FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Krupka, KM
Parkhurst, MA
Gold, K
Arey, BW
Jenson, ED
Guilmette, RA
AF Krupka, Kenneth M.
Parkhurst, Mary Ann
Gold, Kenneth
Arey, Bruce W.
Jenson, Evan D.
Guilmette, Raymond A.
TI PHYSICOCHEMICAL CHARACTERIZATION OF CAPSTONE DEPLETED URANIUM AEROSOLS
III: MORPHOLOGIC AND CHEMICAL OXIDE ANALYSES
SO HEALTH PHYSICS
LA English
DT Article
DE aerosols; contamination, environmental; uranium, depleted;
radioactivity, airborne
ID OXIDATION-STATES; PARTICLES; KOSOVO; PENETRATORS; TANK
AB The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.
C1 [Krupka, Kenneth M.; Parkhurst, Mary Ann; Arey, Bruce W.; Jenson, Evan D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Gold, Kenneth] USA, RDECOMARDEC, Picatinny Arsenal, NJ 07806 USA.
[Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA.
RP Krupka, KM (reprint author), Pacific NW Natl Lab, POB 999,K6-81, Richland, WA 99352 USA.
EM ken.krupka@pnl.gov
FU U.S. Office of the Special Assistant for Gulf War Illnesses, Medical
Readiness and Military Deployment (OSAGWI); U.S. Army; U.S. Department
of Energy [DE-AC05-76RL01830]
FX The authors thank H. Todd Schaef for his thorough review and helpful
comments. We also thank Dr. Larry Thomas for his advice regarding the
interpretation of particles evaluated using SEM/EDS, and to Drs. Lee
Magness and Joseph McDonald for their reviews. The Capstone DU Aerosol
Study was jointly supported by the U.S. Office of the Special Assistant
for Gulf War Illnesses, Medical Readiness and Military Deployment
(OSAGWI, currently referred to as Force Health Protection & Readiness
Policy & Programs) and the U.S. Army. The Pacific Northwest National
Laboratory (PNNL) is operated by Battelle for the U.S. Department of
Energy under contract DE-AC05-76RL01830.
NR 30
TC 14
Z9 14
U1 1
U2 5
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 276
EP 291
PG 16
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900006
PM 19204486
ER
PT J
AU Miller, G
Cheng, YS
Traub, RJ
Little, TT
Guilmette, RA
AF Miller, Guthrie
Cheng, Yung Sung
Traub, Richard J.
Little, Tom T.
Guilmette, Raymond A.
TI METHODS USED TO CALCULATE DOSES RESULTING FROM INHALATION OF CAPSTONE
DEPLETED URANIUM AEROSOLS
SO HEALTH PHYSICS
LA English
DT Article
DE analysis, statistical; dose, internal; Monte Carlo; uranium, depleted
ID CASCADE IMPACTOR; PARAMETERS; MODEL
AB The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a U.S. Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions are described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size-resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus the backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.
C1 [Miller, Guthrie; Little, Tom T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Cheng, Yung Sung; Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA.
[Traub, Richard J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Miller, G (reprint author), Los Alamos Natl Lab, MS G761 RP2, Los Alamos, NM 87545 USA.
EM guthrie@lanl.gov
FU U.S. Army Center for Health promotion and Preventive Medicine
(LJSACHPPM), Aberdeen, MD
FX The authors wish to thank Fran Szrom, Mary Ann Parkhurst, Gerald Falo,
LTC Gordon Lodde (USA-ret.), and David Alberth for helping to develop
the exposure scenarios used in these intake, dose, and concentration
calculations. Funding was provided by the U.S. Army Center for Health
promotion and Preventive Medicine (LJSACHPPM), Aberdeen, MD.
NR 37
TC 7
Z9 7
U1 1
U2 3
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 306
EP 327
PG 22
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900008
PM 19204488
ER
PT J
AU Guilmette, RA
Miller, G
Parkhurst, MA
AF Guilmette, Raymond A.
Miller, Guthrie
Parkhurst, Mary Ann
TI CAPSTONE DEPLETED URANIUM AEROSOL BIOKINETICS, CONCENTRATIONS, AND DOSES
SO HEALTH PHYSICS
LA English
DT Article
DE uranium, depleted; biokinetics; dose assessment; internal dose
ID RESPIRATORY-TRACT MODEL; PARAMETER UNCERTAINTIES; TISSUES
AB One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being for a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1 min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.
C1 [Guilmette, Raymond A.] Lovelace Resp Res Inst, Ctr Countermeasures Radiat, Albuquerque, NM 87108 USA.
[Miller, Guthrie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Guilmette, RA (reprint author), Lovelace Resp Res Inst, Ctr Countermeasures Radiat, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA.
EM rguilmette@lrri.org
FU U.S. Army Center for Health Promotion and Preventive Medicine
(USACHPPM), Aberdeen
FX The authors wish to acknowledge the Capstone HHRA team (Guthrie Miller,
Fletcher Hahn, Laurie Roszell, Eric Daxon. Thomas Little, Jeffrey
Whicker, Yung Sung Cheng, Rick Traub, Gordon Lodde, Fran Szrom, Don
Bihl, Kathy Creek, and Chad McKee) for their assistance in developing
the strategies used to calculate concentrations and doses. Special
thanks is extended to Rick Traub for generating the biokinetic figures
used in the text. The authors also want to recognize the contribution of
Wes Van Pelt, one of the external panel reviewers, who suggested
evaluating doses by individual Cl stages because the activity median
aerodynamic diameters poorly characterized many of our aerosol samples.
His independent realization of this need helped support Our resolve to
proceed with the much more complicated evaluation process using the
titanium content of each Cl substrate filter. Funding for the Capstone
HHRA was provided by the U.S. Army Center for Health Promotion and
Preventive Medicine (USACHPPM), Aberdeen, MD.
NR 22
TC 5
Z9 5
U1 0
U2 0
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 328
EP 342
PG 15
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900009
PM 19204489
ER
PT J
AU Roszell, LE
Hahn, FF
Lee, RB
Parkhurst, MA
AF Roszell, Laurie E.
Hahn, Fletcher F.
Lee, Robyn B.
Parkhurst, Mary Ann
TI ASSESSING THE RENAL TOXICITY OF CAPSTONE DEPLETED URANIUM OXIDES AND
OTHER URANIUM COMPOUNDS
SO HEALTH PHYSICS
LA English
DT Article
DE uranium, depleted; kidneys; modeling, dose assessment; risk estimates
ID GULF-WAR VETERANS; FOLLOW-UP; URANYL; RAT; NEPHROTOXICITY; CELLS
AB The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiological Protection value of 3 mu g U g(-1) kidney, a value that is based largely upon chronic studies in animals. In the present effort, a risk model equation was developed to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to + + +) and then placed into it Renal Effects Group (REG). A discriminant analysis was used to build it model equation to predict the REG based on the amount of uranium in the kidneys. The model equation was able to predict the REG, with 85% accuracy. The risk model was used to predict the REG for soldiers exposed to depleted uranium as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the REG of new cases in which acute exposures to uranium have occurred.
C1 [Roszell, Laurie E.; Lee, Robyn B.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA.
[Hahn, Fletcher F.] Lovelace Resp Res Inst, Albuquerque, NM 87105 USA.
[Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Roszell, LE (reprint author), USA, Ctr Hlth Promot & Prevent Med, 5159 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA.
EM laurie.roszell@us.army.mil
FU U.S. Army Center for Health Promotion and Preventive Medicine
(USACHPPM), Aberdeen, MD
FX The authors want to thank Raymond Guilmette, Guthrie Miller. and Thomas
Little for the dose modeling that provided the predicted kidney uranium
concentrations, and Eric Daxon, Gerald Falo, Fran Szrom and LTC Gordon
Lodde (USA-Ret.) for reviews of early versions of this manuscript.
Funding was provided by the U.S. Army Center for Health Promotion and
Preventive Medicine (USACHPPM), Aberdeen, MD.
NR 34
TC 11
Z9 11
U1 0
U2 1
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 343
EP 351
PG 9
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900010
PM 19204490
ER
PT J
AU Hahn, FF
Roszell, LE
Daxon, EG
Guilmette, RA
Parkhurst, MA
AF Hahn, Fletcher F.
Roszell, LaLtrie E.
Daxon, Eric G.
Guilmette, Raymond A.
Parkhurst, Mary Ann
TI RADIOLOGICAL RISK ASSESSMENT OF CAPSTONE DEPLETED URANIUM AEROSOLS
SO HEALTH PHYSICS
LA English
DT Article
DE radiation risk; health effects; uranium, depleted; inhalation
ID LUNG-CANCER RISK; NATURAL URANIUM; EXPOSURE; TISSUES; RADIONUCLIDES;
INHALATION; ISOTOPES; DUST
AB Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-y doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth, and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.
C1 [Hahn, Fletcher F.; Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87105 USA.
[Roszell, LaLtrie E.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA.
[Daxon, Eric G.] Battelle Mem Inst, San Antonio, TX 78228 USA.
[Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Hahn, FF (reprint author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87105 USA.
EM fhahn@LLRI.org
FU U.S. Army Center for Health Promotion and Preventive Medicine
(USACHPPM), Aberdeen, MD
FX Funding and technical guidance were provided by the U.S. Army Center for
Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD.
NR 45
TC 6
Z9 6
U1 1
U2 5
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 352
EP 362
PG 11
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900011
PM 19204491
ER
PT J
AU Szrom, F
Falo, GA
Lodde, GM
Parkhurst, MA
Daxon, EG
AF Szrom, Frances
Falo, Gerald A.
Lodde, Gordon M.
Parkhurst, Mary Ann
Daxon, Eric G.
TI INHALATION AND INGESTION INTAKES WITH ASSOCIATED DOSE ESTIMATES FOR
LEVEL II AND LEVEL III PERSONNEL USING CAPSTONE STUDY DATA
SO HEALTH PHYSICS
LA English
DT Article
DE ingestion; inhalation; radioactivity, airborne; uranium, depleted
ID HAND EXPOSURE
AB Depleted uranium (DU) intake rates and subsequent dose rates were estimated for personnel entering armored combat vehicles perforated with DU penetrators (level II and level III personnel) using data generated during the Capstone DU Aerosol Study. Inhalation intake rates and associated dose rates were estimated from cascade impactors worn by sample recovery personnel and from cascade impactors that served as area monitors. Ingestion intake rates and associated dose rates were estimated from cotton gloves worn by sample recovery personnel and from wipe-tests samples from the interior of vehicles perforated with large-caliber DU munitions. The mean DU inhalation intake rate for level II personnel ranged from 0.447 mg h(-1) based on breathing zone monitor data (in and around a perforated vehicle) to 14.5 rug h(-1) based on area monitor data (in a perforated vehicle). The mean DU ingestion intake rate for level II ranged from 4.8 mg h(-1) to 38.9 mg h(-1) based on the wipe-tests data including surface-to-glove transfer factors derived from the Capstone data. Based on glove contamination data, the mean DU ingestion intake rates for level II and level III personnel were 10.6 mg h(-1) and 1.78 mg h(-1), respectively. Effective dose rates and peak kidney uranium concentration rates were calculated based on the intake rates. The peak kidney uranium concentration rate cannot be multiplied by the total exposure duration when multiple intakes occur because uranium will clear from the kidney between the exposures.
C1 [Szrom, Frances; Falo, Gerald A.; Lodde, Gordon M.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA.
[Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Daxon, Eric G.] Battelle Columbus Operat, San Antonio, TX 78228 USA.
RP Szrom, F (reprint author), USA, Ctr Hlth Promot & Prevent Med, 5158 Blackliawk Rd, Aberdeen Proving Ground, MD 21010 USA.
EM fran.szrom@us.army.mil
NR 22
TC 0
Z9 0
U1 0
U2 0
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 363
EP 379
PG 17
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900012
PM 19204492
ER
PT J
AU Daxon, EG
Parkhurst, MA
Melanson, MA
Roszell, LE
AF Daxon, Eric G.
Parkhurst, Mary Ann
Melanson, Mark A.
Roszell, Laurie E.
TI APPLICATIONS OF CAPSTONE DEPLETED URANIUM AEROSOL RISK DATA TO MILITARY
COMBAT RISK MANAGEMENT
SO HEALTH PHYSICS
LA English
DT Article
DE aerosols; uranium, depleted; inhalation; risk analysis
AB Risks to personnel engaged in military operations include not only the threat of enemy firepower but also risks from exposure to other hazards such as radiation. Combatant commanders of the U.S. Army carefully weigh risks of casualties before implementing battlefield actions using an established paradigm that takes these risks into consideration. As a result of the inclusion of depleted uranium (DU) anti-armor ammunition in the conventional (non-nuclear) weapons arsenal, the potential for exposure to DU aerosols and its associated chemical and radiological effects becomes an element of the commanders' risk assessment. The Capstone DU Aerosol Study measured the range of likely DU oxide aerosol concentrations created inside a combat vehicle perforated with a DU munition, and the Capstone Human Health Risk Assessment (HHRA) estimated the associated doses and calculated risks. This paper focuses on the development of a scientific approach to adapt the risks from DU's non-uniform dose distribution within the body using the current U.S. Department of Defense radiation risk management approach. The approach developed equates the Radiation Exposure Status categories to the estimated radiological risks of DU and makes use of the Capstone-developed Renal Effects Group as a measure of chemical risk from DU intake. Recommendations are provided for modifying Army guidance and policy in order to better encompass the potential risks from DU aerosol inhalation during military operations.
C1 [Daxon, Eric G.] Battelle San Antonio Operat, San Antonio, TX 78228 USA.
[Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Melanson, Mark A.] USA, Walter Reed Army Med Ctr, Washington, DC 20307 USA.
[Roszell, Laurie E.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA.
RP Daxon, EG (reprint author), Battelle San Antonio Operat, 4100 Piedras Dr E,Suite 185, San Antonio, TX 78228 USA.
EM daxone@battelle.org
FU U.S. Army Center for Health Promotion and Preventive Medicine
(USACHPPM), Aberdeen, MD
FX The author wish to thank Raymond A. Guilmette and Chad B. McKee for
their ideas and guidance, Fletcher Hahn and Robyn Lee for their
assistance with the development of the Renal Effects Groups, and reviews
by Fran Szrom, Gerald Falo, David Alberth, Donald Bihl, and Joseph
McDonald. Funding was provided by the U.S. Army Center for Health
Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD.
NR 35
TC 1
Z9 1
U1 1
U2 8
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 380
EP 392
PG 13
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900013
PM 19204493
ER
PT J
AU Parkhurst, MA
Guilmette, RA
AF Parkhurst, Mary Ann
Guilmette, Raymond A.
TI CONCLUSIONS OF THE CAPSTONE DEPLETED URANIUM AEROSOL CHARACTERIZATION
AND RISK ASSESSMENT STUDY
SO HEALTH PHYSICS
LA English
DT Article
DE air sampling; dose assessment; inhalation; uranium, depleted
ID VETERANS; SURVEILLANCE
AB The rationale for the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study and its results and applications have been examined in the previous 13 articles of this special issue. This paper summarizes the study's results and discusses its successes and lessons learned. The robust data from the Capstone DU Aerosol Study have provided a sound basis for assessing the inhalation exposure to DU aerosols and the (lose and risk to personnel in combat vehicles at the time or perforation and to those entering immediately after perforation. The Human Health Risk Assessment provided a technically sound process for evaluating chemical and radiological doses and risks from DU aerosol exposure using well-accepted biokinetic and dosimetric models innovatively applied. An independent review of the study process and results is summarized, and recommendations for possible avenues of future study are provided by the authors anti by other major reviews of DU health hazards.
C1 [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA.
RP Parkhurst, MA (reprint author), Pacific NW Natl Lab, POB 999,K3-55, Richland, WA 99352 USA.
EM maryann.parkhurst@pnl.gov
FU U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM)
FX The authors gratefully thank the Capstone team members who contributed
to the original reports on which Much of this text is based. If the list
were significantly shorter (more than 20 authors contributed to these
journal articles and to the Capstone reports), all Would be listed as
authors. The authors want to especially acknowledge Fran Szrom, Gerald
Falo, and David Alberth, of U.S. Army Center for Health Promotion and
Preventive Medicine (USACHPPM), Aberdeen, MD. for their assistance
particularly with level II and III information used in this article, and
Don Bihl and Joseph McDonald. Emeritus Laboratory Fellow of Pacific
Northwest National Laboratory, for their input. Thanks also to Mark
Hoover for encouraging the authors to write this concluding paper to
summarize the Capstone Study. Funding for the Capstone HHRA was provided
by the USACHPPM.
NR 41
TC 4
Z9 5
U1 0
U2 1
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0017-9078
EI 1538-5159
J9 HEALTH PHYS
JI Health Phys.
PD MAR
PY 2009
VL 96
IS 3
BP 393
EP 409
PG 17
WC Environmental Sciences; Public, Environmental & Occupational Health;
Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical
Imaging
SC Environmental Sciences & Ecology; Public, Environmental & Occupational
Health; Nuclear Science & Technology; Radiology, Nuclear Medicine &
Medical Imaging
GA 407DD
UT WOS:000263342900014
PM 19204494
ER
PT J
AU Buhlmann, KA
Congdon, JD
Gibbons, JW
Greene, JL
AF Buhlmann, Kurt A.
Congdon, Justin D.
Gibbons, J. Whitfield
Greene, Judith L.
TI ECOLOGY OF CHICKEN TURTLES (DEIROCHELYS RETICULARIA) IN A SEASONAL
WETLAND ECOSYSTEM: EXPLOITING RESOURCE AND REFUGE ENVIRONMENTS
SO HERPETOLOGICA
LA English
DT Article
DE Chelonia; Chicken turtle; Deirochelys reticularia; Life history;
Reproduction; Seasonal wetlands; Survivorship
ID SOUTH-CAROLINA; CHELYDRA-SERPENTINA; EMYDOIDEA-BLANDINGI; LIFE-HISTORY;
MUD TURTLE; REPRODUCTION; CONSERVATION; POPULATION; TESTUDINES; LONG
AB Chicken turtles (Deirochelys reticularia) were studied at Dry Bay, a Carolina bay wetland in South Carolina, USA, between 1994 and 2005. A total of 461. individual turtles was marked from 1993-1998. Minimum ages at maturity for mates and females were 2 and 5 yr, respectively. All females reproduced each year, and 60% of reproductive females produced two clutches per season. Clutch size averaged 9.8 eggs, and both clutch and egg size increased with body size. Hatchlings averaged 29.2 tool PL, and body sizes were similar among years. Yearling survivorship varied from 7.0-43.0% (mean = 20.4%) among years. The highest survivorship of a hatchling cohort to age 5 was 0.21. Survivorships of juveniles and adults while in terrestrial refugia were higher than survivorships while in aquatic habitats. No adult females survived a 2-yr drought (2001-2003), and the hay was repopulated by mature males and juvenile females (most front the 1998 hatchling cohort) that had survived the extended drought in terrestrial refugia. Three of those juvenile females Matured and produced eggs in 2004. The traits of early maturity, high susceptibility to predation, and shortened longevity characteristic of chicken turtles are consistent with predictions for species that live in seasonally fluctuating and highly unpredictable aquatic habitats.
C1 [Buhlmann, Kurt A.; Congdon, Justin D.; Gibbons, J. Whitfield; Greene, Judith L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Buhlmann, Kurt A.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA.
RP Buhlmann, KA (reprint author), Univ Georgia, Savannah River Ecol Lab, Drawer E, Aiken, SC 29802 USA.
EM kbuhlmann@earthlink.net
FU Office of Biological and Environmental Research; U.S. Department of
Energy [DE-FC09-96SR18546]; University of Georgia Research Foundation;
Savannah River Ecology Laboratory Graduate Fellowship
FX Special thanks to A. Belden, R. Bodie, N. Buschhaus, C. Coffman, C.
Davis, J. Demuth, M. Dorcas, C. Harrison, F. Janzen, R. Kennett, C.
Ludwig, S. McKeon, S. Miller, M. Mills, T. Mills, J. Ott, A. Page, M.
Pilgrim, T. Ryan, T. Tuberville, A. Tucker and others for help with
field work at Dry Bay. The procedures used in this study were approved
by the University of Georgia animal care and use committee (A2003-10024,
"Reptile and amphibian research-general field studies") and the South
Carolina Department of Natural Resources (Collection Permits: 562003 and
072004). Research and manuscript preparation were aided by the Office of
Biological and Environmental Research, U.S. Department of Energy through
Financial Assistant Award No. DE-FC09-96SR18546 to the University of
Georgia Research Foundation and by the Savannah River Ecology Laboratory
Graduate Fellowship Program. N. Dickson and R. van Loben Sels provided
comments on earlier drafts of the manuscript.
NR 44
TC 14
Z9 15
U1 2
U2 16
PU HERPETOLOGISTS LEAGUE
PI EMPORIA
PA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST,
EMPORIA, KS 66801-5087 USA
SN 0018-0831
J9 HERPETOLOGICA
JI Herpetologica
PD MAR
PY 2009
VL 65
IS 1
BP 39
EP 53
PG 15
WC Zoology
SC Zoology
GA 449HH
UT WOS:000266320900004
ER
PT J
AU Sherman, MH
Walker, IS
AF Sherman, Max H.
Walker, Iain S.
TI Measured Air Distribution Effectiveness for Residential Mechanical
Ventilation
SO HVAC&R RESEARCH
LA English
DT Article
ID TRACER GAS MEASUREMENTS
AB The purpose of ventilation is to dilute or remove indoor contaminants that an occupant is exposed to. In a multizone environment, such as a house, there will be different dilution rates and different source strengths in every zone. Most homes in the United States have central HVAC systems, which tend to mix the air, and thus, the indoor conditions between zones. Different types of ventilation systems provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multitracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ANSI/ASHRAE Standard 62.2-2007, Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential Buildings compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2 (ASHRAE 2007).
C1 [Sherman, Max H.; Walker, Iain S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Energy Performance Bldg Grp, Berkeley, CA 94720 USA.
RP Sherman, MH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Energy Performance Bldg Grp, Berkeley, CA 94720 USA.
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Assistant Secretary for Energy Efficiency
and Renewable Energy, Office of the Building Technologies Program, U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
NR 22
TC 2
Z9 2
U1 2
U2 6
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 1078-9669
J9 HVAC&R RES
JI HVAC&R Res.
PD MAR
PY 2009
VL 15
IS 2
BP 211
EP 229
DI 10.1080/10789669.2009.10390834
PG 19
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 532YU
UT WOS:000272788100004
ER
PT J
AU Armstrong, PR
Jiang, W
Winiarski, D
Katipamula, S
Norford, LK
Willingham, RA
AF Armstrong, P. R.
Jiang, W.
Winiarski, D.
Katipamula, S.
Norford, L. K.
Willingham, R. A.
TI Efficient Low-Lift Cooling with Radiant Distribution, Thermal Storage,
and Variable-Speed Chiller Controls-Part I: Component and Subsystem
Models
SO HVAC&R RESEARCH
LA English
DT Article
AB Component and subsystem models used to evaluate the performance of a low-lift cooling system am described. An air-cooled chiller, a hydronic radiant distribution system, variable-speed control, and peak-shifting controls are modeled. A variable-speed compressor that operates over 20:1 speed range and pressure ratio., ranging from one to six is at the heart of the chiller. Condenser fan and chilled-water pump motors have independent speed controls. The load-side distribution is modeled from the refrigerant side of the evaporator to the conditioned zone as a single subsystem controlled by chilled-water flow rate for a specified instantaneous cooling load. Performance of the same chiller when operating with an all-air distribution system is also modeled. The compressor, condenser fan, and chilled-water pump motor speeds that achieve maximum coefficient of performance (COP) at a given condition are solved at each point on a grid of load and outdoor temperature. A variable-speed dehumidification subsystem is modeled and simulated as part of a dedicated outdoor air system to condition the ventilation air. A companion paper evaluates the annual cooling system energy use and potential energy savings to be gained by integrating radiant cooling, cool storage, and variable-speed compressor and transport motor controls.
C1 [Armstrong, P. R.] Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates.
[Jiang, W.; Winiarski, D.; Katipamula, S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Norford, L. K.; Willingham, R. A.] MIT, Cambridge, MA 02139 USA.
RP Armstrong, PR (reprint author), Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates.
FU U.S. Department of Energy Office of Energy Efficiency and Renewable
Energy's Building Technologies
FX The authors would like to acknowledge the U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy's Building Technologies
Program for supporting the work. Support of the MIT authors by the
Masdar Initiative is gratefully acknowledged. The authors would also
like to thank John Ryan and Dru Crawley, and Alan Schroeder, DOE
technology development manager, Andrew Nicholls, program manager at
Pacific Northwest National Laboratory (PNNL)-for insightful comments,
and Sue Arey for editing the manuscript. Thanks to Tom Watson of McQuay,
John Seem of Johnson Controls, Dan Manole of Tecumseh, Steve Holden and
Alex Lifson of Carrier, Chuncheng Piao of Daikin, Hidekazu Tani of
Mitsubishi, Gary Nettinger of Sanyo, and numerous PNNL colleagues for
thoughtful discussions on the low-lift systems approach. Jaclyn Phillips
and Jessica Knappek exercised the compressor sizing tool with
exceptional diligence and good cheer.
NR 32
TC 4
Z9 4
U1 0
U2 3
PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC,
PI ATLANTA
PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA
SN 1078-9669
J9 HVAC&R RES
JI HVAC&R Res.
PD MAR
PY 2009
VL 15
IS 2
BP 367
EP 401
PG 35
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 532YU
UT WOS:000272788100012
ER
PT J
AU Armstrong, PR
Jiang, W
Winiarski, D
Katipamula, S
Norford, LK
AF Armstrong, P. R.
Jiang, W.
Winiarski, D.
Katipamula, S.
Norford, L. K.
TI Efficient Low-Lift Cooling with Radiant Distribution, Thermal Storage,
and Variable-Speed Chiller Controls-Part II: Annual Energy Use and
Savings
SO HVAC&R RESEARCH
LA English
DT Review
ID DISPLACEMENT VENTILATION; HEAT-STORAGE; AIR SYSTEM; MODEL; MASS;
PERFORMANCE; STRATEGIES; PANELS
AB This paper evaluates the cooling efficiency improvements that can be achieved by integrating radiant cooling, cool storage, and variable-speed compressor and transport motor controls. Performance estimates of a baseline system and seven useful combinations of these three efficient low-lift inspired cooling technologies are reported. The technology configurations are simulated in a prototypical office building with three levels of envelope and balance-of-plant performance: standard-, mid- and high-performance, and in five climates. The standard performance level corresponds to ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004a). From the savings estimates for an office building prototype in five representative climates, estimates of national energy saving technical potential are developed. Component and subsystem models used in the energy simulations are developed in a companion paper.
C1 [Armstrong, P. R.] Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates.
[Jiang, W.; Winiarski, D.; Katipamula, S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Norford, L. K.] MIT, Cambridge, MA 02139 USA.
RP Armstrong, PR (reprint author), Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates.
FU DOE Office of Energy Efficiency and Renewable Energy's Building
Technologies
FX The authors would like to acknowledge the DOE Office of Energy
Efficiency and Renewable Energy's Building Technologies Program for
supporting the work. The authors also would like to acknowledge
insightful comments from John Ryan and Dru Crawley, and Alan Schroeder,
DOE technology development manager, Andrew Nicholls, program manager at
Pacific Northwest National Laboratory (PNNL), end Sue Arey for editing
the manuscript. Support of the MIT authors by the Masdar Initiative is
gratefully acknowledged. Thanks to Tom Watson of McQuay, John Seem of
Johnson Controls, Dan Manole of Tecumseh, Steve Holden and Alex Lifson
of Carrier, Chuncheng Piao of Daikin, Hidekazu Tani of Mitsubishi, Gary
Nettinger of Sanyo, and numerous PNNL colleagues for thoughtful
discussions on the low-lift systems approach.
NR 131
TC 2
Z9 2
U1 2
U2 7
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1078-9669
EI 1938-5587
J9 HVAC&R RES
JI HVAC&R Res.
PD MAR
PY 2009
VL 15
IS 2
BP 403
EP 433
PG 31
WC Thermodynamics; Construction & Building Technology; Engineering,
Mechanical
SC Thermodynamics; Construction & Building Technology; Engineering
GA 532YU
UT WOS:000272788100013
ER
PT J
AU Orrego, R
Adams, S
Barra, R
Chiang, G
Gavilan, JF
AF Orrego, Rodrigo
Marshall Adams, S.
Barra, Ricardo
Chiang, Gustavo
Gavilan, Juan F.
TI Patterns of fish community composition along a river affected by
agricultural and urban disturbance in south-central Chile
SO HYDROBIOLOGIA
LA English
DT Article
DE Fish; Assemblages; Sewage; Cause-effect relationship
ID WATER-QUALITY; ASSEMBLAGES; FRANCE; STREAM; PARAMETERS; DIVERSITY;
POLLUTION
AB Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of the stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river.
C1 [Orrego, Rodrigo] Univ Ontario, Inst Technol, Oshawa, ON L1H 7K4, Canada.
[Orrego, Rodrigo; Barra, Ricardo; Chiang, Gustavo] Univ Concepcion, Environm Sci Ctr EULA Chile, Aquat Syst Res Unit, Concepcion, Chile.
[Marshall Adams, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Gavilan, Juan F.] Univ Concepcion, Fac Biol Sci, Dept Cellular Biol, Concepcion, Chile.
RP Orrego, R (reprint author), Univ Ontario, Inst Technol, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada.
EM Rodrigo.Orrego@uoit.ca
RI Barra, Ricardo/A-5543-2009
OI Barra, Ricardo/0000-0002-1567-7722
FU Chilean Agricultural and Livestock Service [4-36-0199]; Universidad de
Concepcion, Chile [202.031.090-1.0]
FX This work was partially financed by the Chilean Agricultural and
Livestock Service (Servicio Agricola y Ganadero (SAG) de Chile Fondo SAG
No. VIII 4-36-0199) and by the Project P. I. No. 202.031.090-1.0 of the
Research Directorate of the Universidad de Concepcion, Chile.
NR 39
TC 17
Z9 18
U1 0
U2 13
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0018-8158
J9 HYDROBIOLOGIA
JI Hydrobiologia
PD MAR
PY 2009
VL 620
BP 35
EP 46
DI 10.1007/s10750-008-9613-8
PG 12
WC Marine & Freshwater Biology
SC Marine & Freshwater Biology
GA 387YQ
UT WOS:000261987900004
ER
PT J
AU Goel, N
Gilmer, DC
Park, H
Diaz, V
Sun, Y
Price, J
Park, C
Pianetta, P
Kirsch, PD
Jammy, R
AF Goel, N.
Gilmer, D. C.
Park, H.
Diaz, V.
Sun, Y.
Price, J.
Park, C.
Pianetta, P.
Kirsch, P. D.
Jammy, R.
TI Erase and Retention Improvements in Charge Trap Flash Through Engineered
Charge Storage Layer
SO IEEE ELECTRON DEVICE LETTERS
LA English
DT Article
DE Memory; NAND; retention; TANOS
ID MEMORY CELL; PRECISE DETERMINATION
AB The simultaneous improvement in the erase and retention characteristics in a TANOS (TaN-Al(2)O(3)-Si(3)N(4)SiO(2)-Si) Flash memory transistor by utilizing the band-engineered and compositionally graded SiN(x) trap layer is demonstrated. With the process optimizations, a > 4 V memory window and excellent 150 degrees C 24-h retention (0.1-0.5 V charge loss) for a programmed Delta V(t) = 4 V with respect to the initial state are obtained. The band-engineered SiN(x) charge storage layer enables Flash scaling beyond the floating-gate technology with a promise for improved erase speed, retention, lower supply voltages, and multilevel cell applications.
C1 [Goel, N.] SEMATECH, FEB Grp, Austin, TX 78741 USA.
[Gilmer, D. C.; Park, H.; Diaz, V.; Price, J.; Park, C.; Kirsch, P. D.; Jammy, R.] SEMATECH, Front End Proc Grp, Austin, TX 78741 USA.
[Sun, Y.; Pianetta, P.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA.
RP Goel, N (reprint author), SEMATECH, FEB Grp, Austin, TX 78741 USA.
EM niti.goel@sematech.org
NR 10
TC 18
Z9 18
U1 0
U2 8
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0741-3106
J9 IEEE ELECTR DEVICE L
JI IEEE Electron Device Lett.
PD MAR
PY 2009
VL 30
IS 3
BP 216
EP 218
DI 10.1109/LED.2009.2012397
PG 3
WC Engineering, Electrical & Electronic
SC Engineering
GA 415FT
UT WOS:000263920400005
ER
PT J
AU Park, J
Kwon, S
Jun, SI
Mcknight, TE
Melechko, AV
Simpson, ML
Dhindsa, M
Heikenfeld, J
Rack, PD
AF Park, Jungwon
Kwon, Seyeoul
Jun, Seung Ik
Mcknight, Timothy E.
Melechko, Anatoli V.
Simpson, Michael L.
Dhindsa, Manjeet
Heikenfeld, Jason
Rack, Philip D.
TI Active-Matrix Microelectrode Arrays Integrated With Vertically Aligned
Carbon Nanofibers
SO IEEE ELECTRON DEVICE LETTERS
LA English
DT Article
DE Active matrix addressing; microelectrode array (MEA); thin-film
transistor (TFT); vertically aligned carbon nanofiber (VACNF)
ID THIN-FILM TRANSISTORS; SILICON FILMS; HYDROGEN; CELLS
AB In this letter, we have successfully integrated vertically aligned carbon nanofibers (VACNFs) onto active matrix thin-film transistor (TFT) and demonstrate a new microelectrode array (MEA) platform. The materials and processes of the bottom gate inverted staggered TFT structure were designed to be compatible with the requisite high-temperature (similar to 700 degrees C) and direct current plasma-enhanced chemical vapor deposition VACNF growth process. The critical device integration issues are elaborated, and initial device characteristics are reported. This device platform provides great potential as an advanced MEA for direct cell sensing, probing, and recording with a high electrode density and active addressability.
C1 [Park, Jungwon; Kwon, Seyeoul; Simpson, Michael L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Jun, Seung Ik] DpiX LLC, Colorado Springs, CO 80916 USA.
[Mcknight, Timothy E.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA.
[Melechko, Anatoli V.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA.
[Simpson, Michael L.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Dhindsa, Manjeet; Heikenfeld, Jason] Univ Cincinnati, Dept Elect & Comp Engn, Cincinnati, OH 45220 USA.
RP Park, J (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM jpark25@utk.edu; skwon1@utk.edu; jun@dpix.com; mcknightte@oml.gov;
avmelech@unity.nesu.edu; simpsonml1@ornl.gov; m.dhindsa@yahoo.com;
heikenjc@ececs.uc.edu; prack@utk.edu
RI Simpson, Michael/A-8410-2011; Melechko, Anatoli/B-8820-2008; McKnight,
Tim/H-3087-2011;
OI Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117;
Rack, Philip/0000-0002-9964-3254
FU National Science Foundation [0729250]
FX The work of P. D. Rack and J. Heikenfeld was supported by the National
Science Foundation Division of Chemical, Bioengineening, Environmental,
and Transport Systems under NSF Award 0729250.
NR 18
TC 8
Z9 8
U1 0
U2 5
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0741-3106
J9 IEEE ELECTR DEVICE L
JI IEEE Electron Device Lett.
PD MAR
PY 2009
VL 30
IS 3
BP 254
EP 257
DI 10.1109/LED.2008.2011927
PG 4
WC Engineering, Electrical & Electronic
SC Engineering
GA 415FT
UT WOS:000263920400017
ER
PT J
AU Smith, SF
Moore, JA
AF Smith, Stephen F.
Moore, James A.
TI A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for
Improved AM Reception
SO IEEE TRANSACTIONS ON BROADCASTING
LA English
DT Article
DE AM; beats; GPS; synchronization
AB This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to similar to 1 part in 10(9) or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations' carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) and often cause listeners to "tune out" due to the low reception quality.
Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources.
The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long-term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically similar to 1 part in 10(9) to 10(11), is thus transferred to the final AM transmitter carrier output frequency.
C1 [Smith, Stephen F.; Moore, James A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Smith, SF (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM smithsf@ornl.gov; mooreja2@ornl.gov
NR 4
TC 1
Z9 1
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0018-9316
J9 IEEE T BROADCAST
JI IEEE Trans. Broadcast.
PD MAR
PY 2009
VL 55
IS 1
BP 71
EP 78
DI 10.1109/TBC.2008.2012026
PG 8
WC Engineering, Electrical & Electronic; Telecommunications
SC Engineering; Telecommunications
GA 415FK
UT WOS:000263919500008
ER
PT J
AU Bikhazi, NW
Jensen, MA
Anderson, AL
AF Bikhazi, Nicolas W.
Jensen, Michael A.
Anderson, Adam L.
TI MIMO Signaling over the MMF Optical Broadcast Channel with Square-Law
Detection
SO IEEE TRANSACTIONS ON COMMUNICATIONS
LA English
DT Article
DE MIMO systems; optical fiber communication; broadcast channels; multimode
waveguides
ID MULTIMODE FIBER LINK; OFFSET; COMIMO
AB This paper proposes an architecture for using multiple-input multiple-output techniques for a multimode fiber broadcast channel, allowing simultaneous transmission of unique streams to different users on the same fiber while using square-law detection. The resulting system throughput scales nearly linearly with the number of transmitters and receivers. The paper also proposes a training scheme appropriate for use with square-law detection.
C1 [Bikhazi, Nicolas W.; Jensen, Michael A.] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA.
[Anderson, Adam L.] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92103 USA.
RP Bikhazi, NW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM nbikhaz@sandia.gov; jensen@ee.byu.edu
FU National Science Foundation [CCR-0313056, CCF-0428004]; U. S. Army
Research Office [W911NF-04-1-0224, W911NF-07-1-0318]
FX This work was supported in part by the National Science Foundation under
Information Technology Grants CCR-0313056 and CCF-0428004, and in part
by the U. S. Army Research Office under the Multi-University Research
Initiative (MURI) Grants # W911NF-04-1-0224 and # W911NF-07-1-0318.
NR 17
TC 9
Z9 9
U1 0
U2 1
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0090-6778
J9 IEEE T COMMUN
JI IEEE Trans. Commun.
PD MAR
PY 2009
VL 57
IS 3
BP 614
EP 617
DI 10.1109/TCOMM.2009.03.070029
PG 4
WC Engineering, Electrical & Electronic; Telecommunications
SC Engineering; Telecommunications
GA 415WT
UT WOS:000263967900007
ER
PT J
AU Ropp, ME
Gonzalez, S
AF Ropp, Michael E.
Gonzalez, Sigifredo
TI Development of a MATLAB/Simulink Model of a Single-Phase Grid-Connected
Photovoltaic System
SO IEEE TRANSACTIONS ON ENERGY CONVERSION
LA English
DT Article
DE Inverters; islanding detection; modeling and simulation; photovoltaics
(PVs)
ID PREVENTION
AB Because of their deployment in dispersed locations on the lowest voltage portions of the grid, photovoltaic (PV) systems pose unique challenges to power system engineers. Computer models that accurately simulate the relevant behavior of PV systems would thus be of high value. However, most of today's models either do not accurately model the dynamics of the maximum power point trackers (MPPTs) or anti-islanding algorithms, or they involve excessive computational overhead for this application. To address this need, a MATLAB/Simulink model of a single-phase grid-connected PV inverter has been developed and experimentally tested. The development of the PV array model, the integration of the MPPT with an averaged model of the power electronics, and the Simulink implementation are described. It is experimentally demonstrated that the model works well in predicting the general behaviors of single-phase grid-connected PV systems. This paper concludes with a discussion of the need for a full gradient-based MPPT model, as opposed to a commonly used simplified MPPT model.
C1 [Ropp, Michael E.] S Dakota State Univ, Dept Elect Engn, Brookings, SD 57007 USA.
[Gonzalez, Sigifredo] Sandia Natl Labs, Distributed Energy Test Lab, Albuquerque, NM 87185 USA.
RP Ropp, ME (reprint author), S Dakota State Univ, Dept Elect Engn, Brookings, SD 57007 USA.
EM michael.ropp@ieee.org; sgonza@sandia.gov
FU National Science Foundation [ECS-0238533]
FX This work was supported in part by the National Science Foundation under
Grant ECS-0238533.
NR 16
TC 69
Z9 73
U1 1
U2 16
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0885-8969
J9 IEEE T ENERGY CONVER
JI IEEE Trans. Energy Convers.
PD MAR
PY 2009
VL 24
IS 1
BP 195
EP 202
DI 10.1109/TEC.2008.2003206
PG 8
WC Energy & Fuels; Engineering, Electrical & Electronic
SC Energy & Fuels; Engineering
GA 411HC
UT WOS:000263639000021
ER
PT J
AU Filippi, AM
Archibald, R
AF Filippi, Anthony M.
Archibald, Rick
TI Support Vector Machine-Based Endmember Extraction
SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
LA English
DT Article
DE Endmember extraction; hyperspectral imaging; remote sensing; support
vector machines (SVMs)
ID SPECTRAL MIXTURE ANALYSIS; REMOTE-SENSING IMAGES; HYPERSPECTRAL DATA;
IMAGING SPECTROMETER; COMPONENT ANALYSIS; CLASSIFICATION; CUPRITE;
NEVADA; ALGORITHM; MODEL
AB Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction front hyperspectral data. The strengths of SVM are exploited to pro-vide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise.
C1 [Filippi, Anthony M.] Texas A&M Univ, Dept Geog, College Stn, TX 77843 USA.
[Archibald, Rick] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.
RP Filippi, AM (reprint author), Texas A&M Univ, Dept Geog, College Stn, TX 77843 USA.
EM filippi@tamu.edu; archibaldrk@ornl.gov
RI Archibald, Rick/I-6238-2016
OI Archibald, Rick/0000-0002-4538-9780
FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Householder
Fellowship
FX Manuscript received February 15, 2008: revised June 30, 2008. First
published December 9, 2008: current version published February 19, 2009.
This work was supported in part by an appointment to the U.S. Department
of Energy (DOE) Higher Education Research Experiences (HERE) for Faculty
at the Oak Ridge National Laboratory (ORNL) administered by the Oak
Ridge Institute for Science and Education. The work of R. Archibald was
supported by the Householder Fellowship that is supported under the
Mathematical, Information, and Computational Sciences Division. Office
of Advanced Scientific Computing Research. U.S. Department of Energy
under Grant DE-AC05-00OR22725.
NR 75
TC 24
Z9 24
U1 4
U2 14
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0196-2892
J9 IEEE T GEOSCI REMOTE
JI IEEE Trans. Geosci. Remote Sensing
PD MAR
PY 2009
VL 47
IS 3
BP 771
EP 791
DI 10.1109/TGRS.2008.2004708
PG 21
WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote
Sensing; Imaging Science & Photographic Technology
SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science
& Photographic Technology
GA 415JA
UT WOS:000263928900009
ER
PT J
AU Yan, GH
Eidenbenz, S
AF Yan, Guanhua
Eidenbenz, Stephan
TI Modeling Propagation Dynamics of Bluetooth Worms (Extended Version)
SO IEEE TRANSACTIONS ON MOBILE COMPUTING
LA English
DT Article
DE Bluetooth; Bluetooth worm; epidemic modeling; propagation dynamics
AB In the last few years, the growing popularity of mobile devices has made them attractive to virus and worm writers. One communication channel often exploited by mobile malware is the Bluetooth interface. In this paper, we present a detailed analytical model that characterizes the propagation dynamics of Bluetooth worms. Our model captures not only the behavior of the Bluetooth protocol but also the impact of mobility patterns on the Bluetooth worm propagation. Validation experiments against a detailed discrete-event Bluetooth worm simulator reveal that our model predicts the propagation dynamics of Bluetooth worms with high accuracy. We further use our model to efficiently predict the propagation curve of Bluetooth worms in big cities such as Los Angeles. Our model not only sheds light on the propagation dynamics of Bluetooth worms but also allows one to predict spreading curves of Bluetooth worm propagation in large areas without the high computational cost of discrete-event simulation.
C1 [Yan, Guanhua; Eidenbenz, Stephan] Los Alamos Natl Lab, Informat Sci Grp CCS 3, Los Alamos, NM 87545 USA.
RP Yan, GH (reprint author), Los Alamos Natl Lab, Informat Sci Grp CCS 3, POB 1663,MS B256, Los Alamos, NM 87545 USA.
EM ghyan@lanl.gov; eidenben@lanl.gov
OI Eidenbenz, Stephan/0000-0002-2628-1854
NR 20
TC 25
Z9 27
U1 0
U2 7
PU IEEE COMPUTER SOC
PI LOS ALAMITOS
PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA
SN 1536-1233
J9 IEEE T MOBILE COMPUT
JI IEEE. Trans. Mob. Comput.
PD MAR
PY 2009
VL 8
IS 3
BP 353
EP 367
DI 10.1109/TMC.2008.129
PG 15
WC Computer Science, Information Systems; Telecommunications
SC Computer Science; Telecommunications
GA 394IK
UT WOS:000262440200005
ER
PT J
AU Tatebayashi, J
Liang, BL
Bussian, DA
Htoon, H
Huang, SH
Balakrishnan, G
Klimov, V
Dawson, LR
Huffaker, DL
AF Tatebayashi, Jun
Liang, Baolai
Bussian, David A.
Htoon, Han
Huang, Shenghong
Balakrishnan, Ganesh
Klimov, Victor
Dawson, L. Ralph
Huffaker, Diana L.
TI Formation and Optical Characteristics of Type-II Strain-Relieved
GaSb/GaAs Quantum Dots by Using an Interfacial Misfit Growth Mode
SO IEEE TRANSACTIONS ON NANOTECHNOLOGY
LA English
DT Article
DE GaSb/GaAs; interfacial misfit (IMF); quantum dots (QDs);
strain-relieved; time-resolved photoluminescence (TRPL); type-II
ID MOLECULAR-BEAM EPITAXY; RADIATIVE RECOMBINATION; GASB; RELAXATION;
LASER; HETEROSTRUCTURES
AB We report the formation and optical characteristics of GaSb/GaAs type-II quantum dots (QDs) by using an interfacial misfit (IMF) growth mode. A V/III ratio during the growth of GaSb QDs determines the selectivity of IMF and conventional Stranski-Krastanov (SK) growth modes. This transition between SK and optimized IMF QDs is rather abrupt and occurs within a factor-of-2 variations in V/III ratio. The IMF QDs emit at longer wavelength (congruent to 1.1 mu m) compared to the SK QD peak emission at congruent to 1.02 mu m at low temperature (UY) (41 K) because of their strain-free nature of the IMF growth mode. A blueshift of the photoluminescence (PL) peak is observed with increased excitation densities due to the Coulomb interaction between physically separated electrons and holes characteristics of the type-II band alignment. LT timeresolved PL measurements show a long decay time of congruent to 20-40 ns from the transition between GaSb IMF QDs and GaAs 2-D electron gas, which is characteristic of the type-II band alignment.
C1 [Tatebayashi, Jun; Liang, Baolai; Huffaker, Diana L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA.
[Tatebayashi, Jun; Liang, Baolai; Huffaker, Diana L.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA.
[Huang, Shenghong; Balakrishnan, Ganesh; Dawson, L. Ralph] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA.
[Bussian, David A.; Htoon, Han; Klimov, Victor] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Tatebayashi, J (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA.
EM tatebaya@ee.ucla.edu; bliang@ee.ucla.edu; dabus@lanl.gov;
htoon@lanl.gov; shuang@ece.unm.edu; gunny@unm.edu; klimov@lanl.gov;
rdawson@chtm.unm.edu; huffaker@ee.ucla.edu
RI balakrishnan, ganesh/F-7587-2011;
OI Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896
FU Air Force Office of Scientific Research [FA9550-06-1-0407]
FX This work was supported in part by the Air Force Office of Scientific
Research under Contract FA9550-06-1-0407 under Gernot Pornrenke and Kitt
Rheinhardt. The review of this paper was arranged by Associate Editor H.
Misawa.
NR 35
TC 6
Z9 6
U1 0
U2 12
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 1536-125X
J9 IEEE T NANOTECHNOL
JI IEEE Trans. Nanotechnol.
PD MAR
PY 2009
VL 8
IS 2
BP 269
EP 274
DI 10.1109/TNANO.2008.2008717
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Materials Science, Multidisciplinary; Physics, Applied
SC Engineering; Science & Technology - Other Topics; Materials Science;
Physics
GA 421FA
UT WOS:000264343600020
ER
PT J
AU Marques, RCP
de Medeiros, FNS
Ushizima, DM
AF Marques, Regis C. P.
Sombra de Medeiros, Fatima N.
Ushizima, Daniela M.
TI Target Detection in SAR Images Based on a Level Set Approach
SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND
REVIEWS
LA English
DT Article
DE Image analysis; object detection; partial differential equations; radar
target recognition; speckle; synthetic aperture radar
ID CURVE EVOLUTION; SEGMENTATION; INFORMATION; CLUTTER; MODEL
AB This paper introduces a new framework for point target detection in synthetic aperture radar (SAR) images. We focus on the task of locating reflective small regions using a level-set-based algorithm. Unlike most of the approaches in image segmentation, we address an algorithm that incorporates speckle statistics instead of empirical parameters and also discards speckle filtering. The curve evolves according to speckle statistics, initially propagating with a maximum upward velocity in homogeneous areas. Our approach is validated by a series of tests on synthetic and real SAR images and compared with three other segmentation algorithms, demonstrating that it configures a novel and efficient method for target-detection purpose.
C1 [Marques, Regis C. P.] Fed Ctr Technol Educ CEFETCE, BR-60455900 Fortaleza, CE, Brazil.
[Sombra de Medeiros, Fatima N.] Univ Fed Ceara, Dept Teleinformat, BR-60455900 Fortaleza, CE, Brazil.
[Ushizima, Daniela M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Math Grp, Berkeley, CA 94720 USA.
[Ushizima, Daniela M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Visualizat Grp, Berkeley, CA 94720 USA.
RP Marques, RCP (reprint author), Fed Ctr Technol Educ CEFETCE, BR-60455900 Fortaleza, CE, Brazil.
EM regismarques@cefet-ce.br; fsombra@deti.ufc.br; dushizima@lbl.gov
RI Medeiros, Fatima/E-1168-2011; Marques, Regis/D-2039-2013
OI Medeiros, Fatima/0000-0002-4143-1486;
FU CNPq; U.S. Department of Energy [DE-AC03-76SFOO098]
FX This work was supported in part by the CNPq and in part by the Office of
Energy Research, U.S. Department of Energy, under the Applied
Mathematical Science Subprogram under Contract DE-AC03-76SFOO098.
NR 37
TC 9
Z9 11
U1 1
U2 4
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
SN 1094-6977
EI 1558-2442
J9 IEEE T SYST MAN CY C
JI IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev.
PD MAR
PY 2009
VL 39
IS 2
BP 214
EP 222
DI 10.1109/TSMCC.2008.2006685
PG 9
WC Computer Science, Artificial Intelligence; Computer Science,
Cybernetics; Computer Science, Interdisciplinary Applications
SC Computer Science
GA 413YU
UT WOS:000263831900006
ER
PT J
AU May, EE
Schiek, RL
AF May, E. E.
Schiek, R. L.
TI BioXyce: an engineering platform for the study of cellular systems
SO IET SYSTEMS BIOLOGY
LA English
DT Article
CT 1st q-bio Conference on Cellular Information Processing
CY AUG 08-11, 2007-2008
CL Santa Fe, NM
ID SEGMENT POLARITY NETWORK; TRANSCRIPTIONAL REGULATION; SOFTWARE
ENVIRONMENT; ESCHERICHIA-COLI; SIMULATION; DROSOPHILA; MODELS
AB Researchers use constructs from the field of electrical engineering for the modelling and analysis of biological systems, but few exploit parallels between electrical and biological circuits for simulation purposes. The authors discuss the development of BioXyce, a circuit-based biological simulation platform that uses Xyce (TM), a large-scale electrical circuit simulator, as its simulation engine. BioXyce is capable of simulating whole-cell and multicellular systems. Simulation results for the central metabolism in Escherichia coli K12 and cellular differentiation in Drosophila sp. are presented.
C1 [May, E. E.] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA.
[Schiek, R. L.] Sandia Natl Labs, Elect & Microsyst Modeling Dept, Albuquerque, NM 87185 USA.
RP May, EE (reprint author), Sandia Natl Labs, Discrete Math & Complex Syst Dept, POB 5800, Albuquerque, NM 87185 USA.
EM eemay@sandia.gov
RI Schiek, Richard/A-9192-2011
FU NHLBI NIH HHS [5K25HL 75105-3]
NR 29
TC 5
Z9 5
U1 0
U2 6
PU INST ENGINEERING TECHNOLOGY-IET
PI HERTFORD
PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND
SN 1751-8849
J9 IET SYST BIOL
JI IET Syst. Biol.
PD MAR
PY 2009
VL 3
IS 2
BP 77
EP 89
DI 10.1049/iet-syb.2007.0086
PG 13
WC Cell Biology; Mathematical & Computational Biology
SC Cell Biology; Mathematical & Computational Biology
GA 422VA
UT WOS:000264454600002
PM 19292562
ER
PT J
AU Au-Yeung, BB
Deindl, S
Hsu, LY
Palacios, EH
Levin, SE
Kuriyan, J
Weiss, A
AF Au-Yeung, Byron B.
Deindl, Sebastian
Hsu, Lih-Yun
Palacios, Emil H.
Levin, Susan E.
Kuriyan, John
Weiss, Arthur
TI The structure, regulation, and function of ZAP-70
SO IMMUNOLOGICAL REVIEWS
LA English
DT Review
DE ZAP-70; signal transduction; T-cell receptor; pre-TCR signals;
autoinhibition; ITAM
ID T-CELL-RECEPTOR; CHRONIC LYMPHOCYTIC-LEUKEMIA; PROTEIN-TYROSINE KINASE;
SEVERE COMBINED IMMUNODEFICIENCY; OF-FUNCTION MUTATION; ANTIGEN
RECEPTOR; CRYSTAL-STRUCTURE; THYMOCYTE DEVELOPMENT; AUTOIMMUNE
ARTHRITIS; INTERDOMAIN B
AB The tyrosine ZAP-70 (zeta-associated protein of 70 kDa) kinase plays a critical role in activating many downstream signal transduction pathways in T cells following T-cell receptor (TCR) engagement. The importance of ZAP-70 is evidenced by the severe combined immunodeficiency that occurs in ZAP-70-deficient mice and humans. In this review, we describe recent analyses of the ZAP-70 crystal structure, revealing a complex regulatory mechanism of ZAP-70 activity, the differential requirements for ZAP-70 and spleen tyrosine kinase (SyK) in early T-cell development, as well as the role of ZAP-70 in chronic lymphocytic leukemia and autoimmunity. Thus, the critical importance of ZAP-70 in TCR signaling and its predominantly T-cell-restricted expression pattern make ZAP-70 an attractive drug target for the inhibition of pathological T-cell responses in disease.
C1 [Au-Yeung, Byron B.; Hsu, Lih-Yun; Weiss, Arthur] Univ Calif San Francisco, Howard Hughes Med Inst, Rosalind Russell Med Res Ctr Arthrit, Dept Med, San Francisco, CA 94143 USA.
[Deindl, Sebastian; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Deindl, Sebastian; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA.
[Palacios, Emil H.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, Sandler Ctr Basic Res Parasit Dis, San Francisco, CA 94143 USA.
[Levin, Susan E.] Williams Coll, Dept Biol, Williamstown, MA 01267 USA.
[Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
RP Weiss, A (reprint author), Univ Calif San Francisco, Howard Hughes Med Inst, Rosalind Russell Med Res Ctr Arthrit, Dept Med, 513 Parnassus Ave,Room S-1032C, San Francisco, CA 94143 USA.
EM aweiss@medicine.ucsf.edu
OI Au-Yeung, Byron/0000-0002-6446-9102; Deindl,
Sebastian/0000-0001-6807-8654
FU Howard Hughes Medical Institute
NR 75
TC 106
Z9 109
U1 1
U2 11
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0105-2896
J9 IMMUNOL REV
JI Immunol. Rev.
PD MAR
PY 2009
VL 228
BP 41
EP 57
DI 10.1111/j.1600-065X.2008.00753.x
PG 17
WC Immunology
SC Immunology
GA 415WD
UT WOS:000263966200004
PM 19290920
ER
PT J
AU Chang, SJ
Winkeler, K
Collins, C
Thomas, R
Johnson, J
Wood, L
Rottmann, W
Gunter, L
Tuskan, J
Hinchee, M
AF Chang, Shujun
Winkeler, Kim
Collins, Cassandra
Thomas, Robert
Johnson, Jessica
Wood, Lindsey
Rottmann, Will
Gunter, Lee
Tuskan, Jerry
Hinchee, Maud
TI Populus deltoides Transformation to Identify Genes That Contribute to
Recalcitrance in Conversion of Lignocellulosics to Bioethanol.
SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL
LA English
DT Meeting Abstract
C1 [Gunter, Lee; Tuskan, Jerry] Oak Ridge Natl Lab, Div Biosci, Oak Ridge, TN 37831 USA.
EM SXCHANG@ARBORGEN.COM
RI Gunter, Lee/L-3480-2016
OI Gunter, Lee/0000-0003-1211-7532
NR 0
TC 0
Z9 0
U1 1
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1071-2690
J9 IN VITRO CELL DEV-AN
JI In Vitro Cell. Dev. Biol.-Anim.
PD SPR
PY 2009
VL 45
SU S
BP S80
EP S81
PG 2
WC Cell Biology; Developmental Biology
SC Cell Biology; Developmental Biology
GA 481ZS
UT WOS:000268853400203
ER
PT J
AU Tuskan, GA
AF Tuskan, Gerald A.
TI Populus Genomics, Candidate Gene Identification and Accelerated
Domestication.
SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL
LA English
DT Meeting Abstract
C1 [Tuskan, Gerald A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM gtk@ornl.gov
RI Tuskan, Gerald/A-6225-2011
OI Tuskan, Gerald/0000-0003-0106-1289
NR 0
TC 0
Z9 0
U1 0
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1071-2690
J9 IN VITRO CELL DEV-AN
JI In Vitro Cell. Dev. Biol.-Anim.
PD SPR
PY 2009
VL 45
BP S24
EP S24
PG 1
WC Cell Biology; Developmental Biology
SC Cell Biology; Developmental Biology
GA 481ZS
UT WOS:000268853400062
ER
PT J
AU Vogel, CJ
Mayer, K
Rokhsar, D
Schmutz, J
Mockler, T
Huo, N
Bragg, J
Wu, J
Gu, Y
Garvin, D
Bevan, M
AF Vogel, Crops. J.
Mayer, K.
Rokhsar, D.
Schmutz, J.
Mockler, T.
Huo, N.
Bragg, J.
Wu, J.
Gu, Y.
Garvin, D.
Bevan, M.
TI Brachypodium distachyon: a New Model for Biomass Crops
SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL
LA English
DT Meeting Abstract
C1 [Vogel, Crops. J.; Huo, N.; Bragg, J.; Wu, J.; Gu, Y.] USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA.
[Mayer, K.] Helmholz Zentrum, MIPS, Munich, Germany.
[Rokhsar, D.] US DOE, Joint Genome Inst, Walnut Creek, CA USA.
[Schmutz, J.] Hudson Alpha Inst Biotechnol, Huntsville, AL USA.
[Mockler, T.] Oregon State Univ, Corvallis, OR 97331 USA.
[Garvin, D.] Univ Minnesota, USDA ARS, Plant Sci Res Unit, St Paul, MN 55108 USA.
[Bevan, M.] John Innes Ctr, Norwich, NY USA.
EM john.vogel@ars.usda.gov
RI Schmutz, Jeremy/N-3173-2013
OI Schmutz, Jeremy/0000-0001-8062-9172
NR 0
TC 0
Z9 0
U1 2
U2 5
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1071-2690
J9 IN VITRO CELL DEV-AN
JI In Vitro Cell. Dev. Biol.-Anim.
PD SPR
PY 2009
VL 45
BP S6
EP S6
PG 1
WC Cell Biology; Developmental Biology
SC Cell Biology; Developmental Biology
GA 481ZS
UT WOS:000268853400017
ER
PT J
AU Aragon, CR
Poon, SS
Aldering, GS
Thomas, RC
Quimby, R
AF Aragon, Cecilia R.
Poon, Sarah S.
Aldering, Gregory S.
Thomas, Rollin C.
Quimby, Robert
TI Using visual analytics to develop situation awareness in astrophysics
SO INFORMATION VISUALIZATION
LA English
DT Article
DE data and knowledge visualization; scientific visualization; scientific
analytics; visual analytics; situation awareness; astrophysics
AB We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness. Information Visualization (2009) 8, 30-41. doi: 10.1057/ivs.2008.30
C1 [Aragon, Cecilia R.; Poon, Sarah S.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Aldering, Gregory S.; Thomas, Rollin C.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA.
[Quimby, Robert] CALTECH, Dept Astron, Pasadena, CA 91125 USA.
RP Aragon, CR (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd,MS 50B-2239, Berkeley, CA 94720 USA.
EM CRAragon@lbl.gov
FU Director, Office of Science, Office of Advanced Scientific Computing
Research, of the US Department of Energy [DE-AC02-05CH11231]; Director,
Office of Science, Office of High Energy Physics, of the US Department
of Energy [DE-FG02-92ER40704]; Gordon & Betty Moore Foundation
FX We thank the anonymous reviewers for their thoughtful suggestions, and
the scientists of the SNfactory collaboration for their time and
detailed feedback. The authors recognize and acknowledge the very
significant cultural role and reverence that the summit of Mauna Kea has
always had within the indigenous Hawaiian community. We are most
fortunate to have the opportunity to conduct observations from this
mountain. This work was supported in part by the Director, Office of
Science, Office of Advanced Scientific Computing Research, of the US
Department of Energy under Contract No. DE-AC02-05CH11231; by the
Director, Office of Science, Office of High Energy Physics, of the US
Department of Energy under Contract No. DE-FG02-92ER40704, and by a
grant from the Gordon & Betty Moore Foundation. This research used
resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the US Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 40
TC 2
Z9 2
U1 0
U2 1
PU PALGRAVE MACMILLAN LTD
PI BASINGSTOKE
PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND
SN 1473-8716
J9 INFORM VISUAL
JI Inf. Vis.
PD SPR
PY 2009
VL 8
IS 1
BP 30
EP 41
DI 10.1057/ivs.2008.30
PG 12
WC Computer Science, Software Engineering
SC Computer Science
GA 497WA
UT WOS:000270093100003
ER
PT J
AU Pike, W
Bruce, J
Baddeley, B
Best, D
Franklin, L
May, R
Rice, D
Riensche, R
Younkin, K
AF Pike, William
Bruce, Joe
Baddeley, Bob
Best, Daniel
Franklin, Lyndsey
May, Richard
Rice, Douglas
Riensche, Rick
Younkin, Katarina
TI The Scalable Reasoning System: Lightweight visualization for distributed
analytics
SO INFORMATION VISUALIZATION
LA English
DT Article
DE web visualization; mobile visualization; analytic reasoning; law
enforcement; multiple views; concept mapping
AB A central challenge in visual analytics is the creation of accessible, widely distributable analysis applications that bring the benefits of visual discovery to as broad a user base as possible. Moreover, to support the role of visualization in the knowledge creation process, it is advantageous to allow users to describe the reasoning strategies they employ while interacting with analytic environments. We introduce an application suite called the scalable reasoning system (SRS), which provides web-based and mobile interfaces for visual analysis. The service-oriented analytic framework that underlies SRS provides a platform for deploying pervasive visual analytic environments across an enterprise. SRS represents a 'lightweight' approach to visual analytics whereby thin client analytic applications can be rapidly deployed in a platform-agnostic fashion. Client applications support multiple coordinated views while giving analysts the ability to record evidence, assumptions, hypotheses and other reasoning artifacts. We describe the capabilities of SRS in the context of a real-world deployment at a regional law enforcement organization. Information Visualization (2009) 8, 71-84. doi: 10.1057/ivs.2008.33
C1 [Pike, William; Bruce, Joe; Baddeley, Bob; Best, Daniel; Franklin, Lyndsey; May, Richard; Rice, Douglas; Riensche, Rick; Younkin, Katarina] Pacific NW Natl Lab, MSIN, Richland, WA 99352 USA.
RP Pike, W (reprint author), Pacific NW Natl Lab, MSIN, K7-28,POB 999, Richland, WA 99352 USA.
EM william.pike@pnl.gov
OI Franklin, Lyndsey/0000-0002-4494-7111
FU National Visualization and Analytics Center (NVAC); Pacific Northwest
National Laboratory
FX This work was supported by the National Visualization and Analytics
Center (NVAC), a US Department of Homeland Security program operated by
the Pacific Northwest National Laboratory.
NR 21
TC 5
Z9 5
U1 0
U2 2
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1473-8716
EI 1473-8724
J9 INFORM VISUAL
JI Inf. Vis.
PD SPR
PY 2009
VL 8
IS 1
BP 71
EP 84
DI 10.1057/ivs.2008.33
PG 14
WC Computer Science, Software Engineering
SC Computer Science
GA 497WA
UT WOS:000270093100006
ER
PT J
AU Leyffer, S
AF Leyffer, Sven
TI A Complementarity Constraint Formulation of Convex Multiobjective
Optimization Problems
SO INFORMS JOURNAL ON COMPUTING
LA English
DT Article
DE multiobjective optimization; nonlinear programming; complementarity
constraints; mathematical program with complementarity constraints
ID MATHEMATICAL PROGRAMS; GLOBAL CONVERGENCE
AB We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding a maximally uniform representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise from modeling the set of Pareto points, and the objective maximizes some quality measure of this discrete set. We present encouraging numerical experience on a range of test problems collected from the literature.
C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
RP Leyffer, S (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM leyffer@mcs.anl.gov
FU U. S. Department of Energy [DE-AC02-06CH11357, DE-FG02-05ER25694]
FX The author is grateful to the area editor and to two anonymous referees
for their insightful comments that improved the presentation of the
manuscript. This work was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U. S. Department of
Energy, under Contracts DE-AC02-06CH11357 and DE-FG02-05ER25694.
NR 37
TC 8
Z9 8
U1 0
U2 1
PU INFORMS
PI HANOVER
PA 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA
SN 1091-9856
J9 INFORMS J COMPUT
JI INFORMS J. Comput.
PD SPR
PY 2009
VL 21
IS 2
BP 257
EP 267
DI 10.1287/ijoc.1080.0290
PG 11
WC Computer Science, Interdisciplinary Applications; Operations Research &
Management Science
SC Computer Science; Operations Research & Management Science
GA 441GI
UT WOS:000265756900006
ER
PT J
AU Guo, HB
Gorin, A
Guo, H
AF Guo, Haobo
Gorin, Andrey
Guo, Hong
TI A Peptide-Linkage Deletion Procedure for Estimate of Energetic
Contributions of Individual Peptide Groups in a Complex Environment:
Application to Parallel beta-Sheets
SO INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES
LA English
DT Article
DE peptide hydrogen bonds; beta-sheets; C-alpha-H hydrogen bonds; protein
stability; quantum mechanical calculations
AB A peptide-linkage deletion procedure is introduced for extracting the quantum mechanical (QM) interaction energies of individual groups in a complex environment and applied for the determination of the energetic contributions of the individual hydrogen bond acceptors (C=O's) and donors (N-H's) in parallel beta-sheets. For the beta-sheets studied here, the results show that the contributions from the H-bond acceptors (C=O) can be significantly greater than the contributions from the donors (N-H). It is suggested that this imbalance may be induced, at least in part, by the inter-strand C alpha-H center dot center dot center dot O-C interactions which may play an important role in stabilizing beta-sheets. The results demonstrate the usefulness of the approach proposed in this paper to study interactions in complex protein environments.
C1 [Guo, Haobo; Guo, Hong] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
[Gorin, Andrey] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA.
[Guo, Hong] Oak Ridge Natl Lab, Ctr Biophys Mol, UT ORNL, Oak Ridge, TN 37830 USA.
RP Guo, H (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.
EM hguo1@utk.edu
RI Guo, Hao-Bo/B-7486-2009; Guo, Hong/E-6357-2010; Gorin,
Andrey/B-1545-2014
OI Guo, Hao-Bo/0000-0003-1321-1758;
FU UT-ORNL Science Alliance; University of Tennessee; ACS Petroleum
Research Fund; US National Science Foundation
FX Supports from the UT-ORNL Science Alliance, University of Tennessee, and
the ACS Petroleum Research Fund, and US National Science Foundation are
gratefully acknowledged. We thank Prof. Alex MacKerell for useful
discussions.
NR 37
TC 5
Z9 6
U1 0
U2 5
PU SPRINGER HEIDELBERG
PI HEIDELBERG
PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY
SN 1913-2751
EI 1867-1462
J9 INTERDISCIP SCI
JI Interdiscip. Sci.
PD MAR
PY 2009
VL 1
IS 1
BP 12
EP 20
DI 10.1007/s12539-008-0011-8
PG 9
WC Mathematical & Computational Biology
SC Mathematical & Computational Biology
GA V28VP
UT WOS:000208708600002
PM 20640814
ER
PT J
AU Zhang, W
Li, YL
Xu, TF
Cheng, HL
Zheng, Y
Xiong, P
AF Zhang, Wei
Li, Yilian
Xu, Tianfu
Cheng, Huilin
Zheng, Yan
Xiong, Peng
TI Long-term variations of CO2 trapped in different mechanisms in deep
saline formations: A case study of the Songliao Basin, China
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Geological storage; Carbon dioxide; Numerical simulation; Saline
formation; Songliao Basin; China
ID REACTIVE GEOCHEMICAL TRANSPORT; CARBON-DIOXIDE; NUMERICAL-SIMULATION;
SEDIMENTARY BASINS; CLIMATE-CHANGE; AQUIFER DISPOSAL; GEOLOGICAL MEDIA;
GREENHOUSE GASES; NORTH-SEA; SEQUESTRATION
AB The geological storage of CO2 in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases to the atmosphere. There are numerous sedimentary basins in China, in which a number of suitable CO2 geologic reservoirs are potentially available. To identify the multi-phase processes, geochemical changes and mineral alteration, and CO2 trapping mechanisms after CO2 injection, reactive geochemical transport simulations using a simple 2D model were performed. Mineralogical composition and water chemistry from a deep saline formation of Songliao Basin were used. Results indicate that different storage forms Of CO2 vary with time. In the CO2 injection period, a large amount Of CO2 remains as a free supercritical phase (gas trapping), and the amount dissolved in the formation water (solubility trapping) gradually increases. Later, gas trapping decrease, solubility trapping increases significantly due to the migration and diffusion Of CO2 plume and the convective mixing between CO2-saturated water and unsaturated water, and the amount trapped by carbonate minerals increases gradually with time. The residual CO2 gas keeps dissolving into groundwater and precipitating carbonate minerals. For the Songliao Basin sandstone, variations in the reaction rate and abundance of chlorite, and plagioclase composition affect significantly the estimates of mineral alteration and CO2 storage in different trapping mechanisms. The effect of vertical permeability and residual gas saturation on the overall storage is smaller compared to the geochemical factors. However, they can affect the spatial distribution of the injected CO2 in the formations. The CO2 mineral trapping capacity could be in the order of 10 kg/m(3) medium for the Songliao Basin sandstone, and may be higher depending on the composition of primary aluminosilicate minerals especially the content of Ca, Mg, and Fe. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Zhang, Wei; Li, Yilian; Cheng, Huilin; Zheng, Yan; Xiong, Peng] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China.
[Xu, Tianfu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Li, YL (reprint author), China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China.
EM yl.li309@gmail.com
RI Zhang, Wei/E-4440-2010
OI Zhang, Wei/0000-0001-9620-1023
FU National Natural Science Foundation of China (NSFC) [40472122,
40672168]; U.S. Department of Energy [DE-AC02-05CH11231]
FX The authors would like to thank Stefan Bachu and two anonymous reviewers
for their constructive comments and suggestions during the review
process, which greatly improve the quality of the paper. We would also
like to acknowledge helpful comments from and discussions with
colleagues Chenxi Wu, Liqun Sun, Sylvester Mumba and Anne Ornambia. This
work was supported by the National Natural Science Foundation of China
(NSFC, Nos. 40472122 and 40672168). The third author of this paper
(Tianfu Xu) was supported by the Zero Emission Research and Technology
project (ZERT) of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory.
NR 61
TC 84
Z9 98
U1 3
U2 43
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD MAR
PY 2009
VL 3
IS 2
BP 161
EP 180
DI 10.1016/j.ijggc.2008.07.007
PG 20
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA 417BM
UT WOS:000264049600005
ER
PT J
AU Birkholzer, JT
Zhou, QL
Tsang, CF
AF Birkholzer, Jens T.
Zhou, Quanlin
Tsang, Chin-Fu
TI Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity
study on pressure response in stratified systems
SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL
LA English
DT Article
DE Geological sequestration; Saline aquifer; Pressure buildup; Numerical
simulation; Multilayered system
ID CARBON-DIOXIDE; HYDRAULIC CONDUCTIVITY; DISPOSAL; BASIN
AB Large volumes of CO2 captured from carbon emitters (such as coal-fired power plants) may be stored in deep saline aquifers as a means of mitigating climate change. Storing these additional fluids may cause pressure changes and displacement of native brines, affecting subsurface volumes that can be significantly larger than the CO2 plume itself This study aimed at determining the three-dimensional region of influence during/after injection of CO2 and evaluating the possible implications for shallow groundwater resources, with particular focus on the effects of interlayer communication through low-permeability seals. To address these issues quantitatively, we conducted numerical simulations that provide a basic understanding of the large-scale flow and pressure conditions in response to industrial-scale CO2 injection into a laterally open saline aquifer. The model domain included an idealized multilayered groundwater system, with a sequence of aquifers and aquitards (sealing units) extending from the deep saline storage formation to the uppermost freshwater aquifer. Both the local CO2-brine flow around the single injection site and the single-phase water flow (with salinity changes) in the region away from the CO2 plume were simulated. Our simulation results indicate considerable pressure buildup in the storage formation more than 100 km away from the injection zone, whereas the lateral distance migration of brine is rather small. In the vertical direction, the pressure perturbation from CO2 storage may reach shallow groundwater resources only if the deep storage formation communicates with the shallow aquifers through sealing units of relatively high permeabilities (higher than 10(-18) m(2)). vertical brine migration through a sequence of layers into shallow groundwater bodies is extremely unlikely. overall, large-scale pressure changes appear to be of more concern to groundwater resources than changes in water quality caused by the migration of displaced saline water. Published by Elsevier Ltd.
C1 [Birkholzer, Jens T.; Zhou, Quanlin; Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Birkholzer, JT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA.
EM jtbirkholzer@lbl.gov
RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011
OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912
FU U.S. Department of Energy; Lawrence Berkeley National Laboratory
[DE-AC02-05CH11231]
FX The authors wish to thank Larry Myer at Lawrence Berkeley National
Laboratory (LBNL) for his careful internal review of the manuscript.
Thanks are also due to two anonymous reviewers for their constructive
suggestions for improving the quality of the manuscript. This work was
funded by the Assistant Secretary for Fossil Energy, Office of
Sequestration, Hydrogen, and Clean Coal Fuels, National Energy
Technology Laboratory, of the U.S. Department of Energy, and by Lawrence
Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.
NR 25
TC 227
Z9 237
U1 7
U2 61
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 1750-5836
J9 INT J GREENH GAS CON
JI Int. J. Greenh. Gas Control
PD MAR
PY 2009
VL 3
IS 2
BP 181
EP 194
DI 10.1016/j.ijggc.2008.08.002
PG 14
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering,
Environmental
SC Science & Technology - Other Topics; Energy & Fuels; Engineering
GA 417BM
UT WOS:000264049600006
ER
PT J
AU Haji-Sheikh, A
Amos, DE
Beck, JV
AF Haji-Sheikh, A.
Amos, Donald E.
Beck, J. V.
TI Temperature field in a moving semi-infinite region with a prescribed
wall heat flux
SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
LA English
DT Article
DE Heat transfer; Moving boundary; Axial conduction; Slug flow; Thermal
entrance
ID EXTENDED GRAETZ PROBLEM; AXIAL CONDUCTION; ENTRANCE REGION; FLOW; DUCTS
AB Steady state conduction of heat from a stationary wall to a medium moving at a uniform velocity is the subject herein. This medium can be a solid or a fluid moving at a constant velocity. The surface of this medium is insulated until a change in the surface heat flux occurs. The determination of temperature field is the main objective herein. The results show that the surface temperature begins to increase before its arrival to the heater's location where there is an abrupt change in the surface heat flux. The application of this phenomenon to a moving wall with frictional heating at its surface and to classical heat transfer in ducts can lead to new information. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Haji-Sheikh, A.] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA.
[Amos, Donald E.] Sandia Natl Labs, Albuquerque, NM 87110 USA.
[Beck, J. V.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA.
RP Haji-Sheikh, A (reprint author), Univ Texas Arlington, Dept Mech & Aerosp Engn, 500 W 1st St, Arlington, TX 76019 USA.
EM haji@uta.edu
NR 23
TC 5
Z9 6
U1 0
U2 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0017-9310
J9 INT J HEAT MASS TRAN
JI Int. J. Heat Mass Transf.
PD MAR
PY 2009
VL 52
IS 7-8
BP 2092
EP 2101
DI 10.1016/j.ijheatmasstransfer.2008.11.005
PG 10
WC Thermodynamics; Engineering, Mechanical; Mechanics
SC Thermodynamics; Engineering; Mechanics
GA 416JR
UT WOS:000264002700049
ER
PT J
AU Hardy, BJ
Anton, DL
AF Hardy, Bruce J.
Anton, Donald L.
TI Hierarchical methodology for modeling hydrogen storage systems. Part I:
Scoping models
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Hydrogen storage modeling; Hydrogen storage systems; Metal hydrides;
Hierarchical modeling system
AB Detailed models for hydrogen storage systems provide essential design information about flow and temperature distributions, as well as, the utilization of a hydrogen storage media. However, before constructing a detailed model it is necessary to know the geometry and length scales of the system, along with its heat transfer requirements, which depend on the limiting reaction kinetics. More fundamentally, before committing significant time and resources to the development of a detailed model, it is necessary to know whether a conceptual storage system design is viable. For this reason, a hierarchical system of models progressing from scoping models to detailed analyses was developed. This paper, which discusses the scoping models, is the first in a two part series that presents a collection of hierarchical models for the design and evaluation of hydrogen storage systems. Published by Elsevier Ltd on behalf of International Association for Hydrogen Energy.
C1 [Hardy, Bruce J.; Anton, Donald L.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Hardy, BJ (reprint author), Savannah River Natl Lab, Bldg 773-42A, Aiken, SC 29808 USA.
EM bruce.hardy@srnl.doe.gov
FU U.S. Department of Energy [DE-AC09-08SR22470]
FX This document was prepared in conjunction with work accomplished under
Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy.
NR 9
TC 32
Z9 32
U1 0
U2 1
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD MAR
PY 2009
VL 34
IS 5
BP 2269
EP 2277
DI 10.1016/j.ijhydene.2008.12.070
PG 9
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 423YL
UT WOS:000264532600022
ER
PT J
AU Johnson, C
Orlovskaya, N
Coratolo, A
Cross, C
Wu, J
Gemmen, R
Liu, X
AF Johnson, Christopher
Orlovskaya, Nina
Coratolo, Anthony
Cross, Caleb
Wu, Junwei
Gemmen, Randall
Liu, Xingbo
TI The effect of coating crystallization and substrate impurities on
magnetron sputtered doped LaCrO3 coatings for metallic solid oxide fuel
cell interconnects
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE SOFC; Interconnect; Impurities; Coatings
ID ALLOY INTERCONNECTS; SOFC; OXIDATION; CHROMIA; PEROVSKITES; DEGRADATION;
TEMPERATURE; STATIONARY; RESISTANCE; BEHAVIOR
AB For IT-SOFC metallic interconnects, surface coating is effective for reducing Cr poisoning of the cathode and controlling scale growth. In this work, LaCrO3 and doped LaCrO3 coatings were deposited by magnetron sputtering on SS446 and Crofer 22 APU substrates. The crystallization process was studied by means of X-ray Diffraction (XRD) during the annealing of the sputter coated samples in ambient and reducing environments. The formation of intermediate phases when annealed in air, LaCrO4 and La2CrO6, results in vacancy formation upon subsequent transformation to the LaCrO3 phase and thus a decreased oxidation resistance. While the avoidance of an intermediate phase change when the coatings are initially annealed in a reducing environment leads to dense and compact coatings. This confirmed both by XRD and by scanning electron microscopy (SEM) of coating cross-sections. Crofer 22 APU alloys with various silicon and aluminum levels are deposited with doped LaCrO3 coating to study substrate impurity effects on coating properties. It was found that silicon content in the substrates leads to increased ASR of the coatings. in addition, long term annealing in air shows that aluminum impurities in the substrate can lead to the formation of alumina at substrate grain boundaries, which in turn leads to enhanced Mn migration at the grain boundaries. Increased manganese concentrations at the film/grain boundary interface in coated samples produces larger than normal amounts of (Mn,Cr)(3)O-4 spinel in these regions, which cracks the coating and reduces the ASR value due to extra electronic conduction path. A similar mechanism is not observed in a low Al/Si alloy. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
C1 [Johnson, Christopher; Cross, Caleb; Wu, Junwei; Gemmen, Randall; Liu, Xingbo] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Orlovskaya, Nina] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA.
[Coratolo, Anthony] Drexel Univ, Dept Mat Engn, Philadelphia, PA 19104 USA.
[Wu, Junwei; Liu, Xingbo] W Virginia Univ, Mech & Aerosp Dept, Morgantown, WV 26505 USA.
RP Liu, X (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
EM xingbo.liu@mail.wvu.edu
NR 35
TC 17
Z9 18
U1 0
U2 18
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD MAR
PY 2009
VL 34
IS 5
BP 2408
EP 2415
DI 10.1016/j.ijhydene.2008.12.072
PG 8
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 423YL
UT WOS:000264532600039
ER
PT J
AU Houf, W
Schefer, R
AF Houf, W.
Schefer, R.
TI Analytical and Experimental Investigation of Small-scale Unintended
Releases of Hydrogen (vol 33, pg 1435, 2008)
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Correction
C1 [Houf, W.; Schefer, R.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Houf, W (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA.
EM will@sandia.gov
RI Schefer, Jurg/G-3960-2012
NR 1
TC 0
Z9 0
U1 0
U2 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD MAR
PY 2009
VL 34
IS 5
BP 2517
EP 2518
DI 10.1016/j.ijhydene.2009.01.020
PG 2
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 423YL
UT WOS:000264532600055
ER
PT J
AU Nagarajan, V
Ponyavin, V
Chen, Y
Vernon, ME
Pickard, P
Hechanova, AE
AF Nagarajan, Vijaisri
Ponyavin, Valery
Chen, Yituny
Vernon, Milton E.
Pickard, Paul
Hechanova, Anthony E.
TI CFD modeling and experimental validation of sulfur trioxide
decomposition in bayonet type heat exchanger and chemical decomposer for
different packed bed designs
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Bayonet heat exchanger; Hydrogen production; Sulfuric acid
decomposition; SI thermochemical cycle; Packed bed design
ID HYDROGEN-PRODUCTION PROCESS; THERMAL-DECOMPOSITION; REACTOR; H2SO4;
CYCLE; ACID; FLOW; SO2
AB The growth of global energy demand during the 21st century, combined with the necessity to master greenhouse gas emissions has lead to the introduction of a new and universal energy carrier: hydrogen. The Department of Energy (DOE) Nuclear Hydrogen initiative was investigating thermochemical cycles for hydrogen production using high-temperature heat exchangers. in this study a three-dimensional computational model of high- temperature heat exchanger and decomposer for decomposition of sulfur trioxide by the sulfur-iodine thermochemical water-splitting cycle with different packed bed designs has been done. The decomposer region of the bayonet heat exchanger also called as silicon carbide integrated decomposer (SID) is designed as the packed bed region. Cylindrical, spherical, cubical and hollow cylindrical pellets have been arranged inside the packed bed. The engineering design of the packed bed was very much influenced by the structure of the packing matrix, which was governed by the shape, dimension and the loading of the constituent particles. Staggered and regular packing methods are used for packing the pellets in the packed bed region. The numerical model is created using GAMBIT and fluid, thermal and chemical analyses were performed using FLUENT. The decomposition percentage of sulfur trioxide is found for the packed bed region with different pellets and the numerical results obtained is compared with the experimental results. A comparison is made for the decomposition percentage of SO(3) for the packed bed approach and the porous media approach. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
C1 [Nagarajan, Vijaisri; Ponyavin, Valery; Chen, Yituny] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA.
[Vernon, Milton E.; Pickard, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Hechanova, Anthony E.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA.
