the laser heating in the target volume has been characterized with two-dimensional imaging. Source-region heating is seen to be correlated with the temporal profile of the emitted x-ray power. C1 [Fournier, K. B.; Satcher, J. H.; May, M. J.; Poco, J. F.; Sorce, C. M.; Colvin, J. D.; Hansen, S. B.; MacLaren, S. A.; Moon, S. J.; Davis, J. F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Girard, F.; Villette, B.; Primout, M.; Babonneau, D.] CEA DAM, F-91297 Ile De France, Arpajon, France. [Coverdale, C. A.; Beutler, D. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Davis, J. F.] Alme & Associates, Alexandria, VA 22303 USA. RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM fournier2@llnl.gov; JDavis@aol.com; frederic.girard@cea.fr; bruno.villette@cea.fr; cacover@sandia.gov FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC049-4AL8500]; Defense Threat Redution Agency FX The authors would like to thank the entire crew at the OMEGA laser for their expert operation of the laser and help setting up these experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy under Contract No. DE-AC049-4AL8500. This work was also supported by the Defense Threat Redution Agency under the IACROs "Laser Plasma Radiation Source Development and Evaluation," "Studies of Phenomenology of Radiation Effects Science Using Laser Plasma Radiation Sources," and "Research Program for Cold X-Ray Testing Using Laser Plasma Radiation Sources." NR 35 TC 34 Z9 34 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052703 DI 10.1063/1.3140041 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600042 ER PT J AU Garofalo, AM Solomon, WM Lanctot, M Burrell, KH DeBoo, JC deGrassie, JS Jackson, GL Park, JK Reimerdes, H Schaffer, MJ Strait, EJ AF Garofalo, A. M. Solomon, W. M. Lanctot, M. Burrell, K. H. DeBoo, J. C. deGrassie, J. S. Jackson, G. L. Park, J. -K. Reimerdes, H. Schaffer, M. J. Strait, E. J. TI Plasma rotation driven by static nonresonant magnetic fields SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma density; plasma flow; plasma temperature; Tokamak devices ID TOROIDAL-MOMENTUM DISSIPATION; RESISTIVE WALL MODES; NEOCLASSICAL TRANSPORT; POLOIDAL ROTATION; TOKAMAK PLASMA; ASPECT RATIO; HIGH-BETA; DIII-D; CONFINEMENT; STABILIZATION AB Recent experiments in high temperature DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 64 (2002)] plasmas reported the first observation of plasma acceleration driven by the application of static nonresonant magnetic fields (NRMFs), with resulting improvement in the global energy confinement time. Although the braking effect of static magnetic field asymmetries is well known, recent theory [A. J. Cole , Phys. Rev. Lett. 99, 065001 (2007)] predicts that in some circumstances they lead instead to an increase in rotation frequency toward a "neoclassical offset" rate in a direction opposed to the plasma current. We report the first experimental confirmation of this surprising result. The measured NRMF torque shows a strong dependence on both plasma density and temperature, above expectations from neoclassical theory. The consistency between theory and experiment improves with modifications to the expression of the NRMF torque accounting for a significant role of the plasma response to the external field and for the beta dependence of the plasma response, although some discrepancy remains. The magnitude and direction of the observed offset rotation associated with the NRMF torque are consistent with neoclassical theory predictions. The offset rotation rate is about 1% of the Alfven frequency or more than double the rotation needed for stable operation at high beta(N) above the n=1 no-wall kink limit in DIII-D. C1 [Garofalo, A. M.; Burrell, K. H.; DeBoo, J. C.; deGrassie, J. S.; Jackson, G. L.; Schaffer, M. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Lanctot, M.; Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. [Solomon, W. M.; Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Garofalo, AM (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 NR 32 TC 29 Z9 29 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056119 DI 10.1063/1.3129164 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600112 ER PT J AU Girard, F Primout, M Villette, B Stemmler, P Jacquet, L Babonneau, D Fournier, KB AF Girard, F. Primout, M. Villette, B. Stemmler, Ph. Jacquet, L. Babonneau, D. Fournier, K. B. TI Titanium and germanium lined hohlraums and halfraums as multi-keV x-ray radiators SO PHYSICS OF PLASMAS LA English DT Article DE plasma confinement; plasma production by laser; plasma X-ray sources ID NATIONAL-IGNITION-FACILITY; LASER-PRODUCED PLASMAS; CONVERSION EFFICIENCY; ENERGY-LEVELS AB As multi-keV x-ray radiators, hohlraums and halfraums with inner walls coated with metallic materials (called liner) have been tested for the first time with laser as the energy drive. For titanium, conversion efficiencies (CEs) are up to similar to 14% for emission into 4 pi, integrating between 4.6 and 6.5 keV when a large diameter hohlraum is used. Germanium CE is similar to 0.8% into 4 pi between 9 and 13 keV. The highest CEs have been obtained with a 1 ns squared pulse and phase plates giving laser absorption near 99%. These high CEs are due to long-lasting, good plasma conditions for multi-keV x-ray production maintained by plasma confinement inside the plastic cylinder and plasma collision leading to a burst of x rays at a time that depends on target size. As photon emitters at 4.7 keV, titanium-lined hohlraums are the most efficient solid targets and data are close to CEs for gas targets, which are considered as the upper limit for x-ray yields since their low density allows good laser absorption and low kinetics losses. As 10.3 keV x-ray emitters, exploded germanium foils give best results one order of magnitude more efficient than thick targets; doped aerogels and lined hohlraums give similar yields, about three times lower than those from exploded foils. C1 [Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.; Jacquet, L.; Babonneau, D.] DIF, DAM, CEA, F-91297 Arpajon, France. [Fournier, K. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Girard, F (reprint author), DIF, DAM, CEA, F-91297 Arpajon, France. NR 36 TC 25 Z9 26 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052704 DI 10.1063/1.3130263 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600043 ER PT J AU Gorelenkov, NN Van Zeeland, MA Berk, HL Crocker, NA Darrow, D Fredrickson, E Fu, GY Heidbrink, WW Menard, J Nazikian, R AF Gorelenkov, N. N. Van Zeeland, M. A. Berk, H. L. Crocker, N. A. Darrow, D. Fredrickson, E. Fu, G. -Y. Heidbrink, W. W. Menard, J. Nazikian, R. TI Beta-induced Alfven-acoustic eigenmodes in National Spherical Torus Experiment and DIII-D driven by beam ions SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE dispersion relations; eigenvalues and eigenfunctions; plasma Alfven waves; plasma instability; plasma kinetic theory; plasma toroidal confinement; Tokamak devices ID TOROIDAL PLASMAS; D TOKAMAK; KINETIC-THEORY; MODES; INSTABILITIES; PREDICTIONS; WAVES; FLOWS; JET AB Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here beta-induced Alfven-acoustic eigenmodes (BAAEs) are reported confirming, previous results [N. N. Gorelenkov , Plasma Phys. Controlled Fusion 49, B371 (2007)]. The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng , Nucl. Fusion 40, 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorate the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global toroidicity-induced shear Alfven eigenmode instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy. C1 [Gorelenkov, N. N.; Darrow, D.; Fredrickson, E.; Fu, G. -Y.; Menard, J.; Nazikian, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Berk, H. L.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Crocker, N. A.] Univ Calif Los Angeles, Inst Plasma & Fus Res, Los Angeles, CA 90095 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Gorelenkov, NN (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ngorelen@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 NR 28 TC 41 Z9 44 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056107 DI 10.1063/1.3097920 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600100 ER PT J AU Herrmann, HW Langenbrunner, JR Mack, JM Cooley, JH Wilson, DC Evans, SC Sedillo, TJ Kyrala, GA Caldwell, SE Young, CS Nobile, A Wermer, J Paglieri, S McEvoy, AM Kim, Y Batha, SH Horsfield, CJ Drew, D Garbett, W Rubery, M Glebov, VY Roberts, S Frenje, JA AF Herrmann, H. W. Langenbrunner, J. R. Mack, J. M. Cooley, J. H. Wilson, D. C. Evans, S. C. Sedillo, T. J. Kyrala, G. A. Caldwell, S. E. Young, C. S. Nobile, A. Wermer, J. Paglieri, S. McEvoy, A. M. Kim, Y. Batha, S. H. Horsfield, C. J. Drew, D. Garbett, W. Rubery, M. Glebov, V. Yu. Roberts, S. Frenje, J. A. TI Anomalous yield reduction in direct-drive deuterium/tritium implosions due to He-3 addition SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE explosions; helium; plasma inertial confinement; plasma production; plasma shock waves ID BURN HISTORY; FUSION; GAMMA; DETECTORS; TARGETS; ENERGY; OMEGA AB Glass capsules were imploded in direct drive on the OMEGA laser [Boehly , Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with He-3 addition. Such anomalies have previously been reported for D/He-3 plasmas but had not yet been investigated for DT/He-3. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the "factor of 2" degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% He-3 atom fraction in D-2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D-2/He-3 [Wilson , J. Phys.: Conf. Ser. 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression of capsules containing He-3. Leading candidate explanations are poorly understood equation of state for gas mixtures and unanticipated particle pressure variation with increasing He-3 addition. C1 [Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Kyrala, G. A.; Caldwell, S. E.; Young, C. S.; Nobile, A.; Wermer, J.; Paglieri, S.; McEvoy, A. M.; Kim, Y.; Batha, S. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Horsfield, C. J.; Drew, D.; Garbett, W.; Rubery, M.] Atom Weap Estab, Aldermaston RG7 4PR, England. [Glebov, V. Yu.; Roberts, S.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Frenje, J. A.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Herrmann, HW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM herrmann@lanl.gov NR 20 TC 23 Z9 23 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056312 DI 10.1063/1.3141062 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600125 ER PT J AU Holcomb, CT Ferron, JR Luce, TC Petrie, TW Politzer, PA Challis, C DeBoo, JC Doyle, EJ Greenfield, CM Groebner, RJ Groth, M Hyatt, AW Jackson, GL Kessel, C La Haye, RJ Makowski, MA McKee, GR Murakami, M Osborne, TH Park, JM Prater, R Porter, GD Reimerdes, H Rhodes, TL Shafer, MW Snyder, PB Turnbull, AD West, WP AF Holcomb, C. T. Ferron, J. R. Luce, T. C. Petrie, T. W. Politzer, P. A. Challis, C. DeBoo, J. C. Doyle, E. J. Greenfield, C. M. Groebner, R. J. Groth, M. Hyatt, A. W. Jackson, G. L. Kessel, C. La Haye, R. J. Makowski, M. A. McKee, G. R. Murakami, M. Osborne, T. H. Park, J. -M. Prater, R. Porter, G. D. Reimerdes, H. Rhodes, T. L. Shafer, M. W. Snyder, P. B. Turnbull, A. D. West, W. P. TI Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma density; plasma instability; plasma magnetohydrodynamics; plasma toroidal confinement; plasma transport processes; Tokamak devices ID H-MODE PEDESTAL; D TOKAMAK; CONFINEMENT; INJECTION; EDGE; CODE AB Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness (zeta). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with zeta, in agreement with the modeling. Optimization of kink stability via zeta is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest zeta tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5 65%, and a normalized confinement factor of H(98(y,2))approximate to 1.5. C1 [Holcomb, C. T.; Groth, M.; Makowski, M. A.; Porter, G. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Ferron, J. R.; Luce, T. C.; Petrie, T. W.; Politzer, P. A.; DeBoo, J. C.; Greenfield, C. M.; Groebner, R. J.; Hyatt, A. W.; Jackson, G. L.; La Haye, R. J.; Osborne, T. H.; Prater, R.; Snyder, P. B.; Turnbull, A. D.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Challis, C.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Doyle, E. J.; Rhodes, T. L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Kessel, C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [McKee, G. R.; Shafer, M. W.] Univ Wisconsin, Madison, WI 53706 USA. [Murakami, M.; Park, J. -M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. RP Holcomb, CT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Groth, Mathias/G-2227-2013 NR 44 TC 25 Z9 25 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056116 DI 10.1063/1.3125934 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600109 ER PT J AU Hooper, EB Romero-Talamas, CA LoDestro, LL Wood, RD McLean, HS AF Hooper, E. B. Romero-Talamas, C. A. LoDestro, L. L. Wood, R. D. McLean, H. S. TI Aspect-ratio effects in the driven, flux-core spheromak SO PHYSICS OF PLASMAS LA English DT Article DE magnetic reconnection; plasma instability; plasma magnetohydrodynamics; plasma simulation; plasma toroidal confinement; stochastic processes ID TILTING INSTABILITY; HELICITY INJECTION; MAGNETIC HELICITY; SPHEX SPHEROMAK; GUN-DRIVEN; SUSTAINMENT; RELAXATION; PLASMA AB Resistive magnetohydrodynamic simulations are used to evaluate the effects of the aspect ratio A (length to radius ratio) in a spheromak driven by coaxial helicity injection. The simulations are benchmarked against the Sustained Spheromak Physics Experiment (SSPX) [R. D. Wood , Nucl. Fusion 45, 1582 (2005)]. Amplification of the bias ("gun") poloidal flux is fitted well by a linear dependence (insensitive to A) on the ratio of gun current and bias flux above a threshold dependent on A. For low flux amplifications in the simulations, the n=1 mode is coherent and the mean-field geometry looks like a tilted spheromak. Because the mode has relatively large amplitude the field lines are open everywhere, allowing helicity penetration. Strongly driven helicity injection at A <= 1.4 in simulations generates reconnection events which generate cathode-voltage spikes, relaxation of the symmetry-breaking modes, and open, stochastic magnetic field lines; this state is characteristic of SSPX. The time sequences of these events suggest that they are representative of a chaotic process. Near the spheromak tilt-mode limit, A approximate to 1.67 for a cylindrical flux conserver, the tilt approaches 90 degrees; reconnection events are not generated up to the strongest drives simulated. Implications for spheromak experiments are discussed. C1 [Hooper, E. B.; Romero-Talamas, C. A.; LoDestro, L. L.; Wood, R. D.; McLean, H. S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hooper, EB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hooper1@llnl.gov FU Department of Energy [DE-AC03-76SF00098]; U.S. Department of Energy [W7405-ENG-48, DE-AC5207NA27344] FX We thank the SSPX experimental team for their extensive efforts during the operation of the experiments. Stimulating discussions with B. I. Cohen are gratefully acknowledged, as is C. R. Sovinec's help with the NIMROD code and spheromak physics, in general. The visualization in this work was made possible by the help of Brian Nelson at the PSI Center, University of Washington, who prepared the python code scripts which converted the NIMROD output into the proper format for VISIT. Brad Whitlock of LLNL provided much-needed consulting guidance on the use of VISIT, and W. H. Meyer of LLNL installed and debugged the code on a local computer system and provided important support as needed. The simulations made use of resources at the National Energy Research Supercomputer Center under Department of Energy Contract No. DE-AC03-76SF00098. The work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract Nos. W7405-ENG-48 and DE-AC5207NA27344. NR 29 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052506 DI 10.1063/1.3134064 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600031 ER PT J AU Hurricane, OA Hansen, JF Robey, HF Remington, BA Bono, MJ Harding, EC Drake, RP Kuranz, CC AF Hurricane, O. A. Hansen, J. F. Robey, H. F. Remington, B. A. Bono, M. J. Harding, E. C. Drake, R. P. Kuranz, C. C. TI A high energy density shock driven Kelvin-Helmholtz shear layer experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE bubbles; flow instability; plasma flow; plasma instability; plasma shock waves; plasma turbulence; supersonic flow; vortices ID EXPERIMENTAL ASTROPHYSICS; SUPERNOVA HYDRODYNAMICS; LASER; INSTABILITIES; SIMULATION; PLASMAS; SYSTEM; MIX AB Radiographic data from a novel and highly successful high energy density Kelvin-Helmholtz (KH) instability experiment is presented along with synapses of the theory and simulation behind the target design. Data on instability growth are compared to predictions from simulation and theory. The key role played by baroclinic vorticity production in the functioning of the target and the key design parameters are also discussed. The data show the complete evolution of large distinct KH eddies, from formation to turbulent break-up. Unexpectedly, low density bubbles comparable to the vortex size are observed forming in the free-stream region above each vortex at late time. These bubbles have the appearance of localized shocks, possibly supporting a theoretical fluid dynamics conjecture about the existence of supersonic bubbles over the vortical structure [transonic convective Mach numbers, D. Papamoschou and A. Roshko, J. Fluid Mech. 197, 453 (1988)] that support localized shocks (shocklets) not extending into the free stream (P. E. Dimotakis, Proceedings of the 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1991, Paper No. AIAA 91-1724). However, it is also possible that these low density bubbles are the result of a cavitationlike effect. Hypothesis that may explain the appearance of low density bubbles will be discussed. C1 [Hurricane, O. A.; Hansen, J. F.; Robey, H. F.; Remington, B. A.; Bono, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Harding, E. C.; Drake, R. P.; Kuranz, C. C.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Hurricane, OA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hurricane1@llnl.gov OI Drake, R Paul/0000-0002-5450-9844 NR 35 TC 28 Z9 28 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056305 DI 10.1063/1.3096790 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600118 ER PT J AU Joseph, I AF Joseph, Ilon TI Driving toroidally asymmetric current through the tokamak scrape-off layer. II. Magnetic field structure and spectrum SO PHYSICS OF PLASMAS LA English DT Article DE fusion reactor divertors; fusion reactor theory; plasma boundary layers; plasma instability; plasma magnetohydrodynamics; plasma toroidal confinement; plasma transport processes; Tokamak devices ID PEELING-BALLOONING MODES; DIII-D; PLASMA CONVECTION; DIVERTOR; PERTURBATIONS; TRANSPORT; DISCHARGES; STABILITY; SURFACES; ITER AB The structure of the magnetic field perturbations due to nonaxisymmetric field-aligned currents in the tokamak scrape-off layer (SOL) are analytically calculated near the X-point. Paper I [I. Joseph , Phys. Plasmas 16, 052510 (2009)] demonstrated that biasing divertor target plates in a toroidally asymmetric fashion can generate an appreciable toroidally asymmetric parallel current density in the SOL along the separatrix. Here, the magnetic field perturbation caused by a SOL current channel of finite width and stepwise constant amplitude at the target plate is derived. Flux expansion amplifies the magnetic perturbation near the X-point, while phase interference causes the SOL amplitude to be reduced at large toroidal mode number. Far enough from the current channel, the magnetic field can be approximated as arising from a surface current near the separatrix with differing amplitudes in the SOL and the divertor leg. The perturbation spectrum and resonant components of this field are computed analytically asymptotically close to the separatrix in magnetic flux coordinates. The size of the stochastic layer due to the applied perturbation that would result without self-consistent plasma shielding is also estimated. If enough resonant field is generated, control of the edge pressure gradient may allow stabilization of edge localized modes. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Joseph, I (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM joseph5@llnl.gov NR 34 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052511 DI 10.1063/1.3134584 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600036 ER PT J AU Joseph, I Cohen, RH Ryutov, DD AF Joseph, Ilon Cohen, Ronald H. Ryutov, Dmitri D. TI Driving toroidally asymmetric current through the tokamak scrape-off layer. I. Potential for edge localized mode suppression SO PHYSICS OF PLASMAS LA English DT Article DE plasma boundary layers; plasma density; plasma instability; plasma magnetohydrodynamics; plasma simulation; plasma toroidal confinement; plasma transport processes; Tokamak devices ID RESONANT MAGNETIC PERTURBATIONS; PEELING-BALLOONING MODES; DIII-D TOKAMAK; PLASMA CONVECTION; PARTICLE CONTROL; CHAPTER 4; DIVERTOR; STABILITY; PHYSICS; TRANSPORT AB A potential technique for suppressing edge localized modes is theoretically analyzed. Recent experiments have shown that externally generated resonant magnetic perturbations (RMPs) can stabilize edge localized modes (ELMs) by modifying the density profile [T. E. Evans , Nat. Phys. 2, 419 (2006); Y. Liang , Phys. Rev. Lett. 98, 265004 (2007)]. Driving toroidally asymmetric current internally through the scrape-off layer (SOL) plasma itself can also generate RMPs that are close to the required threshold for ELM control. Ion saturation current densities can be achieved by producing potential differences on the order of the electron temperature. Although the threshold is uncertain in future devices, if driven coherently through the SOL, the upper limit for the resulting perturbation field would exceed the present experimental threshold. This analysis provides the tools required for estimating the magnitude of the coherent SOL current and RMP generated via toroidally asymmetric biasing of the target. Flux expansion increases the perturbation near the X-point, while phase interference due to the shearing of field lines near the X-point reduces the amplitude of the effective SOL perturbation and makes the result sensitive to both toroidal mode number n and the phasing at the target plate. If the current density driven at the target plate decays radially, the amplitude over the useful coherence width of the current profile will be reduced. The RMP can still exceed the present threshold at low n if the radial location and width of the biasing region are optimally chosen. C1 [Joseph, Ilon; Cohen, Ronald H.; Ryutov, Dmitri D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Joseph, I (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM joseph5@llnl.gov FU U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank T. D. Rognlien for providing access to UEDGE divertor physics modeling results for ITER and for valuable discussions that led to great improvements in the manuscript. We would also like to thank the referee for valuable suggestions that contributed to improving the clarity and content of the paper and for urging us to treat the effects of phase interference more completely. This work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 50 TC 7 Z9 7 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052510 DI 10.1063/1.3134580 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600035 ER PT J AU Kritcher, AL Neumayer, P Castor, J Doppner, T Falcone, RW Landen, OL Lee, HJ Lee, RW Holst, B Redmer, R Morse, EC Ng, A Pollaine, S Price, D Glenzer, SH AF Kritcher, A. L. Neumayer, P. Castor, J. Doeppner, T. Falcone, R. W. Landen, O. L. Lee, H. J. Lee, R. W. Holst, B. Redmer, R. Morse, E. C. Ng, A. Pollaine, S. Price, D. Glenzer, S. H. TI Ultrafast K alpha x-ray Thomson scattering from shock compressed lithium hydride SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE heating; lithium compounds; plasmons; shock wave effects; Thomson effect; X-ray scattering ID NATIONAL-IGNITION-FACILITY; EQUATION-OF-STATE; DENSE-PLASMAS; HIGH-PRESSURE; LASER; LIQUID; PHOTOABSORPTION; TEMPERATURE; DEUTERIUM; HYDROGEN AB Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti K alpha x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transition to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. The conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory. C1 [Kritcher, A. L.; Neumayer, P.; Castor, J.; Doeppner, T.; Landen, O. L.; Lee, R. W.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kritcher, A. L.; Morse, E. C.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94709 USA. [Falcone, R. W.; Lee, H. J.; Lee, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94709 USA. [Holst, B.; Redmer, R.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. RP Kritcher, AL (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. RI Holst, Bastian/D-2217-2011; Redmer, Ronald/F-3046-2013 OI Holst, Bastian/0000-0002-2369-3730; NR 44 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056308 DI 10.1063/1.3099316 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600121 ER PT J AU Krstic, PS Schultz, DR AF Krstic, P. S. Schultz, D. R. TI Mean free paths and elastic and related transport cross sections for neutrals and singly charged ions of Li, Be, and B in hydrogen plasmas SO PHYSICS OF PLASMAS LA English DT Article DE plasma ID SLOW COLLISIONS; 1ST WALL; TOKAMAK; SCATTERING; MOLECULES; COATINGS; RELEVANT; DIVERTOR; EDGE AB The mean free paths are computed from the momentum transfer cross sections associated with collisions of protons with Li, Be, and B and for Li, Li+, Be+, and B+ colliding with atomic hydrogen, for center of mass energies between 0.0001 and 10 000 eV. The elastic and viscosity cross sections are also calculated for these collision systems. A fully quantum mechanical approach has been used up to 100 eV along with a more approximate, quasiclassical method between similar to 0.1 and 10 000 eV. C1 [Krstic, P. S.; Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Krstic, PS (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy; Office of Fusion Energy Sciences, through Oak Ridge National Laboratory [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, through Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. NR 31 TC 9 Z9 9 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 053503 DI 10.1063/1.3126549 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600057 ER PT J AU Kuranz, CC Drake, RP Grosskopf, MJ Budde, A Krauland, C Marion, DC Visco, AJ Ditmar, JR Robey, HF Remington, BA Miles, AR Cooper, ABR Sorce, C Plewa, T Hearn, NC Killebrew, KL Knauer, JP Arnett, D Donajkowski, T AF Kuranz, C. C. Drake, R. P. Grosskopf, M. J. Budde, A. Krauland, C. Marion, D. C. Visco, A. J. Ditmar, J. R. Robey, H. F. Remington, B. A. Miles, A. R. Cooper, A. B. R. Sorce, C. Plewa, T. Hearn, N. C. Killebrew, K. L. Knauer, J. P. Arnett, D. Donajkowski, T. TI Three-dimensional blast-wave-driven Rayleigh-Taylor instability and the effects of long-wavelength modes SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE explosions; helium; hydrogen; plasma production by laser; plasma shock waves; plasma simulation; Rayleigh-Taylor instability ID 2-DIMENSIONAL SIMULATIONS; HYDRODYNAMICS CODE; SUPERNOVA-REMNANTS; EARLY EVOLUTION; LIGHT-CURVE; SN-1987A; GROWTH; ASTROPHYSICS; SYSTEM; LASERS AB This paper describes experiments exploring the three-dimensional (3D) Rayleigh-Taylor instability at a blast-wave-driven interface. This experiment is well scaled to the He/H interface during the explosion phase of SN1987A. In the experiments, similar to 5 kJ of energy from the Omega laser was used to create a planar blast wave in a plastic disk, which is accelerated into a lower-density foam. These circumstances induce the Richtmyer-Meshkov instability and, after the shock passes the interface, the system quickly becomes dominated by the Rayleigh-Taylor instability. The plastic disk has an intentional pattern machined at the plastic/foam interface. This perturbation is 3D with a basic structure of two orthogonal sine waves with a wavelength of 71 mu m and an amplitude of 2.5 mu m. Additional long-wavelength modes with a wavelength of either 212 or 424 mu m are added onto the single-mode pattern. The addition of the long-wavelength modes was motivated by the results of previous experiments where material penetrated unexpectedly to the shock front, perhaps due to an unintended structure. The current experiments and simulations were performed to explore the effects of this unintended structure; however, we were unable to reproduce the previous results. C1 [Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Budde, A.; Krauland, C.; Marion, D. C.; Visco, A. J.; Ditmar, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Robey, H. F.; Remington, B. A.; Miles, A. R.; Cooper, A. B. R.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Plewa, T.] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Hearn, N. C.] Univ Chicago, ASC Flash Ctr, Chicago, IL 60637 USA. [Killebrew, K. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Knauer, J. P.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Arnett, D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Donajkowski, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kuranz, CC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. RI Plewa, Tomasz/C-1470-2010; OI Plewa, Tomasz/0000-0002-1762-2565; Drake, R Paul/0000-0002-5450-9844 NR 43 TC 18 Z9 19 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056310 DI 10.1063/1.3099320 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600123 ER PT J AU Lei, AL Tanaka, KA Kodama, R Adumi, K Habara, H Kitagawa, Y Kondo, K Matsuoka, T Tanimoto, T Yabuuchi, T Mima, K Nagai, K Nagatomo, H Norimatsu, T Sawai, K Suzuki, K Yu, W Xu, H Yang, XQ Cao, LH Cai, HB Sentoku, Y Pukhov, A Kumar, R Snavely, R Freeman, R Yu, M Zheng, J AF Lei, A. L. Tanaka, K. A. Kodama, R. Adumi, K. Habara, H. Kitagawa, Y. Kondo, K. Matsuoka, T. Tanimoto, T. Yabuuchi, T. Mima, K. Nagai, K. Nagatomo, H. Norimatsu, T. Sawai, K. Suzuki, K. Yu, Wei Xu, Han Yang, X. Q. Cao, L. H. Cai, H. B. Sentoku, Y. Pukhov, A. Kumar, R. Snavely, R. Freeman, R. Yu, Min Zheng, J. TI Study of ultraintense laser propagation in overdense plasmas for fast ignition SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE electron beams; laser fusion; plasma heating by laser; plasma light propagation; plasma simulation; relativistic plasmas ID UNDERDENSE; PULSES; OSAKA AB Laser plasma interactions in a relativistic regime relevant to the fast ignition in inertial confinement fusion have been investigated. Ultraintense laser propagation in preformed plasmas and hot electron generation are studied. The experiments are performed using a 100 TW 0.6 ps laser and a 20 TW 0.6 ps laser synchronized by a long pulse laser. In the study, a self-focused ultraintense laser beam propagates along its axis into an overdense plasma with peak density 10(22)/cm(3). Channel formation in the plasma is observed. The laser transmission in the overdense plasma depends on the position of its focus and can take place in plasmas with peak densities as high as 5x10(22)/cm(3). The hot electron beams produced by the laser-plasma interaction have a divergence angle of similar to 30 degrees, which is smaller than that from laser-solid interactions. For deeper penetration of the laser light into the plasma, the use of multiple short pulse lasers is proposed. The latter scheme is investigated using particle-in-cell simulation. It is found that when the pulse duration and the interval between the pulses are appropriate, the laser pulse train can channel into the plasma deeper than a single longer pulse laser of similar peak intensity and total energy. C1 [Lei, A. L.; Yu, Wei; Xu, Han; Yang, X. Q.] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. [Lei, A. L.; Tanaka, K. A.; Kodama, R.; Adumi, K.; Habara, H.; Kitagawa, Y.; Kondo, K.; Matsuoka, T.; Tanimoto, T.; Yabuuchi, T.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Lei, A. L.; Tanaka, K. A.; Kodama, R.; Adumi, K.; Habara, H.; Kitagawa, Y.; Kondo, K.; Matsuoka, T.; Tanimoto, T.; Yabuuchi, T.; Mima, K.; Nagai, K.; Nagatomo, H.; Norimatsu, T.; Sawai, K.; Suzuki, K.; Cai, H. B.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Cao, L. H.; Cai, H. B.] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China. [Sentoku, Y.] Univ Nevada, NTF MS372, Dept Phys, Reno, NV 89506 USA. [Pukhov, A.] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. [Kumar, R.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Snavely, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Freeman, R.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. [Yu, Min] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Peoples R China. [Zheng, J.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Lei, AL (reprint author), Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. RI Sentoku, Yasuhiko/P-5419-2014; Nagai, Keiji/E-5155-2014; Norimatsu, Takayoshi/I-5710-2015; pukhov, alexander/C-8082-2016; Mima, Kunioki/H-9014-2016; Kodama, Ryosuke/G-2627-2016 NR 33 TC 16 Z9 16 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056307 DI 10.1063/1.3101912 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600120 ER PT J AU Li, CK Seguin, FH Frenje, JA Manuel, M Casey, D Sinenian, N Petrasso, RD Amendt, PA Landen, OL Rygg, JR Town, RPJ Betti, R Delettrez, J Knauer, JP Marshall, F Meyerhofer, DD Sangster, TC Shvarts, D Smalyuk, VA Soures, JM Back, CA Kilkenny, JD Nikroo, A AF Li, C. K. Seguin, F. H. Frenje, J. A. Manuel, M. Casey, D. Sinenian, N. Petrasso, R. D. Amendt, P. A. Landen, O. L. Rygg, J. R. Town, R. P. J. Betti, R. Delettrez, J. Knauer, J. P. Marshall, F. Meyerhofer, D. D. Sangster, T. C. Shvarts, D. Smalyuk, V. A. Soures, J. M. Back, C. A. Kilkenny, J. D. Nikroo, A. TI Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE corona; explosions; plasma inertial confinement; plasma production by laser ID CONFINEMENT-FUSION PLASMAS; RECONNECTION; IMPLOSIONS; COMPRESSION; IRRADIATION; PERFORMANCE; INSTABILITY; UNIFORMITY; TRANSPORT; TARGETS AB Time-gated, monoenergetic-proton radiography provides unique measurements of the electric (E) and magnetic (B) fields produced in laser-foil interactions and during the implosion of inertial-confinement-fusion capsules. These experiments resulted in the first observations of several new and important features: (1) observations of the generation, decay dynamics, and instabilities of megagauss B fields in laser-driven planar plastic foils, (2) the observation of radial E fields inside an imploding capsule, which are initially directed inward, reverse direction during deceleration, and are likely related to the evolution of the electron pressure gradient, and (3) the observation of many radial filaments with complex electromagnetic field striations in the expanding coronal plasmas surrounding the capsule. The physics behind and implications of such observed fields are discussed. C1 [Li, C. K.; Seguin, F. H.; Frenje, J. A.; Manuel, M.; Casey, D.; Sinenian, N.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Amendt, P. A.; Landen, O. L.; Rygg, J. R.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Meyerhofer, D. D.; Sangster, T. C.; Shvarts, D.; Smalyuk, V. A.; Soures, J. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn Phys & Astron, Rochester, NY 14623 USA. [Shvarts, D.] Negev & Ben Gurion Univ Negev, NRCN, IL-84015 Beer Sheva, Israel. [Back, C. A.; Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM li@psfc.mit.edu RI Manuel, Mario/L-3213-2015 OI Manuel, Mario/0000-0002-5834-1161 NR 41 TC 18 Z9 21 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056304 DI 10.1063/1.3096781 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600117 ER PT J AU Liu, YQ Chapman, IT Chu, MS Reimerdes, H Villone, F Albanese, R Ambrosino, G Garofalo, AM Gimblett, CG Hastie, RJ Hender, TC Jackson, GL La Haye, RJ Okabayashi, M Pironti, A Portone, A Rubinacci, G Strait, EJ AF Liu, Yueqiang Chapman, I. T. Chu, M. S. Reimerdes, H. Villone, F. Albanese, R. Ambrosino, G. Garofalo, A. M. Gimblett, C. G. Hastie, R. J. Hender, T. C. Jackson, G. L. La Haye, R. J. Okabayashi, M. Pironti, A. Portone, A. Rubinacci, G. Strait, E. J. TI Progress in physics and control of the resistive wall mode in advanced tokamaks SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys ID ROTATIONAL STABILIZATION; STABILITY; PLASMAS; SHEAR; FEEDBACK; KINK; ITER AB Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K [Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures. [DOI: 10.1063/1.3123388] C1 [Liu, Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Chu, M. S.; Garofalo, A. M.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. [Villone, F.; Ambrosino, G.; Pironti, A.] Univ Cassino, DAEIMI, ENEA CREATE, I-03043 Cassino, FR, Italy. [Albanese, R.; Rubinacci, G.] Univ Naples Federico 2, ENEA CREATE, I-80125 Naples, Italy. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Portone, A.] Fus Energy, Barcelona 08019, Spain. RP Liu, YQ (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM yueqiang.liu@ukaea.org.uk RI Albanese, Raffaele/B-5394-2016; OI Albanese, Raffaele/0000-0003-4586-8068; Ambrosino, Giuseppe/0000-0002-2549-2772 NR 39 TC 38 Z9 40 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056113 DI 10.1063/1.3123388 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600106 ER PT J AU Maqueda, RJ Maingi, R AF Maqueda, R. J. Maingi, R. CA NSTX team, TI Primary edge localized mode filament structure in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE filamentation instability; plasma diagnostics; plasma magnetohydrodynamics; plasma toroidal confinement; plasma turbulence ID SCRAPE-OFF LAYER; ASDEX UPGRADE; ELMS; MAST; NSTX; TRANSPORT; TURBULENCE; STABILITY; PEDESTAL; JET AB Edge localized modes (ELMs) are routinely seen in the National Spherical Torus Experiment (NSTX) [M. Ono, Nucl. Fusion 40, 557 (2000)]. These unstable modes give rise to plasma filaments that burst radially outward during the nonlinear phase of the instability, moving across flux surfaces into the scrape-off layer. Fast-frame visible imaging is used in NSTX to study the evolution and characteristics of the post-ELM filaments. These edge filaments, which are well aligned with the local magnetic field, are seen to evolve from a perturbation of the edge that within 40-50 mu s develops into the relatively high density/temperature primary filaments. The distribution of primary filaments in toroidal angle is seen to agree with a random model with moderate average toroidal mode numbers. At the same time, gas puff imaging shows that the perturbation of the edge leading to the burst of the ELM into the scrape-off layer is characterized by a broadband increase in fluctuations at much smaller poloidal wavelengths (lambda(pol)similar to 2-12 cm). These two measurements suggest that early development of turbulence may play a role in the development of primary ELM filamentation. C1 [Maqueda, R. J.] Nova Photon Inc, Princeton, NJ 08540 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Maqueda, RJ (reprint author), Nova Photon Inc, Princeton, NJ 08540 USA. NR 29 TC 24 Z9 24 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056117 DI 10.1063/1.3085798 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600110 ER PT J AU McDevitt, CJ Diamond, PH Gurcan, OD Hahm, TS AF McDevitt, C. J. Diamond, P. H. Guercan, Oe. D. Hahm, T. S. TI A novel mechanism for exciting intrinsic toroidal rotation SO PHYSICS OF PLASMAS LA English DT Article DE convection; phase space methods; plasma flow; plasma toroidal confinement; plasma turbulence ID DRIFT-WAVE TURBULENCE; GYROKINETIC EQUATIONS; TRANSPORT BARRIERS; MOMENTUM; TOKAMAKS; PLASMAS; FLOWS; VELOCITY; FIELD; MODE AB Beginning from a phase space conserving gyrokinetic formulation, a systematic derivation of parallel momentum conservation uncovers two physically distinct mechanisms by which microturbulence may drive intrinsic rotation. The first mechanism, which emanates from ExB convection of parallel momentum, has already been analyzed [O. D. Gurcan , Phys. Plasmas 14, 042306 (2007); R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] and was shown to follow from radial electric field shear induced symmetry breaking of the spectrally averaged parallel wave number. Thus, this mechanism is most likely active in regions with steep pressure gradients or strong poloidal flow shear. The second mechanism uncovered, which appears in the gyrokinetic formulation through the parallel nonlinearity, emerges due to charge separation induced by the polarization drift. This novel means of driving intrinsic rotation, while nominally higher order in an expansion of the mode frequency divided by the ion cyclotron frequency, does not depend on radial electric field shear. Thus, while the magnitude of the former mechanism is strongly reduced in regions of weak radial electric field shear, this mechanism remains unabated and is thus likely relevant in complementary regimes. C1 [McDevitt, C. J.; Diamond, P. H.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Hahm, T. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Guercan, Oe. D.] CEA Cadarache, F-13108 St Paul Les Durance, France. [McDevitt, C. J.; Diamond, P. H.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP McDevitt, CJ (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM cmcdevitt@ucsd.edu RI Gurcan, Ozgur/A-1362-2013; OI Gurcan, Ozgur/0000-0002-2278-1544; McDevitt, Christopher/0000-0002-3674-2909 NR 47 TC 32 Z9 32 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052302 DI 10.1063/1.3122048 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600018 ER PT J AU Park, JK Boozer, AH Menard, JE Garofalo, AM Schaffer, MJ Hawryluk, RJ Kaye, SM Gerhardt, SP Sabbagh, SA AF Park, Jong-kyu Boozer, Allen H. Menard, Jonathan E. Garofalo, Andrea M. Schaffer, Michael J. Hawryluk, Richard J. Kaye, Stanley M. Gerhardt, Stefan P. Sabbagh, Steve A. CA NSTX Team TI Importance of plasma response to nonaxisymmetric perturbations in tokamaks SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys ID RESONANT MAGNETIC PERTURBATIONS; TOROIDAL-MOMENTUM DISSIPATION; BANANA-DRIFT TRANSPORT; DIII-D; DIFFUSION; GEOMETRY; SYSTEMS; PHYSICS; FIELDS; MODES AB Tokamaks are sensitive to deviations from axisymmetry as small as delta B/B(0) similar to 10(-4). These nonaxisymmetric perturbations greatly modify plasma confinement and performance by either destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with associated nonambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal perturbed equilibria and provides important basis for understanding the sensitivity of tokamak plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equivalently the effect by ideally perturbed plasma currents, is essential to explain locking experiments on National Spherical Torus eXperiment (NSTX) and DIII-D. The ideal plasma response is also important for neoclassical toroidal viscosity (NTV) in nonambipolar transport. The consistency between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved when the variation in the field strength in IPEC is coupled with generalized NTV theory. These plasma response effects will be compared with the previous vacuum superpositions to illustrate the importance. However, plasma response based on ideal perturbed equilibria is still not sufficiently accurate to predict the details of NTV transport and can be inconsistent when currents associated with a toroidal torque become comparable to ideal perturbed currents. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3122862] C1 [Park, Jong-kyu; Menard, Jonathan E.; Hawryluk, Richard J.; Kaye, Stanley M.; Gerhardt, Stefan P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.; Sabbagh, Steve A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Garofalo, Andrea M.; Schaffer, Michael J.] Gen Atom Co, San Diego, CA 92186 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 NR 49 TC 48 Z9 48 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056115 DI 10.1063/1.3122862 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600108 ER PT J AU Podesta, M Heidbrink, WW Liu, D Ruskov, E Bell, RE Darrow, DS Fredrickson, ED Gorelenkov, NN Kramer, GJ LeBlanc, BP Medley, SS Roquemore, AL Crocker, NA Kubota, S Yuh, H AF Podesta, M. Heidbrink, W. W. Liu, D. Ruskov, E. Bell, R. E. Darrow, D. S. Fredrickson, E. D. Gorelenkov, N. N. Kramer, G. J. LeBlanc, B. P. Medley, S. S. Roquemore, A. L. Crocker, N. A. Kubota, S. Yuh, H. TI Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma Alfven waves; plasma magnetohydrodynamic waves; plasma toroidal confinement; plasma transport processes ID TOROIDAL PLASMAS; PHYSICS; NSTX; PREDICTIONS; INSTABILITY; SIMULATION; EIGENMODES; SYSTEMS AB Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono , Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory. C1 [Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM mpodesta@pppl.gov RI Liu, Deyong/Q-2797-2015 OI Liu, Deyong/0000-0001-9174-7078 NR 34 TC 37 Z9 37 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056104 DI 10.1063/1.3080724 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600097 ER PT J AU Qin, H Davidson, RC AF Qin, Hong Davidson, Ronald C. TI A physical parametrization of coupled transverse dynamics based on generalized Courant-Snyder theory and its applications SO PHYSICS OF PLASMAS LA English DT Article DE particle accelerators; particle beam dynamics; transfer function matrices ID HARMONIC-OSCILLATOR; INVARIANT AB A physical parametrization of coupled transverse dynamics is developed by generalizing the Courant-Snyder (CS) theory for one degree of freedom to the case of coupled transverse dynamics with two degrees of freedom. The four basic components of the original CS theory, i.e., the envelope equation, phase advance, transfer matrix, and CS invariant, all have their counterparts with remarkably similar expressions in the generalized theory. Applications of the new theory are given. It is discovered that the stability of coupled dynamics is completely determined by the generalized phase advance. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 19 TC 13 Z9 13 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 050705 DI 10.1063/1.3142472 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600005 ER PT J AU Raitses, Y Smirnov, A Fisch, NJ AF Raitses, Y. Smirnov, A. Fisch, N. J. TI Effects of enhanced cathode electron emission on Hall thruster operation SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE aerospace propulsion; plasma accelerators ID STATIONARY PLASMA THRUSTER; CROSS-FIELD TRANSPORT; MODEL; FLOW; WALL; ION AB Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steady-state parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction in the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction in the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes in the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations. C1 [Raitses, Y.; Smirnov, A.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Raitses, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM yraitses@pppl.gov NR 41 TC 21 Z9 21 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 057106 DI 10.1063/1.3131282 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600139 ER PT J AU Sanchez, R Newman, DE Leboeuf, JN Carreras, BA Decyk, VK AF Sanchez, R. Newman, D. E. Leboeuf, J. -N. Carreras, B. A. Decyk, V. K. TI On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak plasma turbulence SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE flow simulation; plasma flow; plasma simulation; plasma turbulence; shear turbulence; Tokamak devices ID SELF-ORGANIZED CRITICALITY; PARTICLE SIMULATION-MODEL; DRIVEN TURBULENCE; ANOMALOUS DIFFUSION; RANDOM-WALKS; CONFINEMENT; DYNAMICS; PARADIGM; DEVICES; FUSION AB It is argued that the usual understanding of the suppression of radial turbulent transport across a sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence, it is found instead that the character of the radial transport is altered fundamentally by the presence of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if the flows are self-consistently driven by the turbulence via the Reynolds stresses (in contrast to being induced externally), radial transport becomes non-Gaussian as well. These results warrant a reevaluation of the traditional description of radial transport across sheared flows in tokamaks via effective transport coefficients, suggesting that such description is oversimplified and poorly captures the underlying dynamics, which may in turn compromise its predictive capabilities. C1 [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Newman, D. E.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. [Leboeuf, J. -N.] JNL Sci Inc, Casa Grande, AZ 85294 USA. [Carreras, B. A.] BACV Solut Inc, Oak Ridge, TN 37830 USA. [Decyk, V. K.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Sanchez, R (reprint author), Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. EM sanchezferlr@ornl.gov NR 46 TC 15 Z9 15 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055905 DI 10.1063/1.3129727 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600092 ER PT J AU Sefkow, AB Davidson, RC Gilson, EP Kaganovich, ID Anders, A Coleman, JE Leitner, M Lidia, SM Roy, PK Seidl, PA Waldron, WL Yu, SS Welch, DR AF Sefkow, A. B. Davidson, R. C. Gilson, E. P. Kaganovich, I. D. Anders, A. Coleman, J. E. Leitner, M. Lidia, S. M. Roy, P. K. Seidl, P. A. Waldron, W. L. Yu, S. S. Welch, D. R. TI Simulations and experiments of intense ion beam current density compression in space and time SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE ion density; plasma density; plasma simulation; space charge ID INERTIAL-CONFINEMENT-FUSION; TRANSPORT; NEUTRALIZATION; PROPAGATION; DESIGN; MATTER AB The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) [P. K. Roy , Phys. Rev. Lett. 95, 234801 (2005)]. To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an similar to 300 keV K+ beam and have separately achieved transverse and longitudinal focusing to a radius < 2 mm and pulse duration < 5 ns, respectively. Simulation predictions and recent experiments demonstrate that a strong solenoid (B-z < 100 kG) placed near the end of the drift region can transversely focus the beam to the longitudinal focal plane. This paper reports on simulation predictions and experimental progress toward realizing simultaneous transverse and longitudinal charge bunch focusing. The proposed NDCX-II facility would capitalize on the insights gained from NDCX simulations and measurements in order to provide a higher-energy (>2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments. C1 [Sefkow, A. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Davidson, R. C.; Kaganovich, I. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Gilson, E. P.; Anders, A.; Coleman, J. E.; Leitner, M.; Lidia, S. M.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.; Yu, S. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Welch, D. R.] Voss Sci, Albuquerque, NM 87108 USA. RP Sefkow, AB (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 36 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056701 DI 10.1063/1.3078424 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600127 ER PT J AU Sefkow, AB Cohen, SA AF Sefkow, Adam B. Cohen, Samuel A. TI Particle-in-cell modeling of magnetized argon plasma flow through small mechanical apertures SO PHYSICS OF PLASMAS LA English DT Article DE argon; plasma devices; plasma flow; plasma heating; plasma simulation ID ACOUSTIC DOUBLE-LAYERS; ION; PARALLEL; VELOCITY AB Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with millimeter wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length similar to 200 lambda(D,e)-300 lambda(D,e) forms at the location of the aperture and is found to be an electrostatic double layer, with axially separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength. C1 [Sefkow, Adam B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cohen, Samuel A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sefkow, AB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy [DE-AC02-76-CHO-3073] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported in part through the Princeton Plasma Physics Laboratory by the United States Department of Energy Contract No. DE-AC02-76-CHO-3073. The authors would like to acknowledge R. C. Davidson, M. C. Herrmann, and E. Scime for support, X. Sun and A. Keesee for experimental work, I. D. Kaganovich for helpful feedback and suggestions, and D. R. Welch for LSP code information. NR 28 TC 5 Z9 5 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 053501 DI 10.1063/1.3119902 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600055 ER PT J AU Shadwick, BA Schroeder, CB Esarey, E AF Shadwick, B. A. Schroeder, C. B. Esarey, E. TI Nonlinear laser energy depletion in laser-plasma accelerators SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma accelerators; plasma light propagation; plasma waves; red shift ID WAKE-FIELD GENERATION; ELECTRON-BEAMS; PUMP DEPLETION; PULSES; WAVE AB Energy depletion of intense, short-pulse lasers via excitation of plasma waves is investigated numerically and analytically. The evolution of a resonant laser pulse proceeds in two phases. In the first phase, the pulse steepens, compresses, and frequency redshifts as energy is deposited in the plasma. The second phase of evolution occurs after the pulse reaches a minimum length at which point the pulse rapidly lengthens, losing resonance with the plasma. Expressions for the rate of laser energy loss and rate of laser redshifting are derived and are found to be in excellent agreement with the direct numerical solution of the laser field evolution coupled to the plasma response. Both processes are shown to have the same characteristic length scale. In the high intensity limit, for nearly resonant Gaussian laser pulses, this scale length is shown to be independent of laser intensity. C1 [Shadwick, B. A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Schroeder, C. B.; Esarey, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Shadwick, BA (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. EM shadwick@mailaps.org OI Schroeder, Carl/0000-0002-9610-0166 NR 19 TC 45 Z9 45 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056704 DI 10.1063/1.3124185 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600130 ER PT J AU Shelkovenko, TA Pikuz, SA McBride, RD Knapp, PF Wilhelm, H Hammer, DA Sinars, DB AF Shelkovenko, T. A. Pikuz, S. A. McBride, R. D. Knapp, P. F. Wilhelm, H. Hammer, D. A. Sinars, D. B. TI Nested multilayered X pinches for generators with mega-ampere current level SO PHYSICS OF PLASMAS LA English DT Article DE pinch effect; plasma X-ray sources ID RAY SOURCE; DYNAMICS; ARRAY; WIRES AB A symmetric X pinch configuration that is conducive to using large numbers of wires on >= 1 MA pulsed power generators has been tested at 1 MA. Using an initial configuration of wires before their twisting, similar to nested cylindrical wire arrays, enables a geometrically simple, compact, multilayer wire configuration at the X pinch crossing region. Multilayer X pinches with the same or different materials in the inner and outer wire layers were tested. Optimization resulted in X pinch radiation sources with peak power comparable to the most successful single layer X pinch, but with a compact, single bright X radiation source more reliably obtained using the nested configuration. C1 [Shelkovenko, T. A.; Pikuz, S. A.; McBride, R. D.; Knapp, P. F.; Wilhelm, H.; Hammer, D. A.] Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. [Sinars, D. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shelkovenko, TA (reprint author), Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. RI Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015 FU National Nuclear Security Administration under DOE [DE-FC03-02NA00057]; Sandia National Laboratories FX This work was partially supported by the Stewardship Sciences Academic Alliances program of the National Nuclear Security Administration under DOE Cooperative Agreement No. DE-FC03-02NA00057 and by Laboratory Directed Research and Development funds at Sandia National Laboratories. NR 27 TC 12 Z9 12 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 050702 DI 10.1063/1.3132611 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600002 ER PT J AU Shivamoggi, BK AF Shivamoggi, Bhimsen K. TI Parker problem in Hall magnetohydrodynamics SO PHYSICS OF PLASMAS LA English DT Article DE plasma magnetohydrodynamics; plasma toroidal confinement ID MAGNETIC RECONNECTION; CURRENT SHEETS; TEARING MODE; FIELDS AB The Parker problem in Hall magnetohydrodynamics (MHD) is considered. Poloidal shear superposed on the toroidal ion flow associated with the Hall effect is incorporated. This is found to lead to a triple deck structure for the Parker problem in Hall MHD, with the magnetic field falling off in the intermediate Hall-resistive region more steeply (like 1/x(3)) than that (like 1/x) in the outer ideal MHD region. C1 [Shivamoggi, Bhimsen K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shivamoggi, Bhimsen K.] Univ Cent Florida, Orlando, FL 32816 USA. RP Shivamoggi, BK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 18 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052111 DI 10.1063/1.3140055 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600016 ER PT J AU Shvets, G Polomarov, O Khudik, V Siemon, C Kaganovich, I AF Shvets, Gennady Polomarov, Oleg Khudik, Vladimir Siemon, Carl Kaganovich, Igor TI Nonlinear evolution of the Weibel instability of relativistic electron beams SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma instability; plasma nonlinear processes; plasma simulation; plasma-beam interactions; relativistic electron beams ID COLLISIONLESS SHOCKS; MAGNETIC-FIELDS; ELECTROMAGNETIC INSTABILITIES; 2-STREAM INSTABILITY; ION-BEAM; PLASMA; IGNITION; FILAMENTATION; GENERATION; SIMULATION AB Physics of the long-term evolution of the Weibel instability (WI) of an electron beam propagating through the plasma is described. Several phenomena occurring during the WI are identified: (i) the exponential growth stage resulting in beam breakup into small current filaments; (ii) merger of the small filaments and beam particles' trapping inside them; (iii) filaments' compression and expulsion of the ambient plasma from the filaments; (iv) formation of high-current filaments and their merger. It is shown that during the final stage these beam filaments can carry super-Alfvenic currents and form hollow current density profiles similar to the Hammer-Rostoker equilibrium. This explains why the initially increasing magnetic field energy eventually decreases during the late stage of the instability. Different computational approaches to modeling both collisionless and collisional WI are also described. C1 [Shvets, Gennady; Khudik, Vladimir; Siemon, Carl] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Shvets, Gennady; Khudik, Vladimir; Siemon, Carl] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Polomarov, Oleg] Univ Rochester, Laser Energet Lab, Fus Sci Ctr, Rochester, NY 14623 USA. [Kaganovich, Igor] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Shvets, G (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. NR 34 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056303 DI 10.1063/1.3093477 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600116 ER PT J AU Simakov, AN Chacon, L AF Simakov, Andrei N. Chacon, L. TI Quantitative analytical model for magnetic reconnection in Hall magnetohydrodynamics SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE diffusion; magnetic reconnection; plasma magnetohydrodynamics; plasma transport processes ID COALESCENCE INSTABILITY; LARGE SYSTEMS; COLLISIONLESS; ISLANDS; PLASMAS; DIFFUSION; DRIVEN AB Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or "fast") reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d(i) has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d(i). It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d(i). C1 [Simakov, Andrei N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chacon, L.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 NR 49 TC 10 Z9 10 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055701 DI 10.1063/1.3077269 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600080 ER PT J AU Valanju, PM Kotschenreuther, M Mahajan, SM Canik, J AF Valanju, P. M. Kotschenreuther, M. Mahajan, S. M. Canik, J. TI Super-X divertors and high power density fusion devices SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE fusion reactor divertors; plasma temperature; plasma toroidal confinement ID PHYSICS; TOKAMAK; PLASMA AB The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source "battery" small enough to fit inside a conventional fission blanket. C1 [Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Canik, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Valanju, PM (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. EM pvalanju@mail.utexas.edu OI Canik, John/0000-0001-6934-6681 NR 25 TC 81 Z9 82 U1 5 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056110 DI 10.1063/1.3110984 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600103 ER PT J AU Yuh, HY Levinton, FM Bell, RE Hosea, JC Kaye, SM LeBlanc, BP Mazzucato, E Peterson, JL Smith, DR Candy, J Waltz, RE Domier, CW Luhmann, NC Lee, W Park, HK AF Yuh, H. Y. Levinton, F. M. Bell, R. E. Hosea, J. C. Kaye, S. M. LeBlanc, B. P. Mazzucato, E. Peterson, J. L. Smith, D. R. Candy, J. Waltz, R. E. Domier, C. W. Luhmann, N. C., Jr. Lee, W. Park, H. K. TI Internal transport barriers in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE diffusion; discharges (electric); plasma diagnostics; plasma heating; plasma instability; plasma production; plasma temperature; plasma toroidal confinement; plasma transport processes; plasma turbulence ID SCATTERING SYSTEM; ASPECT RATIO; SHEAR; TURBULENCE; TOKAMAKS; NSTX; OPERATION; PLASMA AB In the National Spherical Torus Experiment [M. Ono , Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum ExB shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients. C1 [Yuh, H. Y.; Levinton, F. M.] Nova Photon Inc, Princeton, NJ 08540 USA. [Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Lee, W.; Park, H. K.] POSTECH, Pohang 790784, South Korea. RP Yuh, HY (reprint author), Nova Photon Inc, Princeton, NJ 08540 USA. EM hyuh@pppl.gov NR 23 TC 27 Z9 27 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056120 DI 10.1063/1.3129163 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600113 ER PT J AU Lunine, JI Macintosh, B Peale, S AF Lunine, Jonathan I. Macintosh, Bruce Peale, Stanton TI The detection and characterization of exoplanets SO PHYSICS TODAY LA English DT Article ID PLANETS; SPACE C1 [Lunine, Jonathan I.] Univ Arizona, Tucson, AZ 85721 USA. [Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA USA. [Peale, Stanton] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Lunine, JI (reprint author), Univ Arizona, Tucson, AZ 85721 USA. NR 17 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAY PY 2009 VL 62 IS 5 BP 46 EP 51 PG 6 WC Physics, Multidisciplinary SC Physics GA 442DY UT WOS:000265821400021 ER PT J AU Murray, C AF Murray, Cherry TI Accelerating into the future SO PHYSICS WORLD LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Amer Phys Soc, Livermore, CA 94550 USA. RP Murray, C (reprint author), Lawrence Livermore Natl Lab, Amer Phys Soc, Livermore, CA 94550 USA. EM camurray@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAY PY 2009 VL 22 IS 5 BP 16 EP 17 PG 2 WC Physics, Multidisciplinary SC Physics GA 443LG UT WOS:000265910700023 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point 'Two cultures' turns 50 SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAY PY 2009 VL 22 IS 5 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 443LG UT WOS:000265910700024 ER PT J AU Blank, JG Green, S Blake, D Valley, JW Kita, NT Treiman, A Dobson, PF AF Blank, J. G. Green, Sj. Blake, D. Valley, J. W. Kita, N. T. Treiman, A. Dobson, P. F. TI An alkaline spring system within the Del Puerto Ophiolite (California, USA): A Mars analog site SO PLANETARY AND SPACE SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Exploring Mars and its Earth Analogues CY JUN 19-23, 2007 CL Trento, ITALY DE Mars analog; Dolomite; Alkaline springs; Biosignature ID OXYGEN-ISOTOPE FRACTIONATION; 16S RIBOSOMAL-RNA; MODERN MARINE STROMATOLITES; LITHIFIED MICRITIC LAMINAE; MARTIAN METEORITE ALH84001; SULFATE-REDUCING BACTERIA; ALLAN HILLS 84001; MERIDIANI-PLANUM; GEOCHEMICAL EVIDENCE; DOLOMITE FORMATION AB Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals Such as olivine and pyroxene, yields fluids with unusual chemistry (Mg-OH and Ca-OH waters with pH values up to similar to 12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg-Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Blank, J. G.] SETI Inst, Mountain View, CA 94043 USA. [Blank, J. G.; Green, Sj.; Blake, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Valley, J. W.; Kita, N. T.] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Treiman, A.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Dobson, P. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Blank, JG (reprint author), SETI Inst, 515 N Whisman Rd, Mountain View, CA 94043 USA. EM jblank@seti.org RI Valley, John/B-3466-2011; Green, Stefan/C-8980-2011; Dobson, Patrick/D-8771-2015; Kita, Noriko/H-8035-2016 OI Green, Stefan/0000-0003-2781-359X; Valley, John/0000-0003-3530-2722; Dobson, Patrick/0000-0001-5031-8592; Kita, Noriko/0000-0002-0204-0765 NR 84 TC 34 Z9 37 U1 0 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2009 VL 57 IS 5-6 BP 533 EP 540 DI 10.1016/j.pss.2008.11.018 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 456QX UT WOS:000266863400003 ER PT J AU Crombe, K Andrew, Y Biewer, TM Blanco, E de Vries, PC Giroud, C Hawkes, NC Meigs, A Tala, T von Hellermann, M Zastrow, KD AF Crombe, K. Andrew, Y. Biewer, T. M. Blanco, E. de Vries, P. C. Giroud, C. Hawkes, N. C. Meigs, A. Tala, T. von Hellermann, M. Zastrow, K-D CA JET EFDA Contributors TI Radial electric field in JET advanced tokamak scenarios with toroidal field ripple SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID JOINT EUROPEAN TORUS; TRANSPORT BARRIERS; TURBULENCE AB A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v(theta)) in the ITB region is measured to be of the order of a few tens of km s(-1), significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v(theta) is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (E(r)), with the largest gradient in E(r) measured in the radial region coinciding with the ITB. C1 JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Andrew, Y.; de Vries, P. C.; Giroud, C.; Hawkes, N. C.; Meigs, A.; Zastrow, K-D] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Biewer, T. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Blanco, E.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. [Tala, T.] Assoc EURATOM Tekes, VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland. [von Hellermann, M.] EURATOM, FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. EM Kristel.Crombe@jet.uk RI Blanco, Emilio/F-8893-2016; OI Blanco, Emilio/0000-0002-1323-7547; Biewer, Theodore/0000-0001-7456-3509 NR 15 TC 10 Z9 11 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055005 DI 10.1088/0741-3335/51/5/055005 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300005 ER PT J AU Sattin, F Agostini, M Scarin, P Vianello, N Cavazzana, R Marrelli, L Serianni, G Zweben, SJ Maqueda, RJ Yagi, Y Sakakita, H Koguchi, H Kiyama, S Hirano, Y Terry, JL AF Sattin, F. Agostini, M. Scarin, P. Vianello, N. Cavazzana, R. Marrelli, L. Serianni, G. Zweben, S. J. Maqueda, R. J. Yagi, Y. Sakakita, H. Koguchi, H. Kiyama, S. Hirano, Y. Terry, J. L. TI On the statistics of edge fluctuations: comparative study between various fusion devices SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID SCRAPE-OFF-LAYER; ALCATOR-C-MOD; SELF-ORGANIZED CRITICALITY; RFX-MOD; SPHERICAL TORUS; TPE-RX; TURBULENCE; TRANSPORT; PLASMAS; INTERMITTENCY AB In this paper we present a statistical study of edge fluctuations taken with the gas puffing imaging (GPI) diagnostics. We carry out a comparison of GPI signal from an extensive database including four devices (two tokamaks and two reversed field pinches). The data are analysed in terms of their statistical moments Skewness and Kurtosis, as done in B Labit et al (2007 Phys. Rev. Lett. 98 255002). The data align along parabolic curves, although different from machine to machine, with some spread around the best-fitting curve. A discussion about the meaning of the parabolic trend as well as the departure of real data from it is provided. A phenomenological model is finally provided, attempting to accommodate experimental evidence. C1 [Sattin, F.; Agostini, M.; Scarin, P.; Vianello, N.; Cavazzana, R.; Marrelli, L.; Serianni, G.] Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy. [Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maqueda, R. J.] Nova Photon, Princeton, NJ 08540 USA. [Yagi, Y.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Hirano, Y.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Terry, J. L.] Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Sattin, F (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, Corso Stati Uniti 4, Padua, Italy. RI Sattin, Fabio/B-5620-2013; Marrelli, Lionello/G-4451-2013; Vianello, Nicola/B-6323-2008; OI Marrelli, Lionello/0000-0001-5370-080X; Vianello, Nicola/0000-0003-4401-5346; AGOSTINI, MATTEO/0000-0002-3823-1002 FU European Communities; Ministry of Education, Culture, Sports, Science and Technology FX This work was supported by the European Communities under the contract of Association between EURATOM/ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The TPE-RX program was financially supported by the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology, based on the screening and counselling of the Atomic Energy Commission. S Cappello read the manuscript and provided several useful suggestions. NR 48 TC 22 Z9 22 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055013 DI 10.1088/0741-3335/51/5/055013 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300013 ER PT J AU Simakov, AN AF Simakov, Andrei N. TI A drift-ordered short mean-free path description of a partially ionized magnetized plasma SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ION FLOW SHEAR; COLLISIONAL PLASMA; NEUTRAL DIFFUSION; FLUID EQUATIONS; TRANSPORT; EDGE; TOKAMAK; FIELD; GAS; ROTATION AB Neutral particles that are present at the edge of plasma magnetic confinement devices can play an important role in energy and momentum transport, and their effects should be accounted for. This work uses the drift ordering to derive a closed fluid description for a collisional, magnetized, partially ionized plasma. Charge-exchange, ionization and recombination processes are taken into account. It is assumed that electron distribution function is unaffected by atomic processes, so that electron-ion momentum and energy exchange are described by the usual expressions for a fully ionized plasma, and that neutral neutral collisions are unimportant. The collisional fluid equations derived herein generalize the drift-ordered description of a fully ionized collisional plasma (Catto P J et al 2004 Phys. Plasmas 1190), agree with the MHD-ordered description of a partially ionized plasma (Helander P et al 1994 Phys. Plasmas 1 3174) in the large-flow limit and can be used to describe both turbulent and collisional behavior of a partially ionized plasma. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 NR 32 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055006 DI 10.1088/0741-3335/51/5/055006 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300006 ER PT J AU West, WP Groth, M Hyatt, AW Jackson, GL Wade, MR Greenfield, CM Politzer, PA AF West, W. P. Groth, M. Hyatt, A. W. Jackson, G. L. Wade, M. R. Greenfield, C. M. Politzer, P. A. TI The maintenance of good wall conditions and high performance operation on DIII-D over extended periods without boronization SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID TOKAMAK OPERATION; PARTICLE CONTROL; DIVERTOR; CONFINEMENT; PLASMAS; ITER AB High performance plasmas and daily reference shots (DRSs) with both L-mode and H-mode phases were used to demonstrate the maintenance of good wall conditions over similar to 7000 s of plasma operation in DIII-D with no intervening boronizations or high temperature bakes during each of the 2006 and 2007 campaigns. High performance discharges with high normalized beta and confinement factor and good density control over the duration of the high-power beam injection period were very repeatable over the course of these campaigns. High performance operation was also demonstrated after a six week entry vent followed by the standard high temperature bake at 350 degrees C and plasma conditioning, but prior to a boronization. Over the 2006 and 2007 campaigns, the DRS database indicated little to no secular increase in impurity content. Oxygen content and nickel line emission were higher after the entry vent, but were still minor contributors to plasma contamination compared with carbon. Because DIII-D has a plasma facing surface that is >95% graphite, we take this as a demonstration that erosion of boronization films used for wall conditioning will not be a limitation to establishing long-pulse high performance discharges in the new generation of superconducting tokamaks if graphite is used as the primary plasma facing material. C1 [West, W. P.; Hyatt, A. W.; Jackson, G. L.; Wade, M. R.; Greenfield, C. M.; Politzer, P. A.] Gen Atom Co, San Diego, CA 92186 USA. [Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP West, WP (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Groth, Mathias/G-2227-2013 NR 23 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055014 DI 10.1088/0741-3335/51/5/055014 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300014 ER PT J AU Wang, CJ Srivastava, N Scherrer, S Jang, PR Dibble, TS Duan, YX AF Wang, Chuji Srivastava, Nimisha Scherrer, Susan Jang, Ping-Rey Dibble, Theodore S. Duan, Yixiang TI Optical diagnostics of a low power-low gas flow rates atmospheric-pressure argon plasma created by a microwave plasma torch SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID CAVITY RINGDOWN SPECTROSCOPY; INDUCTIVELY-COUPLED PLASMAS; STATE DISTRIBUTION FUNCTION; DIODE-LASER ABSORPTION; THOMSON SCATTERING; EMISSION-SPECTROSCOPY; ISOTOPIC MEASUREMENTS; DOWN SPECTROSCOPY; ELECTRON-DENSITY; AIR PLASMA AB We employ a suite of optical techniques, namely, visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy (CRDS), to characterize a low power, low gas flow rates, atmospheric-pressure argon microwave induced plasma. The plasma is created by a microwave plasma torch, which is excited by a 2.45 GHz microwave with powers ranging from 60 to 120W. A series of plasma images captured in a time-resolution range of as fine as 10 mu s shows that the converging point is actually a time- averaged visual effect and the converging point does not exist when the plasma is visualized under high time resolution, e. g. < 2 ms. Simulations of the emission spectra of OH, N-2 and N-2(+) in the range 200-450 nm enable the plasma electronic excitation temperature (T-exc) to be determined at 8000-9000 K, while the vibrational temperature (T-v), the rotational temperature (T-r) and the gas temperature (T-g) at different locations along the axis of the plasma column are all determined to be in the range 1800-2200 K. Thermal equilibrium properties of the plasma are discussed. OH radical concentrations along the plasma column axis are measured by CRDS and the concentrations are in the range 1.6 x 10(13)-3.0 x 10(14) cm(-3) with the highest density at the tail of the plasma column. The upper limit of electron density ne is estimated to be 5.0 x 10(14) cm(-3) from the Lorentzian component of the broadened lineshape obtained by ringdown spectral scans of the rovibrational line S-21 of the OH A-X (0-0) band. C1 [Wang, Chuji; Srivastava, Nimisha; Scherrer, Susan; Jang, Ping-Rey] Mississippi State Univ, Dept Phys & Astron, Starkville, MS 39759 USA. [Wang, Chuji; Srivastava, Nimisha; Scherrer, Susan; Jang, Ping-Rey] Mississippi State Univ, Inst Clean Energy Technol, Starkville, MS 39759 USA. [Dibble, Theodore S.] SUNY Coll Environm Sci & Forestry, Dept Chem, Syracuse, NY 13210 USA. [Duan, Yixiang] Los Alamos Natl Lab, C ACS, Los Alamos, NM 87545 USA. RP Wang, CJ (reprint author), Mississippi State Univ, Dept Phys & Astron, POB 5167, Mississippi State, MS 39762 USA. EM cw175@msstate.edu RI Dibble, Theodore/D-1341-2012; OI Dibble, Theodore/0000-0002-0023-8233 FU National Science Foundation [CTS-0626302] FX This work is supported by the National Science Foundation through grant #CTS-0626302. NR 61 TC 20 Z9 20 U1 1 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD MAY PY 2009 VL 18 IS 2 AR 025030 DI 10.1088/0963-0252/18/2/025030 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 438UL UT WOS:000265580800033 ER PT J AU Wood, N Bhattacharya, T Keele, BF Giorgi, E Liu, M Gaschen, B Daniels, M Ferrari, G Haynes, BF McMichael, A Shaw, GM Hahn, BH Korber, B Seoighe, C AF Wood, Natasha Bhattacharya, Tanmoy Keele, Brandon F. Giorgi, Elena Liu, Michael Gaschen, Brian Daniels, Marcus Ferrari, Guido Haynes, Barton F. McMichael, Andrew Shaw, George M. Hahn, Beatrice H. Korber, Bette Seoighe, Cathal TI HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC SO PLOS PATHOGENS LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; AMINO-ACID SITES; NEUTRALIZING ANTIBODY-RESPONSES; DETECTING POSITIVE SELECTION; CYTOTOXIC T-LYMPHOCYTES; IN-VIVO; ENVELOPE GLYCOPROTEIN; STATISTICAL-METHODS; ADAPTIVE EVOLUTION; LIKELIHOOD MODELS AB The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections. C1 [Wood, Natasha; Seoighe, Cathal] Univ Cape Town, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. [Wood, Natasha; Seoighe, Cathal] Ctr High Performance Comp, Cape Town, South Africa. [Bhattacharya, Tanmoy; Giorgi, Elena; Gaschen, Brian; Daniels, Marcus; Korber, Bette] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Bhattacharya, Tanmoy; Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. [Keele, Brandon F.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama, Birmingham, NM USA. [Giorgi, Elena] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Liu, Michael; McMichael, Andrew] Univ Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Oxford OX3 9DU, England. [Ferrari, Guido; Haynes, Barton F.] Duke Univ, Durham, NC USA. [Seoighe, Cathal] Natl Univ Ireland Univ Coll Galway, Sch Math Stat & Appl Math, Galway, Ireland. RP Wood, N (reprint author), Univ Cape Town, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. EM cseoighe@gmail.com RI Bhattacharya, Tanmoy/J-8956-2013; Ferrari, Guido/A-6088-2015; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU National Institutes of Health to the Center for HIV/AIDS Vaccine Immunology (CHAVI); NIH [AI67854, AI27767]; Bill & Melinda Gates Foundation [37874]; UAB Center for AIDS Research FX This work was supported by a grant from the National Institutes of Health to the Center for HIV/AIDS Vaccine Immunology (CHAVI), by grants from the NIH (AI67854, AI27767), the Bill & Melinda Gates Foundation (#37874), and by sequencing core facilities of the UAB Center for AIDS Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 65 TC 97 Z9 98 U1 1 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD MAY PY 2009 VL 5 IS 5 AR e1000414 DI 10.1371/journal.ppat.1000414 PG 16 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 459FH UT WOS:000267085800041 PM 19424423 ER PT J AU Ingersoll, DT AF Ingersoll, D. T. TI Deliberately small reactors and the second nuclear era SO PROGRESS IN NUCLEAR ENERGY LA English DT Review DE Small medium reactors; Deliberately small reactors; Second nuclear era; Nuclear renaissance; New reactor designs AB Smaller sized nuclear reactors were instrumental during the pioneering days of commercial nuclear power to facilitate the development and demonstration of early reactor technologies and to establish operational experience for the fledgling nuclear power industry. As the U.S. embarks on its "second nuclear era," the question becomes: Will smaller sized plants have a significant role in meeting the nation's needs for electricity and other energy demands? A brief review of our nuclear history is presented relative to plant size considerations, followed by a review of several commonly cited benefits of small reactors. Several "deliberately small" designs currently being developed in the U.S. are briefly described, as well as some of the technical and institutional challenges faced by these designs. Deliberately small reactors offer substantial benefits in safety. security, operational flexibilities and economics, and they are well positioned to figure prominently in the second nuclear era. (C) 2009 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Nucl Technol Programs Off, Oak Ridge, TN 37831 USA. RP Ingersoll, DT (reprint author), Oak Ridge Natl Lab, Nucl Technol Programs Off, POB 2008, Oak Ridge, TN 37831 USA. EM ingersolldt@ornl.gov FU DOE Office of Nuclear Energy; Global Nuclear Energy Partnership program FX The author would like to thank the many supporters and developers of SMRs who provided information and graphics for this paper, and also Gary Mays, Don Williams, and Brad Williams for their thoughtful review and comments on the draft manuscript. The author especially wishes to thank Robert Price and the DOE Office of Nuclear Energy for the opportunity to lead the Grid-Appropriate Reactor program element within the Global Nuclear Energy Partnership program. The personal contacts and technical content of that assignment contributed greatly to the perspectives shared in this paper, and solidified the author's passion for deliberately small reactors. NR 32 TC 90 Z9 92 U1 4 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAY-JUL PY 2009 VL 51 IS 4-5 BP 589 EP 603 DI 10.1016/j.pnucene.2009.01.003 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438QI UT WOS:000265570100001 ER PT J AU Wilson, WB Perry, RT Chariton, WS Parish, TA AF Wilson, W. B. Perry, R. T. Chariton, W. S. Parish, T. A. TI Sources: A code for calculating (alpha, n), spontaneous fission, and delayed neutron sources and spectra SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Alpha reactions; Spontaneous fission; Delayed neutrons; Actinide isotopes; Neutron production ID LIGHT-ELEMENTS; BOMBARDMENT; PARTICLES; YIELDS AB SOURCES is a computer code that determines neutron production rates and spectra from (alpha, n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media, interface problems, and three-region interface problems. The code is also capable of calculating the neutron production rates due to (alpha, n) reactions induced by a monoenergetic beam of alpha particles incident on a slab of target material. The (alpha, n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay alpha-particle spectra, 24 sets of measured and/or evaluated (alpha, n) cross sections and product nuclide level branching fractions, and functional alpha particle stopping cross sections for Z < 106. Spontaneous fission sources and spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron sources. It also provides an analysis of the contributions to that source by each nuclide in the problem. Published by Elsevier Ltd. C1 [Wilson, W. B.; Perry, R. T.; Chariton, W. S.; Parish, T. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Perry, RT (reprint author), Los Alamos Natl Lab, Box 1663, Los Alamos, NM 87544 USA. EM rtperry@lanl.gov FU Los Alamos National Laboratory FX The present version of SOURCES would not be possible without the contributions of many people. The authors acknowledge E. D. Arthur, M. Bozoian, T. H. Brown, J. Devaney, T. R. England, G. P. Estes, D. G. Madland, J. A. Sattelberger, Erik Shores, and J. E. Stewart, all from the Los Alamos National Laboratory, for their contributions to the development of the code. NR 35 TC 6 Z9 6 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAY-JUL PY 2009 VL 51 IS 4-5 BP 608 EP 613 DI 10.1016/j.pnucene.2008.11.007 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438QI UT WOS:000265570100003 ER PT J AU Zhang, J Kapernick, R AF Zhang, J. Kapernick, R. TI Oxygen chemistry in liquid sodium-potassium systems SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Liquid sodium/NaK; Coolant; Oxygen chemistry; Corrosion ID ALKALI-METALS; THERMODYNAMIC PROPERTIES; STRUCTURAL-MATERIALS; STAINLESS-STEEL; TERNARY OXIDES; ALLOYS; CORROSION; SOLUBILITY; COMPATIBILITY; IMPURITIES AB Oxygen is one of the main contaminates when using an alkali metal as a coolant in a nuclear reactor system. Some oxygen will be present in the coolant at the start of operation, and during normal operation some oxygen may diffuse through the clad into the coolant. Assuming UO(2) fuel, a breach of the cladding of one or more fuel pins, and with the coolant contacting the fuel pellets, the oxygen level in the coolant can increase. The present study examines oxygen chemistry in liquid NaK by extending the existing knowledge of oxygen chemistry in liquid sodium, New explanations and correlations for the formation of oxygen compounds in the liquid metal have been developed. This study includes the effect of oxygen level, measurement and control methods, and the effects of oxygen and oxygen compounds on the compatibility between the liquid and the structural materials. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, J.; Kapernick, R.] Los Alamos Natl Lab, Decis & Applicat Div, Los Alamos, NM 87544 USA. RP Zhang, J (reprint author), Los Alamos Natl Lab, Decis & Applicat Div, POB 1663, Los Alamos, NM 87544 USA. EM jszhang@lanl.gov RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 33 TC 4 Z9 4 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAY-JUL PY 2009 VL 51 IS 4-5 BP 614 EP 623 DI 10.1016/j.pnucene.2008.12.001 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438QI UT WOS:000265570100004 ER PT J AU Kiss, C Temirov, J Chasteen, L Waldo, GS Bradbury, ARM AF Kiss, Csaba Temirov, Jamshid Chasteen, Leslie Waldo, Geoffrey S. Bradbury, Andrew R. M. TI Directed evolution of an extremely stable fluorescent protein SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE directed evolution; fluorescent protein; thermostability ID SENSITIVE FOLDING MUTATIONS; THERMOSTABLE ALPHA-AMYLASE; P22 TAILSPIKE PROTEIN; IN-VITRO EVOLUTION; GLOBAL SUPPRESSORS; THERMAL-STABILITY; SURFACE DISPLAY; BETA-LACTAMASE; DOMAIN; STABILIZATION AB In this paper we describe the evolution of eCGP123, an extremely stable green fluorescent protein based on a previously described fluorescent protein created by consensus engineering (CGP: consensus green protein). eCGP123 could not be denatured by a standard thermal melt, preserved almost full fluorescence after overnight incubation at 80 degrees C and possessed a free energy of denaturation of 12.4 kcal/mol. It was created from CGP by a recursive process involving the sequential introduction of three destabilizing heterologous inserts, evolution to overcome the destabilization and finally 'removal' of the destabilizing insert by gene synthesis. We believe that this approach may be generally applicable to the stabilization of other proteins. C1 [Kiss, Csaba; Temirov, Jamshid; Chasteen, Leslie; Waldo, Geoffrey S.; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Bradbury, ARM (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. EM amb@lanl.gov OI Bradbury, Andrew/0000-0002-5567-8172 FU LANL lab directed research funds (LDRD-DR); DOE GTL FX A. R. M. B. is grateful to LANL lab directed research funds (LDRD-DR) and the DOE GTL program for funding. NR 62 TC 29 Z9 29 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD MAY PY 2009 VL 22 IS 5 BP 313 EP 323 DI 10.1093/protein/gzp006 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 434LV UT WOS:000265277100004 PM 19364809 ER PT J AU Boschek, CB Apiyo, DO Soares, TA Engelmann, HE Pefaur, NB Straatsma, TP Baird, CL AF Boschek, Curt B. Apiyo, David O. Soares, Thereza A. Engelmann, Heather E. Pefaur, Noah B. Straatsma, Tjerk P. Baird, Cheryl L. TI Engineering an ultra-stable affinity reagent based on Top7 SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE engineering affinity; molecular dynamics simulations; protein scaffold; protein stability; Top7 ID MOLECULAR-DYNAMICS SIMULATIONS; SITE-DIRECTED MUTAGENESIS; MONOCLONAL-ANTIBODY; BINDING-PROTEINS; CD4; DESIGN; ACTIVATION; DIVERSITY; STABILITY; DOMAINS AB Antibodies are widely used for diagnostic and therapeutic applications because of their sensitive and specific recognition of a wide range of targets; however, their application is limited by their structural complexity. More demanding applications require greater stability than can be achieved by immunoglobulin-based reagents. Highly stable, protein-based affinity reagents are being investigated for this role with the goal of identifying a suitable scaffold that can attain specificity and sensitivity similar to that of antibodies while performing under conditions where antibodies fail. We have engineered Top7-025EFa highly stable, computationally designed protein-025EFto specifically bind human CD4 by inserting a peptide sequence derived from a CD4-specific antibody. Molecular dynamics simulations were used to evaluate the structural effect of the peptide insertion at a specific site within Top7 and suggest that this Top7 variant retains conformational stability over 100 degrees C. This engineered protein specifically binds CD4 and, consistent with simulations, is extremely resistant to thermal and chemical denaturation-025EFretaining its secondary structure up to at least 95 degrees C and requiring 6 M guanidine to completely unfold. This CD4-specific protein demonstrates the functionality of Top7 as a viable scaffold for use as a general affinity reagent which could serve as a robust and inexpensive alternative to antibodies. C1 [Boschek, Curt B.; Apiyo, David O.; Engelmann, Heather E.; Pefaur, Noah B.; Baird, Cheryl L.] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. [Soares, Thereza A.; Straatsma, Tjerk P.