RP Nagarajan, V (reprint author), Univ Nevada, Dept Mech Engn, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA.
EM vijaisri.n@gmail.com
FU US Department of Energy [DE-FG04-01AL67356]
FX This study was funded by the US Department of Energy under the contract
DE-FG04-01AL67356.
NR 31
TC 16
Z9 16
U1 0
U2 9
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD MAR
PY 2009
VL 34
IS 6
BP 2543
EP 2557
DI 10.1016/j.ijhydene.2008.10.094
PG 15
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 436PF
UT WOS:000265425600003
ER
PT J
AU Shrestha, RP
Diyabalanage, HVK
Semelsberger, TA
Ott, KC
Burrell, AK
AF Shrestha, Roshan P.
Diyabalanage, Himashinie V. K.
Semelsberger, Troy A.
Ott, Kevin C.
Burrell, Anthony K.
TI Catalytic dehydrogenation of ammonia borane in non-aqueous medium
SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
LA English
DT Article
DE Ammonia borane; Catalyst; Hydrogen storage; Catalysis; Dehydrogenation;
Kinetics
ID CHEMICAL HYDROGEN STORAGE; THERMAL-DECOMPOSITION; COMPLEX
AB Dehydrogenation of Ammonia Borane (NH3BH3, AB) catalyzed by transition metal heterogeneous catalysts was carried out in non-aqueous solution at temperatures below the standard polymer electrolyte membrane (PEM) fuel cell operating conditions. The introduction of a catalytic amount (similar to 2 mol%) of platinum to a solution of AB in 2-methoxyethyl ether (0.02-0.33 M) resulted in a rapid evolution of H-2 gas at room temperature. At 70 degrees C, the rate of platinum catalyzed hydrogen release from AB was the dehydrogenation rate which was 0.04 g s(-1) H-2 kW(-1). Published by Elsevier Ltd on behalf of International Association for Hydrogen Energy.
C1 [Shrestha, Roshan P.; Diyabalanage, Himashinie V. K.; Semelsberger, Troy A.; Ott, Kevin C.; Burrell, Anthony K.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
RP Burrell, AK (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Mail Stop J514, Los Alamos, NM 87545 USA.
EM burrell@lanl.gov
FU U.S. Department of Energy; Office of Energy Efficiency and Renewable
Energy
FX We would like to acknowledge the support of the U.S. Department of
Energy, Office of Energy Efficiency and Renewable Energy for providing
funding and R. Tom Baker, Benjamin Davis, Charles Hamilton, and Vincent
Pons for helpful discussions.
NR 21
TC 69
Z9 71
U1 4
U2 25
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0360-3199
J9 INT J HYDROGEN ENERG
JI Int. J. Hydrog. Energy
PD MAR
PY 2009
VL 34
IS 6
BP 2616
EP 2621
DI 10.1016/j.ijhydene.2009.01.014
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels
SC Chemistry; Electrochemistry; Energy & Fuels
GA 436PF
UT WOS:000265425600011
ER
PT J
AU Groger, R
Vitek, V
AF Groeger, Roman
Vitek, Vaclav
TI Temperature and strain rate dependent flow criterion for bcc transition
metals based on atomistic analysis of dislocation glide
SO INTERNATIONAL JOURNAL OF MATERIALS RESEARCH
LA English
DT Article; Proceedings Paper
CT 11th International Symposium on Physics of Materials (ISPMA)
CY AUG 24-28, 2008
CL Charles Univ, Fac Math & Phys, Prague, CZECH REPUBLIC
HO Charles Univ, Fac Math & Phys
DE Transition metals; Screw dislocation; Peierls barrier; Flow criterion;
Non-glide stress
ID CENTERED-CUBIC METALS; MOLYBDENUM SINGLE-CRYSTALS; PLASTIC-DEFORMATION;
SCREW DISLOCATIONS; PEIERLS MECHANISM; CORE STRUCTURES; YIELD BEHAVIOR;
STRESS; MOTION; SIMULATIONS
AB 1/2(111) screw dislocations that possess non-planar cores and thus a high lattice friction (Peierls) stress control the plastic deformation of pure bcc metals. In this paper we formulate an analytical flow criterion based on the recognition that at finite temperatures the screw dislocations glide via formation and Subsequent propagation of pairs of kinks. This development employs first an atomistically calculated dependence of the Peierls stress on the applied loading to construct the Peierls potential that depends on the applied stress tensor. This Peierls potential is then used to evaluate the activation enthalpy for the kink-pair formation employing mesoscopic dislocation models and its dependence on the applied stress tensor is then approximated by a relatively simple analytical form. Using the standard transition state theory to ascertain the dislocation velocity and related strain rate allows us to formulate the temperature and strain rate dependent flow criterion. Implications of this criterion are then compared with available experimental data demonstrating its excellent predictive value.
C1 [Groeger, Roman; Vitek, Vaclav] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[Groeger, Roman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA.
RP Vitek, V (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA.
EM vitek@seas.upenn.edu
RI Groger, Roman/G-3608-2010
NR 45
TC 6
Z9 6
U1 2
U2 18
PU CARL HANSER VERLAG
PI MUNICH
PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY
SN 1862-5282
EI 2195-8556
J9 INT J MATER RES
JI Int. J. Mater. Res.
PD MAR
PY 2009
VL 100
IS 3
BP 315
EP 321
DI 10.3139/146.110046
PG 7
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 428SR
UT WOS:000264870600010
ER
PT J
AU Kassner, ME
Geantil, P
Levine, LE
Larson, BC
AF Kassner, M. E.
Geantil, P.
Levine, L. E.
Larson, B. C.
TI Long-range internal stresses in monotonically and cyclically deformed
metallic single crystals
SO INTERNATIONAL JOURNAL OF MATERIALS RESEARCH
LA English
DT Article; Proceedings Paper
CT 11th International Symposium on Physics of Materials (ISPMA)
CY AUG 24-28, 2008
CL Charles Univ, Fac Math & Phys, Prague, CZECH REPUBLIC
HO Charles Univ, Fac Math & Phys
DE Long-range internal stress; Backstress; Synchrotron; Microdiffraction
ID LATTICE PLANE MISORIENTATIONS; BEAM ELECTRON-DIFFRACTION; RAY STRUCTURAL
MICROSCOPY; PLASTIC-DEFORMATION; DISLOCATION MICROSTRUCTURE; PART II;
COPPER; STRAIN; CREEP; CELL
AB Selected experimental measurements and theoretical predictions for the magnitude of long-range internal stress in monotonically and cyclically deformed metals are assessed and recently developed, spatially-resolved X-ray microbeam techniques for direct measurements of long-range internal stress are discussed. The results of previously reported differential-aperture X-ray microscopy spatially-resolved measurements of long-range internal stress in dislocation-cell interiors in monotonically deformed copper are compared with predictions and analyses associated with the composite model of deformation. In addition, the results of volume-integrating X-ray line-profile measurements and spatially-resolved differential-aperture X-ray microscopy measurements of strains in (100) oriented copper single crystals that were cyclically deformed to pre-saturation (without persistent slip bands) are presented.
C1 [Kassner, M. E.; Geantil, P.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA.
[Levine, L. E.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA.
[Larson, B. C.] ORNL, Mater Sci Tech Div, Oak Ridge, TN USA.
RP Kassner, ME (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA.
EM kassner@usc.edu
NR 38
TC 3
Z9 3
U1 0
U2 5
PU CARL HANSER VERLAG
PI MUNICH
PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY
SN 1862-5282
J9 INT J MATER RES
JI Int. J. Mater. Res.
PD MAR
PY 2009
VL 100
IS 3
BP 333
EP 339
DI 10.3139/146.110050
PG 7
WC Metallurgy & Metallurgical Engineering
SC Metallurgy & Metallurgical Engineering
GA 428SR
UT WOS:000264870600014
ER
PT J
AU Jirimutu
Wang, HJ
Zhang, WN
Wong, CY
AF Jirimutu
Wang, Hai-Jun
Zhang, Wei-Ning
Wong, Cheuk-Yin
TI QUARK MODEL WITH A REGULARIZED BREIT POTENTIAL
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS
LA English
DT Article
DE Quark model; regularized Breit potential; q(q)over-bar bound states
ID MESONS; CHROMODYNAMICS; SCATTERING; EQUATION
AB The Breit interaction contains terms that are singular in nature and cannot be used non-perturbatively for quark-antiquark bound state studies. We regularize the Breit interaction by subtraction such that the interaction is not singular at the origin but the intermediate and long-range parts of the interaction remain unchanged. With the regularized quark-antiquark potential and the confining potential, the solution of q (q) over bar bound states are therefore stable possessing wave functions that can be used for future applications in other study of scattering and reaction problems.
C1 [Jirimutu; Zhang, Wei-Ning] Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China.
[Wang, Hai-Jun] Jilin Univ, Ctr Theoret Phys, Changchun 130023, Jilin, Peoples R China.
[Wang, Hai-Jun] Jilin Univ, Sch Phys, Changchun 130023, Jilin, Peoples R China.
[Zhang, Wei-Ning; Wong, Cheuk-Yin] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China.
[Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
RP Jirimutu (reprint author), Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China.
OI Wong, Cheuk-Yin/0000-0001-8223-0659
NR 22
TC 2
Z9 2
U1 0
U2 4
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0218-3013
J9 INT J MOD PHYS E
JI Int. J. Mod. Phys. E-Nucl. Phys.
PD MAR
PY 2009
VL 18
IS 3
BP 729
EP 745
PG 17
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 443WH
UT WOS:000265941000011
ER
PT J
AU Maniadis, P
Rasmussen, KO
Thompson, RB
Kober, EM
AF Maniadis, Panagiotis
Rasmussen, Kim O.
Thompson, Russell B.
Kober, Edward M.
TI Ordering and Reverse Ordering Mechanisms of Triblock Copolymers in the
Presence of Solvent
SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
LA English
DT Article
DE Triblock copolymers; self-assembly; self-consistent field theory
ID MICROPHASE-SEPARATION; NEUTRAL SOLVENT; FIELD-THEORY; BLOCK; TERPOLYMER;
BEHAVIOR; BLENDS
AB Self-consistent field theory is used to study the self-assembly of a triblock copolymer melt. Two different external factors (temperature and solvent) are shown to affect the self-assembly. Either one or two-step self-assembly can be found as a function of temperature in the case of a neat triblock melt, or as a function of increasing solvent content (for non-selective solvents) in the case of a triblock-solvent mixture. For selective solvents, it is shown that increasing the solvent content leads to more complicated self-assembly mechanisms, including a reversed transition where order is found to increase instead of decreasing as expected, and re-entrant behavior where order is found to increase at first, and then decrease to a previous state of disorder.
C1 [Maniadis, Panagiotis; Rasmussen, Kim O.; Kober, Edward M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Maniadis, Panagiotis; Rasmussen, Kim O.; Kober, Edward M.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Thompson, Russell B.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada.
RP Rasmussen, KO (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA.
EM kor@lanl.gov
RI Rasmussen, Kim/B-5464-2009; Maniadis, Panagiotis/A-7861-2012; Thompson,
Russell/J-6326-2012
OI Rasmussen, Kim/0000-0002-4029-4723; Thompson,
Russell/0000-0002-6571-558X
FU U. S. Department of Energy at Los Alamos National Laboratory
[DE-AC52-06NA25396]; NSERC of Canada
FX This research was carried out under the auspices of the National Nuclear
Security Administration of the U. S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396, and was
additionally supported by NSERC of Canada.
NR 13
TC 1
Z9 1
U1 0
U2 8
PU MDPI AG
PI BASEL
PA POSTFACH, CH-4005 BASEL, SWITZERLAND
SN 1422-0067
J9 INT J MOL SCI
JI Int. J. Mol. Sci.
PD MAR
PY 2009
VL 10
IS 3
BP 805
EP 816
DI 10.3390/ijms10030805
PG 12
WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary
SC Biochemistry & Molecular Biology; Chemistry
GA 424KJ
UT WOS:000264565300004
PM 19399221
ER
PT J
AU Ingber, MS
Graham, AL
Mondy, LA
Fang, ZW
AF Ingber, Marc S.
Graham, Alan L.
Mondy, Lisa A.
Fang, Zhiwu
TI An improved constitutive model for concentrated suspensions accounting
for shear-induced particle migration rate dependence on particle radius
SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
LA English
DT Article
ID PRESSURE-DRIVEN FLOW; COUETTE APPARATUS; APPARENT SLIP; WALL SLIP;
EQUATION; VELOCITY
AB Several rheological constitutive equations for the modeling of dense suspensions in nonlinear shear flows have been developed over the last three decades. Although these models have been able to predict the correct steady-state solid-phase concentration profile, none have been able to follow the transient experimentally measured concentration profile over a range of suspended particle radii with a consistent set of diffusion coefficients. In this research, two improvements are made to the diffusive-flux model, namely, modeling the diffusion coefficients as linear functions of the so-called nonlinearity parameter and adding slip boundary conditions at the wall. A particle-level explanation for the linear dependence of the diffusion coefficients on the nonlinearity parameter is provided. With these two improvements, it is shown that the modified diffusive flux model can accurately predict the transient solid-phase concentration profile in a Couette device over a wide range of particle radii. Published by Elsevier Ltd.
C1 [Graham, Alan L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Ingber, Marc S.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA.
[Mondy, Lisa A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Fang, Zhiwu] Amgen Inc, Dept Informat Syst, Newbury Pk, CA 91320 USA.
RP Graham, AL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM graham@lanl.gov
FU U.S. Department of Energy (DOE) [DE-FG02-05ER25705]; Los Alamos National
Laboratory Directed Research and Development Program; National Science
Foundation; [DE-AC52-06NA25396]
FX This work was partially supported by the U.S. Department of Energy (DOE)
Grant DE-FG02-05ER25705. This financial support does not constitute an
endorsement by the DOE of the views expressed in this paper. Los Alamos
National Laboratory, an affirmative action/equal opportunity employer,
is operated by the Los Alamos National Security, LLC for the National
Nuclear Security Administration of the U.S. Department of Energy under
contract DE-AC52-06NA25396. Additional funding for this project was
provided by the Los Alamos National Laboratory Directed Research and
Development Program. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company for the United States
Department of Energy's National Nuclear Security Administration under
Contract DE-AC04-94AL85000. The authors would like to acknowledge the
support of DOE ASCR's Mul-tiscale Mathematics program. This material was
based on work supported by the National Science Foundation, while Marc
Ingber was working at the Foundation.
NR 27
TC 22
Z9 22
U1 0
U2 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0301-9322
J9 INT J MULTIPHAS FLOW
JI Int. J. Multiph. Flow
PD MAR
PY 2009
VL 35
IS 3
BP 270
EP 276
DI 10.1016/j.ijmultiphaseflow.2008.11.003
PG 7
WC Mechanics
SC Mechanics
GA 413AQ
UT WOS:000263765700006
ER
PT J
AU Vrugt, JA
ter Braak, CJF
Diks, CGH
Robinson, BA
Hyman, JM
Higdon, D
AF Vrugt, Jasper A.
ter Braak, C. J. F.
Diks, C. G. H.
Robinson, Bruce A.
Hyman, James M.
Higdon, Dave
TI Accelerating Markov Chain Monte Carlo Simulation by Differential
Evolution with Self-Adaptive Randomized Subspace Sampling
SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION
LA English
DT Article
DE MCMC, Markov chain Monte Carlo; RWM, random walk metropolis; DE-MC,
differential evolution Markov chain; DRAM, delayed rejection adaptive
Metropolis; DREAM, differential evolution adaptive metropolis; SCE-UA,
shuffled complex evolution - university of Arizona
ID METROPOLIS ALGORITHM; BAYESIAN-INFERENCE; OPTIMIZATION; REGENERATION;
UNCERTAINTY; ADAPTATION; MIGRATION; SAMPLERS; PROPOSAL; MODELS
AB Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well-constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled Differential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally Superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to Complex, multi-modal search problems.
C1 [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[ter Braak, C. J. F.] Univ Wageningen & Res Ctr, NL-6700 AC Wageningen, Netherlands.
[Diks, C. G. H.] Univ Amsterdam, Ctr Nonlinear Dynam Econ & Finance, Amsterdam, Netherlands.
[Robinson, Bruce A.] Los Alamos Natl Lab, Civilian Nucl Program Off SPO CNP, Los Alamos, NM 87545 USA.
[Hyman, James M.] Los Alamos Natl Lab, Math Modeling & Anal Grp T7, Los Alamos, NM 87545 USA.
[Higdon, Dave] Los Alamos Natl Lab, Stat Sci CCS6, Los Alamos, NM 87545 USA.
RP Vrugt, JA (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
EM vrugt@lanl.gov
RI Vrugt, Jasper/C-3660-2008; Robinson, Bruce/F-6031-2010; ter Braak,
Cajo/G-7006-2011
OI ter Braak, Cajo/0000-0002-0414-8745
FU Los - Alamos Postdoctoral Program
FX The first author is supported by a J. Robert Oppenheimer Fellowship of
the Los - Alamos Postdoctoral Program. The source code of DREAM is
written in MATLAB and sequential and parallel irnplernentations of this
software can - be obtained from the first author (vrugt@lanl.gov) upon
request.
NR 38
TC 266
Z9 274
U1 20
U2 122
PU WALTER DE GRUYTER GMBH
PI BERLIN
PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY
SN 1565-1339
EI 2191-0294
J9 INT J NONLIN SCI NUM
JI Int. J. Nonlinear Sci. Numer. Simul.
PD MAR
PY 2009
VL 10
IS 3
BP 273
EP 290
PG 18
WC Engineering, Multidisciplinary; Mathematics, Applied; Mechanics;
Physics, Mathematical
SC Engineering; Mathematics; Mechanics; Physics
GA 424UM
UT WOS:000264593800001
ER
PT J
AU McCabe, RJ
Proust, G
Cerreta, EK
Misra, A
AF McCabe, Rodney J.
Proust, Gwenaelle
Cerreta, Ellen K.
Misra, Amit
TI Quantitative analysis of deformation twinning in zirconium
SO INTERNATIONAL JOURNAL OF PLASTICITY
LA English
DT Article
DE Zirconium; Twinning; Microstructures; Polycrystalline material; Electron
microscopy
ID COMMERCIAL-PURITY TITANIUM; FINITE-ELEMENT ANALYSIS;
MECHANICAL-PROPERTIES; HARDENING EVOLUTION; PURE TITANIUM; TEMPERATURE;
BEHAVIOR; TEXTURE; STRAIN; DIFFRACTION
AB We have used electron backscatter diffraction (EBSD) to quantify the contributions of first generation and second generation twinning to the total plastic strain of zirconium compressed at 76 K. For compression parallel to a primary c-axis texture, prismatic slip and first generation {11 (2) over bar2} compression twinning are the dominant deformation mechanisms with twinning accommodating roughly one third of the plastic strain. Second generation {10 (1) over bar2} and {11 (2) over bar1} tensile twins increase with the third power of the first generation {11 (2) over bar2} twin fraction. For compression perpendicular to the primary c-axis texture, prismatic slip and first generation {10 (1) over bar2} tensile twinning are the dominant deformation mechanisms with a small contribution from first generation {11 (2) over bar1} tensile twinning. Above approximately 17% strain, second generation {11 (2) over bar2} compression twins begin to make a contribution to the overall strain. These observations are used to explain the measured mechanical responses and texture evolution during deformation of zirconium. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [McCabe, Rodney J.; Proust, Gwenaelle; Cerreta, Ellen K.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
[Proust, Gwenaelle] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia.
[Misra, Amit] Los Alamos Natl Lab, MPA Div, Los Alamos, NM 87545 USA.
RP McCabe, RJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM rmccabe@lanl.gov
RI Proust, Gwenaelle/A-3601-2010; Misra, Amit/H-1087-2012;
OI McCabe, Rodney /0000-0002-6684-7410
FU Department of Energy, Office of Science, Office of Basic Energy Sciences
FX This research is Supported by the Department of Energy, Office of
Science, Office of Basic Energy Sciences. Authors acknowledge
discussions with Carlos Tome, Mike Baskes, Irene Beyerlein, Bjorn
Clausen, George Kaschner, Marek Niewczas, and S.G. Srinivasan. Manuel
Lovato performed the mechanical tests. Ann Kelly helped prepare the EBSD
samples.
NR 27
TC 76
Z9 77
U1 1
U2 33
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0749-6419
J9 INT J PLASTICITY
JI Int. J. Plast.
PD MAR
PY 2009
VL 25
IS 3
BP 454
EP 472
DI 10.1016/j.ijplas.2008.03.010
PG 19
WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics
SC Engineering; Materials Science; Mechanics
GA 420AL
UT WOS:000264260700004
ER
PT J
AU Kurpinski, K
Jang, DJ
Bhattacharya, S
Rydberg, B
Chu, J
So, J
Wyrobek, A
Li, S
Wang, DJ
AF Kurpinski, Kyle
Jang, Deok-Jin
Bhattacharya, Sanchita
Rydberg, Bjorn
Chu, Julia
So, Joanna
Wyrobek, Andy
Li, Song
Wang, Daojing
TI DIFFERENTIAL EFFECTS OF X-RAYS AND HIGH-ENERGY Fe-56 IONS ON HUMAN
MESENCHYMAL STEM CELLS
SO INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS
LA English
DT Article
DE Radioresponse; High-LET; Cell cycle; Osteogenic differentiation;
Transcriptomics
ID BONE-MARROW-TRANSPLANTATION; NORMAL HUMAN FIBROBLASTS;
IONIZING-RADIATION; GENOMIC INSTABILITY; SPACE EXPLORATION; LET
RADIATION; DNA-DAMAGE; EXPOSURE; CANCER; ARREST
AB Purpose: Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) Fe-56 ions on human mesenchymal stem cells (hMSC).
Methods and Materials: A multi-functional comparison was carried out to investigate the differential effects of X-rays and Fe-56 ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis.
Results: X-rays and Fe-56 ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and Fe-56 ions, with more significant effects from Fe-56 ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy Fe-56 ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter.
Conclusions: Fe-56 ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation. (C) 2009 Elsevier Inc.
C1 [Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Wyrobek, Andy; Wang, Daojing] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Kurpinski, Kyle; Chu, Julia; So, Joanna; Li, Song] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
RP Wang, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,MS 977-225A, Berkeley, CA 94720 USA.
EM djwang@lbl.gov
FU NHLBI NIH HHS [HL079419]
NR 39
TC 19
Z9 22
U1 0
U2 4
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0360-3016
J9 INT J RADIAT ONCOL
JI Int. J. Radiat. Oncol. Biol. Phys.
PD MAR 1
PY 2009
VL 73
IS 3
BP 869
EP 877
DI 10.1016/j.ijrobp.2008.10.002
PG 9
WC Oncology; Radiology, Nuclear Medicine & Medical Imaging
SC Oncology; Radiology, Nuclear Medicine & Medical Imaging
GA 408NE
UT WOS:000263440900034
PM 19101095
ER
PT J
AU Mari, D
Clausen, B
Bourke, MAM
Buss, K
AF Mari, D.
Clausen, B.
Bourke, M. A. M.
Buss, K.
TI Measurement of residual thermal stress in WC-Co by neutron diffraction
SO INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS
LA English
DT Article; Proceedings Paper
CT 9th International Conference on the Science of Hard Materials (ICSHM9)
CY MAR 10-14, 2008
CL Montego Bay, JAMAICA
DE Cemented carbides; Cobalt; WC; Residual stresses; Thermal expansion
ID ELASTIC-CONSTANTS; COMPOSITES; ALLOYS; SIZE
AB The temperature dependence of residual stresses in a WC-17.8vol.%Co cemented carbide was measured by neutron diffraction. The comparison of the WC lattice parameter within the WC-Co and within stress-free WC reference provides a measurement of lattice elastic strains and, using Hooke's law, stresses. WC is found to be under hydrostatic compressive stresses of about -400 MPa at room temperature, which decrease monotonically with temperature to a near-zero value at 800 degrees C. Residual stresses in cobalt also decrease with increasing temperature, but show an apparent increase above 800 degrees C, which is attributed to an increase in lattice parameter due to W dissolution in the Co phase. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Mari, D.; Buss, K.] Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland.
[Clausen, B.; Bourke, M. A. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Mari, D (reprint author), Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland.
EM daniele.mari@epfl.ch
RI Clausen, Bjorn/B-3618-2015
OI Clausen, Bjorn/0000-0003-3906-846X
NR 28
TC 17
Z9 17
U1 0
U2 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0263-4368
J9 INT J REFRACT MET H
JI Int. J. Refract. Met. Hard Mat.
PD MAR
PY 2009
VL 27
IS 2
SI SI
BP 282
EP 287
DI 10.1016/j.ijrmhm.2008.11.015
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 420AX
UT WOS:000264261900014
ER
PT J
AU Krawitz, AD
Venter, AM
Drake, EF
Luyckx, SB
Clausen, B
AF Krawitz, A. D.
Venter, A. M.
Drake, E. F.
Luyckx, S. B.
Clausen, B.
TI Phase response of WC-Ni to cyclic compressive loading and its relation
to toughness
SO INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS
LA English
DT Article; Proceedings Paper
CT 9th International Conference on the Science of Hard Materials (ICSHM9)
CY MAR 10-14, 2008
CL Montego Bay, JAMAICA
DE Residual stress; Neutron diffraction; Cemented carbide composites;
Mechanical behavior
ID THERMAL RESIDUAL-STRESS; COMPOSITES; CO
AB The interaction of uniaxial compressive load and thermal residual stress was measured in a WC-10 wt.% (16 vol.%) Ni cemented carbide composite using neutron diffraction. Loading was from 0 to -2500 MPa in increments of 250 MPa, and measurements were made in situ during load-unload cycles 1, 2, 3, 10, 25, 50 and 100. Plasticity is observed in the Ni from the lowest levels of applied load, leading to continuous curvature of the WC-Ni stress-strain curves, and is believed to be a significant contribution to the composite's toughness. It is due to interaction between local extremes of the thermal residual microstress with the applied macrostress and leads to anisotropic relaxation of the thermal residual stress. Strain distribution and plasticity were observed through peak breadths. Although the initially strong hysteresis is reduced as the cycles increase, there are still changes taking place after 100 cycles. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Krawitz, A. D.] Univ Missouri, Columbia, MO 65211 USA.
[Venter, A. M.] Necsa Ltd, ZA-0001 Pretoria, South Africa.
[Drake, E. F.] ReedHycalog, Houston, TX USA.
[Luyckx, S. B.] Univ Witwatersrand, Johannesburg, South Africa.
[Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Krawitz, AD (reprint author), Univ Missouri, Lafferre Hall, Columbia, MO 65211 USA.
EM krawitza@missouri.edu
RI Clausen, Bjorn/B-3618-2015
OI Clausen, Bjorn/0000-0003-3906-846X
NR 8
TC 5
Z9 5
U1 0
U2 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0263-4368
J9 INT J REFRACT MET H
JI Int. J. Refract. Met. Hard Mat.
PD MAR
PY 2009
VL 27
IS 2
SI SI
BP 313
EP 316
DI 10.1016/j.ijrmhm.2008.11.010
PG 4
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 420AX
UT WOS:000264261900017
ER
PT J
AU Warren, TL
Silling, SA
Askari, A
Weckner, O
Epton, MA
Xu, J
AF Warren, Thomas L.
Silling, Stewart A.
Askari, Abe
Weckner, Olaf
Epton, Michael A.
Xu, Jifeng
TI A non-ordinary state-based peridynamic method to model solid material
deformation and fracture
SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
LA English
DT Article
DE Peridynamics; Transient solid dynamics; Non-local model; Finite
elastic-plastic deformation; EMU
ID INTEGRATION
AB In this paper, we develop a new non-ordinary state-based peridynamic method to solve transient dynamic solid mechanics problems. This new peridynamic method has advantages over the previously developed bond-based and ordinary state-based peridynamic methods in that its bonds are not restricted to central forces, nor is it restricted to a Poisson's ratio of 1/4 as with the bond-based method. First, we obtain non-local nodal deformation gradients that are used to define nodal strain tensors. The deformation gradient tensors are used with the nodal strain tensors to obtain rate of deformation tensors in the deformed configuration. The polar decomposition of the deformation gradient tensors are then used to obtain the nodal rotation tensors which are used to rotate the rate of deformation tensors and previous Cauchy stress tensors into an unrotated configuration. These are then used with conventional Cauchy stress constitutive models in the unrotated state where the unrotated Cauchy stress rate is objective. We then obtain the unrotated Cauchy nodal stress tensors and rotate them back into the deformed configuration where they are used to define the forces in the nodal connecting bonds. As a first example we quasi-statically stretch a bar, hold it, and then rotate it ninety degrees to illustrate the methods finite rotation capabilities. Next, we verify our new method by comparing small strain results from a bar fixed at one end and subjected to an initial velocity gradient with results obtained from the corresponding one-dimensional small strain analytical solution. As a last example, we show the fracture capabilities of the method using both a notched and un-notched bar. (c) 2009 Published by Elsevier Ltd.
C1 [Silling, Stewart A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Askari, Abe; Weckner, Olaf; Epton, Michael A.; Xu, Jifeng] Boeing Co, Math Grp, Bellevue, WA 98075 USA.
RP Warren, TL (reprint author), 3804 Shenandoah PL NE, Albuquerque, NM 87111 USA.
EM Tlwarre@msn.com
FU Boeing Company [SSG-02-06-0358]
FX This work was carried out in the course of research sponsored by the
Boeing Company under Agreement No. SSG-02-06-0358.
NR 14
TC 47
Z9 48
U1 2
U2 25
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0020-7683
J9 INT J SOLIDS STRUCT
JI Int. J. Solids Struct.
PD MAR 1
PY 2009
VL 46
IS 5
BP 1186
EP 1195
DI 10.1016/j.ijsolstr.2008.10.029
PG 10
WC Mechanics
SC Mechanics
GA 408GC
UT WOS:000263422500019
ER
PT J
AU Yergeau, E
Schoondermark-Stolk, SA
Brodie, EL
Dejean, S
DeSantis, TZ
Goncalves, O
Piceno, YM
Andersen, GL
Kowalchuk, GA
AF Yergeau, Etienne
Schoondermark-Stolk, Sung A.
Brodie, Eoin L.
Dejean, Sebastien
DeSantis, Todd Z.
Goncalves, Olivier
Piceno, Yvette M.
Andersen, Gary L.
Kowalchuk, George A.
TI Environmental microarray analyses of Antarctic soil microbial
communities
SO ISME JOURNAL
LA English
DT Article
DE Antarctic soil ecosystems; GeoChip microarray; microbial community
structure; microbial diversity; PhyloChip microarray
ID AMMONIA-OXIDIZING BACTERIA; FALKLAND ISLANDS; CLIMATE-CHANGE; DIVERSITY;
RESPONSES; DATABASE; ECOLOGY; GENES
AB Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size (similar to 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats.
C1 [Yergeau, Etienne; Schoondermark-Stolk, Sung A.; Kowalchuk, George A.] Netherlands Inst Ecol NIOO KNAW, Ctr Terr Ecol, NL-6666 ZG Heteren, Netherlands.
[Brodie, Eoin L.; DeSantis, Todd Z.; Piceno, Yvette M.; Andersen, Gary L.] Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA USA.
[Dejean, Sebastien] Univ Toulouse 3, Inst Math, F-31062 Toulouse, France.
[Goncalves, Olivier] Univ Clermont Ferrand, CNRS, Lab Microorganismes Genome & Environm, UMR 6023, Clermont Ferrand 2, France.
[Kowalchuk, George A.] Free Univ Amsterdam, Inst Ecol Sci, Amsterdam, Netherlands.
RP Kowalchuk, GA (reprint author), Netherlands Inst Ecol NIOO KNAW, Ctr Terr Ecol, POB 40, NL-6666 ZG Heteren, Netherlands.
EM g.kowalchuk@nioo.knaw.nl
RI Kowalchuk, George/C-4298-2011; Goncalves, Olivier/C-6869-2013; Brodie,
Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Piceno,
Yvette/I-6738-2016; Yergeau, Etienne/B-5344-2008;
OI Goncalves, Olivier/0000-0002-9498-6194; Brodie,
Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Piceno,
Yvette/0000-0002-7915-4699; Yergeau, Etienne/0000-0002-7112-3425
FU NWO [851.20.018]; U. S. DOE's Office of Science, Biological and
Environmental Research Program; University of California, LBNL
[DE-AC02-05CH11231]; FQRNT
FX This study was supported by NWO grant 851.20.018 to Rien Aerts and GA
Kowalchuk. Part of this work was performed under the auspices of the U.
S. DOE's Office of Science, Biological and Environmental Research
Program, and by the University of California, LBNL under contract no.
DE-AC02-05CH11231. E Yergeau was partly supported by a FQRNT
postgraduate scholarship. Stef Bokhorst, Merlijn Janssens and Kat Snell
are gratefully acknowledged for sampling at Fossil Bluff, Coal Nunatak
and Signy Islands. Comments from Eiko Kuramae significantly improved
this paper. We thank Pete Convey and the British Antarctic Survey for
insightful discussions and logistical support. This is NIOO-KNAW
publication # 4400.
NR 41
TC 75
Z9 79
U1 5
U2 44
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1751-7362
J9 ISME J
JI ISME J.
PD MAR
PY 2009
VL 3
IS 3
BP 340
EP 351
DI 10.1038/ismej.2008.111
PG 12
WC Ecology; Microbiology
SC Environmental Sciences & Ecology; Microbiology
GA 415DI
UT WOS:000263914100007
PM 19020556
ER
PT J
AU Kline, K
Dale, VH
Lee, R
Leiby, P
AF Kline, Keith
Dale, Virginia H.
Lee, Russell
Leiby, Paul
TI In Defense of Biofuels, Done Right
SO ISSUES IN SCIENCE AND TECHNOLOGY
LA English
DT Article
ID LAND-COVER
C1 [Kline, Keith; Dale, Virginia H.; Lee, Russell; Leiby, Paul] Oak Ridge Natl Lab, Ctr BioEnergy Sustainabil, Oak Ridge, TN 37831 USA.
RP Kline, K (reprint author), Oak Ridge Natl Lab, Ctr BioEnergy Sustainabil, Oak Ridge, TN 37831 USA.
EM klinekl@ornl.gov; dalevh@ornl.gov; leerm@ornl.gov; leibypn@ornl.gov
RI Dale, Virginia/B-6023-2009;
OI Kline, Keith/0000-0003-2294-1170
NR 10
TC 26
Z9 28
U1 1
U2 9
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0748-5492
J9 ISSUES SCI TECHNOL
JI Issues Sci. Technol.
PD SPR
PY 2009
VL 25
IS 3
BP 75
EP 84
PG 10
WC Engineering, Multidisciplinary; Engineering, Industrial;
Multidisciplinary Sciences; Social Issues
SC Engineering; Science & Technology - Other Topics; Social Issues
GA 424UO
UT WOS:000264594000030
ER
PT J
AU Kiener, D
Durst, K
Rester, M
Minor, AM
AF Kiener, D.
Durst, K.
Rester, M.
Minor, A. M.
TI Revealing deformation mechanisms with nanoindentation
SO JOM
LA English
DT Article
ID STRAIN GRADIENT PLASTICITY; IN-SITU NANOINDENTATION; TRANSMISSION
ELECTRON-MICROSCOPE; SENSING INDENTATION EXPERIMENTS; SINGLE-CRYSTALS;
DISLOCATION NUCLEATION; INCIPIENT PLASTICITY; METALLIC MATERIALS;
ROOM-TEMPERATURE; LITHIUM FLUORIDE
AB For a better mechanistic understanding of the deformation phenomena that occur during nanoindentation testing, complimentary experimental techniques are critical. This overview presents several methods capable of analyzing the local microstructure of materials undergoing nanoindentation across different length scales, including etch pit analysis, electron backscatter diffraction, and in situ nanoindentation in a transmission electron microscope. Case studies of deformation mechanisms are provided, and the benefits and limitations of these complimentary experimental techniques are discussed.
C1 [Kiener, D.; Rester, M.] Austrian Acad Sci, Erich Schmid Inst Mat Sci, Leoben, Austria.
[Kiener, D.; Rester, M.] Univ Leoben, Dept Mat Phys, Leoben, Austria.
[Durst, K.] Univ Erlangen Nurnberg, Lehrstuhl Allgemeine Werkstoffeigenschaften 1, Erlangen, Germany.
[Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Kiener, D.] Univ Munich, Dept Chem & Biochem, D-81377 Munich, Germany.
[Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Kiener, D (reprint author), Austrian Acad Sci, Erich Schmid Inst Mat Sci, Leoben, Austria.
EM daniel.kiener@cup.uni-muenchen.de
RI Kiener, Daniel/B-2202-2008; Durst, Karsten/D-1262-2011;
OI Kiener, Daniel/0000-0003-3715-3986; Durst, Karsten/0000-0002-9246-6398
FU Materials Center Leoben (MCL); DFG (Deutsche Forschungsgemeinschaft) [Du
424-1/2]; FWF (Fonds zur Forderung der wissenschaftlichen Forschung) [P
17375-N07]; Scientific User Facilities Division of the Office of Basic
Energy Sciences; U. S. Department of Energy [DE-AC02-05CH11231]
FX D. K. was supported by the Materials Center Leoben (MCL) within the
Austrian Kplus Competence Center Programme. Financial support of K. D.
by DFG (Deutsche Forschungsgemeinschaft) under contract Du 424-1/2 is
gratefully acknowledged. M. R. acknowledges financial support by the FWF
(Fonds zur Forderung der wissenschaftlichen Forschung) through Project P
17375-N07. A. M. M. was supported by the Scientific User Facilities
Division of the Office of Basic Energy Sciences, U. S. Department of
Energy under Contract # DE-AC02-05CH11231. The authors would like to
thank all of their collaborators past and present who contributed to the
results presented in this article.
NR 86
TC 8
Z9 8
U1 1
U2 30
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1047-4838
J9 JOM-US
JI JOM
PD MAR
PY 2009
VL 61
IS 3
BP 14
EP 23
DI 10.1007/s11837-009-0036-4
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering; Mineralogy; Mining & Mineral Processing
SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy;
Mining & Mineral Processing
GA 415XE
UT WOS:000263969000003
ER
PT J
AU Wang, GJ
Volkow, ND
Thanos, PK
Fowler, JS
AF Wang, Gene-Jack
Volkow, Nora D.
Thanos, Panayotis K.
Fowler, Joanna S.
TI Imaging of Brain Dopamine Pathways Implications for Understanding
Obesity
SO JOURNAL OF ADDICTION MEDICINE
LA English
DT Review
DE brain dopamine; obesity; positron emission tomography
ID HIGH-FAT DIET; POSITRON-EMISSION-TOMOGRAPHY; INCREASES ACCUMBENS
DOPAMINE; RANDOMIZED CONTROLLED-TRIAL; COCAINE-SEEKING BEHAVIOR; CHRONIC
FOOD RESTRICTION; WEIGHT-LOSS; NUCLEUS-ACCUMBENS; DORSAL STRIATUM;
IN-VIVO
AB Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity.
C1 [Wang, Gene-Jack; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
[Wang, Gene-Jack; Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY USA.
[Volkow, Nora D.; Thanos, Panayotis K.] NIAAA, Natl Inst Drug Abuse, Bethesda, MD USA.
RP Wang, GJ (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
EM gjwang@bnl.gov
FU scientific and technical staffs at the Brookhaven Center; U.S.
Department of Energy OBER [DE-ACO2-76CH00016]; National Institute on
Drug Abuse [5RO1DA006891-14, 5RO1DA6278-16, 5821, DA018457-2]; National
Institute on Alcohol Abuse and Alcoholism [RO1AA9481-11, Y1AA3009];
General Clinical Research Center at Stony Brook University Hospital [NIH
MOIRR 10710]
FX The authors also thank the scientific and technical staffs at the
Brookhaven Center for Translational Neuroimaging, for their support of
these research studies as well as the individuals who volunteered for
these studies.; Supported in part by grants from the U.S. Department of
Energy OBER (DE-ACO2-76CH00016), the National Institute on Drug Abuse
(5RO1DA006891-14, 5RO1DA6278-16, 5821, DA018457-2), the National
Institute on Alcohol Abuse and Alcoholism (RO1AA9481-11 & Y1AA3009), and
by the General Clinical Research Center at Stony Brook University
Hospital (NIH MOIRR 10710).
NR 155
TC 79
Z9 81
U1 6
U2 22
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 1932-0620
J9 J ADDICT MED
JI J. Addict. Med.
PD MAR
PY 2009
VL 3
IS 1
BP 8
EP 18
PG 11
WC Substance Abuse
SC Substance Abuse
GA 416WD
UT WOS:000264035300002
PM 21603099
ER
PT J
AU Cui, YL
Caudel, DD
Bhattacharya, P
Burger, A
Mandal, KC
Johnstone, D
Payne, SA
AF Cui, Yunlong
Caudel, David D.
Bhattacharya, Pijush
Burger, Arnold
Mandal, Krishna C.
Johnstone, D.
Payne, S. A.
TI Deep levels in GaTe and GaTe:In crystals investigated by deep-level
transient spectroscopy and photoluminescence
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE antisite defects; crystal growth from melt; deep level transient
spectroscopy; deep levels; gallium compounds; III-VI semiconductors;
indium; interstitials; photoluminescence; Schottky diodes; semiconductor
doping; semiconductor growth; vacancies (crystal); valence bands
ID TEMPERATURE-DEPENDENCE; SINGLE-CRYSTALS; SEMICONDUCTORS; CDTE
AB Deep levels of undoped GaTe and indium-doped GaTe crystals are reported for samples grown by the vertical Bridgman technique. Schottky diodes of GaTe and GaTe:In have been fabricated and characterized using current-voltage, capacitance-voltage, and deep-level transient spectroscopy (DLTS). Three deep levels at 0.40, 0.59, and 0.67 eV above the valence band were found in undoped GaTe crystals. The level at 0.40 eV is associated with the complex consisting of gallium vacancy and gallium interstitial (V(Ga)-Ga(i)), the level at 0.59 eV is identified as the tellurium-on-gallium antisite (Te(Ga)), and the last one is tentatively assigned to be the doubly ionized gallium vacancy (V(Ga)(*)). Indium isoelectronic doping is found to have noticeable impacts on reducing the Schottky saturation current and suppressing the densities of Te(Ga) and V(Ga)(*) defects. The peak which dominated the DLTS spectrum of GaTe:In is assigned to be the defect complex consisting of V(Ga) and indium interstitial (In(i)). Low-temperature photoluminescence (PL) spectroscopy measurements were performed on GaTe and GaTe:In crystals. A shallow acceptor level at 140 meV corresponding to V(Ga) was measured in undoped GaTe. Two shallow acceptor levels at 123 and 74 meV corresponding to V(Ga) and indium-on-gallium antisite In(Ga) were observed in GaTe:In samples. The PL results suggested that the indium atoms could occupy gallium vacant sites during GaTe crystal growth period and thereby change the electrical and optical properties of GaTe crystal.
C1 [Cui, Yunlong; Caudel, David D.; Bhattacharya, Pijush; Burger, Arnold] Fisk Univ, Dept Phys, Nashville, TN 37208 USA.
[Mandal, Krishna C.] EIC Labs Inc, Norwood, MA 02062 USA.
[Johnstone, D.] SEMETROL, Chesterfield, VA 23838 USA.
[Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Cui, YL (reprint author), Fisk Univ, Dept Phys, Nashville, TN 37208 USA.
EM ycui@fisk.edu
FU DHS/DNDO [HSHQDC-07C-00034]; Center of Research Excellence in Science
and Technology (CREST) under Cooperative Agreement [CA-0420516]
FX The authors acknowledge partial financial support provided by the
DHS/DNDO under Contract No. HSHQDC-07C-00034. The authors at Fisk
University gratefully acknowledge financial support from the
NSF-supported Center of Research Excellence in Science and Technology
(CREST) under Cooperative Agreement No. CA-0420516. The authors would
also like to thank Mr. S. Swindell for his instrumental part in the
study of Schottky contact, Mr. D. Hayden, Mr. R. Dupere, Mr. V. Buliga,
and Mr. M. Groza for helping prepare Schottky contacts.
NR 20
TC 12
Z9 13
U1 1
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 1
PY 2009
VL 105
IS 5
AR 053709
DI 10.1063/1.3080157
PG 4
WC Physics, Applied
SC Physics
GA 418NZ
UT WOS:000264156300050
ER
PT J
AU Farrell, HH
Schultz, BD
Palmstrom, CJ
AF Farrell, H. H.
Schultz, B. D.
Palmstrom, C. J.
TI Comment on "High-resolution core-level photoemission study on GaAs(111)B
surfaces" [J. Appl. Phys. 101, 043516 (2007)]
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE core levels; gallium arsenide; III-V semiconductors; photoelectron
spectra; surface reconstruction; surface states
ID RECONSTRUCTIONS
AB Photoemission work by Nakamura [J. Appl. Phys. 101, 043516 (2007)] on the GaAs(111)B(root 19x root 19)R23 degrees surface shows that the surface region contains three different types of As atoms and two different types of Ga atoms. The outstanding feature of their data is the presence of Ga atoms in the outermost layer of the reconstruction, which they conclude is inconsistent with published models. However, there are two published models, which were not identified in the paper, that contain these top-layer Ga atoms. Additionally, one of the two models also contains three distinct types of As surface atoms and two distinct types of Ga surface atoms as identified experimentally by Nakamura [J. Appl. Phys. 101, 043516 (2007)].
C1 [Farrell, H. H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Schultz, B. D.] Int Technol Ctr, Raleigh, NC 27617 USA.
[Palmstrom, C. J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
RP Farrell, HH (reprint author), Idaho Natl Lab, POB 1625 MS 2211, Idaho Falls, ID 83415 USA.
EM helen.farrell@inl.gov
NR 7
TC 2
Z9 2
U1 21
U2 25
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 1
PY 2009
VL 105
IS 5
AR 056106
DI 10.1063/1.3082490
PG 2
WC Physics, Applied
SC Physics
GA 418NZ
UT WOS:000264156300116
ER
PT J
AU Knapp, JA
Browning, JF
Bond, GM
AF Knapp, J. A.
Browning, J. F.
Bond, G. M.
TI Evolution of mechanical properties in ErT2 thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE bubbles; dislocation pinning; elastic constants; elasticity; erbium
compounds; finite element analysis; hardness; ion beam effects;
nanoindentation; softening; thin films; transmission electron microscopy
ID COMPOSITE-MATERIALS; ELASTIC-MODULI; HIGH-PRESSURE; ROOM-TEMPERATURE;
METAL TRITIDES; HELIUM; NANOINDENTATION; INDENTATION; NICKEL;
DISLOCATIONS
AB The mechanical properties of rare earth tritide films evolve as tritium decays into He-3, which forms bubbles that influence long-term film stability in applications such as neutron generators. Ultralow load nanoindentation, combined with finite-element modeling to separate the mechanical properties of the thin films from their substrates, has been used to follow the mechanical properties of model ErT2 films as they aged. The size of the growing He-3 bubbles was followed with transmission electron microscopy, while ion beam analysis was used to monitor total T and He-3 content. The observed behavior is divided into two regimes: a substantial increase in layer hardness but elasticity changed little over similar to 18 months, followed by a decrease in elastic stiffness and a modest decease in hardness over the final 24 months. We show that the evolution of properties is explained by a combination of dislocation pinning by the bubbles, elastic softening as the bubbles occupy an increasing fraction of the material, and details of bubble growth modes.
C1 [Knapp, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Browning, J. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Bond, G. M.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA.
RP Knapp, JA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM jaknapp@sandia.gov
OI Browning, James/0000-0001-8379-259X
FU National Nuclear Security Administration of the United States Department
of Energy [DE-AC04-94AL85000]; United States Department of Energy (DOE);
Office of Basic Energy Sciences- Materials Science [DE-AC0500OR22725]
FX Discussions with D. M. Follstaedt, S. M. Myers, D. F. Cowgill, and C. S.
Snow, ion beam analysis by J. C. Banks, x- ray diffraction by M. A.
Rodriguez, sample preparation by L. I. Espada, G. L. Bryant, and M. B.
Ritchey, and technical assistance with radiation safety issues by E. A.
Staab are all gratefully acknowledged. Sandia National Laboratories is a
multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Co., for the National Nuclear Security Administration of the
United States Department of Energy under Contract No. DE-AC04-94AL85000.
Oak Ridge National Laboratory is managed for the United States
Department of Energy (DOE), Office of Basic Energy Sciences- Materials
Science under Contract No. DE-AC0500OR22725 with UT-Battelle LLC.
NR 46
TC 14
Z9 14
U1 3
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 1
PY 2009
VL 105
IS 5
AR 053501
DI 10.1063/1.3082011
PG 7
WC Physics, Applied
SC Physics
GA 418NZ
UT WOS:000264156300021
ER
PT J
AU Neumann, JG
Fiorito, RB
O'Shea, PG
Loos, H
Sheehy, B
Shen, Y
Wu, Z
AF Neumann, J. G.
Fiorito, R. B.
O'Shea, P. G.
Loos, H.
Sheehy, B.
Shen, Y.
Wu, Z.
TI Terahertz laser modulation of electron beams
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE electron beams; free electron lasers; high-speed optical techniques;
optical modulation; particle beam bunching; photocathodes
ID PHASE-SPACE TOMOGRAPHY; TRANSITION RADIATION; TRANSMISSION; EMISSION;
BUNCHES
AB The study of modulated electron beams is important because they can be used to produce coherent radiation, but the modulations can cause unwanted instabilities in some devices. Specifically, in a free electron laser, proper prebunching at the desired emission frequency can enhance performance, while bunching resulting from instabilities and bunch compression schemes can degrade performance. In a photoinjector accelerator, tailoring the shape of the drive laser pulse could be used as a technique to either enhance or mitigate the effect of these modulations. This work explores the possibility of creating deeply modulated electron beams at the photocathode by using a modified drive laser designed to produce multiple subpicosecond pulses repeated at terahertz frequencies. Longitudinal space charge forces can strongly influence the evolution of modulations by converting density modulations to energy modulations. Experiments at the Source Development Laboratory electron accelerator at Brookhaven National Laboratory and PARMELA simulations are employed to explore the dynamics of electron beams with varying charge and with varying initial modulation. Finally, terahertz light generated by a transition radiator is used to confirm the structure of the electron beam.
C1 [Neumann, J. G.; Fiorito, R. B.; O'Shea, P. G.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA.
[Loos, H.; Sheehy, B.; Shen, Y.; Wu, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[O'Shea, P. G.] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA.
RP Neumann, JG (reprint author), USN, Res Lab, Washington, DC 20375 USA.
EM jonathan.neumann@nrl.navy.mil
OI Loos, Henrik/0000-0001-5085-0562
FU U. S. Department of Energy, Division of Materials Sciences; Division of
Chemical Sciences [DE-AC02-98CH10886]; Joint Technology Office; Office
of Naval Research; Army Research Laboratory
FX This work was carried out with the support from the U. S. Department of
Energy, Division of Materials Sciences and Division of Chemical
Sciences, under Contract No. DE-AC02-98CH10886, with the support from
the Joint Technology Office, Office of Naval Research, and Army Research
Laboratory, and with the support from Professor Chris Davis at the
University of Maryland.
NR 40
TC 29
Z9 29
U1 0
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 1
PY 2009
VL 105
IS 5
AR 053304
DI 10.1063/1.3075563
PG 11
WC Physics, Applied
SC Physics
GA 418NZ
UT WOS:000264156300015
ER
PT J
AU Priyantha, W
Smith, RJ
Chen, H
Kopczyk, M
Lerch, M
Key, C
Nachimuthu, P
Jiang, W
AF Priyantha, W.
Smith, R. J.
Chen, H.
Kopczyk, M.
Lerch, M.
Key, C.
Nachimuthu, P.
Jiang, W.
TI Fe-Al interface intermixing and the role of Ti, V, and Zr as a
stabilizing interlayer at the interface
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE aluminium; iron; metallic thin films; mixing; multilayers; Rutherford
backscattering; sputter deposition; titanium; vanadium; X-ray
reflection; zirconium
ID X-RAY REFLECTIVITY; AL(110) SURFACES; ROOM-TEMPERATURE; FILMS;
MULTILAYERS; CO; AL(001); GROWTH; METALS
AB Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 A and 41.1 A for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (similar to 3 A) for these sputtered metallic films.
C1 [Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
[Nachimuthu, P.; Jiang, W.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Priyantha, W (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59717 USA.
EM smith@physics.montana.edu
OI Jiang, Weilin/0000-0001-8302-8313
FU National Science Foundation (NSF) [DMR-0516603]
FX This work was supported by the National Science Foundation (NSF) Grant
No. DMR-0516603. The authors would like to thank MMF, Montana State
University, Bozeman, MT for providing the facility to prepare samples. A
portion of the research was performed at EMSL, a national scientific
user facility sponsored by the Department of Energy's Office of Biology
and Environmental Research located at the Pacific Northwest National
Laboratory, Richmond, WA.
NR 27
TC 7
Z9 7
U1 0
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 1
PY 2009
VL 105
IS 5
AR 053504
DI 10.1063/1.3079521
PG 5
WC Physics, Applied
SC Physics
GA 418NZ
UT WOS:000264156300024
ER
PT J
AU Schmalhorst, J
Ebke, D
Meinert, M
Thomas, A
Reiss, G
Arenholz, E
AF Schmalhorst, J.
Ebke, D.
Meinert, M.
Thomas, A.
Reiss, G.
Arenholz, E.
TI Element-specific study of the temperature dependent magnetization of
Co-Mn-Sb thin films
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE antiferromagnetic materials; antimony alloys; cobalt alloys;
ferromagnetic materials; magnetic moments; magnetic thin films; magnetic
transition temperature; magnetoelectronics; manganese alloys; metallic
thin films; sputter deposition; stoichiometry
ID CIRCULAR-DICHROISM; OPTICAL-PROPERTIES; HEUSLER ALLOYS; MAGNETISM
AB Magnetron sputtered thin Co-Mn-Sb films were investigated with respect to their element-specific magnetic properties. Stochiometric Co1Mn1Sb1 crystallized in the C1(b) structure has been predicted to be half-metallic and is therefore of interest for spintronic applications. It should show a characteristic antiferromagnetic coupling of the Mn and Co magnetic moments and a transition temperature T-C of about 480 K. Although the observed transition temperature of our 20 nm thick Co32.4Mn33.7Sb33.8, Co37.7Mn34.1Sb28.2, and Co43.2Mn32.6Sb24.2 films is in quite good agreement with the expected value, we found a ferromagnetic coupling of the Mn and Co magnetic moments which indicates that the films do not crystallize in the C1(b) structure and are probably not fully spin polarized. The ratio of the Co and Mn moments does not change up to the transition temperature and the temperature dependence of the magnetic moments can be well described by the mean-field theory.
C1 [Schmalhorst, J.; Ebke, D.; Meinert, M.; Thomas, A.; Reiss, G.] Univ Bielefeld, Dept Phys Thin Films & Phys Nanostruct, D-33501 Bielefeld, Germany.
[Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Schmalhorst, J (reprint author), Univ Bielefeld, Dept Phys Thin Films & Phys Nanostruct, D-33501 Bielefeld, Germany.
EM jschmalh@physik.uni-bielefeld.de
RI Ebke, Daniel/A-4357-2010; Meinert, Markus/E-8794-2011; Schmalhorst,
Jan/E-9951-2011; Thomas, Andy/C-7210-2008; Reiss, Gunter/A-3423-2010
OI Meinert, Markus/0000-0002-7813-600X; Thomas, Andy/0000-0001-8594-9060;
Reiss, Gunter/0000-0002-0918-5940
FU Deutsche Forschungsgemeinschaft [SCHM 1690/6-1]; U. S. Department of
Energy [DE-AC02-05CH11231]; Deutsche Akademische Auslandsamt (DAAD)
FX The authors gratefully acknowledge financial support by the Deutsche
Forschungsgemeinschaft (DFG, contract number SCHM 1690/6-1) and the
opportunity to work at BL 6.3.1 and BL 4.0.2 of the Advanced Light
Source, Berkeley, USA, which is supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U. S. Department of
Energy under Contract No. DE-AC02-05CH11231. Furthermore, we like to
thank N. N. Liu for assisting the sample preparation. One of the authors
(M.M.) acknowledges the Deutsche Akademische Auslandsamt (DAAD) for
supporting his work at AGH Krakow.
NR 25
TC 3
Z9 3
U1 0
U2 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 1
PY 2009
VL 105
IS 5
AR 053906
DI 10.1063/1.3087479
PG 5
WC Physics, Applied
SC Physics
GA 418NZ
UT WOS:000264156300061
ER
PT J
AU Tenne, DA
Lee, HN
Katiyar, RS
Xi, XX
AF Tenne, D. A.
Lee, H. N.
Katiyar, R. S.
Xi, X. X.
TI Ferroelectric phase transitions in three-component short-period
superlattices studied by ultraviolet Raman spectroscopy
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE barium compounds; calcium compounds; dielectric polarisation;
ferroelectric materials; ferroelectric transitions; phonons; pulsed
laser deposition; Raman spectra; stress relaxation; strontium compounds;
superlattices; ultraviolet spectra
ID EPITAXIAL BATIO3/SRTIO3 SUPERLATTICES; OXIDE THIN-FILMS; POLARIZATION
ENHANCEMENT; PEROVSKITE FILMS; SRTIO3; NANOSCALE; STABILITY; BATIO3;
GROWTH
AB Vibrational spectra of three-component BaTiO3/SrTiO3/CaTiO3 short-period superlattices grown by pulsed laser deposition with atomic-layer control have been investigated by ultraviolet Raman spectroscopy. Monitoring the intensity of the first-order phonon peaks in Raman spectra as a function of temperature allowed the determination of the ferroelectric phase transition temperature T-c. Raman spectra indicate that all superlattices remain in the tetragonal ferroelectric phase with out-of-plane polarization in the entire temperature range below T-c. The dependence of T-c on the relative thicknesses of ferroelectric (BaTiO3) to nonferroelectric materials (SrTiO3 and CaTiO3) has been studied. The highest T-c was found in superlattices having the largest relative amount of BaTiO3, provided that the superlattice maintains its coherency with the substrate. Strain relaxation leads to a significant decrease in the ferroelectric phase transition temperature.
C1 [Tenne, D. A.] Boise State Univ, Dept Phys, Boise, ID 83725 USA.
[Xi, X. X.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Xi, X. X.] Penn State Univ, Dept Mat Sci & Engn, Mat Res Inst, University Pk, PA 16802 USA.
[Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Katiyar, R. S.] Univ Puerto Rico, Dept Phys, San Juan, PR 00931 USA.
RP Tenne, DA (reprint author), Boise State Univ, Dept Phys, Boise, ID 83725 USA.
EM dmitritenne@boisestate.edu
RI Lee, Ho Nyung/K-2820-2012; Tenne, Dmitri/C-3294-2009
OI Lee, Ho Nyung/0000-0002-2180-3975; Tenne, Dmitri/0000-0003-2697-8958
FU National Science Foundation [DMR-0705127]; U. S. Department of Energy
[DE-FG02-01ER45907]; DOE EPSCoR [DE-FG02-04ER46142]; Research
Corporation for Science Advancement [7134]
FX This work was partially supported by the National Science Foundation
(Grant No. DMR-0705127), the U. S. Department of Energy (Grant No.
DE-FG02-01ER45907), the DOE EPSCoR (Grant No. DE-FG02-04ER46142), and by
the Research Corporation for Science Advancement (Grant No. 7134). H. N.
L. was sponsored by the Division of Materials Sciences and Engineering,
U. S. Department of Energy.
NR 47
TC 5
Z9 5
U1 3
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAR 1
PY 2009
VL 105
IS 5
AR 054106
DI 10.1063/1.3087611
PG 5
WC Physics, Applied
SC Physics
GA 418NZ
UT WOS:000264156300074
ER
PT J
AU Nagy, M
Alleman, TL
Dyer, T
Ragauskas, AJ
AF Nagy, Mate
Alleman, Teresa L.
Dyer, Thomas
Ragauskas, Arthur J.
TI Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols
SO JOURNAL OF BIOBASED MATERIALS AND BIOENERGY
LA English
DT Article
DE Biodiesel; Phosphitylation; (31)P-NMR; Transesterification
ID LIGNINS; CHROMATOGRAPHY; STANDARDS
AB Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by (31)P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique (31)P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.
C1 [Nagy, Mate; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.
[Alleman, Teresa L.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Dyer, Thomas] Georgia Inst Technol, Inst Paper Sci & Technol, Atlanta, GA 30332 USA.
[Ragauskas, Arthur J.] Chalmers, SE-41296 Gothenburg, Sweden.
RP Ragauskas, AJ (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.
EM Art.Ragauskas@chemistry.gatech.edu
RI Alleman, Teresa/F-6281-2011;
OI Ragauskas, Arthur/0000-0002-3536-554X
FU PSE Fellowship
FX The authors would like to thank the National Renewable Energy Laboratory
(Golden, CO, USA) for the biodiesel samples and the conventional
analytical measurement data and the PSE Fellowship program at IPST@GT
for financial support. Arthur J. Ragauskas also wishes to thank the
support of the Fulbright Fellowship program for the support of his Chair
in Alternative Energy. Portions of this work were used by M. Nagy as
partial fulfillment of the requirements for the degree of Ph.D. at the
Georgia Institute of Technology.
NR 18
TC 4
Z9 4
U1 1
U2 11
PU AMER SCIENTIFIC PUBLISHERS
PI STEVENSON RANCH
PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA
SN 1556-6560
J9 J BIOBASED MATER BIO
JI J. Biobased Mater. Bioenergy
PD MAR
PY 2009
VL 3
IS 1
BP 108
EP 111
DI 10.1166/jbmb.2009.1004
PG 4
WC Chemistry, Applied; Energy & Fuels; Materials Science, Biomaterials
SC Chemistry; Energy & Fuels; Materials Science
GA 435NB
UT WOS:000265349500013
ER
PT J
AU Raman, RN
Pivetti, CD
Rubenchik, AM
Matthews, DL
Troppmann, C
Demos, SG
AF Raman, Rajesh N.
Pivetti, Christopher D.
Rubenchik, Alexander M.
Matthews, Dennis L.
Troppmann, Christoph
Demos, Stavros G.
TI Evaluation of the contribution of the renal capsule and cortex to kidney
autofluorescence intensity under ultraviolet excitation
SO JOURNAL OF BIOMEDICAL OPTICS
LA English
DT Article
DE lasers; fluorescence; tissues; microscopy; ultraviolet
ID OXIDATION-REDUCTION STATE; TISSUE; FLUORESCENCE
AB The use of reduced nicotinamide adenine dinucleotide (NADH) fluorescence to gain metabolic information on kidneys in response to an alteration in oxygen availability has previously been experimentally demonstrated, but signal quantification has not, to date, been addressed. In this work the relative contribution to rat kidney autofluorescence of the capsule versus cortex under ultraviolet excitation is determined from experimental results obtained using autofluorescence microscopy and a suitable mathematical model. The results allow for a quantitative assessment of the relative contribution of the signal originating in the metabolically active cortex as a function of capsule thickness for different wavelengths. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3094948]
C1 [Raman, Rajesh N.; Matthews, Dennis L.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
[Raman, Rajesh N.; Matthews, Dennis L.; Demos, Stavros G.] NSF Ctr Biophoton, Sacramento, CA 95817 USA.
[Pivetti, Christopher D.; Troppmann, Christoph] Univ Calif Davis, Med Ctr, Dept Surg, Sacramento, CA 95817 USA.
[Rubenchik, Alexander M.; Matthews, Dennis L.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Demos, Stavros G.] Univ Calif Davis, Med Ctr, Dept Urol, Sacramento, CA 95817 USA.
RP Raman, RN (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA.
EM topraman@ucdavis.edu
FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Center for
Biophotonics; University of California, Davis [PHY 0120999]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344 and the Center for Biophotonics, an NSF Science and
Technology Center managed by the University of California, Davis, under
Cooperative Agreement Number PHY 0120999. The authors wish to thank the
laboratory of Sarah Yuan of the Division of Research, Department of
Surgery, UC Davis School of Medicine, for assistance with tissue
samples.
NR 15
TC 1
Z9 1
U1 0
U2 0
PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
PI BELLINGHAM
PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA
SN 1083-3668
J9 J BIOMED OPT
JI J. Biomed. Opt.
PD MAR-APR
PY 2009
VL 14
IS 2
AR 020505
DI 10.1117/1.3094948
PG 3
WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine &
Medical Imaging
SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine &
Medical Imaging
GA 456SM
UT WOS:000266868500004
PM 19405710
ER
PT J
AU Petti, C
Wendt, T
Meade, C
Mullins, E
AF Petti, Carloalberto
Wendt, Toni
Meade, Conor
Mullins, Ewen
TI Evidence of genotype dependency within Agrobacterium tumefaciens in
relation to the integration of vector backbone sequence in transgenic
Phytophthora infestans-tolerant potato
SO JOURNAL OF BIOSCIENCE AND BIOENGINEERING
LA English
DT Article
DE Agrobacterium; Transformation; Potato; Transgenic; RB; Backbone
integration
ID HIGH-EFFICIENCY TRANSFORMATION; BROAD-SPECTRUM RESISTANCE; T-DNA;
MEDIATED TRANSFORMATION; GENE-TRANSFER; RICE PLANTS; PARTICLE
BOMBARDMENT; LATE BLIGHT; CELLS; ARABIDOPSIS
AB In this study the effect of Agrobacterium tumefaciens genotype of two strains AGL1 and LBA4404 was investigated in regard to the propensity for backbone integration during the transformation of potato for blight tolerance conferred by the resistant to blight (RB) gene carried by the vector pCLD04541. A PCR based walking approach was employed to identify left and right backbone sequences as well as for selected genes carried on the plasmid backbone. It was found that adjacent to the left border insertion site, the integration of backbone sequence was greater for AGL1 than for LBA4404; however, the opposite was observed with regards to the right border T-DNA junction. Considering both T-DNA borders LBA4404 was found to have a two fold greater integration potential for backbone than the AGL1. The possibility of only backbone integration in T-DNA negative plants was also investigated with the average rate of integration between the two strains calculated at 4.2% with LBA4404 recording a three fold greater occurrence of backbone integration than AGLI. In summary, evidence of Agrobacterium genotype dependency showed that LBA4404 has greater potential to integrate non-T-DNA vector sequence than AGLI and this should be taken into account when utilising the listed A. tumefaciens genotypes in generating transgenic potato. Additionally, the application of a PCR and primer walking, system proved to be reliable and allows for fine detailed studies of backbone sequence integration of transgenic plant. (C) 2008, The Society for Biotechnology, Japan. All rights reserved.
C1 [Petti, Carloalberto; Wendt, Toni; Mullins, Ewen] TEAGASC, Crops Res Ctr, Biotechnol Unit, Carlow, Ireland.
[Petti, Carloalberto; Meade, Conor] Natl Univ Ireland, Dept Biol, Inst Bioengn & Agroecol, Maynooth, Kildare, Ireland.
RP Mullins, E (reprint author), TEAGASC, Crops Res Ctr, Biotechnol Unit, Oak Pk, Carlow, Ireland.
EM Ewen.Mullins@Teagasc.ie
OI Mullins, Ewen/0000-0003-3005-4264
FU Irish National Development Plan
FX The authors wish to thank Dr. Kathrin Reiber for her critical review of
the manuscript. Carloalberto Petti and Ewen Mullins were funded through
the Irish National Development Plan (2000-2006).
NR 57
TC 9
Z9 11
U1 0
U2 4
PU SOC BIOSCIENCE BIOENGINEERING JAPAN
PI OSAKA
PA OSAKA UNIV, FACULTY ENGINEERING, 2-1 YAMADAOKA, SUITA, OSAKA, 565-0871,
JAPAN
SN 1389-1723
J9 J BIOSCI BIOENG
JI J. Biosci. Bioeng.
PD MAR
PY 2009
VL 107
IS 3
BP 301
EP 306
DI 10.1016/j.jbiosc.2008.11.012
PG 6
WC Biotechnology & Applied Microbiology; Food Science & Technology
SC Biotechnology & Applied Microbiology; Food Science & Technology
GA 434YW
UT WOS:000265311200017
PM 19269597
ER
PT J
AU Revelli, AL
Sprunger, LM
Gibbs, J
Acree, WE
Baker, GA
Mutelet, F
AF Revelli, Anne-Laure
Sprunger, Laura M.
Gibbs, Jennifer
Acree, William E., Jr.
Baker, Gary A.
Mutelet, Fabrice
TI Activity Coefficients at Infinite Dilution of Organic Compounds in
Trihexyl(tetradecyl)phosphonium Bis(trifluoromethylsulfonyl)imide Using
Inverse Gas Chromatography
SO JOURNAL OF CHEMICAL AND ENGINEERING DATA
LA English
DT Article
ID TEMPERATURE IONIC LIQUIDS; 2ND VIRIAL-COEFFICIENTS; FREE-ENERGY
RELATIONSHIP; THERMODYNAMIC PROPERTIES; EQUATION COEFFICIENTS; OXYGEN
COMPOUNDS; VAPOR-PRESSURES; NORMAL-HEPTANE; NORMAL-OCTANE; SOLUTES
AB Activity coefficients at infinite dilution gamma(infinity) of organic compounds in the ionic liquid (IL) trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide were determined using inverse gas chromatography at three temperatures, T = (302.45, 322.35, and 342.45) K. Linear free energy relationship (LFER) correlations have been obtained for describing the gas-to-IL and water-to-IL partition coefficients.
C1 [Revelli, Anne-Laure; Mutelet, Fabrice] Nancy Univ, Lab Thermodynam Milieux Polyphases, F-20451 Nancy, France.
[Sprunger, Laura M.; Gibbs, Jennifer; Acree, William E., Jr.] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
[Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Mutelet, F (reprint author), Nancy Univ, Lab Thermodynam Milieux Polyphases, 1 Rue Grandville,BP 4001, F-20451 Nancy, France.
EM mutelet@ensic.inpl-nancy.fr
RI MUTELET, Fabrice/H-3677-2013; Baker, Gary/H-9444-2016
OI Baker, Gary/0000-0002-3052-7730
FU National Science Foundation [CHE-0648843]
FX Jennifer Gibbs thanks the National Science Foundation for support
received under NSF-REU grant (CHE-0648843).
NR 78
TC 57
Z9 58
U1 0
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0021-9568
J9 J CHEM ENG DATA
JI J. Chem. Eng. Data
PD MAR
PY 2009
VL 54
IS 3
BP 977
EP 985
DI 10.1021/je800754w
PG 9
WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical
SC Thermodynamics; Chemistry; Engineering
GA 419CW
UT WOS:000264197700049
ER
PT J
AU Nichols, P
Govind, N
Bylaska, EJ
de Jong, WA
AF Nichols, Patrick
Govind, Niranjan
Bylaska, Eric J.
de Jong, W. A.
TI Gaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in
NWChem
SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION
LA English
DT Article
ID ORDER REGULAR APPROXIMATION; DENSITY-FUNCTIONAL CALCULATIONS; EFFECTIVE
CORE POTENTIALS; MOLECULAR CALCULATIONS; PSEUDOPOTENTIALS; QUADRATURE;
HAMILTONIANS; OPERATORS; SCHEMES; ENERGY
AB Relativistic spin-orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChern electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin-orbit pseudopotentials that are directly generated from the atomic Dirac-Kohn-Sham wave functions or atomic ZORA-Kohn-Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin-orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I(2), IF, HI, Br(2), Bi(2), AuH, and Au(2), using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations.
C1 [Nichols, Patrick; Govind, Niranjan; Bylaska, Eric J.; de Jong, W. A.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Nichols, P (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, 902 Battelle Blvd,POB 999,Mail Stop K8-91, Richland, WA 99352 USA.
EM patrick.nichols@pnl.gov; niri.govind@pnl.gov
RI DE JONG, WIBE/A-5443-2008; Govind, Niranjan/D-1368-2011
OI DE JONG, WIBE/0000-0002-7114-8315;
FU BES Heavy Element Chemistry Program of the U.S. Department of Energy,
Office of Science [DE-AC06-76RLO 1830]; DOE BES Geosciences Program;
DOE's Office of Biological and Environmental Research
FX This research was supported by the BES Heavy Element Chemistry Program
of the U.S. Department of Energy, Office of Science (No. DE-AC06-76RLO
1830). E.J.B. would like to acknowledge the DOE BES Geosciences Program
for helping support the development of the AIMD and analysis programs.
The Pacific Northwest National Laboratory is operated by the Battelle
Memorial Institute. Some of the calculations were performed on the MPP2
computing system at the Molecular Science Computing Facility in the
William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at
PNNL. EMSL operations are supported by the DOE's Office of Biological
and Environmental Research. We also wish to thank the Department of
Energy for a grant of computer time at the National Energy Research
Scientific Computing Center (Berkeley, CA).
NR 40
TC 45
Z9 45
U1 1
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1549-9618
J9 J CHEM THEORY COMPUT
JI J. Chem. Theory Comput.
PD MAR
PY 2009
VL 5
IS 3
BP 491
EP 499
DI 10.1021/ct8002892
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 417OL
UT WOS:000264085600007
PM 26610216
ER
PT J
AU Chirico, RD
Steele, WV
AF Chirico, Robert D.
Steele, William V.
TI Thermodynamic properties of tert-butylbenzene and
1,4-di-tert-butylbenzene
SO JOURNAL OF CHEMICAL THERMODYNAMICS
LA English
DT Article
DE 1,4-Di-tert-butylbenzene; Entropy; Group contribution; Heat capacity;
Ideal gas properties; Phase transition; Plastic crystal;
Tert-butylbenzene; Vapor pressure
ID SATURATED HEAT-CAPACITIES; 12 AROMATIC-HYDROCARBONS; 3RD
VIRIAL-COEFFICIENT; VAPOR-PRESSURES; ALKYLBENZENES; CYCLOHEXANOL;
TEMPERATURES; BENZENES; SPECTRA; DENSITY
AB Heat capacities, enthalpies of phase transitions, and derived thermodynamic properties over the temperature range 5 < (T/K) < 442 were determined with adiabatic calorimetry for tert-butylbenzene (TBB) {Chemical Abstracts Service registry number (CASRN) [98-06-6]} and 1,4-di-tert-butylbenzene (DTBB) {CASRN [1012-72-2]}. A crystal to plastic crystal transition very near the triple-point temperature of DTBB was observed. New vapor pressures near the triple-point temperature are also reported for DTBB for the liquid and crystal states. These new measurements, when combined with published results. allow calculation of the thermodynamic properties for the ideal gas state for both compounds. The contribution of the tert-butyl group to the entropy of the ideal gas is determined quantitatively here for the first time based on the calorimetric results over the temperature range 298.15 < (T/K) < 600. Comparisons with literature values are shown for all measured and derived properties, including entropies for the ideal gas derived from quantum chemical calculations. Published by Elsevier Ltd.
C1 [Chirico, Robert D.] NIST, Phys & Chem Properties Div, Boulder, CO 80305 USA.
[Steele, William V.] Univ Tennessee, Dept Chem Engn, Phys Properties Res Facil, Knoxville, TN 37996 USA.
[Steele, William V.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Chirico, RD (reprint author), NIST, Phys & Chem Properties Div, Boulder, CO 80305 USA.
EM chirico@boulder.nist.gov; wsteele13@comcast.net
FU Office of Fossil Energy of the US Department of Energy (DOE)
[DE-AC22-94C91008, DE-AC05-000R22725, DE-AI26-02NT15338]; Advanced Oil
Recovery (AOR)
FX We acknowledge the contributions of An (Andy) Nguyen for the
vapor-pressure measurements, and Aaron P. Rau for vapor-transfer of the
samples prior to the property measurements. The authors thank Dr. Ala
Bazyleva (Belaruisian State University, Minsk, Belarus) for providing
details of the quantum chemical and statistical calculations, as well as
for additional statistical calculations used in this article for the
tert-butyl benzenes. The authors acknowledge the financial support of
the Office of Fossil Energy of the US Department of Energy (DOE). This
research was funded within the Processing and Downstream Operations
section of the Advanced Oil Recovery (AOR) program. The Bartlesville
portion of the experiments was completed through BDM-Oklahoma under its
contract with DOE for Management and Operations of the National Oil and
Related Programs (NORP), Contract Number DE-AC22-94C91008. Manuscript
preparation at Oak Ridge National Laboratory was completed under DOE
Contract Number DE-AC05-000R22725 with ORNL, which is managed and
operated by UT-Battelle, LLC. Preparation of the manuscript at the
National Institute of Standards and Technology of the US Department of
Commerce in Boulder, Colorado was supported by the National Petroleum
Technology Office of DOE, Interagency Agreement number
DE-AI26-02NT15338.
NR 47
TC 13
Z9 13
U1 0
U2 6
PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0021-9614
J9 J CHEM THERMODYN
JI J. Chem. Thermodyn.
PD MAR
PY 2009
VL 41
IS 3
BP 392
EP 401
DI 10.1016/j.jct.2008.10.008
PG 10
WC Thermodynamics; Chemistry, Physical
SC Thermodynamics; Chemistry
GA 404ZS
UT WOS:000263192200015
ER
PT J
AU Hasler, N
Werth, D
Avissar, R
AF Hasler, Natalia
Werth, David
Avissar, Roni
TI Effects of Tropical Deforestation on Global Hydroclimate: A Multimodel
Ensemble Analysis
SO JOURNAL OF CLIMATE
LA English
DT Article
ID WEST-AFRICAN MONSOONS; CLIMATE-CHANGE; AMAZONIAN DEFORESTATION;
VEGETATION CHANGE; GCM SIMULATION; MODEL; ATMOSPHERE; CIRCULATION;
SENSITIVITY; TRANSPORT
AB Two multimodel ensembles (MME) were produced with the GISS Model II (GM II), the GISS Atmosphere Model (AM), and the NCAR Community Climate System Model (CCSM) to evaluate the effects of tropical deforestation on the global hydroclimate. Each MME used the same 48-yr period but the two were differentiated by their land-cover types. In the "control'' case, current vegetation was used, and in the "deforested'' case, all tropical rain forests were converted to a mixture of shrubs and grassland. Globally, the control simulations produced with the three GCMs compared well to observations, both in the time mean and in the temporal variability, although various biases exist in the different tropical rain forests.
The local precipitation response to deforestation is very strong. The remote effect in the tropics (away from the deforested tropical areas) is strong as well, but the effects at midlatitudes are weaker. In the MME, the impacts tend to be attenuated relative to the individual models.
The significance of the geopotential and precipitation responses was evaluated with a bootstrap method, and results varied during the year. Tropical deforestation also produced anomalous fluxes in potential energy that were a direct response to the deforestation. These different analyses confirmed the existence of a teleconnection mechanism due to deforestation.
C1 [Avissar, Roni] Duke Univ, Dept Civil & Environm Engn, Edmund T Pratt Jr Sch Engn, Durham, NC 27708 USA.
[Werth, David] Savannah River Natl Lab, Aiken, SC USA.
[Hasler, Natalia] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
RP Avissar, R (reprint author), Duke Univ, Dept Civil & Environm Engn, Edmund T Pratt Jr Sch Engn, 123 Hudson Hall, Durham, NC 27708 USA.
EM avissar@duke.edu
FU National Science Foundation (NSF) [ATM-0346554, ATM-0634745]
FX This research was funded by the National Science Foundation (NSF) under
Grants ATM-0346554 and ATM-0634745. The views expressed herein are those
of the authors and do not necessarily reflect the views of NSF. We are
very grateful to the Terrestrial Science Section at the National Center
for Atmospheric Research (NCAR) in Boulder Colorado for their hosting,
help, advice and support in using CCSM. We would especially like to
thank Dave Schimel, Gordon Bonan, Samuel Levis, and Mariana Vertenstein.
NR 49
TC 40
Z9 45
U1 4
U2 25
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0894-8755
J9 J CLIMATE
JI J. Clim.
PD MAR 1
PY 2009
VL 22
IS 5
BP 1124
EP 1141
DI 10.1175/2008JCLI2157.1
PG 18
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 426AZ
UT WOS:000264681100004
ER
PT J
AU Thakkar, A
Cohen, AS
Connolly, MD
Zuckermann, RN
Pei, D
AF Thakkar, Amit
Cohen, Allison S.
Connolly, Michael D.
Zuckermann, Ronald N.
Pei, Dehua
TI High-Throughput Sequencing of Peptoids and Peptide-Peptoid Hybrids by
Partial Edman Degradation and Mass Spectrometry
SO JOURNAL OF COMBINATORIAL CHEMISTRY
LA English
DT Article
ID SOLID-PHASE SYNTHESIS; LIBRARY; SPECIFICITY; CHEMISTRY; DISCOVERY;
LIGANDS
AB A method for the rapid sequence determination of peptoids [oligo(N-substituted glycines)] and peptide-peptoid hybrids selected from one-bead-one-compound combinatorial libraries has been developed. In this method, beads carrying unique peptoid (or peptide-peptoid) sequences were subjected to multiple cycles of partial Edman degradation (PED) by treatment with a 1:3 (mol/mol) mixture of phenyl isothiocyanate (PITC) and 9-fluorenylmethyl chloroformate (Fmoc-Cl) to generate a series of N-terminal truncation products for each resin-bound peptoid. After PED, the Fmoc group was removed from the N-terminus and any reacted side chains via piperidine treatment. The resulting mixture of the full-length peptoid and its truncation products was analyzed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry, to reveal the sequence of the full-length peptoid. With a slight modification, the method was also effective in the sequence determination of peptide-peptoid hybrids. This rapid, high-throughput, sensitive, and inexpensive sequencing method should greatly expand the utility of combinatorial peptoid libraries in biomedical and materials research.
C1 [Thakkar, Amit; Pei, Dehua] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA.
[Cohen, Allison S.; Connolly, Michael D.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA.
[Cohen, Allison S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Pei, D (reprint author), Ohio State Univ, Dept Chem, 100 W 18th Ave, Columbus, OH 43210 USA.
EM pei.3@osu.edu
RI Zuckermann, Ronald/A-7606-2014
OI Zuckermann, Ronald/0000-0002-3055-8860
FU National Institutes of Health [GM062820]; Office of Science, Office of
Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231];
NTH Chemistry/Biology Interface [T32 GM08512]; Office of Naval Research
[11398-23845-44-EKMAJ]
FX This work was supported by the National Institutes of Health (GM062820
to D.P.), and portions of this work were performed at the Molecular
Foundry, Lawrence Berkeley National Laboratory, which is supported by
the Office of Science, Office of Basic Energy Sciences, U.S. Department
of Energy, under Contract No. DE-AC02-05CH11231. A.T. was supported by
an NTH Chemistry/Biology Interface training grant (T32 GM08512), and
A.S.C. was supported by the Office of Naval Research (Grant No.
11398-23845-44-EKMAJ).
NR 29
TC 28
Z9 28
U1 1
U2 22
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-4766
J9 J COMB CHEM
JI J. Comb. Chem.
PD MAR-APR
PY 2009
VL 11
IS 2
BP 294
EP 302
DI 10.1021/cc8001734
PG 9
WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary
SC Chemistry; Pharmacology & Pharmacy
GA 417XC
UT WOS:000264110800018
PM 19154119
ER
PT J
AU Giannakis, D
Fischer, PF
Rosner, R
AF Giannakis, Dimitrios
Fischer, Paul F.
Rosner, Robert
TI A spectral Galerkin method for the coupled Orr-Sommerfeld and induction
equations for free-surface MHD
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Eigenvalue problems; Spectral Galerkin method; Hydrodynamic stability;
Orr-Sommerfeld equations; Free-surface MHD
ID TRANSVERSE MAGNETIC-FIELD; HYDRODYNAMIC STABILITY PROBLEMS; SPURIOUS
EIGENVALUES; LIQUID-GALLIUM; INCLINED PLANE; FLOW; CONVECTION; TENSION;
LAYER; POLYNOMIALS
AB We develop and test spectral Galerkin schemes to solve the coupled Orr-Sommerfeld and induction equations for parallel. incompressible MHD in free-surface and fixed-boundary, geometries. The schemes' discrete bases consist of Legendre internal shape functions, supplemented with nodal shape functions for the weak imposition of the stress and insulating boundary conditions. The orthogonality properties of the basis polynomials solve the matrix-coefficient growth problem, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p = 3000 with p-independent roundoff error. Accuracy is limited instead by roundoff sensitivity due to non-normality of the stability operators at large hydrodynamic and/or magnetic Reynolds numbers (Re. Rm greater than or similar to 4 x 10(4)). In problems with Hartmann velocity and magnetic-field profiles we employ suitable Gauss quadrature rules to evaluate the associated exponentially weighted sesquilinear forms without error. An alternative approach. which involves approximating the forms by means of Legendre-Gauss-Lobatto quadrature at the 2p - 1 precision level, is found to yield equal eigenvalues within roundoff error. As a consistency check, we compare modal growth rates to energy growth rates in nonlinear simulations and record relative discrepancy smaller that, 10(5) for the least stable mode in free-surface flow at Re = 3 x 10(4). Moreover, we confirm that the computed normal modes satisfy an energy conservation law for free-surface MHD with error smaller than 10(6). The critical Reynolds number in free-surface MHD is found to be sensitive to the magnetic Prandtl number Pin, even at the Pm = O(10(5)) regime of liquid metals. (C) 2008 Elsevier Inc. All rights reserved.