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. RP Baird, CL (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, POB 999,MS K4-12, Richland, WA 99352 USA. EM cheryl.baird@pnl.gov RI Baird, Cheryl/F-6569-2011; Soares, Thereza/G-1065-2010 OI Soares, Thereza/0000-0002-5891-6906 FU Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; United States Department of Energy (Laboratory Directed Research and Development) FX This work was supported by the United States Department of Energy (Laboratory Directed Research and Development). NR 40 TC 14 Z9 14 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD MAY PY 2009 VL 22 IS 5 BP 325 EP 332 DI 10.1093/protein/gzp007 PG 8 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 434LV UT WOS:000265277100005 PM 19321520 ER PT J AU Gassman, NR Ho, SO Korlann, Y Chiang, J Wu, Y Perry, LJ Kim, Y Weiss, S AF Gassman, Natalie R. Ho, Sam On Korlann, You Chiang, Janet Wu, Yim Perry, L. Jeanne Kim, Younggyu Weiss, Shimon TI In vivo assembly and single-molecule characterization of the transcription machinery from Shewanella oneidensis MR-1 SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE Shewanella oneidensis; RNA polymerase; sigma Factor; Co-overexpression; Single-molecule spectroscopy; Alternating-laser excitation ID COLI RNA-POLYMERASE; ALTERNATING-LASER EXCITATION; ESCHERICHIA-COLI; SIGMA(70) SUBUNIT; STRUCTURAL BASIS; GENOME SEQUENCE; LAC PROMOTER; DNA COMPLEX; INITIATION; GENE AB Harnessing the new bioremediation and biotechnology applications offered by the dissimilatory metal-reducing bacteria, Shewanella oneidensis MR-1, requires a clear understanding of its transcription machinery, a pivotal component in maintaining vitality and in responding to various conditions, including starvation and environmental stress. Here, we have reconstituted the S. oneidensis RNA polymerase (RNAP) core in vivo by generating a co-overexpression construct that produces a long polycistronic mRNA encoding all of the core subunits (alpha, beta, beta', and omega) and verified that this reconstituted core is capable of forming fully functional holoenzymes with the S. oneidensis sigma factors sigma(70), sigma(38), sigma(32), and sigma(24). Further, to demonstrate the applications for this reconstituted core, we report the application of single-molecule fluorescence resonance energy transfer (smFRET) assays to monitor the mechanisms of transcription by the S. oneidensis sigma(70)-RNAP holoenyzme. These results show that the reconstituted transcription machinery from S. oneidensis, like its Escherichia coli counterpart, "scrunches" the DNA into its active center during initial transcription, and that as the holoenzyme transitions into elongation, the release of sigma(70) is non-obligatory. (C) 2009 Published by Elsevier Inc. C1 [Gassman, Natalie R.; Ho, Sam On; Korlann, You; Kim, Younggyu; Weiss, Shimon] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Wu, Yim; Perry, L. Jeanne] Univ Calif Los Angeles, DOE, Inst Proteom & Genom, Los Angeles, CA 90095 USA. [Weiss, Shimon] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA. [Weiss, Shimon] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA. RP Kim, Y (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 607 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM ykim@chem.ucla.edu; sweiss@chem.ucla.edu RI weiss, shimon/B-4164-2009; OI weiss, shimon/0000-0002-0720-5426; Gassman, Natalie/0000-0002-8488-2332 FU Department of Energy [FG03-02ER63339]; NIH [GM069709-01] FX We thank Dr. M. Uljana Mayer Dr. Liang Shi for providing the S. oneidensis RNAP subunits clones, and Dr. Mayer, Devdoot Majumdar, and Yuval Ebenstein for critical reading of the article; the Dr. Jay D. Gralla group for help with the radioactive transcription assays; Irina Sorokina for helpful discussion of the MALDI-MS data. We also acknowledge the Shewanella Federation for helpful discussions. This work was supported by Department of Energy Grant FG03-02ER63339 and NIH Grant GM069709-01 to S.W. NR 69 TC 4 Z9 4 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 EI 1096-0279 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD MAY PY 2009 VL 65 IS 1 BP 66 EP 76 DI 10.1016/j.pep.2008.11.013 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 416LU UT WOS:000264008400009 PM 19111618 ER PT J AU Fleissner, MR Cascio, D Hubbell, WL AF Fleissner, Mark R. Cascio, Duilio Hubbell, Wayne L. TI Structural origin of weakly ordered nitroxide motion in spin-labeled proteins SO PROTEIN SCIENCE LA English DT Article DE site-directed Spin Labeling; nitroxide anisotropic motion; nitroxide crystal structures ID SIDE-CHAIN STRUCTURE; T4 LYSOZYME; ALPHA-HELIX; EPR-SPECTRA; DYNAMICS; ACTIVATION; BINDING; CONFORMATIONS; DETERMINANTS; MUTAGENESIS AB A disulfide-linked nitroxide side chain (R1) used in site-directed spin labeling of proteins often exhibits an EPR spectrum characteristic of a weakly ordered z-axis anisotropic motion at topographically diverse surface sites, including those on helices, loops and edge strands of beta-sheets. To elucidate the origin of this motion, the first crystal structures of R1 that display simple z-axis anisotropic motion at solvent-exposed helical sites ( 131 and 151) and a loop site ( 82) in T4 lysozyme have been determined. Structures of 131R1 and 151R1 determined at cryogenic or ambient temperature reveal an intraresidue C(alpha)-H center dot center dot center dot S(delta) interaction that immobilizes the disulfide group, consistent with a model in which the internal motions of R1 are dominated by rotations about the two terminal bonds ( Columbus, Kalai, Jeko, Hideg, and Hubbell, Biochemistry 2001; 40: 3828-3846). Remarkably, the 131R1 side chain populates two rotamers equally, but the EPR spectrum reflects a single dominant dynamic population, showing that the two rotamers have similar internal motion determined by the common disulfide-backbone interaction. The anisotropic motion for loop residue 82R1 is also accounted for by a common disulfide-backbone interaction, showing that the interaction does not require a specific secondary structure. If the above observations prove to be general, then significant variations in order and rate for R1 at noninteracting solvent-exposed helical and loop sites can be assigned to backbone motion because the internal motion is essentially constant. C1 [Hubbell, Wayne L.] Univ Calif Los Angeles, Sch Med, Jules Stein Eye Inst, Los Angeles, CA 90095 USA. [Fleissner, Mark R.; Hubbell, Wayne L.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Cascio, Duilio] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Hubbell, WL (reprint author), Univ Calif Los Angeles, Sch Med, Jules Stein Eye Inst, Los Angeles, CA 90095 USA. EM hubbellw@jsei.ucla.edu FU NEI NIH HHS [5T32EY007026, R01 EY005216, R01 EY005216-29, EY05216]; NIGMS NIH HHS [GM07185] NR 55 TC 58 Z9 58 U1 0 U2 10 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2009 VL 18 IS 5 BP 893 EP 908 DI 10.1002/pro.96 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 442PK UT WOS:000265852900004 PM 19384990 ER PT J AU Xu, JC Crowley, MF Smith, JC AF Xu, Jiancong Crowley, Michael F. Smith, Jeremy C. TI Building a foundation for structure-based cellulosome design for cellulosic ethanol: Insight into cohesin-dockerin complexation from computer simulation SO PROTEIN SCIENCE LA English DT Article DE cellulosic ethanol; cellulosome; cohesin-dockerin; principal component analysis; free energy perturbation; adaptive biasing force; potential of mean force ID ALPHA-HELIX DIPOLE; MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY CALCULATIONS; BINDING FREE-ENERGY; CLOSTRIDIUM-THERMOCELLUM; CRYSTAL-STRUCTURE; COLLECTIVE MOTIONS; DOMAIN; PROTEIN; CELLULOLYTICUM AB The organization and assembly of the cellulosome, an extracellular multienzyme complex produced by anaerobic bacteria, is mediated by the high-affinity interaction of cohesin domains from scaffolding proteins with dockerins of cellulosomal enzymes. We have performed molecular dynamics simulations and free energy calculations on both the wild type (WT) and D39N mutant of the C. thermocellum Type I cohesin-dockerin complex in aqueous solution. The D39N mutation has been experimentally demonstrated to disrupt cohesin-dockerin binding. The present MD simulations indicate that the substitution triggers significant protein flexibility and causes a major change of the hydrogen-bonding network in the recognition strips-the conserved loop regions previously proposed to be involved in binding-through electrostatic and salt-bridge interactions between beta-strands 3 and 5 of the cohesin and alpha-helix 3 of the dockerin. The mutation-induced subtle disturbance in the local hydrogen-bond network is accompanied by conformational rearrangements of the protein side chains and bound water molecules. Additional free energy perturbation calculations of the D39N mutation provide differences in the cohesin-dockerin binding energy, thus offering a direct, quantitative comparison with experiments. The underlying molecular mechanism of cohesin-dockerin complexation is further investigated through the free energy profile, that is, potential of mean force (PMF) calculations of WT cohesin-dockerin complex. The PMF shows a high-free energy barrier against the dissociation and reveals a stepwise pattern involving both the central beta-sheet interface and its adjacent solvent-exposed loop/turn regions clustered at both ends of the beta-barrel structure. C1 [Xu, Jiancong; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. [Xu, Jiancong; Crowley, Michael F.; Smith, Jeremy C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. [Crowley, Michael F.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Xu, JC (reprint author), Oak Ridge Natl Lab, Ctr Biophys Mol, Bldg 6011,MS6309,1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM xuj1@ornl.gov RI smith, jeremy/B-7287-2012; crowley, michael/A-4852-2013 OI smith, jeremy/0000-0002-2978-3227; crowley, michael/0000-0001-5163-9398 NR 48 TC 11 Z9 11 U1 1 U2 15 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2009 VL 18 IS 5 BP 949 EP 959 DI 10.1002/pro.105 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 442PK UT WOS:000265852900008 PM 19384997 ER PT J AU Afshar, S Sawaya, MR Morrison, SL AF Afshar, Sepideh Sawaya, Michael R. Morrison, Sherie L. TI Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2-fluoro-2 '-deoxyadenosine and the cytotoxic drug, 2-fluoroadenine SO PROTEIN SCIENCE LA English DT Article DE purine nucleoside phosphorylase; X-Ray structure; enzyme substrate specificity; S(N)1 mechanism; cancer therapy; immunogenicity; prodrug; cytotoxic drug ID CATALYTIC MECHANISM; SPECIFICITY; REFINEMENT; SOFTWARE; MODELS AB A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln: Asn243Asp cleaves adenosine-based prodrugs to their corresponding cytotoxic drugs. When fused to an anti-tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2-fluoro-20-deoxyadenosine (F-dAdo) to the cytotoxic drug, 2-fluoroadenine (F-Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine-based prodrugs as substrates. To gain insight into the interaction of hDM with F-dAdo, we have determined the crystal structures of hDM with F-dAdo and F-Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F-dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild-type enzyme, can utilize F-dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine-based prodrugs, such as F-dAdo by mutants of human purine nucleoside phosphorylase. C1 [Afshar, Sepideh; Morrison, Sherie L.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA. [Sawaya, Michael R.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. RP Afshar, S (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Microbiol Mol Genet & Immunol, MIMG 615 Charles E Young E 247 BSRB, Los Angeles, CA 90095 USA. EM sepideha@ucla.edu OI Sawaya, Michael/0000-0003-0874-9043 FU National Center for Research Resources at the National Institutes of Health [RR-15301] FX The authors thank Duilio Cascio for technical advice and UCLA-DOE Technology Center for use of its crystallization and X-ray diffraction facilities. This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines of the Advanced Photon Source, which is supported by award RR-15301 from the National Center for Research Resources at the National Institutes of Health. NR 20 TC 8 Z9 8 U1 0 U2 2 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2009 VL 18 IS 5 BP 1107 EP 1114 DI 10.1002/pro.91 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 442PK UT WOS:000265852900023 PM 19388075 ER PT J AU Whitford, PC Noel, JK Gosavi, S Schug, A Sanbonmatsu, KY Onuchic, JN AF Whitford, Paul C. Noel, Jeffrey K. Gosavi, Shachi Schug, Alexander Sanbonmatsu, Kevin Y. Onuchic, Jose N. TI An all-atom structure-based potential for proteins: Bridging minimal models with all-atom empirical forcefields SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE energy landscape theory; protein folding; structure-based model; all-atom model; side chain packing ID FREE-ENERGY LANDSCAPE; MOLECULAR-DYNAMICS SIMULATIONS; SIDE-CHAIN PACKING; FOLDING FUNNELS; CONFORMATIONAL TRANSITIONS; TRP-CAGE; TOPOLOGICAL FRUSTRATION; FUNCTIONAL TRANSITIONS; ADENYLATE KINASE; FRAGMENT-B AB Protein dynamics take place on many time and length scales. Coarse-grained structure-based (G (o) over bar) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C. structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C. model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function. C1 [Whitford, Paul C.; Noel, Jeffrey K.; Gosavi, Shachi; Schug, Alexander; Onuchic, Jose N.] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA. [Whitford, Paul C.; Noel, Jeffrey K.; Gosavi, Shachi; Schug, Alexander; Onuchic, Jose N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Onuchic, JN (reprint author), Univ Calif San Diego, Ctr Theoret Biol Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM jonuchic@ctbp.ucsd.edu FU NIGMS NIH HHS [R01-GM072686, R01 GM072686, R01 GM072686-06, T32 GM008326, T32 GM008326-16, T32 GM008326-19, T32GM08326] NR 76 TC 149 Z9 150 U1 4 U2 35 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD MAY 1 PY 2009 VL 75 IS 2 BP 430 EP 441 DI 10.1002/prot.22253 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 418SP UT WOS:000264169400015 PM 18837035 ER PT J AU Boulet, SL Grosse, SD Honein, MA Correa-Villasenor, A AF Boulet, Sheree L. Grosse, Scott D. Honein, Margaret A. Correa-Villasenor, Adolfo TI Children with Orofacial Clefts: Health-Care Use and Costs Among a Privately Insured Population SO PUBLIC HEALTH REPORTS LA English DT Article ID BIRTH-DEFECTS; UNITED-STATES; PALATE; LIP; CLASSIFICATION; EXPENDITURES; INFANTS AB Objectives. Orofacial clefts are common birth defects that often require multiple surgeries and medical treatments during childhood. We used health-care insurance claims data to estimate health-care expenditures for infants and children <= 10 years of age with an orofacial cleft. Methods. The data were derived from the 2000-2004 MarketScan (R) Commercial Claims and Encounters databases, which include person-specific information on health-care use, expenditures, and enrollment for approximately 50 large employers, health plans, and government and public organizations. Health insurance claims data from 821,619 children <= 10 years of age enrolled in employer-sponsored plans during 2004 were analyzed. Expenditures for inpatient admissions, outpatient services, and prescription drug claims were calculated for children with and those without an orofacial cleft. Results. The difference in annual mean costs (i.e., incremental costs) between children aged 0 through 10 years with an orofacial cleft and those without an orofacial cleft was $13,405. The mean and median costs for children <= 10 years of age with an orofacial cleft were eight times higher than for children of the same age without an orofacial cleft. Mean costs for infants with a cleft and another major, unrelated defect were 25 times higher than those for an infant without a cleft, and five times higher than for infants with an isolated cleft. Conclusion. These findings document substantially elevated medical care costs for privately insured children with an orofacial cleft. Additional study of the economic burden associated with this condition should include a broader range of economic costs. C1 [Boulet, Sheree L.; Grosse, Scott D.; Honein, Margaret A.; Correa-Villasenor, Adolfo] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Boulet, Sheree L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Boulet, SL (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 1600 Clifton Rd,MS-E86, Atlanta, GA 30333 USA. EM sboulet@cdc.gov FU National Center on Birth Defects and Developmental Disabilities; Centers for Disease Control and Prevention (CDC); U.S. Department of Energy and CDC FX This research was supported in part by an appointment to the Research Participation Program at the National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention (CDC), administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC. NR 23 TC 38 Z9 38 U1 0 U2 1 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1101 15TH ST NW, STE 910, WASHINGTON, DC 20005 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2009 VL 124 IS 3 BP 447 EP 453 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 428OD UT WOS:000264857000015 PM 19445422 ER PT J AU Engel, S Lease, HM McDowell, NG Corbett, AH Wolf, BO AF Engel, Sophia Lease, Hilary M. McDowell, Nate G. Corbett, Alyssa H. Wolf, Blair O. TI The use of tunable diode laser absorption spectroscopy for rapid measurements of the delta C-13 of animal breath for physiological and ecological studies SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID CARBON-ISOTOPE RATIOS; METABOLIC SUBSTRATE USE; LEAF-RESPIRED CO2; EXHALED CO2; DIET; FRACTIONATION; HUMMINGBIRDS; ECOSYSTEM; TURNOVER; FLUXES AB In this study we introduce the use of tunable diode laser absorption spectroscopy (TDLAS) as a technique for making measurements of the delta C-13 of animal 'breath' in near real time. The carbon isotope ratios (delta C-13) of breath CO2 trace the carbon source of the materials being metabolized, which can provide insight into the use of specific food resources, e.g. those derived from plants using C-3 versus C-4 or CAM photosynthetic pathways. For physiological studies, labeled substrates and breath analyses provide direct evidence of specific physiological (e.g. fermentative digestion) or enzymatic (e.g. sucrase activity) processes. Although potentially very informative, this approach has rarely been taken in animal physiological or ecological research. In this study we quantify the utilization of different plant resources (photosynthetic types - C-3 or C-4) in arthropod herbivores by measuring the delta C-13 of their 'breath' and comparing it with bulk tissue values. We show that breath delta C-13 values are highly correlated with bulk tissues and for insect herbivores reflect their dietary guild, in our case C-3-specialists, C-4-specialists, or generalists. TDLAS has a number of advantages that will make it an important tool for physiologists, ecologists and behaviorists: it is non-invasive, fast, very sensitive, accurate, works on animals of a wide range of body sizes, per-sample costs are small, and it is potentially field-deployable. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Engel, Sophia; Lease, Hilary M.; Wolf, Blair O.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [McDowell, Nate G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Corbett, Alyssa H.] Tufts Univ, Dept Biol, Medford, MA 02155 USA. RP Engel, S (reprint author), Univ New Mexico, Dept Biol, MSC03 2020, Albuquerque, NM 87131 USA. EM sengel@unm.edu; wolf@unm.edu FU National Science Foundation [DEB-0213659]; Max Planck Institute for Ornithology, Germany [DEB-0620482] FX We thank Karen Brown, Chris Bickford, Heath Powers and Clif Meyer for technical assistance with TDLAS, and Viorel Atudorei for analyzing the tissue samples. Dave Lightfoot helped us identify the grasshopper species. Dave Hanson helped us improve an earlier version of this manuscript. This paper is based on work supported by the National Science Foundation under Grant No. DEB-0213659 to B. O. Wolf, a REU supplement to Grant No. DEB-0620482 to the Sevilleta LTER, a fellowship from the Max Planck Institute for Ornithology, Germany, to S. Engel, a Laboratory Directed Research and Development grant to N.G. McDowell, and an Institute of Geophysics and Planetary Physics grant to N. G. McDowell. NR 23 TC 15 Z9 15 U1 2 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD MAY PY 2009 VL 23 IS 9 BP 1281 EP 1286 DI 10.1002/rcm.4004 PG 6 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 438FW UT WOS:000265542300009 PM 19306281 ER PT J AU Van Berkel, GJ Kertesz, V AF Van Berkel, Gary J. Kertesz, Vilmos TI Electrochemically initiated tagging of thiols using an electrospray ionization based liquid microjunction surface sampling probe two-electrode cell SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID MASS-SPECTROMETRY SYSTEM; THIN TISSUE-SECTIONS; PROTEIN-ANALYSIS; CYSTEINE RESIDUES; ION-SOURCE; NANOSPRAY; DEVICE; TAGS; MS AB This paper reports on the conversion of a liquid microjunction surface sampling probe (LMJ-SSP) into a two-electrode electrochemical cell using a conductive sample surface and the probe as the two electrodes with an appropriate battery powered circuit. With this LMJ-SSP, two-electrode cell arrangement, tagging of analyte thiol functionalities (in this case peptide cysteine residues) with hydroquinone tags was initiated electrochemically using a hydroquinone-doped solution when the analyte either was initially in solution or was sampled from a surface. Efficient tagging (similar to 90%), at flow rates of 5-10 mu L/min, could be achieved for up to at least two cysteines on a peptide. The high tagging efficiency observed was explained with a simple kinetic model. In general, the incorporation of a two-electrode electrochemical cell, or other multiple electrode arrangement, into the LMJ-SSP is expected to add to the versatility of this approach for surface sampling and ionization coupled with mass spectrometric detection. Published in 2009 by John Wiley & Sons, Ltd. C1 [Van Berkel, Gary J.; Kertesz, Vilmos] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 FU Cooperative Research and Development Agreement (CRADA) [ORNL02-0662]; Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC05-00OIZ22725]; U.S. Government [DE-AC05-00OR22725] FX The Microionspray II used to fabricate the LMJ-SSP was provided through a Cooperative Research and Development Agreement (CRADA) with MDS Sciex (ORNL02-0662). This research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-00OIZ22725 with ORNL, managed and operated by UT-Battelle, LLC. This manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U. S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 29 TC 19 Z9 19 U1 0 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD MAY PY 2009 VL 23 IS 9 BP 1380 EP 1386 DI 10.1002/rcm.4014 PG 7 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 438FW UT WOS:000265542300020 PM 19337980 ER PT J AU Atwood, CL Kelly, DL AF Atwood, Corwin L. Kelly, Dana L. TI The binomial failure rate common-cause model with WinBUGS SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE BFR; Bayesian estimation; Failure on demand; Standby failures; Staggered testing AB The binomial failure rate (BFR) common-cause model was introduced in the 1970s, but has not been used much recently. it turns out to be very easy to use with WinBUGS, a free, widely used Markov chain Monte Carlo (MCMC) program for Bayesian estimation. This fact recommends it in situations when failure data are available, especially when few failures have been observed. This article explains how to use it both for standby equipment that may fail to operate when demanded and for running equipment that may fail at random times. Example analyses are given and discussed. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Atwood, Corwin L.] Statwood Consulting, Silver Spring, MD 20910 USA. [Kelly, Dana L.] Idaho Natl Lab, Idaho Falls, ID USA. RP Atwood, CL (reprint author), Statwood Consulting, 2905 Covington Rd, Silver Spring, MD 20910 USA. EM cory@statwoodconsulting.com; Dana.Kelly@inl.gov NR 10 TC 3 Z9 3 U1 4 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD MAY PY 2009 VL 94 IS 5 BP 990 EP 999 DI 10.1016/j.ress.2008.11.007 PG 10 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 424CE UT WOS:000264542300012 ER PT J AU Yefremenko, V Gordiyenko, E Shustakova, G Fomenko, Y Datesman, A Wang, G Pearson, J Cohen, EEW Novosad, V AF Yefremenko, V. Gordiyenko, E. Shustakova, G. Fomenko, Yu. Datesman, A. Wang, G. Pearson, J. Cohen, E. E. W. Novosad, V. TI A broadband imaging system for research applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE cadmium compounds; II-VI semiconductors; infrared detectors; infrared imaging; mercury compounds; mirrors; photodetectors AB We have developed a compact, computer-piloted, high sensitivity broadband imaging system for laboratory research that is compatible with various detectors. Mirror optics allow application from the visible to the far infrared spectral range. A prototype tested in conjunction with a mercury cadmium telluride detector exhibits a peak detectivity of 6.7x10(10) cm Hz(1/2)/W at a wavelength of 11.8 mu m. Temperature and spatial resolutions of 0.06 K and 1.6 mrad, respectively, were demonstrated. C1 [Yefremenko, V.; Datesman, A.; Wang, G.; Pearson, J.; Novosad, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gordiyenko, E.; Shustakova, G.; Fomenko, Yu.] B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine. [Shustakova, G.; Cohen, E. E. W.] Univ Chicago, Dept Med, Chicago, IL 60637 USA. RP Novosad, V (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM novosad@anl.gov RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 FU Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357]; NIH "Functional Infrared Imaging Predicts Radiation Mucositis" [1R21CA125000-01A1] FX The work at Argonne National Laboratory was supported by Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. Partial funding was provided by NIH "Functional Infrared Imaging Predicts Radiation Mucositis," Grant No. 1R21CA125000-01A1. NR 8 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2009 VL 80 IS 5 AR 056104 DI 10.1063/1.3124796 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 451AG UT WOS:000266442500057 PM 19485541 ER PT J AU Botello-Zubiate, ME Santillan, C Ayala-Valenzuela, OE Matute-Aquino, JA Jaime, M AF Botello-Zubiate, M. E. Santillan, C. Ayala-Valenzuela, O. E. Matute-Aquino, J. A. Jaime, M. TI Comparative study of ferromagnetic superconductors (Ru1-xNbxSr2Eu1.4Ce0.6Cu2O10) by different preparation methods SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 17th International Materials Research Congress CY AUG 17-21, 2008 CL Cancun, MEXICO SP Mexican Mat Res Soc, Natl Assoc Corros Engn DE Ferromagnetic superconductors; resistance; critical magnetic field ID RUSR2EU1.5CE0.5CU2O10-DELTA AB Polycrystalline ferromagnetic superconducting samples of rutheno-cuprates with chemical formula Ru1-xNbxSr2Eu1.4Ce0.6Cu2O10-delta (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by two different routes. An almost pure Ru-1222 type phase with a small amount of the Ru-2116 or Ru-1212 phases in some of the samples were determined. Randomly oriented particles in laminates form with a length and width of a few micrometers together with agglomerates were observed. Particle size distributions, average particle sizes porosity and final density depends on the processing route. Critical magnetic fields, intra- and inter-grain transition temperatures are functions of sample composition and processing route. C1 [Botello-Zubiate, M. E.; Santillan, C.; Ayala-Valenzuela, O. E.; Matute-Aquino, J. A.] Complejo Ind Chihuahua, Ctr Invest Mat Avanzados SC, Chihuahua 31109, Mexico. [Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab MS E536, Los Alamos, NM 87545 USA. RP Botello-Zubiate, ME (reprint author), Complejo Ind Chihuahua, Ctr Invest Mat Avanzados SC, Miguel Cervantes 120, Chihuahua 31109, Mexico. RI Jaime, Marcelo/F-3791-2015 OI Jaime, Marcelo/0000-0001-5360-5220 NR 6 TC 1 Z9 1 U1 0 U2 0 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD MAY PY 2009 VL 55 IS 1 SU S BP 118 EP 122 PG 5 WC Physics, Multidisciplinary SC Physics GA 449JI UT WOS:000266326400029 ER PT J AU Hunt, B Pratt, E Gadagkar, V Yamashita, M Balatsky, AV Davis, JC AF Hunt, B. Pratt, E. Gadagkar, V. Yamashita, M. Balatsky, A. V. Davis, J. C. TI Evidence for a Superglass State in Solid He-4 SO SCIENCE LA English DT Article ID BOSE-EINSTEIN CONDENSATION; SUPERSOLIDITY; SUPERFLUID; CRYSTALS; HELIUM AB Although solid helium-4 (He-4) may be a supersolid, it also exhibits many phenomena unexpected in that context. We studied relaxation dynamics in the resonance frequency f(T) and dissipation D(T) of a torsional oscillator containing solid He-4. With the appearance of the "supersolid" state, the relaxation times within f(T) and D(T) began to increase rapidly together. More importantly, the relaxation processes in both D(T) and a component of f(T) exhibited a complex synchronized ultraslow evolution toward equilibrium. Analysis using a generalized rotational susceptibility revealed that, while exhibiting these apparently glassy dynamics, the phenomena were quantitatively inconsistent with a simple excitation freeze-out transition because the variation in f was far too large. One possibility is that amorphous solid He-4 represents a new form of supersolid in which dynamical excitations within the solid control the superfluid phase stiffness. C1 [Hunt, B.; Pratt, E.; Gadagkar, V.; Yamashita, M.; Davis, J. C.] Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. [Yamashita, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Div T, Los Alamos, NM 87545 USA. [Davis, J. C.] Univ St Andrews, Scottish Univ Phys Alliance, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Davis, JC (reprint author), Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. EM jcdavis@ccmr.cornell.edu RI YAMASHITA, MINORU/D-6556-2011; Pratt, Ethan/E-8714-2011; Hunt, Benjamin/C-3395-2017 OI Hunt, Benjamin/0000-0002-5008-8042 FU NSF [DM-0434801, DMR-0806629]; Cornell University; Natural Sciences and Engineering Research Council of Canada; Japan Society for the Promotion of Science; U.S. Department of Energy FX We acknowledge and thank J. Beamish, M. W. H. Chan, A. Clark, A. Dorsey, M. Graf, E. Mueller, S. Nagel, M. Paalanen, R. E. Packard, J. Parpia, J. D. Reppy, A. S. Rittner, J. Saunders, J. P. Sethna, and Wm. Vinen for helpful discussions and communications. These studies were initiated under NSF grant DM-0434801 and are now partially supported under grant DMR-0806629 and by Cornell University; B.H. acknowledges support by the Natural Sciences and Engineering Research Council of Canada. M.Y. acknowledges support from the Japan Society for the Promotion of Science. Work at Los Alamos was supported by the U.S. Department of Energy. NR 32 TC 105 Z9 105 U1 1 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 1 PY 2009 VL 324 IS 5927 BP 632 EP 636 DI 10.1126/science.1169512 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 439DW UT WOS:000265608800041 PM 19407201 ER PT J AU Shukla, AK Baeslack, WA AF Shukla, A. K. Baeslack, W. A., III TI Study of process/structure/property relationships in friction stir welded thin sheet Al-Cu-Li alloy SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Friction stir welding; Al-Cu-Mg; Microstructure; TEM; Thin sheet ID FOIL THICKNESS; MICROSTRUCTURE; EVOLUTION; ALUMINUM; TEM AB Microstructure evolution in friction stir welds produced in artificially aged Al-4Cu-1Li-0.36Mg-0.14Zr-0.28Ag alloy over a range of process parameters was studied using transmission electron microscopy. Process parameters did not have a major effect on the weld microstructure and mechanical properties. The stir zone exhibited an appreciable decrease in hardness relative to the unaffected base metal due to dissolution of T(1) and theta' precipitates. The heat affected zone exhibited almost complete dissolution of theta' precipitates and partial dissolution of T(1) precipitates. The effect of process conditions on T(1) precipitate density in the heat affected zone was studied and it was found that dissolution was experienced at lower tool rotation speed to traverse rate ratios, while welds produced at higher tool rotation speed to traverse rate ratios experienced both dissolution and growth of T(1) precipitates. The results obtained on this thin sheet aluminium alloy were compared to those of friction stir welds produced in thicker sections of the same alloy. C1 [Shukla, A. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Baeslack, W. A., III] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Shukla, AK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM akshukla@lbl.gov NR 22 TC 12 Z9 14 U1 4 U2 12 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAY PY 2009 VL 14 IS 4 BP 376 EP 387 DI 10.1179/136217109X412409 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 461HT UT WOS:000267256200014 ER PT J AU Cosovic, V Talijan, N Grujic, A Stajic-Trosic, J Zak, T Lee, Z Radmilovic, V AF Cosovic, V. Talijan, N. Grujic, A. Stajic-Trosic, J. Zak, T. Lee, Z. Radmilovic, V. TI Study of Nd-Fe-B Alloys with Nonstoichiometric Nd Content in Optimal Magnetic State SO SCIENCE OF SINTERING LA English DT Article DE Rapid quenched Nd-Fe-B alloys; Nonstoichiometric Nd content; Phase composition; Grain size; Magnetic properties ID PHASE-COMPOSITION AB Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD), Fe-57 Mossbauer spectroscopic phase analysis (MS), electron microscopy (TEM), high resolution TEM (HREM) and Superconducting Quantum Interference Device (SQUID) magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5) was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly alpha-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. %) and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment. C1 [Cosovic, V.; Talijan, N.; Grujic, A.; Stajic-Trosic, J.] Inst Chem Technol & Met, Belgrade 11000, Serbia. [Zak, T.] Inst Phys Mat AS CR, Brno, Czech Republic. [Lee, Z.; Radmilovic, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Talijan, N (reprint author), Inst Chem Technol & Met, Njegoseva 12, Belgrade 11000, Serbia. EM ntalijan@tmf.bg.ac.rs RI Lee, Zonghoon/G-1474-2011; Zak, Tomas/G-1454-2014 OI Lee, Zonghoon/0000-0003-3246-4072; FU Ministry of Science of the Republic of Serbia [OI 142035B]; National Center for Electron Microscopy, Lawrence Berkeley Lab; U.S. Department of Energy [DE-AC02-05CH11231] FX The presented work has been supported by the Ministry of Science of the Republic of Serbia under Project OI 142035B. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. NR 17 TC 0 Z9 0 U1 0 U2 5 PU INT INST SCIENCE SINTERING (I I S S) PI BELGRADE PA C/O ITN SANU, KNEZ MIHAILOVA 35/IV, PO BOX 315, 11000 BELGRADE, YUGOSLAVIA SN 0350-820X J9 SCI SINTER JI Sci. Sinter. PD MAY-AUG PY 2009 VL 41 IS 2 BP 211 EP 220 DI 10.2298/SOS0902209C PG 10 WC Materials Science, Ceramics; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 517DA UT WOS:000271592200012 ER PT J AU Dougherty, LM Gray, GT Cerreta, EK McCabe, RJ Field, RD Bingert, JF AF Dougherty, L. M. Gray, G. T., III Cerreta, E. K. McCabe, R. J. Field, R. D. Bingert, J. F. TI Rare twin linked to high-pressure phase transition in iron SO SCRIPTA MATERIALIA LA English DT Article DE Ferritic steels; Electron backscattering diffraction (EBSD); Transmission electron microscopy (TEM); Martensitic phase transformation; Dynamic phenomena ID X-RAY-DIFFRACTION; INNER-CORE; SHOCK; DEFORMATION; TRANSFORMATIONS; ALLOYS AB At approximately 13 GPa, body-centered cubic alpha-iron undergoes a fully reversible, pressure-induced phase transition into hexagonal close-packed epsilon-iron. Microstructural evidence of this phase transition has been identified in the fully reverted alpha-iron as a large number of {332}< 113 > twins found primarily as secondary twins within {112}< 111 > primary twins. The {332}< 113 > twins were produced during high-pressure shock-loading of 1018 steel at a peak pressure above the alpha-epsilon phase transition pressure. The twins were identified using electron backscattered diffraction and transmission electron microscopy. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Dougherty, L. M.; Gray, G. T., III; Cerreta, E. K.; McCabe, R. J.; Field, R. D.; Bingert, J. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dougherty, LM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM lmdough@lanl.gov OI McCabe, Rodney /0000-0002-6684-7410 FU United States Department of Energy; Department of Defense (DoD) Joint Munitions Technology Development Program FX This work was funded by the United States Department of Energy and Department of Defense (DoD) Joint Munitions Technology Development Program. The authors thank C.P. Trujillo and P.A. Papin for their assistance with the experiments in this research. NR 22 TC 8 Z9 10 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 9 BP 772 EP 775 DI 10.1016/j.scriptamat.2009.01.014 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 426TF UT WOS:000264730000010 ER PT J AU Won, J Valdez, JA Naito, M Ishimaru, M Sickafus, KE AF Won, Jonghan Valdez, James A. Naito, Muneyuki Ishimaru, Manabu Sickafus, Kurt E. TI Transmission electron microscopy study of an electron-beam-induced phase transformation of niobium nitride SO SCRIPTA MATERIALIA LA English DT Article DE Niobium nitride; Phase transformation; Electron irradiation; Transmission electron microscopy; Order-disorder ID ION IRRADIATION; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; CERAMICS; DISORDER; DY2O3 AB Tetragonal gamma-NbN(1-x) was irradiated with 300 keV electrons at room temperature to fluences from 1.8 x 10(24)-5.4 x 10(26) e/m(2). The superlattice structure in gamma-NbN(1-x) was observed using transmission electron microscopy and found to disappear at a fluence of 5.4 x 10(26) e/m(2). During this process, displaced nitrogen atoms occupy vacant sites on the nitrogen sublattice. The final structure is a delta-phase (B1) structure. A randomized arrangement of N vacancies is responsible for the observed gamma -> delta transformation. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Won, Jonghan; Valdez, James A.; Sickafus, Kurt E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Naito, Muneyuki; Ishimaru, Manabu] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. RP Won, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM jhwon@lanl.gov OI won, Jonghan/0000-0002-7612-1322 FU U.S. Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences and Engineering FX This research was supported by the U.S. Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences and Engineering. NR 33 TC 2 Z9 2 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 9 BP 799 EP 802 DI 10.1016/j.scriptamat.2009.01.023 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 426TF UT WOS:000264730000017 ER PT J AU Hulbert, DM Anders, A Andersson, J Lavernia, EJ Mukherjee, AK AF Hulbert, Dustin M. Anders, Andre Andersson, Joakim Lavernia, Enrique J. Mukherjee, Amiya K. TI A discussion on the absence of plasma in spark plasma sintering SO SCRIPTA MATERIALIA LA English DT Article DE Spark plasma sintering; Theory; Nanocrystalline materials; Ceramics; Metal and alloys ID ARC CATHODE SPOTS; SINTERING/SYNTHESIS PROCESS; FUNDAMENTAL INVESTIGATIONS; RANDOM-WALK; VACUUM; NOISE; CONSOLIDATION; GROWTH; FIELD AB Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. A number of mechanisms have been proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, one commonly put forth, and the one that draws the most controversy, involves the presence of momentary plasma generated between particles. This experimental study and subsequent discussion advocates the absence of plasma during SPS. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hulbert, Dustin M.; Lavernia, Enrique J.; Mukherjee, Amiya K.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Anders, Andre; Andersson, Joakim] Univ Calif Berkeley, Lawrence Berkeley Lab, Plasma Applicat Grp, Berkeley, CA 94720 USA. RP Mukherjee, AK (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM akmukherjee@ucdavis.edu RI Andersson, Joakim/A-3017-2009; Lavernia, Enrique/I-6472-2013; Anders, Andre/B-8580-2009 OI Andersson, Joakim/0000-0003-2991-1927; Lavernia, Enrique/0000-0003-2124-8964; Anders, Andre/0000-0002-5313-6505 FU Office of Naval Research [N0001403-1-0148, N00014-07-1-0745, N00014-08-10405]; Army Research Office [W911NF-04-1-0348]; US Department of Energy [DE-AC02-05CH1123] FX This work was supported by the Office of Naval Research under Dr. Larry Kabacoff (Grants # N0001403-1-0148, # N00014-07-1-0745 and # N00014-08-10405) and the Army Research Office under Dr. Sheldon Cytron (Grant # W911NF-04-1-0348). The authors thank Phil Landenla from Ocean Optics for experimental assistance. The work by the Berkeley Lab employees was supported by the US Department of Energy (Contract # DE-AC02-05CH1123 NR 18 TC 88 Z9 91 U1 0 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 835 EP 838 DI 10.1016/j.scriptamat.2008.12.059 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400001 ER PT J AU Desai, TG Uberuaga, BP AF Desai, Tapan G. Uberuaga, Blas P. TI Stress-induced phase transformation in nanocrystalline UO2 SO SCRIPTA MATERIALIA LA English DT Article DE Heterogeneous nucleation of phase transformations; Nanocrystalline microstructure; Simulation; Fluorite ID MOLECULAR-DYNAMICS SIMULATION; AUGMENTED-WAVE METHOD; NUCLEATION; TRANSITION AB We report a stress-induced phase transformation in stoichiometric UO2 from fluorite to alpha-PbO2 structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of alpha-PbO2 phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confirm the existence of the alpha-PbO2 structure, showing that it is energetically favored under tensile loading conditions. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Desai, Tapan G.] Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID 83415 USA. [Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Desai, TG (reprint author), Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID 83415 USA. EM tapan.desai@inl.gov FU US Department of Energy (DOE) Idaho Operations Office [DE-AC07-051D14 517V]; DOE/BES; DOE, Global Nuclear Energy Partnership; Office of Basic Energy Sciences; US DOE [DE-AC52-06NA25396] FX T.G.D. was sponsored through the INL Laboratory Directed Research and Development program under the US Department of Energy (DOE) Idaho Operations Office Contract No. DE-AC07-051D14 517V, as well as the DOE/BES funded Computational Materials Science Network (CMSN) project on "Multiscale simulation of thermo-mechanical processes irradiated fission-reactor materials". B.P.U. acknowledges support from the DOE, Global Nuclear Energy Partnership and the Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under Contract DE-AC52-06NA25396. We are also grateful for discussions with Dieter Wolf (INL), Paul Millett (INL), Richard Hoagland (LANL) and Kurt Sickafus (LANL). NR 25 TC 14 Z9 14 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 878 EP 881 DI 10.1016/j.scriptamat.2009.01.041 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400012 ER PT J AU Qu, J Blau, PJ Howe, JY Meyer, HM AF Qu, Jun Blau, Peter J. Howe, Jane Y. Meyer, Harry M., III TI Oxygen diffusion enables anti-wear boundary film formation on titanium surfaces in zinc-dialkyl-dithiophosphate (ZDDP)-containing lubricants SO SCRIPTA MATERIALIA LA English DT Article DE Titanium alloys; Wear; Oxygen diffusion; ZDDP; Boundary film ID IRON-OXIDE; FRICTION; ALLOYS; WEAR; TRIBOFILM; ZDDP AB This paper reports a wear reduction by up to six orders of magnitude for Ti-6Al-4V alloy when treated by an oxygen diffusion (OD) process and subsequently tested in a zinc-dialkyl-dithiophosphate (ZDDP)-containing lubricant. In addition to case hardening, it is discovered that OD enables the formation of an anti-wear boundary film on the titanium surface. Transmission electron microscopy and surface chemical analyses revealed that this boundary film has a two-layer structure comprising an amorphous oxide interlayer and a ZDDP-based top film with complex compounds. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Qu, Jun; Blau, Peter J.; Howe, Jane Y.; Meyer, Harry M., III] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,POB 2008,MS-6063, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov RI Howe, Jane/G-2890-2011; OI Qu, Jun/0000-0001-9466-3179 FU Heavy Vehicle Propulsion Materials Program; High Temperature Materials Laboratory User Program; DOE/EERE Office of Vehicle Technologies [DE-AC05-00OR22725]; UT-Battelle, LLC; SHaRE User Facility; Division of Scientific User Facilities, DOE Office of Basic Energy Sciences FX The authors thank L.R. Walker and Dr. H. Xu from ORNL for microprobe elemental mapping and hardness measurements, respectively. Research was sponsored by the Heavy Vehicle Propulsion Materials Program and the High Temperature Materials Laboratory User Program, DOE/EERE Office of Vehicle Technologies, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. A portion of this research was supported by the SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, DOE Office of Basic Energy Sciences. NR 17 TC 16 Z9 17 U1 4 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 886 EP 889 DI 10.1016/j.scriptamat.2009.02.009 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400014 ER PT J AU Clarke, AJ Field, RD Dickerson, PO McCabe, RJ Swadener, JG Hackenberg, RE Thoma, DJ AF Clarke, A. J. Field, R. D. Dickerson, P. O. McCabe, R. J. Swadener, J. G. Hackenberg, R. E. Thoma, D. J. TI A microcompression study of shape-memory deformation in U-13 at.% Nb SO SCRIPTA MATERIALIA LA English DT Article DE Shape memory alloys (SMAs); Microcompression testing; Electron backscattering diffraction (EBSD); Transmission electron microscopy (TEM) ID ALLOYS; PLASTICITY; URANIUM AB Microcompression specimens, 10-15 mu m in diameter by 20-30 mu m in height, were produced from individual parent grains in a polycrystalline U-13 at.%Nb shape-memory alloy using the focused ion beam technique. The specimens were tested in a nanoindentation instrument with a flat diamond tip to investigate stress-strain behavior as a function of crystallographic orientation. The results are in qualitative agreement with a single-crystal accommodation strain (Bain strain) model of the shape-memory effect for this alloy. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Clarke, A. J.; Field, R. D.; Dickerson, P. O.; McCabe, R. J.; Swadener, J. G.; Hackenberg, R. E.; Thoma, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Field, RD (reprint author), Los Alamos Natl Lab, Mail Stop G 770, Los Alamos, NM 87545 USA. EM rdfield@lanl.gov OI Hackenberg, Robert/0000-0002-0380-5723; McCabe, Rodney /0000-0002-6684-7410; Swadener, John G/0000-0001-5493-3461 FU US Department of Energy [DE-AC52-06NA25396] FX The authors wish to thank Ann Marie Kelly for assistance with metallographic preparation of the specimens, Pallas Papin for electron microprobe analysis and Martin Koby for the ICP-MS analysis. Larry Hults and Tim Tucker are also acknowledged for their assistance with heat treatments of the specimens. This work was performed under contract number DE-AC52-06NA25396 with the US Department of Energy. NR 15 TC 9 Z9 10 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 890 EP 892 DI 10.1016/j.scriptamat.2009.02.003 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400015 ER PT J AU Chilton, L Walsh, S AF Chilton, Lawrence Walsh, Stephen TI Detection of Gaseous Plumes using Basis Vectors SO SENSORS LA English DT Review DE Plumes; detection; LWIR; basis vectors; generalized least squares ID HYPERSPECTRAL IMAGERY AB Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. There are several methods currently being used to detect plumes. They can be grouped into two categories: those that use a chemical spectral library and those that don't. The approaches that use chemical libraries include physics-based least squares methods (matched filter). They are "optimal" only if the plume chemical is actually in the search library but risk missing chemicals not in the library. The methods that don't use a chemical spectral library are based on a statistical or data analytical transformation applied to the data. These include principle components, independent components, entropy, Fourier transform, and others. These methods do not explicitly take advantage of the physics of the signal formulation process and therefore don't exploit all available information in the data. This paper describes generalized least squares detection using gas spectra, presents a new detection method using basis vectors, and compares detection images resulting from applying both methods to synthetic hyperspectral data. C1 [Chilton, Lawrence; Walsh, Stephen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chilton, L (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM lawrence.chilton@pnl.gov; stephen.walsh@pnl.gov OI Walsh, Stephen/0000-0002-0505-648X FU US Department of Energy [DAC05-76RL01830] FX This work was supported by the United States National Nuclear Security Administration's Office of Nonproliferation Research and Development and conducted at the US Department of Energy's Pacific Northwest National Laboratory. The laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract DAC05-76RL01830. NR 13 TC 2 Z9 2 U1 1 U2 2 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD MAY PY 2009 VL 9 IS 5 BP 3205 EP 3217 DI 10.3390/s90503205 PG 13 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 450DL UT WOS:000266381100003 PM 22412306 ER PT J AU McFarlane, KJ Schoenholtz, SH Powers, RF AF McFarlane, Karis J. Schoenholtz, Stephen H. Powers, Robert F. TI Plantation Management Intensity Affects Belowground Carbon and Nitrogen Storage in Northern California SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID LOBLOLLY-PINE PLANTATION; DOUGLAS-FIR STANDS; REPEATED UREA FERTILIZATION; ORGANIC-MATTER FRACTIONS; FINE-ROOT DYNAMICS; SOIL CARBON; PONDEROSA PINE; FOREST-SOIL; NUTRIENT AVAILABILITY; LITTER DECOMPOSITION AB Belowground C and N storage is important in maintaining forest productivity and to CO(2) sequestration. How these pools respond to management is poorly understood. We investigated effects of repeated applications of complete fertilizer and competing vegetation control with herbicides on C and N storage in forest-floor, fine-root, and mineral-soil C and N pools to 1-m depth at three Pinus ponderosa P Lawson & C. Lawson var. ponderosa plantations across a site quality gradient in northern California. Belowground C pools without treatment were 66, 153, and 199 Mg C ha(-1) for the low-, intermediate-, and high-quality sites, respectively, and N pools were 5.1, 6.7, and 6.5 Mg N ha(-1), respectively. Treatments increased tree-bole volume at 20 yr as much as 400%, while changes in C and N pools belowground were less dramatic. Herbicide treatment increased forest-floor C pools 35% at the poorer quality site. Fertilization increased forest-floor C and N storage 46 to 106% at all sites. Fertilization decreased fine-root C pools at 0 to 0.3 m at the most productive site 43% and increased this N pool 43% at the least productive site, but did not influence fine-root pools to 1 m. Fertilization increased mineral-soil C pools on lower quality sites, resulting in 12 to 57% more belowground C storage. At the intermediate site, fertilization increased total belowground N storage 12%. Results of this study suggest that the major sequestration mechanism up to this point in stand development is through gains in tree biomass rather than storage in fine roots and soil belowground. C1 [McFarlane, Karis J.] Oregon State Univ, Dep Forest Eng Resources & Management, Corvallis, OR 97330 USA. [Schoenholtz, Stephen H.] Virginia Polytech Inst & State Univ, Virginia Water Resources Res Ctr, Blacksburg, VA 24061 USA. [Powers, Robert F.] US Forest Serv, USDA, Pacific SW Res Stn, Redding, CA 96002 USA. RP McFarlane, KJ (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808,L-397, Livermore, CA 94551 USA. EM mcfarlane3@llnl.gov OI McFarlane, Karis/0000-0001-6390-7863 FU U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48] FX We thank Dave Young and Bert Spear for their assistance in the field. Chris Gerig and Erin Heim also helped with fieldwork and processed samples. David Myrold, Steve Perakis, and Glen Murphy edited early versions of this manuscript, and Alan Stangenberger supplied trs with unpublished, archived soil bulk density data from the University of California, Berkeley. Three anonymous reviewers provided comments and suggestions that greatly improved this manuscript. 'l'his study was supported by the National Fire Plan, the Sierra-Cascade Intensive Forest Management Research Cooperative, and Sierra Pacific Industries. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. The use of trade, firm, or corporation names in this publication is for the convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Government of any product or service to the exclusion of others that may be suitable. NR 79 TC 15 Z9 15 U1 0 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2009 VL 73 IS 3 BP 1020 EP 1032 DI 10.2136/sssaj2008.0158 PG 13 WC Soil Science SC Agriculture GA 439IX UT WOS:000265621900036 ER PT J AU Ahrenkiel, RK Johnston, SW AF Ahrenkiel, R. K. Johnston, S. W. TI An optical technique for measuring surface recombination velocity SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Silicon photovoltaics; Recombination velocity; Carrier lifetime; Characterization ID SEMI-INFINITE SEMICONDUCTOR; CARRIER LIFETIME; BULK LIFETIME AB The surface recombination velocity is a critical parameter in silicon device applications including solar cells. In this work, we developed and applied a contactless optical/radio-frequency technique to provide quick, contactless measurement of the Surface recombination velocity. The basic technique is to probe the excess carrier lifetime in the surface and bulk regions of a semiconductor wafer by varying the excitation wavelength. Here. we have derived a theoretical functional model that describes the experimental photoconductive transient. A curve fitting procedure provides a determination for both the bulk recombination lifetime and the surface recombination velocity. Published by Elsevier B.V. C1 [Ahrenkiel, R. K.] Colorado Sch Mines Met & Mat Engn, Golden, CO 80401 USA. [Ahrenkiel, R. K.; Johnston, S. W.] Natl Renewable Energy Lab, Golden, CO USA. RP Ahrenkiel, RK (reprint author), Colorado Sch Mines Met & Mat Engn, 1500 Illinois St,Hill Hall,Room 309, Golden, CO 80401 USA. EM richard_ahrenkiel@nrel.gov FU US DOE [DE-AC36-99-G010337] FX This work was supported by US DOE Contract no. DE-AC36-99-G010337. NR 12 TC 19 Z9 19 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2009 VL 93 IS 5 BP 645 EP 649 DI 10.1016/j.solmat.2008.12.028 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 436DF UT WOS:000265392100018 ER PT J AU Lavraud, B Gosling, JT Rouillard, AP Fedorov, A Opitz, A Sauvaud, JA Foullon, C Dandouras, I Genot, V Jacquey, C Louarn, P Mazelle, C Penou, E Phan, TD Larson, DE Luhmann, JG Schroeder, P Skoug, RM Steinberg, JT Russell, CT AF Lavraud, B. Gosling, J. T. Rouillard, A. P. Fedorov, A. Opitz, A. Sauvaud, J. -A. Foullon, C. Dandouras, I. Genot, V. Jacquey, C. Louarn, P. Mazelle, C. Penou, E. Phan, T. D. Larson, D. E. Luhmann, J. G. Schroeder, P. Skoug, R. M. Steinberg, J. T. Russell, C. T. TI Observation of a Complex Solar Wind Reconnection Exhaust from Spacecraft Separated by over 1800 R-E SO SOLAR PHYSICS LA English DT Article DE Magnetic reconnection; Solar wind; Suprathermal electrons; Strahl; Halo; Heliospheric current sheet; Magnetic topology ID INTERPLANETARY MAGNETIC-FIELD; DAYSIDE MAGNETOPAUSE; EARTHS MAGNETOPAUSE; CURRENT SHEET; PITCH-ANGLE; ELECTRON; EVENTS; PLASMA; SIGNATURES; TOPOLOGY AB We analyze Wind, ACE, and STEREO (ST-A and ST-B) plasma and magnetic field data in the vicinity of the heliospheric current sheet (HCS) crossed by all spacecraft between 22:15 UT on 31 March and 01:25 UT on 1 April 2007 corresponding to its observation at ST-A and ST-B, which were separated by over 1800 R (E) (or over 1200 R (E) across the Sun -aEuro parts per thousand Earth line). Although only Wind and ACE provided good ion flow data in accord with a solar wind magnetic reconnection exhaust at the HCS, the magnetic field bifurcation typical of such exhausts was clearly observed at all spacecraft. They also all observed unambiguous strahl mixing within the exhaust, consistent with the sunward flow deflection observed at Wind and ACE and thus with the formation of closed magnetic field lines within the exhaust with both ends attached to the Sun. The strong dawnward flow deflection in the exhaust is consistent with the exhaust and X-line orientations obtained from minimum variance analysis at each spacecraft so that the X-line is almost along the GSE Z-axis and duskward of all the spacecraft. The observation of strahl mixing in extended and intermittent layers outside the exhaust by ST-A and ST-B is consistent with the formation of electron separatrix layers surrounding the exhaust. This event also provides further evidence that balanced parallel and antiparallel suprathermal electron fluxes are not a necessary condition for identification of closed field lines in the solar wind. In the present case the origin of the imbalance simply is the mixing of strahls of substantially different strengths from a different solar source each side of the HCS. The inferred exhaust orientations and distances of each spacecraft relative to the X-line show that the exhaust was likely nonplanar, following the Parker spiral orientation. Finally, the separatrix layers and exhausts properties at each spacecraft suggest that the magnetic reconnection X-line location and/or reconnection rate were variable in both space and time at such large scales. C1 [Lavraud, B.; Fedorov, A.; Opitz, A.; Sauvaud, J. -A.; Dandouras, I.; Genot, V.; Jacquey, C.; Louarn, P.; Mazelle, C.; Penou, E.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Lavraud, B.; Fedorov, A.; Opitz, A.; Sauvaud, J. -A.; Dandouras, I.; Genot, V.; Jacquey, C.; Louarn, P.; Mazelle, C.; Penou, E.] CNRS, UMR 5187, Toulouse, France. [Gosling, J. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Rouillard, A. P.] Univ Southampton, Sch Phys & Astron, Space Environm Phys Grp, Southampton, Hants, England. [Foullon, C.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Phan, T. D.; Larson, D. E.; Luhmann, J. G.; Schroeder, P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Skoug, R. M.; Steinberg, J. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Lavraud, B (reprint author), Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, 9 Ave Colonel Roche, F-31028 Toulouse 4, France. EM Benoit.Lavraud@cesr.fr RI Foullon, Claire/A-3539-2009; Russell, Christopher/E-7745-2012 OI Dandouras, Iannis/0000-0002-7121-1118; Foullon, Claire/0000-0002-2532-9684; Russell, Christopher/0000-0003-1639-8298 FU UK Science and Technology Facilities Council (STFC) FX The authors are grateful to the STEREO, ACE, and Wind instrument teams and the CDAWeb for providing part of the data. C. F. acknowledges financial support from the UK Science and Technology Facilities Council (STFC) on the MSSL Rolling Grant. NR 40 TC 19 Z9 20 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD MAY PY 2009 VL 256 IS 1-2 BP 379 EP 392 DI 10.1007/s11207-009-9341-x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 438OC UT WOS:000265563900022 ER PT J AU Pierrard, V Goldstein, J Andre, N Jordanova, VK Kotova, GA Lemaire, JF Liemohn, MW Matsui, H AF Pierrard, Viviane Goldstein, Jerry Andre, Nicolas Jordanova, Vania K. Kotova, Galina A. Lemaire, Joseph F. Liemohn, Mike W. Matsui, Hiroshi TI Recent Progress in Physics-Based Models of the Plasmasphere SO SPACE SCIENCE REVIEWS LA English DT Review DE Plasmasphere; Models; Fluid; Kinetic; CLUSTER; IMAGE ID WAVE-PARTICLE INTERACTIONS; MAGNETOSPHERIC ELECTRIC-FIELDS; LIGHT-ION TROUGH; ASYMMETRIC RING CURRENT; COLD DENSE-PLASMA; H+ POLAR WIND; MAGNETIC-FIELD; OUTER MAGNETOSPHERE; TRANSPORT-EQUATIONS; LATITUDE IONOSPHERE AB We describe recent progress in physics-based models of the plasmasphere using the fluid and the kinetic approaches. Global modeling of the dynamics and influence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the influence of the plasmasphere on the excitation of electromagnetic ion cyclotron (EMIC) waves and precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere and the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the influence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical models used to describe the electric field and plasma distribution in the plasmasphere are presented. Model predictions are compared to recent Cluster and Image observations, but also to results of earlier models and satellite observations. C1 [Pierrard, Viviane; Lemaire, Joseph F.] Belgian Inst Space Aeron IASB BIRA, B-1180 Brussels, Belgium. [Pierrard, Viviane; Lemaire, Joseph F.] CSR, Louvain, Belgium. [Goldstein, Jerry] SW Res Inst, Space Sci & Engn Div, San Antonio, TX USA. [Andre, Nicolas] ESTEC ESA, RSSD, Noordwijk, Netherlands. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Kotova, Galina A.] Russian Acad Sci, Space Res Inst RSSI, Moscow, Russia. [Liemohn, Mike W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Matsui, Hiroshi] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Pierrard, V (reprint author), Belgian Inst Space Aeron IASB BIRA, 3 Ave Circulaire, B-1180 Brussels, Belgium. EM viviane.pierrard@oma.be; jgoldstein@swri.edu; nandre@rssd.esa.int; vania@lanl.gov; kotova@iki.rssi.ru; lemaire@astr.ucl.ac.be; liemohn@umich.edu; hiroshi.matsui@unh.edu RI Liemohn, Michael/H-8703-2012; OI Liemohn, Michael/0000-0002-7039-2631; Pierrard, Viviane/0000-0001-5014-7682; Jordanova, Vania/0000-0003-0475-8743 NR 190 TC 22 Z9 22 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2009 VL 145 IS 1-2 BP 193 EP 229 DI 10.1007/s11214-008-9480-7 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 457FT UT WOS:000266914600007 ER PT J AU Williams, PT AF Williams, Paul T. TI Reduction in Incident Stroke Risk With Vigorous Physical Activity Evidence From 7.7-Year Follow-Up of the National Runners' Health Study SO STROKE LA English DT Article DE physical activity; prevention; cerebrovascular disease ID ASSOCIATION; EXERCISE AB Background and Purpose-The purpose of this study was to assess the dose-response relationship between vigorous physical activity (running distance, km/d) and the participant-reported physician-diagnosed stroke. Methods-Age-adjusted survival analysis of 29 279 men and 12 123 women followed prospectively for 7.7 years. Results-One hundred men and 19 women reported incident strokes. Per km/d run, the age-and smoking-adjusted risk for stroke decreased 12% in men (P=0.0007), and 11% in men and women combined (P=0.001), which remained significant when further adjusted for baseline diabetes, hypercholesterolemia, hypertension, and BMI (8% and 7% reduction per km/d run, respectively, P=0.03). Men and women who ran >= 2 km/d (ie, exceeded the recommended AHA/CDC and NIH guideline activity level) had significantly lower risk than those who ran less (P=0.05), and those who ran >= 4 km/d had significantly lower risk than those who ran 2 to 3.9 km/d (P=0.02). Men and women who ran >= 8 km/d were at 60% lower risk than those who ran >= 2 km/d (P=0.002). Conclusions-The risk for incident stroke is substantially reduced in those who exceed the guideline physical activity level, which cannot be attributed to less hypertension, diabetes, hypercholesterolemia, or body weight. (Stroke. 2009; 40: 1921-1923.) C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU Institute of Aging [AG032004]; Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health [DK-066738]; Ernest Orlando Lawrence Berkeley National Laboratory [DE-AC03-76SF00098] FX This research was supported in part by grants AG032004 from the Institute of Aging, and DK-066738 from the Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). NR 6 TC 26 Z9 27 U1 0 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0039-2499 J9 STROKE JI Stroke PD MAY PY 2009 VL 40 IS 5 BP 1921 EP 1923 DI 10.1161/STROKEAHA.108.535427 PG 3 WC Clinical Neurology; Peripheral Vascular Disease SC Neurosciences & Neurology; Cardiovascular System & Cardiology GA 438UB UT WOS:000265579800063 PM 19299640 ER PT J AU Nguyen, DN Grilli, F Ashworth, SP Willis, JO AF Nguyen, Doan N. Grilli, Francesco Ashworth, Stephen P. Willis, Jeffrey O. TI AC loss study of antiparallel connected YBCO coated conductors SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID FAULT CURRENT LIMITER; TRANSPORT CURRENT LOSSES; MAGNETIC-FIELDS; HTS TAPES; SUPERCONDUCTORS; SUBSTRATE; COILS AB Some applications of high temperature superconducting conductors require a non-inductive winding, which may be constructed from antiparallel connected YBCO (yttrium barium copper oxide) tapes. In the case of AC applications, this antiparallel winding changes the AC losses from that of an isolated conductor. This study focuses on the effect of the spatial separation and misalignment between conductors on their AC loss behavior for YBCO conductors on both rolling assisted biaxially textured substrate (RABiTS) and ion beam assisted deposition templates in an effort to fully understand the behavior of these conductors in real world applications. For RABiTS samples, the study was carried out for all three possible configurations (the so-called back-to-back, front-to-front and same-way configurations) to clarify the effect of the ferromagnetic substrate on the AC loss behavior in these conductor configurations. Numerical simulations were also employed in some cases to compare with and elucidate experimental observations. C1 [Nguyen, Doan N.; Ashworth, Stephen P.; Willis, Jeffrey O.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Grilli, Francesco] Ecole Polytech, Montreal, PQ H3C 3A7, Canada. [Grilli, Francesco] Forschungszentrum Karlsruhe, ITP, Karlsruhe, Germany. RP Nguyen, DN (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM doan@lanl.gov RI Nguyen, Doan/F-3148-2010 FU US Department of Energy (DoE); Mathematics of Information Technology and Complex System (MITACS) network (Canada) FX The authors wish to thank SuperPower and American Superconductor Corporation for providing high-performance coated conductors for these measurements. This work was supported mainly by the US Department of Energy (DoE) and partially by Mathematics of Information Technology and Complex System (MITACS) network (Canada). NR 27 TC 29 Z9 29 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2009 VL 22 IS 5 AR 055014 DI 10.1088/0953-2048/22/5/055014 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 435NK UT WOS:000265350400015 ER PT J AU Hamilton, JC Wolfer, WG AF Hamilton, J. C. Wolfer, W. G. TI Theories of surface elasticity for nanoscale objects SO SURFACE SCIENCE LA English DT Article DE Surface stress; Nanostructures; Surface elasticity; Semi-empirical models; Model calculations ID STRESS; RECONSTRUCTIONS; INTERFACE; CRYSTALS; METALS; STRAIN; FILMS; MODEL AB The emergence of nanotechnology has driven recent interest in systems having surface atoms as a significant fraction of all atoms present, in particular nano-sheets (ultra-thin slabs), nano-wires, and nano-particles. In these systems, the bulk (i.e. non-surface region or interior) is typically strained in response to the stress of the surface. This elastic strain of the bulk in turn changes the surface lattice constants. Since the bulk and the surface are coupled, the problem must be solved self-consistently. Solving this problem requires a quantitative model of the surface elastic properties which are different from the bulk. In this paper we consider various models that have been proposed for surface elasticity. Our goal is to elucidate the relationship between two contrasting approaches: (1) the Shuttleworth equation which defines a surface stress based on the strain derivative of the surface energy and (2) the Gurtin-Murdoch (GM) theory which considers the surface layer as a membrane with residual strain and with elastic constants different from the bulk. The GM theory is analogous to the 2-D Frenkel-Kontorova (FK) model and can be used to obtain quantitative parameters for the FK model. We present an embedded atom method calculation of the surface elastic constants of Cu(111) using the GM theory with the surface represented by a membrane one atomic layer thick. This quantitative approach describes the elastic properties of surfaces in a physically appealing way. just as the bulk elastic constants provide direct information regarding the stress/strain relationship in a bulk material, the surface elastic constants provide similar information for a surface monolayer. This theory will allow elasticity analysis and atomistic calculations of properties of nano-scale objects. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hamilton, J. C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Wolfer, W. G.] Ktech Corp Inc, Albuquerque, NM 87185 USA. RP Hamilton, JC (reprint author), Sandia Natl Labs, MS 9161, Livermore, CA 94550 USA. EM jchamil@sandia.gov FU US Department of Energy, Basic Energy Sciences, Division of Materials Science [DE-AC04-94AL85000] FX We wish to acknowledge helpful discussions with N.C. Bartelt and K.F. McCarty. This work was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Science, under Contract No. DE-AC04-94AL85000. NR 21 TC 13 Z9 14 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAY 1 PY 2009 VL 603 IS 9 BP 1284 EP 1291 DI 10.1016/j.susc.2009.03.017 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 453KZ UT WOS:000266610700020 ER PT J AU Zhou, QL Birkholzer, JT Tsang, CF AF Zhou, Quanlin Birkholzer, Jens T. Tsang, Chin-Fu TI A Semi-Analytical Solution for Large-Scale Injection-Induced Pressure Perturbation and Leakage in a Laterally Bounded Aquifer-Aquitard System SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Analytical solution; Pressure perturbation; Leakage; Groundwater flow; Pumping test ID PUMPING-INDUCED LEAKAGE; NUMERICAL INVERSION; LAPLACE TRANSFORMS; WELL; DISCHARGE; STORAGE; FLOW AB A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer-aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a "laterally bounded" system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer's radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated. C1 [Zhou, Quanlin; Birkholzer, Jens T.; Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, QL (reprint author), 1 Cyclotron Rd, Berkeley, MS USA. EM qzhou@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011 OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912 FU Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231] FX The authors wish to thank George Moridis at Lawrence Berkeley National Laboratory (LBNL) for his careful internal review of the manuscript. Thanks are also due to two anonymous reviewers for their constructive suggestions for improving the quality of the manuscript. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory, of the U. S. Department of Energy, and by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 27 TC 25 Z9 25 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAY PY 2009 VL 78 IS 1 BP 127 EP 148 DI 10.1007/s11242-008-9290-0 PG 22 WC Engineering, Chemical SC Engineering GA 430EZ UT WOS:000264972900007 ER PT J AU Ahmed, A Bahadur, S Russell, AM Cook, BA AF Ahmed, A. Bahadur, S. Russell, A. M. Cook, B. A. TI Belt abrasion resistance and cutting tool studies on new ultra-hard boride materials SO TRIBOLOGY INTERNATIONAL LA English DT Article DE Boride composites; Abrasive wear; Cutting tool wear ID SILICON-NITRIDE; STRENGTH; CERAMICS AB Composites of AlMgB(14) with 0, 30, and 70 wt% of TiB(2) were prepared by mechanical alloying and hot pressing. The composites' belt abrasion resistance and cutting tool performance were measured by gravimetric analysis of material removal at varying loads and cutting speeds. AlMgB(14)-70 wt% TiB(2) composites had high hardness and fracture toughness and the highest abrasive resistance of the three compositions. Cutting tool performance of AlMgB(14)-70 wt% TiB(2) showed low wear due to chipping and little reaction with the Ti-6Al-4V work-piece. Subsurface damage and adhesion of the work-piece onto the tool material were gauged by SEM. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Bahadur, S.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Ahmed, A.] Godrej Castlemaine, Symantec Inc, Pune 411001, Maharashtra, India. [Russell, A. M.; Cook, B. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Bahadur, S (reprint author), Iowa State Univ, Dept Mech Engn, 106 Nucl Engn Bldg, Ames, IA 50011 USA. EM bahadur@iastate.edu OI Russell, Alan/0000-0001-5264-0104 FU US National Science Foundation [CMS-0307094]; US Department of Energy [W-7405-Eng-82] FX The support for this work was provided by the US National Science Foundation under Grant no. CMS-0307094. The material processing and SEM studies were performed at Ames Laboratory under Contract no., W-7405-Eng-82 with the US Department of Energy. The authors thank Joel Harringa for his guidance on material processing and analysis, Justin Peters for his help with the preparation of specimens and SEM work, and Paul Dreher of TIMET for supplying the Ti-6Al-4V turning work-piece. NR 16 TC 11 Z9 15 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAY PY 2009 VL 42 IS 5 BP 706 EP 713 DI 10.1016/j.triboint.2008.10.013 PG 8 WC Engineering, Mechanical SC Engineering GA 429FB UT WOS:000264905200014 ER PT J AU Ramachandra, R Griffin, B Joy, D AF Ramachandra, Ranjan Griffin, Brendan Joy, David TI A model of secondary electron imaging in the helium ion scanning microscope SO ULTRAMICROSCOPY LA English DT Article DE Secondary electrons; Helium ions; Scanning microscopy ID AMORPHOUS TARGETS; SOLID-SURFACES; CLEAN METALS; EMISSION; BOMBARDMENT; ANGLE; DEPENDENCE; PROJECTILE; YIELD AB A combination of the 'semi-empirical' model for secondary electron production and the TRIM routines which describe ion stopping power, scattering, and transport, has been used to construct a Monte Carlo simulation (IONiSE) that can quantitatively interpret the generation of secondary electrons (SE) from materials by fast helium ions. This approach requires that the parameters of the semi-empirical model be determined by fitting to experimental yield data but has the merit that, unlike more fundamental models, it can be applied with equal ease to both pure elements and complex compounds. The application of the model to predict the topographic yield variation of helium generated SE as a function of energy and material, and to investigate the ratio between SE generated by incident and backscattered ions, is demonstrated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ramachandra, Ranjan; Joy, David] Univ Tennessee, Knoxville, TN 37996 USA. [Griffin, Brendan] Univ Western Australia, Perth, WA 6009, Australia. [Griffin, Brendan; Joy, David] Oak Ridge Natl Lab, Ctr NanoPhase Mat Sci, Oak Ridge, TN 37831 USA. RP Joy, D (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM djoy@utk.edu RI Griffin, Brendan/D-5686-2011 FU SRCIGRC [1778.001] FX Portions of this work are based on the TRIM and SRIM codes and their associated databases (www.srim.org). The authors are also grateful to Clarke Fenner, John Notte, and Bill Thompson of Zeiss SIVIT for their enthusiastic interest and assistance; and to Drs. John VillarrUbbia, Andras Vlaclar, and Scott Wight (NIST); Professor David Bell (Harvard); Dr. Joe Michael (Sandia National Laboratory); Dr. Lucille Giannuzzi (FEI): and Dr. Harry M Meyer III (ORNL) for valuable discussions. This work was partially supported by SRCIGRC under Project ' 1778.001, Program Manager Dr. Dan Herr. NR 37 TC 67 Z9 67 U1 2 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAY PY 2009 VL 109 IS 6 BP 748 EP 757 DI 10.1016/j.ultramic.2009.01.013 PG 10 WC Microscopy SC Microscopy GA 442CC UT WOS:000265816400007 PM 19269097 ER PT J AU Nellis, SR Yoon, H Werth, CJ Oostrom, M Valocchi, AJ AF Nellis, Scott R. Yoon, Hongkyu Werth, Charles J. Oostrom, Mart Valocchi, Albert J. TI Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site SO VADOSE ZONE JOURNAL LA English DT Article ID HETEROGENEOUS POROUS-MEDIA; ACID SOLUTION CHEMISTRY; CARBON-TETRACHLORIDE; ORGANIC-ACID; TRANSPORT-PROPERTIES; TENSION; WATER; FLOW; IMBIBITION; ALCOHOLS AB Surface and interfacial tensions are key parameters affecting nonaqueous-phase liquid (NAPL) movement and redistribution in the subsurface after spill events. In this study, the impact of major additive components on surface and interfacial tensions for organic mixtures and wastewater was investigated. Organic mixture and wastewater compositions were based on CCl(4) mixtures released at the U. S. Department of Energy's Hanford site, where CCl(4) was discharged simultaneously with dibutyl butyl phosphonate, tributyl phosphate, dibutyl phosphate, and a machining lard oil. A considerable amount of wastewater consisting primarily of nitrates and metal salts was also discharged. The measured tension values revealed that the addition of these additive components caused a significant lowering of the interfacial tension with water or wastewater and the surface tension of the wastewater phase in equilibrium with the organic mixtures, compared with pure CCl(4), but had minimal effect on the surface tension of the NAPL itself. These results led to large differences in spreading coefficients for several mixtures, where the additives caused both a higher (more spreading) initial spreading coefficient and a lower (less spreading) equilibrium spreading coefficient. This indicates that if these mixtures migrate into uncontaminated areas, they will tend to spread quickly but will form a higher residual NAPL saturation on after equilibrium than pure CCl(4). Withtime, CCl(4) probably volatilizes more rapidly than other components in the originally disposed mixtures and the lard oil and phosphates would become more concentrated in the remaining NAPL, resulting in a lower interfacial tension for the mixture. These results show that the behavior of organic chemical mixtures should be accounted for in flow and transport models. C1 [Nellis, Scott R.; Yoon, Hongkyu; Werth, Charles J.; Valocchi, Albert J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Oostrom, Mart] Pacific NW Natl Lab, Energy & Environm Directorate, Hydrol Grp, Richland, WA 99354 USA. RP Yoon, H (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA. EM hyoon3@illinois.edu FU U.S. Department of Energy (DOE) [DE-FG02-06ER64207, DE-AC06-76RLO 1830] FX This work was primarily supported by the Office of Science (BER), U.S. Department of Energy (DOE), Environmental Remediation Sciences Program, Grant no. DE-FG02-06ER64207. Some of the experiments were performed with support from the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). The PNNL is operated by the Battelle Memorial Institute for the DOE under Contract DE-AC06-76RLO 1830. Scientists interested in conducting experimental work in the EMSL are encouraged to contact M. Oostrom (mart.oostrom@pnl.gov). NR 52 TC 5 Z9 7 U1 1 U2 3 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2009 VL 8 IS 2 BP 343 EP 351 DI 10.2136/vzj2008.0104 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 448YE UT WOS:000266297100007 ER PT J AU Stauffer, PH Vrugt, JA Turin, HJ Gable, CW Soll, WE AF Stauffer, Philip H. Vrugt, Jasper A. Turin, H. Jake Gable, Carl W. Soll, Wendy E. TI Untangling Diffusion from Advection in Unsaturated Porous Media: Experimental Data, Modeling, and Parameter Uncertainty SO VADOSE ZONE JOURNAL LA English DT Article ID VAPOR-PHASE DIFFUSION; YUCCA MOUNTAIN; BUSTED-BUTTE; TRANSPORT; NEVADA; TRACER; SOILS; TUFFS; ZONE; FLOW AB We conducted a series of experimental and modeling tests using data from the Busted Butte Unsaturated Zone Transport Test. First, we conducted a suite of reactive (e. g., Li), nonreactive (Br), and colloidal tracer experiments. These tracers were injected for 190 d from two point sources at rates of 1 and 8 mL/h, respectively. We then used a numerical simulator (FEHM), populated with laboratory-measured hydrologic properties, to verify that our conceptual model of the tracer test yielded a good fit to the tracer breakthrough data. Additionally, we used the AMALGAM-SO and SCEM-UA search algorithms to find optimal parameter estimates in our conceptual model and estimate their (nonlinear) uncertainty. To this end, the FEHM model was executed more than 50,000times using parallel computing on a distributed computer cluster. The experimental and modeling results show that (i) no breakthrough of colloids was observed, low breakthroughs of Li were found, and significant and rapid breakthrough of Br was measured, (ii) measured hydraulic parameters from rock core samples provide a relatively accurate description of flow and transport at the scale and flow rates of the Busted Butte test, and (iii) the Millington-Quirk model of diffusion as a function of volumetric water content can fit the experimental breakthrough data well; however, (iv) a constant diffusion model with a much lower effective diffusion coefficient also fits the data well, and (v) numerous different optimized parameter combinations exist that fit the observed Br data acceptably well. This implies that one should be particularly careful in assigning values of the unsaturated subsurface flow and transport parameters without recourse to examining both parameter and model formulation uncertainty. C1 [Stauffer, Philip H.; Vrugt, Jasper A.; Turin, H. Jake; Gable, Carl W.; Soll, Wendy E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stauffer, PH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM stauffer@lanl.gov RI Vrugt, Jasper/C-3660-2008; Stauffer, Philip/A-1384-2009; Gable, Carl/B-4689-2011; OI Stauffer, Philip/0000-0002-6976-221X; Gable, Carl/0000-0001-7063-0815 NR 46 TC 6 Z9 6 U1 0 U2 3 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2009 VL 8 IS 2 BP 510 EP 522 DI 10.2136/vzj2008.0055 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 448YE UT WOS:000266297100023 ER PT J AU Denmirkanli, DI Molz, FJ Kaplan, DI Fjeld, RA AF Denmirkanli, Deniz I. Molz, Fred J. Kaplan, Daniel I. Fjeld, Robert A. TI A Fully Transient Model for Long-Term Plutonium Transport in the Savannah River Site Vadose Zone: Root Water Uptake (vol 7, pg 1099, 2008) SO VADOSE ZONE JOURNAL LA English DT Correction C1 [Denmirkanli, Deniz I.; Molz, Fred J.; Fjeld, Robert A.] Clemson Univ, Dept Environm Engn & Sci, LG Rich Environm Res Lab, Anderson, SC 29625 USA. [Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Molz, FJ (reprint author), Clemson Univ, Dept Environm Engn & Sci, LG Rich Environm Res Lab, 342 Comp Court, Anderson, SC 29625 USA. EM fredi@clemson.edu NR 1 TC 0 Z9 0 U1 0 U2 1 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2009 VL 8 IS 2 BP 530 EP 530 DI 10.2136/vzj2007.0134er PG 1 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 448YE UT WOS:000266297100025 ER PT J AU Gaufin, T Gautam, R Kasheta, M Ribeiro, R Ribka, E Barnes, M Pattison, M Tatum, C MacFarland, J Montefiori, D Kaur, A Pandrea, I Apetrei, C AF Gaufin, Thaidra Gautam, Rajeev Kasheta, Melissa Ribeiro, Ruy Ribka, Erin Barnes, Mary Pattison, Melissa Tatum, Coty MacFarland, Jeanne Montefiori, David Kaur, Amitinder Pandrea, Ivona Apetrei, Cristian TI Limited ability of humoral immune responses in control of viremia during infection with SIVsmmD215 strain SO BLOOD LA English DT Article ID SIMIAN IMMUNODEFICIENCY VIRUS; T-LYMPHOCYTE RESPONSES; AFRICAN-GREEN MONKEYS; RHESUS MACAQUES; NEUTRALIZING ANTIBODIES; HIV-INFECTION; IN-VIVO; MONOCLONAL-ANTIBODIES; PASSIVE IMMUNOTHERAPY; TYPE-1 INFECTION AB We investigated the impact of rhesus macaque (RM) B-cell depletion before inoculation with the isolate SIVsmmD215. Seven RMs were treated every 3 weeks with 50 mg/kg of an anti-CD20 antibody ( rituximab) starting 7 days before inoculation for 2 (n = 4) and 5 ( n = 3) months. Four control animals received no antibody. Three animals were completely depleted of CD20(+) B cells, but 4 were only partially depleted of CD20 cells in the LNs and intestine. The decrease in antibody production was consistent with the efficacy of tissue CD20 depletion. Seroconversion and neutralizing antibody production was significantly delayed in animals showing complete tissue CD20 depletion and remained at low titers in all CD20-depleted RMs. Surprisingly, there was no significant difference in acute or chronic viral loads between CD20-depleted and control animal groups. There was a tendency for lower viral set points in CD20-depleted animals. At 6 weeks after inoculation, cellular immune responses were significantly stronger in CD20-depleted animals than in controls. There was no significant difference in survival between CD20-depleted and control animals. Our data suggest that a deficiency of Ab responses did not markedly affect viral replication or disease progression and that they may be compensated by more robust cellular responses. (Blood. 2009;113:4250-4261) C1 [Gaufin, Thaidra; Gautam, Rajeev; Barnes, Mary; Pattison, Melissa; Tatum, Coty; MacFarland, Jeanne; Apetrei, Cristian] Tulane Natl Primate Res Ctr, Div Microbiol, Covington, LA 70433 USA. [Kasheta, Melissa; Kaur, Amitinder] New England Primate Res Ctr, Div Immunol, Southborough, MA USA. [Ribeiro, Ruy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ribka, Erin] Tulane Natl Primate Res Ctr, Div Vet Med, Covington, LA 70433 USA. [Montefiori, David] Duke Univ, Dept Surg, Durham, NC USA. [Pandrea, Ivona] Tulane Natl Primate Res Ctr, Div Comparat Pathol, Covington, LA 70433 USA. [Apetrei, Cristian] Tulane Univ, Sch Publ Hlth, Dept Trop Med, New Orleans, LA 70118 USA. [Pandrea, Ivona] Tulane Univ, Sch Med, Dept Pathol, New Orleans, LA 70118 USA. RP Apetrei, C (reprint author), Tulane Natl Primate Res Ctr, Div Microbiol, 18703 3 Rivers Rd, Covington, LA 70433 USA. EM capetrei@tulane.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU National Institute of Allergy and Infectious Diseases [R01 AI065325, P20 RR020159, RO1AI064066, R21AI069935, AI30034, P51 RR000164]; National Center for Research Resources, Bethesda, MD FX This work was supported by grants R01 AI065325 and P20 RR020159 ( C. A.), RO1AI064066 and R21AI069935 ( I. P.), AI30034 ( D. M.), and P51 RR000164 ( TNPRC) from the National Institute of Allergy and Infectious Diseases and from the National Center for Research Resources, Bethesda, MD. NR 55 TC 21 Z9 21 U1 1 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD APR 30 PY 2009 VL 113 IS 18 BP 4250 EP 4261 DI 10.1182/blood-2008-09-177741 PG 12 WC Hematology SC Hematology GA 442MW UT WOS:000265846300021 PM 19168789 ER PT J AU Nemura, H Ishii, N Aoki, S Hatsuda, T AF Nemura, H. Ishii, N. Aoki, S. Hatsuda, T. TI HYPERON-NUCLEON FORCES CALCULATED FROM LATTICE QCD SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT KGU Yokohama Autumn School of Nuclear Physics CY OCT 09-10, 2008 CL Kanto Gakuin Univ, Kannai Media Ctr, Yokohama, JAPAN SP Kanto Gakuin Univ HO Kanto Gakuin Univ, Kannai Media Ctr DE Lattice QCD calculations; hyperon-nucleon interactions ID SCATTERING; MATRIX AB We study the hyperon-nucleon (YN) forces by using quenched lattice QCD. The Bethe-Salpeter amplitudes are calculated for the lowest scattering state of the systems so as to obtain the YN potentials. The numerical calculation is twofold: (i) The p Xi(0) potentials and scattering lengths are obtained by using lattice QCD with beta = 5.7, the lattice spacing of a = 0.1416(9) fm, on the 32(3) x 32 lattice. Two kinds of ud quark mass are used, corresponding to m(pi) similar or equal to 0.37 GeV and 0.51 GeV. The spatial lattice volume is (4.5 fm)(3). The scattering lengths obtained from Luscher's formula show that the p Xi(0) interactions are both attractive at (1)S(0) and (3)S(1) channels, and the interaction in the 3S1 is more attractive than in the (1)S(0). These attractive forces become stronger as the u, d quark mass decreases. (ii) The p Lambda potentials are calculated. The lattice setup is almost same as the former calculation except for the temporal part. The calculation is performed on 32(3) x 48 lattice. Two kinds of ud quark mass are used, corresponding to m(pi) similar or equal to 0.47 GeV and 0.51 GeV. The lowest scattering energies in the finite lattice volume are calculated. C1 [Nemura, H.] RIKEN, Strangeness Nucl Phys Lab, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Ishii, N.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Hatsuda, T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Nemura, H (reprint author), RIKEN, Strangeness Nucl Phys Lab, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM nemura@riken.jp; ishii@rarfaxp.riken.jp; saoki@het.ph.tsukuba.ac.jp; hatsuda@phys.s.u-tokyo.ac.jp RI Hatsuda, Tetsuo/C-2901-2013 NR 16 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2009 VL 24 IS 11 BP 2110 EP 2117 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 441WX UT WOS:000265802300015 ER PT J AU Cowee, MM Omidi, N Russell, CT Blanco-Cano, X Tokar, RL AF Cowee, M. M. Omidi, N. Russell, C. T. Blanco-Cano, X. Tokar, R. L. TI Determining ion production rates near Saturn's extended neutral cloud from ion cyclotron wave amplitudes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DISPERSION; ENCELADUS; PLASMA; TORUS AB Recent Cassini observations of active venting of water molecules from Enceladus indicate that the moon is the primary source of Saturn's extended neutral cloud. Ionization of the neutrals through charge exchange creates a population of newborn ions with a velocity space distribution, which is highly unstable to the generation of electromagnetic ion cyclotron waves. Cassini observed such ion cyclotron waves, finding spatial and temporal variability in the wave amplitudes throughout the extended neutral cloud region. Since the amount of energy in the ion cyclotron waves is proportional to the number of newborn ions generating them, it is possible to infer the ion production rate in the region. To do so, we use two-dimensional electromagnetic hybrid (kinetic ions, fluid electrons) simulations to investigate the growth and nonlinear evolution of ion cyclotron waves. We focus on conditions near Enceladus' L shell and compare the simulated and observed ion cyclotron wave amplitudes to estimate the neutral densities and ion production rates. Our simulation results find a relatively linear relation between ion production rate and quasisteady wave energy level (delta B(2)). For conditions near Enceladus' L shell, we find that water group ion production rates of 0.007-0.014/cc/s (which yield wave amplitudes of similar to 0.1-0.3 nT) are appropriate. For ion production within an annulus volume from 3.9 to 4 R(S), we obtain ion production rates of 3.8 x 10(26) to 7.6 x 10(26) ions/s or 10.2-20.4 kg/s. C1 [Cowee, M. M.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Omidi, N.] Solana Sci Inc, Solana Beach, CA 92075 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Blanco-Cano, X.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. RP Cowee, MM (reprint author), Los Alamos Natl Lab, Mail Stop D466,Grp ISR-1, Los Alamos, NM 87544 USA. EM mcowee@lanl.gov FU NASA [NNX07AJ07G]; University of California, Los Angeles FX This research was supported by NASA grant NNX07AJ07G to Solana Scientific, Inc. and University of California, Los Angeles. The authors wish to thank to Jared Leisner and Peter Gary for useful discussion. NR 16 TC 16 Z9 16 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 30 PY 2009 VL 114 AR A04219 DI 10.1029/2008JA013664 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 440CK UT WOS:000265675800001 ER PT J AU Zinkle, SJ Ice, GE Miller, MK Pennycook, SJ Wang, XL AF Zinkle, S. J. Ice, G. E. Miller, M. K. Pennycook, S. J. Wang, X-L. TI Advances in microstructural characterization SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID TRANSMISSION ELECTRON-MICROSCOPE; ANGLE NEUTRON-SCATTERING; X-RAY-SCATTERING; DIFFRACTION MEASUREMENTS; MARTENSITIC STEELS; RESIDUAL-STRESSES; FERRITIC ALLOYS; SANS DATA; RESOLUTION; TEMPERATURE AB Timely development of materials for the demanding fusion energy environment requires a broad range of advanced scientific tools, including advanced structural characterization methods. The current state-of-the-art and emerging capabilities in electron microscopy, atom probe tomography, neutron scattering and X-ray scattering are reviewed with respect to potential applications in fusion materials research and development. Recent dramatic advances in capabilities in all four of these characterization tools are transforming the spatial precision and quantitative information that can be extracted during structural characterization. Examples include spectroscopic identification of single atoms in bulk materials, three-dimensional mapping of millimeter-scale volumes of materials with nanometer resolution, and high-resolution in situ measurements of internal stress and strain during mechanical testing. (c) 2008 Elsevier B.V. All rights reserved. C1 [Zinkle, S. J.; Ice, G. E.; Miller, M. K.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wang, X-L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov RI Wang, Xun-Li/C-9636-2010; OI Wang, Xun-Li/0000-0003-4060-8777; Zinkle, Steven/0000-0003-2890-6915 NR 69 TC 7 Z9 7 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 8 EP 14 DI 10.1016/j.jnucmat.2008.12.302 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900003 ER PT J AU Morishita, K Watanabe, Y Kohyama, A Heinisch, HL Gao, F AF Morishita, K. Watanabe, Y. Kohyama, A. Heinisch, H. L. Gao, F. TI Nucleation and growth of vacancy clusters in beta-SiC during irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID SILICON-CARBIDE AB Molecular dynamics and molecular static calculations have been performed using the empirical many-body interatomic potential to obtain the formation and binding energies of relaxed configuration of vacancy clusters in beta-SiC, which are necessary when the nucleation and growth process of clusters is investigated. The formation energy of vacancy clusters in beta-SiC depends on the size, vacancy composition, and vacancy configuration of clusters. When the size and vacancy composition of clusters are given, the vacancy configuration of clusters with the lowest formation energy is primarily given so as to take the smallest number of dangling bonds. Especially when the fraction of the number of silicon vacancies to the number of carbon vacancies in a cluster is quite high or quite low, the formation property of antisite defects in clusters becomes a key factor to determine the stable configuration of clusters. (c) 2008 Elsevier B.V. All rights reserved. C1 [Morishita, K.; Watanabe, Y.; Kohyama, A.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Heinisch, H. L.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Morishita, K (reprint author), Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. EM morishita@iae.kyoto-u.ac.jp RI Gao, Fei/H-3045-2012 NR 9 TC 7 Z9 8 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 30 EP 32 DI 10.1016/j.jnucmat.2008.12.054 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900008 ER PT J AU Gilbert, MR Yao, Z Kirk, MA Jenkins, ML Dudarev, SL AF Gilbert, M. R. Yao, Z. Kirk, M. A. Jenkins, M. L. Dudarev, S. L. TI Vacancy defects in Fe: Comparison between simulation and experiment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID HEAVY-ION IRRADIATIONS; MOLECULAR-DYNAMICS; DISLOCATION LOOPS; DAMAGE EVOLUTION; THIN-FOILS; IRON; ACCUMULATION AB The evolution of radiation damage under heavy-ion irradiation in thin foils of pure bcc Fe has been investigated by simulation and experiment. Simulations showed that vacancy loops are about as mobile as interstitial loops, and can be lost to the surface of a foil. Consistent with this, in situ real-time dynamic observations of the damage evolution showed that loops, many of which are believed to be of vacancy nature, were mobile and were often lost during irradiation. Atomistic simulations of vacancy defects in Fe showed that spherical voids, rather than vacancy loops, represent the lowest energy configurations for clusters of vacancies of any size. The simulations also indicated that the stability of loops strongly varies depending on their size. Closed loops above a critical diameter (similar to 2 nm) are highly metastable due to the difficulty of their transformation into voids. The greater stability of voids explains why the loop yield in Fe and other ferritic materials is very low. (c) 2009 M.R. Gilbert. Published by Elsevier B.V. All rights reserved. C1 [Gilbert, M. R.; Dudarev, S. L.