C1 [Giannakis, Dimitrios; Rosner, Robert] Univ Chicago, Dept Phys, Chicago, IL 60637 USA.
[Fischer, Paul F.; Rosner, Robert] Argonne Natl Lab, Argonne, IL 60439 USA.
[Rosner, Robert] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
RP Giannakis, D (reprint author), Univ Chicago, Dept Phys, 5720 S Ellis Av, Chicago, IL 60637 USA.
EM dg227@uchicago.edu
RI Giannakis, Dimitrios/K-3575-2012
NR 66
TC 9
Z9 9
U1 0
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD MAR 1
PY 2009
VL 228
IS 4
BP 1188
EP 1233
DI 10.1016/j.jcp.2008.10.016
PG 46
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 401UC
UT WOS:000262966900015
ER
PT J
AU Zhang, QH
Liu, PLF
AF Zhang, Qinghai
Liu, Philip L. -F.
TI HyPAM: A hybrid continuum-particle model for incompressible free-surface
flows
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Free-surface flow; Interface tracking; The Polygonal Area Mapping
method; 2-Connectedness; Material topology graph; Single-phase
decomposition; Passive-response assumption; Hybrid continuum-particle
method; Pressure-incremental projection method; Droplet impact;
Dam-break problem; Solitary wave propagation
ID NAVIER-STOKES EQUATIONS; IMMERSED INTERFACE METHOD; PROJECTION METHOD;
SEMIIMPLICIT METHOD; NUMERICAL-SIMULATION; TURBULENT FLOWS; BREAKING
WAVES; INITIAL-STAGES; 2-PHASE FLOWS; MESH METHOD
AB Three Major issues associated with numerical simulations of complex free-surface flows, viz. interface tracking, fragmentation and large physical jumps, are addressed by a new hybrid continuum-particle model (HyPAM). The new model consists of three parts: (I) the Polygonal Area Mapping method IQ. Zhang, P.L.-F. Liu, A new interface tracking method: the polygonal area mapping method, J. Comput. Phys. 227(8) (2008) 406340881: (2) a new algorithm that decomposes the interested (water) phase into a continuum zone, a buffer zone and a particle zone, based on material topology and graph theory: (3) a. 'passive-response' assumption, in which the air phase is assumed to respond passively to the Continuum part of the water phase. The incompressible inviscid Euler equations and the equations describing the free fall of rigid bodies are used as the governing equations for the continuum-buffer zone and the particle zone, respectively, and separately. A number of examples, including water droplet impact, solitary wave propagation, and dambreak problems, are simulated for the illustration and validation of HyPAM. It is shown that HyPAM is more accurate and versatile than a continuum-based Volume-of-Fluid model. One major contribution of this work is the single-phase decomposition algorithm, useful for many other hybrid formulations. Neglecting surface tension, viscosity and particle interactions, HyPAM is currently limited to mildly-fragmented free-surface flows with high Reynolds and Weber numbers. (C) 2008 Elsevier Inc. All rights reserved.
C1 [Zhang, Qinghai; Liu, Philip L. -F.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA.
[Liu, Philip L. -F.] Natl Cent Univ, Inst Hydrol & Ocean Sci, Jhongli, Taiwan.
[Zhang, Qinghai] Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA.
RP Zhang, QH (reprint author), Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA.
EM QHZhang@lbl.gov; pll3@cornell.edu
RI Zhang, Qinghai/A-3637-2009; Liu, Philip/E-3619-2013
OI Zhang, Qinghai/0000-0002-3655-4190;
FU National Science Foundations
FX We would like to acknowledge the supports from National Science
Foundations through research grants to Cornell University. We also thank
Prof. Stephen B. Pope, Prof. Stephen Vavasis and Prof. Edwin A. Cowen
III for their valuable comments.
NR 98
TC 9
Z9 9
U1 2
U2 10
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD MAR 1
PY 2009
VL 228
IS 4
BP 1312
EP 1342
DI 10.1016/j.jcp.2008.10.029
PG 31
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 401UC
UT WOS:000262966900019
ER
PT J
AU Slosar, A
AF Slosar, Anze
TI Optimal weighting in f(NL) constraints from large scale structure in an
idealised case
SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS
LA English
DT Article
DE power spectrum; inflation
ID INFLATIONARY UNIVERSE SCENARIO; PRIMORDIAL NON-GAUSSIANITY;
FLUCTUATIONS; PERTURBATIONS; LUMINOSITY; SPECTRUM; FLATNESS; HORIZON;
MODELS; BIAS
AB We consider the problem of optimal weighting of tracers of structure for the purpose of constraining the non-Gaussianity parameter f(NL). We work within the Fisher matrix formalism expanded around fiducial model with f(NL) = 0 and make several simplifying assumptions. By slicing a general sample in to infinitely many samples with different biases, we derive the analytic expression for the relevant Fisher matrix element. We next consider weighting schemes that construct two effective samples from a single sample of tracers with a continuously varying bias. We show that a particularly simple ansatz for weighting functions can recover all information about f(NL) in the initial sample that is recoverable using a given bias observable and that simple division into two equal samples is considerably suboptimal when sampling of modes is good, but only marginally sub optimal in the limit where Poisson errors dominate.
C1 [Slosar, Anze] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA.
[Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Slosar, Anze] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia.
RP Slosar, A (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA.
EM anze@berkeley.edu
OI Slosar, Anze/0000-0002-8713-3695
FU BCCP Fellowship
FX Numerical codes used in preparation of this paper used the mass
functions prepared using code by Darren Reed [35]. Author thanks Will
Percival for pointing out analogies with optimal weighting of biased
tracers for power spectrum estimation and acknowledges useful
discussions with Uros Seljak. This work is supported by the inaugural
BCCP Fellowship.
NR 34
TC 29
Z9 29
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1475-7516
J9 J COSMOL ASTROPART P
JI J. Cosmol. Astropart. Phys.
PD MAR
PY 2009
IS 3
AR 004
DI 10.1088/1475-7516/2009/03/004
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 444HX
UT WOS:000265972500025
ER
PT J
AU Howells, MR
Hitchcock, AP
Jacobsen, CJ
AF Howells, Malcolm R.
Hitchcock, Adam P.
Jacobsen, Chris J.
TI Introduction: Special issue on radiation damage
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Editorial Material
ID X-RAY MICROSCOPY; MACROMOLECULAR CRYSTALS; BIOLOGICAL-MATERIALS;
ELECTRON-MICROSCOPY; TRANSMISSION; LIMITATIONS; RESOLUTION
C1 [Howells, Malcolm R.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA.
[Hitchcock, Adam P.] McMaster Univ, Dept Chem, Hamilton, ON, Canada.
[Jacobsen, Chris J.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
RP Howells, MR (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA.
EM MRHowells@lbl.gov; aph@mcmaster.ca; Chris.Jacobsen@stonybrook.edu
RI Jacobsen, Chris/E-2827-2015
OI Jacobsen, Chris/0000-0001-8562-0353
NR 30
TC 15
Z9 15
U1 2
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC
JI J. Electron Spectrosc. Relat. Phenom.
PD MAR
PY 2009
VL 170
IS 1-3
BP 1
EP 3
DI 10.1016/j.elspec.2009.01.004
PG 3
WC Spectroscopy
SC Spectroscopy
GA 435AO
UT WOS:000265315800001
ER
PT J
AU Howells, MR
Beetz, T
Chapman, HN
Cui, C
Holton, JM
Jacobsen, CJ
Kirz, J
Lima, E
Marchesini, S
Miao, H
Sayre, D
Shapiro, DA
Spence, JCH
Starodub, D
AF Howells, M. R.
Beetz, T.
Chapman, H. N.
Cui, C.
Holton, J. M.
Jacobsen, C. J.
Kirz, J.
Lima, E.
Marchesini, S.
Miao, H.
Sayre, D.
Shapiro, D. A.
Spence, J. C. H.
Starodub, D.
TI An assessment of the resolution limitation due to radiation-damage in
X-ray diffraction microscopy
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE Coherent X-rays; Diffraction imaging; Radiation damage; Dose
fractionation; Frozen-hydrated samples
ID PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALS; ELECTRON-MICROSCOPY;
LOW-TEMPERATURE; SPECIMENS; TOMOGRAPHY; PHASE; CRYSTALLOGRAPHY;
RECONSTRUCTION; PULSES
AB X-ray diffraction microscopy (XDM) is a new form of X-ray imaging that is being practiced at several third-generation synchrotron-radiation X-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nanometer resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available X-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Howells, M. R.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Marchesini, S.; Shapiro, D. A.; Spence, J. C. H.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Beetz, T.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Sayre, D.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA.
[Chapman, H. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Holton, J. M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA.
[Spence, J. C. H.; Starodub, D.] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA.
RP Howells, MR (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM mrhowells@lbl.gov
RI Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Jacobsen,
Chris/E-2827-2015
OI Chapman, Henry/0000-0002-4655-1743; Jacobsen, Chris/0000-0001-8562-0353
FU Director, Office of Energy Research, Office of Basics Energy Sciences,
Materials Sciences Division of the U.S. Department of Energy
[DE-AC03-76SF00098]; National Institutes of Health (NIH) [5U54
GM074929-02, 1P50 GM082250-02, 1R01 GM64846-01]; University of
California, Lawrence Livermore National Laboratory [W-740740 5-Eng-48];
U.S. Department of Energy [DEFG0204ER46128]; NSF [IDBR 0555845]
FX The authors are grateful to Dr. A. Vila-Sanjurjo and Prof J. Cate for
permission to use the ribosome crystal, to Prof. R.M. Glaeser for
extended and valuable discussions and comments and to Dr. H.A. Padmore
for sustained encouragement of this work. The Lawrence Berkeley National
Laboratory authors and the Advanced Light source facility at Lawrence
Berkeley National Laboratory are supported by the Director, Office of
Energy Research, Office of Basics Energy Sciences, Materials Sciences
Division of the U.S. Department of Energy, under Contract No.
DE-AC03-76SF00098. J.M. Holton is additionally supported by National
Institutes of Health (NIH) grant numbers 5U54 GM074929-02 and 1P50
GM082250-02. The work of the LLNL authors was performed under the
auspices of the U.S. Department of Energy by University of California,
Lawrence Livermore National Laboratory under Contract W-740740 5-Eng-48.
The Stony Brook group has been supported by NIH grant number 1R01
GM64846-01, and by U.S. Department of Energy grant number
DEFG0204ER46128. ASU work supported by NSF award IDBR 0555845.
NR 62
TC 193
Z9 194
U1 9
U2 64
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC
JI J. Electron Spectrosc. Relat. Phenom.
PD MAR
PY 2009
VL 170
IS 1-3
BP 4
EP 12
DI 10.1016/j.elspec.2008.10.008
PG 9
WC Spectroscopy
SC Spectroscopy
GA 435AO
UT WOS:000265315800002
PM 20463854
ER
PT J
AU Wang, J
Morin, C
Li, L
Hitchcock, AP
Scholl, A
Doran, A
AF Wang, J.
Morin, C.
Li, L.
Hitchcock, A. P.
Scholl, A.
Doran, A.
TI Radiation damage in soft X-ray microscopy
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE Radiation damage; Soft X-rays; Photoemission electron microscopy;
Scanning transmission X-ray microscopy; Polystyrene; Poly(methyl
methacrylate); Fibrinogen; Polymer thin films
ID ADVANCED LIGHT-SOURCE; EDGE STRUCTURE SPECTROSCOPY; INDUCED
DECOMPOSITION; ELECTRON-MICROSCOPY; SPATIAL-RESOLUTION; PROTEIN
CRYSTALS; SHELL EXCITATION; AMINO-ACIDS; TRANSMISSION; SPECTROMICROSCOPY
AB The rates of chemical transformation by radiation damage of polystyrene (PS), poly(methyl methacrylate) (PMMA), and fibrinogen (Fg) in a X-ray photoemission electron microscope (X-PEEM) and in a scanning transmission X-ray microscope (STXM) have been measured quantitatively using synchrotron radiation. As part of the method of dose evaluation in X-PEEM, the characteristic (1/e) sampling depth of X-PEEM for polystyrene in the C 1s region was measured to be 4 1 nm. Critical doses for chemical change as monitored by changes in the X-ray absorption spectra are 80 (12),280 (40) and 1230 (180) MGy (1 MGy = 6.242* rho eV/nm(3), where rho is the polymer density in g/cm(3)) at 300 eV photon energy for PMMA, Fg and PS, respectively. The critical dose for each material is comparable in X-PEEM and STXM and the values cited are thus the mean of the values determined by X-PEEM and STXM. C 1s, N 1s and O 1s spectroscopy of the damaged materials is used to gain insight into the chemical changes that soft X-rays induce in these materials. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Wang, J.; Morin, C.; Li, L.; Hitchcock, A. P.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada.
[Wang, J.; Morin, C.; Li, L.; Hitchcock, A. P.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
[Scholl, A.; Doran, A.] Berkeley Lob, Adv Light Source, Berkeley, CA 94720 USA.
RP Hitchcock, AP (reprint author), McMaster Univ, Brockhouse Inst Mat Res, 1280 Main St W, Hamilton, ON L8S 4M1, Canada.
EM aph@mcmaster.ca
RI Wang, Jian/M-1805-2013; Scholl, Andreas/K-4876-2012
FU NSF [DMR-9975694]; DOE [DE-FG02-98ER45737]; Dow Chemical; Canadian
Foundation for Innovation; NSERC (Canada); Canada Research Chair
Program; Director, Office of Energy Research, Office of Basic Energy
Sciences, Materials Sciences Division of the U.S. Department of Energy
[DE-AC03-76SF00098]
FX This research is supported by NSERC (Canada) and the Canada Research
Chair Program. Cynthia Morin acknowledges the support of an ALS graduate
fellowship duringwhich time much of this work was performed. We thank X.
Zhang and T. Araki for assistance with the measurements. Construction
and operation of the STXM 53.2 microscope is supported by NSF
DMR-9975694, DOE DE-FG02-98ER45737, Dow Chemical, NSERC and the Canadian
Foundation for Innovation. We thank David Kilcoyne, the 5.3.2 beamline
scientist for his contributions to developing and maintaining the
instrument. The Advanced Light Source is supported by the Director,
Office of Energy Research, Office of Basic Energy Sciences, Materials
Sciences Division of the U.S. Department of Energy, under Contract No.
DE-AC03-76SF00098.
NR 60
TC 71
Z9 71
U1 3
U2 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC
JI J. Electron Spectrosc. Relat. Phenom.
PD MAR
PY 2009
VL 170
IS 1-3
BP 25
EP 36
DI 10.1016/j.elspec.2008.01.002
PG 12
WC Spectroscopy
SC Spectroscopy
GA 435AO
UT WOS:000265315800005
ER
PT J
AU Braun, A
Kubatova, A
Wirick, S
Mun, SB
AF Braun, A.
Kubatova, A.
Wirick, S.
Mun, S. B.
TI Radiation damage from EELS and NEXAFS in diesel soot and diesel soot
extracts
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE NEXAFS; Scanning X-ray microscope; EELS; Radiation damage; Soot
ID X-RAY-ABSORPTION; ELECTRON-ENERGY-LOSS; CARBON; SPECTROSCOPY;
MICROSCOPE; SPECTROMICROSCOPY; SCATTERING; PARTICLES; GRAPHITE; TEM
AB Carbon NEXAFS and EELS spectra of soot, and NEXAFS spectra of soot extracts, are presented. The EELS spectra of solid soot particles from a TEM-EELS show fewer structures than the corresponding NEXAFS spectra obtained at two different synchrotron beamlines. We attribute radiation damage in the TEM-EELS to the failure at resolving structures of surface functional carbon groups in or on soot. NEXAFS spectra of soot extracts studied with a scanning transmission X-ray microscope show alterations during X-ray exposure, which can be explained by a simple chemical model where oxygen apparently reacts with the sample. When the same extract is studied in an ultrahigh-vacuum beamline, no such alterations are observed. (C) 2007 Elsevier B.V. All rights reserved.
C1 [Braun, A.] EMPA Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland.
[Braun, A.] Univ Kentucky, Consortium Fossil Fuel Sci, Lexington, KY 40515 USA.
[Braun, A.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40515 USA.
[Kubatova, A.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA.
[Kubatova, A.] Univ N Dakota, Dept Chem, Grand Forks, ND 58202 USA.
[Wirick, S.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.
[Mun, S. B.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Braun, A (reprint author), EMPA Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland.
EM artur.braun@alumni.ethz.ch
RI BRAUN, Artur/A-1154-2009;
OI BRAUN, Artur/0000-0002-6992-7774; Kubatova, Alena/0000-0002-2318-5883
FU National Science Foundation [CHE-0891333]; Office of Biological and
Environmental Research, U.S. DOE [DE-FG02-89ER60858]; NSF [DBI-9605045,
ECS-9510499]; Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences Division, of the U.S. Department of Energy
[DE-AC03-76SF00098]; European Commission [MIRG-CT-2006-042095];
[DE-AC02-76CH-00016]
FX We are grateful to K.E. Kelly (University of Utah) for providing us with
the soot samples. Help with data acquisition by Y. Chen, and N. Shah is
acknowledged, as well as help from F.E. Huggins with interpretation of
carbon data, and G.P. Huffman for benuvolent support (University of
Kentucky). Financial support by the National Science Foundation, Grant #
CHE-0891333 is gratefully acknowledged. Data taken using the X-1A STXM
developed by the group of J. Kirz and C. Jacobsen at SUNY Stony Brook
[23,24], with support from the Office of Biological and Environmental
Research, U.S. DOE under contract DE-FG02-89ER60858, and the NSF under
grant DBI-9605045. Zone plates were developed by S. Spector and C.
Jacobsen of Stony Brook and D. Tennant of Lucent Technologies Bell Labs
[25], with support from the NSF under grant ECS-9510499. NSLS is
operated by the SUNY for the U.S. Dept. of Energy, Contract #
DE-AC02-76CH-00016. The Advanced Light Source is supported by the
Director, Office of Science, Office of Basic Energy Sciences, Materials
Sciences Division, of the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory. During
finalization of this manuscript, AB had funds by the European
Commission, contract # MIRG-CT-2006-042095 at his disposal.
NR 31
TC 27
Z9 31
U1 1
U2 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC
JI J. Electron Spectrosc. Relat. Phenom.
PD MAR
PY 2009
VL 170
IS 1-3
BP 42
EP 48
DI 10.1016/j.elspec.2007.08.002
PG 7
WC Spectroscopy
SC Spectroscopy
GA 435AO
UT WOS:000265315800007
ER
PT J
AU Budiman, AS
Besser, PR
Hau-Riege, CS
Marathe, A
Joo, YC
Tamura, N
Patel, JR
Nix, WD
AF Budiman, A. S.
Besser, P. R.
Hau-Riege, C. S.
Marathe, A.
Joo, Y. -C.
Tamura, N.
Patel, J. R.
Nix, W. D.
TI Electromigration-Induced Plasticity: Texture Correlation and
Implications for Reliability Assessment
SO JOURNAL OF ELECTRONIC MATERIALS
LA English
DT Article
DE Electromigration; copper; interconnects; texture; plasticity;
reliability; dislocations; x-ray microdiffraction
ID X-RAY MICRODIFFRACTION; INTERCONNECT LINES; THIN-FILMS; CU LINES;
DEFORMATION; COPPER; DIFFUSION; METALLIZATION; FAILURE
AB Plastic behavior has previously been observed in metallic interconnects undergoing high-current-density electromigration (EM) loading. In this study of Cu interconnects, using the synchrotron technique of white-beam x-ray microdiffraction, we have further found preliminary evidence of a texture correlation. In lines with strong (111) textures, the extent of plastic deformation is found to be relatively large compared with that of weaker textures. We suggest that this strong (111) texture may lead to an extra path of mass transport in addition to the dominant interface diffusion in Cu EM. When this extra mass transport begins to affect the overall transport process, the effective diffusivity, D (eff), of the EM process is expected to deviate from that of interface diffusion only. This would have fundamental implications. We have some preliminary observations that this might be the case, and report its implications for EM lifetime assessment herein.
C1 [Budiman, A. S.; Patel, J. R.; Nix, W. D.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
[Budiman, A. S.] Spansion Inc, TRE, Sunnyvale, CA 94088 USA.
[Besser, P. R.; Hau-Riege, C. S.; Marathe, A.] Adv Micro Devices Inc, Sunnyvale, CA 94088 USA.
[Joo, Y. -C.] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul, South Korea.
[Tamura, N.; Patel, J. R.] LBNL, ALS, Berkeley, CA 94720 USA.
RP Budiman, AS (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
EM suriadi@stanfordalumni.org
NR 27
TC 25
Z9 25
U1 2
U2 17
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0361-5235
J9 J ELECTRON MATER
JI J. Electron. Mater.
PD MAR
PY 2009
VL 38
IS 3
BP 379
EP 391
DI 10.1007/s11664-008-0602-5
PG 13
WC Engineering, Electrical & Electronic; Materials Science,
Multidisciplinary; Physics, Applied
SC Engineering; Materials Science; Physics
GA 404IN
UT WOS:000263145100001
ER
PT J
AU Neidigk, MA
Shen, YL
AF Neidigk, M. A.
Shen, Y. -L.
TI Nonlinear Viscoelastic Finite Element Analysis of Physical Aging in an
Encapsulated Transformer
SO JOURNAL OF ELECTRONIC PACKAGING
LA English
DT Article
DE cooling; electronics packaging; failure (mechanical); finite element
analysis; thermal stresses; transformers
ID EPOXY GLASSES; MODEL
AB The generation of thermal stresses is a major cause for mechanical failure in encapsulated electronic components. In this study numerical modeling is employed to analyze thermal stresses in a high-voltage transformer encapsulated with filled epoxy. The transformer assembly consists of materials with an extremely disparate range of thermomechanical properties. The thermal histories considered mimic those in the operational condition. It is found that, upon thermal cooling from elevated temperature, the ceramic core can be under local tensile stress although it is entirely surrounded by materials with much greater coefficients of thermal expansion. The unique aspect of this paper originates from the fact that the volume shrinkage of the viscoelastic encapsulant during physical aging contributes to an increase in stress over time, thus increasing the tendency of fracture. This counter intuitive result (stress increase due to nonlinear viscoelastic physical aging) can now be predicted using constitutive models recently developed at Sandia National Laboratories. When a silicone coating between the core and the encapsulation is included, the stress is significantly reduced. The modeling result is shown to corroborate with the actual performance of the transformer.
C1 [Neidigk, M. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Neidigk, M. A.; Shen, Y. -L.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA.
RP Neidigk, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
RI Shen, Yu-Lin/C-1942-2008
FU United States Department of Energy's [DE-AC04-94AL85000]
FX The authors would like to thank Doug Adolf and Bob Chambers of Sandia
National Laboratories for their contributions of time and expertise to
the creation of this paper. In addition, the authors acknowledge Robert
Sanchez of Sandia National Laboratories for the X-ray figure of the
cracked transformer and for the opportunity to investigate this problem.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Co., for the United States Department of Energy's
National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 14
TC 2
Z9 2
U1 2
U2 11
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 1043-7398
J9 J ELECTRON PACKAGING
JI J. Electron. Packag.
PD MAR
PY 2009
VL 131
IS 1
AR 011003
DI 10.1115/1.3068298
PG 8
WC Engineering, Electrical & Electronic; Engineering, Mechanical
SC Engineering
GA 412IH
UT WOS:000263718000003
ER
PT J
AU Pierce, DM
Sheppard, SD
Vianco, PT
AF Pierce, David M.
Sheppard, Sheri D.
Vianco, Paul T.
TI A General Methodology to Predict Fatigue Life in Lead-Free Solder Alloy
Interconnects
SO JOURNAL OF ELECTRONIC PACKAGING
LA English
DT Article
DE ball grid arrays; copper alloys; cracks; creep testing; fatigue testing;
finite element analysis; integrated circuit interconnections; integrated
circuit packaging; integrated circuit reliability; life testing; silver
alloys; solders; stress-strain relations; tin alloys
ID CONTINUUM DAMAGE MECHANICS; HIGH-DENSITY PACKAGES; LOW-CYCLE FATIGUE;
SN-AG-CU; FAILURE ANALYSIS; JOINT RELIABILITY; 60SN-40PB SOLDER; MODEL;
MICROSTRUCTURE; DEFORMATION
AB The ubiquitous eutectic tin-lead (Sn-Pb) solder alloys are soon to be replaced with lead-free alternatives. In light of this transition, new computational tools for predicting the fatigue life of lead-free solders are required. A fatigue life prediction methodology was developed, based on stress-strain, creep, and isothermal fatigue data; the latter generated using a double lap-shear (DLS) test assembly. The proposed fatigue life prediction methodology builds on current practices in fatigue prediction for solder alloys, particularly the concepts of unpartitioned energy methods in finite element analysis (FEA) and continuum damage mechanics. As such, the current state of these fields is briefly discussed. Next, the global and local FEA simulations of the DLS test assembly are detailed. A correlation is then made between the empirical data and the FEA simulations. A general fatigue life prediction methodology is next described in detail. Finally, this methodology is tested and verified against the empirical data.
C1 [Pierce, David M.; Sheppard, Sheri D.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.
[Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Pierce, DM (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.
FU U. S. Department of Energy [DE-A04-94AL85000]
FX The authors would like to acknowledge the technical support of Arlo F.
Fossum, Mike K. Neilsen, and Drew V. Nelson, the laboratory work of Mark
Grazier, Jerry Rejent, and Joseph Martin, and the ANSYS (R) support and
modeling work of Mark Rodamaker. Furthermore, the authors gratefully
acknowledge the support of the Advanced Simulation and Computing
Materials and Physics Models Program led by Elizabeth Holm of Sandia
National Laboratories, and the Solder Joint Degradation (TCG XIV)
Program under the joint munitions program between Sandia National
Laboratories and the Department of Defense. Sandia National Laboratories
is a multi-program laboratory operated by Sandia Corporation, a Lockheed
Martin Co., for the U. S. Department of Energy under Contract No.
DE-A04-94AL85000.
NR 65
TC 3
Z9 3
U1 0
U2 7
PU ASME-AMER SOC MECHANICAL ENG
PI NEW YORK
PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA
SN 1043-7398
J9 J ELECTRON PACKAGING
JI J. Electron. Packag.
PD MAR
PY 2009
VL 131
IS 1
AR 011008
DI 10.1115/1.3068313
PG 11
WC Engineering, Electrical & Electronic; Engineering, Mechanical
SC Engineering
GA 412IH
UT WOS:000263718000008
ER
PT J
AU Acharya, A
AF Acharya, Amit
TI Use of Thermodynamic Formalism in Generalized Continuum Theories and a
Model for Damage Evolution
SO JOURNAL OF ENGINEERING MECHANICS
LA English
DT Article
DE Thermodynamics; Damage; Methodology
ID GRADIENT DAMAGE; FORMULATION; FRAMEWORK
AB A technique for setting up generalized continuum theories based on a balance law and nonlocal thermodynamics is suggested. The methodology does not require the introduction of gradients of the internal variable in the free energy, while allowing for its possibility. Elements of a generalized (brittle) damage model with porosity as the internal variable are developed as an example. The notion of a flux of porosity arises, and we distinguish between the physical notion of a flux of voids (with underpinnings of corpuscular transport) and a flux of void volume that can arise merely due to void expansion. A hypothetical, local free energy function with classical limits for the damaged stress and modulus is constructed to show that the model admits a nonlinear diffusion-advection equation with positive diffusivity for the porosity as a governing equation. This equation is shown to be intimately related to Burgers equation of fluid dynamics, and an analytical solution of the corresponding constant-coefficient, semilinear equation without source term is solved by the Hopf-Cole transformation, that admits the Hopf-Lax entropy weak solution for the corresponding Hamilton-Jacobi equation in the limit of vanishing diffusion. Constraints on the class of admissible porosity and strain-dependent free energy functions arising from the mathematical structure of the theory are deduced. This work may be thought of as providing a continuum thermodynamic formalism for the internal variable gradient models proposed by Aifantis in 1984 in the context of local stress and free-energy functions. However, the degree of diffusive smoothing is not found to be arbitrarily specifiable as mechanical coupling produces an "antidiffusion" effect, and the model also inextricably links propagation of regions of high gradients with their diffusive smoothing.
C1 [Acharya, Amit] Carnegie Mellon Univ, Natl Energy Technol Lab, Pittsburgh, PA 15213 USA.
[Acharya, Amit] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA.
RP Acharya, A (reprint author), Carnegie Mellon Univ, Natl Energy Technol Lab, Pittsburgh, PA 15213 USA.
EM acharyaamit@cmu.edu
RI Acharya, Amit/A-4706-2010
OI Acharya, Amit/0000-0002-6184-3357
FU National Energy Technology Laboratory's ongoing research in
High-Pressure High-Temperature Drilling [DE-AC26-04NT41817]
FX The writer thanks Ron Peerlings and Natarajan Sukumar for helpful
discussion. This technical effort was performed in support of the
National Energy Technology Laboratory's ongoing research in
High-Pressure High-Temperature Drilling under the Research and
Development Solutions (RDS) Contract No. DE-AC26-04NT41817.
NR 15
TC 0
Z9 0
U1 0
U2 5
PU ASCE-AMER SOC CIVIL ENGINEERS
PI RESTON
PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA
SN 0733-9399
EI 1943-7889
J9 J ENG MECH
JI J. Eng. Mech.
PD MAR
PY 2009
VL 135
IS 3
BP 171
EP 177
DI 10.1061/(ASCE)0733-9399(2009)135:3(171)
PG 7
WC Engineering, Mechanical
SC Engineering
GA 407YO
UT WOS:000263400400007
ER
PT J
AU Nelson, RG
Hellwinckel, CM
Brandt, CC
West, TO
Ugarte, DGD
Marland, G
AF Nelson, Richard G.
Hellwinckel, Chad M.
Brandt, Craig C.
West, Tristram O.
Ugarte, Daniel G. De La Torre
Marland, Gregg
TI Energy Use and Carbon Dioxide Emissions from Cropland Production in the
United States, 1990-2004
SO JOURNAL OF ENVIRONMENTAL QUALITY
LA English
DT Article
ID CO2 EMISSIONS; TILLAGE PRACTICES; CROPPING SYSTEMS; SEQUESTRATION; FLUX
AB Changes in cropland production and management influence energy consumption and emissions of CO(2) from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO(2) emissions for cropping practices in the United States at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO(2) emissions for cropping practices enable (i) the monitoring of energy and emissions with changes in land management and (h) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on U.S. croplands in 2004 ranged from 1.6 to 7.9 GJ ha(-1) yr(-1) and from 5.5 to 20.5 GJ ha(-1) yr(-1), respectively. On-site and total CO(2) emissions in 2004 ranged from 23 to 176 kg C hr(-1) yr(-1) and from 91 to 365 kg C ha(-1) yr(-1), respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204 to 1297 PJ yr(-1) (Petajoule = 1 x 10(15) Joule) with associated total fossil CO(2) emissions ranging from 21.5 to 23.2 Tg C yr(-1) (Teragram = 1 x 10(12) gram). The annual proportion of on-site CO(2) EO total CO(2) emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the United States from 1990 to 2004 resulted in a net fossil emissions reduction of 2.4 Tg C.
C1 [West, Tristram O.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37861 USA.
[Nelson, Richard G.] Kansas State Univ, Manhattan, KS 66502 USA.
[Hellwinckel, Chad M.; Ugarte, Daniel G. De La Torre] Univ Tennessee, Agr Policy Anal Ctr, Knoxville, TN 37996 USA.
[Marland, Gregg] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria.
RP West, TO (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37861 USA.
EM westto@ornl.gov
RI West, Tristram/C-5699-2013
OI West, Tristram/0000-0001-7859-0125
FU U.S. Dep. of Energy, Office of Biomass program; Office of Biological and
Environmental Research through the Consortium for Carbon Sequestration
in Terrestrial Ecosystems; Carbon Dioxide Information Analysis Center;
U.S. Dep. of Energy; National Energy Technology Laboratory Oak Ridge
National Laboratory is managed by UT-Battelle; LLC, for the US Dep. of
Energy [DE-AC05-00OR22725]
FX This research was, supported by the U.S. Dep. of Energy, Office of
Biomass program; Office of Biological and Environmental Research through
the Consortium for Carbon Sequestration in Terrestrial Ecosystems; and
the Carbon Dioxide Information Analysis Center. Additional resources
were contributed by the U.S. National Aeronautics and Space
Administration, Earth Science Division. Contributions from R. Nelson
were supported by the U.S. Dep. of Energy, National Energy Technology
Laboratory Oak Ridge National Laboratory is managed by UT-Battelle, LLC,
for the US Dep. of Energy under contract DE-AC05-00OR22725.
NR 32
TC 26
Z9 33
U1 3
U2 23
PU AMER SOC AGRONOMY
PI MADISON
PA 677 S SEGOE RD, MADISON, WI 53711 USA
SN 0047-2425
J9 J ENVIRON QUAL
JI J. Environ. Qual.
PD MAR-APR
PY 2009
VL 38
IS 2
BP 418
EP 425
DI 10.2134/jeq2008.0262
PG 8
WC Environmental Sciences
SC Environmental Sciences & Ecology
GA 416NV
UT WOS:000264013700006
PM 19202012
ER
PT J
AU Fowler, TK
Jayakumar, R
McLean, HS
AF Fowler, T. K.
Jayakumar, R.
McLean, H. S.
TI Stable Spheromaks Sustained by Neutral Beam Injection
SO JOURNAL OF FUSION ENERGY
LA English
DT Article
DE Fusion; Spheromak; Magnetohydrodynamics; Stability; Neutral beam
injection
ID HELICITY INJECTION; TOKAMAK; RELAXATION; PRESSURE; PLASMAS; PINCH
AB It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.
C1 [Fowler, T. K.; Jayakumar, R.; McLean, H. S.] Lawrence Livermore Natl Lab, Livermore, CA USA.
RP McLean, HS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA.
EM carolfow@aol.com; mclean1@llnl.gov
FU US Department of Energy [W7405-ENG-48, DEAC 52-07NA27344]
FX The authors wish to thank D. Brennan, B. I. Cohen, E. B. Hooper, L. L.
Lodestro and C. R. Sovinec for many helpful discussions. We especially
thank L. D. Pearlstein for his unpublished calculations of Delta' for
the cylinder approximation of a spheromak that helped motivate this
work. This work was supported in part by the US Department of Energy
under contracts W7405-ENG-48 and DEAC 52-07NA27344 at the Lawrence
Livermore National Laboratory.
NR 22
TC 2
Z9 2
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0164-0313
J9 J FUSION ENERG
JI J. Fusion Energy
PD MAR
PY 2009
VL 28
IS 1
BP 118
EP 123
DI 10.1007/s10894-008-9157-y
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 397GN
UT WOS:000262651000007
ER
PT J
AU Al-Kiswany, S
Ripeanu, M
Iamnitchi, A
Vazhkudai, S
AF Al-Kiswany, Samer
Ripeanu, Matei
Iamnitchi, Adriana
Vazhkudai, Sudharshan
TI Beyond Music Sharing: An Evaluation of Peer-to-Peer Data Dissemination
Techniques in Large Scientific Collaborations
SO JOURNAL OF GRID COMPUTING
LA English
DT Article
DE Data dissemination; Application level multicast; Peer-to-peer;
Performance evaluation
AB The avalanche of data from scientific instruments and the ensuing interest from geographically distributed users to analyze and interpret it accentuates the need for efficient data dissemination. A suitable data distribution scheme will find the delicate balance between conflicting requirements of minimizing transfer times, minimizing the impact on the network, and uniformly distributing load among participants. We identify several data distribution techniques, some successfully employed by today's peer-to-peer networks: staging, data partitioning, orthogonal bandwidth exploitation, and combinations of the above. We use simulations to explore the performance of these techniques in contexts similar to those used by today's data-centric scientific collaborations and derive several recommendations for efficient data dissemination. Our experimental results show that the peer-to-peer solutions that offer load balancing and good fault tolerance properties and have embedded participation incentives lead to unjustified costs in today's scientific data collaborations deployed on over-provisioned network cores. However, as user communities grow and these deployments scale, peer-to-peer data delivery mechanisms will likely outperform other techniques.
C1 [Al-Kiswany, Samer; Ripeanu, Matei] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada.
[Iamnitchi, Adriana] Univ S Florida, Tampa, FL USA.
[Vazhkudai, Sudharshan] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA.
RP Al-Kiswany, S (reprint author), Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada.
EM samera@ece.ubc.ca; matei@ece.ubc.ca; anda@cse.usf.edu;
vazhkudaiss@ornl.gov
NR 49
TC 0
Z9 0
U1 0
U2 2
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 1570-7873
J9 J GRID COMPUT
JI J. Comput.
PD MAR
PY 2009
VL 7
IS 1
BP 91
EP 114
DI 10.1007/s10723-008-9113-0
PG 24
WC Computer Science, Information Systems; Computer Science, Theory &
Methods
SC Computer Science
GA 525VG
UT WOS:000272244100005
ER
PT J
AU Bardakci, K
AF Bardakci, Korkut
TI Mean field method applied to the new world sheet field theory: string
formation
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Nonperturbative Effects; Bosonic Strings
ID DUAL AMPLITUDES; MODEL
AB The present article is based on a previous one, where a second quantized field theory on the world sheet for summing the planar graphs of phi(3) theory was developed. In this earlier work, the ground state of the model was determined using a variational approximation. Here, starting with the same world sheet field theory, we instead use the mean field method to compute the ground state, and find results that are in agreement with the variational calculation. Apart from serving as a check on the variational calculation, the mean field method enables us to go beyond the ground state to compute the excited states of the model. The spectrum of these states is that of a string with linear trajectories, plus a continuum that starts at higher energy. We show that, by appropriately tuning the parameters of the model, the string spectrum can be cleanly seperated from the continuum.
C1 [Bardakci, Korkut] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Bardakci, Korkut] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA.
RP Bardakci, K (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM kbardakci@lbl.gov
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported in part by the Director, Office of Science,
Office of High Energy Physics, of the U.S. Department of Energy under
Contract DE-AC02-05CH11231.
NR 16
TC 3
Z9 3
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 088
DI 10.1088/1126-6708/2009/03/088
PG 23
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800088
ER
PT J
AU Baumann, D
Dymarsky, A
Kachru, S
Klebanov, IR
McAllister, L
AF Baumann, Daniel
Dymarsky, Anatoly
Kachru, Shamit
Klebanov, Igor R.
McAllister, Liam
TI Holographic systematics of D-brane inflation
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Gauge-gravity correspondence; Cosmology of Theories beyond the SM
ID CONFORMAL FIELD-THEORIES; STRING THEORY; SYMMETRY-BREAKING; COSMOLOGY;
SUPERGRAVITY; FLATNESS; UNIVERSE; GRAVITY; HORIZON
AB We provide a systematic treatment of possible corrections to the inflaton potential for D-brane inflation in the warped deformed conifold. We consider the D3-brane potential in the presence of the most general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi-Yau space. This corresponds to the potential on the Coulomb branch of the dual gauge theory, in the presence of arbitrary perturbations of the Lagrangian. The leading contributions arise from perturbations by the most relevant operators that do not destroy the throat geometry. We find a generic contribution from a non-chiral operator of dimension Delta = 2 associated with a global symmetry current, resulting in a negative contribution to the inflaton mass-squared. If the Calabi-Yau preserves certain discrete symmetries, this is the dominant correction to the inflaton potential, and fine-tuning of the inflaton mass is possible. In the absence of such discrete symmetries, the dominant contribution comes from a chiral operator with Delta = 3/2, corresponding to a phi(3/2) term in the inflaton potential. The resulting inflationary models are phenomenologically similar to the inflection point scenarios arising from specific D7-brane embeddings, but occur under far more general circumstances. Our strategy extends immediately to other warped geometries, given sufficient knowledge of the Kaluza-Klein spectrum.
C1 [Baumann, Daniel] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
[Baumann, Daniel; Klebanov, Igor R.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.
[Dymarsky, Anatoly; Kachru, Shamit] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Kachru, Shamit] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA.
[McAllister, Liam] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
[Klebanov, Igor R.] Princeton Univ, Ctr Theoret Sci, Princeton, NJ 08544 USA.
RP Baumann, D (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
EM dbaumann@physics.harvard.edu; dymarsky@stanford.edu;
skachru@stanford.edu; klebanov@princeton.edu; McAllister@cornell.edu
RI Dymarsky, Anatoly/S-2084-2016;
OI Dymarsky, Anatoly/0000-0001-5762-6774
FU David and Lucile Packard Foundation; Alfred P. Sloan Foundation; Center
for the Fundamental Laws of Nature and the Center for Astrophysics at
Harvard; Stanford Institute for Theoretical Physics; NSF [PHY-0756174,
PHY-0756966, PHY-0355005]; DOE [DE-AC03-76SF00515]; RFBR [07-02-00878];
[NSh-3035.2008.2]
FX We are grateful to O. DeWolfe, L. Kofman, J. Maldacena, and M. Mulligan
for useful discussions. The research of D. B. is supported in part by
the David and Lucile Packard Foundation and the Alfred P. Sloan
Foundation and by Fellowships of the Center for the Fundamental Laws of
Nature and the Center for Astrophysics at Harvard. A. D. and S. K. are
supported by the Stanford Institute for Theoretical Physics, the NSF
under grant PHY-0756174, and the DOE under contract DE-AC03-76SF00515.
The research of A. D. is also supported in part by grant RFBR
07-02-00878, and Grant for Support of Scientific Schools
NSh-3035.2008.2. A. D. would like to thank the Galileo Galilei Institute
for Theoretical Physics, where part of this work was done, for
hospitality. S. K. is grateful to the Kavli Institute for Theoretical
Physics, the Aspen Center for Physics, and the Institute for Advanced
Study for hospitality while some of these ideas were being finalized.
The research of I. R. K. was supported in part by the NSF under grant
PHY-0756966. I. R. K. thanks the IHES for hospitality during the final
stages of this work. The research of L. M. is supported by NSF grant
PHY-0355005. L. M. thanks the Stanford Institute for Theoretical Physics
for hospitality while some of this work was performed, and the high
energy theory group at Harvard for hospitality while it was finalized.
NR 66
TC 52
Z9 52
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 093
DI 10.1088/1126-6708/2009/03/093
PG 27
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800093
ER
PT J
AU Burns, M
Kong, K
Matchev, KT
Park, M
AF Burns, Michael
Kong, Kyoungchul
Matchev, Konstantin T.
Park, Myeonghun
TI Using subsystem MT2 for complete mass determinations in decay chains
with missing energy at hadron colliders
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Supersymmetry Phenomenology; Phenomenology of Field Theories in Higher
Dimensions
ID DARK-MATTER; LHC
AB We propose to use the M-T2 concept to measure the masses of all particles in SUSY-like events with two unobservable, identical particles. To this end we generalize the usual notion of M-T2 and define a new M-T2((n,p,c)) variable, which can be applied to various subsystem topologies, as well as the full event topology. We derive analytic formulas for its endpoint M-T2,max((n,p,c)) as a function of the unknown test mass (M) over tilde (c) of the final particle in the subchain and the transverse momentum p(T) due to radiation from the initial state. We show that the endpoint functions M-T2,max((n,p,c)) ((M) over tilde (c), p(T)) may exhibit three different types of kinks and discuss the origin of each type. We prove that the subsystem M-T2((n,p,c)) variables by themselves already yield a sufficient number of measurements for a complete determination of the mass spectrum (including the overall mass scale). As an illustration, we consider the simple case of a decay chain with up to three heavy particles, X-2 -> X-1 -> X-0, which is rather problematic for all other mass measurement methods. We propose three different M-T2-based methods, each of which allows a complete determination of the masses of particles X-0, X-1 and X-2. The first method only uses M-T2((n,p,c)) endpoint measurements at a single fixed value of the test mass (M) over tilde (c). In the second method the unknown mass spectrum is fitted to one or more endpoint functions M-T2,max((n,p,c))((M) over tilde (c), pT) exhibiting a kink. The third method is hybrid, combining M-T2 endpoints with measurements of kinematic edges in invariant mass distributions. As a practical application of our methods, we show that the dilepton W+W- and t (t) over bar samples at the Tevatron can be used for an independent determination of the masses of the top quark, the W boson and the neutrino, without any prior assumptions.
C1 [Burns, Michael; Matchev, Konstantin T.; Park, Myeonghun] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Kong, Kyoungchul] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
RP Burns, M (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
EM burns@phys.ufl.edu; kckong@fnal.gov; matchev@phys.ufl.edu;
ishaed@phys.ufl.edu
NR 52
TC 81
Z9 81
U1 0
U2 0
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 143
DI 10.1088/1126-6708/2009/03/143
PG 47
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800143
ER
PT J
AU Chen, HY
Hung, LY
Shiu, G
AF Chen, Heng-Yu
Hung, Ling-Yan
Shiu, Gary
TI Inflation on an open racetrack
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Flux compactifications; dS vacua in string theory; Superstring Vacua
ID SUPERSYMMETRY BREAKING; STRING THEORY; BRANE INFLATION; F-THEORY;
COSMOLOGY; COMPACTIFICATION; LECTURES; FLATNESS; UNIVERSE; HORIZON
AB We present a variant of warped D-brane inflation by incorporating multiple sets of holomorphically-embedded D7-branes involved in moduli stabilization with extent into a warped throat. The resultant D3-brane motion depends on the D7-brane configuration and the relative position of the D3-brane in these backgrounds. The non-perturbative moduli stabilization superpotential takes the racetrack form, but the additional D3-brane open string moduli dependence provides more flexibilities in model building. For concreteness, we consider D3-brane motion in the warped deformed conifold with the presence of multiple D7-branes, and derive the scalar potential valid for the entire throat. By explicit tuning of the microphysical parameters, we obtain inflationary trajectories near an inflection point for various D7-brane configurations. Moreover, the open racetrack potential admits approximate Minkowski vacua before uplifting. We demonstrate with a concrete D-brane inflation model where the Hubble scale during inflation can exceed the gravitino mass. Finally, the multiple sets of D7-branes present in this open racetrack setup also provides a mechanism to stabilize the D3-brane to metastable vacua in the intermediate region of the warped throat.
C1 [Chen, Heng-Yu; Shiu, Gary] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Shiu, Gary] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Shiu, Gary] Stanford Univ, SLAC, Stanford, CA 94305 USA.
[Hung, Ling-Yan] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England.
RP Chen, HY (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.
EM hchen46@wisc.edu; lyh20@cam.ac.uk; shiu@physics.wisc.edu
FU NSF [PHY-0348093]; DOE [DE-FG-02-95ER40896]; Research Corporation;
University of Wisconsin; John Simon Guggenheim Memorial Foundation;
Gates Cambridge Trust
FX We are grateful to Konstantin Bobkov, Fang Chen, Jim Cline, Shamit
Kachru, Renata Kallosh, Andrei Linde, Yu Nakayama, Peter Ouyang,
Fernando Quevedo, Stuart Raby, Alexander Westphal, and Piljin Yi for
discussions. The work of HYC and GS was supported in part by NSF CAREER
Award No. PHY-0348093, DOE grant DE-FG-02-95ER40896, a Research
Innovation Award and a Cottrell Scholar Award from Research Corporation,
a Vilas Associate Award from the University of Wisconsin, and a John
Simon Guggenheim Memorial Foundation Fellowship. HYC and GS also thank
the Stanford Institute for Theoretical Physics and SLAC for hospitality
and support while this work was written. LYH is supported by the Gates
Cambridge Trust.
NR 89
TC 20
Z9 20
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 083
DI 10.1088/1126-6708/2009/03/083
PG 31
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800083
ER
PT J
AU Goh, HS
Ibe, M
AF Goh, Hock-Seng
Ibe, Masahiro
TI R-axion detection at LHC
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Supersymmetry Phenomenology
ID DYNAMICAL SUPERSYMMETRY BREAKING; CONFORMAL GAUGE MEDIATION; LARGE
TRANSVERSE-MOMENTUM; HIGGS-BOSON PRODUCTION; HADRON SUPERCOLLIDERS;
PARTICLE PHYSICS; CP CONSERVATION; STANDARD MODEL; LOW ENERGIES; DECAYS
AB Supersymmetric models with spontaneously broken approximate R-symmetry contain a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay.
C1 [Goh, Hock-Seng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Goh, Hock-Seng] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA.
[Ibe, Masahiro] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA.
RP Goh, HS (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM hsgoh@berkeley.edu; ibe@slac.stanford.edu
FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC02-05CH11232]; U.S.
National Science Foundation [PHY-04-57315]
FX We appreciate M. Peskin for a lot of discussion and advice very much. We
also appreciate T. Barklow and D. Miller for useful comments. MI also
appreciate D. Su for useful discussion. MI appreciate Y. Nakayama and T.
T Yanagida for useful discussion on the low energy properties of the
R-axion. HSG would also like to thank I. Hinchliffe, M. Shapiro, J.
Thaler and D. Walker for discussions. We appreciate the hospitality of
the Aspen Center for Physics, where this collaboration began. The work
of MI was supported by the U.S. Department of Energy under contract
number DE-AC02-76SF00515. The work of HSG was supported in part by DOE
under contract number DE-AC02-05CH11232 and by the U.S. National Science
Foundation under grants PHY-04-57315.
NR 77
TC 11
Z9 11
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 049
PG 31
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800049
ER
PT J
AU Horava, P
AF Horava, Petr
TI Membranes at quantum criticality
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article; Proceedings Paper
CT Workshop on AdS, Condensed Matter and QCD
CY OCT, 2008
CL McGill Univ, Montreal, CANADA
HO McGill Univ
DE p-branes; Models of Quantum Gravity; Classical Theories of Gravity;
Bosonic Strings
ID STOCHASTIC QUANTIZATION; DIMENSIONS; SUPERSYMMETRY; FIELDS; MODELS
AB We propose a quantum theory of membranes designed such that the ground-state wavefunction of the membrane with compact spatial topology Sigma(h) reproduces the partition function of the bosonic string on worldsheet Sigma(h). The construction involves worldvolume matter at quantum criticality, described in the simplest case by Lifshitz scalars with dynamical critical exponent z = 2. This matter system must be coupled to a novel theory of worldvolume gravity, also exhibiting quantum criticality with z = 2. We first construct such a nonrelativistic "gravity at a Lifshitz point" with z = 2 in D + 1 spacetime dimensions, and then specialize to the critical case of D = 2 suitable for the membrane worldvolume. We also show that in the second-quantized framework, the string partition function is reproduced if the spacetime ground state takes the form of a Bose-Einstein condensate of membranes in their first-quantized ground states, correlated across all genera.
C1 [Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA.
[Horava, Petr] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Horava, Petr] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA.
RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA.
EM horava@berkeley.edu
NR 39
TC 247
Z9 248
U1 0
U2 9
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 020
DI 10.1088/1126-6708/2009/03/020
PG 34
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800020
ER
PT J
AU Konar, P
Kong, K
Matchev, KT
AF Konar, Partha
Kong, Kyoungchul
Matchev, Konstantin T.
TI root(s)over-cap(min): a global inclusive variable for determining the
mass scale of new physics in events with missing energy at hadron
colliders
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Beyond Standard Model; Supersymmetric Standard Model; Hadronic Colliders
ID CASCADE DECAYS; LHC; SHAPE
AB We propose a new global and fully inclusive variable (s) over cap (1/2)(min) for determining the mass scale of new particles in events with missing energy at hadron colliders. We define (s) over cap (1/2)(min) as the minimum center-of-mass parton level energy consistent with the measured values of the total calorimeter energy E and the total visible momentum (P) over right arrow. We prove that for an arbitrary event, (s) over cap (1/2)(min) is simply given by the formula (s) over cap (1/2)(min) = root E-2-P-z(2) + root E-T(2) + M-inv(2), where M-inv is the total mass of all invisible particles produced in the event. We use t (t) over bar production and several supersymmetry examples to argue that the peak in the (s) over cap (1/2)(min) distribution is correlated with the mass threshold of the parent particles originally produced in the event. This conjecture allows an estimate of the heavy superpartner mass scale (as a function of the LSP mass) in a completely general and model-independent way, and with out the need for any exclusive event reconstruction. In our SUSY examples of several multijet plus missing energy signals, the accuracy of the mass measurement based on (s) over cap (1/2)(min) is typically at the percent level, and never worse than 10%. After including the effects of initial state radiation and multiple parton interactions, the precision gets worse, but for heavy SUSY mass spectra remains similar to 10%.
C1 [Konar, Partha; Matchev, Konstantin T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Kong, Kyoungchul] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
RP Konar, P (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
EM konar@phys.ufl.edu; kckong@fnal.gov; matchev@phys.ufl.edu
FU US Department of Energy [DE-FG02-97ER41029]; U. S. Department of Energy
[DE-AC02-07CH11359]
FX We are grateful to A. Barr, R. Cavanaugh, R. Field, A. Korytov, C.
Lester and B. Webber for useful discussions and correspondence. This
work is supported in part by a US Department of Energy grant
DE-FG02-97ER41029. Fermilab is operated by Fermi Research Alliance, LLC
under Contract No. DE-AC02-07CH11359 with the U. S. Department of
Energy.
NR 63
TC 31
Z9 31
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 085
DI 10.1088/1126-6708/2009/03/085
PG 33
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800085
ER
PT J
AU Morris, RD
Cohen-Tanugi, J
AF Morris, Robin D.
Cohen-Tanugi, Johann
TI A parameterization invariant approach to the statistical estimation of
the CKM phase alpha
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Statistical Methods; B-Physics; CP violation
ID DISTRIBUTIONS
AB In contrast to previous analyses, we demonstrate a Bayesian approach to the estimation of the CKM phase alpha that is invariant to parameterization. We also show that in addition to computing the marginal posterior in a Bayesian manner, the distribution must also be interpreted from a subjective Bayesian viewpoint. Doing so gives a very natural interpretation to the distribution.
We also comment on the effect of removing information about B-00
C1 [Morris, Robin D.] USRA RIACS, Mountain View, CA 94306 USA.
[Cohen-Tanugi, Johann] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA.
[Cohen-Tanugi, Johann] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France.
RP Morris, RD (reprint author), USRA RIACS, 444 Castro St,Suite 320, Mountain View, CA 94306 USA.
EM rdm@riacs.edu; cohen@slac.stanford.edu
NR 17
TC 0
Z9 0
U1 0
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 010
DI 10.1088/1126-6708/2009/03/010
PG 14
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800010
ER
PT J
AU Poppitz, E
Unsal, M
AF Poppitz, Erich
Unsal, Mithat
TI Index theorem for topological excitations on R-3 x S-1 and Chern-Simons
theory
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Solitons Monopoles and Instantons; Nonperturbative Effects; Chern-Simons
Theories; Anomalies in Field and String Theories
ID MULTIMONOPOLE SOLUTIONS; SPECTRAL ASYMMETRY; INSTANTONS; DIMENSIONS;
MONOPOLES; ANOMALIES; SPACE
AB We derive an index theorem for the Dirac operator in the background of various topological excitations on an R-3 x S-1 geometry. The index theorem provides more refined data than the APS index for an instanton on R-4 and reproduces it in decompactification limit. In the R-3 limit, it reduces to the Callias index theorem. The index is expressed in terms of topological charge and the eta-invariant associated with the boundary Dirac operator. Neither topological charge nor eta-invariant is typically an integer, however, the non-integer parts cancel to give an integer-valued index. Our derivation is based on axial current non-conservation-an exact operator identity valid on any four-manifold-and on the existence of a center symmetric, or approximately center symmetric, boundary holonomy (Wilson line). We expect the index theorem to usefully apply to many physical systems of interest, such as low temperature (large S-1, confined) phases of gauge theories, center stabilized Yang-Mills theories with vector-like or chiral matter (at S-1 of any size), and supersymmetric gauge theories with supersymmetry-preserving boundary conditions (also at any S-1). In QCD-like and chiral gauge theories, the index theorem should shed light into the nature of topological excitations responsible for chiral symmetry breaking and the generation of mass gap in the gauge sector. We also show that imposing chirally-twisted boundary condition in gauge theories with fermions induces a Chern-Simons term in the infrared. This suggests that some QCD-like gauge theories should possess components with a topological Chern-Simons phase in the small S-1 regime.
C1 [Poppitz, Erich] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Unsal, Mithat] Stanford Univ, SLAC, Stanford, CA 94025 USA.
[Unsal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94025 USA.
RP Poppitz, E (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada.
EM poppitz@physics.utoronto.ca; unsal@slac.stanford.edu
NR 30
TC 30
Z9 30
U1 1
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 027
PG 29
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800027
ER
PT J
AU Schmaltz, M
Thaler, J
AF Schmaltz, Martin
Thaler, Jesse
TI Collective quartics and dangerous singlets in little Higgs
SO JOURNAL OF HIGH ENERGY PHYSICS
LA English
DT Article
DE Beyond Standard Model; Higgs Physics; Technicolor and Composite Models
AB An extension of the standard model that aims to describe TeV-scale physics without fine-tuning must have a radiatively-stable Higgs potential. In little Higgs theories, radiative stability is achieved through so-called collective symmetry breaking. In this letter, we focus on the necessary conditions for a little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet models, a collective quartic requires an electroweak triplet scalar. In two-Higgs doublet models, a collective quartic requires a triplet or singlet scalar. As a corollary of this study, we show that some little Higgs theories have dangerous singlets, a pathology where collective symmetry breaking does not suppress quadratically-divergent corrections to the Higgs mass.
C1 [Schmaltz, Martin] Boston Univ, Dept Phys, Boston, MA 02215 USA.
[Schmaltz, Martin; Thaler, Jesse] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA.
[Schmaltz, Martin; Thaler, Jesse] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA.
RP Schmaltz, M (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA.
EM schmaltz@bu.edu; jthaler@jthaler.net
OI Thaler, Jesse/0000-0002-2406-8160
NR 16
TC 13
Z9 13
U1 1
U2 1
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1029-8479
J9 J HIGH ENERGY PHYS
JI J. High Energy Phys.
PD MAR
PY 2009
IS 3
AR 137
DI 10.1088/1126-6708/2009/03/137
PG 9
WC Physics, Particles & Fields
SC Physics
GA 439BD
UT WOS:000265600800137
ER
PT J
AU Carini, GA
Chen, W
Dragone, A
Fried, J
Jakoncic, J
Kuczweski, A
Li, Z
Mead, J
Michta, R
Pratte, JF
Rehak, P
Siddons, DP
AF Carini, G. A.
Chen, W.
Dragone, A.
Fried, J.
Jakoncic, J.
Kuczweski, A.
Li, Z.
Mead, J.
Michta, R.
Pratte, J. -F.
Rehak, P.
Siddons, D. P.
TI Tests of small X-ray Active Matrix Pixel Sensor prototypes at the
National Synchrotron Light Source
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
CT PIXEL 2008 International Workshop
CY SEP 23-26, 2008
CL Fermilab, Batavia, IL
HO Fermilab
DE X-ray detectors; Pixelated detectors and associated VLSI electronics
ID HIGH-RESISTIVITY SILICON
AB X-ray Active Matrix Pixel Sensors (XAMPS) were designed and fabricated at Brookhaven National Laboratory. Devices based on J-FET technology were produced on 100 mm high-resistivity silicon, typically 400 m m-thick. The prototypes are square matrices with n rows and n columns with n = 16, 32, 64, 128, 256, 512. Each pixel of the matrix is 90 x 90 mu m(2) and contains a JFET switch to control the charge readout. The XAMPS is a position sensitive ionization detector made on high resistivity silicon. It consists of a pixel array detector with integrated switches. Pixels are isolated from each other by a potential barrier and the device is fully depleted by applying a high voltage bias to the junction on the entrance window of the sensor. The small features of the design presented some technological challenges fully addressed during this production. The first prototypes were tested at the National Synchrotron Light Source (NSLS) with a monochromatic beam of 8 keV and millisecond readout and exhibit good performances at room temperature.
C1 [Carini, G. A.; Chen, W.; Fried, J.; Jakoncic, J.; Kuczweski, A.; Li, Z.; Mead, J.; Michta, R.; Pratte, J. -F.; Rehak, P.; Siddons, D. P.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Dragone, A.] SLAC Natl Accelerator Ctr, Menlo Pk, CA 94025 USA.
RP Carini, GA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM carini@bnl.gov
NR 6
TC 6
Z9 6
U1 1
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD MAR
PY 2009
VL 4
AR P03014
DI 10.1088/1748-0221/4/03/P03014
PG 11
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 442YU
UT WOS:000265878200014
ER
PT J
AU Garcia-Sciveres, M
AF Garcia-Sciveres, Maurice
TI Post-installation status of the ATLAS pixel detector
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT PIXEL 2008 International Workshop
CY SEP 23-26, 2008
CL Fermilab, Batavia, IL
HO Fermilab
DE Particle tracking detectors; Solid state detectors; Hybrid detectors
AB The ATLAS pixel detector was installed in June 2007 and was fully connected and operating at the time of this conference. An assessment is given of the state of the as-installed system in the context of the technological challenges of hybrid pixels. Comparisons with CMS are made drawing on material presented at this conference. This paper is intended as a companion to the talk slides presented at the conference and excludes the many photographs from the talk.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Garcia-Sciveres, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM mgs@lbl.gov
NR 12
TC 1
Z9 1
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD MAR
PY 2009
VL 4
AR P03021
DI 10.1088/1748-0221/4/03/P03021
PG 7
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 442YU
UT WOS:000265878200021
ER
PT J
AU Greiner, L
Anderssen, E
Matis, HS
Ritter, HG
Stezelberger, T
Szelezniak, M
Sun, X
Vu, C
Wieman, H
AF Greiner, L.
Anderssen, E.
Matis, H. S.
Ritter, H. G.
Stezelberger, T.
Szelezniak, M.
Sun, X.
Vu, C.
Wieman, H.
TI Sensor development and readout prototyping for the STAR Pixel detector
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
CT PIXEL 2008 International Workshop
CY SEP 23-26, 2008
CL Fermilab, Batavia, IL
HO Fermilab
DE Solid state detectors; Electronic detector readout concepts
(solid-state)
AB The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D(0) by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor ( MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 mu s integration time, 400 M pixels and a coverage of -1< eta <1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.
C1 [Greiner, L.; Anderssen, E.; Matis, H. S.; Ritter, H. G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Greiner, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 70R0319, Berkeley, CA 94720 USA.
EM LCGreiner@lbl.gov
NR 8
TC 6
Z9 6
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD MAR
PY 2009
VL 4
AR P03008
DI 10.1088/1748-0221/4/03/P03008
PG 10
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 442YU
UT WOS:000265878200008
ER
PT J
AU Li, Z
AF Li, Z.
TI Radiation damage effects in Si materials and detectors and rad-hard Si
detectors for SLHC
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT PIXEL 2008 International Workshop
CY SEP 23-26, 2008
CL Fermilab, Batavia, IL
HO Fermilab
DE Hybrid detectors; Neutron detectors (cold, thermal, fast neutrons);
dE/dx detectors; Pixelated detectors and associated VLSI electronics
ID IRRADIATED SILICON DETECTORS; CHARGE COLLECTION EFFICIENCY;
ELECTRIC-FIELD DISTRIBUTION; OXYGEN-ENRICHED SILICON; FAST-NEUTRON
RADIATION; LONG-TERM STABILITY; N-EFF; PARTICLE DETECTORS; JUNCTION
DETECTORS; ROSE COLLABORATION
AB Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, space charge concentration, and free carrier trapping. For LHC applications, where the total fluence is in the order of 1x10(15) n(eq)/cm(2) for 10 years, the increase in space charge concentration has been the main problem since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. For LHC Upgrade, or the SLHC, however, whit an increased total fluence up to 1x10(16) n(eq)/cm(2), the main limiting factor for Si detector operation is the severe trapping of free carriers by radiation-induced defect levels. Several new approaches have been developed to make Si detector more radiation hard/tolerant to such ultra-high radiation, including 3D Si detectors, Current-Injected-Diodes (CID) detectors, and Elevated temperature annealing.
C1 Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA.
RP Li, Z (reprint author), Brookhaven Natl Lab, Instrumentat Div, 20 Technol St, Upton, NY 11973 USA.
EM zhengl@bnl.gov
NR 59
TC 7
Z9 7
U1 1
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD MAR
PY 2009
VL 4
AR P03011
DI 10.1088/1748-0221/4/03/P03011
PG 32
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 442YU
UT WOS:000265878200011
ER
PT J
AU Miceli, A
AF Miceli, A.
TI Application of Pixel array detectors at X-ray synchrotrons
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
CT PIXEL 2008 International Workshop
CY SEP 23-26, 2008
CL Fermilab, Batavia, IL
HO Fermilab
DE X-ray detectors; Pixelated detectors and associated VLSI electronics;
X-ray fluorescence (XRF) systems; X-ray diffraction detectors
AB Pixel array detectors have only recently been seriously used at x-ray synchrotrons. We describe the application of a digital pixel array detector (Pilatus100k) to a variety of synchrotron experiments at the Advanced Photon Source at Argonne National Laboratory. The Pilatus100k was developed at the Paul Scherrer Institut (PSI). It has been commercialized by a PSI spinoff (Dectrics Ltd.) This is the first commercially available pixel array detector for x-ray synchrotron applications. The APS synchrotron provides tunable x-ray pulses with duration of similar to 80 ps and a repetition period of 153 ns (24-bunch mode). The Pilatus100k is a direct detection x-ray detector where each 172 micron pixel counts individual x-ray pulses above a lower threshold. It consists of similar to 100k pixels each of which is capable of single-photon counting (> 3 keV) at count rates up to similar to 1 MHz. In addition, the Pilatus100k is an electronically gateable detector. We present data showing that the Pilatus100k is capable of isolating a single x-ray bunch at the APS in 24 bunch mode. We will also present a variety of different experiments exploiting the unique capabilities of the Pilatus100k.
C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Miceli, A (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM amiceli@aps.anl.gov
NR 11
TC 4
Z9 4
U1 1
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD MAR
PY 2009
VL 4
AR P03024
DI 10.1088/1748-0221/4/03/P03024
PG 8
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 442YU
UT WOS:000265878200024
ER
PT J
AU Radeka, V
Frank, J
Geary, JC
Gilmore, DK
Kotov, I
O'Connor, P
Takacs, P
Tyson, JA
AF Radeka, V.
Frank, J.
Geary, J. C.
Gilmore, D. K.
Kotov, I.
O'Connor, P.
Takacs, P.
Tyson, J. A.
TI LSST sensor requirements and characterization of the prototype LSST CCDs
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article
CT PIXEL 2008 International Workshop
CY SEP 23-26, 2008
CL Fermilab, Batavia, IL
HO Fermilab
DE Detectors for UV, visible and IR photons; Optics
ID CHARGE DIFFUSION; ELECTRIC-FIELD; SILICON; THICK
AB LSST parameters are discussed and requirements on the LSST camera are presented. Characterization methods and results on a number of new devices produced specifically to address LSST's performance goals, including flatness, QE, full well capacity, linearity, dark current, read noise, CTE, and image persistence are presented. The results indicate that commercially produced, thick n-channel over-depleted CCDs can achieve excellent red response, high CTE, low dark current and satisfy LSST requirements with no evidence of persistent image artifacts. We will also report ongoing studies of mosaic assembly techniques to achieve chip-to-chip co-planarity, high fill factor, and thermal stability.
C1 [Radeka, V.; Frank, J.; Kotov, I.; O'Connor, P.; Takacs, P.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Geary, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Gilmore, D. K.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA.
[Tyson, J. A.] Univ Calif Davis, Davis, CA 95616 USA.
RP Kotov, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
EM kotov@bnl.gov
NR 15
TC 16
Z9 16
U1 1
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD MAR
PY 2009
VL 4
AR P03002
DI 10.1088/1748-0221/4/03/P03002
PG 14
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 442YU
UT WOS:000265878200002
ER
PT J
AU Strandberg, S
AF Strandberg, Sara
TI Results from the commissioning of the ATLAS Pixel detector
SO JOURNAL OF INSTRUMENTATION
LA English
DT Article; Proceedings Paper
CT PIXEL 2008 International Workshop
CY SEP 23-26, 2008
CL Fermilab, Batavia, IL
HO Fermilab
DE Particle tracking detectors; Solid state detectors; Front-end
electronics for detector readout
AB The ATLAS pixel detector is a high resolution, silicon based, tracking detector with its innermost layer located only 5 cm away from the ATLAS interaction point. It is designed to provide good hit resolution and low noise, both important qualities for pattern recognition and for finding secondary vertices originating from decays of long-lived particles. The pixel detector has 80 million readout channels and is built up of three barrel layers and six disks, three on each side of the barrel. The detector was installed in the center of ATLAS in June 2007 and is currently being calibrated and commissioned. Details from the installation, commissioning and calibration are presented together with the current status.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Strandberg, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA.
EM sara.strandberg@cern.ch
NR 3
TC 0
Z9 0
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1748-0221
J9 J INSTRUM
JI J. Instrum.
PD MAR
PY 2009
VL 4
AR P03020
DI 10.1088/1748-0221/4/03/P03020
PG 9
WC Instruments & Instrumentation
SC Instruments & Instrumentation
GA 442YU
UT WOS:000265878200020
ER
PT J
AU Farinholt, KM
Pedrazas, NA
Schluneker, DM
Burt, DW
Farrar, CR
AF Farinholt, Kevin M.
Pedrazas, Nicholas A.
Schluneker, David M.
Burt, David W.
Farrar, Charles R.
TI An Energy Harvesting Comparison of Piezoelectric and Ionically
Conductive Polymers
SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES
LA English
DT Article
DE electroactive polymers; energy harvesting; ionic polymers; PVDF
ID LINEAR ELECTROMECHANICAL MODEL; TRANSDUCERS
AB With advances in wireless communications and low power electronics there is an ever increasing need for efficient self-contained power systems. Traditional batteries are often selected for this purpose; however, there are limitations due to finite life-spans and the need to periodically recharge or replace the spent power source. One method to address this issue is the inclusion of an energy harvesting strategy that can scavenge energy from the surrounding environment and convert it into usable electrical energy. Since civil, industrial, and aerospace applications are often plagued with an overabundance of ambient vibrations, electromechanical transducers are often considered a viable choice for energy scavengers. In this study, two classes of transducer are considered: the piezoelectric polymer polyvinylidene fluoride and the ionically conductive ionic polymer transducer. Analytical models are formed for each material assuming axial loading and simulation results are compared with experimental results for each test. Each material is then compared to examine the effectiveness of their mechanoelectric conversion properties.
C1 [Farinholt, Kevin M.; Pedrazas, Nicholas A.; Schluneker, David M.; Burt, David W.; Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA.
RP Farinholt, KM (reprint author), Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA.
EM farinholt@lanl.gov
RI Farrar, Charles/C-6954-2012;
OI Farrar, Charles/0000-0001-6533-6996
FU Engineering Institute at Los Alamos National Laboratory
FX This research was conducted as part of the Los Alamos Dynamic Summer
School, a program sponsored by the Engineering Institute at Los Alamos
National Laboratory.
NR 20
TC 40
Z9 40
U1 3
U2 16
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 1045-389X
J9 J INTEL MAT SYST STR
JI J. Intell. Mater. Syst. Struct.
PD MAR
PY 2009
VL 20
IS 5
BP 633
EP 642
DI 10.1177/1045389X08099604
PG 10
WC Materials Science, Multidisciplinary
SC Materials Science
GA 414MJ
UT WOS:000263867700013
ER
PT J
AU Rabb, DJ
Anderson, BL
Cowan, WD
Spahn, OB
AF Rabb, David J.
Anderson, Betty Lise
Cowan, William D.
Spahn, Olga Blum
TI Spherical Fourier Cell and Application for Optical True Time Delay
SO JOURNAL OF LIGHTWAVE TECHNOLOGY
LA English
DT Article
DE Beam forming; Fourier optics; optical signal processing; optical time
delay; phased array antenna
ID WHITE CELL; DEVICE; DESIGN
AB A new optical configuration for switching light beams called a spherical Fourier cell is explained. Its use for optical true time delay is outlined. An experimental apparatus was constructed for a 6-bit delay system, with 2 bits demonstrated. Delays of 0, 2.1, 4.1, and 6.2 ns were measured. Loss and crosstalk measurements are also given.
C1 [Rabb, David J.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA.
[Anderson, Betty Lise] Ohio State Univ, Columbus, OH 43210 USA.
[Cowan, William D.; Spahn, Olga Blum] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Rabb, DJ (reprint author), USAF, Res Lab, Wright Patterson AFB, OH 45433 USA.
EM david.rabb@wpafb.af.mil; anderson@ece.osu.edu; wdcowan@sandia.gov;
oblum@sandia.gov
NR 8
TC 3
Z9 3
U1 0
U2 2
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI PISCATAWAY
PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA
SN 0733-8724
J9 J LIGHTWAVE TECHNOL
JI J. Lightwave Technol.
PD MAR-APR
PY 2009
VL 27
IS 5-8
BP 879
EP 886
DI 10.1109/JLT.2008.927762
PG 8
WC Engineering, Electrical & Electronic; Optics; Telecommunications
SC Engineering; Optics; Telecommunications
GA 439HH
UT WOS:000265617700046
ER
PT J
AU Chiaramonte, T
Romero, MJ
Fabreguette, F
Cardoso, LP
Sacilotti, M
AF Chiaramonte, Th.
Romero, Manuel J.
Fabreguette, F.
Cardoso, L. P.
Sacilotti, M.
TI Cathodoluminescence and structural studies of nitrided 3D gallium
structures grown by MOCVD
SO JOURNAL OF LUMINESCENCE
LA English
DT Article
DE Cathodoluminescence; MOCVD; Metal-organic; GaN 3D structure
ID THIN-FILMS; GAN
AB Cathodoluminescence (CL) spectrum imaging and grazing incidence X-ray diffraction (GIXRD) are employed to investigate nitride three-dimensional (3D) gallium structures. The metallic precursors are naturally obtained on a large variety of substrates by metal-organic chemical vapor deposition (CVD) with different shape/size controlled by the growth conditions, especially the temperature. These 3D metallic structures are subsequently exposed to a nitridation process in a conventional CVD reactor to form GaN nanocrystals, as confirmed by GIXRD measurements. CL spectroscopy shows visible light emission (2.5-2.8 eV) excited from the GaN in the 3D structures. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Chiaramonte, Th.; Cardoso, L. P.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil.
[Chiaramonte, Th.; Sacilotti, M.] Univ Bourgogne, CNRS, Couches Minces & Nanostruct Grp, FR 2604, F-21078 Dijon, France.
[Romero, Manuel J.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Fabreguette, F.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
RP Chiaramonte, T (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil.
EM thalita@ifi.unicamp.br
RI Cardoso, Lisandro/G-5766-2012; Sacilotti, Marco/E-8621-2014; Inst. of
Physics, Gleb Wataghin/A-9780-2017
OI Cardoso, Lisandro/0000-0003-3910-2293;
FU ANR-Filemon 3-5 France; Conseil Regional de Bourgogne-France; CAPES and
CNPq Brazilian agencies; Department of Energy [DE-AC36-99GO10337]
FX This work was partially supported by the Department of Energy under
Contract DE-AC36-99GO10337.
NR 19
TC 0
Z9 1
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2313
J9 J LUMIN
JI J. Lumines.
PD MAR
PY 2009
VL 129
IS 3
BP 176
EP 180
DI 10.1016/j.jlumin.2008.09.011
PG 5
WC Optics
SC Optics
GA 400QU
UT WOS:000262884400003
ER
PT J
AU Rohwer, LS
Martin, JE
AF Rohwer, L. S.
Martin, J. E.
TI Reply to 'Comment on "Measuring the absolute quantum efficiency of
luminescent materials"
SO JOURNAL OF LUMINESCENCE
LA English
DT Editorial Material
ID OPTICAL-PROPERTIES; NANOCLUSTERS; DYES
C1 [Rohwer, L. S.; Martin, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Rohwer, LS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM leshea@sandia.gov
NR 7
TC 1
Z9 1
U1 1
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2313
J9 J LUMIN
JI J. Lumines.
PD MAR
PY 2009
VL 129
IS 3
BP 331
EP 333
DI 10.1016/j.jlumin.2008.02.016
PG 3
WC Optics
SC Optics
GA 400QU
UT WOS:000262884400033
ER
PT J
AU Bobrovskii, V
Kazantsev, V
Mirmelstein, A
Mushnikov, N
Proskurnina, N
Voronin, V
Pomjakushina, E
Conder, K
Podlesnyak, A
AF Bobrovskii, V.
Kazantsev, V.
Mirmelstein, A.
Mushnikov, N.
Proskurnina, N.
Voronin, V.
Pomjakushina, E.
Conder, K.
Podlesnyak, A.
TI Spontaneous and field-induced magnetic transitions in YBaCo2O5.5
SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
LA English
DT Article
DE Cobaltite; Metamagnetic transition; Pressure effect
ID VISCOSITY; STATE; GD
AB A detailed study of magnetic properties of cobaltite YBaCo2O5.5 has been performed in high ( up to 35 T) magnetic fields and under hydrostatic pressure up to 0.8 GPa. The temperatures of paramagnet-ferromagnet (PM-FM) and ferromagnet-antiferromagnet (FM-AF) phase transitions and their pressure derivatives have been determined. It has been revealed that in the compound with yttrium, in contrast to those with magnetic rare earth atoms, the AF-FM field-induced magnetic phase transition is accompanied by a considerable field hysteresis below 240 K, and the magnetic field of 35 T is not sufficient to complete this transition at low temperatures. The hysteresis value depends on the magnetic field sweep rate, which considered as an evidence of magnetic viscosity that is especially strong in the region of coexistence of the FM and AF phases. High values of susceptibility for the field-induced FM phase show that Co spin state in these compounds changes in strong magnetic field. (c) 2008 Elsevier B. V. All rights reserved.
C1 [Bobrovskii, V.; Kazantsev, V.; Mirmelstein, A.; Mushnikov, N.; Proskurnina, N.; Voronin, V.] Inst Met Phys UB RAS, Ekaterinburg 620041, Russia.
[Pomjakushina, E.; Conder, K.] PSI, Lab Dev & Methods, CH-5232 Villigen, Switzerland.
[Podlesnyak, A.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany.
[Podlesnyak, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Bobrovskii, V (reprint author), Inst Met Phys UB RAS, S Kovalevskaya St 18, Ekaterinburg 620041, Russia.
EM bobrovskii@imp.uran.ru
RI Podlesnyak, Andrey/A-5593-2013; Bobrovskii, Vladimir/J-5901-2013;
Voronin, Vladimir/J-7733-2013; Proskurnina, Natalia/J-8145-2013;
Mushnikov, Nikolay/K-9076-2013
OI Podlesnyak, Andrey/0000-0001-9366-6319; Bobrovskii,
Vladimir/0000-0002-4692-8889; Voronin, Vladimir/0000-0002-3901-9812;
Proskurnina, Natalia/0000-0001-5423-6180; Mushnikov,
Nikolay/0000-0002-6354-2558
FU Swiss National Science Foundation [IB7320-110895]; US Department of
Energy [DE-AC05-00OR22725]
FX This work is supported by the Swiss National Science Foundation through
Grant SCOPES IB7320-110895; by the RAS Priority Program "Quantum
Macrophysics'' (Project no. 3 of the RAS Ural Branch). ORNL/SNS is
managed by UT-Battelle, LLC, for the US Department of Energy under
Contract DE-AC05-00OR22725.
NR 34
TC 5
Z9 6
U1 0
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0304-8853
EI 1873-4766
J9 J MAGN MAGN MATER
JI J. Magn. Magn. Mater.
PD MAR
PY 2009
VL 321
IS 5
BP 429
EP 437
DI 10.1016/j.jmmm.2008.09.030
PG 9
WC Materials Science, Multidisciplinary; Physics, Condensed Matter
SC Materials Science; Physics
GA 376LE
UT WOS:000261184300020
ER
PT J
AU Pharr, GM
Cheng, YT
Hutchings, IM
Sakai, M
Moody, NR
Sundararajan, G
Swain, MV
AF Pharr, George M.
Cheng, Yang-Tse
Hutchings, Ian M.
Sakai, Mototsugu
Moody, Neville R.
Sundararajan, G.
Swain, Michael V.
TI INDENTATION METHODS IN ADVANCED MATERIALS RESEARCH Introduction
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Editorial Material
C1 [Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Pharr, George M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Knoxville, TN 37996 USA.
[Cheng, Yang-Tse] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA.
[Hutchings, Ian M.] Univ Cambridge, Dept English, Cambridge CB2 1RX, England.
[Sakai, Mototsugu] Toyohashi Univ Technol, Dept Mat Sci, Toyohashi, Aichi 4418580, Japan.
[Moody, Neville R.] Sandia Natl Labs, Dept Hydrogen & Met Sci, Livermore, CA 94550 USA.
[Sundararajan, G.] Int Adv Res Ctr Powder Met & New Mat, Hyderabad 500005, Andhra Pradesh, India.
[Swain, Michael V.] Univ Sydney, Fac Dent, Biomat Sci Res Unit, Eveleigh, NSW 1430, Australia.
RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RI Cheng, Yang-Tse/B-5424-2012; Hyderabad, ARCI/F-8552-2013
NR 6
TC 4
Z9 6
U1 1
U2 7
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD MAR
PY 2009
VL 24
IS 3
BP 579
EP 580
DI 10.1557/JMR.2009.0146
PG 2
WC Materials Science, Multidisciplinary
SC Materials Science
GA 460ST
UT WOS:000267208100001
ER
PT J
AU Herbert, EG
Oliver, WC
Lumsdaine, A
Pharr, GM
AF Herbert, E. G.
Oliver, W. C.
Lumsdaine, A.
Pharr, G. M.
TI Measuring the constitutive behavior of viscoelastic solids in the time
and frequency domain using flat punch nanoindentation
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID CREEP COMPLIANCE; INDENTATION; LOAD
AB The purpose of this work is to further develop experimental methodologies using flat punch nanoindentation to measure the constitutive behavior of viscoelastic solids in the frequency and time domain. The reference material used in this investigation is highly plasticized polyvinylchloride (PVC) with a glass transition temperature of - 17 degrees C. The nanoindentation experiments were conducted using a 983-mu m-diameter flat punch. For comparative purposes, the storage and loss modulus obtained by nanoindentation with a 103-mu m-diameter flat Punch and dynamic mechanical analysis are also presented. Over the frequency range of 0.01-50 Hz, the storage and loss modulus measured using nanoindentation and uniaxial compression is shown to be in excellent agreement. The creep compliance function measured using a constant stress test performed in uniaxial compression and flat punch nanoindentation is also shown to correlate well over nearly 4 decades in time. In addition, the creep compliance function predicted from nanoindentation data acquired in the frequency domain is shown to correlate strongly with the creep compliance function measured in the time domain. Time-temperature superposition of nanoindentation data taken at 5, 10, 15, and 22 degrees C shows the sample is not thermorheologically simple. and thus the technique cannot be used to expand the mechanical characterization of this material. Collectively, these results clearly demonstrate the ability of flat punch nanoindentation to accurately and precisely determine the constitutive behavior of viscoelastic solids in the time and frequency domain.
C1 [Herbert, E. G.; Oliver, W. C.; Lumsdaine, A.] Agilent Technol, Nanotechnol Measurements Div, Res & Dev, Oak Ridge, TN 37830 USA.
[Pharr, G. M.] Univ Tennessee, Coll Engn, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Herbert, EG (reprint author), Agilent Technol, Nanotechnol Measurements Div, Res & Dev, Oak Ridge, TN 37830 USA.
EM erik.herbert@agilent.com
NR 18
TC 37
Z9 38
U1 3
U2 39
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD MAR
PY 2009
VL 24
IS 3
BP 626
EP 637
DI 10.1557/JMR.2009.0089
PG 12
WC Materials Science, Multidisciplinary
SC Materials Science
GA 460ST
UT WOS:000267208100007
ER
PT J
AU Pharr, GM
Strader, JH
Oliver, WC
AF Pharr, G. M.
Strader, J. H.
Oliver, W. C.