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Gilbert, M. R.; Yao, Z.; Jenkins, M. L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Dudarev, S. L.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. RP Gilbert, MR (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM mark.gilbert@ukaea.org.uk OI Gilbert, Mark/0000-0001-8935-1744 NR 14 TC 16 Z9 17 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 36 EP 40 DI 10.1016/j.jnucmat.2008.12,055 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900010 ER PT J AU Shcherbakov, EN Kozlov, AV Yagovitin, PI Evseev, MV Kinev, EA Panchenko, VL Isobe, I Sagisaka, M Okita, T Sekimura, N Garner, FA AF Shcherbakov, E. N. Kozlov, A. V. Yagovitin, P. I. Evseev, M. V. Kinev, E. A. Panchenko, V. L. Isobe, I. Sagisaka, M. Okita, T. Sekimura, N. Garner, F. A. TI Influence of damage rate on physical and mechanical properties and swelling of 18Cr-9Ni austenitic steel in the range of 3 x 10(-9) to 4 x 10(-8) dpa/s SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE AB The results of the examination of the specimens constructed from the Fe-18Cr-9Ni steel thick-wall pipe irradiated at temperatures 370-375 degrees C to damage rates from 1.5 to 21 dpa at displacement rates from 3 x 10(-9) to 4 x 10(-8) dpa/s are presented. Electrical resistance. elasticity characteristics and radiation swelling of this material under different irradiation conditions were measured. Changes in the microstructure of the steel, in particular, the porosity characteristics dependent on a damage rate are shown. (C) 2009 Published by Elsevier B.V. C1 [Shcherbakov, E. N.; Kozlov, A. V.; Yagovitin, P. I.; Evseev, M. V.; Kinev, E. A.; Panchenko, V. L.] FSUE Inst Nucl Mat, Zarechnyi, Russia. [Isobe, I.; Sagisaka, M.] Nucl Fuels Ltd, Osaka, Japan. [Okita, T.] Univ Tokyo, Tokyo, Japan. [Sekimura, N.; Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shcherbakov, EN (reprint author), FSUE Inst Nucl Mat, Zarechnyi, Russia. EM sfti@uraltc.ru NR 5 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 152 EP 156 DI 10.1016/j.jnucmat.2008.12.080 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900040 ER PT J AU Neustroev, VS Garner, FA AF Neustroev, V. S. Garner, F. A. TI Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID ALLOYS AB Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as "quasi-embrittlement" which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation. (C) 2009 Published by Elsevier B.V. C1 [Neustroev, V. S.] FSUE SSC RF Res Inst Atom Reactors, Dimitrovgrad, Russia. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Neustroev, VS (reprint author), FSUE SSC RF Res Inst Atom Reactors, Dimitrovgrad, Russia. EM neustroev@niiar.ru NR 24 TC 7 Z9 7 U1 6 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 157 EP 160 DI 10.1016/j.jnucmat.2008.12.077 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900041 ER PT J AU Ono, K Miyamoto, M Arakawa, K Birtcher, RC AF Ono, Kotaro Miyamoto, Mitsutaka Arakawa, Kazuto Birtcher, R. C. TI Dynamical interaction of helium bubbles with cascade damage in Fe-9Cr ferritic alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID BEHAVIOR; IONS AB Dynamic interaction of helium bubble with cascade damage in Fe-9Cr ferritic alloy has been studied using in situ irradiation and electron microscopy. During the irradiation of the alloy by 400 keV Fe(+) ions at temperatures where no thermal motion takes place, induced displacement of small helium bubbles was observed: the bubbles underwent sporadic and instant displacement. The displacement was of the order of a few nanometers. The experimentally determined displacement probability of helium bubbles is consistent with the calculated probability of their dynamic interaction with sub-cascades introduced by the irradiation. Furthermore, during the irradiation of the alloy at higher temperatures, both retarded and accelerated Brownian type motions were observed. These results are discussed on the basis of dynamic interaction of helium bubbles with point defects that survive through high-energy self-ion irradiation. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ono, Kotaro; Miyamoto, Mitsutaka] Shimane Univ, Dept Mat Sci, Matsue, Shimane 6908504, Japan. [Arakawa, Kazuto] Osaka Univ, UHV EM Ctr, Suita, Osaka 5650871, Japan. [Birtcher, R. C.] Argonne Natl Lab, MSD, Argonne, IL 60439 USA. RP Ono, K (reprint author), Shimane Univ, Dept Mat Sci, 1060 Nishi Kawatsu, Matsue, Shimane 6908504, Japan. EM k-ono@riko.shimane-u.ac.jp NR 11 TC 3 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 177 EP 180 DI 10.1016/j.jnucmat.2008.12.087 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900046 ER PT J AU Okita, T Sekimura, N Garner, FA AF Okita, T. Sekimura, N. Garner, F. A. TI The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys at similar to 400 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE AB The behavior of void swelling at similar to 400 degrees C of model f.c.c. alloy Fe-15Cr-16Ti-0.25Ti-0.05 C doped with boron was examined in the FFTF-MOTA. Boron additions modify the neutron-induced swelling of Fe-15Cr-16Ni-0.25Ti-0.05 C somewhat, but the changes appear to arise primarily from the influence of boron as a chemical species rather than as a source of helium. Boron additions initially depress swelling strongly, but the effect saturates by <100 appm. The reduction in swelling is thought to arise from boron's influence on distribution and precipitation of carbon. As the boron level is raised to significantly larger levels swelling begins to increase, but at a slower rate per boron atom. This subsequent increase is thought to reflect the higher He/dpa ratio generated by the boron, overwhelming the helium produced by (n, alpha) reactions with nickel. (C) 2009 Elsevier B.V. All rights reserved. C1 [Okita, T.; Sekimura, N.] Univ Tokyo, Dept Quantum Engn & Syst Sci, Tokyo, Japan. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Okita, T (reprint author), Univ Tokyo, Dept Quantum Engn & Syst Sci, Tokyo, Japan. EM okita@q.t.u-tokyo.ac.jp NR 4 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 185 EP 187 DI 10.1016/j.jnucmat.2008.12.315 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900048 ER PT J AU Klueh, RL Shiba, K Sokolov, MA AF Klueh, R. L. Shiba, K. Sokolov, M. A. TI Embrittlernent of irradiated F82H in the absence of irradiation hardening SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID ACTIVATION FERRITIC/MARTENSITIC STEELS; CHARPY IMPACT PROPERTIES; FRACTURE-TOUGHNESS; MARTENSITIC STEELS; TENSILE PROPERTIES; BEHAVIOR; HFIR; 9CR-1MOVNB AB Neutron irradiation of 7-12% Cr ferritic/martensitic steels below 425-450 degrees C produces microstructural defects and precipitation that cause an increase in yield stress. This irradiation hardening causes embrittlement, which is observed in a Charpy impact or fracture toughness test as an increase in the ductile-brittle transition temperature. Based on observations that show little change in strength in steels irradiated above 425-450 degrees C, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study of F82H steel, significant embrittlement was observed after irradiation at 500 degrees C, but no hardening occurred. This embrittlement is apparently due to irradiation-accelerated Laves-phase precipitation. Observations of the embrittlement of F82H in the absence of irradiation hardening have been examined and analyzed with thermal-aging studies and computational thermodynamics calculations to illuminate and understand the embrittlement during irradiation. Published by Elsevier B.V. C1 [Klueh, R. L.; Sokolov, M. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Shiba, K.] Japan Atom Energy Agcy, Toki, Ibaraki, Japan. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM kluehrl@ornl.gov NR 23 TC 9 Z9 10 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 191 EP 194 DI 10.1016/j.jnucmat.2008.12.090 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900050 ER PT J AU Kondo, S Katoh, Y Snead, LL AF Kondo, S. Katoh, Y. Snead, L. L. TI Cavity swelling and dislocation evolution in SiC at very high temperatures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID SILICON-CARBIDE; NEUTRON-IRRADIATION; MICROSTRUCTURE; BEHAVIOR AB The temperature and fluence dependence of cavity swelling and dislocation development in CVD SiC irradiated with fast neutrons at high temperatures (1050-1460 degrees C, up to 9.6 dpa) were evaluated using transmission electron microscopy. The cavity swelling was very limited below 1300 degrees C (<0.01% at 1300 degrees C, 9.3 dpa). Temperature and fluence dependent swelling became visible above similar to 1400 degrees C. The maximum value of the cavity swelling was 0.25% at 1460 degrees C, 9.6 dpa, but this appeared to be below the peak swelling temperature. Frank loops were the dominant dislocation structure in this temperature regime, and the number density decreased and the size increased with increasing irradiation temperature. The loop microstructures depended less significantly on both the irradiation temperature and fluence below 1200 degrees C. A significant decrease in the number density and increase in the size were observed at 1300-1460 degrees C. Published by Elsevier B.V. C1 [Kondo, S.; Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. RP Kondo, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37830 USA. EM kondos1@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 13 TC 14 Z9 15 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 222 EP 226 DI 10.1016/j.jnucmat.2008.12.095 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900058 ER PT J AU Wong, KL Lee, HJ Shim, JH Sadigh, B Wirth, BD AF Wong, Kwan L. Lee, Hyon-Jee Shim, Jae-Hyeok Sadigh, Babak Wirth, Brian D. TI Multiscale modeling of point defect interactions in Fe-Cr alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MOLECULAR-DYNAMICS; IRRADIATION; DIFFUSION; RADIATION; REACTOR; METALS AB Predictive performance models of ferritic/martensitic alloys in fusion neutron irradiation environments require knowledge of point defect interactions with Cr, which can be investigated by a multiscale modeling approach. Molecular dynamics simulations, using Finnis-Sinclair-type potentials, have been used to investigate the interstitial diffusion and reveal that the extremes of attractive and repulsive binding between Cr and interstitials change the characteristics of interstitial migration and the Cr-to-Fe diffusivity ratio. Ab-initio calculations have been performed to determine the vacancy-Cr interactions, and these calculations reveal complex electronic and magnetic interactions between Cr and Fe. The ab-initio values have been used to calculate the Cr-to-Fe diffusivity ratio by a vacancy mechanism using the LeClaire multi-frequency model and a kinetic lattice Monte Carlo model, both of which indicate that Cr diffuses faster than Fe. The modeling results are discussed in the context of the radiation-induced segregation of Cr at grain boundaries in BCC Fe-Cr alloys. (C) 2009 Published by Elsevier B.V. C1 [Wong, Kwan L.; Lee, Hyon-Jee; Shim, Jae-Hyeok; Wirth, Brian D.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Shim, Jae-Hyeok] Korea Adv Inst Sci & Technol, Nanomat Res Ctr, Seoul 136791, South Korea. [Sadigh, Babak] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wong, KL (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM kevwong@socrares.berkeley.edu RI Wirth, Brian/O-4878-2015 OI Wirth, Brian/0000-0002-0395-0285 NR 30 TC 15 Z9 15 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 227 EP 230 DI 10.1016/j.jnucmat.2008.12.092 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900059 ER PT J AU Tanigawa, H Klueh, RL Hashimoto, N Sokolov, MA AF Tanigawa, Hiroyasu Klueh, Ronald L. Hashimoto, Naoyuki Sokolov, Mikhail A. TI Hardening mechanisms of reduced activation ferritic/martensitic steels irradiated at 300 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID FERRITIC STEELS; MICROSTRUCTURE AB It has been reported that reduced-activation ferritic/martensitic steels (RAFMs), such as F82H, ORNL9Cr-2WVTa, and JLF-1 showed a variety of changes in ductile-brittle transition temperature and yield stress after irradiation at 300 degrees C up to 5 dpa, and those differences could not be interpreted solely by the difference of dislocation microstructure induced by irradiation. In this paper, various microstructural analyses on low-temperature irradiated RAFMs were summarized with the emphasis on F82H, and a possible mechanism for the irradiation hardening was suggested. The possible contribution of dislocation channeling structure and back stress were indicated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tanigawa, Hiroyasu] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Klueh, Ronald L.; Sokolov, Mikhail A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hashimoto, Naoyuki] Hokkaido Univ, Sapporo, Hokkaido, Japan. RP Tanigawa, H (reprint author), Japan Atom Energy Agcy, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. EM tanigawa.hiroyasu@jaea.go.jp RI HASHIMOTO, Naoyuki/D-6366-2012 NR 16 TC 17 Z9 17 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 231 EP 235 DI 10.1016/j.jnucmat.2008.12.094 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900060 ER PT J AU Garner, FA Flinn, JE Hall, MM AF Garner, F. A. Flinn, J. E. Hall, M. M. TI Anisotropic swelling observed during stress-free reirradiation of AISI 304 tubes previously irradiated under stress SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID CREEP AB A 'history effects' experiment was conducted in EBR-II that involved the reirradiation of AISI 304 cladding and Capsule tubes. It is shown that when irradiated tubes had not previously experienced stress, subsequent irradiation led to additional swelling strains that were isotropically distributed. However, when tubes previously irradiated under a 2:1 biaxial stress were reirradiated without stress the additional swelling strains were not isotropically distributed. The tubes obviously retained a memory of the previous stress state that appears to be attempting to distribute strains in the directions dictated by the previous stress state. It is clear, however, that the memory of that stress state is fading as the anisotropic dislocation microstructure developed during irradiation under stress is replaced by an isotropic dislocation microstructure during subsequent exposure in the absence of stress. It is also shown that once the transient regime of swelling nears completion, further changes in stress state or irradiation temperature have no influence on the swelling rate thereafter. (C) 2008 Elsevier B.V. All rights reserved. C1 [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Flinn, J. E.] EBR II Project, Argonne Natl Lab, Idaho Falls, ID USA. [Hall, M. M.] Bechtel Bettis Co, W Mifflin, PA USA. RP Garner, FA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM frank.garner@dslextreme.com NR 12 TC 5 Z9 6 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 249 EP 253 DI 10.1016/j.jnucmat.2008.12.105 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900064 ER PT J AU Gusev, MN Maksimkin, OP Osipov, IS Garner, FA AF Gusev, M. N. Maksimkin, O. P. Osipov, I. S. Garner, F. A. TI Anomalously large deformation of 12Cr18Ni10Ti austenitic steel irradiated to 55 dpa at 310 degrees C in the BN-350 reactor SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE AB Whereas most previous irradiation studies conducted at lower neutron exposures in the range 100-400 degrees C have consistently produced strengthening and strongly reduced ductility in stainless steels, it now appears possible that higher exposures may lead to a reversal in ductility loss for some steels. A new radiation-induced phenomenon has been observed in 12Cr18Ni10Ti stainless steel irradiated to 55 dpa. It involves a 'moving wave of plastic deformation' at 20 degrees C that produces 'anomalously' high values of engineering ductility, especially when compared to deformation occurring at lower neutron exposures. Using the technique of digital optical extensometry the 'true stress sigma-true strain epsilon' curves were obtained. It was shown that a moving wave of plastic deformation occurs as a result of an increase in the intensity of strain hardening, d sigma/d epsilon(epsilon). The increase in strain hardening is thought to arise from an irradiation-induced increase in the propensity of the gamma -> alpha martensitic transformation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gusev, M. N.; Maksimkin, O. P.; Osipov, I. S.] Inst Nucl Phys, Alma Ata, Kazakhstan. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gusev, MN (reprint author), Inst Nucl Phys, Alma Ata, Kazakhstan. EM gusev.maxim@inp.kz RI Maksimkin, Oleg/M-8820-2015 NR 11 TC 8 Z9 8 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 273 EP 276 DI 10.1016/j.jnucmat.2008.12.115 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900070 ER PT J AU McClintock, DA Hoelzer, DT Sokolov, MA Nanstad, RK AF McClintock, D. A. Hoelzer, D. T. Sokolov, M. A. Nanstad, R. K. TI Mechanical properties of neutron irradiated nanostructured ferritic alloy 14YWT SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID STABILITY; STEEL AB Advanced nanostructured ferritic alloys (NFAs) containing a high density of ultra-fine (2-5 nm) nanoclusters (NCs) enriched in Y, Ti, and O are considered promising candidates for structural components in future nuclear systems. The superior tensile strengths of NFAs relative to conventional oxide dispersion strengthened ferritic alloys are attributed to the high number density of NCs, which may provide effective trapping centers for point defects and transmutation products produced during neutron irradiation. This paper summarizes preliminary tensile and fracture toughness data for an advanced NFA, designated 14YWT, currently being developed at Oak Ridge National Laboratory. For this study, an alloy designated 14WT was manufactured using the same production parameters used to produce 14YWT but without the Y(2)O(3) addition during ball milling required for NC formation in order to quantify the effect of the NCs on mechanical properties. Tensile specimens produced from both alloys were irradiated at 300, 580, and 670 degrees C to 1.5 displacements per atom (dpa), while 14YWT fracture toughness specimens were irradiated at 300 degrees C to 1.5 dpa. Tensile strengths for 14YWT were found to be about two times greater than 14WT for both irradiated and unirradiated conditions, with yield strength for 14YWT decreasing from similar to 1450 MPa at 26 degrees C to similar to 700 MPa at 600 degrees C. Moderate radiation-induced hardening (50-200 MPa) and reduction in ductility was observed for 14YWT for all irradiation conditions and test temperatures. In contrast, 14WT exhibited significant hardening (similar to 250 MPa) for the 300 degrees C irradiated specimens, while almost no hardening was observed for the 580 and 670 degrees C irradiated specimens. Fracture toughness results showed 14YWT in the unirradiated condition had a fracture toughness transition temperature (FTTT) around -150 degrees C and upper-shelf K(JIc) values around 175 MPa root m. Results from irradiated 14YWT fracture toughness tests were found to closely mirror the unirradiated data and no shift in FTTT or decrease in K(JIc) values were observed following neutron irradiation to 1.5 dpa at 300 degrees C. (C) 2009 Elsevier B.V. All rights reserved. C1 [McClintock, D. A.; Hoelzer, D. T.; Sokolov, M. A.; Nanstad, R. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [McClintock, D. A.] Univ Texas Austin, Austin, TX 78712 USA. RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,Bldg 4500S,MS 6151, Oak Ridge, TN 37831 USA. EM mcclintockda@ornl.gov RI Hoelzer, David/L-1558-2016; OI McClintock, David/0000-0002-9292-8951 NR 9 TC 44 Z9 44 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 307 EP 311 DI 10.1016/j.jnucmat.2008.12.104 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900078 ER PT J AU Ando, M Tanigawa, H Wakai, E Stoller, RE AF Ando, M. Tanigawa, H. Wakai, E. Stoller, R. E. TI Effect of two-steps heat treatments on irradiation hardening in F82H irradiated at 573 K SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID FERRITIC/MARTENSITIC STEEL AB Irradiation hardening and embrittlement due to neutron irradiation around 573 K are the important issues on RAF/M steels. It is expected that the improvement of irradiation hardening might be one of effective ways to control the mechanical properties of RAF/M after irradiation. In this study, the purposes are to investigate the effect of heat treatments on irradiation hardening of irradiated F82H variants and to compare the irradiation hardening based on Delta Hardness with the irradiation hardening obtained by Delta Yield Stress about F82H. Neutron irradiation was performed in HFIR at 573 K. The ion-beam irradiation experiment at similar to 573 K was carried out at the TIARA facility of JAEA. For the results of tensile test and hardness test of F82H and F82H heat treatment variants neutron-irradiated at 573 K, all specimens caused irradiation hardening. The irradiation hardening (Delta Hardness) obtained by hardness test is almost same level for neutron- and ion-irradiated F82H specimens, however irradiation hardening (Delta Yield Stress) of F82H Mod-1 A (two-steps heat treated F82H; high temperature tempering and then low temperature tempering) is smaller than that of F82H. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ando, M.; Tanigawa, H.; Wakai, E.] Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan. [Stoller, R. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ando, M (reprint author), Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan. EM ando.masami@jaea.go.jp RI Stoller, Roger/H-4454-2011; Wakai, Eiichi/L-1099-2016 NR 7 TC 11 Z9 11 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 315 EP 318 DI 10.1016/j.jnucmat.2008.12.123 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900080 ER PT J AU Yamamoto, T Odette, GR Miao, P Edwards, DJ Kurtz, RJ AF Yamamoto, T. Odette, G. R. Miao, P. Edwards, D. J. Kurtz, R. J. TI Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID RELEVANT HE/DPA RATIOS; DPA RATES; EMBRITTLEMENT; IRRADIATION; TRANSPORT; FATE AB Microstructural evolutions in tempered martensitic steels (TMS) under neutron-irradiation, at fusion relevant He/dpa ratios and dpa rates, were characterized using a novel in situ He-implanter technique. F82H-mod3 was irradiated at 500 degrees C in HFIR to a nominal 9 dpa and 190 or 380 appm He in both in the as-tempered (AT) and 20% cold-worked (CW) conditions. In all cases, a high number density of 1-2 nm He-bubbles were observed, along with fewer but larger approximate to 10 nm void-like faceted cavities. The He-bubbles form preferentially on dislocations and various interfaces. A slightly larger number of smaller He bubbles were observed in the CW condition. The lower He/dpa ratio produced slightly smaller and fewer He-bubbles. Comparisons of these observations to the results in nano-structured ferritic alloy (NFA) MA957 provide additional evidence that TMS may be susceptible to He-embrittlement as well as void swelling at fusion relevant He concentrations, while NFA are much more resistant to these degradation phenomena. (C) 2009 Published by Elsevier B.V. C1 [Yamamoto, T.; Odette, G. R.; Miao, P.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Edwards, D. J.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yamamoto, T (reprint author), Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. EM yamataku@engineering.ucsb.edu NR 14 TC 20 Z9 20 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 338 EP 341 DI 10.1016/j.jnucmat.2008.12.134 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900085 ER PT J AU Oliver, BM Dai, Y AF Oliver, B. M. Dai, Y. TI Helium and hydrogen measurements on pure materials irradiated in SINQ Target 4 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID SYSTEM; METALS; LANSCE AB Several irradiations have been performed in the Swiss Spallation Neutron Source (SINQ) to establish a materials database for mixed proton and neutron fluxes for future spallation neutron and other accelerator sources. Pure metal dosimetry materials from the second irradiation (STIP-II) have been analyzed for their total helium and hydrogen contents and their release characteristics with temperature (TDS). Total helium results are similar to those observed earlier from the first irradiation experiment (STIP-I). with concentrations ranging from similar to 500 to similar to 1000 appm. Hydrogen contents varied over a larger range from similar to 100 to similar to 60000. (3)He/(4)He ratios were generally consistent with expectations, except for Ti, Nb, and Ta which showed lower values due to (3)He from decay of irradiation-generated tritium. Some differences were observed in the hydrogen TDS data for the control and irradiated materials, including some evidence for additional lower-temperature release and for multiple release peaks. Additionally, differences were noted in the releases for irradiated material that been cleaned versus material that had no cleaning. (C) 2009 Elsevier B.V. All rights reserved. C1 [Oliver, B. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dai, Y.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Oliver, BM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM brian.oliver@pnl.gov NR 7 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 383 EP 386 DI 10.1016/j.jnucmat.2008.12.160 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900097 ER PT J AU Gao, F Heinisch, HL Kurtz, RJ AF Gao, F. Heinisch, H. L. Kurtz, R. J. TI Migration of vacancies, He interstitials and He-vacancy clusters at grain boundaries in alpha-Fe SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID COMPUTER-SIMULATION; DIMER METHOD; HELIUM; DEFECTS; DISLOCATIONS; DIFFUSION; IRON AB The dinner method for searching transition states has been used to systematically study possible migration paths of vacancies, He interstitials and He-vacancy (He/V) clusters at Sigma 11 < 110 > {323} and Sigma 3 < 110 > {111} grain boundaries (GBs) in alpha-Fe. Vacancies trapped at the GBs diffuse along the GBs with migration energies much less than that within the perfect crystal. Long-time dynamics simulations of diffusion pathways reveal that vacancies migrate one-dimensionally along specific directions in both GBs: directly along close-packed rows in the Sigma 3 GB, and in zigzag paths within the Sigma 11 GB. Also, dimer saddle point searches show that He interstitials can diffuse along the GBs with migration energies of 0.4-0.5 eV, similar to those of individual vacancies at the GBs, and the corresponding mechanisms are determined. The rate-controlling activation energy for migration of a He-divacancy cluster in the GBs determined using the dimer method is about 0.9 eV. This is comparable to the migration energy for a He-divacancy cluster in bulk alpha-Fe. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Fei.Gao@pnl.gov RI Gao, Fei/H-3045-2012 NR 18 TC 23 Z9 23 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 390 EP 394 DI 10.1016/j.jnucmat.2008.12.159 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900099 ER PT J AU Kurtz, RJ Alamo, A Lucon, E Huang, Q Jitsukawa, S Kimura, A Klueh, RL Odette, GR Petersen, C Sokolov, MA Spatig, P Rensman, JW AF Kurtz, R. J. Alamo, A. Lucon, E. Huang, Q. Jitsukawa, S. Kimura, A. Klueh, R. L. Odette, G. R. Petersen, C. Sokolov, M. A. Spaetig, P. Rensman, J. -W. TI Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID FATIGUE-OXIDATION INTERACTIONS; CONTAINING MARTENSITIC STEELS; MECHANICAL-PROPERTIES; HOLDING PERIOD; VACUUM VESSEL; HELIUM; IRRADIATION; CREEP; COMPONENTS; ITER AB Significant progress has been achieved in the international research effort on reduced activation ferritic/martensitic steels for fusion structural applications. Because this class of steels is the leading structural material for test blankets in ITER and future fusion power systems, the range of ongoing research activities is extremely broad. Since, it is not possible to discuss all relevant work in this brief review, the objective of this paper is to highlight significant issues that have received recent attention. These include: (1) efforts to measure and understand radiation-induced hardening and embrittlement at temperatures <= 400 degrees C, (2) experiments and modeling to characterize the effects of He on microstructural evolution and mechanical properties, (3) exploration of approaches for increasing the high-temperature (>550 degrees C) creep resistance by introduction of a high-density of nanometer scale dispersoids or precipitates in the microstructure, (4) progress toward structural design criteria to account for loading conditions involving both creep and fatigue, and (5) development of nondestructive examination methods for flaw detection and evaluation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Alamo, A.] CEA Saclay, DEN DSOE, F-91191 Gif Sur Yvette, France. [Lucon, E.] CEN SCK, NMS, B-2400 Mol, Belgium. [Huang, Q.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Jitsukawa, S.] Japan Atom Energy Agcy, Tokyo, Japan. [Kimura, A.] Kyoto Univ, Kyoto, Japan. [Klueh, R. L.; Sokolov, M. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Odette, G. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Petersen, C.] FZK IMF, Karlsruhe, Germany. [Spaetig, P.] EPFL, Assoc Euratom Confederat Suisse, CRPP, CH-5232 Villigen, Switzerland. [Rensman, J. -W.] NRG, Petten, Netherlands. RP Kurtz, RJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM rj.kurtz@pnl.gov OI Lucon, Enrico/0000-0002-3021-4785 NR 45 TC 61 Z9 63 U1 5 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 411 EP 417 DI 10.1016/j.jnucmat.2008.12.323 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900103 ER PT J AU Fukumoto, K Narui, M Matsui, H Nagasaka, T Muroga, T Li, M Hoelzer, DT Zinkle, SJ AF Fukumoto, K. Narui, M. Matsui, H. Nagasaka, T. Muroga, T. Li, M. Hoelzer, D. T. Zinkle, S. J. TI Environmental effects on irradiation creep behavior of highly purified V-4Cr-4Ti alloys (NIFS-Heats) irradiated by neutrons SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID BIAXIAL THERMAL CREEP; VANADIUM ALLOYS; 700-DEGREES-C; 800-DEGREES-C AB In order to investigate the effect of the environment on the irradiation creep properties of highly purified V-4Cr-4Ti alloys, neutron irradiation experiments with sodium-enclosed irradiation capsules in Joyo and lithium-enclosed irradiation capsules in HFIR-17J were carried out using pressurized creep tubes (PCTs). It was found that the creep strain rate exhibited a linear relationship with the effective stress up to 150 Mpa at 458 and 598 degrees C in the Joyo irradiation experiments. For HFIR-17J irradiation at 425 degrees C, the creep strain rate also exhibited a linear relationship with the effective stress up to 150 Mpa. The activation energy of the irradiation creep and irradiation creep stress factor were estimated to be 46 kJ/mol K and 1-2, respectively. No significant difference in the irradiation creep behavior between liquid-sodium and liquid-lithium environments could be seen. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fukumoto, K.] Univ Fukui, Grad Sch Nucl Power & Energy Safety Engn, Fukui 9108507, Japan. [Narui, M.; Matsui, H.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Nagasaka, T.; Muroga, T.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Li, M.; Hoelzer, D. T.; Zinkle, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fukumoto, K (reprint author), Univ Fukui, Grad Sch Nucl Power & Energy Safety Engn, Bunkyo 2-1-1, Fukui 9108507, Japan. EM fukumoto@mech.fukui-u.ac.jp RI Hoelzer, David/L-1558-2016; OI Zinkle, Steven/0000-0003-2890-6915 NR 12 TC 6 Z9 6 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 575 EP 578 DI 10.1016/j.jnucmat.2008.12.180 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900143 ER PT J AU Li, MM Hoelzer, DT Grossbeck, ML Rowcliffe, AF Zinkle, SJ Kurtz, RJ AF Li, Meimei Hoelzer, D. T. Grossbeck, M. L. Rowcliffe, A. F. Zinkle, S. J. Kurtz, R. J. TI Irradiation creep of the US Heat 832665 of V-4Cr-4Ti SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID VANADIUM-BASE ALLOYS; BIAXIAL THERMAL CREEP; LITHIUM ENVIRONMENT; 800-DEGREES-C; 700-DEGREES-C; BEHAVIOR; TUBES AB The paper presents irradiation creep data for V-4Cr-4Ti irradiated to 3.7 dpa at 425 and 600 degrees C in the HFIR-17J experiment. Creep deformation was characterized by measuring diametral changes of pressurized creep tubes before and after irradiation. It was found that the creep strain rate of the US Heat 832665 of V-4Cr-4Ti exhibited a linear relationship with stress up to similar to 180 MPa at 425 degrees C with a creep coefficient of 2.50 x 10(-6) MPa(-1) dpa(-1). A linear relationship between creep rate and applied stress was observed below similar to 110 MPa at 600 degrees C with a creep coefficient of 5.41 x 10(-6) MPa(-1) dpa(-1); non-linear creep behavior was observed above similar to 110 MPa, and it may not be fully accounted by invoking thermal creep. The bilinear creep behavior observed in the same alloy irradiated in BR-10 was not observed in this study. Published by Elsevier B.V. C1 [Li, Meimei; Hoelzer, D. T.; Rowcliffe, A. F.; Zinkle, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Grossbeck, M. L.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, MM (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mli@anl.gov RI Hoelzer, David/L-1558-2016; OI Zinkle, Steven/0000-0003-2890-6915 NR 26 TC 6 Z9 6 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 618 EP 621 DI 10.1016/j.jnucmat.2008.12.220 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900154 ER PT J AU Nozawa, T Hinoki, T Hasegawa, A Kohyama, A Katoh, Y Snead, LL Henager, CH Hegeman, JBJ AF Nozawa, T. Hinoki, T. Hasegawa, A. Kohyama, A. Katoh, Y. Snead, L. L. Henager, C. H., Jr. Hegeman, J. B. J. TI Recent advances and issues in development of silicon carbide composites for fusion applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID DUAL-COOLANT BLANKET; SIC/SIC COMPOSITES; NEUTRON-IRRADIATION; MECHANICAL-PROPERTIES; DISPLACEMENT-REACTIONS; SICF/SIC COMPOSITES; SIC-COMPOSITES; TEMPERATURES; COATINGS; DESIGN AB Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase. i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range. (c) 2008 Elsevier B.V. All rights reserved. C1 [Nozawa, T.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Hinoki, T.; Kohyama, A.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Hasegawa, A.] Tohoku Univ, Dept Quantum Sci & Energy Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan. [Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Henager, C. H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hegeman, J. B. J.] NRG Petten, NL-1755 ZG Petten, Netherlands. RP Nozawa, T (reprint author), Japan Atom Energy Agcy, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. EM nozawa.takashi67@jaea.gojp OI Katoh, Yutai/0000-0001-9494-5862; Henager, Chuck/0000-0002-8600-6803 NR 49 TC 79 Z9 81 U1 8 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 622 EP 627 DI 10.1016/j.jnucmat.2008.12.305 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900155 ER PT J AU Katoh, Y Kondo, S Snead, LL AF Katoh, Y. Kondo, S. Snead, L. L. TI DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID THERMAL-CONDUCTIVITY; RADIATION-DAMAGE; BLANKET CONCEPT; ISSUES; RESISTIVITY; IRRADIATION; PARAMETERS; GRAPHITE; US AB High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined. Specifically, temperature dependent (RT to 800 degrees C) electrical conductivity and the influence of neutron irradiation were measured. The influence of neutron irradiation on electrical properties appeared very strong for the SiC of this study, typically resulting in orders lower ambient conductivity and steeper temperature dependency of this conductivity. For the 2D composites, through-thickness (normal to the fiber axis') electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase, currently envisioned for flow channel insert application, will likely in the order of 10 S/m at the appropriate operating temperature. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed. (c) 2008 Elsevier B.V. All rights reserved. C1 [Katoh, Y.; Kondo, S.; Snead, L. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Katoh, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM katohy@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 21 TC 28 Z9 29 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 639 EP 642 DI 10.1016/j.jnucmat.2008.12.237 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900159 ER PT J AU Isobe, Y Sagisaka, M Garner, FA Fujita, S Okita, T AF Isobe, Y. Sagisaka, M. Garner, F. A. Fujita, S. Okita, T. TI Precipitate evolution in low-nickel austenitic stainless steels during neutron irradiation at very low dose rates SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID MICROSTRUCTURAL EVOLUTION; BN-350 REACTOR; ALLOYS; DPA AB Neutron-induced microstructural evolution in response to long term irradiation at very low dose rates was studied for a Russian low-nickel austenitic stainless steel designated X18H9 that is analogous to AISI 304. The irradiated samples were obtained from an out-of-core support column for the pressure vessel of the BN-600 fast reactor with doses ranging from 1.7 to 20.5 dpa generated at 3.8 x 10(-9) to 4.3 x 10(-8) dpa/s. The irradiation temperatures were in a very narrow range of 370-375 degrees C. Microstructural observation showed that in addition to voids and dislocations, an unexpectedly high density of small G-phase precipitates was formed that are not usually observed at higher dpa rates in this temperature range. A similar behavior was observed in a Western stainless steel, namely AISI 304 stainless steel, irradiated at similar temperatures and somewhat higher dpa rates in the EBR-II fast reactor, indicating that irradiation at low dpa rates for many years can lead to a different precipitate microstructure and therefore different associated changes in matrix composition than are generated at higher dpa rates. The contribution of such radiation-induced precipitation to changes in electrical resistivity was measured in the X18H9 specimens and was shown to cause significant deviation from predictions based only on void swelling. (c) 2009 Elsevier B.V. All rights reserved. C1 [Isobe, Y.; Sagisaka, M.] Nucl Fuels Ltd, Osaka, Japan. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fujita, S.; Okita, T.] Univ Tokyo, Tokyo, Japan. RP Isobe, Y (reprint author), Nucl Fuels Ltd, Osaka, Japan. EM isobe@nfi.co.jp NR 23 TC 9 Z9 9 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 661 EP 665 DI 10.1016/j.jnucmat.2008.12.255 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900165 ER PT J AU Henager, CH Kurtz, RJ AF Henager, C. H., Jr. Kurtz, R. J. TI Compatibility of interfaces and fibers for SiC-composites in fusion environments SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID WATER-VAPOR-PRESSURE; SUBCRITICAL CRACK-GROWTH; DEPENDENT FAILURE MECHANISMS; SILICON-CARBIDE COMPOSITES; CERAMIC-MATRIX COMPOSITES; HIGH-TEMPERATURE; ELEVATED-TEMPERATURES; SIC/SIC COMPOSITES; CVISICF/SIC COMPOSITES; PARALINEAR OXIDATION AB The use of SiC-composites in fusion environments is predicated on stability under neutron irradiation, on outstanding high-temperature mechanical properties, and on chemical inertness and corrosion resistance. However, SiC is susceptible to many forms of corrosion in water and in water vapor where silica formation is required as a protective layer because silica forms stable hydroxides that are volatile, even at low temperatures. SiC-composites have an additional concern that fine-grained fibers and weak interfaces provide the required fracture toughness, but these components may also exhibit susceptibility to corrosion that can compromise material properties. In this work we examine and review the compatibility of fibers and interfaces, as well as the SiC matrix. in proposed fusion environments including first wall, tritium breeding, and blanket modules and module coolants. (c) 2009 Elsevier B.V. All rights reserved. C1 [Henager, C. H., Jr.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Henager, CH (reprint author), Pacific NW Natl Lab, P8-15,902 Battelle Blvd, Richland, WA 99352 USA. EM chuck.henager@pnl.gov OI Henager, Chuck/0000-0002-8600-6803 NR 51 TC 2 Z9 2 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 670 EP 674 DI 10.1016/j.jnucmat.2008.12.333 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900167 ER PT J AU Pint, BA Pawel, SJ Howell, M Moser, JL Garner, GW Santella, ML Tortorelli, PF Wiffen, FW DiStefano, JR AF Pint, B. A. Pawel, S. J. Howell, M. Moser, J. L. Garner, G. W. Santella, M. L. Tortorelli, P. F. Wiffen, F. W. DiStefano, J. R. TI Initial characterization of V-4Cr-4Ti and MHD coatings exposed to flowing Li SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID LIQUID-METAL BLANKETS; ELECTRICALLY INSULATING COATINGS; VANADIUM ALLOYS; RECENT PROGRESS; FUSION-REACTOR; LITHIUM; COMPATIBILITY AB A mono-metallic V-4Cr-4Ti thermal convection loop was operated in vacuum (similar to 10(-5) Pa) at a maximum Li temperature of 700 degrees C for 2355 h and Li flow rate of 2-3 cm/s. Two-layer, physical vapor deposited Y(2)O(3)-vanadium, electrically insulating coatings on V-4Cr-4Ti substrates as well as tensile and sheet specimens were located in the flow path in the hot and cold legs. After exposure, specimens at the top of the hot leg showed a maximum mass loss equivalent to similar to 1.3 mu m of metal loss. Elsewhere, small mass gains were observed on the majority of specimens resulting in an increase in hardness and room temperature yield stress and a decrease in ductility consistent with the observed uptake of N and C from the Li. Specimens that lost mass showed a decrease in yield stress and hardness. Profilometry showed no significant thickness loss from the coatings. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pint, B. A.; Pawel, S. J.; Howell, M.; Moser, J. L.; Garner, G. W.; Santella, M. L.; Tortorelli, P. F.; Wiffen, F. W.; DiStefano, J. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008; Tortorelli, Peter/E-2433-2011 OI Pint, Bruce/0000-0002-9165-3335; NR 24 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 712 EP 715 DI 10.1016/j.jnucmat.2008.12.295 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900178 ER PT J AU Davis, JW Fitzpatrick, BWN Sharpe, JP Haasz, AA AF Davis, J. W. Fitzpatrick, B. W. N. Sharpe, J. P. Haasz, A. A. TI Thermo-oxidation of tokamak carbon dust SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID DIII-D; FUSION DEVICES; GRAPHITE; EROSION; REMOVAL; PLASMA; TILES AB The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 degrees C and 2.0 kPa O(2) pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O(2) exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil (TM) particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from the surfaces has led to similar to 18% mass loss after 8 h: thereafter. little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure - possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped from DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 h exposure to O(2). The oxidation of these flakes was much slower than that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to the surfaces. This is thought to be related to structural differences. (C) 2009 Elsevier B.V. All rights reserved. C1 [Davis, J. W.; Fitzpatrick, B. W. N.; Haasz, A. A.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. [Sharpe, J. P.] INL, Fus Safety Program, Idaho Falls, ID 83415 USA. RP Davis, JW (reprint author), Univ Toronto, Inst Aerosp Studies, 4925 Dufferin St, Toronto, ON M3H 5T6, Canada. EM jwdavis@starfire.utias.utoronto.ca NR 16 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 764 EP 767 DI 10.1016/j.jnucmat.2008.12.212 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900191 ER PT J AU Grisolia, C Rosanvallon, S Sharpe, P Winter, J AF Grisolia, C. Rosanvallon, S. Sharpe, Ph. Winter, J. TI Micro-particles in ITER: A comprehensive review SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID DUST; TOKAMAKS; DIVERTOR; CARBON AB In a fusion reactor like ITER, in-vessel materials are subjected to interactions with the plasma. One of the main consequences of these plasma-material interactions is the creation of co-deposited layers. Due to internal stresses, part of these layers can crack leading to micro particle creation. The purpose of the following paper is to review the Tokamak operation processes which lead to erosion and layer creation. Then, the proportion of these layers that is converted into micro-particles will be evaluated in the case of Tore Supra experiments and extrapolated for ITER. It is major importance to measure the ITER mobilizable dusts present in the Vacuum Vessel and compare the measured quantity with the safety limits. When approaching these limits, removal systems must be used in order to control the in-vessel dust inventory. In the second part of the paper, diagnostics and removal system under development will be presented. (C) 2009 Elsevier B.V. All rights reserved. C1 [Grisolia, C.; Rosanvallon, S.] CEA, EURATOM Assoc, DRFC SIPP, F-13108 St Paul Les Durance, France. [Sharpe, Ph.] Idaho Natl Lab, Idaho Falls, ID USA. [Winter, J.] Ruhr Univ Bochum, Inst Expt Phys 2, D-44780 Bochum, Germany. RP Grisolia, C (reprint author), CEA, EURATOM Assoc, DRFC SIPP, F-13108 St Paul Les Durance, France. EM Christian.grisolia@cea.fr NR 14 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 871 EP 873 DI 10.1016/j.jnucmat.2008.12.192 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900218 ER PT J AU Calderoni, P Sharpe, P Nishimura, H Terai, T AF Calderoni, P. Sharpe, P. Nishimura, H. Terai, T. TI Control of molten salt corrosion of fusion structural materials by metallic beryllium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID ELEVATED-TEMPERATURE; NEUTRON-IRRADIATION; TRITIUM; FLIBE; REDOX; CHEMISTRY; BREEDER; FLUORIDE AB A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF(2) in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 degrees C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface. (C) 2009 Elsevier B.V. All rights reserved. C1 [Calderoni, P.; Sharpe, P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Nishimura, H.] Univ Tokyo, Grad Sch Engn, Nucl Profess Sch, Tokyo, Japan. [Terai, T.] Univ Tokyo, Grad Sch Engn, Dept Nucl Engn & Management, Tokyo, Japan. RP Calderoni, P (reprint author), Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. EM Pattrick.Calderoni@inl.gov OI Calderoni, Pattrick/0000-0002-2316-6404 NR 15 TC 11 Z9 11 U1 5 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 1102 EP 1106 DI 10.1016/j.jnucmat.2008.12.292 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900276 ER PT J AU Zhou, J Kostko, O Nicolas, C Tang, XN Belau, L de Vries, MS Ahmed, M AF Zhou, Jia Kostko, Oleg Nicolas, Christophe Tang, Xiaonan Belau, Leonid de Vries, Mattanjah S. Ahmed, Musahid TI Experimental Observation of Guanine Tautomers with VUV Photoionization SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Letter ID VACUUM-ULTRAVIOLET PHOTOIONIZATION; NUCLEIC-ACID BASES; GAS-PHASE; AB-INITIO; IONIZATION-POTENTIALS; RARE TAUTOMERS; DNA BASES; SYNCHROTRON-RADIATION; LASER SPECTROSCOPY; EXCITED-STATES AB Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single-photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to that with laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest-lying tautomers Of guanine suggest that the experimental observations arise from different tautomers being populated in the two different experimental methods. C1 [Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [de Vries, Mattanjah S.