TI Critical issues in making small-depth mechanical property measurements
by nanoindentation with continuous stiffness measurement
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID CONTACT STIFFNESS; ELASTIC-MODULUS; INSTRUMENTED INDENTATION; FORCE
MODULATION; LOAD; HARDNESS; CURVES; AREA
AB Experiments were performed on a (100) copper single crystal to examine the influences that small displacement oscillations used in continuous stiffness measurement techniques have on hardness and elastic-modulus measurements in nanoindentation experiments. For the commonly used 2-nm oscillation, significant errors were observed in the measured properties, especially the hardness, at penetration depths as large as 100 rim. The errors originate from the large amount of dynamic unloading that occurs in materials like copper that have high contact stiffness resulting from their high modulus-to-hardness ratios. A simple model for the loading and unloading behavior of an elastic-plastic material is presented that quantitatively describes the errors and can be used to partially correct for them. By correcting the data in accordance with model and performing measurements at smaller displacement oscillation amplitudes, the errors can be reduced. The observations have important implications for the interpretation of the indentation size effect.
C1 [Pharr, G. M.; Strader, J. H.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Oliver, W. C.] Agilent Technol, Nanotechnol Measurement Div, Oak Ridge, TN 37830 USA.
RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM pharr@utk.edu
NR 21
TC 72
Z9 74
U1 12
U2 78
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD MAR
PY 2009
VL 24
IS 3
BP 653
EP 666
DI 10.1557/JMR.2009.0096
PG 14
WC Materials Science, Multidisciplinary
SC Materials Science
GA 460ST
UT WOS:000267208100010
ER
PT J
AU Cordill, MJ
Moody, NR
Prasad, SV
Michael, JR
Gerberich, WW
AF Cordill, M. J.
Moody, N. R.
Prasad, S. V.
Michael, J. R.
Gerberich, W. W.
TI Characterization of the mechanical behavior of wear surfaces on single
crystal nickel by nanomechanical techniques
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID LIGA NICKEL; INDENTATION; HARDNESS; NANOINDENTATION; DEFORMATION;
CONTACT; STRAINS; BEAM
AB In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, < 001 > and < 001 >. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns.
C1 [Cordill, M. J.] Austrian Acad Sci, Erich Schmid Inst, A-8700 Leoben, Austria.
[Cordill, M. J.; Gerberich, W. W.] Univ Minnesota, Minneapolis, MN 55455 USA.
[Moody, N. R.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Prasad, S. V.; Michael, J. R.] Sandia Natl Labs, Albuquerque, NM USA.
RP Cordill, MJ (reprint author), Austrian Acad Sci, Erich Schmid Inst, A-8700 Leoben, Austria.
EM megan.cordill@oeaw.ac.at
OI Cordill, Megan/0000-0003-1142-8312
NR 28
TC 2
Z9 2
U1 3
U2 10
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD MAR
PY 2009
VL 24
IS 3
BP 844
EP 852
DI 10.1557/JMR.2009.0075
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA 460ST
UT WOS:000267208100027
ER
PT J
AU Lin, WC
Otim, KJ
Lenhart, JL
Cole, PJ
Shull, KR
AF Lin, Wei-Chun
Otim, Kathryn J.
Lenhart, Joseph L.
Cole, Phillip J.
Shull, Kenneth R.
TI Indentation fracture of silicone gels
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID TRIBLOCK COPOLYMER GELS; SOFT SOLIDS; POLY(DIMETHYLSILOXANE) NETWORKS;
DEEP PENETRATION; MECHANICS; COMPRESSION; ELASTOMERS; BEHAVIOR; CONTACT;
MODULUS
AB Indentation tests were performed, using a flat punch probe, oil silicone gels to induce failure under compression. The silicone gels were formed from networks of vinyl-terminated polydimethylsiloxane (PDMS) with molecular weights of 800 and 28,000 g/mol and a sol fraction of trimethylsiloxy-terminated PDMS with molecular weights ranging from 1250 to 139,000 g/mol. Cone cracks were observed in samples that fractured from defects at the sample surface, but failure more commonly originated from the corners of the indenter. Ring cracks were observed for the most highly compliant samples that fractured at indentation depths approaching the overall thickness of the sample. In these cases we generally observed a delayed fracture response, with a time delay that increased with increasing sol fraction and decreased with increasing indentation load.
C1 [Lin, Wei-Chun; Otim, Kathryn J.; Shull, Kenneth R.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Lenhart, Joseph L.; Cole, Phillip J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Shull, KR (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM k-shull@northwestern.edu
RI Shull, Kenneth/B-7536-2009; Lin, Wei-Chung/B-7248-2009
NR 28
TC 2
Z9 2
U1 1
U2 17
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD MAR
PY 2009
VL 24
IS 3
BP 957
EP 965
DI 10.1557/JMR.2009.0128
PG 9
WC Materials Science, Multidisciplinary
SC Materials Science
GA 460ST
UT WOS:000267208100039
ER
PT J
AU Jakes, JE
Frihart, CR
Beecher, JF
Moon, RJ
Resto, PJ
Melgarejo, ZH
Suarez, OM
Baumgart, H
Elmustafa, AA
Stone, DS
AF Jakes, J. E.
Frihart, C. R.
Beecher, J. F.
Moon, R. J.
Resto, P. J.
Melgarejo, Z. H.
Suarez, O. M.
Baumgart, H.
Elmustafa, A. A.
Stone, D. S.
TI Nanoindentation near the edge
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID ELASTIC QUARTER SPACE; INDENTATION EXPERIMENTS; LAYERED SPECIMEN;
HARDNESS; MODULUS; COMPOSITES; INDENTER; LOAD
AB Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as functions of position. Previously, we showed that the artifacts can be understood in terms of a structural compliance, C(s), which is independent of the size of the indent. In the present work, the utility of the SYS (Stone, Yoder, Sproul) correlation is demonstrated in its ability to remove the artifacts caused by C(s). We investigate properties: (i) near the surface of an extruded polymethyl methacrylate rod tested in cross section, (ii) of compound corner middle lamellae of loblolly pine (Pinus taeda) surrounded by relatively stiff wood cell walls, (iii) of wood cell walls embedded in a polypropylene matrix with some poorly bonded wood-matrix interfaces, (iv) of AlB(2) particles embedded in an aluminum matrix, and (v) of silicon-on-insulator thin film on substrate near the free edge of the specimen.
C1 [Jakes, J. E.; Resto, P. J.; Melgarejo, Z. H.; Stone, D. S.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA.
[Jakes, J. E.; Frihart, C. R.; Beecher, J. F.; Moon, R. J.] US Forest Serv, Forest Prod Lab, Madison, WI 53726 USA.
[Suarez, O. M.] Univ Puerto Rico, Dept Mat Sci & Engn, Mayaguez, PR 00681 USA.
[Baumgart, H.; Elmustafa, A. A.] Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA.
[Baumgart, H.; Elmustafa, A. A.] Old Dominion Univ, Dept Elect Engn, Norfolk, VA 23529 USA.
[Stone, D. S.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA.
RP Stone, DS (reprint author), Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA.
EM dsstone@wisc.edu
RI Stone, Donald/A-7496-2016;
OI Suarez, Oscar/0000-0002-3797-4787
NR 34
TC 42
Z9 42
U1 1
U2 27
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD MAR
PY 2009
VL 24
IS 3
BP 1016
EP 1031
DI 10.1557/JMR.2009.0076
PG 16
WC Materials Science, Multidisciplinary
SC Materials Science
GA 460ST
UT WOS:000267208100047
ER
PT J
AU Bhattacharyya, D
Mara, NA
Dickerson, P
Hoagland, RG
Misra, A
AF Bhattacharyya, D.
Mara, N. A.
Dickerson, P.
Hoagland, R. G.
Misra, A.
TI Transmission electron microscopy study of the deformation behavior of
Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation
SO JOURNAL OF MATERIALS RESEARCH
LA English
DT Article
ID MECHANICAL-PROPERTIES; METALLIC MULTILAYERS; THIN-FILMS; COMPOSITES;
DISLOCATION; CU; MICROSTRUCTURE; STRENGTH; HARDNESS; AG
AB Nanoscale metallic multilayers, comprising two sets of materials-Cu/Nb and Cu/Ni-were deposited in two different layer thicknesses-nominally 20 and 5 nm. These multilayer samples were indented, and the microstructural changes under the indent tips were studied by extracting samples from underneath the indents using the focused ion beam (FIB) technique and by examining them under a transmission electron microscope (TEM). The deformation behavior underneath the indents, manifested in the bending of layers, reduction in layer thickness, shear band formation, dislocation crossing of interfaces, and orientation change of grains, has been characterized and interpreted in terms of the known deformation mechanisms of nanoscale multilayers.
C1 [Bhattacharyya, D.; Mara, N. A.; Dickerson, P.; Hoagland, R. G.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Bhattacharyya, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM dhriti@lanl.gov
RI Hoagland, Richard/G-9821-2012; Misra, Amit/H-1087-2012; Mara,
Nathan/J-4509-2014;
OI Mara, Nathan/0000-0002-9135-4693
NR 30
TC 29
Z9 29
U1 2
U2 39
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0884-2914
J9 J MATER RES
JI J. Mater. Res.
PD MAR
PY 2009
VL 24
IS 3
BP 1291
EP 1302
DI 10.1557/JMR.2009.0147
PG 12
WC Materials Science, Multidisciplinary
SC Materials Science
GA 460ST
UT WOS:000267208100075
ER
PT J
AU Chandrasekar, R
Zhang, LF
Howe, JY
Hedin, NE
Zhang, Y
Fong, H
AF Chandrasekar, Ramya
Zhang, Lifeng
Howe, Jane Y.
Hedin, Nyle E.
Zhang, Yan
Fong, Hao
TI Fabrication and characterization of electrospun titania nanofibers
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID POLYMER-SOLUTIONS; TIO2 NANOFIBERS; SOLAR-CELLS; FIBERS; EFFICIENCIES;
MORPHOLOGY
AB Titania (TiO(2)) nanofibers were fabricated by electrospinning three representative spin dopes made of titanium (IV) n-butoxide (TNBT) and polyvinylpyrrolidone (PVP) with the TNBT/PVP mass ratio being 1/2 in three solvent systems including N,N-dimethylformamide (DMF), isopropanol, and DMF/isopropanol (1/1 mass ratio) mixture, followed by pyrolysis at 500 A degrees C. The detailed morphological and structural properties of both the as-electrospun precursor nanofibers and the resulting final TiO(2) nanofibers were characterized by SEM, TEM, and XRD. The results indicated that the precursor nanofibers and the final TiO(2) nanofibers made from the spin dopes containing DMF alone or DMF/isopropanol mixture as the solvent had the common cylindrical morphology with diameters ranging from tens to hundreds of nanometers, while those made from the spin dope containing isopropanol alone as the solvent had an abnormal concave morphology with sizes/widths ranging from sub-microns to microns. Despite the morphological discrepancies, all precursor nanofibers were structurally amorphous without distinguishable phase separation, while all final TiO(2) nanofibers consisted of anatase-phased TiO(2) single-crystalline grains with sizes of approximately 10 nm. The electrospun TiO(2) nanofiber mat is expected to significantly outperform other forms (such as powder and film) of TiO(2) for the solar cell (particularly dye-sensitized solar cell) and photo-catalysis applications.
C1 [Chandrasekar, Ramya; Zhang, Lifeng; Hedin, Nyle E.; Fong, Hao] S Dakota Sch Mines & Technol, Dept Chem, Rapid City, SD 57701 USA.
Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
Anhui Univ, Sch Phys & Mat Sci, Hefei 230039, Anhui, Peoples R China.
RP Fong, H (reprint author), S Dakota Sch Mines & Technol, Dept Chem, Rapid City, SD 57701 USA.
EM zhangyaner2005@163.com; hao.fong@sdsmt.edu
RI Howe, Jane/G-2890-2011
FU U.S. Air Force Research Laboratory (AFRL) [FA9453-06-C-0366]; U.S.
Department of Energy, the Assistant Secretary for Energy Efficiency &
Renewable Energy, Office of FreedomCAR and Vehicle Technologies, though
the High Temperature Materials Laboratory (HTML) at the Oak Ridge
National Laboratory (ORNL)
FX This research was supported by the U.S. Air Force Research Laboratory
(AFRL) under the Cooperative Agreement Number (CAN) of FA9453-06-C-0366.
TEM study was sponsored by the U.S. Department of Energy, the Assistant
Secretary for Energy Efficiency & Renewable Energy, Office of FreedomCAR
and Vehicle Technologies, though the High Temperature Materials
Laboratory (HTML) at the Oak Ridge National Laboratory (ORNL).
NR 26
TC 51
Z9 53
U1 7
U2 72
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD MAR
PY 2009
VL 44
IS 5
BP 1198
EP 1205
DI 10.1007/s10853-008-3201-1
PG 8
WC Materials Science, Multidisciplinary
SC Materials Science
GA 407QN
UT WOS:000263379500007
ER
PT J
AU Kane, SR
Letant, SE
Alfaro, TM
Krauter, PW
Mahnke, R
Legler, TC
Raber, E
AF Kane, S. R.
Letant, S. E.
Alfaro, T. M.
Krauter, P. W.
Mahnke, R.
Legler, T. C.
Raber, E.
TI Rapid, high-throughput, culture-based PCR methods to analyze samples for
viable spores of Bacillus anthracis and its surrogates
SO JOURNAL OF MICROBIOLOGICAL METHODS
LA English
DT Article
DE Rapid viability PCR; Bacillus anthracis; Bacillus atrophaeus; High
throughput viability; Decontamination
ID BIOLOGICAL WARFARE AGENTS; PROBABLE-NUMBER-PCR; SERIAL DILUTION; CLEAN
ENOUGH; SEQUENCE; SURFACE; SECTOR; ASSAY
AB To rapidly remediate facilities after a biothreat agent release, improved turnaround times are needed for sample analysis. Current methods to confirm the presence of a viable biothreat agent are limited by low sample throughput. We have developed a rapid-viability-polymerase chain reaction (RV-PCR) method to determine the presence of viable spores. The method combines high-throughput sample processing with 96-well PCR analysis, which measures a change in real-time, quantitative PCR response arising from increased target-cell populations during culturing. The method accurately detects 1 to 10 live spores in a high-dead spore background (10(6)). Field tests using approximately 1000 biological indicators, each containing 106 spores of the B. anthracis surrogate, Bacillus atrophaeus, exposed to seven lethal and sub-lethal chlorine dioxide levels showed no significant difference (p>0.05) between RV-PCR and standard culturing methods for detecting the percent survival of spores. RV-PCR results were obtained in <17 h compared to 7 days for the standard culturing method. High-throughput sample processing and RV-PCR protocols were also developed and tested for synthetic wipe samples containing reference dirt material. RV-PCR protocols allowed processing and accurate analysis of similar to 100 dirty wipe samples (2 '' x 2 '' synthetic) containing similar to 10 viable B. atrophaeus spores in <24 h. Quantitative RV-PCR protocols based on a Most-Probable-Number (MPN) statistical approach developed for B. anthracis Sterne resulted in more rapid turnaround times than those for traditional culturing and no significant difference in log colony-forming units compared to traditional viability analysis. Integration of RV-PCR assays with high-throughput protocols will allow the processing of 200 wipe samples per day per robot using commercially available automation. Published by Elsevier B.V.
C1 [Kane, S. R.; Letant, S. E.; Alfaro, T. M.; Krauter, P. W.; Mahnke, R.; Legler, T. C.; Raber, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Kane, SR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM kane11@llnl.gov
FU U.S. Department of Energy [AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Funding for this research was provided by the
Department of Homeland Security and the Defense Threat Reduction Agency.
The authors specially thank Joe Dalmasso, Apex Laboratories, for helpful
discussions about protocol development and for production of highly pure
spore preparations. The authors are also grateful to Dave Skodack,
Darrell Dechant, Kevin Wade, Bob Summerville, and Buddy Britton at Sabre
Technologies, Inc. and Paris Althouse (LLNL) for technical assistance
with the chlorine dioxide fumigation study. Finally, the authors thank
Bob Kirvel for technical editing.
NR 18
TC 12
Z9 12
U1 2
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-7012
J9 J MICROBIOL METH
JI J. Microbiol. Methods
PD MAR
PY 2009
VL 76
IS 3
BP 278
EP 284
DI 10.1016/j.mimet.2008.12.005
PG 7
WC Biochemical Research Methods; Microbiology
SC Biochemistry & Molecular Biology; Microbiology
GA 421VJ
UT WOS:000264386100009
PM 19141303
ER
PT J
AU Yang, C
Jiang, W
Chen, DH
Adiga, U
Ng, EG
Chiu, W
AF Yang, C.
Jiang, W.
Chen, D. -H.
Adiga, U.
Ng, E. G.
Chiu, W.
TI Estimating contrast transfer function and associated parameters by
constrained non-linear optimization
SO JOURNAL OF MICROSCOPY
LA English
DT Article
DE Contrast transfer function; cryo-electron microscopy; parameter
estimation
ID SINGLE-PARTICLE RECONSTRUCTION; ELECTRON CRYOMICROSCOPY; CRYOELECTRON
MICROGRAPHS; POWER SPECTRA; PROTEIN FOLD; IMAGES; MICROSCOPY;
RESOLUTION; ALGORITHM; GROEL
AB The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.
C1 [Yang, C.; Adiga, U.; Ng, E. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
[Jiang, W.] Purdue Univ, Dept Biol Sci, Markey Ctr Struct Biol, W Lafayette, IN 47907 USA.
[Chen, D. -H.; Chiu, W.] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Natl Ctr Macromol Imaging, Houston, TX 77030 USA.
RP Yang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
EM CYang@lbl.gov; jiang12@purdue.edu
FU NIH [P01GM064692, P41RR02250, R01GM070557]
FX This research has been supported by NIH grants (P01GM064692, P41RR02250
and R01GM070557). We thank Dr. Robert M. Glaeser at University of
California, Berkeley for helpful discussions.
NR 41
TC 20
Z9 20
U1 0
U2 3
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0022-2720
EI 1365-2818
J9 J MICROSC-OXFORD
JI J. Microsc..
PD MAR
PY 2009
VL 233
IS 3
BP 391
EP 403
DI 10.1111/j.1365-2818.2009.03137.x
PG 13
WC Microscopy
SC Microscopy
GA 412XR
UT WOS:000263758000005
PM 19250460
ER
PT J
AU Craig, NC
Moore, MC
Neese, CF
Oertel, DC
Pedraza, L
Masiello, T
AF Craig, Norman C.
Moore, Michael C.
Neese, Chistopher F.
Oertel, David C.
Pedraza, Laura
Masiello, Tony
TI High-resolution infrared spectra of the two nonpolar isomers of
1,4-difluorobutadiene
SO JOURNAL OF MOLECULAR SPECTROSCOPY
LA English
DT Article
DE 1,4-Difluorobutadiene isomers; High-resolution; Infrared; Rotational
analysis; Rotational constants
ID EQUILIBRIUM STRUCTURES; CIS; SPECTROSCOPY
AB High-resolution (0.0013 cm(-1)) infrared spectra have been recorded for trans, trans-1,4-difluorobutadiene (ttDFBD) and cis,cis-1,4-difluorobutadiene (ccDFBD). The rotational structure in two C-type bands (v(10) and nu(12)) and one A-type band (nu(22)) for ttDFBD and in two C-type bands (nu(11) and nu(12)) for ccDFBD has been analyzed. Ground state and upper state rotational constants, except for nu(10) of ttDFBD, have been fitted. Band centers are 934.1 cm(-1) (nu(10)), 227.985 cm(-1) (nu(12)), and 1087.919 cm(-1) (nu(22)) for ttDFBD. Band centers are 762.891 cm(-1) (nu(11)) and 327.497 cm(-1) (nu(12)) for ccDFBD. The small inertial defects in the ground state confirm that both isomers are planar. Obtaining the ground state rotational constants for the two isomers of DFBD is a first step toward determining their semi-experimental equilibrium structures. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Craig, Norman C.; Moore, Michael C.; Neese, Chistopher F.; Oertel, David C.; Pedraza, Laura] Oberlin Coll, Dept Chem & Biochem, Oberlin, OH 44074 USA.
[Masiello, Tony] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA.
RP Craig, NC (reprint author), Oberlin Coll, Dept Chem & Biochem, 119 Woodland St, Oberlin, OH 44074 USA.
EM norm.craig@oberlin.edu
RI Neese, Christopher/B-5550-2013
OI Neese, Christopher/0000-0002-6014-5004
FU NSF [CHE-9710375]; Dreyfus Senior Scholar Mentor; National Science
Foundation [0420717]; United States Department of Energy, Office of
Basic Energy Sciences, Chemical Sciences Division; Department of
Energy's Office of Biological and Environmental Research located at the
Pacific Northwest National Laboratory; Pacific Northwest National
Laboratory is operated for the United States Department of Energy by
Battelle [DE-AC05-76RLO 1830]
FX We are grateful to Dr. Michael Lock, who recorded the initial
high-resolution spectra of ttDFBD and ccDFBD at Justus Liebig
Universitat in Giessen, Germany. Deacon J. Nemchick assisted in the
analysis of the bands for ttDFBD. The initial part of the investigation
of the ttDFBD isomer was supported by NSF CHE-9710375. Most of the work
was done under a Dreyfus Senior Scholar Mentor grant. National Science
Foundation Grant 0420717 underwrote the purchase and technical support
for the Beowulf computer cluster at Oberlin College. This research was
also supported, in part, by the United States Department of Energy,
Office of Basic Energy Sciences, Chemical Sciences Division. The
high-resolution spectroscopy was performed at the W.R. Wiley
Environmental Molecular Science Laboratory, a national scientific user
facility sponsored by the Department of Energy's Office of Biological
and Environmental Research located at the Pacific Northwest National
Laboratory. Pacific Northwest National Laboratory is operated for the
United States Department of Energy by Battelle under contract
DE-AC05-76RLO 1830.
NR 14
TC 3
Z9 3
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2852
J9 J MOL SPECTROSC
JI J. Mol. Spectrosc.
PD MAR
PY 2009
VL 254
IS 1
BP 39
EP 46
DI 10.1016/j.jms.2009.01.003
PG 8
WC Physics, Atomic, Molecular & Chemical; Spectroscopy
SC Physics; Spectroscopy
GA 422BA
UT WOS:000264400800007
ER
PT J
AU Brunger, AT
Weninger, K
Vrljic, M
Choi, UB
Bowen, MA
Chu, S
AF Brunger, A. T.
Weninger, K.
Vrljic, M.
Choi, U. B.
Bowen, M. A.
Chu, S.
TI SINGLE MOLECULE STUDIES OF THE SYNAPTIC VESICLE FUSION MACHINERY
SO JOURNAL OF NEUROCHEMISTRY
LA English
DT Meeting Abstract
CT 40th Annual Meeting of the American-Society-for-Neurochemistry
CY MAR 07-11, 2009
CL Charleston, SC
SP Amer Soc Neurochem
C1 [Brunger, A. T.; Vrljic, M.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA.
[Chu, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Weninger, K.; Choi, U. B.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Bowen, M. A.] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA.
NR 0
TC 0
Z9 0
U1 0
U2 1
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0022-3042
J9 J NEUROCHEM
JI J. Neurochem.
PD MAR
PY 2009
VL 108
BP 55
EP 55
PG 1
WC Biochemistry & Molecular Biology; Neurosciences
SC Biochemistry & Molecular Biology; Neurosciences & Neurology
GA 407AU
UT WOS:000263336800116
ER
PT J
AU Duong, TTH
Witting, PK
Antao, ST
Parry, SN
Kennerson, M
Lai, B
Vogt, S
Lay, PA
Harris, HH
AF Duong, Thi Thuy Hong
Witting, Paul Kenneth
Antao, Shane Tony
Parry, Sarah Nicole
Kennerson, Marina
Lai, Barry
Vogt, Stefan
Lay, Peter Andrew
Harris, Hugh Hamlyn
TI Multiple protective activities of neuroglobin in cultured neuronal cells
exposed to hypoxia re-oxygenation injury
SO JOURNAL OF NEUROCHEMISTRY
LA English
DT Article
DE antioxidant; apoptosis; neuroglobin; neuro-protection; oxidative stress;
synchrotron radiation; X-ray fluorescence imaging
ID NUCLEOTIDE DISSOCIATION INHIBITOR; HUMAN NEUROBLASTOMA-CELLS; OXIDATIVE
STRESS; GLUCOSE-DEPRIVATION; CEREBRAL-ISCHEMIA; SH-SY5Y CELLS;
MOUSE-BRAIN; IN-VIVO; NEUROPROTECTION; OXYGEN
AB Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca(2+), and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a similar to 4 to 5-fold increase in cell death (maximum similar to 25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of beta-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca(2+) contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the beta-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca(2+) influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis.
C1 [Harris, Hugh Hamlyn] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
[Lai, Barry; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Lay, Peter Andrew] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia.
[Kennerson, Marina] Concord Hosp, ANZAC Res Inst, Northcott Neurosci Lab, Concord, NSW, Australia.
[Duong, Thi Thuy Hong; Witting, Paul Kenneth; Antao, Shane Tony; Parry, Sarah Nicole] Concord Hosp, ANZAC Res Inst, Vasc Biol Grp, Concord, NSW, Australia.
RP Harris, HH (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia.
EM hugh.harris@adelaide.edu.au
RI Harris, Hugh/A-4983-2008; Kennerson, Marina/B-5058-2014; Lay,
Peter/B-4698-2014; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013;
OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Lay,
Peter/0000-0002-3232-2720; Harris, Hugh/0000-0002-3472-8628
FU Commonwealth of Australia; US Department of Energy, Office of Science
[W-31-109-Eng-38]; ARC Research Fellowship [DP034325]; National Heart
Foundation [G 07S30435]; ARC Discovery [DP0664706]; ARC Professorial
Fellowship [DP0208409]
FX We thank Dr Anne Rich and Ms Sandra Wang for their excellent technical
assistance with XRF data collection and production of the human Nb
construct, respectively. This research was supported by the Australian
Synchrotron Research Program, which is funded by the Commonwealth of
Australia under the Major National Research Facilities Program. The use
of the Advanced Photon Source was supported by the US Department of
Energy, Office of Science, under contract no. W-31-109-Eng-38. The
research was also supported by an ARC Research Fellowship (DP034325) and
National Heart Foundation grant (G 07S30435) to PKW; and an ARC
Discovery Grant DP0664706 to PAL and HHH and an ARC Professorial
Fellowship DP0208409 to PAL.
NR 56
TC 44
Z9 45
U1 1
U2 12
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0022-3042
J9 J NEUROCHEM
JI J. Neurochem.
PD MAR
PY 2009
VL 108
IS 5
BP 1143
EP 1154
DI 10.1111/j.1471-4159.2008.05846.x
PG 12
WC Biochemistry & Molecular Biology; Neurosciences
SC Biochemistry & Molecular Biology; Neurosciences & Neurology
GA 402WW
UT WOS:000263044800005
PM 19154338
ER
PT J
AU Wang, SY
Wang, CZ
Zheng, CX
Ho, KM
AF Wang, Songyou
Wang, C. Z.
Zheng, C. X.
Ho, K. M.
TI Structure and dynamics of liquid Al1-xSix alloys by ab initio molecular
dynamics simulations
SO JOURNAL OF NON-CRYSTALLINE SOLIDS
LA English
DT Article
DE Liquid alloys and liquid metals; Ab initio; Molecular dynamics;
Short-range order
ID TOTAL-ENERGY CALCULATIONS; COOLING RATE DEPENDENCE; WAVE BASIS-SET;
METALS; SOLIDIFICATION; ALUMINUM; GLASS; MELT
AB First-principles molecular dynamics (MD) simulations are performed to study the structure and dynamics of liquid Al1-xSix (x = 0.0, 0,12, 0.2, 0.4, 0.6. 0.8) at the temperature of 1573 K. The composition dependence of static structure factors, pair correlation functions, and diffusion constants are investigated. We found that the structure of the liquid Al1-xSix alloys is strongly dependent on the composition. From our simulation and analysis, we can see that although liquid Al1-xSix is metallic, there are some degrees of covalent tetrahedral short-range order in the liquid. The degree of tetrahedral short-range order increases linearly as the Si concentration in the liquid increased. The diffusion coefficients of both Al and Si atoms in liquid Al1-xSix alloys at 1573 K are not very sensitive to the composition. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Wang, Songyou] Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China.
[Wang, Songyou; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
[Wang, Songyou; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Zheng, C. X.] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China.
RP Wang, SY (reprint author), Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Handan Rd 220, Shanghai 200433, Peoples R China.
EM sywang@fudan.ac.cn
RI Wang, Songyou/H-4529-2011
OI Wang, Songyou/0000-0002-4249-3427
FU Director for Energy Research, Office of Basic Energy Sciences; NSF of
China [60578046]; Fudan High-End Computing Center
FX Ames Laboratory is operated for the U.S. Department of Energy by Iowa
State University under Contract No.DE-AC02-07CH11358. This work was
supported by the Director for Energy Research, Office of Basic Energy
Sciences. One of the authors (S.Y.W.) was supported by the NSF of China
(Grant No. 60578046), and the Fudan High-End Computing Center.
NR 31
TC 12
Z9 12
U1 1
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3093
J9 J NON-CRYST SOLIDS
JI J. Non-Cryst. Solids
PD MAR 1
PY 2009
VL 355
IS 6
BP 340
EP 347
DI 10.1016/j.jnoncrysol.2009.01.007
PG 8
WC Materials Science, Ceramics; Materials Science, Multidisciplinary
SC Materials Science
GA 424VC
UT WOS:000264595400002
ER
PT J
AU Bolch, WE
Eckerman, KF
Sgouros, G
Thomas, SR
AF Bolch, Wesley E.
Eckerman, Keith F.
Sgouros, George
Thomas, Stephen R.
TI MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical
Dosimetry-Standardization of Nomenclature
SO JOURNAL OF NUCLEAR MEDICINE
LA English
DT Article
DE MIRD schema; ICRP schema; absorbed dose; equivalent dose; effective dose
ID DOSE-RATE; RADIO-IMMUNOTHERAPY; RADIOIMMUNOTHERAPY; RADIONUCLIDES;
RADIOTHERAPY; EQUIVALENT; THERAPY; TOXICITY; EMITTERS; ALPHA
AB The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.
C1 [Bolch, Wesley E.] Univ Florida, Dept Nucl & Radiol Engn, MIRD Comm, Gainesville, FL 32611 USA.
[Eckerman, Keith F.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Sgouros, George] Johns Hopkins Med Inst, Dept Radiol, Baltimore, MD 21205 USA.
[Thomas, Stephen R.] Univ Cincinnati, Dept Radiol, Cincinnati, OH USA.
RP Bolch, WE (reprint author), Univ Florida, Dept Nucl & Radiol Engn, MIRD Comm, 202 Nucl Sci Ctr, Gainesville, FL 32611 USA.
EM wbotch@ufl.edu
NR 46
TC 166
Z9 169
U1 2
U2 13
PU SOC NUCLEAR MEDICINE INC
PI RESTON
PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA
SN 0161-5505
J9 J NUCL MED
JI J. Nucl. Med.
PD MAR
PY 2009
VL 50
IS 3
BP 477
EP 484
DI 10.2967/jnumed.108.056036
PG 8
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA 417OB
UT WOS:000264084500028
PM 19258258
ER
PT J
AU Sgouros, G
Howell, RW
Bolch, WE
Fisher, DR
AF Sgouros, George
Howell, Roger W.
Bolch, Wesley E.
Fisher, Darrell R.
TI MIRD Commentary: Proposed Name for a Dosimetry Unit Applicable to
Deterministic Biological Effects-The Barendsen (Bd)
SO JOURNAL OF NUCLEAR MEDICINE
LA English
DT Article
DE MIRD; barendsen (Bd); dosimetry
ID DIFFERENT IONIZING RADIATIONS; DOUBLE-STRAND BREAKS; 15 MEV NEUTRONS; KV
X-RAYS; HUMAN CELLS; TISSUE CULTURE; MAMMALIAN-CELLS; ALPHA-PARTICLES;
EXPERIMENTAL RADIOTHERAPY; PROLIFERATIVE CAPACITY
AB The fundamental physical quantity for relating all biologic effects to radiation exposure is the absorbed dose, the energy imparted per unit mass of tissue. Absorbed dose is expressed in units of joules per kilogram (J/kg) and is given the special name gray (Gy). Exposure to ionizing radiation may cause both deterministic and stochastic biologic effects. To account for the relative effect per unit absorbed dose that has been observed for different types of radiation, the International Commission on Radiological Protection (ICRP) has established radiation weighting factors for stochastic effects. The product of absorbed dose in Gy and the radiation weighting factor is defined as the equivalent dose. Equivalent dose values are designated by a special named unit, the sievert (Sv). Unlike the situation for stochastic effects, no well-defined formalism and associated special named quantities have been widely adopted for deterministic effects. The therapeutic application of radionuclides and, specifically, alpha-particle emitters in nuclear medicine has brought to the forefront the need for a well-defined dosimetry formalism applicable to deterministic effects that is accompanied by corresponding special named quantities. This commentary reviews recent proposals related to this issue and concludes with a recommendation to establish a new named quantity.
C1 [Sgouros, George] Johns Hopkins Univ, Sch Med, Dept Radiol & Radiol Sci, Baltimore, MD 21231 USA.
[Howell, Roger W.] Univ Med & Dent New Jersey, New Jersey Med Sch, Canc Res Ctr, Dept Radiol, Newark, NJ 07103 USA.
[Bolch, Wesley E.] Univ Florida, Dept Nucl & Radiol Engn, Gainesville, FL USA.
[Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Sgouros, G (reprint author), Johns Hopkins Univ, Sch Med, Dept Radiol & Radiol Sci, CRB 2 4M61,1550 Orleans St, Baltimore, MD 21231 USA.
EM gsgouros@jhml.edu
NR 45
TC 15
Z9 15
U1 1
U2 2
PU SOC NUCLEAR MEDICINE INC
PI RESTON
PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA
SN 0161-5505
J9 J NUCL MED
JI J. Nucl. Med.
PD MAR
PY 2009
VL 50
IS 3
BP 485
EP 487
DI 10.2967/jnumed.108.057398
PG 3
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA 417OB
UT WOS:000264084500029
PM 19258259
ER
PT J
AU Ramseier, CA
Kinney, JS
Herr, AE
Braun, T
Sugai, JV
Shelburne, CA
Rayburn, LA
Tran, HM
Singh, AK
Giannobile, WV
AF Ramseier, Christoph A.
Kinney, Janet S.
Herr, Amy E.
Braun, Thomas
Sugai, James V.
Shelburne, Charlie A.
Rayburn, Lindsay A.
Tran, Huu M.
Singh, Anup K.
Giannobile, William V.
TI Identification of Pathogen and Host-Response Markers Correlated With
Periodontal Disease
SO JOURNAL OF PERIODONTOLOGY
LA English
DT Article
DE Diagnosis; periodontal disease; saliva
ID GINGIVAL CREVICULAR FLUID; OF-CARE DIAGNOSTICS; CROSS-LINKS ICTP;
SUBGINGIVAL PLAQUE; SALIVARY DIAGNOSTICS; ADULT PERIODONTITIS; HEALTH;
TECHNOLOGIES; BIOMARKERS; INFECTION
AB Background: Periodontitis is the major cause of tooth loss in adults and is linked to systemic illnesses, such as cardiovascular disease and stroke. The development of rapid point-of-care (POC) chairside diagnostics has the potential for the early detection of periodontal infection and progression to identify incipient disease and reduce health care costs. However, validation of effective diagnostics requires the identification and verification of biomarkers correlated with disease progression. This clinical study sought to determine the ability of putative host- and microbially derived biomarkers to identify periodontal disease status from whole saliva and plaque biofilm.
Methods: One hundred human subjects were equally recruited into a healthy/gingivitis group or a periodontitis population. Whole saliva was collected from all subjects and analyzed using antibody arrays to measure the levels of multiple proinflammatory cytokines and bone resorptive/turnover markers.
Results: Salivary biomarker data were correlated to comprehensive clinical, radiographic, and microbial plaque biofilm levels measured by quantitative polymerase chain reaction (qPCR) for the generation of models for periodontal disease identification. Significantly elevated levels of matrix metalloproteinase (MMP)-8 and -9 were found in subjects with advanced periodontitis with Random Forest importance scores of 7.1 and 5.1, respectively. The generation of receiver operating characteristic curves demonstrated that permutations of salivary biomarkers and pathogen biofilm values augmented the prediction of disease category. Multiple combinations of salivary biomarkers (especially MMP-8 and -9 and osteoprotegerin) combinedwith red-complex anaerobic periodontal pathogens (such as Porphyromonas gingivalis or Treponema denticola) provided highly accurate predictions of periodontal disease category. Elevated salivary MMP-8 and T denticola biofilm levels displayed robust combinatorial characteristics in predicting periodontal disease severity (area under the curve 0.88; odds ratio = 24.6; 95% confidence interval: 5.2 to 116.5).
Conclusions: Using qPCR and sensitive immunoassays, we identified host- and bacterially derived biomarkers correlated with periodontal disease. This approach offers significant potential for the discovery of biomarker signatures useful in the development of rapid POC chairside diagnostics for oral and systemic diseases. Studies are ongoing to apply this approach to the longitudinal predictions of disease activity. J Periodontol 2009;80:436-446.
C1 [Ramseier, Christoph A.; Kinney, Janet S.; Braun, Thomas; Sugai, James V.; Rayburn, Lindsay A.; Giannobile, William V.] Univ Michigan, Sch Dent, Michigan Ctr Oral Hlth Res, Dept Periodont & Oral Med, Ann Arbor, MI 48106 USA.
[Herr, Amy E.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
[Braun, Thomas] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48106 USA.
[Shelburne, Charlie A.] Univ Michigan, Sch Dent, Dept Biol & Mat Sci, Ann Arbor, MI 48106 USA.
[Tran, Huu M.; Singh, Anup K.] Sandia Natl Labs, Biosyst Res Dept, Livermore, CA USA.
[Giannobile, William V.] Univ Michigan, Coll Engn, Dept Biomed Engn, Ann Arbor, MI 48106 USA.
RP Giannobile, WV (reprint author), Univ Michigan, Sch Dent, Michigan Ctr Oral Hlth Res, Dept Periodont & Oral Med, 24 Frank Lloyd Wright Dr,Lobby M,Box 422, Ann Arbor, MI 48106 USA.
EM william.giannobile@umich.edu
RI Rastelli, Marcio/B-8034-2011;
OI Herr, Amy/0000-0002-6906-2985; Giannobile, William/0000-0002-7102-9746
FU National Institute of Dental and Craniofacial Research [U01-DE014961];
National Center for Research Resources [M01-RR000042]; Swiss Society of
Periodontology, Brig, Switzerland
FX This work was supported by the National Institute of Dental and
Craniofacial Research (U01-DE014961) and the National Center for
Research Resources (M01-RR000042), Bethesda, Maryland, and the Swiss
Society of Periodontology, Brig, Switzerland. Dr. Singh is a manager and
Dr. Tran is a principal technologist in the Biosystems Research
Department at Sandia National Laboratories. Drs. Herr, Shelburne, Braun,
Singh, and Giannobile hold intellectual property related to this
article. This trial is registered on the www.clinicaltrials.gov database
(NCT00277745). The authors appreciate the clinical assistance of Drs.
Thiago Morelli, Amy Kim, and Noah Smith, Michigan Center for Oral Health
Research.
NR 40
TC 131
Z9 132
U1 2
U2 23
PU AMER ACAD PERIODONTOLOGY
PI CHICAGO
PA 737 NORTH MICHIGAN AVENUE, SUITE 800, CHICAGO, IL 60611-2690 USA
SN 0022-3492
J9 J PERIODONTOL
JI J. Periodont.
PD MAR
PY 2009
VL 80
IS 3
BP 436
EP 446
DI 10.1902/jop.2009.080480
PG 11
WC Dentistry, Oral Surgery & Medicine
SC Dentistry, Oral Surgery & Medicine
GA 419YX
UT WOS:000264256700011
PM 19254128
ER
PT J
AU Engel, EC
Weltzin, JF
Norby, RJ
Classen, AT
AF Engel, E. Cayenne
Weltzin, Jake F.
Norby, Richard J.
Classen, Aimee T.
TI Responses of an old-field plant community to interacting factors of
elevated [CO2], warming, and soil moisture
SO JOURNAL OF PLANT ECOLOGY
LA English
DT Article
DE climate change; foliar cover; multi-factor interactions; diversity;
richness
ID ATMOSPHERIC CO2; CALCAREOUS GRASSLAND; WATER AVAILABILITY; SPECIES
RICHNESS; ECOSYSTEM; TEMPERATURE; ENRICHMENT; SUCCESSION; DIVERSITY;
GROWTH
AB Aims
The direct effects of atmospheric and climatic change factors-atmospheric [CO2], air temperature and changes in precipitation-can shape plant community composition and alter ecosystem function. It is essential to understand how these factors interact to make better predictions about how ecosystems may respond to change. We investigated the direct and interactive effects of [CO2], warming and altered soil moisture in open-top chambers (OTCs) enclosing a constructed old-field community to test how these factors shape plant communities.
Material and methods
The experimental facility in Oak Ridge, TN, USA, made use of 4-m diameter OTCs and rain shelters to manipulate [CO2] (ambient, ambient + 300 ppm), air temperature (ambient, ambient + 3.5 degrees C) and soil moisture (wet, dry). The plant communities within the chambers comprised seven common old-field species, including grasses, forbs and legumes. We tracked foliar cover for each species and calculated community richness, evenness and diversity from 2003 to 2005.
Important findings
This work resulted in three main findings: (1) warming had species-specific effects on foliar cover that varied through time and were altered by soil moisture treatments; (2) [CO2] had little effect on individual species or the community; (3) diversity, evenness and richness were influenced most by soil moisture, primarily reflecting the response of one dominant species. We conclude that individualistic species responses to atmospheric and climatic change can alter community composition and that plant populations and communities should be considered as part of analyses of terrestrial ecosystem response to climate change. However, prediction of plant community responses may be difficult given interactions between factors and changes in response through time.
C1 [Engel, E. Cayenne; Weltzin, Jake F.; Classen, Aimee T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA.
[Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
RP Engel, EC (reprint author), Univ Nevada, Publ Lands Inst, 4505 Maryland Pkwy,RAJ 280 Box 452040, Las Vegas, NV 89154 USA.
EM cayenne.engel@unlv.edu
RI Classen, Aimee/C-4035-2008; Norby, Richard/C-1773-2012
OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828
NR 59
TC 31
Z9 35
U1 2
U2 56
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1752-9921
J9 J PLANT ECOL-UK
JI J. Plant Ecol.
PD MAR
PY 2009
VL 2
IS 1
BP 1
EP 11
DI 10.1093/jpe/rtn026
PG 11
WC Plant Sciences; Ecology
SC Plant Sciences; Environmental Sciences & Ecology
GA 441SN
UT WOS:000265790900001
ER
PT J
AU Adachi, H
Ahmed, S
Lee, SHD
Papadias, D
Ahluwalia, RK
Bendert, JC
Kanner, SA
Yamazaki, Y
AF Adachi, H.
Ahmed, S.
Lee, S. H. D.
Papadias, D.
Ahluwalia, R. K.
Bendert, J. C.
Kanner, S. A.
Yamazaki, Y.
TI A natural-gas fuel processor for a residential fuel cell system
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Fuel cell systems; Distributed power generation; Cogeneration of heat
and power; Polymer electrolyte; Autothermal reforming; Natural gas
ID PARTIAL OXIDATION; HEXAALUMINATE CATALYSTS; METALLIC FOAMS; SHIFT
REACTION; PERFORMANCE; METHANE; GASOLINE; REACTOR; OXIDES; COMBUSTION
AB A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing similar to 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Adachi, H.] Japan Inst Energy, Tokyo, Japan.
[Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Yamazaki, Y.] Tokyo Inst Technol Nagatsuta, Yokohama, Kanagawa, Japan.
RP Ahluwalia, RK (reprint author), Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM papadias@anl.gov
FU New Energy and Industrial Technology Development Organization (NEDO),
Japan
FX The authors thank Mr. Steve Calderone, Dr. Magali Ferrandon, Dr.
Theodore Krause and Dr. Romesh Kumar for their help and support on this
project. This work was funded by New Energy and Industrial Technology
Development Organization (NEDO),Japan. The submitted manuscript has been
created by the UChicago LLC, as operator of Argonne National Laboratory
under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy.
The U.S. Government retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public
and perform publicly and display publicly, by or on behalf of the
Government.
NR 24
TC 16
Z9 16
U1 1
U2 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD MAR 1
PY 2009
VL 188
IS 1
BP 244
EP 255
DI 10.1016/j.jpowsour.2008.11.097
PG 12
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 421XK
UT WOS:000264391400036
ER
PT J
AU Jung, YS
Lee, S
Ahn, D
Dillon, AC
Lee, SH
AF Jung, Yoon S.
Lee, Sangkyoo
Ahn, Dongjoon
Dillon, Anne C.
Lee, Se-Hee
TI Electrochemical reactivity of ball-milled MoO(3-y) as anode materials
for lithium-ion batteries
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Li-ion batteries; Metal oxide; Ball-milling; Nanostructure; Conversion
reaction; Reactivity
ID NEGATIVE-ELECTRODE MATERIALS; SECONDARY BATTERIES; MOLYBDENUM DIOXIDE;
LI-STORAGE; PERFORMANCE; INTERCALATION; ALPHA-FE2O3; REDUCTION;
CAPACITY; POWDER
AB The electrochemical reactivity of ball-milled MoO(3) powders was investigated in Li rechargeable cells. High-energy ball-milling converts highly-crystalline MoO(3) bulk powders into partially reduced low-crystalline MoO(3-y) materials with a reduced particle size. Both bulk and ball-milled MoO(3) exhibit a first discharge capacity beyond 1100 mAh g(-1) when tested in the 0-3 V (vs. Li/Li(+)) range, which is indicative of a complete conversion reaction. It is found that partial reduction caused by ball-milling results in a reduction in the conversion reaction. Additionally, incomplete re-oxidation during subsequent charge results in the formation of MoO(2) instead of MoO(3), which in turn affects the reactivity in subsequent cycles. As compared to bulk MoO(3), ball-milled MoO(3-y) showed significantly enhanced cycle performance (bulk: 27.6% charge capacity retention at the 10th cycle vs. ball-milled for 8 h: 64.4% at the 35th cycle), which can be attributed to the nano-texture wherein nanometer-sized particles aggregate to form secondary ones. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Jung, Yoon S.; Lee, Sangkyoo; Ahn, Dongjoon; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA.
[Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA.
EM sehee.lee@colorado.edu
RI Lee, Sehee/A-5989-2011; Jung, Yoon Seok/B-8512-2011
OI Jung, Yoon Seok/0000-0003-0357-9508
FU U.S. Department of Energy [DE-AC36-99-GO10337]; Korea Research
Foundation [KRF-2008-357-D00066]
FX This work Was funded by the U.S. Department of Energy under Subcontract
number DE-AC36-99-GO10337 through the Office of Energy Efficiency and
Renewable Energy Office of the Vehicle Technologies Program. Dr. Yoon S.
Jung acknowledges the Korea Research Foundation Grant funded by the
Korean Government [KRF-2008-357-D00066]. Sangkyoo Lee acknowledges the
Korea South-East Power Generation Co.
NR 46
TC 73
Z9 76
U1 4
U2 42
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD MAR 1
PY 2009
VL 188
IS 1
BP 286
EP 291
DI 10.1016/j.jpowsour.2008.11.125
PG 6
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 421XK
UT WOS:000264391400042
ER
PT J
AU Nam, KW
Lee, CW
Yang, XQ
Cho, BW
Yoon, WS
Kim, KB
AF Nam, Kyung-Wan
Lee, Chang-Wook
Yang, Xiao-Qing
Cho, Byung Won
Yoon, Won-Sub
Kim, Kwang-Bum
TI Electrodeposited manganese oxides on three-dimensional carbon nanotube
substrate: Supercapacitive behaviour in aqueous and organic electrolytes
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Supercapacitor; Nanocomposite; Organic electrolyte; Manganese oxide;
Carbon nanotube; Specific energy
ID RECHARGEABLE LITHIUM BATTERIES; CHARGE STORAGE MECHANISM;
ELECTROCHEMICAL CAPACITORS; ACETYLENE BLACK; ENERGY-STORAGE; MNO2;
PERFORMANCE; COMPOSITES; DIOXIDE; INTERCALATION
AB Thin amorphous manganese oxide layers with a thickness of 3-5 nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure(denoted as MnO(2)/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO(2) film electrode). The pseudocapacitive properties of the MnO2 film and MnO(2)/CNT electrodes are examined in both aqueous electrolyte (1.0 M KCl) and nonaqueous organic electrolyte (1.0 M LiClO(4) in propylene carbonate). While both types of electrode show Pseudocapacitive behaviour in the aqueous electrolyte, only the MnO(2)/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO(2) film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used. Use of the organic electrolyte results in a similar to 6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a three-dimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energy of supercapacitors. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Nam, Kyung-Wan; Lee, Chang-Wook; Kim, Kwang-Bum] Yonsei Univ, Div Mat Sci & Engn, Seoul 120749, South Korea.
[Nam, Kyung-Wan; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
[Cho, Byung Won] Korea Inst Sci & Technol, Battery Res Ctr, Seoul 130650, South Korea.
[Yoon, Won-Sub] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea.
RP Kim, KB (reprint author), Yonsei Univ, Div Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea.
EM wsyoon@kookmin.ac.kr; kbkim@yonsei.ac.kr
RI Nam, Kyung-Wan Nam/G-9271-2011; Yoon, Won-Sub/H-2343-2011; wu,
peng/E-4864-2012; Nam, Kyung-Wan/B-9029-2013; Nam, Kyung-Wan/E-9063-2015
OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369
FU Korea Science & Engineering Foundation (KOSEF); Ministry of Science and
Technology [ROA-2007-000-10042-0]; U.S. Department of Energy
[DEAC02-98CH10886]
FX This work was supported by the Korea Science & Engineering Foundation
(KOSEF) through the National Research Lab. Program funded by the
Ministry of Science and Technology (No. ROA-2007-000-10042-0). The work
at Brookhaven National Laboratory was supported by the Assistant
Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle
Technologies, under the program of "Hybrid and Electric Systems", of the
U.S. Department of Energy under Contract Number DEAC02-98CH10886.
NR 44
TC 132
Z9 136
U1 12
U2 144
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD MAR 1
PY 2009
VL 188
IS 1
BP 323
EP 331
DI 10.1016/j.jpowsour.2008.11.133
PG 9
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 421XK
UT WOS:000264391400049
ER
PT J
AU Wu, S
Lourette, NM
Tolic, N
Zhao, R
Robinson, EW
Tolmachev, AV
Smith, RD
Pasa-Tolic, L
AF Wu, Si
Lourette, Natacha M.
Tolic, Nikola
Zhao, Rui
Robinson, Errol W.
Tolmachev, Aleksey V.
Smith, Richard D.
Pasa-Tolic, Ljiljana
TI An Integrated Top-Down and Bottom-Up Strategy for Broadly Characterizing
Protein Isoforms and Modifications
SO JOURNAL OF PROTEOME RESEARCH
LA English
DT Article
DE Top-down; bottom-up; proteomics; intact proteins; HPLC; tandem MS; mass
spectrometry; FTICR; RPLC
ID ELECTRON-CAPTURE DISSOCIATION; TANDEM MASS-SPECTROMETRY; INTACT
PROTEINS; POSTTRANSLATIONAL MODIFICATIONS; SHEWANELLA-ONEIDENSIS;
HISTONE H3; IDENTIFICATION; PROTEOMICS; RESOLUTION; MS
AB We present an integrated top-down and bottom-up approach that is facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs high-resolution, reversed-phase (RP) LC separations coupled on-line with a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer to profile and tentatively identify modified proteins, using detected intact protein masses in conjunction with bare protein identifications from the bottom-up analysis of the corresponding LC fractions. Selected identifications are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original fraction used for bottom-up analysis. In a proof-of-principle demonstration, this comprehensive strategy was applied to identify protein isoforms arising from various amino acid modifications (e.g., acetylation, phosphorylation) and genetic variants (e.g., single nucleotide polymorphisms, SNPs). This strategy overcomes major limitations of traditional bottom-up (e.g., inability to characterize multiple unexpected protein isoforms and genetic variants) and top-down (e.g., low throughput) approaches.
C1 [Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, EMSL, MSIN K8 98, Richland, WA 99352 USA.
RP Pasa-Tolic, L (reprint author), Pacific NW Natl Lab, EMSL, MSIN K8 98, POB 999, Richland, WA 99352 USA.
EM ljiljana.pasatolic@pnl.gov
RI Robinson, Errol/I-3148-2012; Smith, Richard/J-3664-2012
OI Robinson, Errol/0000-0003-0696-6239; Smith, Richard/0000-0002-2381-2349
FU National Center for Research Resources [RR 018522]; National Institute
of Allergy and Infectious Diseases [YI-AI-4894-01]; National Institute
of General Medical Sciences [1101 GM063883]; U.S. Department of Energy
(DOE) Office of Biological and Environmental Research
FX The authors thank Drs. Robert A Maxwell, Keqi Tang, Anil Shukla, and Rui
Zhang for helpful discussions and contributing to the improvement of
instrumental capabilities and performance. Penny Colton is gratefully
acknowledged. for her helpful manuscript review. Portions of this work
were supported by the National Center for Research Resources (RR
018522), the National Institute of Allergy and Infectious Diseases
(NIH/DHHS through interagency agreement YI-AI-4894-01), the National
Institute of General Medical Sciences (NIGMS, 1101 GM063883), and the
U.S. Department of Energy (DOE) Office of Biological and Environmental
Research. Work was performed in the Environmental Molecular Science
Laboratory, a DOE national scientific user facility located on the
campus of Pacific Northwest National Laboratory (PNNL) in Richland,
Washington. PNNL is a multiprogram national laboratory operated by
Battelle for the DOE under Contract DEAC05-76RLO 1830.
NR 63
TC 52
Z9 53
U1 0
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1535-3893
J9 J PROTEOME RES
JI J. Proteome Res.
PD MAR
PY 2009
VL 8
IS 3
BP 1347
EP 1357
DI 10.1021/pr800720d
PG 11
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 416WA
UT WOS:000264035000024
PM 19206473
ER
PT J
AU Chowdhury, SM
Shi, L
Yoon, HJ
Ansong, C
Rommereim, LM
Norbeck, AD
Auberry, KJ
Moore, RJ
Adkins, JN
Heffron, F
Smith, RD
AF Chowdhury, Saiful M.
Shi, Liang
Yoon, Hyunjin
Ansong, Charles
Rommereim, Leah M.
Norbeck, Angela D.
Auberry, Kenneth J.
Moore, Ronald J.
Adkins, Joshua N.
Heffron, Fred
Smith, Richard D.
TI A Method for Investigating Protein-Protein Interactions Related to
Salmonella Typhimurium Pathogenesis
SO JOURNAL OF PROTEOME RESEARCH
LA English
DT Article
DE HBH tag; formaldehyde; cross-linking; mass spectrometry; in vivo
interactions
ID ENTERICA SEROVAR TYPHIMURIUM; FORMALDEHYDE-INDUCED MODIFICATIONS;
INTEGRATION HOST FACTOR; MASS-SPECTROMETRY; ESCHERICHIA-COLI;
CROSS-LINKING; SACCHAROMYCES-CEREVISIAE; PROTEOMIC ANALYSIS; CHROMOSOMAL
GENES; VIRULENCE GENE
AB We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella enterica serovar Typhimurium (Salmonella Typhimurium). This method includes (i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques, (ii) in vivo cross-linking with formaldehyde, (iii) tandem affinity purification of bait proteins under fully denaturing conditions, and (iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions and permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of noncross-linked proteins to bait proteins. Two different negative controls were employed to eliminate the possibility of identifying background and nonspecific proteins as interacting partners, especially those caused by nonspecific binding to the stationary phase used for protein purification. In an initial demonstration of this approach, we tagged three Salmonella proteins-HimD, PduB and PhoP-with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified for each bait protein, including the known binding partners such as HimA for HimD, as well as unexpected binding partners. Our results suggest that novel protein-protein interactions identified may be critical to pathogenesis by Salmonella.
C1 [Chowdhury, Saiful M.; Shi, Liang; Ansong, Charles; Norbeck, Angela D.; Auberry, Kenneth J.; Moore, Ronald J.; Adkins, Joshua N.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Yoon, Hyunjin; Heffron, Fred] Oregon Hlth & Sci Univ, Portland, OR 97239 USA.
[Rommereim, Leah M.] Dartmouth Coll, Hanover, NH 03755 USA.
RP Smith, RD (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-98, Richland, WA 99352 USA.
EM rds@pnl.gov
RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013
OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700
FU National Institute of Allergy and Infectious Diseases NIH/DHHS
[Y1-AI-4894-01]; National Center for Research Resources (NCRR)
[RR18522]; Laboratory Directed Research and Development program; DOE
Battelle Memorial Institute [DE-AC05-76RLO01830]
FX We gratefully acknowledge the contributions of Therese R. W. Clauss,
Brianne O. Petritis, Karl K. Weitz, Nikola ToM, Samuel O. Purvine, Penny
Colton, and Drs. Xiuxia Du, Joshua Turse, Ashoka D. Polpitiya, Matthew
E. Monroe and Joseph N. Brown for discussions, input, and suggestions in
preparing this publication. We also thank Dr. Peter Kaiser at University
of California, Irvine for providing pFA6a-HBH-kanMX6. Portions of this
work were supported by the National Institute of Allergy and Infectious
Diseases NIH/DHHS through interagency agreement Y1-AI-4894-01, National
Center for Research Resources (NCRR) grant no. RR18522, and the
Laboratory Directed Research and Development program at PNNL.
Significant portions of this work were performed in the Environmental
Molecular Sciences Laboratory, a United States Department of Energy
(DOE) national scientific user facility at Pacific Northwest National
Laboratory (PNNL) in Richland, WA. PNNL is operated for the DOE Battelle
Memorial Institute under contract DE-AC05-76RLO01830.
NR 42
TC 13
Z9 13
U1 0
U2 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1535-3893
J9 J PROTEOME RES
JI J. Proteome Res.
PD MAR
PY 2009
VL 8
IS 3
BP 1504
EP 1514
DI 10.1021/pr800865d
PG 11
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 416WA
UT WOS:000264035000038
PM 19206470
ER
PT J
AU Oji, LN
Martin, KB
Hobbs, DT
AF Oji, L. N.
Martin, K. B.
Hobbs, D. T.
TI Development of prototype titanate ion-exchange loaded-membranes for
strontium, cesium and actinide decontamination from aqueous media
SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY
LA English
DT Article
ID MONOSODIUM TITANATE; REMOVAL; SILICOTITANATES; WASTE
AB We have successfully incorporated high surface area particles of titanate ion-exchange materials (monosodium titanate and crystalline silicotitanate) into porous and inert support membrane fibrils. The resulting membrane sheets were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. The membrane supports met the nominal requirement for non-chemical interaction with the embedded ion-exchange materials and were porous enough to allow sufficient liquid flow. Most of the stamped out 47-mm size titanium impregnated ion-exchange membrane discs removed more than 96% of dissolved cesium-133 and strontium-88 from caustic nuclear waste salt simulants.
C1 [Oji, L. N.; Martin, K. B.; Hobbs, D. T.] Savannah River Natl Lab, Aiken, SC 29808 USA.
RP Oji, LN (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA.
EM lawrence.oji@srnl.doe.gov
NR 16
TC 9
Z9 9
U1 2
U2 9
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0236-5731
J9 J RADIOANAL NUCL CH
JI J. Radioanal. Nucl. Chem.
PD MAR
PY 2009
VL 279
IS 3
BP 847
EP 854
DI 10.1007/s10967-008-7365-6
PG 8
WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science &
Technology
SC Chemistry; Nuclear Science & Technology
GA 416AT
UT WOS:000263978300022
ER
PT J
AU Wang, WD
Wang, ZJ
Tang, JK
Yang, SZ
Jin, H
Zhao, GL
Li, Q
AF Wang, Wendong
Wang, Zhenjun
Tang, Jinke
Yang, Shizhong
Jin, Hua
Zhao, Guang-Lin
Li, Qiang
TI Seebeck coefficient and thermal conductivity in doped C-60
SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET;
SEMICONDUCTORS; METALS
AB Pressed bulk samples of C-60 doped with P, Co, Al, and Bi have been investigated for their thermoelectric properties. These samples show extremely low thermal conductivity, typically in the range of 0.1-0.3 W/Km at room temperature. The Seebeck coefficients of Co, Al, and Bi doped C-60 solids are in the tens of mu V/K; however, for P doped C-60 samples, a very large Seebeck coefficient in the order of 10(3) mu V/K was observed. The value of the Seebeck coefficient seems to depend sensitively on the P concentration and changes sign upon annealing at 100 degrees C. Ab initio density functional theory calculations show that the calculated electronic structures and the activation energies strongly depend on the dopants in C-60 solids. The high Seebeck coefficient in studied P doped C-60 is due to the system's unique dopant and concentration. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3106303]
C1 [Wang, Wendong; Wang, Zhenjun; Tang, Jinke] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA.
[Yang, Shizhong; Jin, Hua; Zhao, Guang-Lin] So Univ, Dept Phys, Baton Rouge, LA 70813 USA.
[Yang, Shizhong; Jin, Hua; Zhao, Guang-Lin] A&M Coll, Baton Rouge, LA 70813 USA.
[Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Wang, WD (reprint author), Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA.
EM jtang2@uwyo.edu
FU National Science Foundation [CBET-0754821]; UW/SER; U.S. Dept. of
Energy, Office of Basic Energy Science [DE-AC-02-98CH10886]
FX This work is funded in part by the National Science Foundation Award No.
CBET-0754821 and UW/SER MGF grant. Q. L. was supported by the U.S. Dept.
of Energy, Office of Basic Energy Science, under Contract No.
DE-AC-02-98CH10886.
NR 15
TC 5
Z9 5
U1 0
U2 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 1941-7012
J9 J RENEW SUSTAIN ENER
JI J. Renew. Sustain. Energy
PD MAR 1
PY 2009
VL 1
IS 2
AR 023104
DI 10.1063/1.3106303
PG 8
WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels
SC Science & Technology - Other Topics; Energy & Fuels
GA 583LH
UT WOS:000276676300005
ER
PT J
AU Krenkova, J
Svec, F
AF Krenkova, Jana
Svec, Frantisek
TI Less common applications of monoliths: IV. Recent developments in
immobilized enzyme reactors for proteomics and biotechnology
SO JOURNAL OF SEPARATION SCIENCE
LA English
DT Review
DE Enzyme reactor; Immobilization; Monolith; Review; Support
ID PERFORMANCE LIQUID-CHROMATOGRAPHY; POROUS POLYMER MONOLITHS;
SYNTHETICALLY USEFUL ENZYMES; AFFINITY-CHROMATOGRAPHY; TRYPSIN
MICROREACTOR; REACTIVE POLYMERS; MASS-SPECTROMETRY; MICROFLUIDIC
DEVICES; PROTEIN DIGESTION; SUPPORTS
AB Use of monolithic supports for enzyme immobilization has rapidly expanded since we published the preceding paper in the series of articles concerned with this topic almost three years ago. Many groups worldwide have realized the benefits of applying monoliths as support structures and used a variety of techniques to immobilize many different enzymes. Although some of these new developments are just refinements of the methods developed previously, some notable new approaches have also been reported. This review summarizes the literature published since 2006 and demonstrates the broad variability of reactive monoliths prepared from silica as well as from organic polymers in the form of disks, columns, and capillaries. All these monoliths were prepared by direct formation from reactive precursors or activation of preformed inactive structures. Interestingly, most of the applications of monolithic enzyme reactors target proteolytic digestion of proteins for proteomic analysis.
C1 [Krenkova, Jana; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
EM fsvec@lbl.gov
FU NIGMS NIH HHS [GM-48364, R01 GM048364, R01 GM048364-17]
NR 63
TC 107
Z9 108
U1 7
U2 88
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1615-9306
J9 J SEP SCI
JI J. Sep. Sci.
PD MAR
PY 2009
VL 32
IS 5-6
BP 706
EP 718
DI 10.1002/jssc.200800641
PG 13
WC Chemistry, Analytical
SC Chemistry
GA 427UZ
UT WOS:000264805900003
PM 19194973
ER
PT J
AU Beresh, SJ
Smith, JA
Henfling, JF
Grasser, TW
Spillers, RW
AF Beresh, Steven J.
Smith, Justin A.
Henfling, John F.
Grasser, Thomas W.
Spillers, Russell W.
TI Interaction of a Fin Trailing Vortex with a Downstream Control Surface
SO JOURNAL OF SPACECRAFT AND ROCKETS
LA English
DT Article
ID VORTICES; MISSILE; VELOCIMETRY; PARTICLES; FLOW
AB A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, hot no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant.
C1 [Beresh, Steven J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA.
RP Beresh, SJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800,Mailstop 0825, Albuquerque, NM 87185 USA.
EM sjberes@sandia.gov
FU Sandia National Laboratories; United states Department of Energy; Sandia
Corporation; Lockheed Martin Company; U.S. Department of Energy's
National Nuclear Security Administration [DE-AC04-94AL85000]
FX This work was supported by Sandia National Laboratories and the United
states Department of Energy. Sandia is a multiprogram
laboratory-operated by Sandia Corporation, a Lockheed Martin Company,
for the U.S. Department of Energy's National Nuclear Security
Administration under Contract DE-AC04-94AL85000. The authors. would like
to thank Walter P. Wolfe of Sandia National Laboratories for numerous
fruitful discussions regarding fin aerodynamics and trailing vortices.
NR 26
TC 5
Z9 5
U1 0
U2 0
PU AMER INST AERONAUT ASTRONAUT
PI RESTON
PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA
SN 0022-4650
J9 J SPACECRAFT ROCKETS
JI J. Spacecr. Rockets
PD MAR-APR
PY 2009
VL 46
IS 2
BP 318
EP 328
DI 10.2514/1.40294
PG 11
WC Engineering, Aerospace
SC Engineering
GA 429EI
UT WOS:000264903200013
ER
PT J
AU Morris, MD
Higdon, D
AF Morris, Max D.
Higdon, Dave
TI Comments on Goldstein and Rougier
SO JOURNAL OF STATISTICAL PLANNING AND INFERENCE
LA English
DT Editorial Material
C1 [Morris, Max D.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA.
[Morris, Max D.] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA USA.
[Higdon, Dave] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA.
RP Morris, MD (reprint author), Iowa State Univ, Dept Stat, Ames, IA 50011 USA.
EM mmorris@iastate.edu
NR 2
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-3758
J9 J STAT PLAN INFER
JI J. Stat. Plan. Infer.
PD MAR 1
PY 2009
VL 139
IS 3
BP 1249
EP 1250
DI 10.1016/j.jspi.2008.08.009
PG 2
WC Statistics & Probability
SC Mathematics
GA 389AE
UT WOS:000262061300049
ER
PT J
AU Holton, JM
AF Holton, James M.
TI A beginner's guide to radiation damage
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE radiation damage; minimum crystal size; protein macromolecular
crystallography; dose doubling; radioprotectant; data collection
strategy
ID X-RAY-ABSORPTION; PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALS;
SYNCHROTRON-RADIATION; DATA-COLLECTION; ACTIVE-SITE; POLARIZATION
CORRECTION; CRYOGENIC TEMPERATURES; ANGSTROM RESOLUTION;
STRUCTURAL-CHANGES
AB Many advances in the understanding of radiation damage to protein crystals, particularly at cryogenic temperatures, have been made in recent years, but with this comes an expanding literature, and, to the new breed of protein crystallographer who is not really interested in X-ray physics or radiation chemistry but just wants to solve a biologically relevant structure, the technical nature and breadth of this literature can be daunting. The purpose of this paper is to serve as a rough guide to radiation damage issues, and to provide references to the more exacting and detailed work. No attempt has been made to report precise numbers (a factor of two is considered satisfactory), and, since there are aspects of radiation damage that are demonstrably unpredictable, the 'worst case scenario' as well as the 'average crystal' are discussed in terms of the practicalities of data collection.
C1 [Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA.
[Holton, James M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Holton, JM (reprint author), Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA.
EM jmholton@lbl.gov
FU National Institutes of Health [GM074929, GM082250]; US Department of
Energy [DE-AC03-76SF00098]; Lawrence Berkeley National Laboratory
FX I would like to thank Elspeth Garman, Frank Von Delft, Ana Gonzalez and
Julie Lougheed for extremely helpful discussions of this manuscript.
This work was supported by grants from the National Institutes of Health
(GM074929 and GM082250) and the US Department of Energy under contract
No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory.
NR 100
TC 104
Z9 104
U1 3
U2 22
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD MAR
PY 2009
VL 16
BP 133
EP 142
DI 10.1107/S0909049509004361
PG 10
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 412JC
UT WOS:000263720100002
PM 19240325
ER
PT J
AU Owen, RL
Holton, JM
Schulze-Briese, C
Garman, EF
AF Owen, Robin L.
Holton, James M.
Schulze-Briese, Clemens
Garman, Elspeth F.
TI Determination of X-ray flux using silicon pin diodes
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE macromolecular crystallography; flux determination; silicon pin diode;
absorbed dose
ID RADIATION-DAMAGE; SYNCHROTRON-RADIATION; PROTEIN CRYSTALS;
DATA-COLLECTION; MACROMOLECULAR CRYSTALLOGRAPHY; IONIZATION-CHAMBER;
ELECTRON; AIR; SEMICONDUCTORS; PHOTODIODES
AB Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced.
C1 [Garman, Elspeth F.] Univ Oxford, Dept Biochem, Lab Mol Biophys, Oxford OX1 3QU, England.
[Owen, Robin L.; Schulze-Briese, Clemens] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA.
[Holton, James M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Garman, EF (reprint author), Univ Oxford, Dept Biochem, Lab Mol Biophys, S Parks Rd, Oxford OX1 3QU, England.
EM elspeth.garman@bioch.ox.ac.uk
OI Owen, Robin/0000-0002-2104-7057
FU National Institutes of Health [GM074929, GM082250]; US Department of
Energy [DE-AC03-76SF00098]; Lawrence Berkeley National Laboratory
FX We would like to thank Uwe Flechsig, Ken Frankel, Eric Gullickson,
Michael Krumrey, Malcom Howells, James Glossinger, Alastair MacDowell
and Simon Morton for useful discussions. EFG wishes to gratefully
acknowledge many enlightening and informative exchanges over the last
eight years on the subject of MX beamline flux calibration and
characterization with Pascal Theveneau and Raimond Ravelli, and the ESRF
Detector Group for making available to her the calibrated 500 mm
Canberra pin diode used in the study above. JMH was supported by grants
GM074929 and GM082250 from the National Institutes of Health. The
Advanced Light Source is supported by the US Department of Energy under
contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory.
NR 26
TC 49
Z9 49
U1 1
U2 6
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD MAR
PY 2009
VL 16
BP 143
EP 151
DI 10.1107/S0909049508040429
PG 9
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 412JC
UT WOS:000263720100003
PM 19240326
ER
PT J
AU Fischetti, RF
Xu, SL
Yoder, DW
Becker, M
Nagarajan, V
Sanishvili, R
Hilgart, MC
Stepanov, S
Makarov, O
Smith, JL
AF Fischetti, Robert F.
Xu, Shenglan
Yoder, Derek W.
Becker, Michael
Nagarajan, Venugopalan
Sanishvili, Ruslan
Hilgart, Mark C.
Stepanov, Sergey
Makarov, Oleg
Smith, Janet L.
TI Mini-beam collimator enables microcrystallography experiments on
standard beamlines
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE mini-beam; microbeam; microdiffraction; macromolecular crystallography
ID PROTEIN-COUPLED RECEPTOR; CRYSTAL-STRUCTURE; SYNCHROTRON-RADIATION;
CRYSTALLOGRAPHY; MICRODIFFRACTION
AB The high-brilliance X-ray beams from undulator sources at third-generation synchrotron facilities are excellent tools for solving crystal structures of important and challenging biological macromolecules and complexes. However, many of the most important structural targets yield crystals that are too small or too inhomogeneous for a 'standard' beam from an undulator source, similar to 25-50 mu m (FWHM) in the vertical and 50-100 mu m in the horizontal direction. Although many synchrotron facilities have microfocus beamlines for other applications, this capability for macromolecular crystallography was pioneered at ID-13 of the ESRF. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team (GM/CA-CAT) dual canted undulator beamlines at the APS deliver high-intensity focused beams with a minimum focal size of 20 mu m x 65 mu m at the sample position. To meet growing user demand for beams to study samples of 10 mu m or less, a 'mini-beam' apparatus was developed that conditions the focused beam to either 5 mu m or 10 mu m (FWHM) diameter with high intensity. The mini-beam has a symmetric Gaussian shape in both the horizontal and vertical directions, and reduces the vertical divergence of the focused beam by 25%. Significant reduction in background was achieved by implementation of both forward- and back-scatter guards. A unique triple-collimator apparatus, which has been in routine use on both undulator beamlines since February 2008, allows users to rapidly interchange the focused beam and conditioned mini-beams of two sizes with a single mouse click. The device and the beam are stable over many hours of routine operation. The rapid-exchange capability has greatly facilitated sample screening and resulted in several structures that could not have been obtained with the larger focused beam.
C1 [Fischetti, Robert F.; Xu, Shenglan; Yoder, Derek W.; Becker, Michael; Nagarajan, Venugopalan; Sanishvili, Ruslan; Hilgart, Mark C.; Stepanov, Sergey; Makarov, Oleg; Smith, Janet L.] Argonne Natl Lab, Adv Photon Source, GM CA CAT, Biosci Div, Argonne, IL 60439 USA.
[Smith, Janet L.] Univ Michigan, Dept Biol Chem, Inst Life Sci, Ann Arbor, MI 48109 USA.
RP Fischetti, RF (reprint author), Argonne Natl Lab, Adv Photon Source, GM CA CAT, Biosci Div, Argonne, IL 60439 USA.
EM rfischetti@anl.gov
FU National Cancer Institute [Y1-CO-1020]; National Institute of General
Medical Science [Y1-GM-1104]; US Department of Energy, Basic Energy
Sciences, Office of Science [DE-AC02-06CH11357]
FX GM/CA CAT is supported by Federal funds from the National Cancer
Institute (Y1-CO-1020) and the National Institute of General Medical
Science (Y1-GM-1104). Use of the Advanced Photon Source was supported by
the US Department of Energy, Basic Energy Sciences, Office of Science,
under contract No. DE-AC02-06CH11357. We thank B. K. Kobilka and W. I.
Weis of Stanford University for helpful discussions and suggestions
during initial mini-beam experiments; F. Cipriani of EMBL-Grenoble for
helpful discussions; G. Decker, L. Emery and K. Schroeder of APS for
improvements to the APS beam stabilization and helpful discussions.
NR 29
TC 63
Z9 64
U1 0
U2 5
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD MAR
PY 2009
VL 16
BP 217
EP 225
DI 10.1107/S0909049508040612
PG 9
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 412JC
UT WOS:000263720100010
PM 19240333
ER
PT J
AU Sarin, P
Haggerty, RP
Yoon, W
Knapp, M
Berghaeuser, A
Zschack, P
Karapetrova, E
Yang, N
Kriven, WM
AF Sarin, P.
Haggerty, R. P.
Yoon, W.
Knapp, M.
Berghaeuser, A.
Zschack, P.
Karapetrova, E.
Yang, N.
Kriven, W. M.
TI A curved image-plate detector system for high-resolution synchrotron
X-ray diffraction
SO JOURNAL OF SYNCHROTRON RADIATION
LA English
DT Article
DE X-ray detectors; image-plate detector; powder diffraction;
high-resolution diffraction; in situ diffraction
ID POSITION-SENSITIVE DETECTOR; LASER STIMULATED LUMINESCENCE; POWDER
DIFFRACTION; RIETVELD REFINEMENT; HIGH-TEMPERATURE; SPRING-8 BL02B2;
GUINIER CAMERA; CHARGE-DENSITY; IN-SITU; RADIATION
AB The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 degrees 2 theta range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in <= 30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.
C1 [Sarin, P.; Haggerty, R. P.; Yoon, W.; Kriven, W. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
[Knapp, M.] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany.
[Berghaeuser, A.] Univ Hamburg, Inst Mineral & Petrog, D-20146 Hamburg, Germany.
[Zschack, P.; Karapetrova, E.; Yang, N.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Kriven, WM (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA.
EM kriven@illinois.edu
RI Knapp, Michael/B-4258-2014
OI Knapp, Michael/0000-0003-0091-8463
FU AFOSR DURIP [FA9550-04-1-0345]; AFOSR [FA9550-06-1-0386,
F49620-03-1-0082]; NSF [DMR 02-11139]; Advanced Photon Source at Argonne
National Laboratory; US Department of Energy, Office of Science, Office
of Basic Energy Sciences [DEAC0206CH11357]
FX The CIP detector was designed and built under an AFOSR DURIP grant,
number FA9550-04-1-0345. The authors were supported under the following
grants for the duration of this work: AFOSR grant FA9550-06-1-0386 for
PS and RPH; AFOSR grant F49620-03-1-0082 for WY; NSF grant NSF DMR
02-11139 for PS for one year. Use of the Advanced Photon Source at
Argonne National Laboratory was supported by the US Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
contract No. DEAC0206CH11357.
NR 42
TC 7
Z9 7
U1 1
U2 5
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0909-0495
J9 J SYNCHROTRON RADIAT
JI J. Synchrot. Radiat.
PD MAR
PY 2009
VL 16
BP 273
EP 282
DI 10.1107/S0909049509001265
PG 10
WC Instruments & Instrumentation; Optics; Physics, Applied
SC Instruments & Instrumentation; Optics; Physics
GA 412JC
UT WOS:000263720100017
PM 19240340
ER
PT J
AU Melcher, RJ
AF Melcher, Ryan J.
TI Evaluating the Onset of Tearing in Elastic-Plastic Fracture Toughness
Testing Using In Situ Optical Microscopy
SO JOURNAL OF TESTING AND EVALUATION
LA English
DT Article
DE fracture toughness; crack-tip opening displacement; optical microscopy
ID PLANE-STRAIN; SPECIMEN; STEEL
AB Fracture toughness, in the sense of material resistance to ductile tearing from an initial sharp defect, is a common metric for structural integrity assessments of engineering components. While standardized test methods are well-suited for repeatable estimation of this metric, physical observation of crack-tip opening displacement (CTOD) and tearing may provide a supplemental means of evaluating the onset of tearing with greater accuracy in ductile materials. In contrast to previously documented methods of physical CTOD measurement, in situ optical microscopy on standard sidegrooved fracture toughness specimens presents an easily implemented, cost-effective tool for observing tearing onset. As an additional benefit, quantitative measurements of CTOD from in situ optical microscopy also provide a means of cross-checking standard J-integral results as determined from load-displacement test data.
C1 [Melcher, Ryan J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Melcher, RJ (reprint author), Cessna Aircraft Co, Mail Stop A6, Wichita, KS 67215 USA.
EM rjmetcher@yahoo.com
FU U.S. Department of Energy [DE-AC52-06NA25396]
FX Los Alamos National Laboratory is operated by Los Alamos National
Security, LLC for the National Nuclear Security Adrninistration of the
U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The
author wishes to thank Philip Schembri of the Los Alamos National
Laboratory and J. David McColskey of the United States National
Institute of Standards and Technology for their technical discussions
regarding CTOD behavior and measurement.
NR 21
TC 0
Z9 0
U1 0
U2 1
PU AMER SOC TESTING MATERIALS
PI W CONSHOHOCKEN
PA 100 BARR HARBOR DR, W CONSHOHOCKEN, PA 19428-2959 USA
SN 0090-3973
J9 J TEST EVAL
JI J. Test. Eval.
PD MAR
PY 2009
VL 37
IS 2
BP 89
EP 94
PG 6
WC Materials Science, Characterization & Testing
SC Materials Science
GA 416DE
UT WOS:000263984600001
ER
PT J
AU Balogun, O
Huber, R
Chinn, D
Spicer, JB
AF Balogun, O.
Huber, R.
Chinn, D.
Spicer, J. B.
TI Laser ultrasonic inspection of the microstructural state of thin metal
foils
SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
LA English
DT Article
DE foils; laser beam applications; metallic thin films; photoacoustic
effect; tungsten; ultrasonic absorption; ultrasonic materials testing
ID POLYCRYSTALLINE MATERIALS; GENERATED ULTRASOUND; HARMONIC-GENERATION;
ATTENUATION; WAVES; SCATTERING; NONLINEARITY; DISLOCATIONS; DEPENDENCE;
SURFACES
AB A laser-based ultrasonic technique suitable for characterization of the microstructural state of metal foils is presented. The technique relies on the measurement of the intrinsic attenuation of laser-generated longitudinal waves at frequencies reaching 1 GHz resulting from ultrasonic interaction with the sample microstructure. In order to facilitate accurate measurement of the attenuation, a theoretical model-based signal analysis approach is used. The signal analysis approach isolates aspects of the measured attenuation that depend strictly on the microstructure from geometrical effects. Experimental results obtained in commercially cold worked tungsten foils show excellent agreement with theoretical predictions. Furthermore, the experimental results show that the longitudinal wave attenuation at gigahertz frequencies is strongly influenced by the dislocation content of the foils and may find potential application in the characterization of the microstructure of micron thick metal foils.
C1 [Balogun, O.; Huber, R.; Chinn, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Balogun, O.; Spicer, J. B.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA.
RP Balogun, O (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RI Balogun, Oluwaseyi/B-7543-2009; Spicer, James/A-3312-2010
OI Spicer, James/0000-0002-3512-5503
FU U.S. Department of Energy by the Lawrence Livermore National Laboratory,
University of California; W-7405-Eng-48; Office of Basic Energy
Sciences, U. S. Department of Energy [DEFG0203ER46090]; Air Force Office
of Scientific Research [FA9550-06-1-0309]
FX This work was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory, University of
California under Contract No. W-7405-Eng-48 and was based on work
supported by, or in part by, the Office of Basic Energy Sciences, U. S.
Department of Energy under Grant No. DEFG0203ER46090 and the Air Force
Office of Scientific Research under Grant No. FA9550-06-1-0309.
NR 36
TC 3
Z9 3
U1 1
U2 11
PU ACOUSTICAL SOC AMER AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0001-4966
J9 J ACOUST SOC AM
JI J. Acoust. Soc. Am.
PD MAR
PY 2009
VL 125
IS 3
BP 1437
EP 1443
DI 10.1121/1.3068447
PG 7
WC Acoustics; Audiology & Speech-Language Pathology
SC Acoustics; Audiology & Speech-Language Pathology
GA 415CL
UT WOS:000263911800023
PM 19275301
ER
PT J
AU Tan, Y
Longtin, JP
Sampath, S
Wang, H
AF Tan, Yang
Longtin, Jon P.
Sampath, Sanjay
Wang, Hsin
TI Effect of the Starting Microstructure on the Thermal Properties of
As-Sprayed and Thermally Exposed Plasma-Sprayed YSZ Coatings
SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY
LA English
DT Article
ID YTTRIA-STABILIZED ZIRCONIA; BARRIER COATINGS; HEAT-TREATMENT; IMPURITY
CONTENT; CONDUCTIVITY; POROSITY; POWDER; ANGLE; TEMPERATURE; PARTICLES
AB Thermal barrier coatings (TBCs) experience thermal gradients, excessive temperature, and high heat flux from hot gases in turbines during service. These extended thermal effects induce sintering and significant microstructure changes, which alter the resulting thermal conductivity of the TBCs. To study the effects of different starting microstructures on the sintering behavior, plasma-sprayed yttria-stabilized zirconia (YSZ) TBCs produced from different starting powders and process parameters were subjected to thermal aging at several temperatures and time intervals, after which their thermal conductivity was measured at room temperature. The thermal conductivity results were analyzed by introducing the Larson-Miller parameter, that describes the creep-like behavior of thermal conductivity increase with annealing temperature and time. One set of coatings was also annealed under the same conditions and the thermal conductivities were measured at elevated temperatures. The temperature-dependent thermal conductivity data were analyzed and used to predict the long-term thermal property behavior for a general YSZ coating design.
C1 [Tan, Yang; Longtin, Jon P.; Sampath, Sanjay] SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA.
[Wang, Hsin] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA.
RP Tan, Y (reprint author), SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA.
EM yangtan@gmail.com
RI Wang, Hsin/A-1942-2013
OI Wang, Hsin/0000-0003-2426-9867
FU National Science Foundation [CMMI 0605704]; Oak Ridge National
Laboratory; Department of Energy [DE-AC05000OR22725]
FX This work was financially supported by the GOALI-FRG program sponsored
by National Science Foundation under award CMMI 0605704. The
high-temperature thermal conductivity measurement conducted at Oak Ridge
is supported by the Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of Vehicle Technologies, as part of the High
Temperature Materials Laboratory User Program at Oak Ridge National
Laboratory managed by the UT-Battelle LLC for the Department of Energy
under contract DE-AC05000OR22725.
NR 49
TC 34
Z9 34
U1 3
U2 16
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0002-7820
J9 J AM CERAM SOC
JI J. Am. Ceram. Soc.
PD MAR
PY 2009
VL 92
IS 3
BP 710
EP 716
DI 10.1111/j.1551-2916.2009.02953.x
PG 7
WC Materials Science, Ceramics
SC Materials Science
GA 419SY
UT WOS:000264241200023
ER
PT J
AU Muehleman, C
Li, J
Schiff, A
Zhong, Z
AF Muehleman, Carol
Li, Jun
Schiff, Adam
Zhong, Zhong
TI Diffraction-Enhanced Imaging for Achilles Tendon Lesions A Preliminary
Study
SO JOURNAL OF THE AMERICAN PODIATRIC MEDICAL ASSOCIATION
LA English
DT Article
ID ARTICULAR-CARTILAGE; SOFT-TISSUE; RUPTURE; TENDINOPATHY; RADIOGRAPHY
AB Background: Computed tomography, ultrasonography, and magnetic resonance imaging are useful in the diagnosis of tears of the Achilles tendon, but none are capable of detecting early or small tears. Herein, we applied diffraction-enhanced imaging, a radiographic technique that detects x-ray attenuation and x-ray refraction, to the imaging of compromised Achilles tendons.
Methods: Diffraction-enhanced imaging was used to detect incomplete surgically induced tears of the Achilles tendon in nine cadaveric human feet and ankles.
Results: Complete and significant partial tears were detectable in diffraction-enhanced images as x-ray refraction changes.
Conclusions: Although still in the experimental stages, diffraction-enhanced imaging may eventually prove useful for the diagnosis of Achilles tendon tears. (J Am Podiatr Med Assoc 99(2): 95-99, 2009)
C1 [Muehleman, Carol; Li, Jun; Schiff, Adam] Rush Med Coll, Chicago, IL 60612 USA.
[Zhong, Zhong] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Muehleman, C (reprint author), Rush Med Coll, 1735 W Harrison St,Cohn Res Bldg,Room 524, Chicago, IL 60612 USA.
EM carol_muehleman@rush.edu
FU National Institutes of Health [RO1 48292-05]
FX Financial Disclosure: This work was supported by grant RO1 48292-05 from
the National Institutes of Health.
NR 16
TC 3
Z9 3
U1 0
U2 1
PU AMER PODIATRIC MED ASSOC
PI BETHESDA
PA 9312 OLD GEORGETOWN ROAD, BETHESDA, MD 20814-1621 USA
SN 8750-7315
J9 J AM PODIAT MED ASSN
JI J. Am. Podiatr. Med. Assoc.
PD MAR-APR
PY 2009
VL 99
IS 2
BP 95
EP 99
PG 5
WC Orthopedics
SC Orthopedics
GA 423WA
UT WOS:000264525200001
PM 19299343
ER
PT J
AU Srinivasan, R
Pepe, A
Rodriguez, MA
AF Srinivasan, Ramesh
Pepe, Alberto
Rodriguez, Marko A.
TI A Clustering-Based Semi-Automated Technique to Build Cultural Ontologies
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
ID INFORMATION-RETRIEVAL; FINDING COMMUNITIES; KNOWLEDGE; NETWORKS;
SYSTEMS; SEARCH; USERS; ENVIRONMENTS; CONNECTIONS; IMMIGRANTS
AB This article presents and validates a clustering-based method for creating cultural ontologies for community-oriented information systems. The introduced semi-automated approach merges distributed annotation techniques, or subjective assessments of similarities between cultural categories, with established clustering methods to produce "cognate" ontologies. This approach is validated against a locally authentic ethnographic method, involving direct work with communities for the design of "fluid" ontologies. The evaluation is conducted with of a set of Native American communities located in San Diego County (CA, US). The principal aim of this research is to discover whether distributing the annotation process among isolated respondents would enable ontology hierarchies to be created that are similar to those that are crafted according to collaborative ethnographic processes, found to be effective in generating continuous usage across several studies. Our findings suggest that the proposed semiautomated solution best optimizes among issues of interoperability and scalability, deemphasized in the fluid ontology approach, and sustainable usage.
C1 [Srinivasan, Ramesh; Pepe, Alberto] Univ Calif Los Angeles, Dept Informat Studies, Los Angeles, CA 90095 USA.
[Rodriguez, Marko A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87501 USA.
RP Srinivasan, R (reprint author), Univ Calif Los Angeles, Dept Informat Studies, Los Angeles, CA 90095 USA.
EM srinivasan@ucla.edu; apepe@ucla.edu; marko@lanl.gov
NR 97
TC 1
Z9 1
U1 3
U2 8
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1532-2882
EI 1532-2890
J9 J AM SOC INF SCI TEC
JI J. Am. Soc. Inf. Sci. Technol.
PD MAR
PY 2009
VL 60
IS 3
BP 608
EP 620
DI 10.1002/asi.20998
PG 13
WC Computer Science, Information Systems; Information Science & Library
Science
SC Computer Science; Information Science & Library Science
GA 415LK
UT WOS:000263935100014
ER
PT J
AU Higdon, D
AF Higdon, D.
TI A Spatio-Temporal Model for Mean, Anomaly, and Trend Fields of North
Atlantic Sea Surface Temperature Comment
SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
LA English
DT Editorial Material
C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA.
RP Higdon, D (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS-F600, Los Alamos, NM 87545 USA.
EM dhigdon@lanl.gov
NR 0
TC 0
Z9 0
U1 0
U2 1
PU AMER STATISTICAL ASSOC
PI ALEXANDRIA
PA 1429 DUKE ST, ALEXANDRIA, VA 22314 USA
SN 0162-1459
J9 J AM STAT ASSOC
JI J. Am. Stat. Assoc.
PD MAR
PY 2009
VL 104
IS 485
BP 18
EP 20
DI 10.1198/jasa.2009.0031
PG 3
WC Statistics & Probability
SC Mathematics
GA 425PI
UT WOS:000264649200003
ER
PT J
AU Raskovic, M
Popovic, S
Upadhyay, J
Vuskovic, L
Phillips, L
Valente-Feliciano, AM
AF Raskovic, M.
Popovic, S.
Upadhyay, J.
Vuskovic, L.
Phillips, L.
Valente-Feliciano, A. -M.
TI High etching rates of bulk Nb in Ar/Cl-2 microwave discharge
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
DE glow discharges; high-frequency discharges; niobium; penetration depth
(superconductivity); plasma density; plasma impurities; plasma pressure;
sputter etching; type II superconductors
ID TUNNEL-JUNCTIONS; NIOBIUM; FABRICATION; CF4
AB Plasma-based Nb surface treatment provides an excellent opportunity to eliminate surface imperfections and increase the cavity quality factor in important applications such as particle accelerators and cavity quantum electrodynamics, as well as Josephson junctions. In this study, plasma etching of bulk Nb is performed on the surface of disk-shaped samples with the goal of eliminating nonsuperconductive pollutants in the penetration depth region and the mechanically damaged surface layer. The authors have demonstrated that in the microwave glow discharge, an etching rate of 1.5 mu m/min can be achieved using Cl-2 as a reactive gas. The influence of plasma parameters such as input power, pressure, and concentration of the reactive gas on the etching rate is determined. Simultaneously, plasma emission spectroscopy was used to estimate the densities of Cl, Cl+, and Cl-2 under various plasma conditions.
C1 [Raskovic, M.; Popovic, S.; Upadhyay, J.; Vuskovic, L.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA.
[Phillips, L.; Valente-Feliciano, A. -M.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
RP Raskovic, M (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA.
EM raskovic@jlab.org
FU Office of High Energy Physics; Office of Science; Department of Energy
[DE-FG02-05ER41396]; Jefferson Science Associates; U.S. DOE
[DE-AC05-06OR23177]
FX This work was supported by the NSF/DOE collaborative effort through the
Office of High Energy Physics, Office of Science, Department of Energy
under Grant No. DE-FG02-05ER41396. Tomas Jefferson National Accelerator
Facility, Accelerator Division supports M. Raskovic and J. Upadhyay
through fellowships. This was authored by the Jefferson Science
Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
NR 25
TC 4
Z9 4
U1 1
U2 3
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD MAR
PY 2009
VL 27
IS 2
BP 301
EP 305
DI 10.1116/1.3077298
PG 5
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 416PH
UT WOS:000264017500020
ER
PT J
AU Uhlrich, JJ
Olson, DC
Hsu, JWP
Kuech, TF
AF Uhlrich, J. J.
Olson, D. C.
Hsu, J. W. P.
Kuech, T. F.
TI Surface chemistry and surface electronic properties of ZnO single
crystals and nanorods
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
DE II-VI semiconductors; nanostructured materials; ozone; solar cells;
surface chemistry; surface states; ultraviolet photoelectron spectra;
ultraviolet radiation effects; wide band gap semiconductors; X-ray
photoelectron spectra; zinc compounds
ID RAY PHOTOELECTRON-SPECTROSCOPY; ENERGY-LEVEL ALIGNMENT; ZINC-OXIDE
SURFACES; PHOTOVOLTAIC DEVICES; SOLAR-CELLS; N-TYPE; WORK-FUNCTION;
ELECTRICAL CHARACTERISTICS; POINT-DEFECTS; FILMS
AB The surface chemistry of ZnO single crystals of (0001) and (1010) orientations and ZnO nanorods was studied using x-ray and ultraviolet photoelectron spectroscopies. Air drying and UV-ozone preparations were studied in particular as chemical treatments that could be applied to poly(3-hexylthiophene) (P3HT)-ZnO solar cells to enhance performance. The UV-ozone treatment showed negligible effect by photoelectron spectroscopy on the ZnO single crystal surfaces, but brought about electronic shifts consistent with increased upward band bending by similar to 0.25 eV on the ZnO nanorod surface. Modest interface dipoles of similar to 0.15 and similar to 0.25 eV were measured between P3HT and the (1010) and (0001) single crystal orientations, respectively, with the dipole moment pointing from ZnO to the P3HT layer. The sol-gel films showed evidence of forming a small interface dipole in the opposite direction, which illustrates the difference in surface chemistry between the solution-grown ZnO and the ZnO single crystals.
C1 [Uhlrich, J. J.; Kuech, T. F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA.
[Olson, D. C.; Hsu, J. W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Uhlrich, JJ (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA.
EM jjuhlrich@wisc.edu
OI Uhlrich, John/0000-0001-5773-1486
FU Materials Research Science and Engineering Center at the University of
Wisconsin; National Science Foundation Graduate Research Fellowship
FX The authors would like to acknowledge funding from the Materials
Research Science and Engineering Center at the University of Wisconsin
as well as from the National Science Foundation Graduate Research
Fellowship Program. The authors would also like to acknowledge funding
from Sandia DOE BES Core programs and LDRD programs for funding this
research. D.C.O. would also like to acknowledge support from the IC
Postdoctoral Fellowship Program. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the U. S.
Department of Energy's National Nuclear Security Administration under
Contract No. DE-AC04-94AL85000.
NR 61
TC 18
Z9 18
U1 4
U2 26
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD MAR
PY 2009
VL 27
IS 2
BP 328
EP 335
DI 10.1116/1.3085723
PG 8
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 416PH
UT WOS:000264017500024
ER
PT J
AU Dinh, LN
Sze, J
Schildbach, MA
Chinn, SC
Maxwell, RS
Raboin, P
McLean, W
AF Dinh, L. N.
Sze, J.
Schildbach, M. A.
Chinn, S. C.
Maxwell, R. S.
Raboin, P.
McLean, W., II
TI Vacuum outgassing of high density polyethylene
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A
LA English
DT Article
DE decomposition; outgassing; polymers; reaction kinetics; thermal
analysis; thermally stimulated desorption
ID DIFFERENTIAL THERMAL ANALYSIS; KINETICS; TEMPERATURE; POLYSTYRENE;
DEGRADATION; TR55
AB A combination of thermogravimetric analysis and temperature programmed decomposition was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H2O and CnHx, with n as high as 9 and x centering around 2n, are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.
C1 [Dinh, L. N.; Sze, J.; Schildbach, M. A.; Chinn, S. C.; Maxwell, R. S.; Raboin, P.; McLean, W., II] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Dinh, LN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM dinh1@llnl.gov
RI Chinn, Sarah/E-1195-2011
NR 22
TC 4
Z9 4
U1 1
U2 10
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 0734-2101
EI 1520-8559
J9 J VAC SCI TECHNOL A
JI J. Vac. Sci. Technol. A
PD MAR
PY 2009
VL 27
IS 2
BP 376
EP 380
DI 10.1116/1.3085719
PG 5
WC Materials Science, Coatings & Films; Physics, Applied
SC Materials Science; Physics
GA 416PH
UT WOS:000264017500031
ER
PT J
AU Czaplewski, DA
Tallant, DR
Patrizi, GA
Wendt, JR
Montoya, B
AF Czaplewski, David A.
Tallant, David R.
Patrizi, Gary A.
Wendt, Joel R.
Montoya, Bertha
TI Improved etch resistance of ZEP 520A in reactive ion etching through
heat and ultraviolet light treatment
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
ID INFRARED-SPECTROSCOPY; PLASMA; LITHOGRAPHY; FABRICATION; RESOLUTION
AB The authors have developed a treatment process to improve the etch resistance of,in electron beam lithography resist (ZEP 520A) to allow direct pattern transfer from the resist into a hard mask using plasma etching without a metal lift-off process. When heated to 90 degrees C and exposed for 17 min to a dose of approximately 8 mW/cm(2) at 248 nm, changes occur in the resist that are observable using infrared spectroscopy. These changes increase the etch resistance of ZEP 520A to a CF(4)/O(2) plasma. This article will document the observed changes in the improved etch resistance of the ZEP 520A electron beam resist. 2009 American Vacuum Society. [DOI: 10.1116/1.3086721]
C1 [Czaplewski, David A.; Tallant, David R.; Patrizi, Gary A.; Wendt, Joel R.; Montoya, Bertha] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Czaplewski, DA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM daczapl@sandia.gov
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]
FX The authors would like to thank the sponsor of this project, Amit Lal,
from the DARPA NEMS program, Franklin H. Austin and the MESA Fab for
device fabrication, and Bonnie B. McKenzie and Michael J. Rye for SEM
analysis. Sandia National Laboratory is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Co., for the United
States Department of Energy's National Nuclear Security Administration
under Contract No, DE-AC04-94AL85000.
NR 12
TC 5
Z9 5
U1 1
U2 4
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD MAR-APR
PY 2009
VL 27
IS 2
BP 581
EP 584
DI 10.1116/1.3086721
PG 4
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 442KF
UT WOS:000265839400006
ER
PT J
AU Anderson, CN
Naulleau, PP
AF Anderson, Christopher N.
Naulleau, Patrick P.
TI Do not always blame the photons: Relationships between deprotection
blur, line-edge roughness, and shot noise in extreme ultraviolet
photoresists
SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
LA English
DT Article
ID SENSITIVITY; RESOLUTION; METRICS; BASE
AB A corner rounding metric has been used to determine the deprotection blur of Rohm and Haas XP 5435, XP 5271, and XP 5496 extreme ultraviolet (EUV) photoresists as base wt % is varied, an experimental open platform photoresist (EH27) as base wt % is varied, and TOK EUVR P1123 and FUJI 1195 photoresists as postexposure bake temperature is varied. In the XP 5435, XP 5271, XP 5496, and EH27 resist platforms, a six times increase in base wt % reduces the size of successfully patterned 1:1 lines by over 10 nm and lowers intrinsic line-edge roughness (LER) by over 2.5 nun without changing deprotection blur. In TOK EUVR P1123 photoresist, lowering the PEB temperature from 100 to 80 degrees C reduces measured deprotection blur (using the corner metric) from 30 to 20 run and reduces the LER of 50 nm 1:1 lines from 4.8 to 4.3 urn. These data are used to drive a lengthy discussion about the relationships between deprotection blur, LER, and shot noise in EUV photoresists. The authors provide two separate conclusions: (1) shot noise is probably not the dominant mechanism causing the 3-4 nun EUV LER floor that has been observed over the past several years; (2) chemical contrast contributes to LER whenever deprotection blur is large relative to the printed half-pitch. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3100270]
C1 [Anderson, Christopher N.] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA.
[Naulleau, Patrick P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA.
RP Anderson, CN (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA.
EM cnanderson@berkeley.edu
RI Anderson, Christopher/H-9526-2015
OI Anderson, Christopher/0000-0002-2710-733X
NR 21
TC 15
Z9 15
U1 0
U2 4
PU A V S AMER INST PHYSICS
PI MELVILLE
PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA
SN 1071-1023
J9 J VAC SCI TECHNOL B
JI J. Vac. Sci. Technol. B
PD MAR-APR
PY 2009
VL 27
IS 2
BP 665
EP 670
DI 10.1116/1.3100270
PG 6
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Physics, Applied
SC Engineering; Science & Technology - Other Topics; Physics
GA 442KF
UT WOS:000265839400020
ER
PT J
AU Kong, WP
Wu, L
Wallstrom, TC
Fischer, W
Yang, ZY
Ko, SY
Letvin, NL
Haynes, BF
Hahn, BH
Korber, B
Nabel, GJ
AF Kong, Wing-Pui
Wu, Lan
Wallstrom, Timothy C.
Fischer, Will
Yang, Zhi-Yong
Ko, Sung-Youl
Letvin, Norman L.
Haynes, Barton F.
Hahn, Beatrice H.
Korber, Bette
Nabel, Gary J.
TI Expanded Breadth of the T-Cell Response to Mosaic Human Immunodeficiency
Virus Type 1 Envelope DNA Vaccination
SO JOURNAL OF VIROLOGY
LA English
DT Article
ID LYMPHOCYTE-BASED CONTROL; SUBTYPE-B ENVELOPE; IMMUNE-RESPONSES; HIV-1
INFECTION; RHESUS-MONKEYS; IMMUNOGENICITY; REPLICATION; GLYCOPROTEIN;
VACCINES; AIDS
AB An effective AIDS vaccine must control highly diverse circulating strains of human immunodeficiency virus type 1 (HIV-1). Among HIV-1 gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV-1 Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential T-cell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. One-, two-, and three-mosaic sets that increased theoretical epitope coverage were developed. The breadth and magnitude of T-cell immunity stimulated by these vaccines were compared to those for natural strain Envs; additional comparisons were performed on mutant Envs, including gp160 or gp145 with or without V regions and gp41 deletions. Among them, the two-or three-mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the three-mosaic set elicited responses to an average of eight peptide pools, compared to two pools for a set of three natural Envs. Synthetic mosaic HIV-1 antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T-cell-based HIV-1 vaccines.
C1 [Kong, Wing-Pui; Wu, Lan; Yang, Zhi-Yong; Ko, Sung-Youl; Nabel, Gary J.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA.
[Wallstrom, Timothy C.; Fischer, Will; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Letvin, Norman L.] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Viral Pathogenesis,Dept Med, Boston, MA 02115 USA.
[Haynes, Barton F.] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27710 USA.
[Hahn, Beatrice H.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA.
[Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA.
RP Nabel, GJ (reprint author), NIAID, Vaccine Res Ctr, NIH, Bldg 40,Room 4502,MSC 3005,40 Convent Dr, Bethesda, MD 20892 USA.
EM gnabel@nih.gov
RI Fischer, Will/B-1323-2013;
OI Fischer, Will/0000-0003-4579-4062; Wallstrom,
Timothy/0000-0002-9295-2441; Korber, Bette/0000-0002-2026-5757
FU Intramural Research Program of the National Institutes of Health,
Vaccine Research Center, National Institute of Allergy and Infectious
Disease; Los Alamos National Laboratory
FX This work was supported in part by the Intramural Research Program of
the National Institutes of Health, Vaccine Research Center, National
Institute of Allergy and Infectious Disease, and by Los Alamos National
Laboratory directed research funding.
NR 38
TC 43
Z9 44
U1 1
U2 2
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0022-538X
J9 J VIROL
JI J. Virol.
PD MAR 1
PY 2009
VL 83
IS 5
BP 2201
EP 2215
DI 10.1128/JVI.02256-08
PG 15
WC Virology
SC Virology
GA 405GB
UT WOS:000263209900014
PM 19109395
ER
PT J
AU Habel, MA
Liddon, N
Stryker, JE
AF Habel, Melissa A.
Liddon, Nicole
Stryker, Jo E.
TI The HPV Vaccine: A Content Analysis of Online News Stories
SO JOURNAL OF WOMENS HEALTH
LA English
DT Article
ID MEDIA; COVERAGE; WEB
AB Purpose: Approximately 73 million adults in the United States report using the Internet as a source for health information. This study examines the quality, content, and scope of human papillomavirus (HPV) vaccine Internet news coverage starting on the day of its licensure. Information about the HPV vaccine in the media may influence personal attitudes and vaccine uptake.
Methods: Using four search engines and six search terms, a sample of 250 Internet articles on the HPV vaccine were identified between June 8, 2006, and September 26, 2006. The coding instrument captured how the headline was depicted and how the vaccine was labeled in addition to information about HPV, cervical cancer, the HPV vaccine, and current social issues and concerns about the vaccine.
Results: Analysis revealed balanced Internet news coverage; 52.4% of Internet news stories were coded as neutral toward the vaccine. Eighty-eight percent of articles labeled the vaccine as a cervical cancer vaccine; 73.5% explained the link between HPV and cervical cancer, although without providing background information on HPV or cervical cancer. Vaccine affordability was the most cited social concern (49.2%). Information about vaccine safety and side effects, duration of vaccine protection, and availability of the catchup vaccine for females aged 13-26 was repeatedly missing.
Conclusions: The HPV vaccine is being marketed as a vaccine to prevent cervical cancer. Comprehensive information on the vaccine, HPV, and cervical cancer continues to be missing from media coverage. Public health educators should monitor online media in an effort to respond to inaccurate information. Barriers to vaccine cost and funding mechanisms need to be addressed more effectively by states. Knowledge of particular media messages could provide a starting point for tackling opposition and uptake issues for future sexually transmitted infection (STI) vaccines.
C1 [Habel, Melissa A.] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Atlanta, GA 30333 USA.
[Stryker, Jo E.] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA.
RP Habel, MA (reprint author), Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, 1600 Clifton Rd, Atlanta, GA 30333 USA.
EM mhabel@cdc.gov
NR 27
TC 51
Z9 52
U1 3
U2 16
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 1540-9996
J9 J WOMENS HEALTH
JI J. Womens Health
PD MAR
PY 2009
VL 18
IS 3
BP 401
EP 407
DI 10.1089/jwh.2008.0920
PG 7
WC Public, Environmental & Occupational Health; Medicine, General &
Internal; Obstetrics & Gynecology; Women's Studies
SC Public, Environmental & Occupational Health; General & Internal
Medicine; Obstetrics & Gynecology; Women's Studies
GA 417ZF
UT WOS:000264116300018
PM 19281323
ER
PT J
AU Seifter, A
Kyrala, GA
Goldman, SR
Hoffman, NM
Kline, JL
Batha, SH
AF Seifter, A.
Kyrala, G. A.
Goldman, S. R.
Hoffman, N. M.
Kline, J. L.
Batha, S. H.
TI Demonstration of symcaps to measure implosion symmetry in the foot of
the NIF scale 0.7 hohlraums
SO LASER AND PARTICLE BEAMS
LA English
DT Article
DE Drive temperature; Inertial Confinement Fusion; Symcaps
ID INERTIAL CONFINEMENT FUSION; MULTIPLE-BEAM CONES; INTENSE HEAVY-ION;
LASER FUSION; IGNITION; COMPRESSION; DRIVEN; ENERGY; FACILITY; DENSITY
AB Implosions using inertial confinement fusion must be highly symmetric to achieve ignition on the National Ignition Facility. This requires precise control of the drive symmetry from the radiation incident on the ignition capsule. For indirect drive implosions, low mode residual perturbations in the drive are generated by the laser-heated hohlraum geometry. To diagnose the drive symmetry, previous experiments used simulated capsules by which the self-emission X-rays front gas in the center of the capsule during the implosion are used to infer the shape of the drive. However, those experiments used hohlraum radiation temperatures higher than 200 eV (Hauer et (it., 1995; Murphy et al., 1998a, 1998b) with small NOVA scale hohlraums tinder which conditions the symcaps produced large X-ray signals. At the foot of the NH-ignition pulse, where controlling the symmetry has been shown to be crucial for obtaining a symmetric implosion (Clark et id., 2009), the radiation drive is much smaller, reducing the X-ray emission from the imploded capsule. For the first time, the feasibility of using symcaps to diagnose the radiation drive for low radiation temperatures, <120 eV and large 0.7 linear scales NIF Rev3.1 (Haan et al., 2008) vacuum hohlraums is demonstrated. Here we used experiments at the Omega laser facility to demonstrate and develop the symcap technique for tuning the symmetry of the NIF ignition capsule in the foot of the drive pulse.
C1 [Seifter, A.] Los Alamos Natl Lab, AOT ABS, Los Alamos, NM 87545 USA.
RP Seifter, A (reprint author), Los Alamos Natl Lab, AOT ABS, MS F1817, Los Alamos, NM 87545 USA.
EM seif@lanl.gov
OI Kline, John/0000-0002-2271-9919
FU Department of Energy [DOE-AC52-06NA25396]
FX The authors would like to thank the LANL personnel who supported these
experiments, T. N. Archuleta, J. S. Cowan, S. C. Evans, and T. J.
Sedillo in the Physics Division, as well as the target fabrication team
of E. Breden, D. Capelli, R. D. Day, K. A. Defriend Obrey, D. J. Hatch,
R. V. Lucero, B. M. Patterson, R. B. Randolph, D. W. Schmidt, and A. C.
Valdez. We also thank J. Schein and C. Sorce of Lawrence Livermore
National Laboratory for operating the Dante Spectrometer and the Ornega
operations crew for their efforts during the experiments, especially S.
Regan for help with the EIDI phase plate use. This work was performed by
Los Alamos National Laboratory under the auspices of University of
California and later the Los Alamos National Security, LLC, for the
Department of Energy undercontract number DOE-AC52-06NA25396.
NR 23
TC 15
Z9 15
U1 0
U2 2
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0263-0346
J9 LASER PART BEAMS
JI Laser Part. Beams
PD MAR
PY 2009
VL 27
IS 1
BP 123
EP 127
DI 10.1017/S0263034609000184
PG 5
WC Physics, Applied
SC Physics
GA 413CE
UT WOS:000263769700018
ER
PT J
AU Kline, JL
Montgomery, DS
Rousseaux, C
Baton, SD
Tassin, V
Hardin, RA
Flippo, KA
Johnson, RP
Shimada, T
Yin, L
Albright, BJ
Rose, HA
Amiranoff, F
AF Kline, J. L.
Montgomery, D. S.
Rousseaux, C.
Baton, S. D.
Tassin, V.
Hardin, R. A.
Flippo, K. A.
Johnson, R. P.
Shimada, T.
Yin, L.
Albright, B. J.
Rose, H. A.
Amiranoff, F.
TI Investigation of stimulated Raman scattering using a short-pulse
diffraction limited laser beam near the instability threshold
SO LASER AND PARTICLE BEAMS
LA English
DT Article
DE Nonlinear kinetic plasma effects; Raman scattering; Short pulse laser
beams
ID SINGLE-HOT-SPOT; INERTIAL CONFINEMENT FUSION; FREQUENCY-SHIFT;
FAST-IGNITION; PLASMA; AMPLIFICATION; GENERATION; FACILITY; SCALE; GAIN
AB Short Pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of stimulated Raman scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations (>1 kJ and >1 ps). Using short laser Pulses, experiments call be modeled over the entire interaction time of the laser using particle-in-cell codes to validate our understanding quantitatively. Experiments have been conducted it the Trident laser facility and the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) to investigate stimulated Raman scattering near the threshold of the instability using 527 nm and 1059 nm laser light, respectively, with 1.5-3.0 ps pulses. In both experiments, the interaction beam Was focused into pre-ionized helium gas-jet plasma. Measurements of the reflectivity as a function of intensity and k lambda(D) were completed at the Trident laser facility, where k is the electron plasma wave number and lambda(D), is the plasma Debye length. At LUL1, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Work is currently underway comparing the results of the experiments with simulations using the VPIC particle-in-cell code. Details of the experimental results are presented ill this manuscript.
C1 [Kline, J. L.; Montgomery, D. S.; Flippo, K. A.; Johnson, R. P.; Shimada, T.; Yin, L.; Albright, B. J.; Rose, H. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Rousseaux, C.; Tassin, V.] DIF, DAM, CEA, Arpajon, France.
[Baton, S. D.; Amiranoff, F.] Univ Paris 06, Ecole Polytech, CNRS CEA, LULI,UMR 7605, Palaiseau, France.
[Hardin, R. A.] W Virginia Univ, Morgantown, WV 26506 USA.
RP Kline, JL (reprint author), Los Alamos Natl Lab, P-24,MS F526, Los Alamos, NM 87545 USA.
EM jkline@lanl.gov
RI Flippo, Kirk/C-6872-2009;
OI Flippo, Kirk/0000-0002-4752-5141; Albright, Brian/0000-0002-7789-6525;
Yin, Lin/0000-0002-8978-5320; Kline, John/0000-0002-2271-9919
NR 30
TC 27
Z9 27
U1 1
U2 4
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0263-0346
J9 LASER PART BEAMS
JI Laser Part. Beams
PD MAR
PY 2009
VL 27
IS 1
BP 185
EP 190
DI 10.1017/S0263034609000251
PG 6
WC Physics, Applied
SC Physics
GA 413CE
UT WOS:000263769700025
ER
PT J
AU Ebsers, C
Caird, J
Moses, E
AF Ebsers, Chris
Caird, John
Moses, Edward
TI The Mercury laser moves toward practical laser fusion
SO LASER FOCUS WORLD
LA English
DT Article
AB The diode-pumped Mercury laser will deliver 100 J pulses at 10 Hz under automatic control, advancing the development of high-repetition-rate inertial laser fusion.
C1 [Moses, Edward] Lawrence Livermore Natl Lab, NIF & Photon Sci Directorate, Livermore, CA 94551 USA.
EM ebbersl@llnl.gov
NR 0
TC 1
Z9 1
U1 0
U2 0
PU PENNWELL PUBL CO
PI NASHUA
PA 98 SPIT BROOK RD, NASHUA, NH 03062-2801 USA
SN 1043-8092
J9 LASER FOCUS WORLD
JI Laser Focus World
PD MAR
PY 2009
VL 45
IS 3
BP 51
EP +
PG 4
WC Optics
SC Optics
GA 423VH
UT WOS:000264523300022
ER
PT J
AU Sheik-Bahae, M
Epstein, RI
AF Sheik-Bahae, Mansoor
Epstein, Richard I.
TI Laser cooling of solids
SO LASER & PHOTONICS REVIEWS
LA English
DT Review
DE Solid-state laser cooling; optical refrigeration; anti-Stokes
fluorescence; luminescence up-conversion; rare-earth doped solids;
direct band-gap semiconductors; all-solid-state cryocooler; external
quantum efficiency; GaAs; differential luminescence thermometry
ID THULIUM-DOPED GLASS; ROOM-TEMPERATURE; OPTICAL REFRIGERATION; INTERFACE
RECOMBINATION; DOUBLE HETEROSTRUCTURES; SPONTANEOUS EMISSION; QUANTUM
EFFICIENCY; UP-CONVERSION; SEMICONDUCTORS; ABSORPTION
AB We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocoolers. We chart the evolution of this science in rare-earth doped solids and semiconductors.
C1 [Sheik-Bahae, Mansoor; Epstein, Richard I.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
[Epstein, Richard I.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Sheik-Bahae, M (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA.
EM msb@unm.edu
NR 84
TC 71
Z9 71
U1 6
U2 54
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1863-8880
J9 LASER PHOTONICS REV
JI Laser Photon. Rev.
PD MAR
PY 2009
VL 3
IS 1-2
BP 67
EP 84
DI 10.1002/lpor.200810038
PG 18
WC Optics; Physics, Applied; Physics, Condensed Matter
SC Optics; Physics
GA 422IL
UT WOS:000264420800006
ER
PT J
AU Madden, ME
Ulrich, S
Szymcek, P
McCallum, S
Phelps, T
AF Madden, Megan Elwood
Ulrich, Shannon
Szymcek, Phillip
McCallum, Scott
Phelps, Tommy
TI Experimental formation of massive hydrate deposits from accumulation of
CH4 gas bubbles within synthetic and natural sediments
SO MARINE AND PETROLEUM GEOLOGY
LA English
DT Article
DE Methane hydrates; Sediments; Massive deposits; Nodules; Veins; Free gas;
Methane
ID MOSBY MUD VOLCANO; STABILITY ZONE; CONTINENTAL-SLOPE; METHANE HYDRATE;
SEA-FLOOR; MICROBIAL PROCESSES; BLAKE RIDGE; FORE-ARC; SUBSURFACE;
MIGRATION
AB In order for methane to be economically produced from the seafloor, prediction and detection of massive hydrate deposits will be necessary. In many cases, hydrate samples recovered from seafloor sediments appear as veins or nodules, suggesting that there are strong geologic controls on where hydrate is likely to accumulate. Experiments have been conducted examining massive hydrate accumulation from methane gas bubbles within natural and synthetic sediments in a large volume pressure vessel through temperature and pressure data, as well as visual observations. Observations of hydrate growth suggest that accumulation of gas bubbles within void spaces and at sediment interfaces likely results in the formation of massive hydrate deposits. Methane hydrate was first observed as a thin film forming at the gas/water interface of methane bubbles trapped within sediment void spaces. As bubbles accumulated, massive hydrate growth occurred. These experiments suggest that in systems containing free methane gas, bubble pathways and accumulation points likely control the location and habit of massive hydrate deposits. (c) 2008 Elsevier Ltd. All rights reserved.
C1 [Madden, Megan Elwood] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA.
[Ulrich, Shannon; Szymcek, Phillip; McCallum, Scott; Phelps, Tommy] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Madden, ME (reprint author), Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA.
EM melwood@ou.edu
RI phelps, tommy/A-5244-2011; Elwood Madden, Megan/C-3381-2009; Mavoa,
Suzanne/B-5372-2010; Ulrich, Shannon/J-9492-2012
FU DOE's Fossil Energy Methane Hydrate Program; ORNL's Wigner Fellowship
Program [DE-AC05-00OR22725]
FX Funding for this project was provided by DOE's Fossil Energy Methane
Hydrate Program. MEEM was supported by ORNL's Wigner Fellowship Program.
ORNL is managed by UT-Battelle, LCC, for the U.S. Department of Energy
under contract DE-AC05-00OR22725. The authors wish to thank Dave
Riestenberg, Patricia Taboada-Serrano, and Lisa Fagan who provided
experimental and technical support for the project as well as helpful
discussions.
NR 44
TC 12
Z9 18
U1 0
U2 12
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0264-8172
EI 1873-4073
J9 MAR PETROL GEOL
JI Mar. Pet. Geol.
PD MAR
PY 2009
VL 26
IS 3
BP 369
EP 378
DI 10.1016/j.marpetgeo.2008.04.002
PG 10
WC Geosciences, Multidisciplinary
SC Geology
GA 411AW
UT WOS:000263620800006
ER
PT J
AU Tang, YJ
Martin, HG
Myers, S
Rodriguez, S
Baidoo, EEK
Keasling, JD
AF Tang, Yinjie J.
Martin, Hector Garcia
Myers, Samuel
Rodriguez, Sarah
Baidoo, Edward E. K.
Keasling, Jay D.
TI ADVANCES IN ANALYSIS OF MICROBIAL METABOLIC FLUXES VIA C-13 ISOTOPIC
LABELING
SO MASS SPECTROMETRY REVIEWS
LA English
DT Review
DE steady state; mini-bioreactor; mass spectrometry; isotopomer modeling;
functional genomics
ID BIDIRECTIONAL REACTION STEPS; SHEWANELLA-ONEIDENSIS MR-1; CENTRAL CARBON
METABOLISM; CHROMATOGRAPHY-MASS SPECTROMETRY; GC-MS ANALYSIS;
ESCHERICHIA-COLI; BACILLUS-SUBTILIS; AMINO-ACIDS;
CORYNEBACTERIUM-GLUTAMICUM; C-13-LABELING EXPERIMENTS
AB Metabolic flux analysis via C-13 labeling (C-13 MFA) quantitatively tracks metabolic pathway activity and determines overall enzymatic function in cells. Three core techniques are necessary for C-13 MFA: (1) a steady state cell culture in a defined medium with labeled-carbon substrates; (2) precise measurements of the labeling pattern of targeted metabolites; and (3) evaluation of the data sets obtained from mass spectrometry measurements with a computer model. to calculate the metabolic fluxes. In this review, we summarize recent advances in the C-13-flux analysis technologies, including mini-bioreactor usage for tracer experiments. isotopomer analysis of metabolites via high resolution mass spectrometry (such as GC-MS, LC-MS, or FT-ICR), high performance and large-scale isotopomer modeling programs for flux analysis, and the integration of fluxomics with other functional genomics studies. It will be shown that there is a significant value for 13 C-based metabolic flux analysis in many biological research fields. (C) 2008 Wiley Periodicals, Inc., Mass Spec Rev 28:362-375, 2009
C1 [Tang, Yinjie J.; Martin, Hector Garcia; Keasling, Jay D.] Joint Bioenergy Inst, Emeryville, CA 94608 USA.
[Tang, Yinjie J.; Baidoo, Edward E. K.; Keasling, Jay D.] Virtual Inst Microbial Stress & Survival, Berkeley, CA USA.
[Tang, Yinjie J.; Martin, Hector Garcia; Baidoo, Edward E. K.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA.
[Tang, Yinjie J.; Myers, Samuel; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Rodriguez, Sarah] Univ Calif Berkeley, Dept Mol Cell Biol, Berkeley, CA 94720 USA.
[Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.
RP Keasling, JD (reprint author), Joint Bioenergy Inst, 5885 Hollis, Emeryville, CA 94608 USA.
EM keasling@berkeley.edu
RI Garcia Martin, Hector/B-5357-2009; Keasling, Jay/J-9162-2012
OI Garcia Martin, Hector/0000-0002-4556-9685; Keasling,
Jay/0000-0003-4170-6088
NR 101
TC 78
Z9 84
U1 7
U2 50
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0277-7037
J9 MASS SPECTROM REV
JI Mass Spectrom. Rev.
PD MAR-APR
PY 2009
VL 28
IS 2
BP 362
EP 375
DI 10.1002/mas.20191
PG 14
WC Spectroscopy
SC Spectroscopy
GA 410MA
UT WOS:000263580200007
PM 19025966
ER
PT J
AU Picard, RR
Booth, TE
AF Picard, Richard R.
Booth, Thomas E.
TI Ensuring finite moments in Monte Carlo simulations via iterated ex post
facto sampling
SO MATHEMATICS AND COMPUTERS IN SIMULATION
LA English
DT Article
DE Central limit theorem; Valid confidence intervals; Infinite variance
distributions
AB Monte Carlo simulations may involve skewed, heavy-tailed distributions. When variances of those distributions exist, statistically valid confidence intervals can be obtained using the central limit theorem, providing that the simulation is run "long enough." If variances do not exist, however, valid confidence intervals are difficult or impossible to obtain. The main result in this paper establishes that upon replacing ordinary Monte Carlo sampling of such heavy-tailed distributions with ex post facto sampling, estimates having finite moments of all orders are ensured for the most common class of infinite variance distributions. We conjecture that this phenomenon applies to all distributions (having finite means) when the ex post facto process is iterated. (C) 2008 Published by Elsevier B.V. on behalf of IMACS.
C1 [Picard, Richard R.] Los Alamos Natl Lab, Stat Grp, Los Alamos, NM 87545 USA.
[Booth, Thomas E.] Los Alamos Natl Lab, Computat Anal & Simulat Grp, Los Alamos, NM 87545 USA.
RP Picard, RR (reprint author), Los Alamos Natl Lab, Stat Grp, POB 1663, Los Alamos, NM 87545 USA.
EM picard@lanl.gov; teb@lanl.gov
NR 8
TC 3
Z9 3
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4754
EI 1872-7166
J9 MATH COMPUT SIMULAT
JI Math. Comput. Simul.
PD MAR
PY 2009
VL 79
IS 7
BP 2106
EP 2121
DI 10.1016/j.matcom.2008.11.014
PG 16
WC Computer Science, Interdisciplinary Applications; Computer Science,
Software Engineering; Mathematics, Applied
SC Computer Science; Mathematics
GA 429KB
UT WOS:000264918200009
ER
PT J
AU Chen, XY
Beyerlein, IJ
Brinson, LC
AF Chen, Xinyu
Beyerlein, Irene J.
Brinson, L. Catherine
TI Curved-fiber pull-out model for nanocomposites. Part 1: Bonded stage
formulation
SO MECHANICS OF MATERIALS
LA English
DT Article
ID NANOTUBE-REINFORCED COMPOSITES; BRITTLE-MATRIX COMPOSITES;
MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; CARBON NANOTUBES; POLYMER
COMPOSITES; STRESS TRANSFER; SHEAR-LAG; LOAD-TRANSFER; INTERFACE
AB This is the first part of two papers in which an analytical curved-fiber pull-out model for nanocomposites is proposed. In nanotube-reinforced polymer composites, nanotubes are typically Curved and entangled, a reinforcement morphology that will greatly impact the thermomechanical properties of the material. As the first step to explicitly take into account nanotube curvature and study its effect on nanocomposite mechanical properties, we develop a pull-out model in which the fiber has constant curvature. The model includes the entire pull-out process, namely the bonded, debonding, and sliding stages. In this first paper we formulate the bonded stage based on classic shear lag model assumptions and develop a 3D finite element model to verify assumptions. The results from a parametric study indicate that fibers with more curvature and longer embedded length need higher debond initiation force. The finite element results and analytical results show agreement both qualitatively and quantitatively. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Chen, Xinyu; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.
[Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM cbrinson@northwestern.edu
RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013;
Beyerlein, Irene/A-4676-2011
OI Brinson, L Catherine/0000-0003-2551-1563;
NR 84
TC 23
Z9 23
U1 1
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-6636
J9 MECH MATER
JI Mech. Mater.
PD MAR
PY 2009
VL 41
IS 3
BP 279
EP 292
DI 10.1016/j.mechmat.2008.12.004
PG 14
WC Materials Science, Multidisciplinary; Mechanics
SC Materials Science; Mechanics
GA 425QN
UT WOS:000264652300009
ER
PT J
AU Chen, XY
Beyerlein, IJ
Brinson, LC
AF Chen, Xinyu
Beyerlein, Irene J.
Brinson, L. Catherine
TI Curved-fiber pull-out model for nanocomposites. Part 2: Interfacial
debonding and sliding
SO MECHANICS OF MATERIALS
LA English
DT Article
ID NANOTUBE-REINFORCED COMPOSITES; CERAMIC MATRIX COMPOSITES;
MECHANICAL-PROPERTIES; POLYMER COMPOSITES; CARBON NANOTUBES; STRESS
TRANSFER; FIBROUS COMPOSITES; SHEAR-STRENGTH; BOND STRENGTH; MODULUS
AB This paper is the second part in a series of works in which an analytical curved-fiber pull-out model for nanocomposites is proposed. The model includes the three stages of interface conditions-well-bonded, debonding, and sliding-involved in the entire pull-out process of a single curved fiber. In the first paper, the fiber and matrix are well-bonded, while in this second paper, the fiber and matrix are allowed to debond and slide, two relevant mechanisms in the later stages of pull-out. With either a constant or Coulomb friction interface, the pull-out model predicts higher pull-out forces as the fiber curvature increases, with zero fiber curvature (a straight fiber) producing the lowest pull-out forces. Fiber curvature effects are more pronounced, however, for the Coulomb friction model than the constant friction model because it considers radial compressive stresses at fiber/matrix interface. For the Coulomb friction model, two-dimensional finite element simulations are performed to test some of the model's approximation. Results indicate reasonable agreement between the two. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Chen, Xinyu; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.
[Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM cbrinson@northwestern.edu
RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013;
Beyerlein, Irene/A-4676-2011
OI Brinson, L Catherine/0000-0003-2551-1563;
NR 68
TC 22
Z9 22
U1 0
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-6636
J9 MECH MATER
JI Mech. Mater.
PD MAR
PY 2009
VL 41
IS 3
BP 293
EP 307
DI 10.1016/j.mechmat.2008.12.002
PG 15
WC Materials Science, Multidisciplinary; Mechanics
SC Materials Science; Mechanics
GA 425QN
UT WOS:000264652300010
ER
PT J
AU Shah, AP
Strauss, JB
Kirk, MC
Chen, SS
Kroc, TK
Zusag, TW
AF Shah, Anand P.
Strauss, Jonathan B.
Kirk, Michael C.
Chen, Sea S.
Kroc, Thomas K.
Zusag, Thomas W.
TI UPRIGHT 3D TREATMENT PLANNING USING A VERTICAL CT
SO MEDICAL DOSIMETRY
LA English
DT Article
DE Vertical CT; Radiation; Upright; Immobilization
ID IRRADIATION; VOLUME
AB In this report, we describe a novel technique used to plan and administer external beam radiation therapy to a patient in the upright position. A patient required reirradiation for thymic carcinoma but was unable to tolerate the supine position due to bilateral phrenic nerve injury and paralysis of the diaphragm. Computed tomography (CT) images in the upright position were acquired at the Northern Illinois University Institute for Neutron Therapy at Fermilab. The CT data were imported into a standard 3-dimensional (3D) treatment planning system. Treatment was designed to deliver 24 Gy to the target volume while respecting normal tissue tolerances. A custom chair that locked into the treatment table indexing system was constructed for immobilization, and port films verified the reproducibility of setup. Radiation was administered using mixed photon and electron AP fields. (C) 2009 American Association of Medical Dosimetrists.
C1 [Shah, Anand P.] Rush Univ, Med Ctr, Womens Board Treatment Ctr, Dept Radiat Oncol, Chicago, IL 60612 USA.
No Illinois Univ, Inst Neutron Therapy, Fermilab, Batavia, IL USA.
RP Shah, AP (reprint author), Rush Univ, Med Ctr, Womens Board Treatment Ctr, Dept Radiat Oncol, 500 S Paulina,Atrium Bldg, Chicago, IL 60612 USA.
EM anand_shah@rush.edu
OI Strauss, Jonathan/0000-0003-0175-7251
NR 7
TC 3
Z9 3
U1 0
U2 2
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0958-3947
J9 MED DOSIM
JI Med. Dosim.
PD SPR
PY 2009
VL 34
IS 1
BP 82
EP 86
DI 10.1016/j.meddos.2008.05.004
PG 5
WC Oncology; Radiology, Nuclear Medicine & Medical Imaging
SC Oncology; Radiology, Nuclear Medicine & Medical Imaging
GA 413SK
UT WOS:000263812600013
PM 19181260
ER
PT J
AU Williams, PT
AF Williams, Paul T.
TI Lower Prevalence of Hypertension, Hypercholesterolemia, and Diabetes in
Marathoners
SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE
LA English
DT Article
DE EXERCISE; RUNNING; BODY MASS INDEX; METABOLIC SYNDROME; PREVENTION
ID AMERICAN-HEART-ASSOCIATION; RISK-FACTORS; PHYSICAL-ACTIVITY; VIGOROUS
EXERCISE; SKELETAL-MUSCLE; SPORTS-MEDICINE; FEMALE RUNNERS; MEDICATION
USE; AEROBIC POWER; WEIGHT-GAIN
AB WILLIAMS, P. T. Lower Prevalence of hypertension, hypercholesterolemia, and Diabetes in Marathoners. Med. Sci, Sports Exerc., Vol, 41, No. 3, pp. 523 529, 2009. Purpose: To test whether the prevalence of hypertension, hypercholesterolemia, and diabetes declines with marathon participation independent of annual running mileage. Methods: Cross-sectional associations of self-reported medication use in 62,294 male and 45,040 female participants of the National Runners' Health Study adjusted for age, diet, alcohol, and annual distance run. Results: By self-report, 31.7% of men and 29.1% of women ran 0.2 and 0.8 marathons per year, 8.6% of men and 4.4% of women ran between 1.0 and 1.8 marathons per year, and 3.8% of men and 1.5% of women ran all average of >= 2 marathons per year. The men's odds ratio per marathons per year run was 0.85 for antillypertensive (P < 0.0001), 0.87 for LDL-cholesterol lowering (P < 0.002), and 0.52 for antidiabetic medication use (P < 0.0001), Compared with nonmarathoners, men who averaged 0.2-0.8 marathons per year had 13% lower odds for antihypertensive medication use, 22% lower odds for LDL-cholesterol lowering medication use, and 67% lower odds for antidiabetic medication use. Marathon participation was also associated with lower LDL-cholesterol-lowering and antidiabetic medication use in women, bill not when adjusted for annual distance run. Each additional hour required to complete their marathon had odds ratio of 1.31 and 1.22 for men's antihypertensive and LDL-cholesterol lowering medication use and 2.01 for women's antidiabetic medication use (all P < 0.0001). Among all runners (marathoners and nonmarathoners combined), prevalence in the use of all three medications decreased in association with the length of the longest usual run, independent of total annual mileage. Conclusion: Prevalence of hypertension, hypercholesterolemia, and diabetes decreases with the frequency of marathon participation independent of annual running distance. This may be due to the inclusion of longer training runs in preparation for marathons or to genetic or other innate differences between marathon and nonmarathon runners.
C1 Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA.
RP Williams, PT (reprint author), Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA.
EM ptwilliams@lbl.gov
FU NHLBI NIH HHS [R01 HL072110, HL-72110, R01 HL072110-04, HL-45652]; NIDDK
NIH HHS [R01 DK066738-04, DK066738, R01 DK066738]
NR 40
TC 11
Z9 12
U1 0
U2 2
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA
SN 0195-9131
J9 MED SCI SPORT EXER
JI Med. Sci. Sports Exerc.
PD MAR
PY 2009
VL 41
IS 3
BP 523
EP 529
DI 10.1249/MSS.0b13e31818c1752
PG 7
WC Sport Sciences
SC Sport Sciences
GA 412VL
UT WOS:000263752200006
PM 19204599
ER
PT J
AU Fan, TWM
Bird, JA
Brodie, EL
Lane, AN
AF Fan, Teresa W. -M.
Bird, Jeffrey A.
Brodie, Eoin L.
Lane, Andrew N.
TI C-13-Isotopomer-based metabolomics of microbial groups isolated from two
forest soils
SO METABOLOMICS
LA English
DT Article
DE 2D solution-state NMR; 2D solid-state C-13 NMR; Gram negative bacteria;
Gram positive bacteria; Actinobacteria; Fungi
ID CARBON; NMR; TRANSCRIPTOMICS; IDENTIFICATION; METABOLITES; PATTERNS;
WORLD
AB Soil microorganisms are the primary mediators of organic matter decomposition and humification processes in soil, which represent a critical C flux in the global C cycle. Little is known about how soil microbes regulate carbon cycling including the contribution of their own biomass to stable soil organic matter. A comprehensive understanding of microbial composition is a first step to unraveling microbial regulation of soil humification processes. For this purpose, we isolated 23 microbial strains representing four major groups (Gram (+) bacteria, Gram (-) bacteria, Actinobacteria, and Fungi) from a temperate and a tropical forest soil. The microbial isolates were cultured with uniformly C-13-labeled glucose as the C source such that all biochemical components synthesized from glucose were C-13 labeled. This approach enabled field mesocosm experiments on tracking microbial decomposition, while facilitating solution- and solid-state NMR analysis of microbial composition. Polar and lipid extracts of labeled biomass of the four microbial groups from the two forest sites were profiled by 2D NMR methods, including high-resolution heteronuclear single quantum coherence spectroscopy and HCCH-total correlation spectroscopy. This C-13 labeling approach also enabled the analysis of intact biomass by 2D solid-state C-13-C-13 correlation spectroscopy. Distinction between microbial groups and sites was observed in the polar and lipophilic metabolite profiles. Dominant differences could also be related to the capacity for lipid beta-oxidation or adaptation to desiccation. Solid-state NMR further revealed differential synthetic capacity for glycolipids among groups. This technology coupled with C-13 metabolite profiling should facilitate future functional annotation of indigenous microbial genomes.
C1 [Fan, Teresa W. -M.; Lane, Andrew N.] Univ Louisville, Dept Chem, CREAM, Louisville, KY 40208 USA.
[Fan, Teresa W. -M.; Lane, Andrew N.] Univ Louisville, James Graham Brown Canc Ctr, Louisville, KY 40202 USA.
[Bird, Jeffrey A.] CUNY, Queens Coll, Sch Earth & Environm Sci, Flushing, NY 11367 USA.
[Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA.
RP Fan, TWM (reprint author), Univ Louisville, Dept Chem, CREAM, 2210 S Brook St,Belknap Res Bldg,Rm 348, Louisville, KY 40208 USA.
EM teresa.fan@louisville.edu
RI Bird, Jeffrey/H-8751-2012; Brodie, Eoin/A-7853-2008
OI Bird, Jeffrey/0000-0002-0939-0637; Brodie, Eoin/0000-0002-8453-8435
FU NSF [DEB0343577, EPS-0447479]; U. S. Department of Energy; University of
California; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]
FX This work was supported by NSF grants DEB0343577 and EPS-0447479. NMR
spectra were recorded at the J. G. Brown Cancer Center NMR facility.
Part of this work was performed under the auspices of the U. S.
Department of Energy by the University of California, Lawrence Berkeley
National Laboratory, under contract DE-AC02-05CH11231. We thank T.
Shimada, E. Long and J. Fortney for their assistance with the microbial
isolation, screening and culture of the microorganisms; and S. Arumugam
for help with solid state NMR. We also thank Drs. Mary Firestone and
Richard Higashi for helpful discussion.
NR 25
TC 14
Z9 14
U1 1
U2 35
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1573-3882
J9 METABOLOMICS
JI Metabolomics
PD MAR
PY 2009
VL 5
IS 1
BP 108
EP 122
DI 10.1007/s11306-008-0150-2
PG 15
WC Endocrinology & Metabolism
SC Endocrinology & Metabolism
GA 413MW
UT WOS:000263798200010
ER
PT J
AU Goldstein, JI
Yang, J
Kotula, PG
Michael, JR
Scott, ERD
AF Goldstein, J. I.
Yang, J.
Kotula, P. G.
Michael, J. R.
Scott, E. R. D.
TI Thermal histories of IVA iron meteorites from transmission electron
microscopy of the cloudy zone microstructure
SO METEORITICS & PLANETARY SCIENCE
LA English
DT Article
ID METALLOGRAPHIC COOLING RATES; TEMPERATURE PHASE-DECOMPOSITION;
STONY-IRON; METAL; MODEL
AB We have measured the size of the high-Ni particles in the cloudy zone and the width of the outer taenite rim in eight low shocked and eight moderately to heavily shocked IVA irons Using a transmission electron microscope (TEM). Thin sections for TEM analysis were produced by a focused ion beam instrument. Use of the TEM allowed LIS to avoid potential artifacts which may be introduced during specimen preparation for SEM analysis of high Ni particles < 30 nm in size and to identify microchemical and microstructural changes due to the effects of shock induced reheating. No cloudy zone was observed in five of the eight moderately to highly shocked (> 13 GPa) IVA irons that were examined in the TEM. Shock induced reheating has allowed for diffusion from 20 nm to 400 nm across kamacite/taenite boundaries, recrystallization of kamacite, and the formation, in Jamestown. of taenite grain boundaries. In the eleven IVA irons With cloudy zone microstructure, the size of the high-Ni particles in the cloudy zone increases directly with increasing bulk Ni content. Our data and the inverse correlation between cooling rate and high-Ni particle size for irons and stony-irons show that IVA cooling rates at 350-200 degrees C are inversely correlated with bulk Ni concentration and vary by a factor of about 15. This cooling rate variation is incompatible with cooling in a metallic core that was insulated with a silicate mantle, but is compatible with cooling in a metallic body of radius 150 +/- 50 kill. The widths of the tetrataenite regions next to the cloudy zone correlate directly with high-Ni particle size providing another method to measure low, temperature cooling rates.
C1 [Goldstein, J. I.; Yang, J.] Univ Massachusetts, Dept Mech & Ind Engn, Engn Lab 313, Amherst, MA 01003 USA.
[Kotula, P. G.; Michael, J. R.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA.
[Scott, E. R. D.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA.
RP Goldstein, JI (reprint author), Univ Massachusetts, Dept Mech & Ind Engn, Engn Lab 313, 160 Governors Dr, Amherst, MA 01003 USA.
EM jig0@ecs.umass.edu
RI Kotula, Paul/A-7657-2011
OI Kotula, Paul/0000-0002-7521-2759
FU NASA [NNG05GK84G, NNX08AE08G]; United Stated Department of Energy's
National Nuclear Security Administration [DE-AC0494AL85000]
FX The financial Support from NASA through grant NNG05GK84G (J. I.
Goldstein, P. I.) and NNX08AE08G (K. Keil, P. I.) is acknowledged.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United Stated Department of Energy's
National Nuclear Security Administration under contract
DE-AC0494AL85000. We thank Mr. Michael Rye and Ms. Bonnie McKensie
(Sandia) for assistance with the FIB samples and SEM analysis,
respectively. We also thank H. Haack, H. Watson, and N. Chabot for their
helpful reviews.
NR 19
TC 20
Z9 20
U1 0
U2 13
PU METEORITICAL SOC
PI FAYETTEVILLE
PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA
SN 1086-9379
J9 METEORIT PLANET SCI
JI Meteorit. Planet. Sci.
PD MAR
PY 2009
VL 44
IS 3
BP 343
EP 358
PG 16
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 445EM
UT WOS:000266032600002
ER
PT J
AU Scheibe, TD
Mahadevan, R
Fang, YL
Garg, S
Long, PE
Lovley, DR
AF Scheibe, Timothy D.
Mahadevan, Radhakrishnan
Fang, Yilin
Garg, Srinath
Long, Philip E.
Lovley, Derek R.
TI Coupling a genome-scale metabolic model with a reactive transport model
to describe in situ uranium bioremediation
SO MICROBIAL BIOTECHNOLOGY
LA English
DT Article
ID GEOBACTER-SULFURREDUCENS; ESCHERICHIA-COLI; BIOGEOCHEMICAL PROCESSES;
CONTAMINATED AQUIFER; FIELD-SCALE; REDUCTION; GROWTH; SEDIMENTS;
GROUNDWATER; FE(III)
AB The increasing availability of the genome sequences of microorganisms involved in important bioremediation processes makes it feasible to consider developing genome-scale models that can aid in predicting the likely outcome of potential subsurface bioremediation strategies. Previous studies of the in situ bioremediation of uranium-contaminated groundwater have demonstrated that Geobacter species are often the dominant members of the groundwater community during active bioremediation and the primary organisms catalysing U(VI) reduction. Therefore, a genome-scale, constraint-based model of the metabolism of Geobacter sulfurreducens was coupled with the reactive transport model HYDRO-GEOCHEM in an attempt to model in situ uranium bioremediation. In order to simplify the modelling, the influence of only three growth factors was considered: acetate, the electron donor added to stimulate U(VI) reduction; Fe(III), the electron acceptor primarily supporting growth of Geobacter; and ammonium, a key nutrient. The constraint-based model predicted that growth yields of Geobacter varied significantly based on the availability of these three growth factors and that there are minimum thresholds of acetate and Fe(III) below which growth and activity are not possible. This contrasts with typical, empirical microbial models that assume fixed growth yields and the possibility for complete metabolism of the substrates. The coupled genome-scale and reactive transport model predicted acetate concentrations and U(VI) reduction rates in a field trial of in situ uranium bioremediation that were comparable to the predictions of a calibrated conventional model, but without the need for empirical calibration, other than specifying the initial biomass of Geobacter. These results suggest that coupling genome-scale metabolic models with reactive transport models may be a good approach to developing models that can be truly predictive, without empirical calibration, for evaluating the probable response of subsurface microorganisms to possible bioremediation approaches prior to implementation.
C1 [Scheibe, Timothy D.; Fang, Yilin; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Mahadevan, Radhakrishnan; Garg, Srinath] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 1A1, Canada.
[Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.
RP Scheibe, TD (reprint author), Pacific NW Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA.
EM tim.scheibe@pnl.gov
RI Scheibe, Timothy/A-8788-2008; Mahadevan, Radhakrishnan/A-8502-2008;
Long, Philip/F-5728-2013; Fang, Yilin/J-5137-2015
OI Scheibe, Timothy/0000-0002-8864-5772; Mahadevan,
Radhakrishnan/0000-0002-1270-9063; Long, Philip/0000-0003-4152-5682;
FU Office of Science (BER), US Deparment of Energy [DE-FC02-02ER63446,
DE-FG02-07ER64367]
FX This research was supported by the Office of Science (BER), US Deparment
of Energy, Cooperative Agreement No. DE-FC02-02ER63446 and Grant No.
DE-FG02-07ER64367. Pacific Northwest National Laboratory is operated by
Battelle for the US Department of Energy.
NR 53
TC 44
Z9 45
U1 2
U2 21
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 1751-7907
J9 MICROB BIOTECHNOL
JI Microb. Biotechnol.
PD MAR
PY 2009
VL 2
IS 2
SI SI
BP 274
EP 286
DI 10.1111/j.1751-7915.2009.00087.x
PG 13
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA V16XX
UT WOS:000207903400034
PM 21261921
ER
PT J
AU Keller, M
Hettich, R
AF Keller, Martin
Hettich, Robert
TI Environmental Proteomics: a Paradigm Shift in Characterizing Microbial
Activities at the Molecular Level
SO MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS
LA English
DT Review
ID MASS-SPECTROMETRY; GEL-ELECTROPHORESIS; PROTEIN IDENTIFICATION;
COMMUNITY PROTEOMICS; MICROFLUIDIC DEVICE; DIRECT EXTRACTION;
ACTIVATED-SLUDGE; LC-MS/MS; SOIL; REACTOR
AB The increase in sequencing capacity led to a new wave of metagenomic projects, enabling and setting the prerequisite for the application of environmental proteomics technologies. This review describes the current status of environmental proteomics. It describes sample preparation as well as the two major technologies applied within this field: two-dimensional electrophoresis-based environmental proteomics and liquid chromatography-mass spectrometry-based environmental proteomics. It also highlights current publications and describes major scientific findings. The review closes with a discussion of critical improvements in the area of integrating experimental mass spectrometry technologies with bioinformatics as well as improved sample handling.
C1 [Keller, Martin] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.
[Hettich, Robert] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Keller, M (reprint author), Oak Ridge Natl Lab, Biosci Div, 1 Bethel Valley Rd,POB 2008,MS 6026, Oak Ridge, TN 37831 USA.
EM kellerm@ornl.gov
RI Keller, Martin/C-4416-2012; Hettich, Robert/N-1458-2016
OI Hettich, Robert/0000-0001-7708-786X
FU U. S. Department of Energy Office of Science; Department of Energy
[DOE-AC05-00OR22725]
FX M. K. and R. H. are partially supported by the U. S. Department of
Energy through the BioEnergy Science Center. The BioEnergy Science
Center is a U. S. Department of Energy Bioenergy Research Center
supported by the Office of Biological and Environmental Research in the
U. S. Department of Energy Office of Science. Oak Ridge National
Laboratory is managed by University of Tennessee-Battelle, LLC, for the
Department of Energy under contract DOE-AC05-00OR22725.
NR 67
TC 72
Z9 74
U1 1
U2 38
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 1092-2172
J9 MICROBIOL MOL BIOL R
JI Microbiol. Mol. Biol. Rev.
PD MAR
PY 2009
VL 73
IS 1
BP 62
EP +
DI 10.1128/MMBR.00028-08
PG 10
WC Microbiology
SC Microbiology
GA 414ID
UT WOS:000263856200005
PM 19258533
ER
PT J
AU Lucovsky, G
Lee, S
Long, JP
Seo, H
Luning, J
AF Lucovsky, G.
Lee, S.
Long, J. P.
Seo, H.
Luening, J.
TI Interfacial transition regions at germanium/Hf oxide based dielectric
interfaces: Qualitative differences between non-crystalline Hf Si
oxynitride and nanocrystalline HfO2 gate stacks
SO MICROELECTRONIC ENGINEERING
LA English
DT Article; Proceedings Paper
CT 4th IEEE International Symposium on Advanced Gate Stack Technology
(ISAGST)
CY 2007
CL Dallas, TX
SP IEEE
DE High-K gate dielectrics; MOS devices; Interfacial transition regions;
X-ray absorption spectroscopy; Spectroscopic ellipsometry; Di-vacancy
defects; Native Ge dielectrics; Ge Substrates
ID INTRINSIC DEFECTS; ELEMENTAL OXIDES; MOS CAPACITORS; DEVICES; PHASE
AB The contribution from a relatively low-K SiON (K similar to 6) interfacial transition region (ITR) between Si and transition metal high-K gate dielectric such as nanocrystalline HfO2 (K similar to 20), and non-crystalline Hf Si oxynitride (K similar to 10-12) places a significant limitation on equivalent oxide thickness (EOT) scaling. This limitation is equally Significant for metal-oxide-semiconductor capacitors and field effect transistors, MOSCAPs and MOSFETs, respectively, fabricated on Ge substrates. This article uses a novel remote plasma processing approach to remove native Ge ITRs and bond transition metal gate dielectrics directly onto crystalline Ge Substrates. Proceeding in this way we identify(i) the source of significant electron trapping at interfaces between Ge and Ge native oxide, nitride and oxynitride ITRs, and (ii) a methodology for eliminating native oxide, or nitride IRTs on Ge, and achieving direct contact between nanocrystalline HfO2 and non-crystalline high Si3N4 content Hf Si oxynitride alloys, and crystalline Ge substrates. We their combine spectroscopic studies, theory and modeling with electrical measurements to demonstrate the relative performance of qualitatively different nanocrystalline and non-crystalline gate dielectrics to MOS Ge test devices. (C) 2008 Elsevier B.V. All rights reserved
C1 [Lucovsky, G.; Lee, S.; Long, J. P.; Seo, H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
[Lucovsky, G.; Lee, S.; Long, J. P.; Seo, H.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA.
[Luening, J.] SSRL, Menlo Pk, CA 94025 USA.
RP Lucovsky, G (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
EM lucovsky@ncsu.edu
NR 40
TC 6
Z9 6
U1 2
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-9317
J9 MICROELECTRON ENG
JI Microelectron. Eng.
PD MAR
PY 2009
VL 86
IS 3
BP 224
EP 234
DI 10.1016/j.mee.2008.05.023
PG 11
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology;
Optics; Physics, Applied
SC Engineering; Science & Technology - Other Topics; Optics; Physics
GA 426XZ
UT WOS:000264743100005
ER
PT J
AU Kudrawiec, R
Poloczek, P
Misiewicz, J
Shafi, M
Ibanez, J
Mari, RH
Henini, M
Schmidbauer, M
Novikov, SV
Turyanska, L
Molina, SI
Sales, DL
Chisholm, MF
AF Kudrawiec, R.
Poloczek, P.
Misiewicz, J.
Shafi, M.
Ibanez, J.
Mari, R. H.
Henini, M.
Schmidbauer, M.
Novikov, S. V.
Turyanska, L.
Molina, S. I.
Sales, D. L.
Chisholm, M. F.
TI Photomodulated transmittance of GaBiAs layers grown on (001) and (311)B
GaAs substrates
SO MICROELECTRONICS JOURNAL
LA English
DT Article
CT Workshop on Recent Advances on Low Dimensional Structures and Devices
CY APR 07-09, 2008
CL Univ Nottingham, Nottingham, ENGLAND
HO Univ Nottingham
DE GaBiAs; Photomodulated transmittance; Energy gap
ID MOLECULAR-BEAM EPITAXY; MODULATION SPECTROSCOPY; GAAS1-XBIX
AB In this work, photomodulated transmittance (PT) has been applied to investigate the energy gap of GaBiAs layers grown on (001) and (311)B GaAs substrates. In PT spectra, a clear resonance has been observed below the GaAs edge. This resonance has been attributed to the energy gap-related absorption in GaBiAs. The energy and broadening of PT resonances have been determined using a standard approach in electromodulation spectroscopy. it has been found that the crystallographic orientation of GaAs substrate influences on the incorporation of Bi atoms into GaAs and quality of GaBiAs layers. The Bi-related energy gap reduction has been determined to be similar to 90 meV per percent of Bi. In addition to PT spectra, common transmittance spectra have been measured and the energy gap of GaBiAs has been determined from the square of the absorption coefficient alpha(2) around the band-gap edge. It has been found that the tail of density of states is significant for GaBiAs and influences the accuracy of energy gap determination from the alpha(2) plot. In the case of PT spectra, the energy gap is determined unambiguously since this technique is directly sensitive to singularities in the density of states. (c) 2008 Published by Elsevier Ltd.
C1 [Kudrawiec, R.; Poloczek, P.; Misiewicz, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland.
[Shafi, M.; Mari, R. H.; Henini, M.; Novikov, S. V.; Turyanska, L.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England.
[Ibanez, J.] Consell Super Invest Cient, Inst Jaume Almera, Barcelona 08028, Catalonia, Spain.
[Schmidbauer, M.] Inst Crystal Growth, D-12489 Berlin, Germany.
[Molina, S. I.; Sales, D. L.] Univ Cadiz, Dept Ciencia Mat IM & Ql, Fac Ciencias, Cadiz 11510, Spain.
[Chisholm, M. F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Kudrawiec, R (reprint author), Wroclaw Univ Technol, Inst Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland.
EM robert.kudrawiec@pwr.wroc.pl
RI Molina, Sergio/A-8241-2008; Schaff, William/B-5839-2009; Henini,
Mohamed/E-8520-2012; Ibanez-Insa, Jordi/F-6995-2014; Sales,
David/K-9453-2014;
OI Molina, Sergio/0000-0002-5221-2852; Henini, Mohamed/0000-0001-9414-8492;
Novikov, Sergei/0000-0002-3725-2565; Ibanez-Insa,
Jordi/0000-0002-8909-6541; Sales, David/0000-0001-6652-514X; Turyanska,
Lyudmila/0000-0002-9552-6501
NR 14
TC 5
Z9 5
U1 1
U2 12
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTRON J
JI Microelectron. J.
PD MAR
PY 2009
VL 40
IS 3
BP 537
EP 539
DI 10.1016/j.mejo.2008.06.025
PG 3
WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology
SC Engineering; Science & Technology - Other Topics
GA 426FZ
UT WOS:000264694700044
ER
PT J
AU Clark, BG
Ferreira, P
Robertson, IM
AF Clark, Blythe G.
Ferreira, Paulo
Robertson, Ian M.
TI In Situ Electron Microscopy Methods
SO MICROSCOPY RESEARCH AND TECHNIQUE
LA English
DT Editorial Material
C1 [Clark, Blythe G.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Ferreira, Paulo] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.
[Robertson, Ian M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
RP Clark, BG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
NR 0
TC 2
Z9 2
U1 1
U2 5
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1059-910X
J9 MICROSC RES TECHNIQ
JI Microsc. Res. Tech.
PD MAR
PY 2009
VL 72
IS 3
BP 121
EP 121
DI 10.1002/jemt.20663
PG 1
WC Anatomy & Morphology; Biology; Microscopy
SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics;
Microscopy
GA 419RZ
UT WOS:000264238500001
PM 19130507
ER
PT J
AU Taheri, ML
Lagrange, T
Reed, BW
Armstrong, MR
Campbell, GH
DeHope, WJ
Kim, JS
King, WE
Masiel, DJ
Browning, ND
AF Taheri, Mitra L.
Lagrange, Thomas
Reed, Bryan W.
Armstrong, Michael R.
Campbell, Geoffrey H.
DeHope, William J.
Kim, Judy S.
King, Wayne E.
Masiel, Daniel J.
Browning, Nigel D.
TI Laser-Based In Situ Techniques: Novel Methods for Generating Extreme
Conditions in TEM Samples
SO MICROSCOPY RESEARCH AND TECHNIQUE
LA English
DT Article
DE in situ; laser; transmission electron microscopy; dynamic;
transformation; growth
ID TRANSMISSION ELECTRON-MICROSCOPE; GRAIN-BOUNDARY MIGRATION;
DELTA-PHASE-TRANSITION; THIN-FILM TRANSISTORS; CRYSTAL-STRUCTURE;
NANOWIRE GROWTH; SINGLE-CRYSTAL; GOLD CRYSTALS; GAN NANOWIRES;
METAL-FILMS
AB The dynamic transmission electron microscope (DTEM) is introduced as a novel tool for in situ processing of materials. Examples of various types of dynamic studies outline the advantages and differences of laser-based heating in the DTEM in comparison to conventional (resistive) heating in situ TEM methods. We demonstrate various unique capabilities of the drive laser, namely, in situ processing of nanoscale materials, rapid and high temperature phase transformations, and controlled thermal activation of materials. These experiments would otherwise be impossible without the use of the DTEM drive laser. Thus, the potential of the DTEM as a new technique to process and characterize the growth of a myriad of micro and nanostructures is demonstrated. Microsc. Res. Tech. 72:122-130, 2009. Published 2009 Wiley-Liss, Inc.
C1 [Taheri, Mitra L.; Lagrange, Thomas; Reed, Bryan W.; Armstrong, Michael R.; Campbell, Geoffrey H.; DeHope, William J.; Kim, Judy S.; King, Wayne E.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA USA.
[Kim, Judy S.; Masiel, Daniel J.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
EM mtaheri@coe.drexel.edu
RI Campbell, Geoffrey/F-7681-2010; Taheri, Mitra/F-1321-2011; Reed,
Bryan/C-6442-2013; Armstrong, Michael/I-9454-2012;
OI Browning, Nigel/0000-0003-0491-251X
NR 50
TC 10
Z9 10
U1 2
U2 20
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1059-910X
J9 MICROSC RES TECHNIQ
JI Microsc. Res. Tech.
PD MAR
PY 2009
VL 72
IS 3
BP 122
EP 130
DI 10.1002/jemt.20664
PG 9
WC Anatomy & Morphology; Biology; Microscopy
SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics;
Microscopy
GA 419RZ
UT WOS:000264238500002
PM 19165740
ER
PT J
AU Kirk, MA
Baldo, PM
Liu, ACY
Ryan, EA
Birtcher, RC
Yao, ZW
Xu, S
Jenkins, ML
Hernandez-Mayoral, M
Kaoumi, D
Motta, AT
AF Kirk, Marquis A.
Baldo, Peter M.
Liu, Amelia C. Y.
Ryan, Edward A.
Birtcher, Robert C.
Yao, Zhongwen
Xu, Sen
Jenkins, Michael L.
Hernandez-Mayoral, Mercedes
Kaoumi, Djamel
Motta, Arthur T.
TI In Situ Transmission Electron Microscopy and Ion Irradiation of Ferritic
Materials
SO MICROSCOPY RESEARCH AND TECHNIQUE
LA English
DT Article
DE in-situ; ion-irradiation; ferritic alloys
ID ALLOYS
AB The intermediate voltage electron microscope-tandem user facility in the Electron Microscopy Center at Argonne National Laboratory is described. The primary purpose of this facility is electron microscopy with in situ ion irradiation at controlled sample temperatures. To illustrate its capabilities and advantages a few results of two outside user projects are presented. The motion of dislocation loops formed during ion irradiation is illustrated in video data that reveals a striking reduction of motion in Fe-8%Cr over that in pure Fe. The development of extended defect structure is then shown to depend on this motion and the influence of nearby surfaces in the transmission electron microscopy thin samples. In a second project, the damage microstructure is followed to high dose (200 dpa) in an oxide dispersion strengthened ferritic alloy at 500 degrees C, and found to be qualitatively similar to that observed in the same alloy neutron irradiated at 420 degrees C. Microsc. Res. Tech. 72:182-186, 2009. (C) 2009 Wiley-Liss, Inc.
C1 [Kirk, Marquis A.; Baldo, Peter M.; Liu, Amelia C. Y.; Ryan, Edward A.; Birtcher, Robert C.] Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, Argonne, IL 60439 USA.
[Yao, Zhongwen; Xu, Sen; Jenkins, Michael L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England.
[Hernandez-Mayoral, Mercedes] CIEMAT, Div Mat, E-28040 Madrid, Spain.
[Kaoumi, Djamel; Motta, Arthur T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA.
RP Kirk, MA (reprint author), Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM kirk@anl.gov
RI Hernandez Mayoral, Mercedes/F-8985-2016
OI Hernandez Mayoral, Mercedes/0000-0003-4504-7577
FU UChicago Argonne, LLC [DE-AC02-06CH 11357]; US DOE Office of Science;
UKAEA, Culham Science Centre; Nuclear Engineering Division at ANL;
Pennsylvania State University
FX Contract grant sponsor: UChicago Argonne, LLC; Contract grant number:
DE-AC02-06CH 11357; Contract grant sponsors: US DOE Office of Science;
UKAEA, Culham Science Centre; Nuclear Engineering Division at ANL;
Pennsylvania State University.
NR 9
TC 23
Z9 23
U1 1
U2 17
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1059-910X
J9 MICROSC RES TECHNIQ
JI Microsc. Res. Tech.
PD MAR
PY 2009
VL 72
IS 3
BP 182
EP 186
DI 10.1002/jemt.20670
PG 5
WC Anatomy & Morphology; Biology; Microscopy
SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics;
Microscopy
GA 419RZ
UT WOS:000264238500007
PM 19189372
ER
PT J
AU Tanase, M
Petford-Long, AK
AF Tanase, Mihaela
Petford-Long, Amanda K.
TI In Situ TEM Observation of Magnetic Materials
SO MICROSCOPY RESEARCH AND TECHNIQUE
LA English
DT Article
DE magnetic nanostructures; domains; magnetization reversal; in situ
transmission electron microscopy; Lorentz microscopy; electron
holography; differential phase contrast; transport of intensity;
magnetic phase; magnetic imaging; phase retrieval; phase reconstruction
ID TRANSMISSION ELECTRON-MICROSCOPY; LORENTZ MICROSCOPY; PHASE RETRIEVAL;
INTENSITY EQUATION; REVERSAL MECHANISM; TUNNEL-JUNCTIONS; ELEMENTS;
MAGNETORESISTANCE; TRANSPORT; NANOSTRUCTURES
AB Magnetic nanostructures and thin films display novel magnetization reversal behavior as a function of size and shape, which makes them appropriate for a range of technological applications. The spatial resolution of in situ transmission electron microscopy techniques such as Lorentz TEM (LTEM) and off-axis electron holography are well suited to analysis of the magnetic domain structure and magnetization behavior of these magnetic nanostructures and thin films. In this article the various techniques that are applicable are described, including the qualitative LTEM imaging modes and the differential phase contrast technique. In addition, quantitative methods for mapping the magnetic induction via phase reconstruction are discussed. In each case the advantages and limitations are presented. Application of the techniques to various types of magnetic structures is then presented, and the article ends with a short summary and a discussion of future developments in this field. Microsc. Res. Tech. 72:187-196, 2009. Published 2009 Wiley-Liss, Inc.
C1 [Tanase, Mihaela; Petford-Long, Amanda K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Tanase, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM tanase@anl.gov
RI Petford-Long, Amanda/P-6026-2014
OI Petford-Long, Amanda/0000-0002-3154-8090
FU Argonne (U.S. Department of Energy Office of Science Laboratory)
[DE-AC02-06CH11357]
FX Contract grant sponsor: Argonne (U.S. Department of Energy Office of
Science Laboratory); Contract grant number: DE-AC02-06CH11357.
NR 57
TC 7
Z9 7
U1 3
U2 29
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1059-910X
J9 MICROSC RES TECHNIQ
JI Microsc. Res. Tech.
PD MAR
PY 2009
VL 72
IS 3
BP 187
EP 196
DI 10.1002/jemt.20671
PG 10
WC Anatomy & Morphology; Biology; Microscopy
SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics;
Microscopy
GA 419RZ
UT WOS:000264238500008
PM 19165741
ER
PT J
AU Allard, LF
Bigelow, WC
Jose-Yacaman, M
Nackashi, DP
Damiano, J
Mick, SE
AF Allard, Lawrence F.
Bigelow, Wilbur C.
Jose-Yacaman, Miguel
Nackashi, David P.
Damiano, John
Mick, Stephen E.
TI A New MEMS-Based System for Ultra-High-Resolution Imaging at Elevated
Temperatures
SO MICROSCOPY RESEARCH AND TECHNIQUE
LA English
DT Article
DE MEMS device; electron microscopy; aberration-corrected; STEM; elevated
temperature; in situ
ID TRANSMISSION ELECTRON-MICROSCOPE
AB In recent years, an increasing number of laboratories have been applying in situ heating (and ultimately, gas reaction) techniques in electron microscopy studies of catalysts and other nanophase materials. With the advent of aberration-corrected electron microscopes that provide sub-Angstrom image resolution, it is of great interest to study the behavior of materials at elevated temperatures while maintaining the resolution capabilities of the microscope. In collaboration with Protochips Inc., our laboratory is developing an advanced capability for in situ heating experiments that overcomes a number of performance problems with standard heating stage technologies. The new heater device allows, for example, temperature cycling from room temperature to greater than 1000 degrees C in 1 ms (a heating rate of I million Centigrade degrees per second) and cooling at nearly the same rate. It also exhibits a return to stable operation (drift controlled by the microscope stage, not the heater) in a few seconds after large temperature excursions. With Protochips technology, we were able to demonstrate single atom imaging and the behavior of nanocrystals at high temperatures, using high-angle annular dark-field imaging in an aberration-corrected (S)TEM. The new capability has direct applicability for remote operation and (ultimately) for gas reaction experiments using a specially designed environmental cell. Microsc. Res. Tech. 72:208215,2009. (C) 2009 Wiley-Liss. Inc.
C1 [Allard, Lawrence F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Bigelow, Wilbur C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.
[Jose-Yacaman, Miguel] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA.
[Nackashi, David P.; Damiano, John; Mick, Stephen E.] Protochips Inc, Raleigh, NC 27606 USA.
RP Allard, LF (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
EM allardlfjr@ornl.gov
RI jose yacaman, miguel/B-5622-2009
FU Protochips Inc [IAN 14B569801]; U.S. Department of Energy
[DE-AC05-00OR22725]; SBIR [DE-FG02-05ER84252]; HTML User Program; User
Program, Asst. Sec. for Energy Efficiency and Renewable Energy; Office
of Vehicle Technologies; US Department of Energy; Welch Foundation; NSF
Materials Division
FX Contract grant sponsor: Protochips Inc. (Work-for-Others Program);
Contract grant number: IAN # 14B569801; Contract grant sponsor: U.S.
Department of Energy; Contract grant number: DE-AC05-00OR22725; Contract
grant sponsor: SBIR; Contract grant number: DE-FG02-05ER84252; Contract
grant sponsors: HTML User Program, User Program, Asst. Sec. for Energy
Efficiency and Renewable Energy, Office of Vehicle Technologies, US
Department of Energy, Welch Foundation, NSF Materials Division.
NR 19
TC 45
Z9 46
U1 5
U2 46
PU WILEY-LISS
PI HOBOKEN
PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1059-910X
J9 MICROSC RES TECHNIQ
JI Microsc. Res. Tech.
PD MAR
PY 2009
VL 72
IS 3
BP 208
EP 215
DI 10.1002/jemt.20673
PG 8
WC Anatomy & Morphology; Biology; Microscopy
SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics;
Microscopy
GA 419RZ
UT WOS:000264238500010
PM 19165742
ER
PT J
AU Qu, WG
Tan, XL
Yang, P
AF Qu, Weiguo
Tan, Xiaoli
Yang, Pin
TI In Situ Transmission Electron Microscopy Study on Nb-Doped
Pb(Zr0.95Ti0.05)O-3 Ceramics
SO MICROSCOPY RESEARCH AND TECHNIQUE
LA English
DT Article
DE TEM; lead zirconate titanate; phase transition; electric field-induced
ID LEAD-ZIRCONATE-TITANATE; RHOMBOHEDRAL PHASE; BOUNDARY CRACKING;
SINGLE-CRYSTALS
AB The ferroelectric-to-ferroelectric phase transition between the high temperature (FERH) and the low temperature (FERL) rhombohedral phases in a Nb-doped Pb(Zr0.95Ti0.05)O-3 ceramic was investigated with transmission electron microscopy (TEM). Both bright field images and electron diffraction patterns were monitored as a function of temperature as well as dc electric field. A special TEM specimen holder that permits the application of electric voltage up to 600 V was employed for the study of electric field-induced phase transition. It was found that both [1/2](011)(c)- and [1/2](111)(c)-type superlattice diffraction spots were present at room temperature when the specimen was under no electric field. The [1/2](111)(c)-type superlattice spots were observed to disappear during heating above the phase transition temperature. When dc electric fields were applied at room temperature, the [1/2](111)(c)-type superlattice spots vanished as the electric field-induced FERL -> FERH phase transition occurred. Microsc. Res. Tech. 72:216-222, 2009. (C) 2009 Wil y-Liss, Inc.