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Ahmed, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MAhmed@lbl.gov RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Kostko, Oleg/A-3693-2010 OI Kostko, Oleg/0000-0003-2068-4991; NR 30 TC 25 Z9 25 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 30 PY 2009 VL 113 IS 17 BP 4829 EP 4832 DI 10.1021/jp811107x PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 438BB UT WOS:000265529800001 PM 19344111 ER PT J AU Sivaramakrishnan, R Michael, JV AF Sivaramakrishnan, R. Michael, J. V. TI Rate Constants for OH with Selected Large Alkanes: Shock-Tube Measurements and an Improved Group Scheme SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HYDROGEN-ATOM ABSTRACTION; GAS-PHASE REACTIONS; TEMPERATURE RATE CONSTANTS; TRANSITION-STATE THEORY; RELATIVE RATE CONSTANTS; HYDROXYL RADICALS; RATE COEFFICIENTS; ORGANIC-COMPOUNDS; SMOG CHAMBER; N-NONANE AB High-temperature rate constant experiments oil OH with the five large (C(5)-C(8)) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,33-TMB). n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at similar to 1200 K oil n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work Substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of similar to 4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form ill Units of cm(3) molecule(-1) s(-1) as follows: k(OH+n-heptane) = (2.48 +/- 0.17) x 10(-10) exp[(-1927 +/- 69 K)/T] (838-1287 K) k(OH+2,2,3,3-TMB) = (8.26 +/- 0.89) x 10(-11) exp[(-1337 +/- 94 K)/T] (789-1061 K) k(OH+n-pentane) = (1.60 +/- 0.25) x 10(-10) (exp[(-1903 +/- 146 K)/T] (823-1308 K) k(OH+n-hexane) = (2.79 +/- 0.39) x 10(-10) exp[(-2301 +/- 134 K)/T] (798-1299 K) k(OH+2.3-DMB) =(1.27 +/- 0.16) x 10(-10) exp[(-1617 +/- 118 K)/T] (843-1292 K) The available experimental data, along with lower-T determinations, were used to obtain evaluations of the expert mental rate constants over the temperature range from similar to 230 to 1300 K for most of the title reactions. These extended-telllperatUre-range evaluations, given as three-pararneter fits, are as follows: k(OH+n-heptane) = 2.059 x 10(-15)T(1.401) exp(33 K/T) cm(3) molecule(-1) s(-1) (241-1287 K) k(OH+2,2,3,3-TMB) = 6.835 x 10(-17)T(1.886) exp(-365 K/T) cm(3) molecule(-1) s(-1) (290-1180 K) k(OH+n-pentane) = 2.495 x 10(-16)T(1.649) exp(80 K/T) cm(3) molecule(-1) s(-1) (224-1308 K) k(OH+n-hexane) = 3.959 x 10(-18)T(2.218) exp(443 K/T) cm(3) molecule(-1) s(-1) (292-1299 K) k(OH+2,3-DMB) = 2.287 x 10(-17T1.958) exp(365 K/T) cm(3) molecule(-1) s(-1) (220-1292 K) The experimental data and the evaluations obtained for these five larger alkanes in the present work were used along with prior data/evaluations obtained in this laboratory for H abstractions by OH front a series of smaller alkanes (C(3)-C(5)) to devise rate rules for abstractions from various types of primary, secondary, and tertiary H atoms. Specifically, the current scheme was applied with good Success to H abstractions by OH from a series of n-alkanes (n-octane through n-hexadecane). The total rate constants using this group scheme for reactions of OH with selected large alkanes are given as three-parameter fits in this article. The rate constants for the various abstraction channels in any large n-alkane can also be obtained using the groups listed in this article. The present group scheme serves to reduce the uncertainties in rate constants for OH + alkane reactions. C1 [Sivaramakrishnan, R.; Michael, J. V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Michael, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, D-193,Bldg 200, Argonne, IL 60439 USA. EM jmichael@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010 OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; NR 69 TC 39 Z9 39 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 30 PY 2009 VL 113 IS 17 BP 5047 EP 5060 DI 10.1021/jp810987u PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 438BB UT WOS:000265529800031 PM 19348456 ER PT J AU Mayhall, NJ Raghavachari, K Redfern, PC Curtiss, LA AF Mayhall, Nicholas J. Raghavachari, Krishnan Redfern, Paul C. Curtiss, Larry A. TI Investigation of Gaussian4 Theory for Transition Metal Thermochemistry SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUADRATIC CONFIGURATION-INTERACTION; GENERALIZED GRADIENT APPROXIMATION; WASTE INCINERATION PROCESSES; DENSITY-FUNCTIONAL THEORIES; 3RD-ROW ATOMS K; ELECTRONIC-STRUCTURE; MOLECULAR-ENERGIES; GAS-PHASE; VOLATILITY CALCULATIONS; PROJECTION OPERATORS AB An investigation of the performance of Gaussian-4 (G4) methods for the prediction of 3d transition metal thermochemistry is presented. Using the recently developed G3Large basis sets for atoms Se-Zn, the G4 and G4(MP2) methods with scalar relativistic effects included are evaluated on a test set of 20 enthalpies of formation of transition metal-containing molecules. The G4(MP2) method is found to perform significantly better than the G4 method. The G4 method fails due to the poor convergence of the Moller-Plesset perturbation theory at fourth-order in one case. The overall error for G4(MP2) of 2.84 kcal/mol is significantly larger than its previously reported performance for molecules containing main-group elements in the G3/05 test set. However, considering the relatively large uncertainties in the experimental enthalpies, the G4(MP2) method performs reasonably well. The performance of other composite methods based on G3 theory [G3(CCSD)//B3LYP and G3(MP2,CCSD)//B3LYP], as well as several density functional methods, are also presented in this paper. The results presented here will assist future development of composite model techniques suitable for use in transition metal-contain in-systems. C1 [Mayhall, Nicholas J.; Raghavachari, Krishnan] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Redfern, Paul C.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Redfern, Paul C.; Curtiss, Larry A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Raghavachari, K (reprint author), Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. EM kraghava@indiana.edu NR 54 TC 39 Z9 39 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 30 PY 2009 VL 113 IS 17 BP 5170 EP 5175 DI 10.1021/jp809179q PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 438BB UT WOS:000265529800048 PM 19341257 ER PT J AU Shetty, AM Wilkins, GMH Nanda, J Solomon, MJ AF Shetty, Abhishek M. Wilkins, Georgina M. H. Nanda, Jagjit Solomon, Michael J. TI Multiangle Depolarized Dynamic Light Scattering of Short Functionalized Single-Walled Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ANGLE NEUTRON-SCATTERING; ROTATIONAL DIFFUSION; AQUEOUS DISPERSIONS; SUSPENSIONS; LENGTH; RODS; NETWORKS; SENSORS; WATER; TRANSPARENT AB We introduce the method of multiangle depolarized dynamic light scattering (MA-DDLS) to characterize the length and diameter of covalently functionalized single-walled carbon nanotubes (SWCNTs). MA-DDLS yields simultaneous characterization of the mean translational and rotational diffusivities of dilute solutions of SWCNTs. By using an anisotropic rigid rod model, we uniquely determine the length and diameter of the SWCNTs from the independent measurements of rotational and translational diffusion. The multiangle depolarized light scattering technique is found to be a fast, noninvasive, and reproducible method for identifying the average length and diameter of SWCNTs in solution. C1 [Nanda, Jagjit] Mat & Nanotechnol Dept, Dearborn, MI USA. [Shetty, Abhishek M.; Wilkins, Georgina M. H.; Solomon, Michael J.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. RP Nanda, J (reprint author), Oak Ridge Natl Lab, MST Div, Oak Ridge, TN USA. EM jagjitn@yahoo.com; mjsolo@umich.edu OI Solomon, Michael/0000-0001-8312-257X NR 55 TC 34 Z9 35 U1 5 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7129 EP 7133 DI 10.1021/jp900731q PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700039 ER PT J AU Hyman, MP Lebarbier, VM Wang, Y Datye, AK Vohs, JA AF Hyman, Matthew P. Lebarbier, Vannesa M. Wang, Yong Datye, Abhaya K. Vohs, John A. TI A Comparison of the Reactivity of Pd Supported on ZnO(10(1)over-bar0) and ZnO(0001) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SINGLE-CRYSTAL SURFACES; MODEL CATALYSTS; CO ADSORPTION; METHANOL DECOMPOSITION; THERMAL-DESORPTION; PARTICLE-SIZE; FORMIC-ACID; ZNO; HYDROGEN; PD(111) AB The dependence of ZnO surface structure on Pd/ZnO-catalyzed methanol decomposition was investigated by using model catalysts consisting of Pd films and particles on ZnO(10 (1) over bar0) and ZnO(0001) single crystals. XPS Studies showed that vapor-deposited Pd grows two dimensionally at 300 K and agglomerates into particles upon heating. Temperature-programmed desorption (TPD) experiments showed that CO adsorption was weaker on Pd/ZnO(0001) relative to Pd/ZnO(1010) and that PdZn alloy formation was more facile on the ZnO(0001) compared to ZnO(10 (1) over bar0). Large differences in the amount of CO produced during methanol TPD on the Pd/ZnO(0001) and Pd/ZnO(10 (1) over bar0) samples were also observed and attributed to the presence of highly active sites at the Pd-ZnO(0001) interface. Comparisons to high surface area Pd/ZnO catalysts indicate that similar structural effects may also influence their reactivity. C1 [Hyman, Matthew P.; Vohs, John A.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Lebarbier, Vannesa M.; Wang, Yong] Pacific NW Natl Lab, Richland, WA 99354 USA. [Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Vohs, JA (reprint author), Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. EM vohs@seas.upenn.edu RI Wang, Yong/C-2344-2013; OI Datye, Abhaya/0000-0002-7126-8659 FU U.S. Department of Energy [DE-FG02-04ER15605, DE-FG0205ER15712] FX We gratefully acknowledge funding for this work provided by the U.S. Department of Energy (grant nos. DE-FG02-04ER15605 (M.P.H., J.M.V.) and DE-FG0205ER15712 (V.M.L., Y.W., A.K.D.)). NR 55 TC 22 Z9 22 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7251 EP 7259 DI 10.1021/jp809934f PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700055 ER PT J AU Wang, XX Schwartz, V Clark, JC Ma, XL Overbury, SH Xu, XC Song, CS AF Wang, Xiaoxing Schwartz, Viviane Clark, Jason C. Ma, Xiaoliang Overbury, Steven H. Xu, Xiaochun Song, Chunshan TI Infrared Study of CO2 Sorption over "Molecular Basket" Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLID AMINE SORBENT; CARBON-DIOXIDE; GAS-MIXTURES; NATURAL-GAS; FUNCTIONALIZED SBA-15; HIGH-TEMPERATURES; ACTIVATED CARBON; ADSORPTION; CAPTURE; SEPARATION AB An infrared study has been conducted on CO2 sorption into nanoporous CO2 "molecular basket" sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75 degrees C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO2 sorption capacity at higher temperatures. CO2 sorption/desorption behavior studied by in situ transmission FTIR showed that CO2 is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm(-1) with CO2 flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO2 Species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO, exposure time and with raising CO2 sorption temperature. By comparison of the CO2 sorption rate at 25 and 75 degrees C in terms of differential IR intensities, it was found that CO2 sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption Of CO2 is reversible at 75 degrees C. Comparative IR examination of the CO2 sorption/desorption spectra on dry and prewetted PEI/SBA-15 sorbent revealed that presorbed water does not significantly affect the CO2-amine interaction patterns. C1 [Wang, Xiaoxing; Ma, Xiaoliang; Xu, Xiaochun; Song, Chunshan] Penn State Univ, EMS Energy Inst, Clean Fuels & Catalysis Program, University Pk, PA 16802 USA. [Wang, Xiaoxing; Ma, Xiaoliang; Xu, Xiaochun; Song, Chunshan] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Schwartz, Viviane; Clark, Jason C.; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Song, CS (reprint author), Penn State Univ, EMS Energy Inst, Clean Fuels & Catalysis Program, 209 Acad Projects Bldg, University Pk, PA 16802 USA. EM csong@psu.edu RI Song, Chunshan/B-3524-2008; Wang, Xiaoxing/A-5365-2010; Overbury, Steven/C-5108-2016 OI Song, Chunshan/0000-0003-2344-9911; Wang, Xiaoxing/0000-0002-1561-3016; Overbury, Steven/0000-0002-5137-3961 FU Pennsylvania Energy Development Authority; PA Department of Environmental Protection; US Office of Naval Research; U.S. Department of Energy FX The present research is supported in part by the Pennsylvania Energy Development Authority through PA Department of Environmental Protection and by the US Office of Naval Research based on our earlier study funded by US Department of Energy through National Energy Technology Laboratory. The in situ transmission FTIR study at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors wish to thank all of the above government agencies. NR 61 TC 181 Z9 189 U1 11 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7260 EP 7268 DI 10.1021/jp809946y PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700056 ER PT J AU Zorn, DD Albao, MA Evans, JW Gordon, MS AF Zorn, Deborah D. Albao, Marvin A. Evans, J. W. Gordon, Mark S. TI Binding and Diffusion of Al Adatoms and Dimers on the Si(100)-2 x 1 Reconstructed Surface: A Hybrid QM/MM Embedded Cluster Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MM3 FORCE-FIELD; SCANNING-TUNNELING-MICROSCOPY; SELF-CONSISTENT-FIELD; LOW-COVERAGE PHASES; AB-INITIO CLUSTER; MOLECULAR-MECHANICS; CYCLOADDITION REACTIONS; ENERGY MINIMIZATION; SI(001) SURFACE; ADSORPTION AB When group III metals are deposited onto the Si(100)-2 x 1 reconstructed surface they are observed to self-assemble into chains of atoms that are one atom high by one atom wide. To better understand this one-dimensional island growth, ab initio electronic structure calculations on the structures of Al atoms on silicon clusters have been performed. Natural orbital occupation numbers show that these systems display significant diradical character, suggesting that a multireference method is needed. A multiconfiguration self-consistent field (MCSCF) calculation with a 6-31G(d) basis set and effective core potentials was used to optimize geometries. The surface integrated molecular orbital molecular mechanics embedded cluster method was used to take the surface chemistry into account, as well as the structure of an extended surface region. Potential energy surfaces for binding of Al adatoms and At-Al dimers on the surface were determined, and the former was used to obtain a preliminary assessment of the surface diffusion of adatoms. Hessians were calculated to characterize stationary points, and improved treatment of dynamic electron correlation was accomplished using multireference second order perturbation theory (MRMP2) single-point energy calculations. Results from the MRMP2//MCSCF embedded cluster calculations are compared with those from QM-only cluster calculations, embedded cluster unrestricted density functional theory calculations, and previous Car-Parrinello DFT studies. C1 [Zorn, Deborah D.; Gordon, Mark S.] US DOE, Ames Lab, Ames, IA 50011 USA. [Zorn, Deborah D.; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Albao, Marvin A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Gordon, MS (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu FU SciDAC; Chemical Physics Computational Chemistry Programs; Division of Chemical Sciences, Basic Energy Sciences, U.S. Department of Energy (USDOE) [DE-AC02-07CH11358] FX This work was supported by the SciDAC and Chemical Physics Computational Chemistry Programs and Division of Chemical Sciences, Basic Energy Sciences, U.S. Department of Energy (USDOE). The work was performed at Ames Laboratory, which is operated for the USDOE by Iowa State University under Contract no. DE-AC02-07CH11358. The authors also acknowledge Drs. Mike Schmidt and Jamie Rintelman and Professors Cheol Ho Choi and Tim Dudley for many helpful discussions. NR 57 TC 14 Z9 14 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7277 EP 7289 DI 10.1021/jp8105937 PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700058 ER PT J AU Kim, DH Szanyi, J Kwak, JH Wang, XQ Hanson, JC Engelhard, M Peden, CHF AF Kim, Do Heui Szanyi, Janos Kwak, Ja Hun Wang, Xianqin Hanson, Jonathan C. Engelhard, Mark Peden, Charles H. F. TI Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts: A Combined H-2 Temperature-Programmed Reaction, in Situ Sulfur K-Edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID REDUCTION CATALYST; STORAGE-REDUCTION; REGENERATION; XANES; MECHANISM; BAO/AL2O3; XAFS; BAO AB Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0. 12, 0.3 1, and 0.62) were investigated by combining H-2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TRARD) techniques. We find that the amount of HS desorbed during the desulfation in the H-2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels. C1 [Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun; Engelhard, Mark; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. [Wang, Xianqin] New Jersey Inst Technol, Dept Chem Biol & Pharmaceut Engn, Newark, NJ 07102 USA. [Hanson, Jonathan C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM do.kim@pnl.gov RI Engelhard, Mark/F-1317-2010; Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; Hanson, jonathan/E-3517-2010 FU U.S. Department of Energy (DOE); Office of Science/Basic Energy Sciences [DE-AC02-98CH10886]; U.S. DOE, Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program; Battelle Memorial Institute [DE-AC06-76RLO 1830]; U.S. DOE, Office of Science/Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-98CH10086] FX The authors would like to thank Dr. Wen Wen, Dr. Khalid Syed, and Nebojsa Marinkovic at the National Synchrotron Light Source (NSLS) for help with the TR-XRD and sulfur K-edge XANES spectroscopy measurements. Use of the NSLS at Brookhaven National Laboratory (BNL), was supported by the U.S. Department of Energy (DOE), Office of Science/Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors also give thanks to Dr. Simon Bare (UOP) for help with the design of our in situ S XANES reactor. Financial support was provided by the U.S. DOE, Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program. Many of the experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the U.S. DOE, Office of Science/Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for the U.S. DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. J.C.H. was supported through Contract DE-AC02-98CH10086 with the U.S. DOE, Office of Science/Basic Energy Sciences, Division of Chemical Sciences. NR 24 TC 15 Z9 15 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7336 EP 7341 DI 10.1021/jp900304h PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700065 ER PT J AU Starr, DE Weis, C Yamamoto, S Nilsson, A Bluhm, H AF Starr, David E. Weis, Christoph Yamamoto, Susumu Nilsson, Anders Bluhm, Hendrik TI NO2 Adsorption on Ag(100) Supported MgO(100) Thin Films: Controlling the Adsorption State with Film Thickness SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ULTRATHIN OXIDE-FILMS; LEAN-BURN ENGINE; METAL; CHEMISTRY; MGO; PHOTOEMISSION; SPECTROSCOPY; INTERFACES; SURFACES; CATALYST AB Using photoemission and X-ray absorption spectroscopy, we compare the adsorption properties of NO2 at 300 K on MgO(100)/Ag(100) films with thicknesses varying from 2 to 8 ML and NO2 exposures ranging from 0 L to over 25 000 L. We find that NO2 is stable on 2 ML MgO(100) films, where it is the most abundant adsorbate on the surface (similar to 0.35 ML) for exposures up to at least similar to 25 000 L. At high exposures, NO3 also forms on the surface of 2 ML thick films but is a minority species. In contrast, films thicker than similar to 5 ML show conversion to NO3 beginning already at low exposures. At high exposure to NO2, NO3 is the only species present on the surface. Shifts to lower binding energy of the O 1s spectra with adsorbed species indicate that the NO2 adsorbed on the thin MgO(100) films is likely negatively charged and forms NO2-. A more gradual binding energy shift is observed on thicker films and is likely associated with the slower formation of NO3- Measurements on MgO(1.00) films of various thicknesses indicate that for films thicker than 5 ML, the NO2 adsorption properties are similar and most likely correspond to surfaces of bulk MgO(100). We discuss potential mechanisms for NO2 charging and stabilization on the thin MgO(100) films in the context of recent literature. C1 [Starr, David E.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Weis, Christoph] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nilsson, Anders] Stockholm Univ, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Bluhm, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM hbluhm@lbl.gov RI Yamamoto, Susumu/C-1584-2008; Nilsson, Anders/E-1943-2011 OI Yamamoto, Susumu/0000-0002-6116-7993; Nilsson, Anders/0000-0003-1968-8696 FU Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Division (ERSD); U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CHE-0431425] FX We thank Thomas Risse and Martin Sterrer of the Fritz Haber Institute, Berlin, as well as Miquel Salmeron of Lawrence Berkeley National Laboratory (LBNL) for helpful and insightful discussions. Ed Wong and Tolek Tyliszczak (both LBNL) are acknowledged for their continued support at the beamline. This work was supported by the Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Division (ERSD), U.S. Department of Energy under Contract no. DE-AC02-05CH11231 and by the National Science Foundation under Contract no. CHE-0431425 (Stanford Environmental Molecular Science Institute). NR 39 TC 22 Z9 22 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7355 EP 7363 DI 10.1021/jp900410v PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700067 ER PT J AU Rodriguez, JA Evans, J Graciani, J Park, JB Liu, P Hrbek, J Sanz, JF AF Rodriguez, Jose A. Evans, Jaime Graciani, Jesus Park, Joon-Bum Liu, Ping Hrbek, Jan Fdez Sanz, Javier TI High Water-Gas Shift Activity in TiO2(110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GOLD NANOPARTICLES; TITANIUM-DIOXIDE; CO OXIDATION; CATALYSTS; SURFACE; DENSITY; MECHANISM; SO2 AB The deposition of Cu and Au nanoparticles on TiO2(110) produces very good catalysts for the WGS. Although bulk metallic gold is not active as a WGS catalyst, Au nanoparticles supported on TiO2 (110) have an activity comparable to that of Cu/ZnO(000 (1) over bar). Cu/TiO2(110) is clearly a better catalyst than Cu/ZnO(000 (1) over bar) or Au/TiO2(110). The catalysts that have the highest activity for the WGS have also the lowest apparent activation energy. On Cu(111) and Cu(100), the aparent activation energies are 18.1 and 15.2 kcal/mol, respectively. The apparent activation energy decreases to 12.4 kcal/mol on Cu/ZnO(000 (1) over bar), 10.2 on Au/TiO2 (110), and 8.3 kcal/mol on Cu/TiO2(110). The Cu <-> titania interactions are substantially stronger than the Au <-> titania interactions. This has an effect on the growth mode of the metals on TiO2(110). In images of scanning tunneling miscroscopy, the average particle size in Cu/TiO2(110) is smaller than that in Au/TiO2(110). The Cu particles are dispersed on the terraces and steps of the oxide surface, whereas the Au particles concentrate on the steps. The morphology of Cu/TiO2(110) favors high catalytic activity. The results of density functional calculations indicate that the metal-oxide interface plays an essential role in the catalysis, helping in the dissociation of water and in the formation of an OCOH intermediate, which decomposes to yield CO2 and hydrogen. C1 [Rodriguez, Jose A.; Graciani, Jesus; Park, Joon-Bum; Liu, Ping; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Evans, Jaime] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. [Graciani, Jesus; Fdez Sanz, Javier] Univ Seville, Fac Quim, Dept Quim Fis, E-41012 Seville, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Graciani, Jesus/B-1136-2009; Hrbek, Jan/I-1020-2013 FU Ministerio de Educacion y Ciencia, MEC, from Spain [MAT200804918]; Junta de Andalucia [FQM-132]; U.S. Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10886] FX This work was funded by the Ministerio de Educacion y Ciencia, MEC, from Spain (project MAT200804918), and the Junta de Andalucia (project FQM-132). We also thank the computational resources provided by the Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (Spain) and the computing facilities at the Center for Functional Nanomaterials of Brookhaven National Laboratory. The work done at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Division of Chemical Sciences (DE-AC02-98CH10886). J.E. thanks INTEVEP for a travel grant that made possible a part of this project. NR 44 TC 135 Z9 135 U1 12 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7364 EP 7370 DI 10.1021/jp900483u PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700068 ER PT J AU Lee, S Noh, JH Bae, ST Cho, IS Kim, JY Shin, H Lee, JK Jung, HS Hong, KS AF Lee, Sangwook Noh, Jun Hong Bae, Shin-Tae Cho, In-Sun Kim, Jin Young Shin, Hyunho Lee, Jung-Kun Jung, Hyun Suk Hong, Kug Sun TI Indium-Tin-Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; THIN-FILMS; ELECTRODE; PHOTOCURRENT; PERFORMANCE; CIRCUIT; LIGHT; PHOTOCATALYSIS; NANOPARTICLES AB Additional hydrogen (H(2)) annealing and subsequent electrochemical treatment are found to make tin-doped indium oxide (ITO)-based photoelectrodes suitable for highly efficient dye sensitized solar cells. The additional H(2) annealing process recovered the electrical conductivity of the ITO film the same as its initial high conductivity, which enhanced the charge collecting property. Moreover, the employment of electrochemical oxidation of TiO(2)/ITO photoelectrode improved the energy conversion efficiency of the ITO-based dye-sensitized solar cells (DSSC), higher than that of a conventional FTO-based DSSC. Electrochemical impedance analysis showed that the H(2) annealing process reduced the internal resistance of the cell, i.e., the resistance of the ITO and the Schottky barrier at the TiO(2)/ITO interface were reduced, and that the electrochemical treatment recovered the diodelike characteristics of the DSSC by retarding back electron transfer from the photoelectrode to the electrolyte. The present work demonstrates that thermally and electrochemically modified ITO-based photoelectrode is another alternative to the conventionally used FTO-based photoelectrode. C1 [Jung, Hyun Suk] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Lee, Sangwook; Noh, Jun Hong; Bae, Shin-Tae; Cho, In-Sun; Hong, Kug Sun] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea. [Kim, Jin Young] Chem & Biosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shin, Hyunho] Kangnung Natl Univ, Dept Ceram Engn, Kangnung 210702, South Korea. [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. RP Jung, HS (reprint author), Kookmin Univ, Sch Adv Mat Engn, Jeongneung Dong, Seoul 136702, South Korea. EM hjung@kookmin.ac.kr; kshongss@plaza.snu.ac.kr RI Jung, Hyun Suk/D-4745-2011; Kim, Jin Young/B-7077-2012; Cho, In Sun/H-6557-2011; Lee, Sangwook/O-9166-2015; Jung, Hyun Suk/H-3659-2015; OI Kim, Jin Young/0000-0001-7728-3182; Lee, Sangwook/0000-0002-3535-0241; Jung, Hyun Suk/0000-0002-7803-6930 FU Korea government (MOST) [R01-2007-000-11075-0]; Korean Government (MOEHRD) [KRF-2007-313-D00345]; ERC Program (CMPS, Center for Materials and Processes of Self-Assembly) of MOST/KOSEF [R11-2005-048-00000-0]; Seoul RBD program [CR070027C092852]; Kookmin University FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (R01-2007-000-11075-0) (RIAM). The portion of Kookmin University was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-313-D00345), and the ERC Program (CMPS, Center for Materials and Processes of Self-Assembly) of MOST/KOSEF (R11-2005-048-00000-0). This work was also supported by the Seoul R&BD program (CR070027C092852) and the research program 2008 of Kookmin University. NR 38 TC 23 Z9 23 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7443 EP 7447 DI 10.1021/jp809011a PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700079 ER PT J AU Hu, MZ Easterly, CE AF Hu, Michael Z. Easterly, Clay E. TI A novel thermal electrochemical synthesis method for production of stable colloids of "naked" metal (Ag) nanocrystals SO MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS LA English DT Article DE Nanocrystals; Metallic nanoparticles; Solution synthesis; Silver; Electrochemical ID MONODISPERSE SILVER NANOPARTICLES; CHEMICAL-REDUCTION METHOD; SELF-ORGANIZATION; PHOTOCHEMICAL REDUCTION; ANTIMICROBIAL ACTIVITY; PHYSICAL-PROPERTIES; OPTICAL-PROPERTIES; PARTICLES; SIZE; MICROEMULSIONS AB This paper describes a novel thermal electrochemical synthesis (TECS) method for producing aqueous solutions (or sols) that contain metal silver nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25 to 100 degrees C, low voltage (I to 50 V DC) on silver electrodes, and water or simple aqueous solutions as the reaction medium. Furthermore, a tubular dialysis membrane that surrounds the electrodes provides favorable conditions for producing nanosized (less than 10 nm) silver nanocrystals. Unlike nanocrystals reported in the literature, our nanocrystals have several unique features: (1) small nanometer-scale size, (2) "nakedness" (i.e., surfaces of metal nanocrystals are free of organic ligands or capping molecules and need no dispersant in synthesis solutions), and (3) colloidal stability in water solutions. It was discovered that silver nanoparticles with initially large size distribution can be homogenized into near-monodispersed colloidal sol by a low-power (less than 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, colloidally stable, and uniformly sized. In the presence of a stabilizing agent (also a supporting electrolyte) such as polyvinyl alcohol, high yields of silver nanoparticles (less than 100 nm) in the form of thick milky sols are produced. (C) 2009 Published by Elsevier B.V. C1 [Hu, Michael Z.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Easterly, Clay E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hum1@ornl.gov OI Hu, Michael/0000-0001-8461-9684 FU U.S. Department of Energy FX We would like to thank Oak Ridge National Laboratory (ORNL) for its financial sponsorship through the Laboratory Directed Research and Development seed money fund and partial funding support from the U.S. Department of Energy Basic Energy Sciences materials chemistry program. We would also like to express our thanks to Cameron Ericson, an intern student from Lawrence University (Appleton, Wisconsin) for some experimental runs. We are also grateful to Lawrence F. Allard Jr. at the ORNL High Temperature Materials Laboratory for its help with electronic microscopy. NR 48 TC 10 Z9 11 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0928-4931 J9 MAT SCI ENG C-BIO S JI Mater. Sci. Eng. C-Biomimetic Supramol. Syst. PD APR 30 PY 2009 VL 29 IS 3 BP 726 EP 736 DI 10.1016/j.msec.2009.01.018 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 452DP UT WOS:000266520400013 ER PT J AU Pastore, S Schiavilla, R Goity, JL AF Pastore, S. Schiavilla, R. Goity, J. L. TI ELECTROMAGNETIC PROCESSES IN chi EFT SO MODERN PHYSICS LETTERS A LA English DT Article ID THERMAL-NEUTRON CAPTURE; NUCLEAR-FORCES; LAGRANGIANS; DEUTERIUM; CURRENTS AB Nuclear electromagnetic currents derived in a chiral-effective-field-theory frame work including explicit nucleons, Delta isobars, and pions upto N(2)LO, i.e. ignoring loop corrections, are used in a study of neutron radiative captures on proton sand deuterons at thermal energies, and of A=2 and 3 nuclei magnetic moments. With the strengths of the Delta-excitation currents determined to reproduce the n-p cross section and isovector combination of the trinucleon magnetic moments, we find that the crosssection and photon circular polarization parameter, measured respectively in n-d and (n) over right arrown-d processes, are significantly under predicted by theory. C1 [Pastore, S.; Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.; Goity, J. L.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Goity, J. L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. RP Pastore, S (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM pastore@jlab.org; schiavil@jlab.org; goity@jlab.org FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC05-06OR23177]; NSF [PHY-0555559]; National Energy Research Supercomputer Center FX We would like to thank E. Epelbaum, L.Girlanda, A. Kievsky, L.E. Marcucci, and M.Viviani for discussions. The work of R.S. is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract DE-AC05-06OR23177, while that of J.L.G. by NSF grant PHY-0555559. The calculations were made possible by grants of computing time from the National Energy Research Supercomputer Center. NR 19 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD APR 30 PY 2009 VL 24 IS 11-13 BP 931 EP 936 PG 6 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 445GU UT WOS:000266039300031 ER PT J AU Loiseau, B El-Bennich, B Furman, A Kaminski, R Lesniak, L Moussallam, B AF Loiseau, B. El-Bennich, B. Furman, A. Kaminski, R. Lesniak, L. Moussallam, B. TI pi K INTERACTION EFFECTS ON CP VIOLATION IN B -> K pi(+) pi(-) DECAYS SO MODERN PHYSICS LETTERS A LA English DT Article DE B decays and QCD factorization; strange pi K form factors; CP violation AB We apply QCD factorization to the quasi two-body B -> (K pi)pi decays where the (K pi)(-) pair effective mass is limited to 1.8 GeV. Our strong interaction phases constrained by theory and pi K experimental data yield useful information for studies of CP violation. C1 [Loiseau, B.] Univ Paris 06, LPNHE, IN2P3, CNRS,Grp Theorie, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kaminski, R.; Lesniak, L.] Henryk Niewodniczanski Inst Nucl Phys, Div Theoret Phys, PL-31342 Krakow, Poland. [Moussallam, B.] Univ Paris 11, Inst Phys Nucl, CNRS, F-91406 Orsay, France. [Loiseau, B.] Univ Paris 07, F-75252 Paris, France. RP Loiseau, B (reprint author), Univ Paris 06, LPNHE, IN2P3, CNRS,Grp Theorie, 4 Pl Jussieu, F-75252 Paris, France. EM loiseau@lpnhe.in2p3.fr FU IN2P3 and Polish Laboratories [08-127]; PAN and CNRS [19481]; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We acknowledge helpful comments from J-P. Dedonder and O.Leitner. This work was supported by the agreements between IN2P3 and Polish Laboratories (collaboration N degrees 08-127), between PAN and CNRS (collaboration N degrees 19481) and by the Department of Energy, Office of Nuclear Physics, contract No. DE-AC02-06CH11357. NR 9 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD APR 30 PY 2009 VL 24 IS 11-13 BP 960 EP 963 PG 4 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 445GU UT WOS:000266039300037 ER PT J AU Sego, LH Reynolds, MR Woodall, WH AF Sego, Landon H. Reynolds, Marion R., Jr. Woodall, William H. TI Risk-adjusted monitoring of survival times SO STATISTICS IN MEDICINE LA English DT Article DE control chart; CUSUM; monitoring; risk adjustment; survival time ID OUTCOMES; CUSUM; PERFORMANCE; SCHEMES; CHARTS AB We consider the monitoring of surgical outcomes, where each patient has a different risk of post-operative mortality due to risk factors that exist prior to the surgery. We propose a risk-adjusted (RA) survival time CUSUM chart (RAST CUSUM) for monitoring a continuous, time-to-event variable that may be right-censored. Risk adjustment is accomplished using accelerated failure time regression models. We compare the average run length performance of the RAST CUSUM chart with the RA Bernoulli CUSUM chart using data from cardiac surgeries to motivate the details of the comparison. The comparisons show that the RAST CUSUM chart is more efficient at detecting a sudden increase in the odds of mortality than the RA Bernoulli CUSUM chart, especially when the fraction of censored observations is relatively low or when a small increase in the odds of mortality occurs. We also discuss the impact of the amount of training data used to estimate chart parameters as well as the implementation of the RAST CUSUM chart during prospective monitoring. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Sego, Landon H.] Pacific NW Natl Lab, Stat & Sensor Analyt Grp, Richland, WA 99352 USA. [Reynolds, Marion R., Jr.; Woodall, William H.] Virginia Polytech Inst & State Univ, Dept Stat, Richland, WA USA. [Reynolds, Marion R., Jr.] Virginia Polytech Inst & State Univ, Dept Forestry, Richland, WA USA. RP Sego, LH (reprint author), POB 999,MS K6-08, Richland, WA 99352 USA. EM Landon.Sego@pnl.gov NR 23 TC 25 Z9 25 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0277-6715 EI 1097-0258 J9 STAT MED JI Stat. Med. PD APR 30 PY 2009 VL 28 IS 9 BP 1386 EP 1401 DI 10.1002/sim.3546 PG 16 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 434YG UT WOS:000265309600005 PM 19247982 ER PT J AU Bouree, JE Mahan, AH AF Bouree, Jean-Eric Mahan, A. Harv TI Fifth international conference on hot-wire CVD (Cat-CVD) process Preface SO THIN SOLID FILMS LA English DT Editorial Material C1 [Bouree, Jean-Eric] Ecole Polytech, Phys Interfaces & Couches Minces Lab, F-91128 Palaiseau, France. [Mahan, A. Harv] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bouree, JE (reprint author), Ecole Polytech, Phys Interfaces & Couches Minces Lab, F-91128 Palaiseau, France. EM jean-eric.bouree@polytechnique.edu; harv_mahan@nrel.gov NR 0 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3413 EP 3414 DI 10.1016/j.tsf.2009.01.016 PG 2 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800001 ER PT J AU Martin, IT Branz, HM Stradins, P Young, DL Reedy, RC Teplin, CW AF Martin, Ina T. Branz, Howard M. Stradins, Paul Young, David L. Reedy, Robert C. Teplin, Charles W. TI Doping of high-quality epitaxial silicon grown by hot-wire chemical vapor deposition near 700 degrees C SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Hot-wire; Mobility; Silicon; Epitaxy; Hall; Doping; SIMS; Photovoltaics ID ION-ASSISTED DEPOSITION; FILM SOLAR-CELLS; POLYCRYSTALLINE SILICON; TEMPERATURE; BORON AB We demonstrate that epitaxial layers with a wide range of controllable dopant densities (7 x 10(15)-3 x 10(18)/cm(3) and 10(17)-10(18)/cm(3) for n-type and p-type, respectively) can be grown on wafer substrates at 700 +/- 25 degrees C by hot-wire chemical vapor deposition. Phosphorus from PH(3) is incorporated into the film more efficiently than silicon from SiH(4), leading to efficient doping. Comparison of Hall carrier concentrations to secondary ion mass spectrometry atomic dopant concentration shows that all incorporated dopants are electrically active. The Hall measurements also reveal that the electron mobility in the P-doped films is close to the impurity-scattering limit for crystal Si wafers at room temperature, indicating that our deposited epitaxial materials are high quality. (C) 2009 Elsevier B.V. All rights reserved. C1 [Martin, Ina T.; Branz, Howard M.; Stradins, Paul; Young, David L.; Reedy, Robert C.; Teplin, Charles W.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Martin, IT (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM Ina_Martin@nrel.gov RI Martin, Ina/J-9484-2012 NR 13 TC 18 Z9 18 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3496 EP 3498 DI 10.1016/j.tsf.2009.01.059 PG 3 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800022 ER PT J AU Mahan, AH Xu, Y Gedvilas, LM Williamson, DL AF Mahan, A. H. Xu, Y. Gedvilas, L. M. Williamson, D. L. TI A direct correlation between film structure and solar cell efficiency for HWCVD amorphous silicon germanium alloys SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Amorphous silicon germanium; Hot wire CVD; H bonding; Solar cells ID SIGE-H ALLOYS; HOT-WIRE; MICROSTRUCTURE; DEPOSITION AB The film structure and H bonding of high deposition rate a-SiGe:H i-layers, deposited by HWCVD and containing similar to 40 at.% Ge, have been investigated using deposition conditions which replicate those used in n-i-p solar cell devices. Increasing the germane source gas depletion in HWCVD causes not only a decrease in solar cell efficiency from 8.64% to less than 7.0%, but also an increase in both the i-layer H preferential attachment ratio (PA) and the film microstructure fraction (R*). Measurements of the XRD medium range order over a wide range of germane depletion indicate that this order is already optimum for the HWCVD i-layers, suggesting that energetic bombardment of a-SiGe:H films may not always be necessary to achieve well ordered films. Preliminary structural comparisons are also made between HWCVD and PECVD device layers. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mahan, A. H.; Xu, Y.; Gedvilas, L. M.] NREL, Golden, CO 80401 USA. [Williamson, D. L.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Mahan, AH (reprint author), NREL, 1617 Cole Blvd, Golden, CO 80401 USA. EM harv_mahan@nrel.gov NR 19 TC 9 Z9 9 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3532 EP 3535 DI 10.1016/j.tsf.2009.01.073 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800031 ER PT J AU Wang, Q AF Wang, Qi TI Hot-wire CVD amorphous Si materials for solar cell application SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE HWCVD; a-Si:H; Solar cell; Thin film ID CHEMICAL-VAPOR-DEPOSITION; LOW H-CONTENT; SILICON; MICROCRYSTALLINE; TEMPERATURE AB Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed. (C) 2009 Published by Elsevier B.V. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, Q (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM qi_wang@nrel.gov NR 16 TC 16 Z9 23 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3570 EP 3574 DI 10.1016/j.tsf.2009.01.072 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800041 ER PT J AU Lee, SH Deshpande, R Benhammou, D Parilla, PA Mahan, AH Dillon, AC AF Lee, Se-Hee Deshpande, Rohit Benhammou, Daniel Parilla, Phil A. Mahan, A. Harv Dillon, Anne C. TI Metal oxide nanoparticles for advanced energy applications SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Hot-wire chemical vapor deposition; Molybdenum oxide nanoparticles; Lithium-ion battery ID CHEMICAL-VAPOR-DEPOSITION; HIGH-DENSITY; NANOTUBES AB Hot-wire chemical vapor deposition (HWCVD) has been employed as an economically scalable method for the deposition of crystalline molybdenum oxide nanoparticles at high density. Under optimal synthesis conditions, only crystalline nanostructures with a smallest dimension of similar to 3-50 nm are observed with extensive transmission electron microscopy analyses. The incorporation of crystalline molybdenum oxide nanoparticles into battery electrodes has led to profound advancements in state-of-the-art negative electrodes (anodes) in lithium-ion batteries. The nanoparticle materials exhibit a high rate capability as anticipated for the reduced solid-state Li-ion diffusion length. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lee, Se-Hee; Benhammou, Daniel] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Deshpande, Rohit; Parilla, Phil A.; Mahan, A. Harv; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM sehee.lee@colorado.edu RI Lee, Sehee/A-5989-2011 NR 8 TC 11 Z9 13 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3591 EP 3595 DI 10.1016/j.tsf.2009.01.061 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800047 ER PT J AU White, CM Gillaspie, DT Whitney, E Lee, SH Dillon, AC AF White, Christine M. Gillaspie, Dane T. Whitney, Erin Lee, Se-Hee Dillon, Anne C. TI Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Hot-wire chemical vapor deposition; Tungsten oxide nanoparticles; Flexible electrochromic devices; Polymer substrate ID TUNGSTEN-OXIDE NANOPARTICLES; THIN-FILMS AB Crystalline WO3 nanoparticles are employed in the development of flexible electrochromic (EC) devices. The nanoparticles are synthesized at high-density with a hot-wire chemical vapor deposition process where the hot filament provides the source of the tungsten metal. Polyethylene terephthalate coated with indium tin oxide is employed as a transparent flexible substrate. A simple electrophoresis technique is employed to deposit the WO3 nanoparticles on the polymer, resulting in a uniform thin film. The EC performance is optimized for WO3 particles that were baked at similar to 300 degrees C for 2 h prior to electrode fabrication. The transmittance is modulated between similar to 94% and similar to 28% without degradation for 100 cycles. (C) 2009 Elsevier B.V. All rights reserved. C1 [White, Christine M.; Gillaspie, Dane T.; Whitney, Erin; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO USA. [White, Christine M.; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. RP Dillon, AC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO USA. EM anne_dillon@nrel.gov RI Lee, Sehee/A-5989-2011; Gillaspie, Dane/E-2731-2010 NR 13 TC 51 Z9 51 U1 1 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3596 EP 3599 DI 10.1016/j.tsf.2009.01.033 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800048 ER PT J AU She, X Flytzani-Stephanopoulos, M Wang, C Wang, Y Peden, CHF AF She, X. Flytzani-Stephanopoulos, M. Wang, C. Wang, Y. Peden, C. H. F. TI SO2-induced stability of Ag-alumina catalysts in the SCR of NO with methane SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Silver catalyst; Alumina; Sintering; Dispersion; SO2; SCR of NO; CH4; NOx reduction ID SUPPORTED SILVER CATALYSTS; REDUCTION; FILMS; DIFFUSION; OXIDATION; HYDROCARBONS; ENVIRONMENTS; BEHAVIOR AB We report on a stabilization effect on the structure and activity of Ag/Al2O3 for the selective catalytic reduction (SCR) of NOx with CH4 imparted by the presence of SO2 in the exhaust gas mixture. The reaction is carried out at temperature above 600 degrees C to keep the surface partially free of sulfates. In SO2-free gases, catalyst deactivation is fast and measurable at these temperatures. Time-resolved TEM analyses of used samples have determined that deactivation is due to sintering of silver from well-dispersed clusters to nanoparticles to micrometer-size particles with time-on-stream at 625 degrees C. However, sintering of silver was dramatically suppressed by the presence of SO2 in the reaction gas mixture. The structural stabilization by SO2 was accompanied by stable catalyst activity for the NO reduction to N-2. The direct oxidation of methane was suppressed, thus the methane selectivity was improved in SO2-laden gas mixtures. In tests with high-content silver alumina with some of the silver present in metallic form, an increase in the SCR activity was found in SO2-containing gas mixtures. This is attributed to redispersion of the silver particles by SO2 an unexpected finding. The catalyst performance was reversible over many cycles of operation at 625 degrees C with the SO2 switched on and off in the gas mixture. (C) 2008 Elsevier B.V. All rights reserved. C1 [She, X.; Flytzani-Stephanopoulos, M.] Tufts Univ, Dept Biol & Chem Engn, Medford, MA 02155 USA. [She, X.; Wang, C.; Wang, Y.; Peden, C. H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Flytzani-Stephanopoulos, M (reprint author), Tufts Univ, Dept Biol & Chem Engn, Medford, MA 02155 USA. EM maria.flytzani-stephanopoulos@tufts.edu RI Wang, Yong/C-2344-2013; OI Peden, Charles/0000-0001-6754-9928 FU National Science Foundation [0304515]; DOE Office of Biological and Environmental Research FX This work was funded by the National Science Foundation, NIRT grant 0304515. We gratefully acknowledge the assistance of Dr. Yong Zhang of the Materials Science and Engineering Center at MIT with the TEM measurements. Part of the experiments in this work, including some of the catalyst-pretreatments, TEM and XRD measurements, were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory. NR 24 TC 17 Z9 18 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD APR 29 PY 2009 VL 88 IS 1-2 BP 98 EP 105 DI 10.1016/j.apcatb.2008.09.015 PG 8 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 444MM UT WOS:000265985100009 ER PT J AU Sun, LL Yi, W Wang, L Shu, JF Sinogeikin, S Meng, Y Shen, G Bai, LG Li, YC Liu, J Mao, HK Mao, WL AF Sun, Liling Yi, Wei Wang, Lin Shu, Jinfu Sinogeikin, Stas Meng, Yue Shen, Guoyin Bai, Ligang Li, Yanchuan Liu, Jing Mao, Ho-kwang Mao, Wendy L. TI X-ray diffraction studies and equation of state of methane at 202 GPa SO CHEMICAL PHYSICS LETTERS LA English DT Article ID HIGH-PRESSURE; SOLID METHANE; ROOM-TEMPERATURE; GIANT PLANETS; VOYAGER-2; INTERIORS; CRYSTAL AB Solid methane (CH(4)) was compressed up to 202 GPa at 300 K in a diamond-anvil cell. The crystal structure and equation of state over this entire range were determined from angle dispersive X-ray diffraction results. CH(4) undergoes phase transitions from rhombohedral to a simple cubic phase at 19 GPa and from simple cubic to a higher pressure cubic phase at approximately 94 GPa. This higher pressure cubic phase was stable to the maximum pressure investigated. Combined with previous optical measurements, it was found that at room temperature compressed CH(4) remains an insulator with cubic structure to 202 GPa. (C) 2009 Elsevier B. V. All rights reserved. C1 [Sun, Liling; Shu, Jinfu; Mao, Ho-kwang] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Sun, Liling; Yi, Wei] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Sun, Liling; Yi, Wei] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Wang, Lin; Sinogeikin, Stas; Meng, Yue; Shen, Guoyin; Mao, Ho-kwang] Argonne Natl Lab, Adv Photon Source, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Bai, Ligang; Li, Yanchuan; Liu, Jing] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. [Mao, Wendy L.] Stanford Univ, Dept Geog & Environm Sci, Stanford, CA 94305 USA. [Mao, Wendy L.] Natl Accelerator Ctr, SLAC, Photon Sci Dept, Menlo Pk, CA 94025 USA. RP Sun, LL (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM llsun@aphy.iphy.ac.cn; h.mao@gl.ciw.edu RI Mao, Wendy/D-1885-2009; Shen, Guoyin/D-6527-2011; Yi, Wei/A-1748-2012; WANG, LIN/G-7884-2012; Bai, Ligang/E-9371-2015 FU National Science Foundation of China [50571111, 10874230]; Ministry of Science and Technology of China [2005CB724400]; Department of Energy (DOE) [DE-AC02-76SF00515]; NASA [PGG-NNX08AL27G]; NSF [DMR-0821584]; DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; W. M. Keck Foundation FX The authors thank the National Science Foundation of China for its support of this research through Grant Nos. 50571111 and 10874230. This work was also supported by the Ministry of Science and Technology of China (2005CB724400), and was supported by the Department of Energy (DOE) through the Stanford Institute for Materials & Energy Science DE-AC02-76SF00515, NASA PG&G-NNX08AL27G, and NSF DMR-0821584. This work was performed at HPCAT (Sector 16), APS, ANL. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. NR 17 TC 21 Z9 21 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR 29 PY 2009 VL 473 IS 1-3 BP 72 EP 74 DI 10.1016/j.cplett.2009.03.072 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 434JK UT WOS:000265270800014 ER PT J AU Bauer, AL Beauchemin, CAA Perelson, AS AF Bauer, Amy L. Beauchemin, Catherine A. A. Perelson, Alan S. TI Agent-based modeling of host-pathogen systems: The successes and challenges SO INFORMATION SCIENCES LA English DT Review DE Agent-based model; Host-pathogen dyamics; Artificial immune system; Multiscale; Tumor growth; Tuberculosis; Acute inflammation; Sensitivity analysis ID NON-SELF DISCRIMINATION; CELLULAR-AUTOMATON MODEL; SHAPE-SPACE MODEL; A VIRUS-INFECTION; H TH GENESIS; IMMUNE-SYSTEM; LYMPH-NODES; IN-VITRO; SPATIAL HETEROGENEITY; COMPUTERIZED MODEL AB Agent-based models have been employed to describe numerous processes in immunology. Simulations based on these types of models have been used to enhance out understanding of immunology and disease pathology. We review various agent-based models relevant to host-pathogen systems and discuss their contributions to our understanding of biological processes. We then point out some limitations and challenges of agent-based models and encourage efforts towards reproducibility and model validation. (c) 2008 Elsevier Inc. All rights reserved. C1 [Beauchemin, Catherine A. A.; Perelson, Alan S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bauer, Amy L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Beauchemin, Catherine A. A.] Ryerson Univ, Dept Phys, Toronto, ON, Canada. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, MS-K710, Los Alamos, NM 87545 USA. EM asp@lanl.gov RI Beauchemin, Catherine/G-4619-2011; Barley, Kamal/F-9579-2011 OI Beauchemin, Catherine/0000-0003-0599-0069; Barley, Kamal/0000-0003-1874-9813 FU US Department of Energy [DE-AC52-06NA25396]; NIH [AI28433, RR06555, P01-AI071195, NOI-A150020, A173607]; UNM/LANL joint Science and Technology Laboratory FX Portions of this work were done under the auspices of the US Department of Energy under contract DE-AC52-06NA25396 and supported by NIH Grants AI28433, RR06555, P01-AI071195, and NOI-A150020 (ASP), and the UNM/LANL joint Science and Technology Laboratory and NIH Grant R21-A173607 (CAAB). NR 108 TC 75 Z9 75 U1 2 U2 43 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0020-0255 J9 INFORM SCIENCES JI Inf. Sci. PD APR 29 PY 2009 VL 179 IS 10 BP 1379 EP 1389 DI 10.1016/j.ins.2008.11.012 PG 11 WC Computer Science, Information Systems SC Computer Science GA 431RA UT WOS:000265079600002 PM 20161146 ER PT J AU Souvatzis, P Bjorkman, T Eriksson, O Andersson, P Katsnelson, MI Rudin, SP AF Souvatzis, P. Bjorkman, T. Eriksson, O. Andersson, P. Katsnelson, M. I. Rudin, S. P. TI Dynamical stabilization of the body centered cubic phase in lanthanum and thorium by phonon-phonon interaction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CRYSTAL-STRUCTURE; ACTINIDES; PLUTONIUM; CONSTANTS; PICTURE; LA AB A recently developed self-consistent ab initio lattice dynamical method has been applied to the high temperature body centered cubic (bcc) phase of La and Th, which are dynamically unstable at low temperatures. The bcc phase of these metals is found to be stabilized by phonon-phonon interactions. The calculated high temperature phonon frequencies for La are found to be in good agreement with the corresponding experimental data. C1 [Souvatzis, P.; Rudin, S. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bjorkman, T.; Eriksson, O.] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. [Andersson, P.] Swedish Def Res Agcy, FOI, SE-16490 Stockholm, Sweden. [Katsnelson, M. I.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands. RP Souvatzis, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM petros.souvatzis@gmail.com RI Bjorkman, Torbjorn/B-9844-2012; Katsnelson, Mikhail/D-4359-2012; Eriksson, Olle/E-3265-2014 OI Bjorkman, Torbjorn/0000-0002-1154-9846; Eriksson, Olle/0000-0001-5111-1374 FU Department of Energy [DE-AC52-06NA25396] FX The Department of Energy supported this work under Contract No. DE-AC52-06NA25396. NR 23 TC 11 Z9 11 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 29 PY 2009 VL 21 IS 17 AR 175402 DI 10.1088/0953-8984/21/17/175402 PG 4 WC Physics, Condensed Matter SC Physics GA 427LD UT WOS:000264779900015 PM 21825417 ER PT J AU Bowers, MJ McBride, JR Garrett, MD Sammons, JA Dukes, AD Schreuder, MA Watt, TL Lupini, AR Pennycook, SJ Rosenthal, SJ AF Bowers, Michael J., II McBride, James R. Garrett, Maria D. Sammons, Jessica A. Dukes, Albert D., III Schreuder, Michael A. Watt, Tony L. Lupini, Andrew R. Pennycook, Stephen J. Rosenthal, Sandra J. TI Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FLUORESCENCE UP-CONVERSION; SEMICONDUCTOR QUANTUM DOTS; CARRIER DYNAMICS; ELECTRONIC-STRUCTURE; SIZE; SPECTROSCOPY; EMISSION; NANORODS; CLUSTERS; SURFACE AB White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals. C1 [Bowers, Michael J., II; McBride, James R.; Garrett, Maria D.; Sammons, Jessica A.; Dukes, Albert D., III; Schreuder, Michael A.; Watt, Tony L.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Lupini, Andrew R.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA. EM Sandra.j.rosenthal@vanderbilt.edu RI McBride, James/D-2934-2012 OI McBride, James/0000-0003-0161-7283 FU U.S. Department of Energy [DEFG0202ER45957] FX Funding was provided by the U.S. Department of Energy (DEFG0202ER45957). NR 24 TC 49 Z9 49 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5730 EP + DI 10.1021/ja900529h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200008 PM 19341271 ER PT J AU Komanicky, V Iddir, H Chang, KC Menzel, A Karapetrov, G Hennessy, D Zapol, P You, H AF Komanicky, Vladimir Iddir, Hakim Chang, Kee-Chul Menzel, Andreas Karapetrov, Goran Hennessy, Daniel Zapol, Peter You, Hoydoo TI Shape-Dependent Activity of Platinum Array Catalyst SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION; NANOPARTICLES; SURFACES; ELECTROOXIDATION; KINETICS AB We produced millions of morphologically identical platinum catalyst nanoparticles in the form of ordered arrays epitaxially grown on (111), (100), and (110) strontium titanate substrates using electron beam lithography. The ability to design, produce, and characterize the catalyst nanoparticles allowed us to relate microscopic morphologies with macroscopic catalytic reactivities. We evaluated the activity of three different arrays containing different ratios of (111) and (100) facets for an oxygen-reduction reaction, the most important reaction for fuel cells. Increased catalytic activity of the arrays points to a possible cooperative interplay between facets with different affinities to oxygen. We suggest that the surface area of (100) facets is one of the key factors governing catalyst performance in the electrochemical reduction of oxygen molecules. C1 [Komanicky, Vladimir; Iddir, Hakim; Chang, Kee-Chul; Menzel, Andreas; Karapetrov, Goran; Hennessy, Daniel; You, Hoydoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Komanicky, Vladimir] Safarik Univ, Fac Sci, Kosice 04154, Slovakia. [Komanicky, Vladimir] SAS, Inst Expt Phys, Kosice 04154, Slovakia. [Menzel, Andreas] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP You, H (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vladimir.komanicky@upjs.sk; hyou@anl.gov RI Hennessy, Daniel/A-6203-2011; Menzel, Andreas/C-4388-2012; Zapol, Peter/G-1810-2012; Chang, Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011; Karapetrov, Goran/C-2840-2008 OI Menzel, Andreas/0000-0002-0489-609X; Zapol, Peter/0000-0003-0570-9169; Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483; Karapetrov, Goran/0000-0003-1113-0137 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Leonidas Ocola and Ralu Divan for their help during array nanofabrication. This work and use of the Advanced Photon Source, the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 11 TC 86 Z9 87 U1 3 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5732 EP + DI 10.1021/ja900459w PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200009 PM 19348484 ER PT J AU Tsung, CK Kuhn, JN Huang, WY Aliaga, C Hung, LI Somorjai, GA Yang, PD AF Tsung, Chia-Kuang Kuhn, John N. Huang, Wenyu Aliaga, Cesar Hung, Ling-I Somorjai, Gabor A. Yang, Peidong TI Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUM-FREQUENCY GENERATION; SINGLE-CRYSTAL SURFACES; MESOPOROUS SBA-15 SILICA; WET CHEMICAL SYNTHESIS; VIBRATIONAL SPECTROSCOPY; HIGH-PRESSURES; BENZENE HYDROGENATION; C-6 HYDROCARBONS; GOLD NANORODS; ASPECT-RATIO AB Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H(2) chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra. C1 [Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. [Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hung, Ling-I] Ind Technol Res Inst, Mat Lab, Hsinchu 310, Taiwan. [Hung, Ling-I] Ind Technol Res Inst, Chem Lab, Hsinchu 310, Taiwan. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu; p_yang@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences, and Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank the Molecular Foundry of the Lawrence Berkeley National Laboratory for use of their facilities and Professor A. Paul Alivisatos for use of the TEM. NR 42 TC 304 Z9 307 U1 26 U2 280 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5816 EP 5822 DI 10.1021/ja809936n PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200030 PM 19341296 ER PT J AU Hariharan, M Zheng, Y Long, H Zeidan, TA Schatz, GC Vura-Weis, J Wasielewski, MR Zuo, XB Tiede, DM Lewis, FD AF Hariharan, Mahesh Zheng, Yan Long, Hai Zeidan, Tarek A. Schatz, George C. Vura-Weis, Josh Wasielewski, Michael R. Zuo, Xiaobing Tiede, David M. Lewis, Frederick D. TI Hydrophobic Dimerization and Thermal Dissociation of Perylenediimide-Linked DNA Hairpins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PI-PI INTERACTIONS; BISIMIDE DYES; BUILDING-BLOCKS; MELTING TEMPERATURE; CIRCULAR-DICHROISM; HIGHLY FLUORESCENT; AQUEOUS-SOLUTION; DIMERS; WATER; DIIMIDE AB The structure and properties of hairpin-forming bis(oligonucleotide) conjugates possessing perylenediimide (PDI) chromophores as hairpin linkers have been investigated using a combination of spectroscopic and computational methods. These conjugates exist predominantly as monomer hairpins at room temperature in the absence of added salt and as head-to-head hairpin dimers in the presence of >50 mM NaCl. The hairpin dimer structure is consistent with the results of small-angle X-ray scattering in aqueous solution and molecular dynamics simulation. The structure of the nonconjugated PDI dimer in water is investigated using potential of mean force calculations. The salt dependence is attributed to increased cation condensation in the hairpin dimer vs monomer. Upon heating at low salt concentrations, the hairpin dimer undergoes sequential dissociation to form the monomer hairpin followed by conversion to a random coil structure; whereas at high salt concentrations both dissociation processes occur over the same temperature range. The monomer and dimer hairpins have distinct spectroscopic properties both in the ground state and excited singlet state. The UV and CD spectra provide evidence for electronic interaction between PDI and the adjacent base pair. Low fluorescence quantum yields are observed for both the monomer and dimer. The transient absorption spectrum of the dimer undergoes time-dependent spectral changes attributed to a change in the PDI-PDI torsional angle from ca. 20 degrees in the Franck-Condon singlet state to ca. 0 degrees in the relaxed singlet state, a process which occurs within ca. 40 ps. C1 [Hariharan, Mahesh; Zheng, Yan; Long, Hai; Zeidan, Tarek A.; Schatz, George C.; Vura-Weis, Josh; Wasielewski, Michael R.; Zuo, Xiaobing; Tiede, David M.; Lewis, Frederick D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wasielewski, Michael R.; Zuo, Xiaobing; Tiede, David M.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Lewis, FD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM fdl@northwestern.edu RI Zuo, Xiaobing/F-1469-2010; Long, Hai/C-5838-2015; OI Zuo, Xiaobing/0000-0002-0134-4804 FU National Science Foundation [CHE-0628130]; Office of Basic Energy Sciences, DOE [DE-AC02-06CH11357] FX This research is supported by a grant from the National Science Foundation, Collaborative Research in Chemistry for the project DNA Photonics (CHE-0628130 to G.C.S., F.D.L., and M.R.W.). D.M.T. and X.Z. and the X-ray scattering experiments at the Advanced Photon Source, beamline 12-ID were supported by the Office of Basic Energy Sciences, DOE under Contract No. DE-AC02-06CH11357. The authors gratefully acknowledge Dr. Soenke Seifert for his expert help in setting up the X-ray scattering measurements. NR 55 TC 50 Z9 50 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5920 EP 5929 DI 10.1021/ja900347t PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200041 PM 19382814 ER PT J AU Yang, JY Bullock, RM Shaw, WJ Twamley, B Fraze, K DuBois, MR DuBois, DL AF Yang, Jenny Y. Bullock, R. Morris Shaw, Wendy J. Twamley, Brendan Fraze, Kendra DuBois, M. Rakowski DuBois, Daniel L. TI Mechanistic Insights into Catalytic H-2 Oxidation by Ni Complexes Containing a Diphosphine Ligand with a Positioned Amine Base SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COUPLED ELECTRON-TRANSFER; PENDANT NITROGEN BASES; ELECTROCATALYTIC HYDROGEN EVOLUTION; 2ND COORDINATION SPHERE; FE-ONLY HYDROGENASE; MOLECULAR CATALYSTS; IRON(II) COMPLEXES; PROTON RELAYS; ACTIVE-SITE; LOW OVERPOTENTIALS AB The mixed-ligand complex [Ni(dppp)(p(2)(Ph)N(2)(Bz))](BF4)(2), 3, (whem (P2N2Bz)-N-Ph is 1,5-dibenzyl-3,7-diplienyl-1,5-diaza-3,7-diphosphacyclooctane and dppp is 1, 3-bis(diphenylphosphino)propane) has been synthesized. Treatment of this complex with H-2 and triethylamine results in the formation of the NO complex, Ni(dppp)((P2N2Bz)-N-Ph), 4, whose structure has been determined by a single-crystal X-ray diffraction study. Heterolytic cleavage of H-2 by 3 at room temperature forms [HNi(dppp)((P2NBz)-N-Ph(mu-H)N-Bz)](BF4)(2), 5a, in which one proton interacts with two nitrogen atoms of the cyclic diphosphine ligand and a hydride ligand is bound to nickel. Two intermediates are observed for this reaction using low-temperature NMR spectroscopy. One species is a dihydride, [(H)(2)Ni(dppp)((P2N2Bz)-N-Ph)](BF4)(2), 5b, and the other is [Ni(dppp) ((P2N2H2)-N-Ph-H-Bz)](BF4)(2), 5c, in which both protons are bound to the N atoms in an endo geometry with respect to nickel. These two species interconvert via a rapid and reversible intramolecular proton exchange between nickel and the nitrogen atoms of the diphosphine ligand. Complex 3 is a catalyst for the electrochemical oxidation of H-2 in Vie presence of base, and new insights into the mechanism derived from low-temperature NMR and thermodynamic studies are presented. A comparison of the rate and thermodynamics of H-2 addition for this complex to related catalysts studied previously indicates that for Ni-II complexes containing two diphosphine ligands, the activation of H-2 is favored by the presence of two positioned pendant bases. C1 [Yang, Jenny Y.; Bullock, R. Morris; Shaw, Wendy J.; Twamley, Brendan; Fraze, Kendra; DuBois, M. Rakowski; DuBois, Daniel L.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP DuBois, DL (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM daniel.dubois@pnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU Office of Basic Energy Sciences of the Department of Energy FX This work was supported by the Chemical Sciences program of the Office of Basic Energy Sciences of the Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. The Bruker (Siemens) SMART APEX diffraction facility was established at the University of Idaho with the assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA. NR 49 TC 97 Z9 97 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5935 EP 5945 DI 10.1021/ja900483x PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200043 PM 19341269 ER PT J AU Zhang, Q Saraf, LV Smitha, JR Jha, P Hua, F AF Zhang, Q. Saraf, L. V. Smitha, J. R. Jha, P. Hua, F. TI An invisible bend sensor based on porous crosslinked polyelectrolyte film SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Electrostatic self-assembly; Porous polymeric film; Ultrathin elastomer; Tunneling current; Invisible sensor ID THIN-FILM; WEAK POLYELECTROLYTES; MULTILAYER FILMS; POLYMER; POLYCATION; POLYANION; DEVICE AB This paper reports the fabrication and electromechanical characterization of a thin porous polyelectrolyte film and its application in an invisible bending transducer. The porous film consists of 10 bilayers of polycation and polyanion that are adsorbed using electrostatic self-assembly (ESA). Such porous film can be thermally crosslinked. The size of the pores on top surface is adjustable and can be covered up by a type of Na(+)-montmorillonite nanosheet whose size is comparable to those of the pores. As a result, the sealed top surface can be coated by metal for an electrode. After such polymeric film is integrated into a sandwich structure that was designed for a bend sensor, it can perform as an ultrathin piece of elastomer. It is found that the bending of the substrate resulted in the increasing of the current. It is hypothesized that the tunneling current through the thin polymeric film changes when the film is compressed by bending. Finite element simulation corroborates the existence of strain concentration especially near two ends of the polymer film and the shoulder of the bottom electrode. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Q.; Smitha, J. R.; Jha, P.; Hua, F.] Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA. [Saraf, L. V.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hua, F (reprint author), Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA. EM fhua@clarkson.edu FU Environmental Molecular Sciences Laboratory; Department of Energy's Office of Biological and Environmental Research; Pacific Northwest National Laboratory; University of Illinois at UrbanaChampaign FX The authors would like to thank the National Center for Supercomputing Applications at the University of Illinois at UrbanaChampaign for providing computational and software resources and support. NR 26 TC 4 Z9 4 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD APR 29 PY 2009 VL 151 IS 2 BP 154 EP 158 DI 10.1016/j.sna.2009.02.034 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 444EX UT WOS:000265964600010 ER PT J AU Ma, BW Woo, CH Miyamoto, Y Frechet, JMJ AF Ma, Biwu Woo, Claire H. Miyamoto, Yoshikazu Frechet, Jean M. J. TI Solution Processing of a Small Molecule, Subnaphthalocyanine, for Efficient Organic Photovoltaic Cells SO CHEMISTRY OF MATERIALS LA English DT Article ID SOLAR-CELLS; SUBPHTHALOCYANINES; POLYMER; HETEROJUNCTIONS AB Solution processing of the small molecule subnaphthalocyanine (SubNc) is carried out for the first time to form an electron-donor layer in efficient planar heterojunction organic photovoltaic cells (OPVs). Due to their unique properties, including high solubility, low tendency to aggregate, and strong light absorption in the visible light region, we are able to prepare amorphous SubNc films with high charge-transporting and light-harvesting properties via simple solution casting. By using SubNc as the donor and C(60) as the acceptor, we have demonstrated a planar heterojunction OPV with a power conversion efficiency of 1.5%, which represents one of the highest efficiencies for planar heterojunction OPVs based on solution processable small molecules to date. This work clearly shows that solution processing of light-harvesting small molecules has great potential in low-cost thin-film photovoltaic cells. Also SubNc and its derivatives are promising new-generation materials for OPVs. C1 [Ma, Biwu; Miyamoto, Yoshikazu; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Woo, Claire H.; Miyamoto, Yoshikazu; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Ma, BW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM BWMa@lbl.gov RI Ma, Biwu/B-6943-2012; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05, CH 11231]; National Science Foundation; JSR Corporation [CM900005G] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract No. DE-AC02-05 CH 11231. C.H. W. thanks the National Science Foundation for a Graduate Research Fellowship. Y.M. thanks JSR Corporation for support. CM900005G NR 29 TC 59 Z9 60 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 28 PY 2009 VL 21 IS 8 BP 1413 EP 1417 DI 10.1021/cm900005g PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 436KG UT WOS:000265412400003 ER PT J AU Nyman, M Shea-Rohwer, LE Martin, JE Provencio, P AF Nyman, May Shea-Rohwer, Lauren E. Martin, James E. Provencio, Paula TI Nano-YAG:Ce Mechanisms of Growth and Epoxy-Encapsulation SO CHEMISTRY OF MATERIALS LA English DT Article ID LIGHT-EMITTING-DIODES; SOLID-STATE; SPRAY-PYROLYSIS; PHOSPHOR; PHOTOLUMINESCENCE; ENHANCEMENT; POWDERS AB We have investigated the mechanism of nano-YAG:Ce growth in butanediol and glycol solvents. The static autoclave and low synthesis temperature (225 degrees C) that we employed provided conditions of slow growth in which we were able to observe an intermediate phase, a butanediol-intercalated layered alumina. This phase serves to passivate the surface in nano-YAG:Ce precipitates and thus contributes to increasing the quantum yield of YAG:Ce by diminishing surface effects such as Ce oxidation. While neat 1,4-butanediol results in precipitation of the nano-YAG:Ce, a mixture of 1,4-butanediol and diethylene glycol stabilizes a transparent colloid. We attribute this to higher solubility of the layered alumina intermediate in the solvent mixture and, thus, more homogeneous nucleation of the nano-YAG:Ce compared to heterogeneous nucleation in the neat 1,4-butanediol. However, the trade-off is slightly lower quantum yield in the transparent colloid, since the nano-YAG:Ce is not as thoroughly surface-passivated. With the transparent colloid, we were able to encapsulate the nano-YAG:Ce into a transparent epoxy dome that may be utilized in solid-state devices. C1 [Nyman, May; Shea-Rohwer, Lauren E.; Martin, James E.; Provencio, Paula] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shea-Rohwer, LE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM leshea@sandia.gov FU United States Department of Energy National Energy Technology Laboratory [DE-PS26-06NT42942]; Lockheed-Martin Company; United States Department of Energy [DE-AC04-94AL85000] FX This work was funded by a grant from the United States Department of Energy National Energy Technology Laboratory (DE-PS26-06NT42942). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 20 TC 57 Z9 58 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 28 PY 2009 VL 21 IS 8 BP 1536 EP 1542 DI 10.1021/cm803137h PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 436KG UT WOS:000265412400020 ER PT J AU Coe, JD Sewell, TD Shaw, MS AF Coe, Joshua D. Sewell, Thomas D. Shaw, M. Sam TI Optimal sampling efficiency in Monte Carlo simulation with an approximate potential SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; PROTON-TRANSFER REACTIONS; 1ST PRINCIPLES; MOLECULAR-DYNAMICS; MARKOV-CHAINS; LIQUID WATER; FLUID; EQUILIBRIA; ENSEMBLE; SUMMATION AB Building on the work of Iftimie et al. [J. Chem. Phys. 113, 4852 (2000)] and Gelb [J. Chem. Phys. 118, 7747 (2003)], Boltzmann sampling of an approximate potential (the "reference" system) is used to build a Markov chain in the isothermal-isobaric ensemble. At the end points of the chain, the energy is evaluated at a more accurate level (the "full" system) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. For reference system chains of sufficient length, consecutive full energies are statistically decorrelated and thus far fewer are required to build ensemble averages with a given variance. Without modifying the original algorithm, however, the maximum reference chain length is too short to decorrelate full configurations without dramatically lowering the acceptance probability of the composite move. This difficulty stems from the fact that the reference and full potentials sample different statistical distributions. By manipulating the thermodynamic variables characterizing the reference system (pressure and temperature, in this case), we maximize the average acceptance probability of composite moves, lengthening significantly the random walk between consecutive full energy evaluations. In this manner, the number of full energy evaluations needed to precisely characterize equilibrium properties is dramatically reduced. The method is applied to a model fluid, but implications for sampling high-dimensional systems with ab initio or density functional theory potentials are discussed. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3116788] C1 [Coe, Joshua D.; Shaw, M. Sam] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sewell, Thomas D.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. RP Coe, JD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jcoe@lanl.gov FU Los Alamos National Laboratory (LANL); National Nuclear Security Administration (NNSA); LANL Laboratory Directed Research and Development (LDRD) [W911NF-05-1-0265]; Los Alamos National Security; U. S. Department of Energy [DEAC52-06NA25396] FX J. D. C. thanks the Office of the Director at Los Alamos National Laboratory (LANL) for support in the form of a Director's Postdoctoral Fellowship. M. S. S. is supported by the LANL High Explosives Project of the National Nuclear Security Administration (NNSA) Advanced Strategic Com- puting Program (HE-ASC). T. D. S. is supported by the LANL Laboratory Directed Research and Development (LDRD) Program and by the Army Research Office under Grant No. W911NF-05-1-0265. LANL is operated by Los Alamos National Security L. L. C. under the auspices of the NNSA and the U. S. Department of Energy, under Contract No. DEAC52-06NA25396. NR 54 TC 10 Z9 10 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2009 VL 130 IS 16 AR 164104 DI 10.1063/1.3116788 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 456XD UT WOS:000266885200005 PM 19405558 ER PT J AU Jacobson, MZ Streets, DG AF Jacobson, Mark Z. Streets, David G. TI Influence of future anthropogenic emissions on climate, natural emissions, and air quality SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review ID TROPOSPHERIC OZONE; SIZE DISTRIBUTIONS; COALESCENCE EFFICIENCIES; STOMATAL CONDUCTANCE; SULFUR EMISSIONS; NOX PRODUCTION; GLOBAL-MODEL; BLACK CARBON; GATOR-GCMM; CHEMISTRY AB This study examines the effects of future anthropogenic emissions on climate, and the resulting feedback to natural emissions and air quality. Speciated sector- and region-specific 2030 emission factors were developed to produce gas and particle emission inventories that followed Special Report on Emission Scenarios (SRES) A1B and B1 emission trajectories. Current and future climate model simulations were run, in which anthropogenic emission changes affected climate, which fed back to natural emissions from lightning (NO, NO2, HONO, HNO3, N2O, H2O2, HO2, CO), soils (dust, bacteria, NO, N2O, H-2, CH4, H2S, DMS, OCS, CS2), the ocean (bacteria, sea spray, DMS, N2O, H-2, CH4), vegetation (pollen, spores, isoprene, monoterpenes, methanol, other VOCs), and photosynthesis/respiration. New methods were derived to calculate lightning flash rates as a function of size-resolved collisions and other physical principles and pollen, spore, and bacteria emissions. Although the B1 scenario was "cleaner'' than the A1B scenario, global warming increased more in the B1 scenario because much A1B warming was masked by additional reflective aerosol particles. Thus neither scenario is entirely beneficial from a climate and health perspective, and the best control measure is to reduce warming gases and warming/cooling particles together. Lightning emissions declined by similar to 3% in the B1 scenario and similar to 12% in the A1B scenario as the number of ice crystals, thus charge-separating bounceoffs, decreased. Net primary production increased by similar to 2% in both scenarios. Emissions of isoprene and monoterpenes increased by similar to 1% in the A1B scenario and 4-5% in the B1 scenario. Near-surface ozone increased by similar to 14% in the A1B scenario and similar to 4% in the B1 scenario, reducing ambient isoprene in the latter case. Gases from soils increased in both scenarios due to higher temperatures. Near-surface PM2.5 mass increased by similar to 2% in the A1B scenario and decreased by similar to 2% in the B1 scenario. The resulting 1.4% higher aerosol optical depths (AODs) in the A1B scenario decreased ocean wind speeds and thus ocean sea spray and bacteria emissions; similar to 5% lower AODs in the B1 scenario had the opposite effect. C1 [Jacobson, Mark Z.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Jacobson, MZ (reprint author), Stanford Univ, Dept Civil & Environm Engn, Yang & Yamazaki Environm & Energy Bldg,Room 397, Stanford, CA 94305 USA. EM jacobson@stanford.edu; dstreets@anl.gov OI Streets, David/0000-0002-0223-1350 FU NASA [NNG04GE93G, NNG04GJ89G, NNX07AN25G]; US EPA [RD-83337101-O] FX This work was supported by NASA grants NNG04GE93G, NNG04GJ89G, and NNX07AN25G and US EPA grant RD-83337101-O. We also thank Cristina L. Archer, John Ten Hoeve, Jordan Wilkerson, and Mark W. Govett for some data sets and the NASA High-End Computing Program for computer time. NR 110 TC 53 Z9 53 U1 8 U2 78 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 28 PY 2009 VL 114 AR D08118 DI 10.1029/2008JD011476 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 439ZM UT WOS:000265667200010 ER PT J AU Persoon, AM Gurnett, DA Santolik, O Kurth, WS Faden, JB Groene, JB Lewis, GR Coates, AJ Wilson, RJ Tokar, RL Wahlund, JE Moncuquet, M AF Persoon, A. M. Gurnett, D. A. Santolik, O. Kurth, W. S. Faden, J. B. Groene, J. B. Lewis, G. R. Coates, A. J. Wilson, R. J. Tokar, R. L. Wahlund, J. -E. Moncuquet, M. TI A diffusive equilibrium model for the plasma density in Saturn's magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ROTATION PERIOD; VOYAGER-2; ELECTRONS; IONS AB Electron density measurements have been obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument for more than 50 passes through Saturn's inner magnetosphere from 30 June 2004 to 30 September 2007. The electron densities are derived from RPWS measurements of the upper hybrid resonance frequency and span latitudes up to 35 degrees and L values from 3.6 to 10. The electron density measurements are combined with ion anisotropy measurements from the Cassini Plasma Spectrometer (CAPS) and electron temperature measurements from the RPWS and CAPS to develop a diffusive equilibrium model for the distribution of water group ions, hydrogen ions, and electrons in the inner region of Saturn's magnetosphere. The model uses an analytical solution of the field-aligned force equation, including the ambipolar electric field, to determine the equatorial ion densities and scale heights as a function of L. Density contour plots for water group ions, hydrogen ions, and electrons are presented. C1 [Persoon, A. M.; Gurnett, D. A.; Kurth, W. S.; Faden, J. B.; Groene, J. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Santolik, O.] Inst Atmospher Phys, Prague 14131 4, Czech Republic. [Lewis, G. R.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Wilson, R. J.; Tokar, R. L.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM 87545 USA. [Wahlund, J. -E.] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden. [Moncuquet, M.] Observ Paris, Lab Etud Spatiales & Instrumentat Astrophys, F-92195 Meudon, France. [Santolik, O.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. RP Persoon, AM (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM ann-persoon@uiowa.edu RI Coates, Andrew/C-2396-2008; Wilson, Rob/C-2689-2009; Santolik, Ondrej/F-7766-2014; OI Coates, Andrew/0000-0002-6185-3125; Wilson, Rob/0000-0001-9276-2368; Kurth, William/0000-0002-5471-6202 FU NASA [1279973]; NASA/JPL [1243218]; CAPS investigation FX The Cassini radio and plasma wave research at the University of Iowa is supported by NASA through JPL contract 1279973. We thank the CAPS and ELS operations teams at SwRI and MSSL, the ion mass spectrometer team at Los Alamos under the auspices of the U. S. DOE, STFC for financial support in the U. K., and NASA/ JPL contract 1243218 for financial support of the CAPS investigation. NR 37 TC 59 Z9 60 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 28 PY 2009 VL 114 AR A04211 DI 10.1029/2008JA013912 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 440CI UT WOS:000265675600006 ER PT J AU Hakel, P Mancini, RC Abdallah, J Sherrill, ME Zhang, HL AF Hakel, P. Mancini, R. C. Abdallah, J. Sherrill, M. E. Zhang, H. L. TI X-ray line polarization spectroscopy of Li-like Si satellite line spectra SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID LASER-PRODUCED PLASMAS; FE; EXCITATION; HELIUM; CODE AB We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser pulses. We identify spectral lines whose polarization can serve as a marker of plasma anisotropy due to anisotropy in the electron distribution function. We also discuss the utility and limitations of our current theoretical approach and point out possible future improvements and directions. C1 [Hakel, P.; Mancini, R. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Abdallah, J.; Sherrill, M. E.; Zhang, H. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hakel, P (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. FU NSHE; Los Alamos National Laboratory; US Department of Energy [DE-AC52-06NA25396] FX This work was supported by the NSHE and Los Alamos National Laboratory, operated by Los Alamos National Security LLC under contract DE-AC52-06NA25396 from the US Department of Energy (NNSA). NR 31 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 28 PY 2009 VL 42 IS 8 AR 085701 DI 10.1088/0953-4075/42/8/085701 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 430ZN UT WOS:000265031200025 ER PT J AU van Tilborg, J Allison, TK Wright, TW Hertlein, MP Falcone, RW Liu, Y Merdji, H Belkacem, A AF van Tilborg, J. Allison, T. K. Wright, T. W. Hertlein, M. P. Falcone, R. W. Liu, Y. Merdji, H. Belkacem, A. TI Femtosecond isomerization dynamics in the ethylene cation measured in an EUV-pump NIR-probe configuration SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CONICAL INTERSECTIONS; MOLECULAR-DYNAMICS; AB-INITIO; REGION; STATES; PHOTOIONIZATION; PHOTOCHEMISTRY; ACETYLENE; VALENCE; C2H4 AB Dynamics in the excited ethylene cation C(2)H(4)(+) lead to isomerization to the ethylidene configuration (HC-CH(3))(+), which is predicted to be a transient configuration for electronic relaxation. With an intense femtosecond extreme ultraviolet pump pulse to populate the excited state, and a near infrared probe pulse to produce the fragments CH(+) and CH(3)(+) (which provides a direct signature of ethylidene), we measure optimum fragment yields at a probe delay of 80 fs. Also, an H(2)-stretch transient configuration, yielding H(2)(+) upon probing, is found to succeed the ethylidene configuration. We find that a simple single- or double-decay model does not match the data, and we present a modified model (introduction of an isomerization delay of 50 +/- 25 fs) that does provide agreement. C1 [van Tilborg, J.; Allison, T. K.; Wright, T. W.; Hertlein, M. P.; Falcone, R. W.; Liu, Y.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Merdji, H.] CEA Saclay, Serv Photons Atomes & Mol, F-91191 Gif Sur Yvette, France. RP van Tilborg, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM JvanTilborg@lbl.gov FU DOE Office of Basic Energy Sciences, Chemical Sciences Division [DE-AC02-05CH11231, DE-FG52-06NA26212]; UC Berkeley's France-Berkeley fund FX We thank T Osipov, F Salmassi and A Aquila for their assistance. This work was performed under the auspices of the US Department of Energy and was supported by the DOE Office of Basic Energy Sciences, Chemical Sciences Division under contract no. DE-AC02-05CH11231. T K Allison was supported by the DOE SSAA under grant no. DE-FG52-06NA26212. We also acknowledge financial support from UC Berkeley's France-Berkeley fund. NR 22 TC 13 Z9 13 U1 3 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 28 PY 2009 VL 42 IS 8 AR 081002 DI 10.1088/0953-4075/42/8/081002 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 430ZN UT WOS:000265031200002 ER PT J AU Ismail, AE Grest, GS Heine, DR Stevens, MJ Tsige, M AF Ismail, Ahmed E. Grest, Gary S. Heine, David R. Stevens, Mark J. Tsige, Mesfin TI Interfacial Structure and Dynamics of Siloxane Systems: PDMS-Vapor and PDMS-Water SO MACROMOLECULES LA English DT Article ID INITIO FORCE-FIELD; MOLECULAR-DYNAMICS; SURFACE-TENSION; PERFLUORINATED ALKANES; DIFFUSION-COEFFICIENTS; QUANTUM-CHEMISTRY; SMALL PENETRANTS; GLASSY-POLYMERS; POLY(DIMETHYLSILOXANE); SIMULATION AB Using a fully atomistic force field for polydimethylsiloxane developed by Smith et al. [J. Phys. Chem. B 2004, 108, 20340], we study the interfacial properties of polydimethylsiloxane (PDMS) as well as its interactions with water. We determine the surface tension of methyl- and hydroxyl-terminated PDMS chains with lengths between 20 and 100 repeat units and find good agreement between simulation results and experimental observations. The width of the polymer liquid-vapor interface is shown to depend on both molecular weight and temperature. The surface tension and contact angle are determined for the PDMS-water binary system using several different geometries and calculation methods. At 300 K, the surface tension of roughly 41 mN/m and contact angle of approximate to 108 degrees for chains with 100 repeat units are in excellent agreement with experimental data. The width of the interface in both the PDMS and water layers increases with temperature, although the computed widths are significantly smaller than the liquid-vapor widths of the individual liquids. The diffusion constant measured for low concentrations of water molecules permeating through PDMS shows a wide degree of variation as a result of "caging" effects caused by local density inhomogeneities. At larger concentrations, aggregation of the water molecules leads to phase separation. Finally, the degrees of alignment of the methyl groups and siloxane backbones at the interface are found to decrease with temperature but are augmented in the presence of an interface with water. C1 [Ismail, Ahmed E.; Grest, Gary S.; Heine, David R.; Stevens, Mark J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Tsige, Mesfin] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. RP Ismail, AE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aismail@sandia.gov RI Ismail, Ahmed/B-7790-2009 OI Ismail, Ahmed/0000-0001-9929-5598 FU Lockheed Martin Company, for the United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 59 TC 25 Z9 25 U1 5 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 28 PY 2009 VL 42 IS 8 BP 3186 EP 3194 DI 10.1021/ma802805y PG 9 WC Polymer Science SC Polymer Science GA 436JW UT WOS:000265411400043 ER PT J AU Harada, Y Li, H Li, HL Lennarz, WJ AF Harada, Yoichiro Li, Hua Li, Huilin Lennarz, William J. TI Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electron microscopy; glycoprotein biosynthesis; multicomponent complexes ID PROTEIN-CONDUCTING CHANNEL; ENDOPLASMIC-RETICULUM MEMBRANE; ACTIVITY IN-VIVO; SACCHAROMYCES-CEREVISIAE; TRANSFERASE COMPLEX; ANGSTROM RESOLUTION; MAMMALIAN RIBOSOME; NASCENT CHAINS; RIBOPHORIN-I; YEAST AB Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of approximate to 1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. C1 [Harada, Yoichiro; Li, Huilin; Lennarz, William J.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Li, Hua; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Lennarz, WJ (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. EM wlennarz@notes.cc.sunysb.edu FU National Institute of Health [GM33185]; Brookhaven National Laboratory Laboratory-Directed Research and Development [06-60]; National Institutes of Health [GM74985] FX We thank Dr. Daisuke Kohda (Kyushu University, Fukuoka, Japan) for providing TAMRA-Arg-Asn-Ala-Thr-Ala-Arg-COOH peptide; Drs. Hermann Schindelin (University of Wuburg, Wuzburg, Germany), Neta Dean, Gang Zhao, Guangtao Li, and Hideyuki Takeuchi (Stony Brook University, New York) for useful discussions; and Dr. Toshi Tsukiyama (Fred Hutchinson Cancer Research Center, Seattle) for 3FLAG-KANMX6 plasmid. This work was partially supported by National Institute of Health Grant GM33185 (to W. J. L), Brookhaven National Laboratory Laboratory-Directed Research and Development Grant 06-60 (to Huilin Li), and National Institutes of Health Grant GM74985 (to Huilin Li). NR 43 TC 29 Z9 30 U1 1 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 28 PY 2009 VL 106 IS 17 BP 6945 EP 6949 DI 10.1073/pnas.0812489106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 438VS UT WOS:000265584500016 PM 19365066 ER PT J AU Hitomi, K DiTacchio, L Arvai, AS Yamamoto, J Kim, ST Todo, T Tainer, JA Iwai, S Panda, S Getzoff, ED AF Hitomi, Kenichi DiTacchio, Luciano Arvai, Andrew S. Yamamoto, Junpei Kim, Sang-Tae Todo, Takeshi Tainer, John A. Iwai, Shigenori Panda, Satchidananda Getzoff, Elizabeth D. TI Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE blue-light photoreceptor; circadian clock; electron transfer; flavoprotein; FAD ID BLUE-LIGHT PHOTORECEPTOR; MAMMALIAN CIRCADIAN CLOCK; ESCHERICHIA-COLI; ARABIDOPSIS-THALIANA; NUCLEAR-LOCALIZATION; ACTIVE-SITE; DROSOPHILA; PROTEINS; COFACTOR; FAMILY AB Homologous flavoproteins from the photolyase (PHR)/cryptochrome (CRY) family use the FAD cofactor in PHRs to catalyze DNA repair and in CRYs to tune the circadian clock and control development. To help address how PHR/CRY members achieve these diverse functions, we determined the crystallographic structure of Arabidopsis thaliana (6-4) PHR (UVR3), which is strikingly (>65%) similar in sequence to human circadian clock CRYs. The structure reveals a substrate-binding cavity specific for the UV-induced DNA lesion, (6-4) photoproduct, and cofactor binding sites different from those of bacterial PHRs and consistent with distinct mechanisms for activities and regulation. Mutational analyses were combined with this prototypic structure for the (6-4) PHR/clock CRY cluster to identify structural and functional motifs: phosphate-binding and Pro-Lys-Leu protrusion motifs constricting access to the substrate-binding cavity above FAD, sulfur loop near the external end of the Trp electron-transfer pathway, and previously undefined C-terminal helix. Our results provide a detailed, unified framework for investigations of (6-4) PHRs and the mammalian CRYs. Conservation of key residues and motifs controlling FAD access and activities suggests that regulation of FAD redox properties and radical stability is essential not only for (6-4) photoproduct DNA repair, but also for circadian clock-regulating CRY functions. The structural and functional results reported here elucidate archetypal relationships within this flavoprotein family and suggest how PHRs and CRYs use local residue and cofactor tuning, rather than larger structural modifications, to achieve their diverse functions encompassing DNA repair, plant growth and development, and circadian clock regulation. C1 [Hitomi, Kenichi; Arvai, Andrew S.; Tainer, John A.; Getzoff, Elizabeth D.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi; Arvai, Andrew S.; Tainer, John A.; Getzoff, Elizabeth D.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi; Yamamoto, Junpei; Iwai, Shigenori] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan. [Hitomi, Kenichi; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [DiTacchio, Luciano; Panda, Satchidananda] Salk Inst Biol Studies, Regulatory Biol Lab, La Jolla, CA 92037 USA. [Kim, Sang-Tae; Todo, Takeshi] Kyoto Univ, Ctr Radiat Biol, Kyoto 6068501, Japan. RP Getzoff, ED (reprint author), Scripps Res Inst, Dept Mol Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM edg@scripps.edu RI DiTacchio, Luciano/D-6341-2011; Panda, Satchidananda/J-6891-2012 OI DiTacchio, Luciano/0000-0001-9570-7348; FU U.S. Department of Energy Program Integrated Diffraction Analysis Technologies [DE-AC02-05CH11231]; National Institutes of Health [GM37684, GM046312, EY016807, 1F32GM082083-01]; Pew Scholars; Asahi Glass Foundation; Human Frontier Science Program; Japan Society for the Promotion of Science fellowships; Skaggs Institute for Chemical Biology FX We thank Dr. H. Nakamura for modeling advice; H. Le, E. Sato, C. Hitomi, and Drs. M. Ariyoshi and Y. Fujiwara for technical assistance; Drs. T. Ishikawa, S. Nakajima, and K. Yamamoto for UVR3 sequence information and help with repair assays; Dr. T. Oyama for the cDNA library; Drs. D. Shin, J. Huffman, and J. Tubbs for manuscript suggestions; and the Advanced Light Source, which is supported by U.S. Department of Energy Program Integrated Diffraction Analysis Technologies under Contract DE-AC02-05CH11231, for X-ray data collection facilities. This work was supported by National Institutes of Health Grants GM37684 (to E. D. G.), GM046312 (to J. A. T.), EY016807 (to S. P.), and 1F32GM082083-01 (to L. D.), Pew Scholars (S. P.), Asahi Glass Foundation (S. I.), Human Frontier Science Program (S. I. and J. A. T.), the Japan Society for the Promotion of Science fellowships (to K. H. and J. Y.), and The Skaggs Institute for Chemical Biology (K. H.). NR 55 TC 64 Z9 68 U1 2 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 28 PY 2009 VL 106 IS 17 BP 6962 EP 6967 DI 10.1073/pnas.0809180106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 438VS UT WOS:000265584500019 PM 19359474 ER PT J AU Chambers, M Verduzco, R Gleeson, JT Sprunt, S Jakli, A AF Chambers, Martin Verduzco, Rafael Gleeson, James T. Sprunt, Samuel Jakli, Antal TI Calamitic Liquid-Crystalline Elastomers Swollen in Bent-Core Liquid-Crystal Solvents SO ADVANCED MATERIALS LA English DT Article ID NEMATIC ELASTOMERS; MONOMERS AB The swelling of calamitic liquid crystal elastomers (LCEs) with bent-core mesogens is investigated in the isotropic phase of both materials. The swelling magnitude and dynamics are determined and fitted with a dual exponential. The host LCEs imbibe bent-core molecules up to 30-40 mol%. The swollen elastomers exhibit nematic phases, with some possessing a lower temperature smectic phase. C1 [Chambers, Martin; Jakli, Antal] Kent State Univ, Inst Liquid Crystal, Kent, OH 44240 USA. [Chambers, Martin; Gleeson, James T.; Sprunt, Samuel] Kent State Univ, Dept Phys, Kent, OH 44240 USA. [Verduzco, Rafael] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Chambers, M (reprint author), Kent State Univ, Inst Liquid Crystal, Kent, OH 44240 USA. EM mchambers@ijs.si RI Gleeson, James/B-9208-2008 FU NSF [DMR 0606357, DMR-0606160]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ONR [N00014-07-1-0440] FX The liquid crystal elastomer system used in this study was provided by the Slobodan Zurner group ofjozef Stefan Institute and the New Liquid Crystal Materials Facility (http://nlcmf.Ici.kent.edu) supported by the NSF (DMR 0606357), the Ohio Department of Development, Kent State University, and AlphaMicron, Inc. A portion of this work was performed at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors would like to acknowledge support from ONR (N00014-07-1-0440) and NSF (DMR-0606160). NR 29 TC 17 Z9 17 U1 2 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD APR 27 PY 2009 VL 21 IS 16 BP 1622 EP + DI 10.1002/adma.200802739 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 443ZX UT WOS:000265950500017 ER PT J AU Choi, H Borondics, F Siegel, DA Zhou, SY Martin, MC Lanzara, A Kaindl, RA AF Choi, H. Borondics, F. Siegel, D. A. Zhou, S. Y. Martin, M. C. Lanzara, A. Kaindl, R. A. TI Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene SO APPLIED PHYSICS LETTERS LA English DT Article DE buffer layers; electromagnetism; electron-hole recombination; epitaxial layers; graphene; high-speed optical techniques; infrared spectra; monolayers; optical conductivity; photoexcitation; terahertz wave spectra ID SILICON-CARBIDE; SPECTROSCOPY; SUBSTRATE AB We study the broadband optical conductivity and ultrafast carrier dynamics of epitaxial graphene in the few-layer limit. Equilibrium spectra of nominally buffer, monolayer, and multilayer graphene exhibit significant terahertz and near-infrared absorption, consistent with a model of intra- and interband transitions in a dense Dirac electron plasma. Nonequilibrium terahertz transmission changes after photoexcitation are shown to be dominated by excess hole carriers, with a 1.2 ps monoexponential decay that reflects the minority-carrier recombination time. C1 [Choi, H.; Siegel, D. A.; Zhou, S. Y.; Lanzara, A.; Kaindl, R. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Borondics, F.; Martin, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Siegel, D. A.; Zhou, S. Y.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Choi, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Zhou, Shuyun/A-5750-2009; Borondics, Ferenc/A-7616-2008; OI Borondics, Ferenc/0000-0001-9975-4301 FU DOE Office of Basic Energy Sciences [DE-AC02-05CH11231]; Rosztoczy Foundation FX This work was supported by the DOE Office of Basic Energy Sciences, Contract DE-AC02-05CH11231. F.B. acknowledges a scholarship of the Rosztoczy Foundation. NR 24 TC 148 Z9 150 U1 10 U2 91 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172102 DI 10.1063/1.3122348 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700033 ER PT J AU Hawkridge, ME Liliental-Weber, Z Kim, HJ Choi, S Yoo, D Ryou, JH Dupuis, RD AF Hawkridge, M. E. Liliental-Weber, Z. Kim, H. J. Choi, S. Yoo, D. Ryou, J. -H. Dupuis, R. D. TI Erratic dislocations within funnel defects in AlN templates for AlGaN epitaxial layer growth SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; dislocations; electro-optical effects; epitaxial growth; gallium compounds; III-V semiconductors; impurities; MOCVD; phase separation; semiconductor epitaxial layers; semiconductor growth; transmission electron microscopy ID SAPPHIRE; FILMS; GAN AB We report our transmission electron microscopy observations of erratic dislocation behavior within funnel-like defects on top of AlN templates filled with AlGaN from an overlying epitaxial layer. This dislocation behavior is observed in material where phase separation is also observed. Several bare AlN templates were examined to determine the formation mechanism of the funnels. Our results suggest that they are formed prior to epitaxial layer deposition due to the presence of impurities during template regrowth. We discuss the erratic dislocation behavior in relation to the presence of the phase-separated material and the possible effects of these defects on the optoelectronic properties. C1 [Hawkridge, M. E.; Liliental-Weber, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, H. J.; Choi, S.; Yoo, D.; Ryou, J. -H.; Dupuis, R. D.] Georgia Inst Technol, Ctr Compound Semicond, Atlanta, GA 30332 USA. [Kim, H. J.; Choi, S.; Yoo, D.; Ryou, J. -H.; Dupuis, R. D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Hawkridge, ME (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 62R0209-213, Berkeley, CA 94720 USA. EM mehawkridge@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012 FU Georgia Institute of Technology [R7776S2, FA8718-07-C-0002]; U.S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley National Laboratory FX This work was supported by the Georgia Institute of Technology Contract No. R7776S2 (under the DARPA DU-VAP Program Contract No. FA8718-07-C-0002) through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. NR 20 TC 4 Z9 4 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171912 DI 10.1063/1.3129870 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700031 ER PT J AU Keavney, DJ Cheng, XM Buchanan, KS AF Keavney, D. J. Cheng, X. M. Buchanan, K. S. TI Polarity reversal of a magnetic vortex core by a unipolar, nonresonant in-plane pulsed magnetic field SO APPLIED PHYSICS LETTERS LA English DT Article DE ferromagnetic materials; magnetisation; micromagnetics; Permalloy; spin systems; vortices; X-ray photoelectron spectra AB We report the polarity reversal of a magnetic vortex core using a nonresonant in-plane pulsed magnetic field of arbitrary waveform studied using time-resolved x-ray photoemission electron microscopy and micromagnetic simulations. The imaging and simulations show that a 5 mT pulse, higher than the critical field for nonlinear effects, effectively leads to the randomization of the vortex core polarity. The micromagnetic simulations further show that the onset of stochastic core polarity randomization does not necessarily coincide with the critical reversal field, leading to a field window for predictable core reversal. C1 [Keavney, D. J.; Cheng, X. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Buchanan, K. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Buchanan, K. S.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. RP Cheng, XM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM xmcheng@aps.anl.gov RI Cheng, Xuemei/D-2388-2010; OI Cheng, Xuemei/0000-0001-6670-4316; Buchanan, Kristen/0000-0003-0879-0038 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 11 TC 14 Z9 14 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172506 DI 10.1063/1.3111430 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700045 ER PT J AU Kraessig, B Dunford, RW Kanter, EP Landahl, EC Southworth, SH Young, L AF Kraessig, Bertold Dunford, R. W. Kanter, E. P. Landahl, E. C. Southworth, S. H. Young, L. TI A simple cross-correlation technique between infrared and hard x-ray pulses SO APPLIED PHYSICS LETTERS LA English DT Article DE fluorescence; krypton; optical pulse generation; photoionisation; X-ray absorption; X-ray emission spectra AB We report a gas phase technique to establish the temporal overlap of ultrafast infrared laser and hard x-ray pulses. We use tunnel ionization of a closed shell atom in the strong field at the focus of an infrared laser beam to open a distinct x-ray absorption resonance channel with a clear fluorescence signature. The technique has an intrinsic response of a few femtoseconds and is nondestructive to the two beams. It provides a step-functionlike cross-correlation result. The details of the transient provide a diagnostic of the temporal overlap of the two pulses. C1 [Kraessig, Bertold; Dunford, R. W.; Kanter, E. P.; Landahl, E. C.; Southworth, S. H.; Young, L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kraessig, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kraessig@anl.gov RI Landahl, Eric/A-1742-2010 FU Chemical Sciences, Geosciences, and Biosciences Division; Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, (and also in the case of the Advanced Photon Source) the Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 18 TC 6 Z9 6 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171113 DI 10.1063/1.3125256 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700013 ER PT J AU Li, TL Lee, JH Gao, YF Pharr, GM Huang, M Tsui, TY AF Li, T. L. Lee, J. H. Gao, Y. F. Pharr, G. M. Huang, M. Tsui, T. Y. TI Geometric effects on dislocation nucleation in strained electronics SO APPLIED PHYSICS LETTERS LA English DT Article DE dislocation loops; dislocation nucleation; integrated circuits; nanoelectronics; slip ID MASK-EDGE DEFECTS; TANGENTIAL CONTACT; ADHESIVE CONTACT; MICRO-PLASTICITY; SURFACE STEPS; SILICON; STRESS; MODULUS; GROWTH; SI AB Dislocation loops may be nucleated from sharp geometric features in strained micro- and nano-electronic devices. This process is investigated by a dissipative cohesive interface model which treats the dislocation core as a continuous, inhomogeneous lattice slip field. As a representative example, we calculate the critical external stress for dislocation nucleation from the edges/corners of a rectangular stress-free Si(3)N(4) pad on a Si substrate as a function of geometric parameters such as the length-to-height ratio and the three-dimensional shape of the pad. The shapes of the dislocations are also simulated. C1 [Li, T. L.; Lee, J. H.; Gao, Y. F.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Huang, M.] GE Global Res Ctr, Niskayuna, NY 12309 USA. [Tsui, T. Y.] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. RP Li, TL (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ygao7@utk.edu RI Li, Tianlei/F-8865-2010; Gao, Yanfei/F-9034-2010; Lee, Jin Haeng/E-2457-2011; Huang, Min/B-9269-2008 OI Li, Tianlei/0000-0003-1962-9290; Gao, Yanfei/0000-0003-2082-857X; Huang, Min/0000-0002-1282-1573 FU National Science Foundation; Center for Materials Processing; Joint Institute of Advanced Materials at the University of Tennessee; Korean Government (MOEHRD) [KRF-352-D00001]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC05-00OR22725] FX The authors acknowledge support from the National Science Foundation, the Center for Materials Processing, and the Joint Institute of Advanced Materials at the University of Tennessee. J.H.L. was partially supported by the Korea Research Foundation Grant (Grant No. KRF-352-D00001) funded by the Korean Government (MOEHRD). Research at the Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 31 TC 7 Z9 7 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171905 DI 10.1063/1.3126520 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700024 ER PT J AU Obukhov, Y Pelekhov, DV Nazaretski, E Movshovich, R Hammel, PC AF Obukhov, Yu. Pelekhov, D. V. Nazaretski, E. Movshovich, R. Hammel, P. C. TI Effect of localized magnetic field on the uniform ferromagnetic resonance mode in a thin film SO APPLIED PHYSICS LETTERS LA English DT Article DE ferromagnetic resonance; ferromagnetism; magnetic force microscopy; magnetic moments; magnetic thin films; magnetisation; micromagnetics AB We theoretically analyze the influence of the micromagnetic probe used in ferromagnetic resonance force microscopy (FMRFM) on the ferromagnetic resonance (FMR) modes in a thin ferromagnetic film. Our analysis of the FMRFM force response reveals three regimes defined by the extent to which the probe perturbs the uniform FMR mode. With closer approach, the FMRFM force grows more slowly because the strengthening probe field suppresses the FMR response. Our analysis agrees well with experimental data and provides theoretical foundations for FMRFM imaging. C1 [Obukhov, Yu.; Pelekhov, D. V.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Nazaretski, E.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Obukhov, Y (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM oboukhov@mps.ohio-state.edu; hammel@mps.ohio-state.edu RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 FU U.S. Department of Energy [DE-FG02-03ER46054] FX This work was supported by the U.S. Department of Energy through Grant No. DE-FG02-03ER46054. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy. NR 11 TC 5 Z9 5 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172508 DI 10.1063/1.3123264 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700047 ER PT J AU Wei, HX Qin, QH Wen, ZC Han, XF Zhang, XG AF Wei, H. X. Qin, Q. H. Wen, Z. C. Han, X. F. Zhang, X. -G. TI Magnetic tunnel junction sensor with Co/Pt perpendicular anisotropy ferromagnetic layer SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt; ferromagnetic materials; magnetic anisotropy; magnetic sensors; magnetic tunnelling; magnetoresistance; platinum ID MAGNETORESISTANCE SENSOR; FIELD AB Linear magnetoresistance is an important attribute for magnetic sensor design in space applications, three-dimensional detection of the magnetic field, and high field measurements. Here we demonstrate that a large linear magnetoresistance of up to 22% can be achieved in a magnetic tunnel junction that consists of two ferromagnetic layers, one with out of plane and one with in-plane magnetic anisotropy. The tunneling magnetoresistance with the electrical current perpendicular to the film plane and the magnetic configuration of the device are analyzed. C1 [Wei, H. X.; Qin, Q. H.; Wen, Z. C.; Han, X. F.] Chinese Acad Sci, State Key Lab Magnetism, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. RP Han, XF (reprint author), Chinese Acad Sci, State Key Lab Magnetism, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. EM hxwei@aphy.iphy.ac.cn; xfhan@aphy.iphy.ac.cn; xgz@ornl.gov RI Qin, Qihang/E-7266-2012; OI Wen, Zhenchao/0000-0001-7496-1339 FU Ministry of Science and Technology (MOST) [2006CB932200, 2009CB929203]; National Natural Science Foundation (NSFC) [10874225, 50721001, 60871048]; NSFC-The Royal Society (U. K.); NSFC-Australia DEST; K. C. Wong Education Foundation, Hong Kong; U. S. Department of Energy FX The project was supported by the State Key Project of Fundamental Research of Ministry of Science and Technology (MOST, Grant Nos. 2006CB932200 and 2009CB929203) and National Natural Science Foundation (NSFC, Grant Nos. 10874225, 50721001, and 60871048). X. F. H. thanks the partial support of the international joint projects of NSFC-The Royal Society (U. K.) and NSFC-Australia DEST and the partial support by K. C. Wong Education Foundation, Hong Kong. A portion of this research at ORNL's CNMS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 10 TC 26 Z9 26 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172902 DI 10.1063/1.3126064 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700054 ER PT J AU Wong-Ng, W Otani, M Levin, I Schenck, P Yang, Z Liu, G Cook, LP Feenstra, R Zhang, W Rupich, MW AF Wong-Ng, W. Otani, M. Levin, I. Schenck, P. Yang, Z. Liu, G. Cook, L. P. Feenstra, R. Zhang, W. Rupich, M. W. TI A phase relation study of Ba-Y-Cu-O coated-conductor films using the combinatorial approach SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; barium compounds; flux pinning; high-temperature superconductors; reaction kinetics; superconducting thin films; yttrium compounds ID THIN-FILMS; SUPERCONDUCTORS; DEPOSITION; PROGRESS; GROWTH; SYSTEM AB Phase relationships in bulk and thin film Ba-Y-Cu-O high-T(c) superconductor system were determined at processing conditions relevant for industrial production of coated conductors. Our results demonstrated that the absence of BaY(2)CuO(5) (which has a critical effect on flux pinning) at 735 degrees C-a typical temperature employed in production of coated conductors-in thin films processed in situ from the BaF(2) precursor is caused by the sluggish reaction kinetics rather than by the presence of fluorine in the system. Thermodynamic calculations combined with annealing experiments confirmed that BaY(2)CuO(5) is thermodynamically stable but forms at temperatures higher than 735 degrees C. C1 [Wong-Ng, W.; Otani, M.; Levin, I.; Schenck, P.; Yang, Z.; Liu, G.; Cook, L. P.] NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Feenstra, R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, W.; Rupich, M. W.] Amer Superconductor Corp, Westborough, MA 01581 USA. RP Wong-Ng, W (reprint author), NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. EM winnie.wong-ng@nist.gov RI Levin, Igor/F-8588-2010 FU U.S. Department of Energy FX This work was partially supported by the U.S. Department of Energy. NR 21 TC 4 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171910 DI 10.1063/1.3127222 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700029 ER PT J AU Schober, D Smith, B Lewis, SE Kusnierczyk, W Lomax, J Mungall, C Taylor, CF Rocca-Serra, P Sansone, SA AF Schober, Daniel Smith, Barry Lewis, Suzanna E. Kusnierczyk, Waclaw Lomax, Jane Mungall, Chris Taylor, Chris F. Rocca-Serra, Philippe Sansone, Susanna-Assunta TI Survey-based naming conventions for use in OBO Foundry ontology development SO BMC BIOINFORMATICS LA English DT Article ID BIO-ONTOLOGIES; NOMENCLATURE AB Background: A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion. Results: We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. Conclusion: Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data. C1 [Schober, Daniel; Lomax, Jane; Taylor, Chris F.; Rocca-Serra, Philippe; Sansone, Susanna-Assunta] EBI, EMBL, Cambridge CB10 1SD, England. [Schober, Daniel] Univ Med Ctr, Inst Med Biometry & Med Informat IMBI, D-79104 Freiburg, Germany. [Smith, Barry] SUNY Buffalo, Dept Philosophy, Buffalo, NY 14260 USA. [Smith, Barry] SUNY Buffalo, Ctr Excellence Bioinformat & Life Sci, Buffalo, NY 14260 USA. [Lewis, Suzanna E.; Mungall, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Bioinformat & Ontol Project, Berkeley, CA 94720 USA. [Kusnierczyk, Waclaw] Norwegian Univ Sci & Technol, NTNU, Dept Informat & Comp Sci, N-7034 Trondheim, Norway. [Taylor, Chris F.] NERC Environm Bioinformat Ctr NEBC, Oxford OX1 3SR, England. RP Sansone, SA (reprint author), EBI, EMBL, Wellcome Trust Genome Campus, Cambridge CB10 1SD, England. EM schober@imbi.uni-freiburg.de; phismith@buffalo.edu; suzi@berkeleybop.org; Waclaw.Marcin.Kusnierczyk@idi.ntnu.no; jane@ebi.ac.uk; cjm@fruitfly.org; chris.taylor@ebi.uk; rocca@ebi.ac.uk; sansone@ebi.ac.uk RI Smith, Barry/A-9525-2011; OI Smith, Barry/0000-0003-1384-116X; Lomax, Jane/0000-0001-8865-4321; Lewis, Suzanna/0000-0002-8343-612X FU Biotechnology and Biological Sciences Research Council [BB/E025080/1, BB/D524283/1]; NHGRI NIH HHS [1 U 54 HG004028, U54 HG004028] NR 23 TC 26 Z9 26 U1 1 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD APR 27 PY 2009 VL 10 AR 125 DI 10.1186/1471-2105-10-125 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 453JE UT WOS:000266605900001 PM 19397794 ER PT J AU Ribaudo, T Shaner, EA Howard, SS Gmachl, C Wang, XJ Choa, FS Wasserman, D AF Ribaudo, T. Shaner, E. A. Howard, S. S. Gmachl, C. Wang, X. J. Choa, F. -S. Wasserman, D. TI Active Control and Spatial Mapping of Mid-Infrared Propagating Surface Plasmons SO OPTICS EXPRESS LA English DT Article ID EXTRAORDINARY OPTICAL-TRANSMISSION; SUBWAVELENGTH HOLE ARRAYS; THIN METAL-FILMS; LOSS MECHANISMS; LIGHT; APERTURES AB Periodic arrays of subwavelength apertures in metal films have been shown to exhibit strongly enhanced transmission at wavelengths determined by the periodicity of the film as well as the optical properties of the metal and surrounding dielectric material. Here we investigate the coupling between such a grating and a Quantum Cascade Laser. By actively tuning the optical properties of our grating, we control the coupling of laser light to the plasmonic structure, switching our grating from a predominantly transmitting state to a state that allows coupling to propagating surface waves, which can then be imaged on the metallic surface. (C) 2009 Optical Society of America C1 [Ribaudo, T.; Wasserman, D.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Howard, S. S.; Gmachl, C.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Wang, X. J.] Adtech Opt Inc, City Of Industry, CA 91748 USA. [Choa, F. -S.] Univ Maryland Baltimore Cty, Dept CSEE, Baltimore, MD 21250 USA. RP Wasserman, D (reprint author), Univ Massachusetts, Dept Phys, 1 Univ Ave, Lowell, MA 01854 USA. EM daniel_wasserman@uml.edu RI Wasserman, Daniel/D-3913-2011; Howard, Scott/D-2900-2011 OI Howard, Scott/0000-0003-3246-6799 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank L. Cheng and D. Bethke for laser overgrowth and sample fabrication assistance, respectively. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 31 TC 11 Z9 11 U1 1 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 27 PY 2009 VL 17 IS 9 BP 7019 EP 7024 DI 10.1364/OE.17.007019 PG 6 WC Optics SC Optics GA 450DR UT WOS:000266381700013 PM 19399076 ER PT J AU Chow, WW Wieczorek, S AF Chow, Weng W. Wieczorek, Sebastian TI Using chaos for remote sensing of laser radiation SO OPTICS EXPRESS LA English DT Article ID SEMICONDUCTOR-LASER; OPTICAL-INJECTION; DYNAMICS; SUBJECT; SIGNAL AB An idea is proposed for detecting a weak laser signal from a remote source in the presence of strong background noise. The scheme exploits dynamical nonlinearities arising from heterodyning signal and reference fields inside an active reference laser cavity. This paper shows that for certain reference laser configurations, the resulting bifurcations in the reference laser may be used as warning of irradiation by a laser source. (c) 2009 Optical Society of America C1 [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wieczorek, Sebastian] Univ Exeter, Math Res Inst, Exeter EX4 4QF, Devon, England. [Chow, Weng W.] Texas A&M Univ, Inst Quantum Studies, College Stn, TX 77843 USA. [Chow, Weng W.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wwchow@sandia.gov FU United States Department of Energy's Laboratory Directed Research and Development (LDRD) FX The work is supported by the United States Department of Energy's Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories and by the Alexander von Humboldt Foundation. NR 20 TC 8 Z9 8 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 27 PY 2009 VL 17 IS 9 BP 7491 EP 7504 DI 10.1364/OE.17.007491 PG 14 WC Optics SC Optics GA 450DR UT WOS:000266381700064 PM 19399127 ER PT J AU Choi, H Pile, DFP Nam, S Bartal, G Zhang, X AF Choi, Hyeunseok Pile, David F. P. Nam, Sunghyun Bartal, Guy Zhang, Xiang TI Compressing surface plasmons for nano-scale optical focusing SO OPTICS EXPRESS LA English DT Article ID WAVE-GUIDES; POLARITONS; SUPERLENS; FIELD; BEAM AB A major challenge in optics is how to deliver and concentrate light from the micron-scale into the nano-scale. Light can not be guided, by conventional mechanisms, with optical beam sizes significantly smaller than its wavelength due to the diffraction limit. On the other hand, focusing of light into very small volumes beyond the diffraction limit can be achieved by exploiting the wavelength scalability of surface plasmon polaritons. By slowing down an optical wave and shrinking its wavelength during its propagation, optical energy can be compressed and concentrated down to nanometer scale, namely, nanofocusing. Here, we experimentally demonstrate and quantitatively measure the nanofocusing of surface plasmon polaritons in tapered metallic V-grooves down to the deep sub-wavelength scale - lambda/40 at wavelength of 1.5 micron - with almost 50% power efficiency. (c) 2009 Optical Society of America C1 [Choi, Hyeunseok; Pile, David F. P.; Nam, Sunghyun; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 5130 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; OI Pile, David/0000-0001-9961-1319 FU DARPA [HR0011-05-3-0002 a]; NSF Nanoscale Science and Technology Center (NSEC) [CMMI-0751621]; Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) [KRF-2006-352-D00020] FX This work was supported by DARPA under grant HR0011-05-3-0002 and NSF Nanoscale Science and Technology Center (NSEC) under award number CMMI-0751621. H. Choi was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-352-D00020). NR 29 TC 84 Z9 84 U1 3 U2 39 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 27 PY 2009 VL 17 IS 9 BP 7519 EP 7524 DI 10.1364/OE.17.007519 PG 6 WC Optics SC Optics GA 450DR UT WOS:000266381700066 PM 19399129 ER PT J AU de Florian, D Grazzini, M AF de Florian, Daniel Grazzini, Massimiliano TI Higgs production through gluon fusion: Updated cross sections at the Tevatron and the LHC SO PHYSICS LETTERS B LA English DT Article ID FINITE-TOP-MASS; BOSON PRODUCTION; PARTON DISTRIBUTIONS; HADRON COLLIDERS; NNLO; QCD; ORDER AB We present updated predictions for the total cross section for Higgs boson production by gluon-gluon fusion in hadron collisions. Our calculation includes the most advanced theoretical information available at present for this observable: soft-gluon resummation up to next-to-next-to-leading logarithmic accuracy, the exact treatment of the bottom-quark contribution tip to next-to-leading order, and two-loop electroweak effects. We adopt the most recent parametrization of parton distribution functions at next-to-next-to-leading order, and we evaluate the corresponding uncertainties. In comparison with our previous central predictions, at the Tevatron the difference ranges from +9% for m(H) = 115 GeV to -9% for m(H) = 200 GeV. At the LHC the cross section is instead significantly increased. The effect goes from +30% for m(H) = 115 GeV to +9% for m(H) = 300 GeV, and is mostly due to the new parton distribution functions. We also provide new predictions for the LHC at root s = 10 TeV. (C) 2009 Elsevier B.V. All rights reserved. C1 [de Florian, Daniel] Univ Buenos Aires, FCEYN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [de Florian, Daniel] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Grazzini, Massimiliano] Univ Florence, Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Grazzini, Massimiliano] Univ Florence, Dipartimento Fis, I-50019 Florence, Italy. RP de Florian, D (reprint author), Univ Buenos Aires, FCEYN, Dept Fis, Pabello 1 Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. EM deflo@df.uba.ar; grazzini@fi.infn.it RI de Florian, Daniel/B-6902-2011 OI de Florian, Daniel/0000-0002-3724-0695 FU ANPCYT; UBA-CyT; CONICET; US Department of Energy [DE-AC02-98CH10886] FX We thank Babis Anastasiou and Christian Sturm for useful discussions. We are grateful to Stefano Catani for helpful discussions and comments on the manuscript. The work of D.deF. was partially supported by ANPCYT, UBA-CyT and CONICET. D.deF. is grateful to the US Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of his work. NR 27 TC 144 Z9 144 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 27 PY 2009 VL 674 IS 4-5 BP 291 EP 294 DI 10.1016/j.physletb.2009.03.033 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 439JD UT WOS:000265622500009 ER PT J AU Zhang, B Chen, G Liang, YL Xu, P AF Zhang, Bin Chen, Gang Liang, Yilin Xu, Ping TI Structural and electrochemical properties of LiNi0.5Mn0.5-xAlxO2 (x=0, 0.02, 0.05, 0.08, and 0.1) cathode materials for lithium-ion batteries SO SOLID STATE IONICS LA English DT Article DE LiNi0.5Mn0.5O2; Aluminum substitution; Layered structure; Cathode material; Lithium ion battery ID NICKEL MANGANESE OXIDES; LI-ION; COPRECIPITATION METHOD; COBALT SUBSTITUTION; ELECTRODE MATERIALS; PERFORMANCE; BEHAVIOR; AL; INTERCALATION; CELLS AB Layered LiNi0.5Mn0.5-xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge-discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5-xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5-xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219,169,155, and 129 mAh g(-1) at 10, 100, 200, and 400 MA g(-1) current density respectively. Cycled under 40 mA g(-1) in 2.8-4.6 V, LiNi0.5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g(-1) for the first cycle, and 179 mAh g(-1) after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0.5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Bin; Chen, Gang; Liang, Yilin; Xu, Ping] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. [Xu, Ping] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87545 USA. RP Chen, G (reprint author), Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. EM gchen@hit.edu.cn; pingxu1980@hotmail.com RI Xu, Ping/I-1910-2013; zhou, yansong/J-8476-2013; Chen, Gang/B-5073-2016; Zhou, Yansong/K-6291-2015 OI Xu, Ping/0000-0002-1516-4986; Zhou, Yansong/0000-0003-1369-8324 FU National Science Foundation of China [20571019] FX This work was supported by the National Science Foundation of China (Project No.20571019). The Project was sponsored by SRF for ROCS, SEM and the Project-sponsored by SRF for ROCS, HIT. P. Xu thanks helpful discussions with Dr. Darrick Williams and Dr. Hsing-Lin Wang about the XRD. NR 48 TC 23 Z9 26 U1 4 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD APR 27 PY 2009 VL 180 IS 4-5 BP 398 EP 404 DI 10.1016/j.ssi.2009.01.009 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 443ED UT WOS:000265892100017 ER PT J AU Riesen, R Brightwell, R Bridges, PG Hudson, T Maccabe, AB Widener, PM Ferreira, K AF Riesen, Rolf Brightwell, Ron Bridges, Patrick G. Hudson, Trammell Maccabe, Arthur B. Widener, Patrick M. Ferreira, Kurt TI Designing and implementing lightweight kernels for capability computing SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE parallel computing; operating systems ID PERFORMANCE; SUPPORT; MODEL AB In the early 1990s, researchers at Sandia National Laboratories and the University of New Mexico began development of customized system software for massively parallel 'capability' computing platforms. These lightweight kernels have proven to be essential for delivering the full power of the underlying hardware to applications. This claim is underscored by the success of several supercomputers, including the Intel Paragon, Intel Accelerated Strategic Computing Initiative Red, and the Cray XT series of systems, each having established a new standard for high-performance computing upon introduction. In this paper, we describe our approach to lightweight compute node kernel design and discuss the design principles that have guided several generations of implementation and deployment. A broad strategy of operating system specialization has led to a focus on user-level resource management, deterministic behavior, and scalable system services. The relative importance of each of these areas has changed over the years in response to changes in applications and hardware and system architecture. We detail our approach and the associated principles, describe how our application of these principles has changed over time, and provide design and performance comparisons to contemporaneous supercomputing operating systems. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Bridges, Patrick G.; Maccabe, Arthur B.; Widener, Patrick M.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Riesen, Rolf; Brightwell, Ron; Ferreira, Kurt] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hudson, Trammell] OS Res, Washington, DC 20036 USA. RP Bridges, PG (reprint author), Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. EM bridges@cs.unm.edu FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Contract/grant sponsor: United States Department of Energy's National Nuclear Security Administration; contract/grant number: DE-AC04-94AL85000 NR 35 TC 7 Z9 7 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD APR 25 PY 2009 VL 21 IS 6 BP 793 EP 817 DI 10.1002/cpe.1361 PG 25 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 428MM UT WOS:000264852400004 ER PT J AU Easterling, DR Wehner, MF AF Easterling, David R. Wehner, Michael F. TI Is the climate warming or cooling? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB Numerous websites, blogs and articles in the media have claimed that the climate is no longer warming, and is now cooling. Here we show that periods of no trend or even cooling of the globally averaged surface air temperature are found in the last 34 years of the observed record, and in climate model simulations of the 20(th) and 21(st) century forced with increasing greenhouse gases. We show that the climate over the 21(st) century can and likely will produce periods of a decade or two where the globally averaged surface air temperature shows no trend or even slight cooling in the presence of longer-term warming. Citation: Easterling, D. R., and M. F. Wehner (2009), Is the climate warming or cooling?, Geophys. Res. Lett., 36, L08706, doi: 10.1029/2009GL037810. C1 [Easterling, David R.] NOAA, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Wehner, Michael F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Easterling, DR (reprint author), NOAA, Natl Climat Data Ctr, 151 Pattom Ave, Asheville, NC 28801 USA. EM david.easterling@noaa.gov; mfwehner@lbl.gov FU Climate Change Prediction Program; Office of Science; U.S. Department of Energy; Office of Biological and Environmental Sciences; U.S. Department of Energy [DE-AI02-96ER62276] FX We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the World Climate Research Program's (WCRP) Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset and support for this analysis is provided by the Climate Change Prediction Program, Office of Science, and the U.S. Department of Energy. Additional support to DRE was provided by the Office of Biological and Environmental Sciences, U.S. Department of Energy under Interagency Agreement DE-AI02-96ER62276. NR 6 TC 193 Z9 210 U1 7 U2 78 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 25 PY 2009 VL 36 AR L08706 DI 10.1029/2009GL037810 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 438CT UT WOS:000265534200004 ER PT J AU Daniel, WB Ecke, RE Subramanian, G Koch, DL AF Daniel, W. Brent Ecke, Robert E. Subramanian, G. Koch, Donald L. TI Clusters of sedimenting high-Reynolds-number particles SO JOURNAL OF FLUID MECHANICS LA English DT Article ID DRIVEN GRAVITY CURRENTS; NEWTONIAN FLUID; SPHERE; TRANSITION; WAKE C1 [Subramanian, G.] Jawaharlal Nehru Ctr Adv Sci Res, Engn Mech Unit, Bangalore 560064, Karnataka, India. [Daniel, W. Brent; Ecke, Robert E.] Los Alamos Natl Lab, Ctr Nonlinear Studies & Condensed Matter & Therma, Los Alamos, NM 87545 USA. [Koch, Donald L.] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA. RP Subramanian, G (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Engn Mech Unit, Bangalore 560064, Karnataka, India. EM sganesh@jncasr.ac.in OI Ecke, Robert/0000-0001-7772-5876 FU NSF [CBET-0730579] FX This work was Supported by NSF grant CBET-0730579. NR 19 TC 6 Z9 6 U1 1 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD APR 25 PY 2009 VL 625 BP 371 EP 385 DI 10.1017/S002211200900620X PG 15 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 441WO UT WOS:000265801400014 ER PT J AU Fan, GJ Li, L Yang, B Choo, H Liaw, PK Saleh, TA Clausen, B Brown, DW AF Fan, G. J. Li, L. Yang, Bin Choo, H. Liaw, P. K. Saleh, T. A. Clausen, B. Brown, D. W. TI In situ neutron-diffraction study of tensile deformation of a bulk nanocrystalline alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Plastic deformation; Nanocrystalline materials; Neutron-diffraction ID SEVERE PLASTIC-DEFORMATION; NANOSTRUCTURED MATERIALS; GRAIN-GROWTH; THIN-FILMS; STRESS; BEHAVIOR; NICKEL; TEMPERATURE; DUCTILITY; STRENGTH AB In situ neutron-diffraction technique has been employed to study the uniaxial tensile deformation of a bulk nanocrystalline Ni-Fe alloy. In contrast to an increase in the full-width half-maximum (FWHM) of the neutron-diffraction patterns for the coarse-grained Ni, the FWHM for the nanocrystalline Ni-Fe alloy decreases with increasing the plastic strain, epsilon(p). The deformation with epsilon(p) < 1.5% did not introduce a residual lattice strain and a texture in the nanocrystalline Ni-Fe alloy, which were otherwise developed in the coarse-grained Ni. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fan, G. J.; Li, L.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yang, Bin] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Saleh, T. A.; Clausen, B.; Brown, D. W.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Fan, GJ (reprint author), Smith Int Inc, MegaDiamond, 275 W 2230 N, Provo, UT 84604 USA. EM gfan@smith.com RI Choo, Hahn/A-5494-2009; Clausen, Bjorn/B-3618-2015; OI Choo, Hahn/0000-0002-8006-8907; Clausen, Bjorn/0000-0003-3906-846X; Saleh, Tarik/0000-0003-2108-4293 FU National Science Foundation (NSF); International Materials Institutes (IMI) Program [DMR-0231320] FX This work was supported by the National Science Foundation (NSF) International Materials Institutes (IMI) Program (DMR-0231320). The authors thank the valuable discussion with Prof. Y.D. Wang of Northeastern University, China. NR 30 TC 8 Z9 8 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD APR 25 PY 2009 VL 506 IS 1-2 BP 187 EP 190 DI 10.1016/j.msea.2008.11.054 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 425EY UT WOS:000264621000028 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO De Vaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira De Vaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collabroation TI Evidence of WW and WZ Production with lepton plus jets Final States in pp Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSON AB We present first evidence for WW+WZ production in lepton+jets final states at a hadron collider. The data correspond to 1.07 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron in pp collisions at root s=1.96 TeV. The observed cross section for WW+WZ production is 20.2 +/- 4.5 pb, consistent with the standard model and more precise than previous measurements in fully leptonic final states. The probability that background fluctuations alone produce this excess is < 5.4x10(-6), which corresponds to a significance of 4.4 standard deviations. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Chakraborty, D.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; De Vaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christoudias, T.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 FU DOE; NSF ( USA); CEA; FASI; Rosatom; RFBR ( Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP ( Brazil); DAE; DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF; KOSEF ( Korea); CONICET; UBACyT ( Argentina); FOM ( The Netherlands); STFC; MSMT; GACR ( Czech Republic); CRC Program; CFI; NSERC; WestGrid Project ( Canada); BMBF; DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS; CNSF ( China); Alexander von Humboldt Foundation ( Germany); [CNRS/IN2P3] FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation ( Germany). NR 28 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 161801 DI 10.1103/PhysRevLett.102.161801 PG 7 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300012 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO De Vaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira De Vaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for Long-Lived Charged Massive Particles with the D0 Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHARGINOS AB We search for long-lived charged massive particles using 1.1 fb(-1) of data collected by the D0 detector at the Fermilab Tevatron pp Collider. Time-of-flight information is used to search for pair produced long-lived tau sleptons, gauginolike charginos, and Higgsino-like charginos. We find no evidence of a signal and set 95% C.L. cross section upper limits for staus, which vary from 0.31 to 0.04 pb for stau masses between 60 and 300 GeV. We also set lower mass limits of 206 GeV (171 GeV) for pair produced charged gauginos (Higgsinos). C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Naumann, N. A.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; De Vaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christoudias, T.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Bargassa, Pedrame/O-2417-2016; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Shivpuri, R K/A-5848-2010; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Mundim, Luiz/A-1291-2012; Fisher, Wade/N-4491-2013; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012 OI Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Belanger-Champagne, Camille/0000-0003-2368-2617; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Blekman, Freya/0000-0002-7366-7098; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549 FU DOE; NSF ( U. S. A.); CEA; CNRS/IN2P3; FASI; Rosatom; RFBR ( Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP ( Brazil); DAE; DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF; KOSEF ( Korea); CONICET; UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT; GACR ( Czech Republic); CRC Program; CFI; NSERC; WestGrid Project ( Canada); BMBF; DFG ( Germany); SFI ( Ireland); The Swedish Research Council (Sweden); CAS; CNSF ( China); Alexander von Humboldt Foundation ( Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( U. S. A.); CEA and CNRS/IN2P3 ( France); FASI, Rosatom, and RFBR ( Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation ( Germany). NR 18 TC 45 Z9 45 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 161802 DI 10.1103/PhysRevLett.102.161802 PG 7 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300013 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of B -> X gamma Decays and Determination of |V-td/V-ts| SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-DECAYS; SUPERSYMMETRY; PHYSICS; MODEL AB Using a sample of 383x10(6) BB events collected by the BABAR experiment, we measure sums of seven exclusive final states B -> X-d(s)gamma, where X-d(X-s) is a nonstrange (strange) charmless hadronic system in the mass range 0.6-1.8 GeV/c(2). After correcting for unmeasured decay modes in this mass range, we obtain a branching fraction for b -> d gamma of (7.2 +/- 2.7(stat)+/- 2.3(syst))x10(-6). Taking the ratio of X-d to X-s we find Gamma(b -> d gamma)/Gamma(b -> s gamma)=0.033 +/- 0.013(stat)+/- 0.009(syst), from which we determine |V-td/V-ts|=0.177 +/- 0.043. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, Lab Leprincce Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.;