C1 [Qu, Weiguo; Tan, Xiaoli] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Yang, Pin] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Tan, XL (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
EM xtan@iastate.edu
RI Tan, Xiaoli/C-3376-2013; Qu, Weiguo/D-9875-2013
OI Tan, Xiaoli/0000-0002-4182-663X; Qu, Weiguo/0000-0001-7925-7340
FU Sandia National Laboratories [679766]; United States Department of
Energy - Basic Energy Sciences [DE-AC02-07CH11358]; United States
Department of Energy [DE-AC04-94AL85000]
FX Contract grant sponsor: Sandia National Laboratories; Contract grant
number: 679766; Contract grant sponsor: United States Department of
Energy - Basic Energy Sciences (Materials & Engineering Physics Program,
Ames Laboratory); Contract grant number: DE-AC02-07CH11358; Contract
grant sponsor: United States Department of Energy (Sandia Corporation, a
Lockheed Martin Company); Contract grant number: DE-AC04-94AL85000.
NR 21
TC 3
Z9 4
U1 4
U2 17
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1059-910X
J9 MICROSC RES TECHNIQ
JI Microsc. Res. Tech.
PD MAR
PY 2009
VL 72
IS 3
BP 216
EP 222
DI 10.1002/jemt.20674
PG 7
WC Anatomy & Morphology; Biology; Microscopy
SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics;
Microscopy
GA 419RZ
UT WOS:000264238500011
PM 19130612
ER
PT J
AU Bonny, G
Erhart, P
Caro, A
Pasianot, RC
Malerba, L
Caro, M
AF Bonny, G.
Erhart, P.
Caro, A.
Pasianot, R. C.
Malerba, L.
Caro, M.
TI The influence of short range order on the thermodynamics of Fe-Cr alloys
SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
LA English
DT Article
ID AB-INITIO; FREE-ENERGY; CU ALLOYS; IRRADIATION; MOSSBAUER; SYSTEMS;
IRON; FCC
AB Using atomistic simulations of Fe-Cr alloys and computational thermodynamics techniques, we study the influence of short range order (SRO) on the location of the alpha-alpha' miscibility gap. By comparing the random alloy with the short range ordered alloy, we extract the contributions of SRO to the free energy coming from the enthalpy of mixing and from the vibrational and configurational entropies. We conclude that the effects of SRO are significant, doubling the solubility limit of Cr at low temperatures (approximate to 300 K), and that this effect is mainly due to the contribution of SRO to the enthalpy. The result is relevant to the nuclear applications of these alloys where irradiation accelerates alpha' precipitation.
C1 [Bonny, G.; Malerba, L.] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium.
[Bonny, G.; Erhart, P.; Caro, A.; Caro, M.] LLNL, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA.
[Bonny, G.] Univ Ghent, Ctr Mol Modeling, B-9000 Ghent, Belgium.
[Pasianot, R. C.] CAC CNEA, Dept Mat, RA-1650 Buenos Aires, DF, Argentina.
[Pasianot, R. C.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina.
[Pasianot, R. C.] UNSAM CNEA, Inst Sabato, RA-1650 Buenos Aires, DF, Argentina.
RP Bonny, G (reprint author), CEN SCK, Nucl Mat Sci Inst, Boeretang 200, B-2400 Mol, Belgium.
EM GBonny@sckcen.be
RI Erhart, Paul/G-6260-2011
OI Erhart, Paul/0000-0002-2516-6061
NR 44
TC 25
Z9 25
U1 2
U2 18
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0965-0393
J9 MODEL SIMUL MATER SC
JI Model. Simul. Mater. Sci. Eng.
PD MAR
PY 2009
VL 17
IS 2
AR 025006
DI 10.1088/0965-0393/17/2/025006
PG 16
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 396HO
UT WOS:000262583000006
ER
PT J
AU Granovsky, AE
Clark, MC
McElheny, D
Heil, G
Hong, J
Liu, XD
Kim, Y
Joachimiak, G
Joachimiak, A
Koide, S
Rosner, MR
AF Granovsky, Alexey E.
Clark, Matthew C.
McElheny, Dan
Heil, Gary
Hong, Jia
Liu, Xuedong
Kim, Youngchang
Joachimiak, Grazyna
Joachimiak, Andrzej
Koide, Shohei
Rosner, Marsha Rich
TI Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible
Pocket and Novel Phosphorylation-Dependent Mechanism
SO MOLECULAR AND CELLULAR BIOLOGY
LA English
DT Article
ID PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN; BACKBONE DYNAMICS; METASTASIS
SUPPRESSOR; SIGNAL-TRANSDUCTION; CANCER METASTASIS; CRYSTAL-STRUCTURE;
PROSTATE-CANCER; CELL-LINES; N-REGION; EXPRESSION
AB Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding-and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.
C1 [Rosner, Marsha Rich] Univ Chicago, Ben May Dept Canc Res, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA.
[Clark, Matthew C.; Hong, Jia; Rosner, Marsha Rich] Univ Chicago, Dept Neurobiol Pharmacol & Physiol, Chicago, IL 60637 USA.
[McElheny, Dan; Heil, Gary; Koide, Shohei] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA.
[Liu, Xuedong] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.
[Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA.
RP Rosner, MR (reprint author), Univ Chicago, Ben May Dept Canc Res, Gordon Ctr Integrat Sci, 929 E 57th St, Chicago, IL 60637 USA.
EM m-rosner@uchicago.edu
OI Koide, Shohei/0000-0001-5473-4358
FU Howard Hughes Medical Institute; NCI NIH HHS [CA112310, R01 CA112310];
NINDS NIH HHS [NS33858, R01 NS033858]
NR 45
TC 14
Z9 21
U1 0
U2 8
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0270-7306
J9 MOL CELL BIOL
JI Mol. Cell. Biol.
PD MAR 1
PY 2009
VL 29
IS 5
BP 1306
EP 1320
DI 10.1128/MCB.01271-08
PG 15
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 406KI
UT WOS:000263293500018
PM 19103740
ER
PT J
AU Zhang, XP
Fournier, MV
Ware, JL
Bissell, MJ
Yacoub, A
Zehner, ZE
AF Zhang, Xueping
Fournier, Marcia V.
Ware, Joy L.
Bissell, Mina J.
Yacoub, Adly
Zehner, Zendra E.
TI Inhibition of vimentin or beta(1) integrin revert morphology of prostate
tumor cells grown in laminin-rich extracellular matrix gels and reduces
tumor growth in vivo
SO MOLECULAR CANCER THERAPEUTICS
LA English
DT Article
ID EPITHELIAL-MESENCHYMAL TRANSITION; BREAST-CANCER CELLS;
INTERMEDIATE-FILAMENTS; BASEMENT-MEMBRANE; ALPHA-6-BETA-1 INTEGRIN;
3-DIMENSIONAL CULTURE; ACINAR MORPHOGENESIS; INVASIVE PHENOTYPE; LINE
M12; EXPRESSION
AB Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (IrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional IrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M 12 resulted in a poorly tumorigenic subline, designated F6. When embedded in IrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to beta-catenin, E-cadherin, or alpha(6) and beta(1) integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression Of alpha(6) and beta(1)integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional IrECM gels. These studies suggest that the levels of vimentin and beta(1) integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499 - 508]
C1 [Zhang, Xueping; Zehner, Zendra E.] Virginia Commonwealth Univ, Dept Biochem & Mol Biophys, Richmond, VA 23298 USA.
[Ware, Joy L.] Virginia Commonwealth Univ, Dept Pathol, Richmond, VA 23298 USA.
[Yacoub, Adly] Virginia Commonwealth Univ, Dept Radiat Oncol, Richmond, VA 23298 USA.
[Yacoub, Adly] Virginia Commonwealth Univ, Massey Canc Ctr, Richmond, VA 23298 USA.
[Fournier, Marcia V.; Bissell, Mina J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA.
RP Zehner, ZE (reprint author), Virginia Commonwealth Univ, Dept Biochem & Mol Biophys, Med Campus,POB 980614, Richmond, VA 23298 USA.
EM zezehner@vcu.edu
FU Department of Defense [DAMD 17-00-1-0296]; Virginia Commonwealth Health
Research Board [40-06]; U.S. DOE; OBER Office of Biological and
Environmental Research [DE-AC0205CH 1123, 03-76SFOO098]; Distinguished
Fellow Award; NCI awards [R01CA064786, R01CA057621, U54CA126552, U54CAl
12970]; U.S. DOD [W81 XWHO810736, W81 XWHO510338]
FX Department of Defense grant DAMD 17-00-1-0296 and Virginia Commonwealth
Health Research Board 40-06 (Z.E. Zehner) and U.S. DOE, OBER Office of
Biological and Environmental Research, DE-AC0205CH 1123, 03-76SFOO098
and a Distinguished Fellow Award; NCI awards R01CA064786, R01CA057621,
U54CA126552 and U54CAl 12970; U.S. DOD W81 XWHO810736 and W81 XWHO510338
(M.J. Bissell).
NR 47
TC 32
Z9 33
U1 0
U2 3
PU AMER ASSOC CANCER RESEARCH
PI PHILADELPHIA
PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA
SN 1535-7163
J9 MOL CANCER THER
JI Mol. Cancer Ther.
PD MAR
PY 2009
VL 8
IS 3
BP 499
EP 508
DI 10.1158/1535-7163.MCT-08-0544
PG 10
WC Oncology
SC Oncology
GA 423CZ
UT WOS:000264475300003
PM 19276168
ER
PT J
AU Zhang, HZ
Tang, XT
Munske, GR
Tolic, N
Anderson, GA
Bruce, JE
AF Zhang, Haizhen
Tang, Xiaoting
Munske, Gerhard R.
Tolic, Nikola
Anderson, Gordon A.
Bruce, James E.
TI Identification of Protein-Protein Interactions and Topologies in Living
Cells with Chemical Cross-linking and Mass Spectrometry
SO MOLECULAR & CELLULAR PROTEOMICS
LA English
DT Article
ID SHEWANELLA-ONEIDENSIS MR-1; SACCHAROMYCES-CEREVISIAE; LARGE-SCALE;
PROTEOMIC APPROACH; COMPLEX; PURIFICATION; REAGENTS; MICROARRAYS;
TECHNOLOGY; CHROMATIN
AB We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches. Molecular & Cellular Proteomics 8:409-420, 2009.
C1 [Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Bruce, James E.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA.
[Tolic, Nikola; Anderson, Gordon A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Bruce, JE (reprint author), Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA.
EM jimbruce@u.washington.edu
FU National Institutes of Health [1 R01 RR023334-01A1, 1S10RR017805-01];
National Center for Research Resources [1S10RR022538-01]; Office of
Science (Biological and Environmental Research), United States
Department of Energy [DE-FG02-04ER63924]
FX This work was supported, in whole or in part, by National Institutes of
Health Grants 1 R01 RR023334-01A1, 1S10RR017805-01, and 1S10RR022538-01
from the National Center for Research Resources. This work was also
supported by Office of Science (Biological and Environmental Research),
United States Department of Energy Grant DE-FG02-04ER63924.
NR 52
TC 80
Z9 81
U1 1
U2 21
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 1535-9476
J9 MOL CELL PROTEOMICS
JI Mol. Cell. Proteomics
PD MAR
PY 2009
VL 8
IS 3
BP 409
EP 420
DI 10.1074/mcp.M800232-MCP200
PG 12
WC Biochemical Research Methods
SC Biochemistry & Molecular Biology
GA 419SM
UT WOS:000264240000002
PM 18936057
ER
PT J
AU Pascau, J
Gispert, JD
Michaelides, M
Thanos, P
Volkow, N
Vaquero, JJ
Soto-Montenegro, ML
Desco, M
AF Pascau, Javier
Gispert, Juan Domingo
Michaelides, Michael
Thanos, Panayotis K.
Volkow, Nora D.
Vaquero, Juan Jose
Soto-Montenegro, Maria Luisa
Desco, Manuel
TI Automated Method for Small-Animal PET Image Registration with Intrinsic
Validation
SO MOLECULAR IMAGING AND BIOLOGY
LA English
DT Article
DE Image registration; Positron emission tomography (PET); Validation;
Algorithm; Rats
ID MUTUAL-INFORMATION; RAT-BRAIN; INTERPOLATION ARTIFACTS; PROBABILISTIC
ATLASES; MICROPET; MRI; MAXIMIZATION
AB We propose and compare different registration approaches to align small-animal PET studies and a procedure to validate the results by means of objective registration consistency measurements.
Procedures: We have applied a registration algorithm based on information theory, using different approaches to mask the reference image. The registration consistency allows for the detection of incorrect registrations. This methodology has been evaluated on a test dataset (FDG-PET rat brain images).
Results: The results show that a multiresolution two-step registration approach based on the use of the whole image at the low resolution step, while masking the brain at the high resolution step, provides the best robustness (87.5% registration success) and highest accuracy (0.67-mm average).
Conclusions: The major advantages of our approach are minimal user interaction and automatic assessment of the registration error, avoiding visual inspection of the results, thus facilitating the accurate, objective, and rapid analysis of large groups of rodent PET images.
C1 [Pascau, Javier; Vaquero, Juan Jose; Soto-Montenegro, Maria Luisa; Desco, Manuel] Hosp Gen Gregorio Maranon, Unidad Med & Cirugia Expt, Madrid 28007, Spain.
[Gispert, Juan Domingo] CRC Corp Sanitaria, Inst Alta Tecnol, Barcelona 08003, Spain.
[Michaelides, Michael; Thanos, Panayotis K.] Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA.
[Michaelides, Michael; Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Lab Neuroimaging, Dept Hlth & Human Serv, NIH, Bethesda, MD 20892 USA.
[Michaelides, Michael] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA.
[Thanos, Panayotis K.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA.
[Thanos, Panayotis K.] SUNY Stony Brook, Dept Neurosci & Biomed Engn, Stony Brook, NY 11794 USA.
RP Pascau, J (reprint author), Hosp Gen Gregorio Maranon, Unidad Med & Cirugia Expt, C Doctor Esquerdo 46, Madrid 28007, Spain.
EM jpascau@mce.hggm.es
RI Pascau, Javier/B-5734-2013; Michaelides, Michael/K-4736-2013; Vaquero,
Juan Jose/D-3033-2009; Desco, Manuel/D-2822-2009;
OI Pascau, Javier/0000-0003-1484-731X; Michaelides,
Michael/0000-0003-0398-4917; Vaquero, Juan Jose/0000-0001-9200-361X;
Desco, Manuel/0000-0003-0989-3231; Gispert, Juan
Domingo/0000-0002-6155-0642
FU CIBER [CB06/01/0079]; CDTEAM (CENIT program, Ministerio de Industria);
NIAAA Intramural Research Program [AA 11034, AA07574, AA07611]; US
Department of Energy [DE-AC02-98CH10886]
FX This work was supported by projects CIBER CB06/01/0079 (Ministerio de
Sanidad y Consumo) and CDTEAM (CENIT program, Ministerio de Industria).
Further support came from NIAAA Intramural Research Program (AA 11034
and AA07574, AA07611) and the US Department of Energy
(DE-AC02-98CH10886).
NR 27
TC 14
Z9 14
U1 0
U2 7
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1536-1632
EI 1860-2002
J9 MOL IMAGING BIOL
JI Mol. Imaging. Biol.
PD MAR
PY 2009
VL 11
IS 2
BP 107
EP 113
DI 10.1007/s11307-008-0166-z
PG 7
WC Radiology, Nuclear Medicine & Medical Imaging
SC Radiology, Nuclear Medicine & Medical Imaging
GA 403XW
UT WOS:000263116300008
PM 18670824
ER
PT J
AU Panaitescu, A
AF Panaitescu, A.
TI An external-shock origin of the E-p proportional to epsilon(1/2)(gamma)
relation for gamma-ray bursts
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE radiation mechanisms: non-thermal; shock waves; gamma-rays: bursts
ID PEAK; EMISSION; ENERGY; ENERGETICS; INTENSITY; SPECTRUM; FLASHES;
MODELS; SWIFT; BATSE
AB We investigate the possibility that the E-p proportional to epsilon(1/2)(gamma). relation between the peak energy Ep of the nu F-nu spectrum and energy output epsilon(gamma) for long-duration gamma-ray bursts (GRBs) arises from the external shock produced by the interaction of a relativistic outflow with the ambient medium. To that aim, we take into account the dependence of all parameters which determine E-p and epsilon(gamma) on the radial distribution of the ambient medium density and find that the E-p proportional to epsilon(1/2)(gamma). relation can be explained if the medium around GRBs has a universal radial stratification. For various combinations of GRB radiative process (synchrotron or inverse-Compton) and dissipation mechanism (reverse or forward shock), we find that the circumburst medium must have a particle density with a radial distribution different than the R-2 expected for the stellar wind corresponding to a constant mass-loss rate and terminal speed.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Panaitescu, A (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87545 USA.
EM alin@lanl.gov
FU US Department of Energy through the LANL/LDRD [20080039DR]
FX The author acknowledges the support of the US Department of Energy
through the LANL/LDRD 20080039DR program.
NR 25
TC 8
Z9 8
U1 0
U2 0
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD MAR 1
PY 2009
VL 393
IS 3
BP 1010
EP 1015
DI 10.1111/j.1365-2966.2008.14240.x
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 407JL
UT WOS:000263359300024
ER
PT J
AU Chrzan, DC
Morris, JW
Osetsky, YN
Stoller, RE
Zinkle, SJ
AF Chrzan, D. C.
Morris, J. W., Jr.
Osetsky, Y. N.
Stoller, R. E.
Zinkle, S. J.
TI What is the Limit of Nanoparticle Strengthening?
SO MRS BULLETIN
LA English
DT Article
ID COMPUTER-SIMULATION; DISLOCATION GLIDE; ELECTRON-MICROSCOPY; DISTINCT
OBSTACLES; STATISTICAL-THEORY; POINT OBSTACLES; TEM OBSERVATION; RANDOM
MIXTURE; RANDOM ARRAYS; ALPHA-IRON
AB The stress required to deform a perfect crystal to its elastic limit while maintaining perfect periodicity the so-called ideal strength, sets the gold standard for the strength of a given material. Materials this strong would be of obvious engineering importance, potentially enabling more efficient turbines for energy production, lighter materials for transportation applications, and more reliable materials for nuclear reactor applications. In practice, the strength of engineering materials is often more than two orders of magnitude less than the Ideal strength due to easily activated deformation processes involving dislocations. For many materials, precipitate strengthening is a promising approach to impede dislocation motion and thereby improves strength and creep resistance. This observation begs the question: What are the limits of nanoparticle strengthening? Can the ideal strength of a matrix material be reached? To answer these questions, we need a detailed, atomic scale understanding of the interactions between dislocations and obstacles. Fortunately, simulations are beginning to explore this interaction.
C1 [Chrzan, D. C.; Morris, J. W., Jr.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Zinkle, S. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Chrzan, DC (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
EM dcchrzan@berkeley.edu; jwmorris@berkeley.edu; osetskiyyn@ornl.gov;
stollerre@ornl.gov; zinklesj@ornl.gov
RI Stoller, Roger/H-4454-2011;
OI Zinkle, Steven/0000-0003-2890-6915; Osetskiy, Yury/0000-0002-8109-0030
FU National Science Foundation [DMR-0706554]; Division of Materials
Sciences and Engineering; Office of Fusion Energy Sciences, U.S.
Department of Energy [DE-AC05-000R22725]
FX DCC and JWM acknowledge the support of the National Science Foundation
under Grant No. DMR-0706554. YNO, RES, and SJZ acknowledge the support
of the Division of Materials Sciences and Engineering and the Office of
Fusion Energy Sciences, U.S. Department of Energy, under contract
DE-AC05-000R22725 with UT-Battelle, LLC.
NR 46
TC 6
Z9 6
U1 0
U2 13
PU CAMBRIDGE UNIV PRESS
PI NEW YORK
PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA
SN 0883-7694
EI 1938-1425
J9 MRS BULL
JI MRS Bull.
PD MAR
PY 2009
VL 34
IS 3
BP 173
EP 177
DI 10.1557/mrs2009.48
PG 5
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 420YM
UT WOS:000264325100013
ER
PT J
AU Derlet, PM
Gumbsch, P
Hoagland, R
Li, J
McDowell, DL
Van Swygenhoven, H
Wang, J
AF Derlet, P. M.
Gumbsch, P.
Hoagland, R.
Li, J.
McDowell, D. L.
Van Swygenhoven, H.
Wang, J.
TI Atomistic Simulations of Dislocations in Confined Volumes
SO MRS BULLETIN
LA English
DT Article
ID TILT GRAIN-BOUNDARIES; COHERENT TWIN BOUNDARIES; CENTERED-CUBIC METALS;
NANOCRYSTALLINE METALS; MOLECULAR-DYNAMICS; RATE SENSITIVITY;
NANOLAYERED COMPOSITES; MECHANICAL-PROPERTIES; BICRYSTAL INTERFACES;
SLIDING MECHANISMS
AB Internal microstructural length scales play a fundamental role in the strength and ductility of a material. Grain boundaries in nanocrystalline structures and heterointerfaces in nanolaminates can restrict dislocation propagation and also act as a source for new dislocations, thereby affecting the detailed dynamics of dislocation-mediated plasticity Atomistic simulation has played an important and complementary role to experiment in elucidating the nature of the dislocation/interface interaction, demonstrating a diversity of atomic-scale processes covering dislocation nucleation, propagation, absorption, and transmission at interfaces. This article reviews some atomistic simulation work that has made progress in this field and discusses possible strategies in overcoming the inherent time scale challenge of finite temperature molecular dynamics.
C1 [Derlet, P. M.; Van Swygenhoven, H.] Paul Scherrer Inst, Mat Sci & Simulat Div, Wurenlingen, Switzerland.
[Gumbsch, P.] Univ Karlsruhe TH, Karlsruhe, Germany.
[Gumbsch, P.] Fraunhofer Inst Mech Mat IWM, Freiburg, Germany.
[Gumbsch, P.] Fraunhofer Inst Mech Mat IWM, Halle, Germany.
[Hoagland, R.; Wang, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Li, J.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.
[McDowell, D. L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA.
RP Derlet, PM (reprint author), Paul Scherrer Inst, Mat Sci & Simulat Div, Wurenlingen, Switzerland.
EM peter.derlet@psi.ch; peter.gumbsch@iwm.fraunhofer.de; hoagland@lanl.gov;
liju@seas.upenn.edu; david.mcdowell@me.gatech.edu; helena.vs@psi.ch;
wangj6@lanl.gov
RI Li, Ju/A-2993-2008; Gumbsch, Peter/E-5879-2012; Wang, Jian/F-2669-2012
OI Li, Ju/0000-0002-7841-8058; Gumbsch, Peter/0000-0001-7995-228X; Wang,
Jian/0000-0001-5130-300X
FU U.S. National Science Foundation (NSF) [0728069]; Office of Naval
Research [N00014-05-1-0504]; Air Force Office of Scientific Research;
European Commission [016710]; Swiss National Science Foundation; Paden
Chair in Metals Processing
FX J. Li acknowledges support by the U.S. National Science Foundation (NSF)
CMMI-0728069, Office of Naval Research N00014-05-1-0504, and the Air
Force Office of Scientific Research and interactions with Ting Zhu and
Subra Suresh. P. Gumbsch and H. Van Swygenhoven acknowledge the
financial support of the European Commission (FP6-NANOMESO, Grant No.
016710). P.M. Derlet and H. Van Swygenhoven acknowledge their work with
E. Bitzek and C. Brandl and the support of the Swiss National Science
Foundation. D.L. McDowell acknowledges support of the U.S. NSF and the
Paden Chair in Metals Processing.
NR 69
TC 36
Z9 36
U1 2
U2 30
PU MATERIALS RESEARCH SOC
PI WARRENDALE
PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA
SN 0883-7694
J9 MRS BULL
JI MRS Bull.
PD MAR
PY 2009
VL 34
IS 3
BP 184
EP 189
DI 10.1557/mrs2009.50
PG 6
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 420YM
UT WOS:000264325100015
ER
PT J
AU Levy, N
Comstock, MJ
Cho, J
Berbil-Bautista, L
Kirakosian, A
Lauterwasser, F
Poulsen, DA
Frechet, JMJ
Crommie, MF
AF Levy, Niv
Comstock, Matthew J.
Cho, Jongweon
Berbil-Bautista, Luis
Kirakosian, Armen
Lauterwasser, Frank
Poulsen, Daniel A.
Frechet, Joan M. J.
Crommie, Michael F.
TI Self-Patterned Molecular Photoswitching in Nanoscale Surface Assemblies
SO NANO LETTERS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; THERMAL-ACTIVATION; LIGHT; AZOBENZENE;
PHOTOEMISSION; STABILITY; MOTION; GOLD
AB Photomechanical switching (photoisomerization) of molecules at a surface Is found to strongly depend on molecule-molecule interactions and molecule-surface orientation. Scanning tunneling microscopy was used to image photoswitching behavior in the single-molecule limit of tetra-terf-butyl-azobenzene molecules adsorbed onto Au(111) at 30 K. Photoswitching behavior varied strongly with surface molecular Island structure, and self-patterned stripes of switching and nonswitching regions were observed having similar to 10 nm pitch. These findings can be summarized Into photoswitching selection rules that highlight the important role played by a molecule's nanoscale environment In determining its switching properties.
C1 [Levy, Niv; Comstock, Matthew J.; Cho, Jongweon; Berbil-Bautista, Luis; Kirakosian, Armen; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Levy, Niv; Comstock, Matthew J.; Cho, Jongweon; Berbil-Bautista, Luis; Kirakosian, Armen; Lauterwasser, Frank; Poulsen, Daniel A.; Frechet, Joan M. J.; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Lauterwasser, Frank; Poulsen, Daniel A.; Frechet, Joan M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM crommie@berkeley.edu
RI Cho, Jongweon/F-3704-2011;
OI Frechet, Jean /0000-0001-6419-0163
FU U.S. Department or Energy [DE-AC03-76SF0098]; National Science
Foundation [CCR-0210176]; Office of Science; Office of Basic Energy
Sciences; Division of Materials Sciences and Engineering Division
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Division of Materials Sciences and Engineering
Division, U.S. Department or Energy under Contract No. DE-AC03-76SF0098
and by the National Science Foundation Grant CCR-0210176.
NR 26
TC 23
Z9 23
U1 1
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
EI 1530-6992
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 935
EP 939
DI 10.1021/nl802632g
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100004
PM 19193016
ER
PT J
AU Zhou, XJ
Zifer, T
Wong, BM
Krafcik, KL
Leonard, F
Vance, AL
AF Zhou, Xinjian
Zifer, Thomas
Wong, Bryan M.
Krafcik, Karen L.
Leonard, Francois
Vance, Andrew L.
TI Color Detection Using Chromophore-Nanotube Hybrid Devices
SO NANO LETTERS
LA English
DT Article
ID FIELD-EFFECT TRANSISTORS; CARBON NANOTUBES
AB We present a nanoscale color detector based on a single-walled carbon nanotube functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrate the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggest that upon photoabsorption, the chromophores isomerize from the ground state trans configuration to the excited state cis configuration, accompanied by a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations are used to study the chromophore-nanotube hybrids and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments support the notion of dipole changes as the optical detection mechanism.
C1 [Zhou, Xinjian; Zifer, Thomas; Wong, Bryan M.; Krafcik, Karen L.; Leonard, Francois; Vance, Andrew L.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Zhou, XJ (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.
EM xinzhou@sandia.gov
RI Wong, Bryan/B-1663-2009
OI Wong, Bryan/0000-0002-3477-8043
FU United States Department of Energy [DE-AC04-94-AL85000]; Laboratory
Directed Research and Development program at Sandia National
Laboratories
FX The authors thank J. M. Simmons for valuable discussions. This project
is supported by the Laboratory Directed Research and Development program
at Sandia National Laboratories, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94-AL85000.
NR 19
TC 66
Z9 67
U1 1
U2 14
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1028
EP 1033
DI 10.1021/nl8032922
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100021
PM 19206226
ER
PT J
AU Martinez, JA
Misra, N
Wang, YM
Stroeve, P
Grigoropoulos, CP
Noy, A
AF Martinez, Julio A.
Misra, Nipun
Wang, Yinmin
Stroeve, Pieter
Grigoropoulos, Costas P.
Noy, Aleksandr
TI Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with
Functional Biological Pore Channels
SO NANO LETTERS
LA English
DT Article
ID SCANNING ELECTROCHEMICAL MICROSCOPY; DIMENSIONAL LIPID-BILAYERS;
SELF-ASSEMBLED MONOLAYER; CARBON NANOTUBES; GOLD ELECTRODES; ELECTRICAL
DETECTION; ALPHA-HEMOLYSIN; MEMBRANE; STABILITY; SURFACES
AB Nanoscale electrodes based on one-dimensional Inorganic conductors could possess significant advantages for electrochemical measurements over their macroscopic counterparts In a variety of electrochemical applications. We show that the efficiency of the electrodes constructed of Individual highly doped silicon nanowires greatly exceeds the efficiency of flat SI electrodes. Modification of the surfaces of the nanowire electrodes with phospholipid bilayers produces an efficient biocompatible barrier to transport of the solution redox species to the nanoelectrode surface. Incorporating functional alpha-hemolysin protein pores in the lipid bilayer results in a partial recovery of the Faradic current due to the specific transport through the protein pore. These assemblies represent a robust and versatile platform for building a new generation of highly specific biosensors and nano/bioelectronic devices.
C1 [Martinez, Julio A.; Misra, Nipun; Wang, Yinmin; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA.
[Martinez, Julio A.; Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA.
[Misra, Nipun; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Noy, Aleksandr] Univ Calif, Sch Nat Sci, Merced, CA 95344 USA.
RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA.
EM noy1@llnl.gov
RI Han, Kyuhee/B-6201-2009; Wang, Yinmin (Morris)/F-2249-2010
OI Wang, Yinmin (Morris)/0000-0002-7161-2034
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX A.N. acknowledges support from the Biomolecular Materials Program at the
DOE Office of Basic Energy Sciences. J.M. acknowledges support from the
LSP program at LLNL. J.M. and N.M. contributed equally to this work.
Parts of this work were performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
NR 42
TC 33
Z9 34
U1 4
U2 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1121
EP 1126
DI 10.1021/nl8036504
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100036
PM 19203205
ER
PT J
AU Van Petegem, S
Brandstetter, S
Maass, R
Hodge, AM
El-Dasher, BS
Biener, J
Schmitt, B
Borca, C
Van Swygenhoven, H
AF Van Petegem, Steven
Brandstetter, Stefan
Maass, Robert
Hodge, Andrea M.
El-Dasher, Bassem S.
Biener, Juergen
Schmitt, Bernd
Borca, Camelia
Van Swygenhoven, Helena
TI On the Microstructure of Nanoporous Gold: An X-ray Diffraction Study
SO NANO LETTERS
LA English
DT Article
ID POROUS GOLD; AU; EVOLUTION; BEHAVIOR; SENSORS; STRAIN
AB The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (31)) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread in orientations within individual grains. Initially, most grains develop in-plane tensile stresses, which are partly released during further dealloying. Simultaneously, the feature size of the developing nanoporous structure increases with increasing dealloying time. Finally, microdiffraction experiments on dealloyed micron-sized nanoporous pillars reveal significant surface damage introduced by focused ion beam milling.
C1 [Van Petegem, Steven; Brandstetter, Stefan; Maass, Robert; Schmitt, Bernd; Borca, Camelia; Van Swygenhoven, Helena] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
[Hodge, Andrea M.; El-Dasher, Bassem S.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94551 USA.
RP Van Swygenhoven, H (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
EM helena.vanswygenhoven@psi.ch
RI Maass, Robert/F-6306-2011; Schmitt, Bernd/H-9365-2013; Van Petegem,
Steven/D-5908-2014; Van Petegem, Steven/E-9807-2016
OI Schmitt, Bernd/0000-0002-5778-0680; Van Petegem,
Steven/0000-0002-3015-7725
FU Swiss National Science Foundation; European Commission; U.S. Department
of Energy [DE-AC52-07NA27344]
FX The authors thank D. Grolimund and M. Willimann from the MicroXAS beam
line at the Swiss Light Source for technical support and C. A. Volkert
for providing the nanoporous gold micropillars. H.V.S. thanks the Swiss
National Science Foundation and the European Commission (6th Framework)
for financial support of the project NANOMESO. Part of this work was
performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NR 31
TC 40
Z9 40
U1 5
U2 50
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1158
EP 1163
DI 10.1021/nl803799q
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100042
PM 19193021
ER
PT J
AU Malen, JA
Doak, P
Baheti, K
Tilley, TD
Segalman, RA
Majumdar, A
AF Malen, Jonathan A.
Doak, Peter
Baheti, Kanhayalal
Tilley, T. Don
Segalman, Rachel A.
Majumdar, Arun
TI Identifying the Length Dependence of Orbital Alignment and Contact
Coupling in Molecular Heterojunctions
SO NANO LETTERS
LA English
DT Article
ID SELF-ASSEMBLED MONOLAYERS; METAL WORK FUNCTION; JUNCTIONS; CONDUCTANCE;
RESISTANCE; THERMOELECTRICITY; TRANSPORT; CIRCUITS; SAMS
AB Transport in metal-molecule-metal junctions is defined by the alignment and coupling of molecular orbitals with continuum electronic states in the metal contacts. Length-dependent changes in molecular orbital alignment and coupling with contact states were probed via measurements and comparisons of thermopower (S) of a series of phenylenes and alkanes with varying binding groups. S increases linearly with length for phenylenediames and phenylenedithiols while it decreases linearly in alkanedithiols. Comparison of these data suggests that the molecular backbone determines the length dependence of S, while the binding group determines the zero length or contact S. Transport in phenylenes was dominated by the highest occupied molecular orbital (HOMO), which aligns closer to the Fermi energy of the contacts as similar to L(-1), but becomes more decoupled from them as similar to e(-L). In contrast, the decreasing trend in S for alkanedithiols suggests that transmission is largely affected by gold-sulfur metal induced gap states residing between the HOMO and lowest unoccupied molecular orbital.
C1 [Malen, Jonathan A.; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Malen, Jonathan A.; Doak, Peter; Segalman, Rachel A.; Majumdar, Arun] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Doak, Peter; Baheti, Kanhayalal] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Tilley, T. Don] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Segalman, Rachel A.; Majumdar, Arun] Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA.
[Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
EM segalman@berkeley.edu; majumdar@me.berkeley.edu
RI Malen, Jonathan/D-5954-2013; Doak, Peter/A-1910-2016;
OI Malen, Jonathan/0000-0003-4560-4476; Doak, Peter/0000-0001-6039-9752;
Segalman, Rachel/0000-0002-4292-5103
FU Department of Energy Basic Energy Sciences (DOEBES)
FX We gratefully acknowledge support from the Division of Materials
Sciences and Engineering in the Department of Energy Basic Energy
Sciences (DOEBES) through the Helios Program at Lawrence Berkeley
National Laboratory (LBNL). We also gratefully acknowledge support in
the form of instrumentation from the NSF-NSEC-COINS at UC Berkeley. We
thank J. B. Neaton and Su Ying Quek from LBNL, as well as S. Yee from UC
Berkeley, for insightful conversations that benefited this work.
NR 29
TC 114
Z9 114
U1 3
U2 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1164
EP 1169
DI 10.1021/nl803814f
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100043
PM 19239204
ER
PT J
AU Gomez, ED
Panday, A
Feng, EH
Chen, V
Stone, GM
Minor, AM
Kisielowski, C
Downing, KH
Borodin, O
Smith, GD
Balsara, NP
AF Gomez, Enrique D.
Panday, Ashoutosh
Feng, Edward H.
Chen, Vincent
Stone, Gregory M.
Minor, Andrew M.
Kisielowski, Christian
Downing, Kenneth H.
Borodin, Oleg
Smith, Grant D.
Balsara, Nitash P.
TI Effect of Ion Distribution on Conductivity of Block Copolymer
Electrolytes
SO NANO LETTERS
LA English
DT Article
ID CRYSTALLINE POLYMER ELECTROLYTES; MOLECULAR-DYNAMICS SIMULATIONS;
RECHARGEABLE LITHIUM BATTERIES; ATOMIC-RESOLUTION; SOLID-STATE;
TRANSPORT; IONOMERS; WEIGHT
AB Energy-filtered transmission electron microscopy (EFTEM) was used to determine the distribution of lithium ions in solid polymer electrolytes for lithium batteries. The electrolytes of interest are mixtures of bis(trifluoromethane)sulfonimide lithium salt and symmetric poly(styrene-block-ethylene oxide) copolymers (SEO). In contrast to current solid and liquid electrolytes, the conductivity of SEO/salt mixtures increases with increasing molecular weight of the copolymers. EFTEM results show that the salt is increasingly localized in the middle of the poly(ethylene oxide) (PEO) lamellae as the molecular weight of the copolymers is increased. Calculations of the inhomogeneous local stress field in block copolymer microdomains, modeled using self-consistent field theory, provide a quantitative explanation for this observation. These stresses, which increase with increasing molecular weight, interfere with the ability of PEO chains to coordinate with lithium cations near the walls of the PEO channels where ion mobility is expected to be low.
C1 [Gomez, Enrique D.; Panday, Ashoutosh; Feng, Edward H.; Chen, Vincent; Stone, Gregory M.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
[Gomez, Enrique D.; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Panday, Ashoutosh; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA.
[Minor, Andrew M.; Kisielowski, Christian] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
[Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Downing, Kenneth H.; Smith, Grant D.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Borodin, Oleg] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA.
RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
RI Borodin, Oleg/B-6855-2012; Gomez, Enrique/E-5887-2013
OI Borodin, Oleg/0000-0002-9428-5291;
FU Electron Microscopy of Soft Matter Program at Lawrence Berkeley National
Laboratory (LBNL); Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy [DE-AC02-05CH11231]; National Center for Electron
Microscopy, Lawrence Berkeley Laboratory; U.S. Department of Energy
[DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences;
[DE-AC0205CHI 1231 PO 6515401]
FX Major funding for this work was provided through the Electron Microscopy
of Soft Matter Program at Lawrence Berkeley National Laboratory (LBNL)
supported by the Director, Office of Science, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. The authors
acknowledge support of the National Center for Electron Microscopy,
Lawrence Berkeley Laboratory, which is supported by the U.S. Department
of Energy under Contract # DE-AC0205CHI 1231 PO No. 6515401. The
Advanced Light Source is supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.
NR 42
TC 106
Z9 107
U1 10
U2 123
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1212
EP 1216
DI 10.1021/nl900091n
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100051
PM 19193125
ER
PT J
AU Ji, MB
Park, S
Connor, ST
Mokari, T
Cui, Y
Gaffney, KJ
AF Ji, Minbiao
Park, Sungnam
Connor, Stephen T.
Mokari, Taleb
Cui, Yi
Gaffney, Kelly J.
TI Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum
Dots with Temporally and Spectrally Resolved Intraband Excitation
SO NANO LETTERS
LA English
DT Article
ID CARRIER MULTIPLICATION; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS;
DYNAMICS; LIMITS
AB We have spectrally resolved the Intraband transient absorption of photogenerated excitons to quantity the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited In a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally Integrated. With spectral Integration, we observe efficient multiple exciton generation in colloidal PbSe QDs.
C1 [Ji, Minbiao; Park, Sungnam; Gaffney, Kelly J.] Stanford Univ, PULSE Inst, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
[Ji, Minbiao] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Connor, Stephen T.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA.
[Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.
[Mokari, Taleb] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Gaffney, KJ (reprint author), Stanford Univ, PULSE Inst, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.
RI Ji, Minbiao/C-7793-2011; Park, Sungnam /F-3626-2012; MOKARI,
TALEB/F-1685-2012; Cui, Yi/L-5804-2013
OI Ji, Minbiao/0000-0002-9066-4008; Cui, Yi/0000-0002-6103-6352
FU Global Climate and Energy Project (GCEP) at Stanford University; the
King Abdullah University of Science and Technology (KAUST); Global
Research Partnership (GRP); Center for Advanced Molecular Photovoltaics
(CAMP); National Science Foundation Graduate Fellowship; Office of
Science, Office of Basic Energy Science, Division of Materials Science
and Engineering, U.S. Department of Energy [DE-AC0205CHII231]
FX The work has been supported by the Global Climate and Energy Project
(GCEP) at Stanford University, the King Abdullah University of Science
and Technology (KAUST): Global Research Partnership (GRP) through the
Center for Advanced Molecular Photovoltaics (CAMP), and the Department
of Energy. S.T.C. acknowledges the support from a National Science
Foundation Graduate Fellowship. Work at the Molecular Foundry was
supported by the Director, Office of Science, Office of Basic Energy
Science, Division of Materials Science and Engineering, U.S. Department
of Energy, under contract DE-AC0205CHII231.
NR 33
TC 94
Z9 94
U1 0
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1217
EP 1222
DI 10.1021/nl900103f
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100052
PM 19226125
ER
PT J
AU Sun, B
Findikoglu, AT
Sykora, M
Werder, DJ
Klimov, VI
AF Sun, Baoquan
Findikoglu, Alp T.
Sykora, Milan
Werder, Donald J.
Klimov, Victor I.
TI Hybrid Photovoltaics Based on Semiconductor Nanocrystals and Amorphous
Silicon
SO NANO LETTERS
LA English
DT Article
ID LIGHT-EMITTING-DIODES; SOLAR-CELLS; QUANTUM DOTS; POLYMER; SOLIDS;
PHOTOCONDUCTIVITY; COMPOSITES; INJECTION; EFFICIENT; FILMS
AB Semiconductor nanocrystals (NCs) are promising materials for applications In photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their Integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which Is exclusively due to the NCs. On the other hand, In devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar calls show external quantum efficiencies of similar to 7% at infrared energies and similar to 50% In the visible and a power conversion efficiency 0 up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.
C1 [Sun, Baoquan; Sykora, Milan; Werder, Donald J.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Findikoglu, Alp T.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Klimov, Victor I.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
EM klimov@lanl.gov
RI sun, Baoquan/N-7225-2013;
OI Klimov, Victor/0000-0003-1158-3179
FU Chemical Sciences, Biosciences and Geosciences Division of the Office of
Basic Energy Sciences, U.S.; Department of Energy (DOE) and Los Alamos
LDRD funds; Center for Integrated Nanotechnologies jointly operated for
DOE; Los Alamos and Sandia National Laboratories
FX We thank Patricia Dickerson for assistance with the MB sample
preparation. This work was supported by the Chemical Sciences,
Biosciences and Geosciences Division of the Office of Basic Energy
Sciences, U.S. Department of Energy (DOE) and Los Alamos LDRD funds.
V.I.K. acknowledges partial support from the Center for Integrated
Nanotechnologies jointly operated for DOE by Los Alamos and Sandia
National Laboratories.
NR 29
TC 67
Z9 67
U1 7
U2 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1235
EP 1241
DI 10.1021/nl9001469
PG 7
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100055
PM 19209920
ER
PT J
AU Huo, ZY
Tsung, CK
Huang, WY
Fardy, M
Yan, RX
Zhang, XF
Li, YD
Yang, PD
AF Huo, Ziyang
Tsung, Chia-Kuang
Huang, Wenyu
Fardy, Melissa
Yan, Ruoxue
Zhang, Xiaofeng
Li, Yadong
Yang, Peidong
TI Self-Organized Ultrathin Oxide Nanocrystals
SO NANO LETTERS
LA English
DT Article
ID SHAPE CONTROL; QUANTUM RODS; SEMICONDUCTOR; NANOPARTICLES; ASSEMBLIES;
NANOWIRES
AB Sub-2-nm (down to one-unit cell) uniform oxide nanocrystals; and highly ordered superstructures were obtained in one step using oleylamine and oleic acid as capping and structure directing agents. The cooperative nature of the nanocrystal growth and assembly resulted in mesoscopic one-dimensional ribbon-like superstructures made of these ultrathin nanocrystals. The process reported here is general and can be readily extended to the production of many other transition metal (TiO(2), ZnO, Nb(2)O(5)) and rare earth oxide (Eu(2)O(3), Sm(2)O(3), Er(2)O(3), Y(2)O(3), Tb(2)O(3), and Yb(2)O(3)) systems.
C1 [Huo, Ziyang; Tsung, Chia-Kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Huo, Ziyang; Tsung, Chia-Kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Huo, Ziyang; Li, Yadong] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China.
[Zhang, Xiaofeng] Hitachi High Technol Amer Inc, Nanotechnol Syst Div, Pleasanton, CA 94588 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM p_yang@berkeley.edu
RI Huang, Wenyu/L-3784-2014
OI Huang, Wenyu/0000-0003-2327-7259
NR 26
TC 81
Z9 81
U1 12
U2 166
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2009
VL 9
IS 3
BP 1260
EP 1264
DI 10.1021/nl900209w
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 418IO
UT WOS:000264142100059
PM 19206219
ER
PT J
AU Toner, BM
Fakra, SC
Manganini, SJ
Santelli, CM
Marcus, MA
Moffett, J
Rouxel, O
German, CR
Edwards, KJ
AF Toner, Brandy M.
Fakra, Sirine C.
Manganini, Steven J.
Santelli, Cara M.
Marcus, Matthew A.
Moffett, JamesW.
Rouxel, Olivier
German, Christopher R.
Edwards, Katrina J.
TI Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume
SO NATURE GEOSCIENCE
LA English
DT Article
ID EAST PACIFIC RISE; DISSOLVED ORGANIC-CARBON; MID-ATLANTIC RIDGE; DE-FUCA
RIDGE; OXIDATION-KINETICS; OCEAN; SEA; PARTICLES; SYSTEMS; FLUXES
AB Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread(1). This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff(2). For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated(3), and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals(4,5). Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.
C1 [Toner, Brandy M.; Manganini, Steven J.; Santelli, Cara M.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
[Fakra, Sirine C.; Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Moffett, JamesW.; Edwards, Katrina J.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA.
RP Toner, BM (reprint author), Univ Minnesota Twin Cities, Dept Soil Water & Climate, St Paul, MN 55108 USA.
EM toner@umn.edu
RI Rouxel, Olivier/F-3954-2014; Toner, Brandy/N-7911-2016;
OI Toner, Brandy/0000-0002-3681-3455; Santelli, Cara/0000-0001-8617-0008
NR 32
TC 95
Z9 95
U1 8
U2 66
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 1752-0894
J9 NAT GEOSCI
JI Nat. Geosci.
PD MAR
PY 2009
VL 2
IS 3
BP 197
EP 201
DI 10.1038/NGEO433
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 420KY
UT WOS:000264289900020
ER
PT J
AU Sutter, P
AF Sutter, Peter
TI EPITAXIAL GRAPHENE How silicon leaves the scene
SO NATURE MATERIALS
LA English
DT News Item
C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.
EM psutter@bnl.gov
NR 8
TC 151
Z9 156
U1 8
U2 95
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2009
VL 8
IS 3
BP 171
EP 172
DI 10.1038/nmat2392
PG 3
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 410DK
UT WOS:000263556800012
PM 19229263
ER
PT J
AU Emtsev, KV
Bostwick, A
Horn, K
Jobst, J
Kellogg, GL
Ley, L
McChesney, JL
Ohta, T
Reshanov, SA
Rohrl, J
Rotenberg, E
Schmid, AK
Waldmann, D
Weber, HB
Seyller, T
AF Emtsev, Konstantin V.
Bostwick, Aaron
Horn, Karsten
Jobst, Johannes
Kellogg, Gary L.
Ley, Lothar
McChesney, Jessica L.
Ohta, Taisuke
Reshanov, Sergey A.
Roehrl, Jonas
Rotenberg, Eli
Schmid, Andreas K.
Waldmann, Daniel
Weber, Heiko B.
Seyller, Thomas
TI Towards wafer-size graphene layers by atmospheric pressure
graphitization of silicon carbide
SO NATURE MATERIALS
LA English
DT Article
ID EPITAXIAL GRAPHENE; BILAYER GRAPHENE; BERRYS PHASE; GRAPHITE; GAS
AB Graphene, a single monolayer of graphite, has recentlyattracted considerable interest owing to its novel magneto-transport properties(1-3), high carrier mobility and ballistic transport up to room temperature(4). It has the potential for technological applications as a successor of silicon in the post Moore's law era(5-7), as a single-molecule gas sensor(8), in spintronics(9-11), in quantum computing(12) or as a terahertz oscillator(13). For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices(5,6). However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu = 2,000 cm(2) V(-1) s(-1) at T = 27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.
C1 [Emtsev, Konstantin V.; Ley, Lothar; Roehrl, Jonas; Seyller, Thomas] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, D-91058 Erlangen, Germany.
[Bostwick, Aaron; McChesney, Jessica L.; Rotenberg, Eli] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany.
[Jobst, Johannes; Reshanov, Sergey A.; Waldmann, Daniel; Weber, Heiko B.] Univ Erlangen Nurnberg, Lehrstuhl Angew Phys, D-91058 Erlangen, Germany.
[Ohta, Taisuke] Sandia Natl Labs, Surface & Interface Sci Dept, Albuquerque, NM 87185 USA.
[Schmid, Andreas K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA.
RP Emtsev, KV (reprint author), Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany.
EM thomas.seyller@physik.uni-erlangen.de
RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Bostwick,
Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013; Jobst,
Johannes/H-6502-2013; Weber, Heiko/D-2654-2012
OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142;
McChesney, Jessica/0000-0003-0470-2088; Jobst,
Johannes/0000-0002-2422-1209; Weber, Heiko/0000-0002-6403-9022
NR 30
TC 1331
Z9 1354
U1 95
U2 1019
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2009
VL 8
IS 3
BP 203
EP 207
DI 10.1038/NMAT2382
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 410DK
UT WOS:000263556800018
PM 19202545
ER
PT J
AU Ross, RB
Cardona, CM
Guldi, DM
Sankaranarayanan, SG
Reese, MO
Kopidakis, N
Peet, J
Walker, B
Bazan, GC
Van Keuren, E
Holloway, BC
Drees, M
AF Ross, Russel B.
Cardona, Claudia M.
Guldi, Dirk M.
Sankaranarayanan, Shankara Gayathri
Reese, Matthew O.
Kopidakis, Nikos
Peet, Jeff
Walker, Bright
Bazan, Guillermo C.
Van Keuren, Edward
Holloway, Brian C.
Drees, Martin
TI Endohedral fullerenes for organic photovoltaic devices
SO NATURE MATERIALS
LA English
DT Article
ID OPEN-CIRCUIT VOLTAGE; PLASTIC SOLAR-CELLS; METALLOFULLERENES;
DERIVATIVES; REACTIVITY; EFFICIENCY; FILMS
AB So far, one of the fundamental limitations of organic photovoltaic (OPV) device power conversion efficiencies (PCEs) has been the low voltage output caused by a molecular orbital mismatch between the donor polymer and acceptor molecules. Here, we present a means of addressing the low voltage output by introducing novel trimetallic nitride endohedral fullerenes (TNEFs) as acceptor materials for use in photovoltaic devices. TNEFs were discovered in 1999 by Stevenson et al.(1); for the first time derivatives of the TNEF acceptor, Lu(3)N@ C(80), are synthesized and integrated into OPV devices. The reduced energy offset of the molecular orbitals of Lu3N@ C80 to the donor, poly(3-hexyl)thiophene (P3HT), reduces energy losses in the charge transfer process and increases the open circuit voltage (V(oc)) to 260mV above reference devices made with [6,6]-phenyl-C(61)-butyric methyl ester (C(60)-PCBM) acceptor. PCEs > 4% have been observed using P3HT as the donor material. This work clears a path towards higher PCEs in OPV devices by demonstrating that high-yield charge separation can occur with OPV systems that have a reduced donor/acceptor lowest unoccupied molecular orbital energy offset.
C1 [Ross, Russel B.; Van Keuren, Edward] Georgetown Univ, Washington, DC 20057 USA.
[Cardona, Claudia M.; Holloway, Brian C.; Drees, Martin] Luna Innovat Inc, Danville, VA 24541 USA.
[Guldi, Dirk M.; Sankaranarayanan, Shankara Gayathri] Univ Erlangen Nurnberg, Dept Chem & Pharm, D-91058 Erlangen, Germany.
[Guldi, Dirk M.; Sankaranarayanan, Shankara Gayathri] Univ Erlangen Nurnberg, ICMM, D-91058 Erlangen, Germany.
[Reese, Matthew O.; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Peet, Jeff; Bazan, Guillermo C.] Univ Calif Santa Barbara, Ctr Polymer & Organ Solids, Santa Barbara, CA 93106 USA.
[Walker, Bright] Univ Calif Santa Barbara, Dept Chem & Biochem, Ctr Polymer & Organ Solids, Santa Barbara, CA 93117 USA.
RP Ross, RB (reprint author), Georgetown Univ, 37th & Ost NW, Washington, DC 20057 USA.
EM dreesm@lunainnovations.com
RI Van Keuren, Edward/E-5581-2010; Guldi, Dirk/G-1422-2015; Kopidakis,
Nikos/N-4777-2015; Bazan, Guillermo/B-7625-2014
OI Van Keuren, Edward/0000-0001-8348-7587;
NR 22
TC 376
Z9 379
U1 13
U2 157
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2009
VL 8
IS 3
BP 208
EP 212
DI 10.1038/NMAT2379
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 410DK
UT WOS:000263556800019
PM 19202546
ER
PT J
AU Vajda, S
Pellin, MJ
Greeley, JP
Marshall, CL
Curtiss, LA
Ballentine, GA
Elam, JW
Catillon-Mucherie, S
Redfern, PC
Mehmood, F
Zapol, P
AF Vajda, Stefan
Pellin, Michael J.
Greeley, Jeffrey P.
Marshall, Christopher L.
Curtiss, Larry A.
Ballentine, Gregory A.
Elam, Jeffrey W.
Catillon-Mucherie, Stephanie
Redfern, Paul C.
Mehmood, Faisal
Zapol, Peter
TI Subnanometre platinum clusters as highly active and selective catalysts
for the oxidative dehydrogenation of propane
SO NATURE MATERIALS
LA English
DT Article
ID SUPPORTED METAL-CLUSTERS; C-H; ACTIVATION; SIZE; METHANE; ETHANE; GOLD;
NANOPARTICLES; OXIDE; SITE
AB Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis(1-6). Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms(7-9). Here, we show that size-preselected Pt(8-10) clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes(10,11).
C1 [Vajda, Stefan; Marshall, Christopher L.; Curtiss, Larry A.; Ballentine, Gregory A.; Catillon-Mucherie, Stephanie; Redfern, Paul C.; Zapol, Peter] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Vajda, Stefan; Greeley, Jeffrey P.; Curtiss, Larry A.; Zapol, Peter] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[Vajda, Stefan] Yale Univ, Dept Chem Engn, Sch Engn & Appl Sci, New Haven, CT 06520 USA.
[Pellin, Michael J.; Curtiss, Larry A.; Mehmood, Faisal; Zapol, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
RP Vajda, S (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM vajda@anl.gov; curtiss@anl.gov
RI Pellin, Michael/B-5897-2008; Zapol, Peter/G-1810-2012; Marshall,
Christopher/D-1493-2015
OI Pellin, Michael/0000-0002-8149-9768; Zapol, Peter/0000-0003-0570-9169;
Marshall, Christopher/0000-0002-1285-7648
NR 29
TC 311
Z9 311
U1 25
U2 319
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2009
VL 8
IS 3
BP 213
EP 216
DI 10.1038/NMAT2384
PG 4
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 410DK
UT WOS:000263556800020
PM 19202544
ER
PT J
AU Armatas, GS
Kanatzidis, MG
AF Armatas, Gerasimos S.
Kanatzidis, Mercouri G.
TI Mesoporous germanium-rich chalcogenido frameworks with highly
polarizable surfaces and relevance to gas separation
SO NATURE MATERIALS
LA English
DT Article
ID HYDROGEN PURIFICATION; PORE ORGANIZATION; MEMBRANES; SEMICONDUCTORS;
COMPLEXES; SULFIDES; CLUSTERS; AEROGELS; SILICA; XPS
AB Mesoporous materials with tunable non-oxidic framework compositions can exhibit new kinds of functionality including internal surfaces with high polarizability. As the chemical and physical characteristics of the framework components can induce useful catalytic, absorption and optoelectronic features, the mesoporous structure can promote fast mass diffusion kinetics and size-selective transport of guest molecules(1). So far, synthetic efforts have resulted in mesoporous metal chalcogenides on using structure-directing moulds of soft or hard templates. These include ordered mesoporous II-VI semiconductors (such as CdS (refs 2,3), ZnS (ref. 4) and CdTe (ref. 5)). Recently, template-free synthetic routes for high-surface-area chalcogenide aerogels have been reported(6,7). Here, we describe a novel kind of porous materials based on germanium-rich chalcogenide networks and 'soft' highly polarizable surfaces. We demonstrate that these materials can exhibit excellent selectivity for separating hydrogen from carbon dioxide and methane. These highly polarizable mesoporous structures have important implications for membrane-based gas separation process technologies including hydrogen purification.
C1 [Armatas, Gerasimos S.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Armatas, GS (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM m-kanatzidis@northwestern.edu
RI Armatas, Gerasimos/F-4753-2011
OI Armatas, Gerasimos/0000-0001-9475-1929
FU Nanoscale Science and Engineering Initiative; National Science
Foundation [EEC-0647560]
FX These studies were supported primarily by the Nanoscale Science and
Engineering Initiative of the National Science Foundation under NSF
Award Number EEC-0647560. We thank Peter C. Stair for the use of a
mass-spectrometer gas analyser. This work made use of the J.B. Cohen
X-ray Diffraction facility and the Electron Probe Instrumentation Center
(EPIC) and Keck Interdisciplinary Surface Science (Keck-II) facility of
NUANCE Center at Northwestern University.
NR 29
TC 42
Z9 42
U1 3
U2 69
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2009
VL 8
IS 3
BP 217
EP 222
DI 10.1038/NMAT2381
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 410DK
UT WOS:000263556800021
PM 19219031
ER
PT J
AU Wu, CJ
Soderlind, P
Glosli, JN
Klepeis, JE
AF Wu, Christine J.
Soederlind, Per
Glosli, James N.
Klepeis, John E.
TI Shear-induced anisotropic plastic flow from body-centred-cubic tantalum
before melting
SO NATURE MATERIALS
LA English
DT Article
ID DIAMOND-ANVIL CELL; X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; TRANSITION;
PRESSURE; TA; MO; COMPRESSION; SIMULATION; BEHAVIOR
AB There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.
C1 [Wu, Christine J.; Soederlind, Per; Glosli, James N.; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Wu, CJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
EM wu5@llnl.gov
FU US Department of Energy; Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]
FX The authors would like to thank J. A. Moriarty for providing the MGPT Ta
potential, M. Ross, N. C. Holmes, W. J. Evans, M. J. Lipp, M. Tang, R.
Gee and D. A. Orlikowski for useful discussions and K. Kline and J.
McInnis for their contributions in preparation of the manuscript and
figures. This work was carried out under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
NR 47
TC 42
Z9 42
U1 3
U2 17
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2009
VL 8
IS 3
BP 223
EP 228
DI 10.1038/NMAT2375
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 410DK
UT WOS:000263556800022
PM 19169246
ER
PT J
AU Seidel, J
Martin, LW
He, Q
Zhan, Q
Chu, YH
Rother, A
Hawkridge, ME
Maksymovych, P
Yu, P
Gajek, M
Balke, N
Kalinin, SV
Gemming, S
Wang, F
Catalan, G
Scott, JF
Spaldin, NA
Orenstein, J
Ramesh, R
AF Seidel, J.
Martin, L. W.
He, Q.
Zhan, Q.
Chu, Y. -H.
Rother, A.
Hawkridge, M. E.
Maksymovych, P.
Yu, P.
Gajek, M.
Balke, N.
Kalinin, S. V.
Gemming, S.
Wang, F.
Catalan, G.
Scott, J. F.
Spaldin, N. A.
Orenstein, J.
Ramesh, R.
TI Conduction at domain walls in oxide multiferroics
SO NATURE MATERIALS
LA English
DT Article
ID THIN-FILMS; FERROELECTRIC-FILMS; RECONSTRUCTION; BIFEO3; POLARIZATION;
TRANSITIONS; RESOLUTION
AB Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.
C1 [Seidel, J.; He, Q.; Yu, P.; Gajek, M.; Balke, N.; Wang, F.; Orenstein, J.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Seidel, J.; Martin, L. W.; Zhan, Q.; Chu, Y. -H.; Hawkridge, M. E.; Orenstein, J.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Martin, L. W.; Chu, Y. -H.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan.
[Rother, A.] Tech Univ Dresden, Inst Struct Phys, Triebenberg Lab, DE-01062 Dresden, Germany.
[Maksymovych, P.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
[Gemming, S.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany.
[Catalan, G.; Scott, J. F.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
[Spaldin, N. A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA.
RP Seidel, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM jseidel@berkeley.edu
RI Gemming, Sibylle/C-6898-2009; Ying-Hao, Chu/A-4204-2008; He,
Qing/E-3202-2010; Kim, Yu Jin/A-2433-2012; Spaldin, Nicola/A-1017-2010;
Martin, Lane/H-2409-2011; Kalinin, Sergei/I-9096-2012; Catalan,
Gustau/D-3233-2015; Yu, Pu/F-1594-2014; Orenstein, Joseph/I-3451-2015;
Balke, Nina/Q-2505-2015; Maksymovych, Petro/C-3922-2016; wang,
Feng/I-5727-2015
OI Ying-Hao, Chu/0000-0002-3435-9084; Spaldin, Nicola/0000-0003-0709-9499;
Martin, Lane/0000-0003-1889-2513; Kalinin, Sergei/0000-0001-5354-6152;
Catalan, Gustau/0000-0003-0214-4828; Balke, Nina/0000-0001-5865-5892;
Maksymovych, Petro/0000-0003-0822-8459;
FU US Department of Energy [DE-AC02-05CH1123]; National Center for Electron
Microscopy; Lawrence Berkeley National Laboratory; Alexander von
Humboldt Foundation; National Science Council [NSC 97-3114-M-009-001];
Deutsche Forschungsgemeinschaft; Deutsche Akademische Austauschdienst
[GE 1202/5-1]; NSF [DMR-0605852]; Miller Institute for Basic Research in
Science; UC Berkeley
FX The work at Berkeley is supported by the Director, Office of Science,
Office of Basic Energy Sciences, Materials Sciences Division of the US
Department of Energy under contract No DE-AC02-05CH1123. The authors
from Berkeley would like to acknowledge the support of the National
Center for Electron Microscopy, Lawrence Berkeley National Laboratory.
J.S. acknowledges support from the Alexander von Humboldt Foundation.
Y.H.C. would also like to acknowledge the support of the National
Science Council, R.O.C., under contract No NSC 97-3114-M-009-001. A. R.
and S. G. acknowledge support from Deutsche Forschungsgemeinschaft
through FOR 520 and Deutsche Akademische Austauschdienst through GE
1202/5-1, and N.A.S. acknowledges support from NSF DMR Award No
DMR-0605852 and the Miller Institute for Basic Research in Science, UC
Berkeley.
NR 36
TC 521
Z9 528
U1 53
U2 452
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1476-1122
J9 NAT MATER
JI Nat. Mater.
PD MAR
PY 2009
VL 8
IS 3
BP 229
EP 234
DI 10.1038/NMAT2373
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics,
Applied; Physics, Condensed Matter
SC Chemistry; Materials Science; Physics
GA 410DK
UT WOS:000263556800023
PM 19169247
ER
PT J
AU Chen, HT
Padilla, WJ
Cich, MJ
Azad, AK
Averitt, RD
Taylor, AJ
AF Chen, Hou-Tong
Padilla, Willie J.
Cich, Michael J.
Azad, Abul K.
Averitt, Richard D.
Taylor, Antoinette J.
TI A metamaterial solid-state terahertz phase modulator
SO NATURE PHOTONICS
LA English
DT Article
ID DESIGN
AB Over the past two decades, terahertz time-domain spectroscopy(1) and quantum-cascade lasers(2) have been two of the most important developments in terahertz science and technology. These technologies may contribute to a multitude of terahertz applications that are currently under investigation globally(3). However, the devices and components necessary to effectively manipulate terahertz radiation require substantial development beyond what has been accomplished to date. Here we demonstrate an electrically controlled planar hybrid metamaterial device that linearly controls the phase of terahertz radiation with constant insertion loss over a narrow frequency band. Alternatively, our device may operate as a broadband terahertz modulator because of the causal relation between the amplitude modulation and phase shifting. We perform terahertz time-domain spectroscopy, in which our hybrid metamaterial modulator replaces a commercial mechanical optical chopper, demonstrating comparable broadband performance and superior high-speed operation.
C1 [Chen, Hou-Tong; Azad, Abul K.; Taylor, Antoinette J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
[Padilla, Willie J.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA.
[Cich, Michael J.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Averitt, Richard D.] Boston Univ, Dept Phys, Boston, MA 02215 USA.
RP Chen, HT (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.
EM chenht@lanl.gov
RI Chen, Hou-Tong/C-6860-2009; Padilla, Willie/A-7235-2008;
OI Chen, Hou-Tong/0000-0003-2014-7571; Padilla, Willie/0000-0001-7734-8847;
Azad, Abul/0000-0002-7784-7432
FU US Department of Energy [DE-AC52-06NA25396]; Office of Basic Energy
Sciences Nanoscale Science Research; Los Alamos and Sandia National
Laboratories; Los Alamos National Security, LLC
FX We thank I. Brener for coordinating the sample fabrication, J. F. O'Hara
for discussions and the use of the terahertz system, and D. Lippens for
useful discussions. We acknowledge support from the Los Alamos National
Laboratory LDRD Program. This work was performed, in part, at the Center
for Integrated Nanotechnologies, a US Department of Energy, Office of
Basic Energy Sciences Nanoscale Science Research Center operated jointly
by Los Alamos and Sandia National Laboratories. Los Alamos National
Laboratory, an affirmative action/equal opportunity employer, is
operated by Los Alamos National Security, LLC, for the National Nuclear
Security Administration of the US Department of Energy under contract
DE-AC52-06NA25396.
NR 30
TC 379
Z9 399
U1 26
U2 160
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1749-4885
J9 NAT PHOTONICS
JI Nat. Photonics
PD MAR
PY 2009
VL 3
IS 3
BP 148
EP 151
DI 10.1038/NPHOTON.2009.3
PG 4
WC Optics; Physics, Applied
SC Optics; Physics
GA 420KV
UT WOS:000264289600015
ER
PT J
AU Zurek, WH
AF Zurek, Wojciech Hubert
TI Quantum Darwinism
SO NATURE PHYSICS
LA English
DT Article
ID CURRENT SITUATION; COHERENT STATES; DECOHERENCE; MECHANICS; EINSELECTION
AB Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective 'wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
C1 LANL, Div Theory, Los Alamos, NM 87545 USA.
RP Zurek, WH (reprint author), LANL, Div Theory, MS B213, Los Alamos, NM 87545 USA.
EM whzurek@gmail.com
FU DoE; LDRD; Foundational Questions Institute (FQXi)
FX I am grateful to R. Blume-Kohout, F. Cucchietti, J. P. Paz, D. Poulin,
H.- T. Quan and M. Zwolak for stimulating discussions. This research was
supported by DoE through an LDRD grant at Los Alamos, and, in part, by
the Foundational Questions Institute (FQXi).
NR 40
TC 137
Z9 138
U1 4
U2 31
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
EI 1745-2481
J9 NAT PHYS
JI Nat. Phys.
PD MAR
PY 2009
VL 5
IS 3
BP 181
EP 188
DI 10.1038/NPHYS1202
PG 8
WC Physics, Multidisciplinary
SC Physics
GA 422RY
UT WOS:000264446600011
ER
PT J
AU Wise, WD
Chatterjee, K
Boyer, MC
Kondo, T
Takeuchi, T
Ikuta, H
Xu, ZJ
Wen, JS
Gu, GD
Wang, YY
Hudson, EW
AF Wise, W. D.
Chatterjee, Kamalesh
Boyer, M. C.
Kondo, Takeshi
Takeuchi, T.
Ikuta, H.
Xu, Zhijun
Wen, Jinsheng
Gu, G. D.
Wang, Yayu
Hudson, E. W.
TI Imaging nanoscale Fermi-surface variations in an inhomogeneous
superconductor
SO NATURE PHYSICS
LA English
DT Article
ID QUASI-PARTICLE INTERFERENCE; ATOMIC-SCALE; BI2SR2CACU2O8+DELTA; STATE;
CA2-XNAXCUO2CL2; DENSITY; ORIGIN; GAPS
AB Particle-wave duality suggests we think of electrons as waves stretched across a sample, with wavevector k proportional to their momentum. Their arrangement in 'k-space', and in particular the shape of the Fermi surface, where the highest-energy electrons of the system reside, determine many material properties. Here we use a novel extension of Fourier-transform scanning tunnelling microscopy to probe the Fermi surface of the strongly inhomogeneous Bi-based cuprate superconductors. Surprisingly, we find that, rather than being globally defined, the Fermi surface changes on nanometre length scales. Just as shifting tide lines expose variations of water height, changing Fermi surfaces indicate strong local doping variations. This discovery, unprecedented in any material, paves the way for an understanding of other inhomogeneous characteristics of the cuprates, such as the pseudogap magnitude, and highlights a new approach to the study of nanoscale inhomogeneity in general.
C1 [Wise, W. D.; Chatterjee, Kamalesh; Boyer, M. C.; Kondo, Takeshi; Wang, Yayu; Hudson, E. W.] MIT, Dept Phys, Cambridge, MA 02139 USA.
[Kondo, Takeshi; Takeuchi, T.; Ikuta, H.] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan.
[Takeuchi, T.] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan.
[Xu, Zhijun; Wen, Jinsheng; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.
RP Hudson, EW (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA.
EM ehudson@mit.edu
RI Wen, Jinsheng/F-4209-2010; Hudson, Eric/C-2746-2008; Chatterjee,
Kamalesh/G-6340-2011; xu, zhijun/A-3264-2013; Gu, Genda/D-5410-2013;
Kondo, Takeshi/H-2680-2016
OI Wen, Jinsheng/0000-0001-5864-1466; Hudson, Eric/0000-0001-7064-0351; xu,
zhijun/0000-0001-7486-2015; Gu, Genda/0000-0002-9886-3255;
FU Cottrell Scholarship; MRSEC; NSF; DOE
FX We thank A. V. Balatsky, N. Gedik, J. E. Hoffman, K. M. Lang, P. A. Lee,
Y. Lee, T. Senthil and Z. Wang for comments. This research was supported
in part by a Cottrell Scholarship awarded by the Research Corporation,
by the MRSEC and CAREER programmes of the NSF and by DOE.
NR 29
TC 50
Z9 50
U1 1
U2 19
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
J9 NAT PHYS
JI Nat. Phys.
PD MAR
PY 2009
VL 5
IS 3
BP 213
EP 216
DI 10.1038/NPHYS1197
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 422RY
UT WOS:000264446600017
ER
PT J
AU VerBerkmoes, NC
Denef, VJ
Hettich, RL
Banfield, JF
AF VerBerkmoes, Nathan C.
Denef, Vincent J.
Hettich, Robert L.
Banfield, Jillian F.
TI SYSTEMS BIOLOGY Functional analysis of natural microbial consortia using
community proteomics
SO NATURE REVIEWS MICROBIOLOGY
LA English
DT Review
ID TANDEM MASS-SPECTROMETRY; SHEWANELLA-ONEIDENSIS MR-1; WASTE-WATER
TREATMENT; SHOTGUN PROTEOMICS; GENOME ANNOTATION; PROTEIN
IDENTIFICATION; ABSOLUTE PROTEIN; YEAST PROTEOME; ACCURATE MASS;
SARGASSO SEA
AB We know very little about the metabolic functioning and evolutionary dynamics of microbial communities. Recent advances in comprehensive, sequencing-based methods, however, are laying a molecular foundation for new insights into how microbial communities shape the Earth's biosphere. Here we explore the convergence of microbial ecology, genomics, biological mass spectrometry and informatics that form the new field of microbial community proteogenomics. We discuss the first applications of proteogenomics and its potential for studying the physiology, ecology and evolution of microbial populations and communities.
C1 [VerBerkmoes, Nathan C.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Denef, Vincent J.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
RP VerBerkmoes, NC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM verberkmoesn@ornl.gov
RI Hettich, Robert/N-1458-2016
OI Hettich, Robert/0000-0001-7708-786X
FU United States Department of Energy [DOE-AC05-00OR22725]; National
Science Foundation; NASA Astrobiology Institute
FX Funding was provided by the United States Department of Energy:
Genomics: Genomes-to-Life Program, the National Science Foundation
Biocomplexity Program and the NASA Astrobiology Institute. B. R. Maggard
is thanked for secretarial assistance in the preparation of this
manuscript. Oak Ridge National Laboratory is managed by University of
Tennessee-Battelle LLC for the Department of Energy under contract
DOE-AC05-00OR22725.
NR 81
TC 129
Z9 133
U1 4
U2 65
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1740-1526
J9 NAT REV MICROBIOL
JI Nat. Rev. Microbiol.
PD MAR
PY 2009
VL 7
IS 3
BP 196
EP 205
DI 10.1038/nrmicro2080
PG 10
WC Microbiology
SC Microbiology
GA 407KC
UT WOS:000263361000011
PM 19219053
ER
PT J
AU Radisky, DC
Stallings-Mann, M
Hirai, Y
Bissell, MJ
AF Radisky, Derek C.
Stallings-Mann, Melody
Hirai, Yohei
Bissell, Mina J.
TI Single proteins might have dual but related functions in intracellular
and extracellular microenvironments
SO NATURE REVIEWS MOLECULAR CELL BIOLOGY
LA English
DT Review
ID TISSUE TRANSGLUTAMINASE; EPITHELIAL MORPHOGENESIS; CHROMATIN PROTEIN;
CROSS-LINKING; CELL-SURFACE; PHOSPHOGLUCOSE ISOMERASE; VESICULAR
TRANSPORT; BASEMENT-MEMBRANE; MAMMALIAN-CELLS; ANNEXIN-II
AB The maintenance of organ homeostasis and the control of an appropriate response to environmental alterations require the intimate coordination of cellular functions and tissue organization. An important component of this coordination could be provided by proteins that can have distinct but linked functions on both sides of the plasma membrane. We present a model that proposes that unconventional secretion provides a mechanism through which single proteins can integrate complex tissue functions.
C1 [Radisky, Derek C.; Stallings-Mann, Melody] Mayo Clin, Ctr Canc, Jacksonville, FL 32224 USA.
[Hirai, Yohei] Kyoto Univ, Dept Morphoregulat, Inst Frontier Med Sci, Sakyo Ku, Kyoto 6068507, Japan.
[Bissell, Mina J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA.
RP Radisky, DC (reprint author), Mayo Clin, Ctr Canc, 4500 San Pablo Rd, Jacksonville, FL 32224 USA.
EM radisky.derek@mayo.edu
FU Office of Biological and Environmental Research of the Department of
Energy [DE-AC03-76SF00098]; Distinguished Fellow Award; National Cancer
Institute [CA64786, CA57621, CA122086, CA128660]; Department of Defense
FX Our work was supported by grants from the Office of Biological and
Environmental Research of the Department of Energy (DE-AC03-76SF00098
and a Distinguished Fellow Award; to M. J. B.); the National Cancer
Institute CA64786 (to M. J. B.), CA57621 (to M. J. B. and Z. Werb),
CA122086 (to D. C. R.), CA128660 (to C. M. Nelson and D. C. R.) and the
Breast Cancer Research Program of the Department of Defense (an
Innovator Award; to M. J. B.).
NR 64
TC 53
Z9 53
U1 1
U2 6
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1471-0072
J9 NAT REV MOL CELL BIO
JI Nat. Rev. Mol. Cell Biol.
PD MAR
PY 2009
VL 10
IS 3
BP 228
EP U85
DI 10.1038/nrm2633
PG 8
WC Cell Biology
SC Cell Biology
GA 410LI
UT WOS:000263578300015
PM 19190671
ER
PT J
AU Lowe, XR
Marchetti, F
Lu, XC
Wyrobek, AJ
AF Lowe, Xiu R.
Marchetti, Francesco
Lu, Xiaochen
Wyrobek, Andrew J.
TI Molecular stress response in the CNS of mice after systemic exposure to
interferon-alpha, ionizing radiation and ketamine
SO NEUROTOXICOLOGY
LA English
DT Article
DE Molecular-response; Troponin T1; Interferon-alpha; Irradiation;
Ketamine; Mouse brain; Stress marker
ID WHOLE-BRAIN IRRADIATION; GENE-EXPRESSION CHANGES; MICROARRAY ANALYSIS;
NERVOUS-SYSTEM; X-IRRADIATION; MOUSE-BRAIN; CELLS; HIPPOCAMPUS;
SENSITIVITY; INCREASES
AB We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adult mice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt I expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt I in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-alpha (IFN-alpha) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-alpha (a single i.p. injection at 1 x 10(5) IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt I transcript expression were compared in various CNS regions after IFN-alpha, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-alpha treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex and hippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tom 1 may be an early molecular biomarker of induced CNS stress. (C) 2009 Elsevier Inc. All rights reserved.
C1 [Lowe, Xiu R.; Marchetti, Francesco; Wyrobek, Andrew J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA.
[Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.] Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA USA.
[Lowe, Xiu R.] Kaiser Permanente Med Grp Inc, Dept Psychiat, Hayward, CA USA.
RP Lowe, XR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM XRLowe@lbl.gov
OI Marchetti, Francesco/0000-0002-9435-4867
FU U.S. Department of Energy by the University of California, Lawrence
Berkeley National Laboratory [DE-AC02-05CH1 1231]; U.S. Department of
Energy by the University of California, Lawrence Livermore National
Laboratory [W-7405-ENG-48]; DOE [SCW0391]
FX This work was performed under the auspices of the U.S. Department of
Energy by the University of California, Lawrence Berkeley National
Laboratory under contract DE-AC02-05CH1 1231 and Lawrence Livermore
National Laboratory under contract W-7405-ENG-48. Funded in part by DOE
Low Dose Research Program grant (SCW0391) to AJW.
NR 52
TC 8
Z9 8
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0161-813X
J9 NEUROTOXICOLOGY
JI Neurotoxicology
PD MAR
PY 2009
VL 30
IS 2
BP 261
EP 268
DI 10.1016/j.neuro.2008.12.012
PG 8
WC Neurosciences; Pharmacology & Pharmacy; Toxicology
SC Neurosciences & Neurology; Pharmacology & Pharmacy; Toxicology
GA 429HY
UT WOS:000264912700012
PM 19162068
ER
PT J
AU Kaper, HG
Wang, SH
Yari, M
AF Kaper, Hans G.
Wang, Shouhong
Yari, Masoud
TI Dynamical transitions of Turing patterns
SO NONLINEARITY
LA English
DT Article
ID SYSTEMS; MODEL
AB This paper is concerned with the formation and persistence of spatiotemporal patterns in binary mixtures of chemically reacting species, where one of the species is an activator, the other an inhibitor of the chemical reaction. The system of reaction-diffusion equations is reduced to a finite system of ordinary differential equations by a variant of the centre-manifold reduction method. The reduced system fully describes the local dynamics of the original system near transition points at the onset of instability. The attractor-bifurcation theory is used to give a complete characterization of the bifurcated objects in terms of the physical parameters of the problem. The results are illustrated for the Schnakenberg model.
C1 [Kaper, Hans G.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Wang, Shouhong; Yari, Masoud] Indiana Univ, Dept Math, Bloomington, IN 47405 USA.
RP Kaper, HG (reprint author), Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA.
EM kaper@mcs.anl.gov; showang@indiana.edu; myari@indiana.edu
NR 24
TC 4
Z9 4
U1 0
U2 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0951-7715
EI 1361-6544
J9 NONLINEARITY
JI Nonlinearity
PD MAR
PY 2009
VL 22
IS 3
BP 601
EP 626
DI 10.1088/0951-7715/22/3/006
PG 26
WC Mathematics, Applied; Physics, Mathematical
SC Mathematics; Physics
GA 405YF
UT WOS:000263259400006
ER
PT J
AU Browne, E
Tuli, JK
AF Browne, E.
Tuli, J. K.
TI Nuclear Data Sheets for A=145
SO NUCLEAR DATA SHEETS
LA English
DT Review
ID HIGH-SPIN STATES; DELAYED-NEUTRON EMISSION; ISOBARIC ANALOG RESONANCES;
DECAY BRANCHING RATIOS; DEFICIENT GADOLINIUM ISOTOPES; GAMMA-RAY
SPECTROMETER; ANOMALOUS EPSILON-BETA; SHORT-LIVED ISOTOPES; RICH
LA-145,LA-147 NUCLEI; SINGLE-PARTICLE STATES
AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions for all isobars with mass number A = 145.
C1 [Browne, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Nucl Data Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Browne, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Nucl Data Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA.
FU Office of Nuclear Physics; Office of Science; US Department of Energy
[DE-AC02-98CH10946]
FX Research sponsored by Office of Nuclear Physics, Office of Science, US
Department of Energy, under contract DE-AC02-98CH10946.
NR 339
TC 8
Z9 8
U1 0
U2 2
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD MAR
PY 2009
VL 110
IS 3
BP 507
EP +
DI 10.1016/j.nds.2009.02.001
PG 173
WC Physics, Nuclear
SC Physics
GA 419QV
UT WOS:000264235300001
ER
PT J
AU Wu, SC
AF Wu, S-C.
TI Nuclear Data Sheets for A=214
SO NUCLEAR DATA SHEETS
LA English
DT Review
ID PHOTON-EMISSION PROBABILITIES; GAMMA-RAY INTENSITIES; PROTON-NEUTRON
INTERACTIONS; LINE ALPHA SPECTROSCOPY; ATOMIC MASS EVALUATION; HEAVY-ION
REACTIONS; DOUBLY-ODD FR-214; HIGH-SPIN ISOMERS; DECAY PROPERTIES;
MAGNETIC-MOMENTS
AB The available nuclear structure information for all nuclei with mass number A=214 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. The present evaluation supersedes the earlier one on A=214 by Y. A. Akovali (1995E107), published in Nuclear Data Sheets 76, 127 (1995).
C1 [Wu, S-C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Wu, S-C.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30043, Taiwan.
RP Wu, SC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
FU U.S. Department of Energy [DE-AC03-76SF00098]
FX This work was supported by the Director, office of Science, Office of
High Energy and Nuclear Physics, Nuclear Physics Division of the U.S.
Department of Energy under contract DE-AC03-76SF00098.
NR 193
TC 23
Z9 23
U1 0
U2 1
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0090-3752
J9 NUCL DATA SHEETS
JI Nucl. Data Sheets
PD MAR
PY 2009
VL 110
IS 3
BP 681
EP +
DI 10.1016/j.nds.2009.02.002
PG 66
WC Physics, Nuclear
SC Physics
GA 419QV
UT WOS:000264235300002
ER
PT J
AU Brooks, JN
Allain, P
Doerner, RP
Hassanein, A
Nygren, R
Rognlien, TD
Whyte, DG
AF Brooks, J. N.
Allain, P.
Doerner, R. P.
Hassanein, A.
Nygren, R.
Rognlien, T. D.
Whyte, D. G.
TI Plasma-surface interaction issues of an all-metal ITER
SO NUCLEAR FUSION
LA English
DT Article
ID FUTURE FUSION DEVICES; FACING SURFACES; TUNGSTEN; DIVERTOR; TOKAMAK;
CODEPOSITION; PERFORMANCE; COMPONENTS; BERYLLIUM; IMPACT
AB We assess key plasma-surface interaction issues of an all-metal plasma facing component (PFC) system for ITER, in particular a tungsten divertor, and a beryllium or tungsten first wall. Such a system eliminates problems with carbon divertor erosion and T/C codeposition, and for an all-tungsten system would better extrapolate to post-ITER devices. The issues studied are sputtering, transport and formation of mixed surface layers, tritium codeposition, plasma contamination, edge-localized mode (ELM) response and He-on-W irradiation effects. Code package OMEGA computes PFC sputtering erosion/redeposition in an ITER full power D-T plasma with convective edge transport. The HEIGHTS package analyses plasma transient response. PISCES and other data are used with code results to assess PFC performance. Predicted outer-wall sputter erosion rates are acceptable for Be (0.3 nm s(-1)) or bare (stainless steel/Fe) wall (0.05 nm s(-1)) for the low duty factor ITER, and are very low (0.002 nm s(-1)) for W. T/Be codeposition in redeposited wall material could be significant (similar to 2 gT/400 s-ITER pulse). Core plasma contamination from wall sputtering appears acceptable for Be (similar to 2%) and negligible for W (or Fe). A W divertor has negligible sputter erosion, plasma contamination and T/W codeposition. Be can grow at/near the strike point region of a W divertor, but for the predicted maximum surface temperature of similar to 800 degrees C, deleterious Be/W alloy formation as well as major He/W surface degradation will probably be avoided. ELMs are a serious challenge to the divertor, but this is true for all materials. We identify acceptable ELM parameters for W. We conclude that an all-metal PFC system is likely a much better choice for ITER D-T operation than a system using C. We discuss critical R&D needs, testing requirements, and suggest employing a 350-400 degrees C baking capability for T/Be reduction and using a deposited tungsten first wall test section.
C1 [Brooks, J. N.; Allain, P.; Hassanein, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Doerner, R. P.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Nygren, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Rognlien, T. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Whyte, D. G.] MIT, Cambridge, MA 02139 USA.
RP Brooks, JN (reprint author), Purdue Univ, 400 Cent Dr, W Lafayette, IN 47907 USA.
OI Allain, Jean Paul/0000-0003-1348-262X
FU US Department of Energy, Office of Fusion Energy
FX This work was supported by the US Department of Energy, Office of Fusion
Energy.
NR 24
TC 37
Z9 37
U1 8
U2 26
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD MAR
PY 2009
VL 49
IS 3
AR 035007
DI 10.1088/0029-5515/49/3/035007
PG 6
WC Physics, Fluids & Plasmas
SC Physics
GA 505PQ
UT WOS:000270707000005
ER
PT J
AU Kumar, STA
Blackwell, BD
Harris, JH
AF Kumar, Santhosh T. A.
Blackwell, Boyd D.
Harris, Jeffrey H.
TI Determination of error field sources by accurate mapping of the magnetic
geometry of the H-1 heliac
SO NUCLEAR FUSION
LA English
DT Article
ID SURFACES; STELLARATOR; TORSATRON; TOKAMAK; DESIGN; SYSTEM
AB High precision mapping of the vacuum flux surfaces of the H-1NF heliac is carried out using electron-beam multiwire tomography for various magnetic configurations and field strengths. The extreme accuracy of this technique has been exploited to understand the nature of error fields and to determine the best-fit empirical values for the H-1NF coil parameters, by point-by-point matching experimental surface data with computer modelling results. This has helped in developing a highly accurate computer model for H-1NF magnetic configurations.
C1 [Kumar, Santhosh T. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Blackwell, Boyd D.] Australian Natl Univ, Res Sch Phys Sci & Engn, Plasma Res Lab, Canberra, ACT, Australia.
[Harris, Jeffrey H.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
RP Kumar, STA (reprint author), Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
EM stkumar@wisc.edu
RI Kumar, Santhosh/A-1331-2008; Kumar, Santhosh/H-2620-2013; Blackwell,
Boyd/M-2717-2015
OI Kumar, Santhosh/0000-0002-6444-5178; Blackwell, Boyd/0000-0002-9091-9269
FU Australian Research Council [DP0344361]; US Department of Energy
[DE-AC05-00OR22725]
FX The authors would like to thank Mr John Wach and Mr Mark Gwynneth for
their technical help and the H-1NF team for the machine operations. This
work was performed on the H-1NF National Plasma Fusion Research Facility
established by the Australian Government and operated by the Australian
National University. This research was supported in part by the
Australian Research Council Grant DP0344361 and the US Department of
Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
NR 24
TC 5
Z9 5
U1 1
U2 3
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD MAR
PY 2009
VL 49
IS 3
AR 035001
DI 10.1088/0029-5515/49/3/035001
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 404XN
UT WOS:000263186400002
ER
PT J
AU Paccagnella, R
Strauss, HR
Breslau, J
AF Paccagnella, R.
Strauss, H. R.
Breslau, J.
TI 3D MHD VDE and disruptions simulations of tokamaks plasmas including
some ITER scenarios
SO NUCLEAR FUSION
LA English
DT Article
ID STABILITY; CODE
AB Tokamaks vertical displacement events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model is completed with the presence of a 2D wall with finite resistivity which allows the study of the relatively slowly growing magnetic perturbation, the resistive wall mode (RWM) which is, in this paper, the main drive of the disruption evolution. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given.
C1 [Paccagnella, R.] Assoc Euratom ENEA Fusione, Consorzio RFX, Padua, Italy.
[Paccagnella, R.] CNR, Rome, Italy.
[Strauss, H. R.] Courant Inst Math Sci, New York, NY USA.
[Breslau, J.] Princeton Univ, Plasma Phys Lab, Princeton, NJ USA.
RP Paccagnella, R (reprint author), Assoc Euratom ENEA Fusione, Consorzio RFX, Padua, Italy.
EM roberto.paccagnella@igi.cnr.it
FU EFDA [05-1335]
FX The authors kindly acknowledge A. Pletzer for the development of the
GRIN solver. R.P. thanks Mario Cavinato for providing the ITER
equilibria and S. Ortolani, G. Pautasso and V. Riccardo for very helpful
discussions. This study was partially carried out under EFDA Contract No
05-1335.
NR 10
TC 18
Z9 18
U1 0
U2 5
PU INT ATOMIC ENERGY AGENCY
PI VIENNA
PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA
SN 0029-5515
J9 NUCL FUSION
JI Nucl. Fusion
PD MAR
PY 2009
VL 49
IS 3
AR 035003
DI 10.1088/0029-5515/49/3/035003
PG 12
WC Physics, Fluids & Plasmas
SC Physics
GA 404XN
UT WOS:000263186400004
ER
PT J
AU Weber, J
Chin, M
Sannibale, F
Barry, W
AF Weber, J.
Chin, M.
Sannibale, F.
Barry, W.
TI FPGA-based "bunch cleaning" system at the advanced light source
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Bunch purification; Bunch cleaning; FPGA; Storage ring; Synchrotron
light source
AB A new bunch cleaning system has been designed and is currently in operation in the storage ring of the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The new system provides for high bunch purity, arbitrary filling patterns, and is compatible with the various ALS user operation modes. Design details and performance results of the new system will be described. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Weber, J.; Chin, M.; Sannibale, F.; Barry, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Weber, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
EM jmweber@lbl.gov
NR 9
TC 1
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD MAR 1
PY 2009
VL 600
IS 2
BP 376
EP 382
DI 10.1016/j.nima.2008.11.144
PG 7
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 421OD
UT WOS:000264367300003
ER
PT J
AU Cerati, GB
Dinardo, ME
Florez, A
Kwan, S
Lopez, A
Magni, S
Malvezzi, S
Menasce, D
Moroni, L
Newsom, CR
Pedrini, D
Rovere, M
Sala, S
Tan, P
Taroni, S
Turqueti, M
Uplegger, L
AF Cerati, G. B.
Dinardo, M. E.
Florez, A.
Kwan, S.
Lopez, A.
Magni, S.
Malvezzi, S.
Menasce, D.
Moroni, L.
Newsom, C. R.
Pedrini, D.
Rovere, M.
Sala, S.
Tan, P.
Taroni, S.
Turqueti, M.
Uplegger, L.
TI Radiation tolerance of the CMS forward pixel detector
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Silicon pixel detector; Radiation tolerance
ID READOUT CHIP
AB In this paper we present some results on the radiation tolerance of the CMS forward pixel detector. They were obtained from a beam test at Fermilab of a pixel-detector module, which was previously irradiated up to a maximum dose of 45 Mrad of protons at 200 MeV. It is shown that CMS forward pixel detector can tolerate this radiation dose without any major deterioration of its performance. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Cerati, G. B.; Magni, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Rovere, M.; Sala, S.; Taroni, S.] Ist Nazl Fis Nucl, I-20126 Milan, Italy.
[Cerati, G. B.; Magni, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Rovere, M.; Sala, S.; Taroni, S.] Univ Milano Bicocca, I-20126 Milan, Italy.
[Dinardo, M. E.] Univ Colorado, Boulder, CO 80309 USA.
[Florez, A.; Lopez, A.] Univ Puerto Rico, Mayaguez, PR USA.
[Kwan, S.; Tan, P.; Turqueti, M.; Uplegger, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Newsom, C. R.] Univ Iowa, Iowa City, IA USA.
RP Moroni, L (reprint author), Ist Nazl Fis Nucl, Edificio U2,Piazza Sci 3, I-20126 Milan, Italy.
EM Luigi.Moroni@mib.infn.it
RI Menasce, Dario Livio/A-2168-2016
OI Menasce, Dario Livio/0000-0002-9918-1686
NR 5
TC 4
Z9 4
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD MAR 1
PY 2009
VL 600
IS 2
BP 408
EP 416
DI 10.1016/j.nima.2008.11.114
PG 9
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 421OD
UT WOS:000264367300007
ER
PT J
AU Luo, YX
Hamilton, JH
Rasmussen, JO
Ramayya, AV
Goodin, C
Zhu, SJ
Hwang, JK
Li, K
Fong, D
Stefanescu, I
Lee, IY
Ter-Akopian, GM
Daniel, AV
Stoyer, MA
Donangelo, R
Ma, WC
Cole, JD
AF Luo, Y. X.
Hamilton, J. H.
Rasmussen, J. O.
Ramayya, A. V.
Goodin, C.
Zhu, S. J.
Hwang, J. K.
Li, Ke
Fong, D.
Stefanescu, I.
Lee, I. Y.
Ter-Akopian, G. M.
Daniel, A. V.
Stoyer, M. A.
Donangelo, R.
Ma, W. C.
Cole, J. D.
TI New level schemes and octupole correlations of light neutron-rich
lanthanum isotopes La-143,La-144
SO NUCLEAR PHYSICS A
LA English
DT Article
DE RADIOACTIVITY Cf-252(SF); measured E gamma, I gamma, gamma gamma-coin,
Gammasphere. La-143,La-144 deduced levels; J, pi, branching ratios,
B(E1)/B(E2) ratios. Octupole correlations. Cranked-shell model
calculations
ID SPONTANEOUS FISSION; BARIUM ISOTOPES; BAND STRUCTURES; NUCLEI; DECAY;
DEFORMATION; MASS; ISOTONES; BEHAVIOR; PROTON
AB The yrast and near-yrast level scheme of light neutron-rich La-143 (Z = 57, N = 86) is reinvestigated and expanded and that of La-144 (N = 87) is proposed for the first time by measuring prompt gamma rays from the spontaneous fission of Cf-252 at Gammasphere. Spins/parities are assigned to the lowest-lying levels of La-143,La-144 based on the early studies of beta(-) decay, and the assignments for high-spin levels of La-143,La-144 are made by measuring internal conversion coefficients and following the level systematics of the neighboring heavier La isotopes and even-even Ba and Ce nuclei. The B(E1)/B(E2) ratios, energy displacements delta E(1) and rotational frequency ratios omega(-)(I)/omega(+)(I) of the new parity-doublets of La-143,La-144 indicate that octupole deformations/correlations also develop in these nuclei. The band-crossings observed in a rotational frequency range of 0.31 to 0.34 MeV for the two even-parity bands in La-143 but being absent in 144La are interpreted as due to alignment of a pair of i(13/2) neutrons in La-143. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Luo, Y. X.; Hamilton, J. H.; Ramayya, A. V.; Goodin, C.; Zhu, S. J.; Hwang, J. K.; Li, Ke; Fong, D.; Daniel, A. V.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA.
[Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.
[Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Ter-Akopian, G. M.; Daniel, A. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia.
[Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA.
[Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Donangelo, R.] Univ Fed Rio de Janeiro, BR-68528 Rio De Janeiro, Brazil.
[Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA.
[Cole, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Rasmussen, JO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM jorasmussen@lbl.gov
RI Sistemas Complexos, Inct/J-8597-2013;
OI Hwang, Jae-Kwang/0000-0002-4100-3473
FU US DOE Grants [DE-FG-05-88ER40407, DE-FG02-95ER40934, DE-AC03-76SF00098,
DE-FG02-95ER40939, DE-AC07-761DO1570, W-7405-ENG48]; Major State Basic
Research Development Program Contract [G2000077405]; NNSF of China Grant
[10375032]; Special Program of HESF Grant [20030003090]; Vanderbilt
University; University of Tennessee; Oak Ridge National Laboratory
FX The work at Vanderbilt University, Lawrence Berkeley National
Laboratory, Lawrence Livermore National Laboratory, Mississippi State
University and Idaho National Laboratory was supported by the US DOE
Grants DE-FG-05-88ER40407, DE-FG02-95ER40934, DE-AC03-76SF00098,
DE-FG02-95ER40939, DE-AC07-761DO1570 and Contract W-7405-ENG48. The work
at Tsinghua was supported by the Major State Basic Research Development
Program Contract G2000077405, the NNSF of China Grant 10375032, and the
Special Program of HESF Grant 20030003090. The Joint Institute for Heavy
Ion Research is supported by its members,Vanderbilt University,
University of Tennessee and Oak Ridge National Laboratory and the US
DOE.
NR 43
TC 11
Z9 12
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9474
J9 NUCL PHYS A
JI Nucl. Phys. A
PD MAR 1
PY 2009
VL 818
IS 3-4
BP 121
EP 138
DI 10.1016/j.nuclphysa.2008.12.004
PG 18
WC Physics, Nuclear
SC Physics
GA 412EK
UT WOS:000263706300001
ER
PT J
AU Prior, G
AF Prior, G.
CA SNO Collaboration
TI Results from the Sudbury Neutrino Observatory Phase III
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT Neutrino Oscillation Workshop
CY SEP 06-12, 2008
CL Otranto, ITALY
SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys
AB The third and last phase of the Sudbury Neutrino Observatory (SNO) used a technique independent of previous methods, to measure the rate of neutral-current interactions in heavy water and determine precisely the total active (8)B solar neutrino flux. The total flux obtained is 5.54(-0.31)(+0.33)(stat)(-0.34)(+0.36) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. Results from a global analysis of solar and reactor neutrino give Delta m(2) = 7.59(-0.21)(+0.19) x 10(-5) eV(2) and theta = 34.4(-1.2)(+1.3) degrees with a reduced uncertainty on the mixing angle compared to previous phases.
C1 [Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA.
[Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Prior, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA.
EM gprior@lbl.gov
OI Prior, Gersende/0000-0002-6058-1420
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD MAR
PY 2009
VL 188
BP 96
EP 100
DI 10.1016/j.nuclphysbps.2009.02.022
PG 5
WC Physics, Particles & Fields
SC Physics
GA 441CB
UT WOS:000265745800023
ER
PT J
AU Parke, SJ
Minakata, H
Nunokawa, H
Funchal, RZ
AF Parke, Stephen J.
Minakata, H.
Nunokawa, H.
Funchal, R. Zukanovich
TI Mass Hierarchy via Mossbauer and Reactor Neutrinos
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT Neutrino Oscillation Workshop
CY SEP 06-12, 2008
CL Otranto, ITALY
SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys
AB We show how one could determine the neutrino mass hierarchy with Mossbauer neutrinos and also revisit the question of whether the hierarchy can be determined with reactor neutrinos.
C1 [Parke, Stephen J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.
[Minakata, H.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan.
[Nunokawa, H.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil.
[Funchal, R. Zukanovich] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Parke, SJ (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA.
EM parke@fnal.gov; nunokawa@fis.puc-rio-br; zukanov@if.usp.br
RI Zukanovich Funchal, Renata/C-5829-2013;
OI Zukanovich Funchal, Renata/0000-0001-6749-0022; Parke,
Stephen/0000-0003-2028-6782
NR 3
TC 10
Z9 10
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD MAR
PY 2009
VL 188
BP 115
EP 117
DI 10.1016/j.nuclphysbps.2009.02.026
PG 3
WC Physics, Particles & Fields
SC Physics
GA 441CB
UT WOS:000265745800027
ER
PT J
AU Goodman, M
AF Goodman, Maury
TI Long-Baseline Neutrino Oscillation Experiments in North America
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT Neutrino Oscillation Workshop
CY SEP 06-12, 2008
CL Otranto, ITALY
SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys
AB This contribution to the proceedings of the 2008 NOW Workshop summarizes current and future long-baseline neutrino oscillation experiments in the United States.
C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
RP Goodman, M (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
EM maury.goodman@anl.gov
NR 25
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD MAR
PY 2009
VL 188
BP 164
EP 169
DI 10.1016/j.nuclphysbps.2009.02.038
PG 6
WC Physics, Particles & Fields
SC Physics
GA 441CB
UT WOS:000265745800039
ER
PT J
AU Cardall, CY
AF Cardall, C. Y.
TI Towards neutrino transport with flavor mixing in supernovae: the
Liouville operator
SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS
LA English
DT Proceedings Paper
CT Neutrino Oscillation Workshop
CY SEP 06-12, 2008
CL Otranto, ITALY
SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys
AB The calculation of neutrino decoupling from nuclear matter requires a transport formalism capable of handling both collisions and flavor mixing. The first steps towards such a formalism are the construction of neutrino and antineutrino 'distribution matrices,' and a determination of the Liouville equations they satisfy in the noninteracting case. These steps are accomplished through study of a Wigner-transformed 'density function,' the mean value of paired neutrino quantum field operators.
C1 [Cardall, C. Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Cardall, C. Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RP Cardall, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
NR 3
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5632
J9 NUCL PHYS B-PROC SUP
JI Nucl. Phys. B-Proc. Suppl.
PD MAR
PY 2009
VL 188
BP 264
EP 266
DI 10.1016/j.nuclphysbps.2009.02.060
PG 3
WC Physics, Particles & Fields
SC Physics
GA 441CB
UT WOS:000265745800061
ER
PT J
AU Lewis, EE
Smith, MA
Palmiotti, G
AF Lewis, E. E.
Smith, M. A.
Palmiotti, G.
TI A New Paradigm for Local-Global Coupling in Whole-Core Neutron Transport
SO NUCLEAR SCIENCE AND ENGINEERING
LA English
DT Article
ID VARIATIONAL NODAL METHOD; SPATIAL HOMOGENIZATION; C5G7 MOX; BENCHMARK;
EQUATIONS
AB A new paradigm that increases the efficiency of whole-core neutron transport calculations without lattice homogenization is introduced. Quasi-reflected interface conditions are formulated to partially decouple periodic lattice effects from global flux gradients. The starting point is the finite subelement form of the variational nodal code VARIANT that eliminates fuel-coolant homogenization through the use of heterogeneous nodes. The interface spherical harmonics expansions that couple pin-cell-sized nodes are divided into low-order and high-order terms, and reflected interface conditions are applied to the high-order terms. Combined with an integral transport method within the node, the new approach dramatically reduces both the formation time and the dimensions of the nodal response matrices and leads to sharply reduced memory requirements and computational time. The method is applied to the two-dimensional C5G7 problem, an Organisation for Economic Co-operation and Development/Nuclear Energy Agency pressurized water reactor benchmark containing mixed oxide (MOX) and UO(2) fuel assemblies, as well as to a three-dimensional MOX fuel assembly. Results indicate the new approach results in very little loss of accuracy relative to the corresponding full spherical harmonics expansions while reducing computational times by well over an order of magnitude.
C1 [Lewis, E. E.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.
[Smith, M. A.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Palmiotti, G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
RP Lewis, EE (reprint author), Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.
EM e-lewis@northwestern.edu
RI Lewis, Elmer/B-7597-2009
FU U.S. Department of Energy [DE-AC02-06CH11357]
FX This work was supported in part by the U.S. Department of Energy under
contract DE-AC02-06CH11357
NR 20
TC 4
Z9 4
U1 0
U2 0
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5639
J9 NUCL SCI ENG
JI Nucl. Sci. Eng.
PD MAR
PY 2009
VL 161
IS 3
BP 279
EP 288
PG 10
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 413ZQ
UT WOS:000263834100002
ER
PT J
AU Hutchinson, J
Valentine, T
AF Hutchinson, Jesson
Valentine, Timothy
TI Subcritical Measurements of a Plutonium Sphere Reflected by Polyethylene
and Acrylic
SO NUCLEAR SCIENCE AND ENGINEERING
LA English
DT Article
AB Subcritical measurements were conducted with an alpha-phase plutonium sphere using the (252)Cf source-driven noise analysis method. Measurements were performed with both polyethylene and acrylic reflectors. For each reflector type, five different reflector thicknesses were investigated: 0 (bare), 1.27, 2.54, 3.81, and 7.62 cm. A certain ratio of spectral quantities that depends on the fluctuations in the fission chain multiplication process was measured for each configuration. In addition, two types of Monte Carlo calculations were employed to estimate the k(eff) and spectral ratio values of each configuration. From the measured and computed quantities, the multiplication and uncertainty of the system can be inferred. The polyethylene measurements compared well to previous measurements conducted with the same plutonium sphere and polyethylene reflector thicknesses. The acrylic measurements provide benchmark data of an alpha-phase plutonium sphere reflected by acrylic.
C1 [Hutchinson, Jesson] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Valentine, Timothy] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Hutchinson, J (reprint author), Los Alamos Natl Lab, MS-B228,POB 1663, Los Alamos, NM 87545 USA.
EM jesson@lanl.gov
OI Valentine, Timothy/0000-0001-7495-7348
FU National Criticality Safety Program
FX We would like to thank the National Criticality Safety Program for
funding this work. In addition, we would like to thank S. Clement, D.
Rhodes, R. Sanchez, T. Grove, D. Gehman, D. Hayes, W. Myers, and D.
Loaiza from LANL for their help. We would also like to thank the staff
at the Device Assembly Facility for their support.
NR 8
TC 2
Z9 2
U1 0
U2 1
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5639
J9 NUCL SCI ENG
JI Nucl. Sci. Eng.
PD MAR
PY 2009
VL 161
IS 3
BP 357
EP 362
PG 6
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 413ZQ
UT WOS:000263834100008
ER
PT J
AU Chikazawa, Y
Farmer, M
Grandy, C
AF Chikazawa, Yoshitaka
Farmer, Mitchell
Grandy, Christopher
TI TECHNOLOGY GAP ANALYSIS ON SODIUM-COOLED REACTOR FUEL-HANDLING SYSTEM
SUPPORTING ADVANCED BURNER REACTOR DEVELOPMENT
SO NUCLEAR TECHNOLOGY
LA English
DT Review
DE fast reactor; fuel handling system; sodium-cooled reactor
ID FLUX TEST FACILITY; VAULT DRY STORAGE; EXPERIENCE; FABRICATION; FFTF;
SUPERPHENIX-1; DESIGN; PFR
AB The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integralfast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fist reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphinix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fivel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.
C1 [Chikazawa, Yoshitaka; Farmer, Mitchell; Grandy, Christopher] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
RP Chikazawa, Y (reprint author), Japan Atom Energy Agcy, 4002 Narita, Oarai, Ibaraki 3111393, Japan.
EM chikazawa.yoshitaka@jaea.go.jp
FU U.S. Department of Energy Office of Science [DE-AC0206CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
contract DE-AC0206CH11357.
NR 109
TC 6
Z9 6
U1 0
U2 5
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
J9 NUCL TECHNOL
JI Nucl. Technol.
PD MAR
PY 2009
VL 165
IS 3
BP 270
EP 292
PG 23
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 412UF
UT WOS:000263749000002
ER
PT J
AU Chikazawa, Y
Grandy, C
AF Chikazawa, Yoshitaka
Grandy, Christopher
TI THERMAL ANALYSIS OF A FUEL-HANDLING SYSTEM FOR SODIUM-COOLED REACTOR
WITH MINOR ACTINIDE-BEARING METAL FUEL
SO NUCLEAR TECHNOLOGY
LA English
DT Article
DE sodium-cooled reactor; fuel handling; fresh fuel shipping cask
ID VAULT DRY STORAGE; FORT-ST-VRAIN
AB The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactorfuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates afuel-handling concept and potential issues of handling fast reactorfuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent
C1 [Chikazawa, Yoshitaka; Grandy, Christopher] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
RP Chikazawa, Y (reprint author), Japan Atom Energy Agcy, 4002 Narita, Oarai, Ibaraki 3111393, Japan.
EM chikazawa.yoshitaka@jaea.go.jp
FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357]
FX The submitted manuscript has been created by UChicago Argonne, LLC,
operator of ANL. ANL, a U.S. Department of Energy Office of Science
laboratory, is operated under contract DE-AC02-06CH11357.
NR 16
TC 1
Z9 1
U1 0
U2 4
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
J9 NUCL TECHNOL
JI Nucl. Technol.
PD MAR
PY 2009
VL 165
IS 3
BP 321
EP 332
PG 12
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 412UF
UT WOS:000263749000006
ER
PT J
AU Mitchell, JA
Counce, RM
Watson, JS
Spencer, BB
Del Cul, GD
AF Mitchell, Jessica A.
Counce, R. M.
Watson, J. S.
Spencer, B. B.
Del Cul, G. D.
TI REMOVING ACETIC ACID FROM A UREX plus WASTE STREAM: A REVIEW OF
TECHNOLOGIES
SO NUCLEAR TECHNOLOGY
LA English
DT Article
DE acetic acid removal; UREX; separation technologies
ID ACTIVATED CARBON; AQUEOUS-SOLUTIONS; CARBOXYLIC-ACIDS; WATER; SOLVENT;
ADSORPTION; OXIDATION; RECOVERY; ADSORBENTS; SEPARATION
AB This study explores different technologies for removing acetic acid from a UREX+ waste stream. The waste stream contains both nitric and acetic acids, and the acetic acid must be removed from the waste stream to prevent potential problems in the downstream steps as well as affecting the recycle of nitric acid. The acetic acid is formed after the UREX step of the process as a result of hydrolytic degradation of acetohydroxamic acid used to suppress plutonium extraction. Of the available technologies, the two most attractive approaches are solvent extraction and distillation. In industry, solvent extraction is used for more dilute concentrations of acetic acid while distillation is used for concentrated acetic acid If a liquid-liquid extraction is viable, this would be the best option with the addition of an extractant, like tributyl phosphate or tri-n-octyl amine, if needed However, if acetic acid removal can be delayed until the end of the UREX+ process when the nitric acid may be concentrated for recycle, distillation may remain an option, though not necessarily a better option than solvent extraction.
C1 [Mitchell, Jessica A.; Counce, R. M.; Watson, J. S.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.
[Spencer, B. B.; Del Cul, G. D.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Mitchell, JA (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, 1512 Middle Dr, Knoxville, TN 37996 USA.
EM Jmitch30@utk.edu
FU DOE [DE-PS07-05ID14713]
FX This work was supported by the U.S. Department of Energy's Nuclear
Energy Research Initiative program, under DOE contract DE-PS07-05ID14713
with Oak Ridge National Laboratory.
NR 25
TC 2
Z9 2
U1 0
U2 2
PU AMER NUCLEAR SOC
PI LA GRANGE PK
PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA
SN 0029-5450
J9 NUCL TECHNOL
JI Nucl. Technol.
PD MAR
PY 2009
VL 165
IS 3
BP 360
EP 369
PG 10
WC Nuclear Science & Technology
SC Nuclear Science & Technology
GA 412UF
UT WOS:000263749000008
ER
PT J
AU Dale, T
Fahlman, RP
Olejniczak, M
Uhlenbeck, OC
AF Dale, Taraka
Fahlman, Richard P.
Olejniczak, Mikoaj
Uhlenbeck, Olke C.
TI Specificity of the ribosomal A site for aminoacyl-tRNAs
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID PEPTIDE-BOND FORMATION; ELONGATION-FACTOR TU; PROTEIN-SYNTHESIS; A-SITE;
CODON RECOGNITION; MESSENGER-RNA; INDUCED-FIT; P-SITES; BINDING;
SELECTION
AB Although some experiments suggest that the ribosome displays specificity for the identity of the esterified amino acid of its aminoacyl-tRNA substrate, a study measuring dissociation rates of several misacylated tRNAs containing the GAC anticodon from the A site showed little indication for such specificity. In this article, an expanded set of misacylated tRNAs and two 2-deoxynucleotide-substituted mRNAs are used to demonstrate the presence of a lower threshold in k(off) values for aa-tRNA binding to the A site. When a tRNA binds sufficiently well to reach this threshold, additional stabilizing effects due to the esterified amino acid or changes in tRNA sequence are not observed. However, specificity for different amino acid side chains and the tRNA body is observed when tRNA binding is sufficiently weaker than this threshold. We propose that uniform aa-tRNA binding to the A site may be a consequence of a conformational change in the ribosome, induced by the presence of the appropriate combination of contributions from the anticodon, amino acid and tRNA body.
C1 [Uhlenbeck, Olke C.] Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA.
[Dale, Taraka] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Fahlman, Richard P.] Univ Alberta, Dept Biochem, Edmonton, AB, Canada.
[Olejniczak, Mikoaj] Polish Acad Sci, Inst Bioorgan Chem, Poznan, Poland.
RP Uhlenbeck, OC (reprint author), Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, 2153 Sheridan Rd, Evanston, IL 60208 USA.
EM o-uhlenbeck@northwestern.edu
FU National Institutes of Health [R01-GM37552-19]; Foundation for Polish
Science; The National Institutes of Health [R01-GM37552-19]
FX This work was supported by National Institutes of Health (grant #
R01-GM37552-19 to O. C. U) and the Foundation for Polish Science (to M.
O.). Funding for open access charge: The National Institutes of Health
(R01-GM37552-19).
NR 42
TC 17
Z9 18
U1 0
U2 9
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
J9 NUCLEIC ACIDS RES
JI Nucleic Acids Res.
PD MAR
PY 2009
VL 37
IS 4
BP 1202
EP 1210
DI 10.1093/nar/gkn1040
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 415VA
UT WOS:000263962600026
PM 19129224
ER
PT J
AU Lipnikov, K
Shashkov, M
Yotov, I
AF Lipnikov, Konstantin
Shashkov, Mikhail
Yotov, Ivan
TI Local flux mimetic finite difference methods
SO NUMERISCHE MATHEMATIK
LA English
DT Article
ID ANISOTROPIC DIFFUSION OPERATORS; UNSTRUCTURED MESHES; POLYHEDRAL MESHES;
ELEMENT-METHOD; DISCONTINUOUS COEFFICIENTS; QUADRILATERAL GRIDS;
ELLIPTIC-EQUATIONS; VOLUME SCHEME; DISCRETIZATION; CONVERGENCE
AB We develop a local flux mimetic finite difference method for second order elliptic equations with full tensor coefficients on polyhedral meshes. To approximate the velocity (vector variable), the method uses two degrees of freedom per element edge in two dimensions and n degrees of freedom per n-gonal mesh face in three dimensions. To approximate the pressure (scalar variable), the method uses one degree of freedom per element. A specially chosen quadrature rule for the L (2)-product of vector-functions allows for a local flux elimination and reduction of the method to a cell-centered finite difference scheme for the pressure unknowns. Under certain assumptions, first-order convergence is proved for both variables and second-order convergence is proved for the pressure. The assumptions are verified on simplicial meshes for a particular quadrature rule that leads to a symmetric method. For general polyhedral meshes, non-symmetric methods are constructed based on quadrature rules that are shown to satisfy some of the assumptions. Numerical results confirm the theory.
C1 [Lipnikov, Konstantin; Shashkov, Mikhail] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA.
[Yotov, Ivan] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA.
RP Lipnikov, K (reprint author), Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Mail Stop B284, Los Alamos, NM 87545 USA.
EM lipnikov@lanl.gov; shashkov@lanl.gov; yotov@math.pitt.edu
FU NSF [DMS 0411694, DMS 0620402]; DOE [DE-FG02-04ER25618]; Los Alamos
National Laboratory; [DE-AC52-06NA25396]
FX This work was partly carried out under the auspices of the National
Nuclear Security Administration of the US Department of Energy at Los
Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The
authors acknowledge the partial support of the DOE/ASCR Program in the
Applied Mathematical Sciences and DOE's Accelerated Strategic Computing
Initiative (ASC). The last author was partially supported by NSF grants
DMS 0411694 and DMS 0620402, by DOE grant DE-FG02-04ER25618, and by the
Los Alamos National Laboratory through visitor research support.
NR 47
TC 61
Z9 61
U1 0
U2 2
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0029-599X
J9 NUMER MATH
JI Numer. Math.
PD MAR
PY 2009
VL 112
IS 1
BP 115
EP 152
DI 10.1007/s00211-008-0203-5
PG 38
WC Mathematics, Applied
SC Mathematics
GA 409SC
UT WOS:000263525100006
ER
PT J
AU Migliorati, M
Dattoli, G
Schiavi, A
Venturini, M
AF Migliorati, M.
Dattoli, G.
Schiavi, A.
Venturini, M.
TI A Vlasov solver for collective effects in particle accelerators
SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS
LA English
DT Article; Proceedings Paper
CT Conference on Scientific Computation in Physics
CY MAY 27-30, 2008
CL Rimini, ITALY
AB Integration techniques based on Lie algebraic methods have been successfully used in beam transport codes for particle accelerators. Generally these methods have been applied to problems of single-particle beam dynamics. Here we present an application of Lie algebraic techniques to the development of a Vlasov solver suitable for problems of beam transport in the presence of non-negligible particle self-fields. The solver we discuss is suitable for modeling a variety of collective effects that may arise at high current. In particular we consider the case of coherent synchrotron radiation effects in magnetic bunch compressors which can cause instabilities limiting performance of high current accelerators.
C1 [Migliorati, M.; Schiavi, A.] Univ Roma La Sapienza, Rome, Italy.
[Dattoli, G.] ENEA, Ctr Ric Frascali, Rome, Italy.
[Venturini, M.] LBNL, Berkeley, CA 94720 USA.
RP Migliorati, M (reprint author), Univ Roma La Sapienza, Rome, Italy.
EM mauro.migliorati@uniroma1.it
RI Schiavi, Angelo/D-2924-2017;
OI Schiavi, Angelo/0000-0002-7081-2747; Migliorati,
Mauro/0000-0001-7129-7348
NR 8
TC 0
Z9 0
U1 0
U2 0
PU SOC ITALIANA FISICA
PI BOLOGNA
PA VIA SARAGOZZA, 12, I-40123 BOLOGNA, ITALY
SN 1124-1896
J9 NUOVO CIMENTO C
JI Nuovo Cimento Soc. Ital. Fis. C-Colloq. Phys.
PD MAR-APR
PY 2009
VL 32
IS 2
BP 161
EP 164
DI 10.1393/ncc/i2009-10394-7
PG 4
GA 540BH
UT WOS:000273305000035
ER
PT J
AU Wagner, C
Salamon, A
Edwards, RA
Rohwer, F
Salamon, P
AF Wagner, Chad
Salamon, Anna
Edwards, Robert A.
Rohwer, Forest
Salamon, Peter
TI Deviations from Ultrametricity in Phage Protein Distances
SO OPEN SYSTEMS & INFORMATION DYNAMICS
LA English
DT Article
ID EVOLUTION; MATRICES; TREES
AB Distances in biological databases are known not to be ultrametric. Deviations from ultrametricity can however reveal useful features of biodata. In the present study we examine deviations from ultrametricity of the distances between known phage proteins quantified in two senses: (1) the failure of triangles to be isosceles and (2) failure of every point to be the center of any sphere in which it resides. The deviations from these two ultrametric properties undergo qualitative changes as a function of the distance. Below we describe these changes and how they can be observed. We further argue that the distances at which the qualitative changes take place reveal intrinsic scales in the dataset. Such scales are important for choosing threshold values of the distance in various algorithms and reveal natural chuncking of the data that can be used to decide clade levels in phage phylogeny.
C1 [Wagner, Chad; Salamon, Anna; Salamon, Peter] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA.
[Salamon, Anna] Univ Calif San Diego, Dept Philosophy, La Jolla, CA 92093 USA.
[Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA.
[Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA.
[Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA.
RP Wagner, C (reprint author), San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA.
FU National Science Foundation [DE-BE 04-21955]
FX This work was supported by grant DE-BE 04-21955 from the National
Science Foundation. We thank the Computational Sciences Research Center
at San Diego State University for computer time on its LINUX cluster.
NR 14
TC 0
Z9 0
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 1230-1612
EI 1793-7191
J9 OPEN SYST INF DYN
JI Open Syst. Inf. Dyn.
PD MAR
PY 2009
VL 16
IS 1
PG 10
WC Physics, Mathematical; Statistics & Probability
SC Physics; Mathematics
GA 427VN
UT WOS:000264807300005
ER
PT J
AU Awwal, AAS
Rice, KL
Taha, TM
AF Awwal, Abdul A. S.
Rice, Kenneth L.
Taha, Tarek M.
TI Fast implementation of matched-filter-based automatic alignment image
processing
SO OPTICS AND LASER TECHNOLOGY
LA English
DT Article
DE Pattern recognition; Automated optical alignment; Reconfigurable
computing
ID LASER
AB Video images of laser beams imprinted with distinguishable features are used for alignment of 192 laser beams at the National Ignition Facility (NIF). Algorithms for determining the position of these beams enable control systems to perform the task of alignment. Real world beam images suffer from intensity fluctuation or other distortions, making algorithms susceptible to higher position measurement variability. Using matched filtering to identify beam positions results in greater stability of position measurement compared to centroiding techniques. However, this gain is achieved at the expense of extra processing time. This work explores the use of FPGAs to accelerate these computations. Results indicate a performance improvement of 20 times for an FPGA over a 3 GHz Pentium 4 processor. Published by Elsevier Ltd.
C1 [Awwal, Abdul A. S.] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA.
[Rice, Kenneth L.; Taha, Tarek M.] Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA.
RP Awwal, AAS (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA.
EM awwal1@llnl.gov; krice@clemson.edu; tarek@clemson.edu
FU US Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; Lawrence Livermore Laboratory; National Science
Foundation; DOD
FX This work performed under the auspices of the US Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Kenneth Rice acknowledges the summer student support at Lawrence
Livermore Laboratory. Kenneth Rice and Tarek Taha acknowledge grants
from the Air Force Research Laboratory (including the AFRL Information
Directorate) and a National Science Foundation CAREER award. This work
was also supported in part by a grant of computer time from the DOD High
Performance Computing Modernization Program at the Naval Research
Laboratory. Abdul Awwal acknowledges insightful comments provided by
Paul Van Arsdall.
NR 12
TC 11
Z9 14
U1 0
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0030-3992
J9 OPT LASER TECHNOL
JI Opt. Laser Technol.
PD MAR
PY 2009
VL 41
IS 2
BP 193
EP 197
DI 10.1016/j.optlastec.2008.05.008
PG 5
WC Optics; Physics, Applied
SC Optics; Physics
GA 358TQ
UT WOS:000259940800013
ER
PT J
AU Sridharan, AK
Pax, P
Messerly, MJ
Dawson, JW
AF Sridharan, Arun Kumar
Pax, Paul
Messerly, Michael J.
Dawson, Jay W.
TI High-gain photonic crystal fiber regenerative amplifier
SO OPTICS LETTERS
LA English
DT Article
AB We have demonstrated a photonic crystal fiber-based regenerative amplifier at 1.078 mu m. The input signal pulse energy is 20 pJ in a 12 ns pulse at a 3 kHz repetition rate. At 8.6 W of input pump power, the amplified output pulse energy is 157 mu J, yielding a gain of 69 dB. To our knowledge, this is the highest gain achieved in a fiber-based regenerative amplifier to date at any wavelength. (C) 2009 Optical Society of America
C1 [Sridharan, Arun Kumar] Lawrence Livermore Natl Lab, NIF, Livermore, CA 94551 USA.
Lawrence Livermore Natl Lab, Photon Sci Directorate, Livermore, CA 94551 USA.
RP Sridharan, AK (reprint author), Lawrence Livermore Natl Lab, NIF, 7000 East Ave, Livermore, CA 94551 USA.
EM sridharan1@llnl.gov
NR 4
TC 6
Z9 6
U1 4
U2 13
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD MAR 1
PY 2009
VL 34
IS 5
BP 608
EP 610
PG 3
WC Optics
SC Optics
GA 423UY
UT WOS:000264522400020
PM 19252567
ER
PT J
AU Rick, R
Scherz, A
Schlotter, WF
Zhu, D
Luning, J
Stohr, J
AF Rick, R.
Scherz, A.
Schlotter, W. F.
Zhu, D.
Luening, J.
Stoehr, J.
TI Optimal signal-to-noise ratios for soft x-ray lensless imaging
SO OPTICS LETTERS
LA English
DT Article
ID SPATIAL COHERENCE
AB We propose and demonstrate a method to gauge and optimize the signal-to-noise ratios (SNRs) in lensless imaging using partially coherent sources. Through spatial filtering we tuned the coherence width of an incoherent soft x-ray undulator source, and we deduce that there exists an optimal spatial filter setting for imaging micrometer-sized objects, while high-resolution imaging is best executed without spatial filtering. Our SNR analysis, given spatial coherence, allows for an estimation of the required exposure time at synchrotron sources and pulse fluence at x-ray laser sources. (C) 2009 Optical Society of America
C1 [Rick, R.; Zhu, D.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.
[Rick, R.; Scherz, A.; Zhu, D.; Stoehr, J.] SLAG NAL, SSRL, Menlo Pk, CA 94205 USA.
[Schlotter, W. F.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany.
[Luening, J.] Univ Paris 06, Lab Chim Phys Mat & Rayonement, F-75005 Paris, France.
RP Rick, R (reprint author), Stanford Univ, Dept Appl Phys, 316 Via Pueblo Mall, Stanford, CA 94305 USA.
EM rrick@stanford.edu
RI Zhu, Diling/D-1302-2013
FU Office of Basic Energy Sciences, United States Department of Energy
(DOE).
FX This research was funded by the Office of Basic Energy Sciences, United
States Department of Energy (DOE).
NR 15
TC 3
Z9 3
U1 0
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD MAR 1
PY 2009
VL 34
IS 5
BP 650
EP 652
PG 3
WC Optics
SC Optics
GA 423UY
UT WOS:000264522400034
PM 19252581
ER
PT J
AU Biswas, R
Oliker, L
Vetter, J
AF Biswas, Rupak
Oliker, Leonid
Vetter, Jeffrey
TI Revolutionary technologies for acceleration of emerging petascale
applications
SO PARALLEL COMPUTING
LA English
DT Editorial Material
C1 [Biswas, Rupak] NASA, Ames Res Ctr, NAS Div, Moffett Field, CA 94035 USA.
[Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, NERSC, CRD, Berkeley, CA 94720 USA.
[Vetter, Jeffrey] Oak Ridge Natl Lab, CSM Div, Oak Ridge, TN 37831 USA.
RP Biswas, R (reprint author), NASA, Ames Res Ctr, NAS Div, Moffett Field, CA 94035 USA.
EM rupak.biswas@nasa.gov
NR 0
TC 0
Z9 0
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD MAR
PY 2009
VL 35
IS 3
BP 117
EP 118
DI 10.1016/j.parco.2009.01.002
PG 2
WC Computer Science, Theory & Methods
SC Computer Science
GA 425SA
UT WOS:000264656200001
ER
PT J
AU Kurzak, J
Alvaro, W
Dongarra, J
AF Kurzak, Jakub
Alvaro, Wesley
Dongarra, Jack
TI Optimizing matrix multiplication for a short-vector SIMD architecture -
CELL processor
SO PARALLEL COMPUTING
LA English
DT Article
DE Instruction level parallelism; Single Instruction Multiple Data;
Synergistic Processing Element; Loop optimizations; Vectorization
ID LINEAR-EQUATIONS; SOLVING SYSTEMS; PERFORMANCE; BENCHMARK
AB Matrix multiplication is one of the most common numerical operations, especially in the area of dense linear algebra, where it forms the core of many important algorithms, including solvers of linear systems of equations, least square problems, and singular and eigen-value computations. The STI CELL processor exceeds the capabilities of any other processor available today in terms of peak single precision, floating point performance, aside from special purpose accelerators like Graphics Processing Units (GPUs).
In order to fully exploit the potential of the CELL processor for a wide range of numerical algorithms, fast implementation of the matrix multiplication operation is essential. The crucial component is the matrix multiplication kernel crafted for the short vector Single Instruction Multiple Data architecture of the Synergistic Processing Element of the CELL processor. In this paper, single precision matrix multiplication kernels are presented implementing the C = C - A x B(T) operation and the C = C - A x B operation for matrices of size 64 x 64 elements. For the latter case, the performance of 25.55 Gflop/s is reported, or 99.80% of the peak, using as little as 5.9 kB of storage for code and auxiliary data structures. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Kurzak, Jakub; Alvaro, Wesley; Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
[Dongarra, Jack] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA.
[Dongarra, Jack] Univ Manchester, Sch Math, Manchester, NH USA.
[Dongarra, Jack] Univ Manchester, Sch Comp Sci, Manchester, NH USA.
RP Kurzak, J (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA.
EM dongarra@cs.utk.edu
RI Dongarra, Jack/E-3987-2014
NR 46
TC 22
Z9 23
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD MAR
PY 2009
VL 35
IS 3
BP 138
EP 150
DI 10.1016/j.parco.2008.12.010
PG 13
WC Computer Science, Theory & Methods
SC Computer Science
GA 425SA
UT WOS:000264656200003
ER
PT J
AU Meredith, JS
Alvarez, G
Maier, TA
Schulthess, TC
Vetter, JS
AF Meredith, Jeremy S.
Alvarez, Gonzalo
Maier, Thomas A.
Schulthess, Thomas C.
Vetter, Jeffrey S.
TI Accuracy and performance of graphics processors: A Quantum Monte Carlo
application case study
SO PARALLEL COMPUTING
LA English
DT Article
DE Graphics processors; Quantum Monte Carlo; Accuracy; Performance; GPU;
Parallel computing
AB The tradeoffs of accuracy and performance are as yet an unsolved problem when dealing with Graphics Processing Units (GPUs) as a general-purpose computation device. Their high performance and low cost makes them a desirable target for scientific computation, and new language efforts help address the programming challenges of data parallel algorithms and memory management. But the original task of GPUs - real-time rendering has traditionally kept accuracy as a secondary goal, and sacrifices have sometimes been made as a result. In fact, the widely deployed hardware is generally capable of only single precision arithmetic, and even this accuracy is not necessarily equivalent to that of a commodity CPU. In this paper, we investigate the accuracy and performance characteristics of GPUs, including results from a preproduction double precision-capable GPU. We then accelerate the full Quantum Monte Carlo simulation code DCA++, similarly investigating its tolerance to the precision of arithmetic delivered by GPUs. The results show that while DCA++ has some sensitivity to the arithmetic precision, the single-precision GPU results were comparable to single-precision CPU results. Acceleration of the code on a fully GPU-enabled cluster showed that any remaining inaccuracy in GPU precision was negligible; sufficient accuracy was retained for scientifically meaningful results while still showing significant speedups. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Meredith, Jeremy S.; Alvarez, Gonzalo; Maier, Thomas A.; Schulthess, Thomas C.; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Meredith, JS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,MS 6173, Oak Ridge, TN 37831 USA.
EM jsmeredith@ornl.gov; alvarezcampg@ornl.gov; maierta@ornl.gov;
schulthess@cscs.ch; vetter@ornl.gov
RI Maier, Thomas/F-6759-2012
OI Maier, Thomas/0000-0002-1424-9996
NR 23
TC 14
Z9 14
U1 1
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD MAR
PY 2009
VL 35
IS 3
SI SI
BP 151
EP 163
DI 10.1016/j.parco.2008.12.004
PG 13
WC Computer Science, Theory & Methods
SC Computer Science
GA 425SA
UT WOS:000264656200004
ER
PT J
AU Williams, S
Oliker, L
Vuduc, R
Shalf, J
Yelick, K
Demmel, J
AF Williams, Samuel
Oliker, Leonid
Vuduc, Richard
Shalf, John
Yelick, Katherine
Demmel, James
TI Optimization of sparse matrix-vector multiplication on emerging
multicore platforms
SO PARALLEL COMPUTING
LA English
DT Article
DE Multicore; Sparse; Performance; Autotuning; HPC; Cell; Niagara
ID KERNELS
AB We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quadcore, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one of the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Williams, Samuel; Yelick, Katherine; Demmel, James] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA.
[Williams, Samuel; Oliker, Leonid; Shalf, John; Yelick, Katherine] Univ Calif Berkeley, Lawrence Berkeley Lab, CRD NERSC, Berkeley, CA 94720 USA.
[Vuduc, Richard] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA.
RP Williams, S (reprint author), Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA.
EM samw@cs.berkeley.edu
OI Vuduc, Richard/0000-0003-2178-138X
NR 31
TC 105
Z9 111
U1 1
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-8191
J9 PARALLEL COMPUT
JI Parallel Comput.
PD MAR
PY 2009
VL 35
IS 3
BP 178
EP 194
DI 10.1016/j.parco.2008.12.006
PG 17
WC Computer Science, Theory & Methods
SC Computer Science
GA 425SA
UT WOS:000264656200006
ER
PT J
AU Crandall, D
Ahmadi, G
Ferer, M
Smith, DH
AF Crandall, Dustin
Ahmadi, Goodarz
Ferer, Martin
Smith, Duane H.
TI Distribution and occurrence of localized-bursts in two-phase flow
through porous media
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE Flow in porous media; Self-organized criticality; Mass avalanches;
Interface depinning; Haines jumps
ID SELF-ORGANIZED CRITICALITY; INVASION PERCOLATION; MULTIPHASE FLOW; SLOW
DRAINAGE; AVALANCHES; DYNAMICS; MODELS; DISPLACEMENTS; BEHAVIOR;
SANDPILE
AB This study examines the dynamics of two-phase drainage with experiments of air invasion into a translucent water-saturated porous medium, at low injection speeds. Air displaces the water by irregular bursts of motion, suddenly invading small portions of the medium. These periods of activity, followed by dormancy, are similar to descriptions of systems at a self-organized critical point, where a slight disturbance may induce an avalanche of activity. The fractal characteristics of the invading air structure at breakthrough are examined through static (box-counting) calculations of the air mass and through an evaluation of the time-dependent motion of the invading mass; results are compared with prior low-velocity two-phase studies in porous media. Dynamic, power-law scaling for invasion percolation is shown to be well suited to describing the structure of the invading fluid. To examine the applicability of self-organized criticality predictions to the invading fluid movement, a new image analysis procedure was developed to identify the location of individual bursting events during the drainage experiments. The predictions of self-organized criticality, namely the scaling of the occurrence of bursts to the mass of the bursts and a spatio-temporal randomness of different sized bursts, are also examined. Bursts of a wide range of sizes are shown to occur throughout the porous medium, over both time and space. The mass distribution of burst sizes is shown to be well described by self-organized criticality predictions, with an experimentally determined scaling exponent of 1.53. (c) 2008 Elsevier B.V. All rights reserved.
C1 [Crandall, Dustin; Ahmadi, Goodarz] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA.
[Ferer, Martin; Smith, Duane H.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA.
[Crandall, Dustin; Ferer, Martin; Smith, Duane H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26506 USA.
RP Crandall, D (reprint author), Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA.
EM meDustin@gmail.com
RI Crandall, Dustin/B-1257-2010
NR 35
TC 17
Z9 17
U1 2
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD MAR 1
PY 2009
VL 388
IS 5
BP 574
EP 584
DI 10.1016/j.physa.2008.11.010
PG 11
WC Physics, Multidisciplinary
SC Physics
GA 405HU
UT WOS:000263214600003
ER
PT J
AU Singleton, J
McDonald, RD
Cox, S
AF Singleton, John
McDonald, Ross D.
Cox, Susan
TI Recent high-magnetic-field experiments on the "High T-c" cuprates;
Fermi-surface instabilities as a driver for superconductivity
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 5th International Workshop on Electronic Crystals (ECRYS-2008)
CY AUG 24-30, 2008
CL Inst Etudes Sci Cargese, Cargese, FRANCE
SP Lab Phys Theor & Modeles Statist, Inst Neel, CNRS, Lab Phys Solides, CNRS, Univ Paris Sud
HO Inst Etudes Sci Cargese
ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; DOPING DEPENDENCE; LA2-XSRXCUO4
AB We give a brief review of high-magnetic-field quantum-oscillation measurements on cuprate superconductors. In the case of the underdoped cuprates, a number of small Fermi-surface pockets are observed, probably due to the incommensurate nesting of the predicted (large) hole Fermi surface. The Fermi-surface instabilities that drive this nesting are also likely to result in the incommensurate spin fluctuations observed in inelastic neutron-scattering measurements. We suggest that the unusually high superconducting transitions in the cuprates are driven by an exact mapping of these incommensurate spin fluctuations onto the d(x2-y2) Cooper-pair wavefunction. The maximum energy of the fluctuations similar to 100 s of Kelvin gives an appropriate energy scale for the superconducting transition temperature. (C) 2008 Published by Elsevier B.V.
C1 [Singleton, John; McDonald, Ross D.; Cox, Susan] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
RP Singleton, J (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, TA 35,MS E536, Los Alamos, NM 87545 USA.
EM j.singleton1@physics.ox.ac.uk
RI McDonald, Ross/H-3783-2013
OI McDonald, Ross/0000-0002-0188-1087
NR 26
TC 3
Z9 3
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD MAR 1
PY 2009
VL 404
IS 3-4
BP 350
EP 353
DI 10.1016/j.physb.2008.11.013
PG 4
WC Physics, Condensed Matter
SC Physics
GA 419NX
UT WOS:000264227400004
ER
PT J
AU Cox, S
Singleton, J
McDonald, RD
Migliori, A
Littlewood, PB
AF Cox, S.
Singleton, J.
McDonald, R. D.
Migliori, A.
Littlewood, P. B.
TI Transport properties of La0.5Ca0.5MnO3, a highly disordered
charge-density wave system
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 5th International Workshop on Electronic Crystals (ECRYS-2008)
CY AUG 24-30, 2008
CL Inst Etudes Sci Cargese, Cargese, FRANCE
SP Lab Phys Theor & Modeles Statist, Inst Neel, CNRS, Lab Phys Solides, CNRS, Univ Paris Sud
HO Inst Etudes Sci Cargese
ID BROAD-BAND NOISE; ELECTRIC-FIELD; NONLINEAR CONDUCTIVITY; MONOCLINIC
TAS3; NBSE3; MANGANITES; IMPURITIES; ORIGIN
AB Differential resistivity and broadband noise measurements of La0.5Ca0.5MnO3 reveal behaviour typical of a highly disordered charge-density wave system. In addition, the differential resistivity measurements reveal a large hysteresis, with the upper part of the hysteresis curve only appearing when the sample has been annealed by heating to room temperature and then cooling. The variation of the area of the hysteresis loop with temperature is found to be governed by a power law. (c) 2008 Elsevier B.V. All rights reserved.
C1 [Cox, S.; Singleton, J.; McDonald, R. D.; Migliori, A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
[Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England.
RP Cox, S (reprint author), Kings Coll London, Randall Div Cell & Mol Biophys, London SE1 1UL, England.
EM susan.cox@kcl.ac.uk
RI Cavendish, TCM/C-9489-2009; Littlewood, Peter/B-7746-2008; McDonald,
Ross/H-3783-2013
OI McDonald, Ross/0000-0002-0188-1087
NR 29
TC 2
Z9 3
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD MAR 1
PY 2009
VL 404
IS 3-4
BP 433
EP 436
DI 10.1016/j.physb.2008.11.222
PG 4
WC Physics, Condensed Matter
SC Physics
GA 419NX
UT WOS:000264227400029
ER
PT J
AU Drichko, N
Kaiser, S
Sun, Y
Clauss, C
Dressel, M
Mori, H
Schlueter, J
Zhyliaeva, EI
Torunova, SA
Lyubovskaya, RN
AF Drichko, Natalia
Kaiser, Stefan
Sun, Yaxiu
Clauss, Conrad
Dressel, Martin
Mori, Hatsumi
Schlueter, John
Zhyliaeva, Elena I.
Torunova, Svetlana A.
Lyubovskaya, Rimma N.
TI Evidence for charge order in organic superconductors obtained by
vibrational spectroscopy
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 5th International Workshop on Electronic Crystals (ECRYS-2008)
CY AUG 24-30, 2008
CL Inst Etudes Sci Cargese, Cargese, FRANCE
SP Lab Phys Theor & Modeles Statist, Inst Neel, CNRS, Lab Phys Solides, CNRS, Univ Paris Sud
HO Inst Etudes Sci Cargese
DE Charge order; Superconductivity; Organic conductors
ID OPTICAL-PROPERTIES; CONDUCTORS; BETA''-(ET)(2)SF5CH2CF2SO3; TRANSPORT;
STATE
AB We study charge disproportionation in few quasi-two-dimensional BEDT-TTF-based compounds by following the temperature dependence of a charge-sensitive vibration v(27)(B(1u)) of BEDT-TTF molecule. While in a charge ordered insulator theta-(BEDT-TTF)(2)RbZn(SCN)(4) a difference between charge on the lattice sites is as high as 0.6e, a small charge disproportionation of 0.15-0.2e is found in two metallic compounds that become superconducting at low temperatures beta ''-(BEDT-TTF)(2)SF(5)CH(2)CF(2)SO(3) and beta-(EDT-TTF)(4)[Hg(3)I(8)]((1-x)). In contrast to these, a pure metallic beta ''-(BEDT-TTF)(2)SO(3)CHFSF(5) does not show any presence of charge disproportionation. This study suggests a correlation between a slight charge disproportionation in the metallic state and superconductivity. (c) 2008 Elsevier B.V. All rights reserved.
C1 [Drichko, Natalia; Kaiser, Stefan; Sun, Yaxiu; Clauss, Conrad; Dressel, Martin] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany.
[Drichko, Natalia] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
[Mori, Hatsumi] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan.
[Schlueter, John] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Zhyliaeva, Elena I.; Torunova, Svetlana A.; Lyubovskaya, Rimma N.] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Russia.
RP Drichko, N (reprint author), Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany.
EM drichko@pi1.physik.uni-stuttgart.de
RI Kaiser, Stefan/B-7788-2008; Dressel, Martin/D-3244-2012
OI Kaiser, Stefan/0000-0001-9862-2788;
NR 23
TC 19
Z9 19
U1 1
U2 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD MAR 1
PY 2009
VL 404
IS 3-4
BP 490
EP 493
DI 10.1016/j.physb.2008.11.038
PG 4
WC Physics, Condensed Matter
SC Physics
GA 419NX
UT WOS:000264227400044
ER
PT J
AU Mascarenhas, A
Kini, R
Zhang, Y
France, R
Ptak, A
AF Mascarenhas, Angelo
Kini, Rajeev
Zhang, Yong
France, Ryan
Ptak, Aaron
TI Comparison of the dilute bismide and nitride alloys GaAsBi and GaAsN
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Conference on High Pressure Semiconductor Physics
(HPSP-13)
CY JUL 22-25, 2008
CL Fortaleza, BRAZIL
SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda
ID TIME-RESOLVED PHOTOLUMINESCENCE; III-V-SEMICONDUCTORS; INDUCED DEFECT
LINES; ISOELECTRONIC TRAPS; GALLIUM-PHOSPHIDE; NITROGEN; GAP;
LUMINESCENCE; BAND; BI
AB Dilute III-V alloys containing N or Bi share many features that are common, but some that are distinct. In GaP and GaAs, both the substituent species N and Bi behave as isoelectronic impurity traps and both lead to a giant bandgap bowing phenomenon. The isolated N and Bi impurities generate bound states in GaP but resonant states in GaAs. N impurity pairs have been observed as bound states in GaP and in GaAs whereas Bi impurity pairs have not been observed as bound states in GaP nor in GaAs. Low temperature photoluminescence studies on GaAs1-xBix show undulations in the spectra but these are not associated with Bi-Bi pairs. Theoretical arguments for the differing behaviour of the N and Bi isolated impurities in GaAs as a function of pressure are provided. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Mascarenhas, Angelo; Kini, Rajeev; Zhang, Yong; France, Ryan; Ptak, Aaron] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Mascarenhas, A (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
EM angelo_mascarenhas@nrel.gov
RI Kini, Rajeev/D-2342-2009
OI Kini, Rajeev/0000-0002-3305-9346
NR 26
TC 8
Z9 8
U1 1
U2 40
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY
SN 0370-1972
EI 1521-3951
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD MAR
PY 2009
VL 246
IS 3
BP 504
EP 507
DI 10.1002/pssb.200880547
PG 4
WC Physics, Condensed Matter
SC Physics
GA 419UF
UT WOS:000264244500009
ER
PT J
AU Christensen, NE
Gorczyca, I
Laskowski, R
Svane, A
Albers, RC
Chantis, AN
Kotani, T
van Schilfgaarde, M
AF Christensen, N. E.
Gorczyca, I.
Laskowski, R.
Svane, A.
Albers, R. C.
Chantis, A. N.
Kotani, T.
van Schilfgaarde, M.
TI Electronic and optical properties of III-nitrides under pressure
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Conference on High Pressure Semiconductor Physics
(HPSP-13)
CY JUL 22-25, 2008
CL Fortaleza, BRAZIL
SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda
ID FUNDAMENTAL-BAND GAP; EFFECTIVE-MASS; HEXAGONAL INN; AB-INITIO;
SEMICONDUCTORS; ABSORPTION; ALLOYS; ALN
AB Results of theoretical studies of electronic and optical properties of III-V nitride compound semiconductors under pressure are presented. As representatives InN and AIN have been chosen, and for InN the pressure effects on the fundamental gap as well as the role of conduction-band filling are examined. Both the fundamental gap and the electron effective mass increase with pressure, but due to the strong non-parabolicity of the conduction band, the pressure coefficient of the mass decreases with electron concentration. Particular attention is paid to the electronic states in the gap region. The "local-density gap error" is avoided by performing Quasi Particle self-consistent GW calculations, which produce slightly too large gaps. Including in addition the missing electron-hole excitonic states and the gap renormalization due to electron-phonon interaction a gap reduction is obtained. The c-h correlations are deduced from solutions of the Bethe-Salpeter equation. These are further used to study excitonic states in the gap of AIN under pressure, and for the rocksalt phase a pressure induced delocalized -> localized transition is predicted. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Christensen, N. E.; Svane, A.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark.
[Gorczyca, I.] Polish Acad Sci, Inst High Pressure Phys Unipress, PL-01142 Warsaw, Poland.
[Laskowski, R.] Vienna Univ Technol, Inst Mat Chem, A-1060 Vienna, Austria.
[Albers, R. C.; Chantis, A. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Kotani, T.; van Schilfgaarde, M.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA.
RP Christensen, NE (reprint author), Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark.
EM nec@phys.au.dk
RI kotani, takao/G-4355-2011
OI kotani, takao/0000-0003-1693-7052
NR 40
TC 10
Z9 10
U1 0
U2 5
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA POSTFACH 101161, 69451 WEINHEIM, GERMANY
SN 0370-1972
EI 1521-3951
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD MAR
PY 2009
VL 246
IS 3
BP 570
EP 575
DI 10.1002/pssb.200880549
PG 6
WC Physics, Condensed Matter
SC Physics
GA 419UF
UT WOS:000264244500023
ER
PT J
AU Chen, SY
Gong, XG
Wei, SH
AF Chen, Shiyou
Gong, X. G.
Wei, Su-Huai
TI Configuration dependence of the electronic structure and optical
properties of BC2N alloys
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Conference on High Pressure Semiconductor Physics
(HPSP-13)
CY JUL 22-25, 2008
CL Fortaleza, BRAZIL
SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda
ID SUPERHARD MATERIALS; INTERFACES
AB Using the first-principles band structure and total energy method, we have studied the general trend of physical properties of the BC2N alloy as a function of atomic configurations. We found that the mechanical properties of the BC2N alloy are basically determined by the bond components: structures with more C-C and B-N bonds have low energy, high density, and high bulk and shear moduli, which validates the so called the bond counting rule. We also show that the electronic and optical properties of the BC2N alloy are more sensitive to the atomic configuration, thus could be used in future experimental measurement to identify the atomic configuration of BC2N samples. A strong internal electric field produced by the polar interfaces is observed in the long period BC2Nnxn (111) superlattices, which explains the significant band gap decrease as the period n increases. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Chen, Shiyou; Gong, X. G.] Fudan Univ, Surface Sci Lab Natl Key, Shanghai 200433, Peoples R China.
RP Wei, SH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM swei@nrel.gov
RI gong, xingao /B-1337-2010; gong, xingao/D-6532-2011
NR 22
TC 2
Z9 2
U1 2
U2 16
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0370-1972
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD MAR
PY 2009
VL 246
IS 3
BP 589
EP 593
DI 10.1002/pssb.200880541
PG 5
WC Physics, Condensed Matter
SC Physics
GA 419UF
UT WOS:000264244500027
ER
PT J
AU Ekimov, EA
Sidorov, VA
Zoteev, A
Lebed, Y
Thompson, JD
Bauer, ED
Stishov, SM
AF Ekimov, E. A.
Sidorov, V. A.
Zoteev, A.
Lebed, Yu.
Thompson, J. D.
Bauer, E. D.
Stishov, S. M.
TI Superconductivity in diamond induced by boron doping at high pressure
SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS
LA English
DT Article; Proceedings Paper
CT 13th International Conference on High Pressure Semiconductor Physics
(HPSP-13)
CY JUL 22-25, 2008
CL Fortaleza, BRAZIL
SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda
ID POLYCRYSTALLINE DIAMOND; RAMAN-SPECTROSCOPY; FILMS
AB The application of hydrostatic pressure to boron-doped diamond samples produces a linear decrease in the superconducting transition temperature T(c). The values d ln T(c)/dP obtained for samples with different T(c)'s collapse near an average Value -2 x 10(-2) GPa(-1), which is in reasonable agreement with theoretical predictions based on an electron-phonon mechanism of superconductivity in diamond within the virtual crystal approximation [Y. Ma et al., Phys. Rev. B 72, 014306 (2005)]. For the first time, superconducting boron-doped diamond samples were synthesized with (10)B and (13)C isotopes. Isotopic substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond with the vibrations of carbon atoms. The "500 cm(-1)" Raman band shifts with both carbon and boron isotope substitutions and is associated with vibrations of clustered boron. We claim the presence of a carbon isotope effect in superconducting diamond. This fact supports the importance of the electron-phonon interaction as the mechanism of superconductivity in diamond. The value of the isotope effect coefficient is beta(0) = -d ln T(c)/d ln M = 0.5 +/- 0.3. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Ekimov, E. A.; Sidorov, V. A.; Stishov, S. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Russia.
[Zoteev, A.] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia.
[Lebed, Yu.] Russian Acad Sci, Inst Nucl Res, Troitsk 142190, Russia.
[Thompson, J. D.; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Ekimov, EA (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Russia.
EM ekimov@hppi.troitsk.ru
RI Bauer, Eric/D-7212-2011;
OI Bauer, Eric/0000-0003-0017-1937
NR 21
TC 0
Z9 1
U1 1
U2 12
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0370-1972
J9 PHYS STATUS SOLIDI B
JI Phys. Status Solidi B-Basic Solid State Phys.
PD MAR
PY 2009
VL 246
IS 3
BP 667
EP 672
DI 10.1002/pssb.200880515
PG 6
WC Physics, Condensed Matter
SC Physics
GA 419UF
UT WOS:000264244500043
ER
PT J
AU Sailer, J
Lang, V
Abstreiter, G
Tsuchiya, G
Itoh, KM
Ager, JW
Haller, EE
Kupidura, D
Harbusch, D
Ludwig, S
Bougeard, D
AF Sailer, J.
Lang, V.
Abstreiter, G.
Tsuchiya, G.
Itoh, K. M.
Ager, J. W., III
Haller, E. E.
Kupidura, D.
Harbusch, D.
Ludwig, S.
Bougeard, D.
TI A Schottky top-gated two-dimensional electron system in a nuclear spin
free Si/SiGe heterostructure
SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS
LA English
DT Article
ID QUANTUM DOTS; SI/SI1-XGEX HETEROSTRUCTURES; SCATTERING TIMES; TRANSPORT;
MAGNETOTRANSPORT; OVERSHOOT
AB We report on the realization and top-gating of a two-dimensional electron system in a nuclear spin free environment using (28)Si and (70)Ge source material in molecular beam epitaxy. Electron spin decoherence is expected to be minimized in nuclear spin-free materials, making them promising hosts for solid-state based quantum information processing devices. The two-dimensional electron system exhibits a mobility of 18000 cm(2)/(V s) at a sheet carrier density of 4.6 x 10(11) cm(-2) at low temperatures. Feasibility of reliable gating is demonstrated by transport through split-gate structures realized with pallidium Schottky top-gates which effectively control the two-dimensional electron system underneath. Our work forms the basis for the realization of an electrostatically defined quantum dot in a nuclear spin free environment. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
C1 [Sailer, J.; Lang, V.; Abstreiter, G.; Bougeard, D.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany.
[Tsuchiya, G.; Itoh, K. M.] Keio Univ, Dept Appl Phys & Phys Informat, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan.
[Ager, J. W., III; Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Kupidura, D.; Harbusch, D.; Ludwig, S.] Univ Munich, Fak Phys, D-80539 Munich, Germany.
[Kupidura, D.; Harbusch, D.; Ludwig, S.] Univ Munich, Ctr NanoSci, D-80539 Munich, Germany.
RP Bougeard, D (reprint author), Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany.
EM bougeard@wsi.tum.de
RI Ludwig, Stefan/A-5199-2009; Itoh, Kohei/C-5738-2014;
OI Ludwig, Stefan/0000-0002-0978-7458; Ager, Joel/0000-0001-9334-9751
FU Deutsche Forschungsgerneinschaft [SFB631]; Excellence Cluster
Nanosystems Initiative Munich (NIM); MEXT program [18001002]; Special
Coordination Funds for Promoting Science and Technology; US NSF
[DMR-0405472]; U.S. DOE [DE-AC02-05CH 11231]
FX The authors gratefully acknowledge H. Cerva at Siemens AG Corporate
Technology for access to electron microscopy facilities and financial
support by the Deutsche Forschungsgerneinschaft via SFB631 and the
Excellence Cluster Nanosystems Initiative Munich (NIM). The work at Keio
was supported in part by MEXT program No. 18001002, by Special
Coordination Funds for Promoting Science and Technology, and by
Grant-in-Aid for the Global Center of Excellence. Work at the LBNL was
supported in part by US NSF Grant No. DMR-0405472 and the U.S. DOE under
Contract No. DE-AC02-05CH 11231.
NR 15
TC 9
Z9 9
U1 1
U2 6
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1862-6254
J9 PHYS STATUS SOLIDI-R
JI Phys. Status Solidi-Rapid Res. Lett.
PD MAR
PY 2009
VL 3
IS 2-3
BP 61
EP 63
DI 10.1002/pssr.200802275
PG 3
WC Materials Science, Multidisciplinary; Physics, Applied; Physics,
Condensed Matter
SC Materials Science; Physics
GA 426EF
UT WOS:000264690100012
ER
PT J
AU Haber, LH
Doughty, B
Leone, SR
AF Haber, Louis H.
Doughty, Benjamin
Leone, Stephen R.
TI Continuum phase shifts and partial cross sections for photoionization
from excited states of atomic helium measured by high-order harmonic
optical pump-probe velocity map imaging
SO PHYSICAL REVIEW A
LA English
DT Article
DE atom-photon collisions; excited states; helium neutral atoms; high-speed
optical techniques; optical pumping; photoelectron spectra;
photoionisation
ID PHOTOELECTRON ANGULAR-DISTRIBUTIONS; 2-PHOTON IONIZATION; THRESHOLD;
ELECTRONS; HE+
AB Phase shift differences and ratios of radial dipole matrix elements of the outgoing S and D continuum waves from state-selected helium atoms are directly measured from the photoelectron angular distributions using pump-probe velocity map imaging. Aligned 1s3p (1)P(1) and 1s4p (1)P(1) states in helium are prepared by high-order harmonics and ionized with either 800, 400, or 267 nm light. The results allow for the determination of energy-dependent quantum defect differences and ratios of partial cross sections and agree favorably with theoretical calculations on electron scattering and photoionization.
C1 [Haber, Louis H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Haber, LH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RI Haber, Louis/A-6762-2013; Doughty, Benjamin /M-5704-2016
OI Doughty, Benjamin /0000-0001-6429-9329
FU Director, Office of Science, Office of Basic Energy Sciences, Chemical
Sciences, Geosciences, and Biosciences Division, U. S. Department of
Energy [DE-AC02-05CH11231]
FX The authors would like to thank Daniel Strasser, Frederick Fournier, and
Oliver Gessner for their helpful discussions. The authors gratefully
acknowledge financial support by the Director, Office of Science, Office
of Basic Energy Sciences, Chemical Sciences, Geosciences, and
Biosciences Division, U. S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 21
TC 43
Z9 44
U1 0
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAR
PY 2009
VL 79
IS 3
AR 031401
DI 10.1103/PhysRevA.79.031401
PG 4
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 427HK
UT WOS:000264770200008
ER
PT J
AU Jackson Kimball, DF
Nguyen, K
Ravi, K
Sharma, A
Prabhudesai, VS
Rangwala, SA
Yashchuk, VV
Balabas, MV
Budker, D
AF Jackson Kimball, D. F.
Nguyen, Khoa
Ravi, K.
Sharma, Arijit
Prabhudesai, Vaibhav S.
Rangwala, S. A.
Yashchuk, V. V.
Balabas, M. V.
Budker, D.
TI Electric-field-induced change of the alkali-metal vapor density in
paraffin-coated cells
SO PHYSICAL REVIEW A
LA English
DT Article
DE atomic moments; caesium; electric field effects; electric moments;
hyperfine structure; organic compounds; polarisability; rubidium; Zeeman
effect
ID DIPOLE MOMENT; PRECISION-MEASUREMENT; ATOMIC MAGNETOMETERS;
MAGNETIC-FIELD; STARK SHIFT; RELAXATION; CESIUM; LIGHT; STATE; LIMIT
AB Alkali-metal vapor cells with antirelaxation coating (especially paraffin-coated cells) have been a central tool in optical pumping and atomic spectroscopy experiments for 50 years. We have discovered a dramatic change of the alkali-metal vapor density in a paraffin-coated cell upon application of an electric field to the cell. A systematic experimental characterization of the phenomenon is carried out for electric fields ranging in strength from 0-8 kV/cm for paraffin-coated cells containing rubidium and cells containing cesium. The typical response of the vapor density to a rapid (duration less than or similar to 100 ms) change in electric field of sufficient magnitude includes (a) a rapid (duration of less than or similar to 100 ms) and significant increase in alkali-metal vapor density followed by (b) a less rapid (duration of similar to 1 s) and significant decrease in vapor density (below the equilibrium vapor density), and then (c) a slow (duration of similar to 100 s) recovery of the vapor density to its equilibrium value. Measurements conducted after the alkali-metal vapor density has returned to its equilibrium value indicate minimal change (at the level of less than or similar to 10%) in the relaxation rate of atomic polarization. Experiments suggest that the phenomenon is related to an electric-field-induced modification of the paraffin coating.
C1 [Jackson Kimball, D. F.; Nguyen, Khoa] Calif State Univ E Bay, Dept Phys, Hayward, CA 94542 USA.
[Ravi, K.; Sharma, Arijit; Prabhudesai, Vaibhav S.; Rangwala, S. A.] Raman Res Inst, Bangalore 560080, Karnataka, India.
[Yashchuk, V. V.] Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA.
[Balabas, M. V.] SI Vavilov State Opt Inst, St Petersburg 199034, Russia.
[Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Budker, D.] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Jackson Kimball, DF (reprint author), Calif State Univ E Bay, Dept Phys, Hayward, CA 94542 USA.
EM derek.jacksonkimball@csueastbay.edu
RI Rangwala, Sadiq/E-6899-2012; Balabas, Mikhail/A-5273-2012; SHARMA,
ARIJIT/L-4614-2016; Budker, Dmitry/F-7580-2016
OI Balabas, Mikhail/0000-0002-5383-7897; SHARMA,
ARIJIT/0000-0002-2143-0574; Budker, Dmitry/0000-0002-7356-4814
FU National Science Foundation, NSF/DST [PHY-0652824, PHY-0425916];
California State University-East Bay
FX We would like to thank B. P. Das and E. Krishnakumar for facilitating
this work and Arun Roy and N. V. Madhusudana for helpful discussions. We
would also like to acknowledge the contribution of Morey Roscrow, Jr. to
early parts of the experiment and the excellent technical assistance of
Mohammad Ali and Alex Vaynberg in building parts of the apparatus. This
work was supported by Grant No. PHY-0652824 from the National Science
Foundation, NSF/DST Grant No. PHY-0425916 for U.S.-India cooperative
research, and Faculty Support Grants from California State
University-East Bay.
NR 44
TC 1
Z9 1
U1 2
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAR
PY 2009
VL 79
IS 3
AR 032901
DI 10.1103/PhysRevA.79.032901
PG 14
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 427HK
UT WOS:000264770200108
ER
PT J
AU Mestayer, JJ
Wyker, B
Dunning, FB
Yoshida, S
Reinhold, CO
Burgdorfer, J
AF Mestayer, J. J.
Wyker, B.
Dunning, F. B.
Yoshida, S.
Reinhold, C. O.
Burgdoerfer, J.
TI Creation of nondispersive Bohr-like wave packets
SO PHYSICAL REVIEW A
LA English
DT Article
DE hydrogen neutral atoms; Stark effect; light scattering
ID POLARIZED ELECTROMAGNETIC-FIELD; ATOM; HYDROGEN
AB We demonstrate the use of a periodic train of half-cycle pulses to maintain strongly-localized wave packets in very-high-n (n similar to 300) Rydberg atoms that travel in near-circular orbits about the nucleus. This motion can be followed for hundreds of orbital periods and mimics the original Bohr model of the hydrogen atom which envisioned an electron in circular classical orbit about the nucleus.
C1 [Mestayer, J. J.; Wyker, B.; Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
[Mestayer, J. J.; Wyker, B.; Dunning, F. B.] Rice Univ, Rice Quantum Inst, Houston, TX 77005 USA.
[Yoshida, S.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria.
[Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Reinhold, C. O.; Burgdoerfer, J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA.
RP Mestayer, JJ (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.
FU NSF [0650732]; Robert A. Welch Foundation [C-0734]; OBES; U. S. DOE
[AC05-00OR22725]; FWF (Austria) [SFB016]
FX Research supported by the NSF under Grant No. 0650732, the Robert A.
Welch Foundation under Grant No. C-0734, the OBES, U. S. DOE to ORNL,
which is managed by UT-Batelle LLC under Contract No. AC05-00OR22725,
and by the FWF (Austria) under SFB016. The assistance of Evan Olson is
also acknowledged.
NR 22
TC 7
Z9 7
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAR
PY 2009
VL 79
IS 3
AR 033417
DI 10.1103/PhysRevA.79.033417
PG 5
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 427HK
UT WOS:000264770200129
ER
PT J
AU Palacios, A
Rescigno, TN
McCurdy, CW
AF Palacios, A.
Rescigno, T. N.
McCurdy, C. W.
TI Time-dependent treatment of two-photon resonant single and double
ionization of helium by ultrashort laser pulses
SO PHYSICAL REVIEW A
LA English
DT Article
DE atom-photon collisions; excited states; ground states; helium ions;
high-speed optical techniques; photoionisation; positive ions;
two-photon processes; wave functions
ID COLLISION PROCESSES; CROSS-SECTIONS; INTENSITIES; DYNAMICS; LIGHT; HE
AB We report the results of accurate time-dependent calculations of two-photon ionization of helium by ultrashort pulses. Ionization amplitudes and generalized cross sections are extracted from the wave function using exterior complex scaling. For photon energies above the first ionization threshold, two-photon single ionization is enhanced by core excited resonances, in processes visible with pulses as short as 2 fs, when the photon frequency is equal to a transition energy in He(+). We explore the dependence of the total cross section in the vicinity of the threshold for sequential double ionization on pulse duration. A signature in the single differential cross section of two-photon sequential ionization with the ground state of the ion as the intermediate state is seen to be suppressed by sufficiently short pulses in favor of the nonsequential process, while the triple differential cross section shows that attosecond pulses can access different electron dynamics than those of longer duration. The peaks in the single differential cross section due to sequential ionization with the excited intermediate states of the ion are observed to occur at energies displaced by about 2 eV from the expected values by interference effects between continuum channels.
C1 [Palacios, A.; Rescigno, T. N.; McCurdy, C. W.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci & Chem, Davis, CA 95616 USA.
RP Palacios, A (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RI Palacios, Alicia/J-6823-2012
OI Palacios, Alicia/0000-0001-6531-9926
FU U.S. Department of Energy by the University of California Lawrence
Berkeley National Laboratory [DE-AC02-05CH11231]; National Science
Foundation [PHY-0604628]
FX This work was performed under the auspices of the U.S. Department of
Energy by the University of California Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the
U. S. DOE Office of Basic Energy Sciences, Division of Chemical
Sciences. C. W. M. acknowledges support from the National Science
Foundation (Grant No. PHY-0604628).
NR 31
TC 56
Z9 56
U1 1
U2 17
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAR
PY 2009
VL 79
IS 3
AR 033402
DI 10.1103/PhysRevA.79.033402
PG 12
WC Optics; Physics, Atomic, Molecular & Chemical
SC Optics; Physics
GA 427HK
UT WOS:000264770200114
ER
PT J
AU Aczel, AA
Kohama, Y
Jaime, M
Ninios, K
Chan, HB
Balicas, L
Dabkowska, HA
Luke, GM
AF Aczel, A. A.
Kohama, Y.
Jaime, M.
Ninios, K.
Chan, H. B.
Balicas, L.
Dabkowska, H. A.
Luke, G. M.
TI Bose-Einstein condensation of triplons in Ba3Cr2O8
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; Bose-Einstein condensation; magnetisation;
magnetocaloric effects; specific heat
ID MAGNETIZATION PLATEAUS; GROUND-STATE; SRCU2(BO3)(2)
AB By performing heat-capacity, magnetocaloric effect, torque magnetometry, and force magnetometry measurements up to 33 T, we have mapped out the T-H phase diagram of the S=1/2 spin dimer compound Ba3Cr2O8. We found evidence for field-induced magnetic order between H-c1=12.52(2) T and H-c2=23.60(5) T, with the maximum transition temperature T-c similar to 2.7 K at H similar to 18 T. The lower transition can likely be described by Bose-Einstein condensation of triplons theory, and this is consistent with the absence of any magnetization plateaus in our magnetic torque and force measurements. In contrast, our measurements uncovered magnetic field irreversibility associated with a symmetric specific heat versus temperature near H-c2 suggesting that the upper transition is first order.
C1 [Aczel, A. A.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada.
[Kohama, Y.; Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA.
[Ninios, K.; Chan, H. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Balicas, L.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Dabkowska, H. A.; Luke, G. M.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada.
[Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada.
RP Aczel, AA (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada.
EM aczela@mcmaster.ca
RI Jaime, Marcelo/F-3791-2015; Luke, Graeme/A-9094-2010; Aczel,
Adam/A-6247-2016;
OI Jaime, Marcelo/0000-0001-5360-5220; Aczel, Adam/0000-0003-1964-1943;
Luke, Graeme/0000-0003-4762-1173
NR 24
TC 30
Z9 30
U1 1
U2 22
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 100409
DI 10.1103/PhysRevB.79.100409
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600017
ER
PT J
AU Bao, W
Gasparovic, YC
Lynn, JW
Ronning, F
Bauer, ED
Thompson, JD
Fisk, Z
AF Bao, Wei
Gasparovic, Y. C.
Lynn, J. W.
Ronning, F.
Bauer, E. D.
Thompson, J. D.
Fisk, Z.
TI Commensurate magnetic structure of CeRhIn4.85Hg0.15
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; cerium alloys; heavy fermion
superconductors; indium alloys; magnetic structure; mercury alloys;
neutron diffraction; rhodium alloys
ID HEAVY-FERMION MATERIALS; SUPERCONDUCTIVITY; CERHIN5; CEIRIN5; IR; RH
AB We show using neutron diffraction that the magnetic structure of CeRhIn4.85Hg0.15 is characterized by a commensurate propagation vector (1/2,1/2,1/2). This is different from the magnetic structure in the parent compound CeRhIn5, which orders with an incommensurate propagation vector (1/2,1/2,0.297). The special relation between the commensurate magnetic mode and unconventional superconductivity has been shown previously for this class of heavy fermion superconductors. This work provides further evidence for the ubiquity of this antiferromagnetic mode.
C1 [Bao, Wei; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Bao, Wei; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Gasparovic, Y. C.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA.
RP Bao, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
RI Bauer, Eric/D-7212-2011; Bao, Wei/E-9988-2011;
OI Bao, Wei/0000-0002-2105-461X; Ronning, Filip/0000-0002-2679-7957; Bauer,
Eric/0000-0003-0017-1937
FU U.S. DOE; UC Irvine; NSF [DMR-053360]
FX Work at LANL was supported by U.S. DOE and at UC Irvine by NSF under
Grant No. DMR-053360.
NR 32
TC 0
Z9 0
U1 2
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 092415
DI 10.1103/PhysRevB.79.092415
PG 3
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200018
ER
PT J
AU Bindu, R
Maiti, K
Khalid, S
Sampathkumaran, EV
AF Bindu, R.
Maiti, Kalobaran
Khalid, S.
Sampathkumaran, E. V.
TI Structural link to precursor effects
SO PHYSICAL REVIEW B
LA English
DT Article
DE bond lengths; calcium compounds; Debye-Waller factors; EXAFS; magnetic
transitions; nucleation; solid-state phase transformations
ID ONE-DIMENSIONAL CA3CO2O6; ELECTRONIC-STRUCTURE; COMPOUND CA3CO2O6; CHAIN
COMPOUND; EVOLUTION; IFEFFIT
AB We investigate the origin of precursor effect associated to magnetic phase transitions in a quasi-one-dimensional system Ca3Co2O6, employing extended x-ray absorption fine structure technique. Experimental results reveal unusual changes in the Co-O bond lengths in CoO6 units nucleating at a temperature T-star, where the precursor effect occurs. The corresponding Debye-Waller factors representing disorder effect exhibit anomalous evolution across T-star. These results reveal a unique link between the local structural changes and the precursor effect that needs to be considered in the understanding of various phase transitions.
C1 [Bindu, R.; Maiti, Kalobaran; Sampathkumaran, E. V.] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India.
[Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Maiti, K (reprint author), Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India.
EM kbmaiti@tifr.res.in
NR 36
TC 14
Z9 14
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094103
DI 10.1103/PhysRevB.79.094103
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200033
ER
PT J
AU Cabot, A
Alivisatos, AP
Puntes, VF
Balcells, L
Iglesias, O
Labarta, A
AF Cabot, Andreu
Alivisatos, A. Paul
Puntes, Victor F.
Balcells, Lluis
Iglesias, Oscar
Labarta, Amilcar
TI Magnetic domains and surface effects in hollow maghemite nanoparticles
SO PHYSICAL REVIEW B
LA English
DT Article
DE chemical interdiffusion; coercive force; crystal microstructure;
ferrimagnetic materials; iron compounds; magnetic anisotropy; magnetic
domains; magnetic moments; magnetic structure; magnetic transitions;
Monte Carlo methods; nanoparticles; superparamagnetism; surface
magnetism
ID GAMMA-FE2O3 NANOPARTICLES; IRON NANOPARTICLES; COBALT; ANISOTROPY;
NANOCRYSTALS; NANOSCALE; SPHERES; OXIDE
AB In the present work, we investigate the magnetic properties of ferrimagnetic and noninteracting maghemite (gamma-Fe(2)O(3)) hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arrangement in the different temperature regimes.
C1 [Cabot, Andreu; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Cabot, Andreu; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Puntes, Victor F.] Inst Catala Estudis & Recerca Avancat, E-08193 Barcelona, Spain.
[Puntes, Victor F.] Inst Catala Nanotecnol, E-08193 Barcelona, Spain.
[Balcells, Lluis] CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Spain.
[Iglesias, Oscar; Labarta, Amilcar] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain.
[Iglesias, Oscar; Labarta, Amilcar] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Spain.
RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM alivis@berkeley.edu
RI Labarta, Amilcar/B-4539-2012; Iglesias, Oscar/A-8274-2008; Puntes,
Victor/F-8407-2013; andreu, cabot/B-5683-2014; Balcells,
Lluis/B-5027-2013; Alivisatos , Paul /N-8863-2015;
OI Labarta, Amilcar/0000-0003-0904-4678; Iglesias,
Oscar/0000-0002-5526-9491; Puntes, Victor/0000-0001-8996-9499; Balcells,
Lluis/0000-0001-6603-7357; Alivisatos , Paul /0000-0001-6895-9048;
cabot, andreu /0000-0002-7533-3251
FU U. S. Department of Energy [DE-AC02-05CH11231]; Generalitat de
Catalunya; Departament d'Universitats, Recerca i Societat de
l'Informacio; Spanish MCyT [MAT2006-13572-C02-02, MAT2006-13572-C02-01,
MAT2006-03999, NAN2004-08805-CO4-01/02]; Consolider-Ingenio [2010
CSD2007-00041, 2010 CSD2006-00012]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Materials Sciences and Engineering Division, of
the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. A.
C. thanks financial support from the Generalitat de Catalunya,
Departament d'Universitats, Recerca i Societat de l'Informacio. V. F. P.
thanks financial support from Spanish MCyT though Contract No.
MAT2006-13572-C02-02. Ll. B. thanks financial support from Spanish MCyT
under Contract No. MAT2006-13572-C02-01 and Consolider-Ingenio under
Contract No. 2010 CSD2007-00041. O. I. and A. L. thank financial support
from Spanish MCyT through Projects No. MAT2006-03999 and No.
NAN2004-08805-CO4-01/02 and Consolider-Ingenio under Contract No. 2010
CSD2006-00012. We acknowledge CESCA and CEPBA under coordination of C4
for computer facilities. We thank J. Long and his group for the
assistance and use of their SQUID.
NR 26
TC 74
Z9 74
U1 5
U2 48
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094419
DI 10.1103/PhysRevB.79.094419
PG 7
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200076
ER
PT J
AU Chen, B
Zhang, H
Dunphy-Guzman, KA
Spagnoli, D
Kruger, MB
Muthu, DVS
Kunz, M
Fakra, S
Hu, JZ
Guo, QZ
Banfield, JF
AF Chen, Bin
Zhang, Hengzhong
Dunphy-Guzman, K. A.
Spagnoli, D.
Kruger, M. B.
Muthu, D. V. S.
Kunz, M.
Fakra, Sirine
Hu, J. Z.
Guo, Q. Z.
Banfield, Jillian F.
TI Size-dependent elasticity of nanocrystalline titania
SO PHYSICAL REVIEW B
LA English
DT Article
DE compressibility; dislocations; elastic moduli; elasticity; hardening;
high-pressure effects; nanoparticles; particle size; semiconductor
materials; titanium compounds; X-ray diffraction
ID HALL-PETCH RELATION; HIGH-PRESSURE; ATOMISTIC SIMULATION;
MECHANICAL-BEHAVIOR; METALS; NICKEL; TIO2; IRON; COMPRESSIBILITY;
DISLOCATIONS
AB Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks (hardened by overlap of strain fields) that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.
C1 [Chen, Bin; Zhang, Hengzhong; Dunphy-Guzman, K. A.; Spagnoli, D.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Dunphy-Guzman, K. A.] Sandia Natl Labs, Dept Syst Studies, Livermore, CA 94551 USA.
[Kruger, M. B.; Muthu, D. V. S.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA.
[Muthu, D. V. S.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India.
[Kunz, M.; Fakra, Sirine] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Hu, J. Z.; Guo, Q. Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
RP Chen, B (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.
EM binchen@berkeley.edu
RI Kunz, Martin/K-4491-2012; Spagnoli, Dino/F-8641-2011
OI Kunz, Martin/0000-0001-9769-9900; Spagnoli, Dino/0000-0001-6367-4748
FU U. S. Department of Energy [DE-AC0205CH11231, DE-AC02-05CH11232,
DE-FG03-01ER15218]
FX High-pressure x-ray diffraction was performed at beamline 11.3.1 of
Advanced Light Source (ALS), Lawrence Berkeley National Laboratory and
beamlines X17C & X17B3 of the National Synchrotron Light Source (NSLS),
Brookhaven. We thank J. Giska, M. Finnegan, F. El-Ghussein, and T.
Tesileanu for help with the synchrotron measurements; Sergio Speziale
and Raymond Jeanloz for their DAC cells; Benjamin Gilbert for helpful
discussion; Stephen C. Parker for providing us with the computer code
METADISE and for the useful discussions. The authors thank Glenn A.
Waychunas for the provision of the Geochemistry computer cluster at the
Lawrence Berkeley National Laboratory. Research conducted at the ALS is
supported by the Office of Science, Basic Energy Sciences, Division of
Materials Science of the U. S. Department of Energy under Contract Nos.
DE-AC0205CH11231 and DE-AC02-05CH11232. Financial support for this work
was provided by the U. S. Department of Energy (Grant No.
DE-FG03-01ER15218)
NR 56
TC 39
Z9 39
U1 0
U2 30
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 125406
DI 10.1103/PhysRevB.79.125406
PG 8
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300087
ER
PT J
AU Choi, HJ
Louie, SG
Cohen, ML
AF Choi, Hyoung Joon
Louie, Steven G.
Cohen, Marvin L.
TI Anisotropic Eliashberg theory for superconductivity in compressed and
doped MgB2
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; doping; electron-phonon interactions; magnesium
compounds; phonon spectra; specific heat; strong-coupling
superconductors; superconducting energy gap; superconducting transition
temperature
ID PRESSURE-DEPENDENCE; T-C; TRANSITION-TEMPERATURE; MAGNESIUM DIBORIDE;
AB-INITIO; ENERGY
AB We have studied superconducting properties of compressed and doped MgB2 by performing first-principles calculations of the normal material properties and by solving the fully anisotropic Eliashberg equations. At each pressure or doping, electronic structures, phonon spectra, and momentum-dependent electron-phonon coupling strengths are calculated. Then using the fully anisotropic Eliashberg equations, the superconducting transition temperatures (T-c), the superconducting energy gaps [Delta(k)], and the specific heats are obtained. Our results show that the multiple-gap nature of Delta(k) in MgB2 is robust with applied pressure although T-c and Delta(k) decrease substantially and that electron doping reduces T-c and degrades severely the superconducting energy gap in the pi bands.
C1 [Choi, Hyoung Joon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea.
[Choi, Hyoung Joon] Yonsei Univ, IPAP, Seoul 120749, South Korea.
[Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Louie, Steven G.; Cohen, Marvin L.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Choi, HJ (reprint author), Yonsei Univ, Dept Phys, Seoul 120749, South Korea.
EM h.j.choi@yonsei.ac.kr
RI Choi, Hyoung Joon/N-8933-2015
OI Choi, Hyoung Joon/0000-0001-8565-8597
FU NSF [DMR07-05941]; Office of Science, Office of Basic Energy Sciences,
Materials Sciences and Engineering Division, U. S. Department of Energy
[DE-AC02-05CH11231]; KRF [KRF-2007-314-C00075]; KOSEF
[R01-2007-000-20922-0]; KISTI Supercomputing Center [KSC-2007S00-1011]
FX This work was supported by the NSF under Grant No. DMR07-05941, by the
Director, Office of Science, Office of Basic Energy Sciences, Materials
Sciences and Engineering Division, U. S. Department of Energy under
Contract No. DE-AC02-05CH11231, by the KRF (Grant No.
KRF-2007-314-C00075), and by the KOSEF under Grant No.
R01-2007-000-20922-0. Computational resources have been provided by NSF
through TeraGrid resources at SDSC, DOE at Lawrence Berkeley National
Laboratory's NERSC facility, and KISTI Supercomputing Center (Project
No. KSC-2007S00-1011).
NR 49
TC 8
Z9 8
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094518
DI 10.1103/PhysRevB.79.094518
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200105
ER
PT J
AU Chopdekar, RV
Arenholz, E
Suzuki, Y
AF Chopdekar, Rajesh V.
Arenholz, Elke
Suzuki, Y.
TI Orientation and thickness dependence of magnetization at the interfaces
of highly spin-polarized manganite thin films
SO PHYSICAL REVIEW B
LA English
DT Article
DE electrical resistivity; electron spin polarisation; interface magnetism;
lanthanum compounds; magnetisation; strontium compounds; thin films;
X-ray spectra
ID ADVANCED LIGHT-SOURCE; CIRCULAR-DICHROISM; COLOSSAL MAGNETORESISTANCE;
LATTICE-DISTORTIONS; TRANSITION-METALS; SUM-RULE; STRAIN;
LA0.7SR0.3MNO3; ABSORPTION; EPITAXY
AB We have probed the nature of magnetism at the surface of (001)-, (110)-, and (111)-oriented La0.7Sr0.3MnO3 thin films. The spin polarization of La0.7Sr0.3MnO3 thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001)-, (110)-, and (111)-oriented La0.7Sr0.3MnO3/SrTiO3 interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110)- and (111)-oriented La0.7Sr0.3MnO3/SrTiO3 interfaces is more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La0.7Sr0.3MnO3/SrTiO3 interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La0.7Sr0.3MnO3 films; for a given film thickness it is the tetragonal distortion of (001) La0.7Sr0.3MnO3 that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depend strongly on the crystal surface orientation as well as epitaxial strain.
C1 [Chopdekar, Rajesh V.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA.
[Chopdekar, Rajesh V.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.
[Arenholz, Elke] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Chopdekar, RV (reprint author), Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA.
EM rvc2@cornell.edu
RI Chopdekar, Rajesh/D-2067-2009
OI Chopdekar, Rajesh/0000-0001-6727-6501
FU U. S. Department of Energy [DE-AC02-05CH11231]
FX This research and the Advanced Light Source are supported by the Office
of Basic Energy Sciences, Division of Materials Sciences and
Engineering, of the U. S. Department of Energy under Contract No.
DE-AC02-05CH11231. Portions of this research were carried out at the
Stanford Synchrotron Radiation Laboratory (SSRL), a national user
facility operated by Stanford University on behalf of the U. S.
Department of Energy, Office of Basic Energy Sciences. R. V. C. thanks
Michael F. Toney (SSRL) and Brittany Nelson-Cheeseman for their
assistance in verifying film thickness using hard x-ray scattering
measurements.
NR 41
TC 29
Z9 29
U1 0
U2 21
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104417
DI 10.1103/PhysRevB.79.104417
PG 7
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600073
ER
PT J
AU Clavero, C
Skuza, JR
Garcia-Martin, JM
Cebollada, A
Walko, DA
Lukaszew, RA
AF Clavero, C.
Skuza, J. R.
Garcia-Martin, J. M.
Cebollada, A.
Walko, D. A.
Lukaszew, R. A.
TI Order and phase nucleation in nonequilibrium nanocomposite Fe-Pt thin
films with perpendicular magnetic anisotropy
SO PHYSICAL REVIEW B
LA English
DT Article
DE annealing; coercive force; ferromagnetic materials; grain size; iron;
magnetic thin films; nanocomposites; nucleation; perpendicular magnetic
anisotropy; platinum; segregation; X-ray diffraction
ID FE/PT MULTILAYERS; GROWTH; AL2O3
AB We report on the time evolution of mass transport upon annealing nonequilibrium Fe-Pt nanocomposite films, leading to nucleation of L1(0) chemically ordered phase. The nonequilibrium nanocomposite films were fabricated by applying Fe(+) ion implantation to epitaxial Pt films grown on (001) MgO substrates, yielding Fe nanoclusters embedded in a Pt matrix at a tailored penetration depth. Time-resolved x-ray diffraction studies were carried out using synchrotron radiation, allowing determination of the activation energy for nucleation of the FePt L1(0) phase within the segregated nanoclusters during annealing. The growth of the segregated L1(0) ordered phase was modeled using ideal grain-size law and found to be dominated by strain-driven surface nucleation. The activation energies were found to correlate with the nanocluster size. Magnetic characterization of selected annealed samples indicates perpendicular magnetic anisotropy with high coercive field coincident with high value of the chemical order parameter of the ordered phase within the magnetic nanoclusters.
C1 [Clavero, C.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
[Clavero, C.; Garcia-Martin, J. M.; Cebollada, A.] IMM CNM CSIC, Madrid 28760, Spain.
[Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.
[Walko, D. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Clavero, C (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
RI Skuza, Jonathan/E-9048-2010; Garcia-Martin, Jose Miguel/H-4434-2011;
Cebollada, Alfonso/B-6754-2012; Clavero, Cesar/C-4391-2008;
Microelectronica de Madrid, Instituto de/D-5173-2013
OI Skuza, Jonathan/0000-0002-9252-2708; Garcia-Martin, Jose
Miguel/0000-0002-5908-8428; Cebollada, Alfonso/0000-0003-1990-4520;
Clavero, Cesar/0000-0001-6665-3141; Microelectronica de Madrid,
Instituto de/0000-0003-4211-9045
FU NSF [DMR-0355171]; Research Corporation Cottrell Scholar Award; American
Chemical Society [PRF-41319-AC10]; CM [S-0505/MAT/0194]; MEC
[MAT2005-05524-C02-01]; Office of Science, Office of Basic Energy
Sciences, U. S. Department of Energy [DE-AC02-06CH11357]
FX Funding from NSF (Grant No. DMR-0355171), Research Corporation Cottrell
Scholar Award, and the American Chemical Society under Grant No.
PRF-41319-AC10 is acknowledged. Funding from different Spanish
Institutions, CM (Grant No. S-0505/MAT/0194) (NANOMAGNET) and MEC (Grant
No. MAT2005-05524-C02-01), is also acknowledged. Use of the Advanced
Photon Source was supported by the Office of Science, Office of Basic
Energy Sciences, U. S. Department of Energy under Contract No.
DE-AC02-06CH11357. The authors also acknowledge R. Irving, M. Brown, and
M. Mitra for assistance during ion implantation at the Toledo Heavy Ion
Accelerator (THIA)
NR 36
TC 3
Z9 3
U1 2
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104436
DI 10.1103/PhysRevB.79.104436
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600092
ER
PT J
AU Eskildsen, MR
Vinnikov, LY
Blasius, TD
Veshchunov, IS
Artemova, TM
Densmore, JM
Dewhurst, CD
Ni, N
Kreyssig, A
Bud'ko, SL
Canfield, PC
Goldman, AI
AF Eskildsen, M. R.
Vinnikov, L. Ya.
Blasius, T. D.
Veshchunov, I. S.
Artemova, T. M.
Densmore, J. M.
Dewhurst, C. D.
Ni, N.
Kreyssig, A.
Bud'ko, S. L.
Canfield, P. C.
Goldman, A. I.
TI Vortices in superconducting Ba(Fe0.93Co0.07)(2)As-2 studied via
small-angle neutron scattering and Bitter decoration
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; cobalt compounds; flux pinning; iron compounds;
neutron diffraction; superconducting critical field; superconducting
materials
ID FLUX-LINE-LATTICE; 43 K; FIELD; TRANSITION; PHASE
AB We present small-angle neutron scattering (SANS) and Bitter decoration studies of the superconducting vortices in Ba(Fe0.93Co0.07)(2)As-2. A highly disordered vortex configuration is observed at all measured fields and is attributed to strong pinning. This conclusion is supported by the absence of a Meissner rim in decoration images obtained close to the sample edge. The field dependence of the magnitude of the SANS scattering vector indicates vortex lattice domains of (distorted) hexagonal symmetry, consistent with the decoration images which show primarily sixfold coordinated vortex domains. An analysis of the scattered intensity shows that this decreases much more rapidly than expected from estimates of the upper critical field, consistent with the large degree of disorder.
C1 [Eskildsen, M. R.; Blasius, T. D.; Densmore, J. M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Vinnikov, L. Ya.; Veshchunov, I. S.; Artemova, T. M.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow Region, Russia.
[Dewhurst, C. D.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France.
[Ni, N.; Kreyssig, A.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Ni, N.; Kreyssig, A.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Blasius, T. D.] Univ Michigan, Ann Arbor, MI 48109 USA.
RP Eskildsen, MR (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM eskildsen@nd.edu
RI Eskildsen, Morten/E-7779-2011; Densmore, John/G-1228-2011; Canfield,
Paul/H-2698-2014
OI Densmore, John/0000-0003-2388-1413;
FU National Science Foundation [DMR-0804887, PHY-0552843]; Russian
Foundation for Basic Research [07-02-00174]; U.S. Department of Energy,
Basic Energy Sciences [DE-AC02-07CH11358]
FX This work was supported by the National Science Foundation through
Grants No. DMR-0804887 (M.R.E and J.M.D.) and No. PHY-0552843 (T.D.B.).
L.Y.V. and I.S.V. thank the Russian Foundation for Basic Research Grant
No. RFBR 07-02-00174 for support. Work at the Ames Laboratory was
supported by the U.S. Department of Energy, Basic Energy Sciences under
Contract No. DE-AC02-07CH11358.
NR 24
TC 42
Z9 42
U1 0
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 100501
DI 10.1103/PhysRevB.79.100501
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600018
ER
PT J
AU Gooch, M
Lv, B
Lorenz, B
Guloy, AM
Chu, CW
AF Gooch, Melissa
Lv, Bing
Lorenz, Bernd
Guloy, Arnold M.
Chu, Ching-Wu
TI Evidence of quantum criticality in the phase diagram of KxSr1-xFe2As2
from measurements of transport and thermoelectricity
SO PHYSICAL REVIEW B
LA English
DT Article
DE doping; electrical resistivity; Fermi liquid; phase diagrams; potassium
compounds; spin fluctuations; strontium compounds; superconducting
materials; thermoelectric power
ID LAYERED QUATERNARY COMPOUND; 43 K; SUPERCONDUCTIVITY
AB The electrical transport and thermoelectric properties of KxSr1-xFe2As2 are investigated for 0 <= x <= 1. The resistivity rho(T) shows a crossover from Fermi-liquid-like temperature dependence at small x to linear rho similar to T dependence at x(c)similar or equal to 0.4. With further increasing of x, rho(T) becomes nonlinear again. The thermoelectric power S(T) exhibits a similar crossover with increasing x with a logarithmic T dependence, S/T similar to ln(T), near the critical doping x(c). These results provide evidence for a quantum critical behavior due to the coupling of low-energy conduction electrons to two-dimensional spin fluctuations.
C1 [Gooch, Melissa; Lorenz, Bernd; Chu, Ching-Wu] Univ Houston, Dept Phys, Houston, TX 77204 USA.
[Lv, Bing; Guloy, Arnold M.] Univ Houston, Dept Chem, Houston, TX 77204 USA.
[Chu, Ching-Wu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Chu, Ching-Wu] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China.
[Gooch, Melissa; Lv, Bing; Lorenz, Bernd; Guloy, Arnold M.; Chu, Ching-Wu] Univ Houston, TCSUH, Houston, TX 77204 USA.
RP Gooch, M (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA.
RI Lv, Bing/E-3485-2010
FU T.L.L. Temple Foundation; J.J. and R. Moores Endowment; State of Texas
through TCSUH; U.S. Air Force Office of Scientific Research, U.S. DOE;
NSF [CHE-0616805]; R.A. Welch Foundation
FX Stimulating discussions with S. Wirth and Q. Si are gratefully
acknowledged. This work is supported in part by the T.L.L. Temple
Foundation, the J.J. and R. Moores Endowment, the State of Texas through
TCSUH, the U.S. Air Force Office of Scientific Research, and at LBNL
through U.S. DOE. A. M. G. and B. L. acknowledge the support from the
NSF (Contract No. CHE-0616805) and the R.A. Welch Foundation.
NR 33
TC 38
Z9 38
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104504
DI 10.1103/PhysRevB.79.104504
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600098
ER
PT J
AU Gordon, RT
Martin, C
Kim, H
Ni, N
Tanatar, MA
Schmalian, J
Mazin, II
Bud'ko, SL
Canfield, PC
Prozorov, R
AF Gordon, R. T.
Martin, C.
Kim, H.
Ni, N.
Tanatar, M. A.
Schmalian, J.
Mazin, I. I.
Bud'ko, S. L.
Canfield, P. C.
Prozorov, R.
TI London penetration depth in single crystals of Ba(Fe1-xCox)(2)As-2
spanning underdoped to overdoped compositions
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; carrier density; cobalt compounds; doping profiles;
iron compounds; penetration depth (superconductivity)
ID SUPERCONDUCTOR
AB The London penetration depth lambda(T) has been measured in single crystals of Ba(Fe1-xCox)(2)As-2 using the tunnel diode resonator technique. The measured doping levels of x=0.038, 0.047, 0.058, 0.074, and 0.10 range from underdoped to overdoped concentrations. The measurements have shown that the density of carriers participating in superconductivity decreases sharply in the underdoped regime but the penetration depth as a function of temperature exhibits a robust power law, Delta lambda(T)similar to T-n, for all measured dopings with n being about 2 in underdoped samples and 2.5 in overdoped samples. We discuss the implications of these results and possible interpretations of such a robust behavior.
C1 [Gordon, R. T.; Martin, C.; Kim, H.; Ni, N.; Tanatar, M. A.; Schmalian, J.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Mazin, I. I.] USN, Res Lab, Washington, DC 20375 USA.
[Gordon, R. T.; Martin, C.; Kim, H.; Ni, N.; Tanatar, M. A.; Schmalian, J.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Ames Lab, Code 6393, Ames, IA 50011 USA.
RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM prozorov@ameslab.gov
RI Schmalian, Joerg/H-2313-2011; Prozorov, Ruslan/A-2487-2008; Canfield,
Paul/H-2698-2014
OI Prozorov, Ruslan/0000-0002-8088-6096;
FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358.]; Alfred
P. Sloan Foundation
FX We thank A. A. Golubov, O.V. Dolgov, D. Parker, A. V. Chubukov, B. A.
Bernevig, and A. Carrington for useful discussions. Work at the Ames
Laboratory was supported by the Department of Energy-Basic Energy
Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges
support from Alfred P. Sloan Foundation.
NR 25
TC 85
Z9 85
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 100506
DI 10.1103/PhysRevB.79.100506
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600023
ER
PT J
AU Hao, SG
Kramer, MJ
Wang, CZ
Ho, KM
Nandi, S
Kreyssig, A
Goldman, AI
Wessels, V
Sahu, KK
Kelton, KF
Hyers, RW
Canepari, SM
Rogers, JR
AF Hao, S. G.
Kramer, M. J.
Wang, C. Z.
Ho, K. M.
Nandi, S.
Kreyssig, A.
Goldman, A. I.
Wessels, V.
Sahu, K. K.
Kelton, K. F.
Hyers, R. W.
Canepari, S. M.
Rogers, J. R.
TI Experimental and ab initio structural studies of liquid Zr2Ni
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; liquid alloys; liquid structure; liquid theory;
molecular dynamics method; nickel alloys; nucleation; rapid
solidification; supercooling; undercooling; vitrification; X-ray
diffraction; zirconium alloys
ID SHORT-RANGE ORDER; LOCAL ATOMIC ARRANGEMENTS; TOTAL-ENERGY CALCULATIONS;
FORMING QUASI-CRYSTALS; WAVE BASIS-SET; NI-ZR ALLOY; UNDERCOOLED MELTS;
AMORPHOUS BINARY; POLYTETRAHEDRAL MATERIALS; MOLECULAR-DYNAMICS
AB High-energy x-ray diffraction and ab initio molecular-dynamics simulations demonstrate that the short-range order in the deeply undercooled Zr2Ni liquid is quite nuanced. The second diffuse scattering peak in the total structure factory sharpens with supercooling, revealing a shoulder on the high-Q side that is often taken to be a hallmark of increasing icosahedral order. However, a Voronoi tessellation indicates that only approximately 3.5% of all the atoms are in an icosahedral or icosahedral-like environment. In contrast, a Honeycutt-Andersen analysis indicates that a much higher fraction of the atoms is in icosahedral (15%-18%) or distorted icosahedral (25%-28%) bond-pair environments. These results indicate that the liquid contains a large population of fragmented clusters with pentagonal and distorted pentagonal faces, but the fully developed icosahedral fragments are rare. Interestingly, in both cases, the ordering changes little over the 500 K of cooling. All metrics show that the nearest-neighbor atomic configurations of the most deeply supercooled simulated liquid (1173 K) differ topologically and chemically from those in the stable C16 compound, even though the partial pair distributions are similar. The most significant structural change upon decreasing the temperature from 1673 to 1173 K is an increase in the population of Zr in Ni-centered clusters. The structural differences between the liquid and the C16 increase the nucleation barrier, explaining glass formation in the rapidly quenched alloys.
C1 [Hao, S. G.; Kramer, M. J.; Wang, C. Z.; Ho, K. M.; Nandi, S.; Kreyssig, A.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Hao, S. G.; Kramer, M. J.; Wang, C. Z.; Ho, K. M.; Nandi, S.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Ames, IA 50011 USA.
[Wessels, V.; Sahu, K. K.; Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA.
[Hyers, R. W.; Canepari, S. M.] Univ Massachusetts, Amherst, MA 01003 USA.
[Rogers, J. R.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA.
RP Hao, SG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.
RI Hyers, Robert/G-3755-2010; Hao, Shaogang/E-3527-2010
FU U. S. Department of Energy [DE-AC02-07CH11358]; Director for Energy
Research, Office of Basic Energy Sciences; Office of Science, Basic
Energy Sciences, U. S. Department of Energy [DE-AC02-06CH11357];
National Science Foundation [DMR-0606065]; NASA [NNM04AA016]
FX Ames Laboratory is operated for the U. S. Department of Energy by Iowa
State University under Contract No. DE-AC02-07CH11358. This work was
supported by the Director for Energy Research, Office of Basic Energy
Sciences, including a grant of computer time at the National Energy
Research Supercomputing Center (NERSC) in Berkeley. The high-energy
x-ray work at the MUCAT sector of the APS was supported by the Office of
Science, Basic Energy Sciences, U. S. Department of Energy under
Contract No. DE-AC02-06CH11357. The work at Washington University was
partially supported by the National Science Foundation under Grant No.
DMR-0606065 and by NASA under Contract No. NNM04AA016.
NR 53
TC 24
Z9 24
U1 4
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104206
DI 10.1103/PhysRevB.79.104206
PG 7
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600049
ER
PT J
AU Hormann, U
Remmele, T
Klepeis, JE
Pankratov, O
Grunleitner, H
Schulz, M
Falke, M
Bleloch, A
AF Hoermann, Ute
Remmele, Thilo
Klepeis, John E.
Pankratov, Oleg
Gruenleitner, Holger
Schulz, Max
Falke, Meiken
Bleloch, Andrew
TI Structure and electronic properties of epitaxial fluorite-type IrSi2 on
Si(001)
SO PHYSICAL REVIEW B
LA English
DT Article
DE anelastic relaxation; crystal structure; dislocations; electrical
resistivity; epitaxial growth; infrared spectra; iridium compounds;
light transmission; Schottky barriers; transmission electron microscopy
ID IRIDIUM SILICIDES; CRYSTAL-STRUCTURE; SILICON; PHASE; FILMS
AB An epitaxially stabilized Ir-silicide phase was grown in ultrathin two-phase films on Si(001). Using transmission electron microscopy it was found to have the fluorite structure. Due to the misfit between this epitaxially stabilized phase and the silicon substrate, elastic and plastic strain relaxation can be observed. Optoelectronic measurements of transmission, resistivity, and Schottky barrier height show a transition from infrared absorbing to infrared transparent films depending on thickness and reaction temperature. First-principles calculations confirm the experimental data on the structure and electronic properties of fluorite-type Ir disilicide.
C1 [Hoermann, Ute; Remmele, Thilo] Univ Erlangen Nurnberg, Lehrstuhl Mikrocharakterisierung, D-91058 Erlangen, Germany.
[Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Pankratov, Oleg] Univ Erlangen Nurnberg, Lehrstuhl Theoret Festkorperphys, D-91058 Erlangen, Germany.
[Gruenleitner, Holger; Schulz, Max] Univ Erlangen Nurnberg, Lehrstuhl Angew Phys, D-91058 Erlangen, Germany.
[Falke, Meiken; Bleloch, Andrew] SERC, Daresbury Lab, UK SuperSTEM Lab, Warrington WA4 4AD, Cheshire, England.
RP Hormann, U (reprint author), Univ Ulm, Albert Einstein Allee 11, D-89069 Ulm, Germany.
RI Bleloch, Andrew/A-1350-2009; Pankratov, Oleg/C-5553-2013
FU U. S. DOE [W-7405-Eng-48]
FX Part of this work was carried out at the Central Facility for High
Resolution Electron Microscopy of the Friedrich-Alexander University
Erlangen-Numberg. U. H. wants to thank the Institute of Inorganic
Materials Chemistry of the University of Bonn and the Max-Planck
Institute of Microstructural Physics in Halle for the excellent
technical support at their microscopes. A. B. and M. F. thank the EPSRC
for funding the SuperSTEM facility. The work of J. E. K. was performed
under the auspices of the U. S. DOE by the University of California
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
NR 36
TC 3
Z9 3
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104116
DI 10.1103/PhysRevB.79.104116
PG 9
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600043
ER
PT J
AU Homes, CC
Dordevic, SV
Gozar, A
Blumberg, G
Room, T
Huvonen, D
Nagel, U
LaForge, AD
Basov, DN
Kageyama, H
AF Homes, C. C.
Dordevic, S. V.
Gozar, A.
Blumberg, G.
Room, T.
Huvonen, D.
Nagel, U.
LaForge, A. D.
Basov, D. N.
Kageyama, H.
TI Infrared spectra of the low-dimensional quantum magnet SrCu2(BO3)(2):
Measurements and ab initio calculations
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; density functional theory; infrared spectra;
magnets; phonons; reflectivity; sheet materials; strontium compounds
ID SPIN SYSTEM SRCU2(BO3)(2); DIMER COMPOUND SRCU2(BO3)(2);
SHASTRY-SUTHERLAND MODEL; GROUND-STATE; PHASE-TRANSITIONS; MAGNETIZATION
PLATEAUS; ANTIFERROMAGNET; EXCITATIONS
AB The reflectance of the insulating quasi-two-dimensional quantum magnet SrCu2(BO3)(2) has been examined over a wide temperature and frequency range for light polarized parallel (a axis) and perpendicular (c axis) to the copper- and boron-oxygen sheets. The spectra have been measured for temperatures below the structural phase transition T-s=395 K for both polarizations; above T-s a limited study of the in-plane properties was undertaken in the far-infrared region only. Several new modes appear in the reflectance just below T-s along the a and c axes, while others are visible only for T < T-s. Below T-s, the intensity of some of the new modes displays little or no temperature dependence, while the intensity of some vibrations increases dramatically with decreasing temperature. Ab initio calculations have been performed for the room-temperature phase using density-functional theory, and the frequencies and atomic characters of the infrared-active phonons at the zone center were obtained using the direct method. The agreement between the calculated and experimentally observed frequencies is quite good, and assignments of the modes are discussed. The vibrational features that are observed only at low temperature appear to be magnetic in origin.
C1 [Homes, C. C.; Dordevic, S. V.; Gozar, A.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Homes, C. C.] ESPCI, CNRS, UPR 5, Lab Photons & Mat, F-75231 Paris 5, France.
[Dordevic, S. V.] Univ Akron, Dept Phys, Akron, OH 44325 USA.
[Blumberg, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Blumberg, G.; Room, T.; Huvonen, D.; Nagel, U.] NICPB, EE-12618 Tallinn, Estonia.
[LaForge, A. D.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Kageyama, H.] Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan.
RP Homes, CC (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
EM homes@bnl.gov
RI Room, Toomas/A-6412-2008; Nagel, Urmas/A-6402-2008; Huvonen,
Dan/A-6664-2008; Kageyama, Hiroshi/A-4602-2010
OI Room, Toomas/0000-0002-6165-8290; Nagel, Urmas/0000-0001-5827-9495;
Huvonen, Dan/0000-0002-8906-6588;
FU MEXT of Japan [19052004]; NSF [DMR 0705171]; Office of Science, U. S.
Department of Energy (DOE) [DE-AC02-98CH10886]
FX The authors would like to thank A. Akrap, B. D. Gaulin, J. Hancock, W.
Ku, and T. Timusk for useful discussions. This work was supported by
Grant-in-Aid for Scientific Research on Priority Areas from MEXT of
Japan (Contract No. 19052004). Work at UCSD is supported by NSF Grant
No. DMR 0705171; work at BNL is supported by the Office of Science, U.
S. Department of Energy (DOE) under Contract No. DE-AC02-98CH10886.
NR 52
TC 7
Z9 7
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 125101
DI 10.1103/PhysRevB.79.125101
PG 12
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300020
ER
PT J
AU Hsu, B
Mulligan, M
Fradkin, E
Kim, EA
AF Hsu, Benjamin
Mulligan, Michael
Fradkin, Eduardo
Kim, Eun-Ah
TI Universal entanglement entropy in two-dimensional conformal quantum
critical points
SO PHYSICAL REVIEW B
LA English
DT Article
DE entropy; quantum entanglement
ID FIELD-THEORY; STATISTICAL-MECHANICS; BOUNDARY-CONDITIONS; INVARIANT
THEORIES; GEOMETRIC ENTROPY; TOPOLOGICAL ORDER; OPERATOR CONTENT; SIZE
DEPENDENCE; FUSION RULES; FREE-ENERGY
AB We study the scaling behavior of the entanglement entropy of two-dimensional conformal quantum critical systems, i.e., systems with scale-invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that under quite general conditions, the entanglement entropy of a large and simply connected subsystem of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.
C1 [Hsu, Benjamin; Fradkin, Eduardo] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Mulligan, Michael] Stanford Univ, Dept Phys, Stanford, CA 94305 USA.
[Mulligan, Michael] Stanford Univ, SLAC, Stanford, CA 94305 USA.
[Kim, Eun-Ah] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA.
RP Hsu, B (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.
RI Kim, Eun-Ah/K-6711-2012; Fradkin, Eduardo/B-5612-2013
OI Kim, Eun-Ah/0000-0002-9554-4443;
FU National Science Foundation [DMR 0758462]; Stanford Institute for
Theoretical Physics; NSF [PHY-0244728]; DOE [DE-AC03-76SF00515]; ARCS
Foundation
FX We thank John Cardy, Paul Fendley, Greg Moore, and Joel Moore for their
comments and suggestions. B. H. and M. M. thank the Les Houches Summer
School for its hospitality. The work of E. F. and B. H. was supported by
the National Science Foundation under Grant No. DMR 0758462 at the
University of Illinois. M. M. was supported by the Stanford Institute
for Theoretical Physics, the NSF under Grant No. PHY-0244728, the DOE
under Contract No. DE-AC03-76SF00515, and the ARCS Foundation. E. A. K.
was supported by the Stanford Institute for Theoretical Physics during a
part of this work.
NR 75
TC 62
Z9 62
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 115421
DI 10.1103/PhysRevB.79.115421
PG 13
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900128
ER
PT J
AU Hucker, M
AF Huecker, M.
TI Electronic interlayer coupling in the low-temperature tetragonal phase
of La1.79Eu0.2Sr0.01CuO4
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; europium compounds; high-temperature
superconductors; lanthanum compounds; magnetic transitions;
magnetoresistance; solid-state phase transformations; strontium
compounds
ID EARTH-DOPED LA2-XSRXCUO4; SUPERCONDUCTIVITY; TRANSITION; LA2CUO4;
LA2-XBAXCUO4; MAGNETORESISTANCE; FERROMAGNETISM; CONDUCTIVITY;
DISTORTIONS; CUPRATE
AB The electronic interlayer transport of the lightly doped antiferromagnet La1.79Eu0.2Sr0.01CuO4 has been studied by means of magnetoresistance measurements. The central problem addressed concerns the differences between the electronic interlayer coupling in the tetragonal low-temperature (LTT) phase and the orthorhombic low-temperature (LTO) phase. The key observation is that the spin-flip-induced drop in the c-axis magnetoresistance of the LTO phase, which is characteristic for pure La2-xSrxCuO4, dramatically decreases in the LTT phase. The results show that the transition from orthorhombic to tetragonal symmetry and from collinear to noncollinear antiferromagnetic spin structure eliminates the strain dependent anisotropic interlayer hopping as well as the concomitant spin-valve-type transport channel. Implications for the stripe ordered LTT phase of La2-xBaxCuO4 are briefly discussed.
C1 Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Hucker, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
FU Office of Science, U.S. Department of Energy [DE-AC02-98CH10886]
FX The author thanks J. M. Tranquada for fruitful discussions, and P.
Reutler and G. Dhalenne for support during the crystal growth experiment
at the Laboratoire de Physico-Chimie de l'Etat Solide in Orsay. The work
at Brookhaven was supported by the Office of Science, U.S. Department of
Energy under Contract No. DE-AC02-98CH10886.
NR 47
TC 3
Z9 3
U1 3
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104523
DI 10.1103/PhysRevB.79.104523
PG 8
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600117
ER
PT J
AU Hwang, CG
Shin, SY
Choi, SM
Kim, ND
Uhm, SH
Kim, HS
Hwang, CC
Noh, DY
Jhi, SH
Chung, JW
AF Hwang, C. G.
Shin, S. Y.
Choi, Seon-Myeong
Kim, N. D.
Uhm, S. H.
Kim, H. S.
Hwang, C. C.
Noh, D. Y.
Jhi, Seung-Hoon
Chung, J. W.
TI Stability of graphene band structures against an external periodic
perturbation: Na on graphene
SO PHYSICAL REVIEW B
LA English
DT Article
DE adsorption; band structure; buffer layers; charge exchange;
crystallisation; diffusion; Fermi level; graphene; hopping conduction;
photoelectron spectra; silicon compounds; sodium
ID MASSLESS DIRAC FERMIONS; CARBON NANOTUBES; BACK SCATTERING; BERRYS
PHASE; TRANSITION; GRAPHITE; DYNAMICS; ABSENCE
AB The electronic structure of Na-adsorbed graphenes formed on the 6H-SiC(0001) substrate was studied using angle-resolved photoemission spectroscopy with synchrotron photons and ab initio pseudopotential calculations. It was found that the band of the graphenes sensitively changes upon Na adsorption especially at low temperature. With increasing Na dose, the pi band appears to be quickly diffused into the background at 85 K whereas it becomes significantly enhanced with its spectral intensity at room temperature (RT). A new parabolic band centered at k similar to 1.15 A(-1) also forms near Fermi energy with Na at 85 K while no such band was observed at RT. Such changes in the band structure are found to be reversible with temperature. The changes in the pi band of graphene are mainly driven by the Na-induced potential especially at low temperature where the potential becomes periodic due to the crystallized Na overlayer. The new parabolic band turns out to be the pi band of the underlying buffer layer partially filled by the charge transfer from Na adatoms. The increase in the hopping rate of Na adatoms at RT by 5 orders of magnitude prevents such a charge transfer, explaining the absence of the new band at RT.
C1 [Hwang, C. G.; Shin, S. Y.; Choi, Seon-Myeong; Kim, N. D.; Uhm, S. H.; Kim, H. S.; Jhi, Seung-Hoon; Chung, J. W.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea.
[Hwang, C. C.] Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea.
[Noh, D. Y.] Gwangju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea.
[Hwang, C. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Kim, N. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA.
RP Hwang, CG (reprint author), Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea.
EM jwc@postech.ac.kr
FU Korea Science and Engineering Foundation (KOSEF); Korea government
(MEST) [R01-2008-000-20020-0]; NCRC [R15-2008-006-01001-0]; National
Research Laboratory [M10400000045-04J0000-04510]
FX This work was supported by the Korea Science and Engineering Foundation
(KOSEF) funded by the Korea government (MEST) under Grant No.
R01-2008-000-20020-0 and also in part by the NCRC under Grant No.
R15-2008-006-01001-0. D. Y. Noh acknowledges the support from National
Research Laboratory under Program No. M10400000045-04J0000-04510.
NR 26
TC 19
Z9 19
U1 2
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 115439
DI 10.1103/PhysRevB.79.115439
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900146
ER
PT J
AU Idrobo, JC
Halabica, A
Magruder, RH
Haglund, RF
Pennycook, SJ
Pantelides, ST
AF Idrobo, J. C.
Halabica, A.
Magruder, R. H., III
Haglund, R. F., Jr.
Pennycook, S. J.
Pantelides, S. T.
TI Universal optical response of Si-Si bonds and its evolution from
nanoparticles to bulk crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE bonds (chemical); elemental semiconductors; infrared spectra;
nanoparticles; quantum theory; silicon; ultraviolet spectra; visible
spectra
ID INITIO MOLECULAR-DYNAMICS; SIZED SILICON CLUSTERS; PHOTOABSORPTION
SPECTRA; NANOCRYSTALS; SEMICONDUCTOR; CONFINEMENT; EXCITATIONS
AB We use quantum-mechanical calculations and classical theories of the optical absorption of free and embedded nanoparticles to demonstrate a universality of the optical response of Si-Si bonds, independent of bonding configurations. We also demonstrate that the classical theory remains valid down to atomic-scale nanoparticles and that the evolution of the optical spectrum of a free nanoparticle would evolve to the bulk spectrum when the particle contains hundreds of thousands of Si atoms.
C1 [Idrobo, J. C.; Halabica, A.; Haglund, R. F., Jr.; Pennycook, S. J.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Idrobo, J. C.; Pennycook, S. J.; Pantelides, S. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Magruder, R. H., III] Belmont Univ, Dept Chem & Phys, Nashville, TN 37212 USA.
RP Idrobo, JC (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
RI Idrobo, Juan/H-4896-2015
OI Idrobo, Juan/0000-0001-7483-9034
FU National Science Foundation [DMR-0513048]; Alcoa, Inc.; Vanderbilt
University; Division of Materials Sciences and Engineering, U. S.
Department of Energy
FX We thank W. Luo, M. Tiago, and F. Reboredo at ORNL for very helpful
discussions. This work was supported in part by the National Science
Foundation GOALI under Grant No. DMR-0513048, by Alcoa, Inc., by the
McMinn Endowment at Vanderbilt University, and by the Division of
Materials Sciences and Engineering, U. S. Department of Energy under
contract with UT-Battelle. Computations were supported by the National
Center for Supercomputing Applications.
NR 34
TC 11
Z9 11
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 125322
DI 10.1103/PhysRevB.79.125322
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300073
ER
PT J
AU Jensen, TBS
Christensen, NB
Kenzelmann, M
Ronnow, HM
Niedermayer, C
Andersen, NH
Lefmann, K
Jimenez-Ruiz, M
Demmel, F
Li, J
Zarestky, JL
Vaknin, D
AF Jensen, T. B. S.
Christensen, N. B.
Kenzelmann, M.
Ronnow, H. M.
Niedermayer, C.
Andersen, N. H.
Lefmann, K.
Jimenez-Ruiz, M.
Demmel, F.
Li, J.
Zarestky, J. L.
Vaknin, D.
TI Anomalous spin waves and the commensurate-incommensurate magnetic phase
transition in LiNiPO4
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; commensurate-incommensurate
transformations; exchange interactions (electron); Heisenberg model;
lithium compounds; magnetic anisotropy; magnetic transitions;
magnetoelectric effects; neutron diffraction; nickel compounds; spin
waves
ID ANTIFERROMAGNETISM; SPECTROMETER
AB Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of the incommensurate (IC) AF phase appearing above T-N. A linear spin-wave model based on Heisenberg exchange couplings and single-ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange interaction and causes the IC structure.
C1 [Jensen, T. B. S.; Christensen, N. B.; Andersen, N. H.; Lefmann, K.] Tech Univ Denmark, Mat Res Div, Riso DTU, Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark.
[Christensen, N. B.; Kenzelmann, M.; Ronnow, H. M.; Niedermayer, C.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland.
[Christensen, N. B.; Kenzelmann, M.; Ronnow, H. M.; Niedermayer, C.] Swiss Fed Inst Technol, CH-5232 Villigen, Switzerland.
[Christensen, N. B.; Lefmann, K.] Univ Copenhagen, Niels Bohr Inst, Nanosci Ctr, DK-2100 Copenhagen, Denmark.
[Kenzelmann, M.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland.
[Ronnow, H. M.] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland.
[Jimenez-Ruiz, M.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France.
[Demmel, F.] ISIS Facil, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Li, J.; Zarestky, J. L.; Vaknin, D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Li, J.; Zarestky, J. L.; Vaknin, D.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Jensen, TBS (reprint author), Tech Univ Denmark, Mat Res Div, Riso DTU, Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark.
RI Lefmann, Kim/M-9228-2014; Kenzelmann, Michel/A-8438-2008; Christensen,
Niels/A-3947-2012; Vaknin, David/B-3302-2009; Ronnow,
Henrik/A-4953-2009; Andersen, Niels/A-3872-2012; Niedermayer,
Christof/K-4436-2014
OI Lefmann, Kim/0000-0003-4282-756X; Kenzelmann,
Michel/0000-0001-7913-4826; Christensen, Niels/0000-0001-6443-2142;
Vaknin, David/0000-0002-0899-9248; Ronnow, Henrik/0000-0002-8832-8865;
NR 19
TC 13
Z9 13
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 092413
DI 10.1103/PhysRevB.79.092413
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200016
ER
PT J
AU Jensen, TBS
Christensen, NB
Kenzelmann, M
Ronnow, HM
Niedermayer, C
Andersen, NH
Lefmann, K
Schefer, J
Von Zimmermann, M
Li, J
Zarestky, JL
Vaknin, D
AF Jensen, Thomas Bagger Stibius
Christensen, Niels Bech
Kenzelmann, Michel
Ronnow, Henrik Moodysson
Niedermayer, Christof
Andersen, Niels Hessel
Lefmann, Kim
Schefer, Juerg
Von Zimmermann, Martin
Li, Jiying
Zarestky, Jerel L.
Vaknin, David
TI Field-induced magnetic phases and electric polarization in LiNiPO4
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetism; lithium compounds; magnetic structure; magnetic
transitions; magnetoelastic effects; magnetoelectric effects; neutron
diffraction; nickel compounds
ID FERROELECTRICITY; MULTIFERROICS; LICOPO4
AB Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total magnetoelastic energy.
C1 [Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Andersen, Niels Hessel; Lefmann, Kim] Tech Univ Denmark, Mat Res Div, Riso DTU, DK-4000 Roskilde, Denmark.
[Christensen, Niels Bech; Kenzelmann, Michel; Ronnow, Henrik Moodysson; Niedermayer, Christof; Schefer, Juerg] Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland.
[Christensen, Niels Bech; Kenzelmann, Michel; Ronnow, Henrik Moodysson; Niedermayer, Christof; Schefer, Juerg] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
[Kenzelmann, Michel] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland.
[Ronnow, Henrik Moodysson] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland.
[Von Zimmermann, Martin] DESY, Hamburger Synchrotronstrahlungslabor, D-22603 Hamburg, Germany.
[Li, Jiying; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Li, Jiying; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Jensen, TBS (reprint author), Tech Univ Denmark, Mat Res Div, Riso DTU, DK-4000 Roskilde, Denmark.
RI Andersen, Niels/A-3872-2012; Schefer, Jurg/G-3960-2012; Niedermayer,
Christof/K-4436-2014; Lefmann, Kim/M-9228-2014; Kenzelmann,
Michel/A-8438-2008; Christensen, Niels/A-3947-2012; Vaknin,
David/B-3302-2009; Ronnow, Henrik/A-4953-2009
OI Lefmann, Kim/0000-0003-4282-756X; Kenzelmann,
Michel/0000-0001-7913-4826; Christensen, Niels/0000-0001-6443-2142;
Vaknin, David/0000-0002-0899-9248; Ronnow, Henrik/0000-0002-8832-8865
FU DANSCATT; Swiss National Science Foundation [PP002-102831,
200020-105175]; U. S. Department of Energy [DEAC0207CH11358]
FX Jens Jensen is greatly acknowledged for illuminating discussions. Work
was supported by the Danish Agency for Science, Technology and
Innovation under DANSCATT and by the Swiss National Science Foundation
via Contracts No. PP002-102831 and No. 200020-105175. This Brief Report
was authored, in whole or in part, under Contract No. DEAC0207CH11358
with the U. S. Department of Energy. This research project is based on
experiments performed at the Swiss spallation neutron source SINQ, Paul
Scherrer Institute, Villigen, Switzerland.
NR 26
TC 29
Z9 29
U1 1
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 092412
DI 10.1103/PhysRevB.79.092412
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200015
ER
PT J
AU Jiang, C
Stanek, CR
Sickafus, KE
Uberuaga, BP
AF Jiang, Chao
Stanek, C. R.
Sickafus, K. E.
Uberuaga, B. P.
TI First-principles prediction of disordering tendencies in pyrochlore
oxides
SO PHYSICAL REVIEW B
LA English
DT Article
DE bonds (chemical); density functional theory; dysprosium compounds;
erbium compounds; gadolinium compounds; neodymium compounds;
order-disorder transformations; praseodymium compounds; samarium
compounds; terbium compounds
ID RADIATION TOLERANCE; ELECTRONIC-PROPERTIES; DEFECT-FLUORITE;
THERMODYNAMICS; IRRADIATION; STABILITY; SYSTEMS
AB Using first-principles calculations, we systematically predict the order-disorder energetics of series of zirconate (A(2)Zr(2)O(7)), hafnate (A(2)Hf(2)O(7)), titanate (A(2)Ti(2)O(7)), and stannate (A(2)Sn(2)O(7)) pyrochlores. The disordered defect-fluorite structure is modeled using an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most relevant near-neighbor intrasublattice and intersublattice pair-correlation functions of the random mixture. The order-disorder transition temperatures of these pyrochlores estimated from our SQS calculations show overall good agreement with existing experiments. We confirm previous studies suggesting that the bonding in pyrochlores is not purely ionic and thus electronic effects also play a role in determining their disordering tendencies. Our results have important consequences for numerous applications, including nuclear waste forms and fast ion conductors.
C1 [Jiang, Chao; Stanek, C. R.; Sickafus, K. E.; Uberuaga, B. P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
RP Jiang, C (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.
EM chao@lanl.gov
RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017
OI Jiang, Chao/0000-0003-0610-6327
FU U. S. Department of Energy (DOE), Office of Basic Energy Sciences (BES),
Division of Materials Sciences and Engineering
FX This work is sponsored by the U. S. Department of Energy (DOE), Office
of Basic Energy Sciences (BES), Division of Materials Sciences and
Engineering. All calculations are performed using the parallel computing
facilities at Los Alamos National Laboratory.
NR 35
TC 57
Z9 58
U1 5
U2 53
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104203
DI 10.1103/PhysRevB.79.104203
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600046
ER
PT J
AU Kemper, AF
Doluweera, DGSP
Maier, TA
Jarrell, M
Hirschfeld, PJ
Cheng, HP
AF Kemper, A. F.
Doluweera, D. G. S. P.
Maier, T. A.
Jarrell, M.
Hirschfeld, P. J.
Cheng, H-P.
TI Insensitivity of d-wave pairing to disorder in the high-temperature
cuprate superconductors
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetism; d-wave superconductivity; high-temperature
superconductors; impurities; Monte Carlo methods; spin dynamics;
superconducting transition temperature
ID ANISOTROPIC IMPURITY SCATTERING; SUPPRESSION; DEFECTS; DENSITY; STATES
AB Using a dynamical cluster quantum Monte Carlo approximation, we investigate the effect of local disorder on the stability of d-wave superconductivity including the effect of electronic correlations in both particle-particle and particle-hole channels. With increasing impurity potential, we find an initial rise of the critical temperature due to an enhancement of antiferromagnetic spin correlations, followed by a decrease of T-c due to scattering from impurity-induced moments and ordinary pair breaking. We discuss the weak initial dependence of T-c on impurity concentration found in comparison to experiments on cuprates.
C1 [Kemper, A. F.; Hirschfeld, P. J.; Cheng, H-P.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Doluweera, D. G. S. P.; Jarrell, M.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA.
[Maier, T. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Kemper, AF (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
RI Hirschfeld, Peter /A-6402-2010; Kemper, Alexander/F-8243-2016; Maier,
Thomas/F-6759-2012
OI Kemper, Alexander/0000-0002-5426-5181; Maier, Thomas/0000-0002-1424-9996
FU DOE [DE-FG02-02ER45995, DE-FG02-97ER45660, DE-FG02-05ER46236]; NSF
[DMR-0706379]
FX This work was supported by DOE Grants No. DE-FG02-02ER45995, No.
DE-FG02-97ER45660 and No. DE-FG02-05ER46236, and NSF Grant No.
DMR-0706379. A portion of this research at Oak Ridge National
Laboratory's Center for Nanophase Materials Sciences was sponsored by
the Scientific User Facilities Division, Office of Basic Energy
Sciences, U. S. Department of Energy. The authors acknowledge the
University of Florida High-Performance Computing Center for providing
computational support.
NR 35
TC 11
Z9 11
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9950
EI 2469-9969
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104502
DI 10.1103/PhysRevB.79.104502
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600096
ER
PT J
AU Kim, J
Ellis, DS
Zhang, H
Kim, YJ
Hill, JP
Chou, FC
Gog, T
Casa, D
AF Kim, Jungho
Ellis, D. S.
Zhang, H.
Kim, Young-June
Hill, J. P.
Chou, F. C.
Gog, T.
Casa, D.
TI Comparison of resonant inelastic x-ray scattering spectra and dielectric
loss functions in copper oxides
SO PHYSICAL REVIEW B
LA English
DT Article
DE bismuth compounds; copper compounds; dielectric losses; ellipsometry;
lanthanum compounds; strontium compounds; X-ray scattering
ID ELECTRONIC-STRUCTURE; EXCITATIONS; SPECTROSCOPY; DEPENDENCE
AB We report empirical comparisons of Cu K-edge indirect resonant inelastic x-ray scattering (RIXS) spectra, taken at the Brillouin-zone center, with optical dielectric loss functions measured in a number of copper oxides. The RIXS data are obtained for Bi2CuO4, CuGeO3, Sr2Cu3O4Cl2, La2CuO4, and Sr2CuO2Cl2, and analyzed by considering both incident and scattered-photon resonances. An incident-energy-independent response function is then extracted. The dielectric loss functions, measured with spectroscopic ellipsometry, agree well with this RIXS response, especially in Bi2CuO4 and CuGeO3.
C1 [Kim, Jungho; Ellis, D. S.; Zhang, H.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA.
[Chou, F. C.] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA.
[Gog, T.; Casa, D.] Argonne Natl Lab, XOR, Adv Photon Source, Argonne, IL 60439 USA.
RP Kim, J (reprint author), Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
EM yjkim@physics.utoronto.ca
RI Hill, John/F-6549-2011; Kim, Young-June /G-7196-2011; Casa,
Diego/F-9060-2016
OI Kim, Young-June /0000-0002-1172-8895;
FU NSERC of Canada; Canadian Foundation for Innovation; Ontario Ministry of
Research and Innovation; U. S. DOE, Office of Science
[DE-AC02-98CH10886]; U. S. DOE, Office of Science, Office of Basic
Energy Sciences [W-31-109-ENG38]
FX We would like to thank Luuk Ament, Fiona Forte, and J. van den Brink for
the discussions. Research at the University of Toronto was supported by
the NSERC of Canada, Canadian Foundation for Innovation, and Ontario
Ministry of Research and Innovation. Work at Brookhaven was supported by
the U. S. DOE, Office of Science under Contract No. DE-AC02-98CH10886.
Use of the Advanced Photon Source was supported by the U. S. DOE, Office
of Science, Office of Basic Energy Sciences, under Contract No.
W-31-109-ENG38.
NR 39
TC 13
Z9 13
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094525
DI 10.1103/PhysRevB.79.094525
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200112
ER
PT J
AU Kim, YH
Sun, YY
Zhang, SB
AF Kim, Yong-Hyun
Sun, Y. Y.
Zhang, S. B.
TI Ab initio calculations predicting the existence of an oxidized calcium
dihydrogen complex to store molecular hydrogen in densities up to 100
g/L
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; adsorption; binding energy; calcium compounds;
graphite intercalation compounds; hydrogen storage
ID METAL-ORGANIC FRAMEWORKS; AUGMENTED-WAVE METHOD; CARBON; COORDINATION;
STATE
AB We propose a system that can store molecular hydrogen in densities up to similar to 100 g/L. Our ab initio calculations predict the existence of an oxidized calcium dihydrogen complex, which holds up to eight H(2), i.e., Ca(ion)(H(2))(8). The dihydrogen binding to the Ca is via a weak electron-donation mechanism from the occupied H(2) sigma orbital to the unoccupied, but bound, Ca 3d orbitals. Because of the high concentration of the hydrogen in such complexes, even in calcium-intercalated pillared graphite, one can obtain reversible hydrogen storage denser than that of liquid hydrogen, 70 g/L.
C1 [Kim, Yong-Hyun; Sun, Y. Y.; Zhang, S. B.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Sun, Y. Y.; Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA.
RP Kim, YH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM yong_hyun_kim@nrel.gov
RI Kim, Yong-Hyun/C-2045-2011; Krausnick, Jennifer/D-6291-2013; Zhang,
Shengbai/D-4885-2013; Sun, Yi-Yang/H-4029-2014
OI Kim, Yong-Hyun/0000-0003-4255-2068; Zhang, Shengbai/0000-0003-0833-5860;
FU DOE/OS/BES/DMSE; DOE/EERE; Hydrogen Sorption Center of Excellence
[DE-AC36-08GO28308]
FX This work was supported by DOE/OS/BES/DMSE and DOE/EERE through the
Hydrogen Sorption Center of Excellence under Contract No.
DE-AC36-08GO28308 to NREL.
NR 32
TC 24
Z9 24
U1 3
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 115424
DI 10.1103/PhysRevB.79.115424
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900131
ER
PT J
AU Kobrinskii, AL
Goldman, AM
Varela, M
Pennycook, SJ
AF Kobrinskii, A. L.
Goldman, A. M.
Varela, Maria
Pennycook, S. J.
TI Thickness dependence of the exchange bias in epitaxial manganite
bilayers
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; calcium compounds; electron energy loss
spectra; exchange interactions (electron); interface magnetism;
lanthanum compounds; magnetic anisotropy; magnetic epitaxial layers;
magnetic hysteresis; molecular beam epitaxial growth; scanning electron
microscopy; transmission electron microscopy; X-ray diffraction
ID MOLECULAR-BEAM EPITAXY; THIN-FILMS; MAGNETIC ANISOTROPY;
LA2/3CA1/3MNO3/LA1/3CA2/3MNO3 MULTILAYERS; MAGNETORESISTANCE; OXIDE;
MAGNETOTRANSPORT; SUPERCONDUCTORS; TRANSPORT; GROWTH
AB Exchange bias has been studied in a series of La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers grown on (001) SrTiO3 substrates by ozone-assisted molecular-beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high-resolution x-ray diffractometry and Z-contrast scanning transmission electron microscopy with electron-energy-loss spectroscopy. The dependence of exchange bias on the thickness of the antiferromagnetic layer has been investigated. A critical value for the onset of the hysteresis loop shift has been determined. An antiferromagnetic anisotropy constant has been obtained by fitting the results to the generalized Meiklejohn-Bean model.
C1 [Kobrinskii, A. L.; Goldman, A. M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA.
[Varela, Maria; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Kobrinskii, AL (reprint author), Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA.
RI Varela, Maria/E-2472-2014; Varela, Maria/H-2648-2012; Kobrinskii,
Alexey/E-7561-2013
OI Varela, Maria/0000-0002-6582-7004;
FU National Science Foundation through the University of Minnesota
Materials Research Science and Engineering Center [NSF/DMR-0212032];
Division of Materials Sciences and Engineering of the U. S. Department
of Energy
FX The authors would like to thank Konstantin Nikolaev, Dan Dahlberg,
Alexander Dobin, Ilya Krivorotov, Chris Leighton, and Jyotirmoy Saha for
useful conversations. They would also like to thank Masaya Nishioka for
technical assistance. The authors are grateful to J. T. Luck for helping
with STEM specimen preparation, to M. Oxley for performing dynamical
simulations of electron scattering, and to M. Watanabe for providing a
plug-in to carry out PCA in DigitalMicrograph. This work was supported
by the National Science Foundation through the University of Minnesota
Materials Research Science and Engineering Center under Grant No.
NSF/DMR-0212032. Research at ORNL was sponsored by the Division of
Materials Sciences and Engineering of the U. S. Department of Energy.
NR 40
TC 22
Z9 24
U1 0
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094405
DI 10.1103/PhysRevB.79.094405
PG 7
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200062
ER
PT J
AU Leem, CS
Kim, C
Park, SR
Kim, MK
Choi, HJ
Kim, C
Kim, BJ
Johnston, S
Devereaux, T
Ohta, T
Bostwick, A
Rotenberg, E
AF Leem, C. S.
Kim, Chul
Park, S. R.
Kim, Min-Kook
Choi, Hyoung Joon
Kim, C.
Kim, B. J.
Johnston, S.
Devereaux, T.
Ohta, T.
Bostwick, A.
Rotenberg, E.
TI High-resolution angle-resolved photoemission studies of quasiparticle
dynamics in graphite
SO PHYSICAL REVIEW B
LA English
DT Article
DE electronic density of states; electron-phonon interactions; Fermi level;
graphite; photoelectron spectra
ID SINGLE-CRYSTAL GRAPHITE; SECONDARY-ELECTRON EMISSION; BAND-STRUCTURE;
INVERSE PHOTOEMISSION; SPECTROSCOPY; LIFETIME; GRAPHENE; LATTICE
AB We obtained the spectral function of the graphite H point using high-resolution angle-resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photohole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted for by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. We also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature-dependent ARPES data at K shows that the energy of a phonon mode of graphite has a much higher energy scale than 125 K, which is dominant in electron-phonon coupling.
C1 [Leem, C. S.; Kim, Chul; Park, S. R.; Kim, Min-Kook; Choi, Hyoung Joon; Kim, C.] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea.
[Kim, B. J.] Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea.
[Kim, B. J.] Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151742, South Korea.
[Johnston, S.; Devereaux, T.] Stanford Univ, Dept Photon Sci, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA.
[Johnston, S.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada.
[Ohta, T.; Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Leem, CS (reprint author), Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea.
EM cykim@phya.yonsei.ac.kr
RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010; Choi, Hyoung
Joon/N-8933-2015; Johnston, Steven/J-7777-2016
OI Rotenberg, Eli/0000-0002-3979-8844; Choi, Hyoung
Joon/0000-0001-8565-8597;
FU KICOS [K20602000008]; KRF [KRF-2007-314-C00075]; KOSEF
[R01-2007000-20922-0]; KISTI Supercomputing Center [KSC-2008-S02-0004]
FX The authors acknowledge fruitful discussions with J.H. Han. This work
was supported by the KICOS under Grant No. K20602000008. C. S. L.
acknowledges support through the BK21 Project and helpful discussions
with J.-W. Rhim. H. J. C. acknowledges support from the KRF (Grant No.
KRF-2007-314-C00075), the KOSEF (Grant No. R01-2007000-20922-0), and the
KISTI Supercomputing Center (Grant No. KSC-2008-S02-0004). ALS is
operated by the Office of BES of DOE.
NR 40
TC 10
Z9 10
U1 1
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 125438
DI 10.1103/PhysRevB.79.125438
PG 8
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300119
ER
PT J
AU Levin, I
Krayzman, V
Woicik, JC
Karapetrova, J
Proffen, T
Tucker, MG
Reaney, IM
AF Levin, Igor
Krayzman, Victor
Woicik, Joseph C.
Karapetrova, Jenia
Proffen, Thomas
Tucker, Matthew G.
Reaney, Ian M.
TI Structural changes underlying the diffuse dielectric response in AgNbO3
SO PHYSICAL REVIEW B
LA English
DT Article
DE crystal symmetry; dielectric materials; dielectric relaxation; EXAFS;
lattice constants; neutron diffraction; silver compounds; X-ray
diffraction
ID X-RAY; ROOM-TEMPERATURE; PHASE; SCATTERING; SYSTEM; PEROVSKITES;
MICROWAVE; SPECTRA; KNBO3
AB Structural differences in the so-called M polymorphs of AgNbO3 were analyzed using combined high-resolution x-ray diffraction, neutron total scattering, electron diffraction, and x-ray absorption fine-structure measurements. These polymorphs all crystallize with Pbcm symmetry and lattice parameters root 2a(c)x root 2a(c)x4a(c) (where a(c)approximate to 4 A corresponds to the lattice parameter of an ideal cubic perovskite) which are determined by a complex octahedral tilt system (a(-)b(-)c(-))/(a(-)b(-)c(+)) involving a sequence of two in-phase and two antiphase rotations around the c axis. Our results revealed that, similar to KNbO3, the Nb cations in AgNbO3 exhibit local off-center displacements correlated along Nb-Nb-Nb chains. The displacements appear to be present even in the high-temperature AgNbO3 polymorphs where the Nb cations, on average, reside on the ideal fixed-coordinate sites. The onset of the (a(-)b(-)c(-))/(a(-)b(-)c(+)) tilting in the M polymorphs lifts the symmetry restrictions on the Nb positions and promotes ordering of the local Nb displacements into a long-range antipolarlike array. This ordering preserves the average Pbcm symmetry but is manifested in electron diffuse scattering and corroborated by other local-structure sensitive techniques. Structural states previously identified as the M-3 and M-2 phases represent different stages of displacive ordering rather than distinct thermodynamic phases. Rietveld refinements indicated intimate coupling between the displacive behavior on the oxygen, Nb, and Ag sublattices. The Pbcm symmetry of the octahedral framework precludes a complete ordering of Nb displacements so that some positional disorder is retained. This partial disorder likely gives a source to the dielectric relaxation which, according to previous spectroscopic studies, is the origin of the diffuse dielectric response exhibited by M-type AgNbO3 at approximate to 250 degrees C.
C1 [Levin, Igor; Krayzman, Victor; Woicik, Joseph C.] Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA.
[Karapetrova, Jenia] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Proffen, Thomas] Los Alamos Natl Lab, Lujan Neutron Ctr, Los Alamos, NM 87545 USA.
[Tucker, Matthew G.] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England.
[Reaney, Ian M.] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England.
RP Levin, I (reprint author), Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA.
RI Levin, Igor/F-8588-2010; Lujan Center, LANL/G-4896-2012; Proffen,
Thomas/B-3585-2009; Tucker, Matt/C-9867-2016
OI Proffen, Thomas/0000-0002-1408-6031; Tucker, Matt/0000-0002-2891-7086
FU Department of Energy Office of Basic Energy Sciences; Los Alamos
National Laboratory [W-7405-ENG-36]; Department of Energy Office of
Basic Energy Sciences [W-31-109-ENG-38]
FX The work was made possible by national user facilities: (1) the Lujan
Center at Los Alamos Neutron Science Center funded by the Department of
Energy Office of Basic Energy Sciences, and Los Alamos National
Laboratory under Contract No. W-7405-ENG-36, and (2) the Advanced Photon
Source supported by the Department of Energy Office of Basic Energy
Sciences under Contract No. W-31-109-ENG-38. Experiments at the ISIS
Pulsed Neutron and Muon Source were supported by a beam-time allocation
from the Science and Technology Facilities Council.
NR 24
TC 44
Z9 45
U1 4
U2 37
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104113
DI 10.1103/PhysRevB.79.104113
PG 14
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600040
ER
PT J
AU Li, M
Wang, CZ
Evans, JW
Hupalo, M
Tringides, MC
Ho, KM
AF Li, M.
Wang, C. Z.
Evans, J. W.
Hupalo, M.
Tringides, M. C.
Ho, K. M.
TI Competition between area and height evolution of Pb islands on a Si(111)
surface
SO PHYSICAL REVIEW B
LA English
DT Article
DE elemental semiconductors; island structure; lead; scanning tunnelling
microscopy; silicon; surface structure
ID GROWTH
AB Scanning tunneling microscopy experiments reveal that small Pb islands with unstable heights, e.g., four layers, on a Si(111) surface decay during coarsening, whereas large islands do not decay but grow to a stable height. This bifurcation in evolution is analyzed by incorporating quantum size effects into theoretical models for island growth dynamics with appropriate geometries. The effective energy barrier for Pb atoms to reach the top of four-layer islands is estimated at about 0.26 eV.
C1 [Li, M.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.
[Wang, C. Z.; Hupalo, M.; Tringides, M. C.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Wang, C. Z.; Evans, J. W.; Hupalo, M.; Tringides, M. C.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.
[Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA.
RP Li, M (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.
RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012
FU NSF of China [10704088, CHE-0809472]
FX M. L. was supported for the work by NSF of China under Grant No.
10704088 and J.W.E. by NSF under Grant No. CHE-0809472. Work at Ames
Laboratory was supported by the US DOE-BES including the computer time
at NERSC in Berkeley. Ames Laboratory is operated for the US DOE by ISU
under Contract No. DE- AC02-07CH11358.
NR 16
TC 10
Z9 10
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 113404
DI 10.1103/PhysRevB.79.113404
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900018
ER
PT J
AU Luo, JW
Bester, G
Zunger, A
AF Luo, Jun-Wei
Bester, Gabriel
Zunger, Alex
TI Atomistic pseudopotential calculations of thickness-fluctuation GaAs
quantum dots
SO PHYSICAL REVIEW B
LA English
DT Article
DE aluminium compounds; biexcitons; current fluctuations; gallium arsenide;
III-V semiconductors; interface states; optical constants; oscillator
strengths; semiconductor quantum dots; semiconductor quantum wells;
trions
ID SHARP-LINE PHOTOLUMINESCENCE; ELECTRONIC-STRUCTURE; OPTICAL-SPECTRA;
WELL STRUCTURES; BAND-STRUCTURE; FINE-STRUCTURE; SEMICONDUCTORS;
EXCITONS; NANOSTRUCTURES; SPECTROSCOPY
AB We calculate the electronic and optical properties of thickness-fluctuation quantum dots of different sizes and elongations using an atomistic empirical pseudopotential approach and configuration interaction. The carriers are confined by a monolayer fluctuation in the thickness of a GaAs/Al0.3Ga0.7As quantum well with a nominal thickness between 10 and 20 monolayers. For 10 monolayer thickness, we find several confined electron and hole levels of dominant heavy-hole character penetrating deep into the barrier (out of plane) and far beyond the physical dimension of the monolayer step (in-plane). The spatial extent of the states is strongly affected by the random-alloy fluctuations of the barrier, pushing the states toward Ga-rich regions of the interface. The similarity in the spatial extent of the electron and hole states leads to strong oscillator strength and a rich optical spectrum. The exciton as well as biexciton and trions (positive and negative) all show several lines in absorption despite the very shallow confinement potential given in these structures. The effects of correlations is drastic on the optical spectrum with the creation of highly correlated states that deviate strongly from the uncorrelated results.
C1 [Luo, Jun-Wei; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
[Bester, Gabriel] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
RI LUO, JUN-WEI/A-8491-2010; Bester, Gabriel/I-4414-2012; Zunger,
Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013
OI Bester, Gabriel/0000-0003-2304-0817;
FU U.S. Department of Energy,; Office of Science, Basic Energy Sciences
[DE-AC36-08GO28308]
FX We acknowledge financial support from the U.S. Department of Energy,
Office of Science, Basic Energy Sciences, under Contract No.
DE-AC36-08GO28308 to NREL.
NR 53
TC 16
Z9 16
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 125329
DI 10.1103/PhysRevB.79.125329
PG 15
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300080
ER
PT J
AU Lyo, SK
AF Lyo, S. K.
TI Spectral and spatial transfer and diffusion of excitons in multiple
quantum dot structures
SO PHYSICAL REVIEW B
LA English
DT Article
DE excitons; resonant states; semiconductor quantum dots
ID ENERGY-TRANSFER; TRANSPORT; WELLS
AB A formalism is developed for resonant and nonresonant spectral and spatial energy transfer of excitons in disordered semiconductor multiple-quantum-dot structures. Dipole-dipole and photon-exchange energy-transfer mechanisms are considered. For nonresonant transfer, we study two-site transfer rates in a disordered system as a function of the energy mismatch, the temperature, and the distance. The total time-dependent decay rate of the initial spectral intensity excited at a given energy in the inhomogeneous spectral profile is calculated. For resonant transfer, two-site transfer rates are studied as a function of the distance. The diffusion constant is calculated exactly in a regular quantum dot lattice in order to assess the upper limit of the diffusion constant of a disordered system. We find that the total time-dependent spectral decay rate and the diffusion constant are dominated by the weak long-range photon-exchange interaction mechanism over the standard short-range Forster (dipole-dipole) mechanism in a uniform macroscopic multi-quantum-dot system due to the long mean-free path of the photons.
C1 Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Lyo, SK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
FU LDRD; DOE/BES; U.S. DOE [DE-AC04-94AL85000]
FX This work was supported in part by LDRD and DOE/BES at Sandia National
Laboratories. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Co., for the U.S. DOE under Contract No.
DE-AC04-94AL85000.
NR 20
TC 7
Z9 7
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 125328
DI 10.1103/PhysRevB.79.125328
PG 14
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300079
ER
PT J
AU May, SJ
Santos, TS
Bhattacharya, A
AF May, S. J.
Santos, T. S.
Bhattacharya, A.
TI Onset of metallic behavior in strained (LaNiO3)(n)/(SrMnO3)(2)
superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
DE crystal structure; hopping conduction; interface roughness; lanthanum
compounds; metal-insulator transition; molecular beam epitaxial growth;
reflection high energy electron diffraction; strontium compounds;
superlattices; X-ray scattering
ID LANIO3 THIN-FILMS; ELECTRONIC-PROPERTIES; GROWTH; DEPOSITION
AB (LaNiO3)(n)/(SrMnO3)(2) superlattices were grown using ozone-assisted molecular beam epitaxy. In situ reflection high-energy electron diffraction and x-ray scattering has been used to characterize the structural properties of the superlattices, which are strained to the SrTiO3 substrates. The superlattices exhibit excellent crystallinity and interfacial roughness of less than 1 unit cell. A metal-insulator transition is observed as n is decreased from 4 to 1. Analysis of the transport data suggests an evolution from gapped insulator (n=1) to hopping conductor (n=2) to metal (n=4) with increasing LaNiO3 concentration.
C1 [May, S. J.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Santos, T. S.; Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Bhattacharya, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM anand@anl.gov
RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011
OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860
NR 35
TC 34
Z9 34
U1 2
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 115127
DI 10.1103/PhysRevB.79.115127
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900054
ER
PT J
AU Mishra, V
Boyd, G
Graser, S
Maier, T
Hirschfeld, PJ
Scalapino, DJ
AF Mishra, V.
Boyd, G.
Graser, S.
Maier, T.
Hirschfeld, P. J.
Scalapino, D. J.
TI Lifting of nodes by disorder in extended-s-state superconductors:
Application to ferropnictides
SO PHYSICAL REVIEW B
LA English
DT Article
DE superconducting materials; superfluidity; thermodynamics
ID D-WAVE SUPERCONDUCTORS; ANISOTROPIC SUPERCONDUCTORS; LAYERED
SUPERCONDUCTOR; PENETRATION DEPTH; IMPURITY SCATTERING; TEMPERATURE;
GAPS; SPECTROSCOPY
AB We show, using a simple model, how ordinary disorder can gap an extended-s- (A(1g)) symmetry superconducting state with nodes. The concomitant crossover of thermodynamic properties, particularly the T dependence of the superfluid density, from pure power-law behavior to an activated one is exhibited. We discuss applications of this scenario to experiments on the ferropnictide superconductors.
C1 [Mishra, V.; Boyd, G.; Graser, S.; Hirschfeld, P. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
[Graser, S.] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany.
[Maier, T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA.
[Maier, T.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA.
[Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA.
RP Mishra, V (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA.
RI Hirschfeld, Peter /A-6402-2010; Maier, Thomas/F-6759-2012
OI Maier, Thomas/0000-0002-1424-9996
FU DOE [DE-FG02-05ER46236]; Deutscheforschungsgemeinschaft; Oak Ridge
National Laboratory by the Division of Scientific User Facilities, U. S.
Department of Energy
FX The authors are grateful for useful communications with D. A. Bonn, J.
Bobowski, and A. Carrington. Research was partially supported by DOE
under Grant No. DE-FG02-05ER46236 (P. J. H.), and the
Deutscheforschungsgemeinschaft (S. G.). T. A. M., D. J. S., and P. J. H.
acknowledge the Center for Nanophase Materials Science, which is
sponsored at Oak Ridge National Laboratory by the Division of Scientific
User Facilities, U. S. Department of Energy.
NR 52
TC 98
Z9 99
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094512
DI 10.1103/PhysRevB.79.094512
PG 9
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200099
ER
PT J
AU Mlinar, V
Franceschetti, A
Zunger, A
AF Mlinar, Vladan
Franceschetti, Alberto
Zunger, Alex
TI Rules of peak multiplicity and peak alignment in multiexcitonic spectra
of (In,Ga)As quantum dots
SO PHYSICAL REVIEW B
LA English
DT Article
DE electron-hole recombination; excitons; gallium arsenide; III-V
semiconductors; indium compounds; perturbation theory; semiconductor
quantum dots
ID EXCITONIC ARTIFICIAL ATOMS; ENERGY
AB A simple model-the single-configuration perturbation theory-has traditionally been used to explain the main features of the multiexcitonic spectra of quantum dots, where an electron and a hole recombine in the presence of other N(e)-1 electrons and N(h)-1 holes. The model predicts the (N(h),N(e)) values for which such spectra consist of a single line or multiple lines and whether singlet lines of different (N(h),N(e)) values are energetically aligned. Here we use a nonperturbative, correlated approach that shows when such simple rules work and when they fail, thereby establishing a basis for the appropriate use of such rules.
C1 [Mlinar, Vladan; Franceschetti, Alberto; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM alex.zunger@nrel.gov
RI Zunger, Alex/A-6733-2013
FU U. S. Department of Energy, Office of Science under NREL
[DE-AC36-08GO28308]
FX This work was funded by the U. S. Department of Energy, Office of
Science under NREL Contract No. DE-AC36-08GO28308.
NR 13
TC 6
Z9 6
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 121307
DI 10.1103/PhysRevB.79.121307
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300011
ER
PT J
AU Mlinar, V
Zunger, A
AF Mlinar, Vladan
Zunger, Alex
TI Effect of atomic-scale randomness on the optical polarization of
semiconductor quantum dots
SO PHYSICAL REVIEW B
LA English
DT Article
DE excitons; fine structure; gallium arsenide; gallium compounds; III-V
semiconductors; indium compounds; light polarisation; semiconductor
quantum dots
ID ELECTRONIC-STRUCTURE
AB Alloy systems such as Ga(1-x)In(x)As consist of different random assignments sigma of the Ga and In atoms onto the cation sublattice; each configuration sigma having, in principle, distinct physical properties. In infinitely large bulk samples different sigma's get self-averaged. However, in finite quantum dots (QDs) (<= 10(5) atoms), self-averaging of such configuration sigma may not be complete, so single-dot spectroscopy might observe atomic-scale alloy randomness effects. We examine theoretically the effect of such atomic-scale alloy randomness on the fine structure-splitting (FSS) of the multiexciton observed via the polarization anisotropy of its components. We find that (i) The FSS of the neutral monoexciton X(0) changes by more than a factor of 7 with sigma. Thus, dots provide clear evidence for the effect of the atomic-scale alloy randomness on the optical properties. (ii) For multiexcitons, the effect of alloy randomness can be so large that the polarization of given emission lines in samples that differ only in random realizations can be dramatically different, so it cannot be said that given transitions have fixed polarization. (iii) Polarization is affected both by atomic-scale randomness and by possible geometric elongation of the QD in one direction. Because of different random realizations, even 50% QD base elongation in [100] direction gives the same polarization as in a geometrically symmetric dot. Thus, measured polarization cannot be used to determine QD elongation.
C1 [Mlinar, Vladan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM alex_zunger@nrel.gov
RI Zunger, Alex/A-6733-2013
FU U.S. Department of Energy, Office of Science [DE-AC36-08GO28308]
FX This work was funded by the U.S. Department of Energy, Office of
Science, under NREL Contract No. DE-AC36-08GO28308.
NR 27
TC 34
Z9 34
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 115416
DI 10.1103/PhysRevB.79.115416
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900123
ER
PT J
AU Nair, S
Nicklas, M
Steglich, F
Sarrao, JL
Thompson, JD
Schofield, AJ
Wirth, S
AF Nair, Sunil
Nicklas, M.
Steglich, F.
Sarrao, J. L.
Thompson, J. D.
Schofield, A. J.
Wirth, S.
TI Precursor state to superconductivity in CeIrIn5: Unusual scaling of
magnetotransport
SO PHYSICAL REVIEW B
LA English
DT Article
DE cerium compounds; Hall effect; heavy fermion superconductors; iridium
compounds; magnetoresistance
ID QUANTUM CRITICAL-POINT; HEAVY-FERMION COMPOUNDS; SPIN DYNAMICS; HALL
ANGLE; MAGNETORESISTANCE; FILMS
AB We present an analysis of the normal-state Hall effect and magnetoresistance in the heavy-fermion superconductor CeIrIn5. It is demonstrated that the modified Kohler's scaling-which relates the magnetoresistance to the Hall angle-breaks down prior to the onset of superconductivity due to the presence of a precursor state to superconductivity in this system. A model-independent single-parameter scaling of the Hall angle governed solely by this precursor state is observed. Neither the Hall coefficient nor the resistivity exhibits this scaling, implying that this precursor state preferentially influences the Hall channel.
C1 [Nair, Sunil; Nicklas, M.; Steglich, F.; Wirth, S.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany.
[Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Schofield, A. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England.
RP Nair, S (reprint author), Max Planck Inst Chem Phys Solids, Noethnitzer Str 40, D-01187 Dresden, Germany.
RI Schofield, Andy/C-5004-2009; Nair, Sunil/E-5279-2011; Nicklas,
Michael/B-6344-2008
OI Schofield, Andy/0000-0002-1218-8560; Nicklas,
Michael/0000-0001-6272-2162
FU Alexander von Humboldt foundation; EC [CoMePhS 517039]; U. S. Department
of Energy/Office of Science; DFG Research Unit 960; MPI PKS
FX The authors thank A. Gladun for useful discussions. S. N. is supported
by the Alexander von Humboldt foundation. S. W. is partially supported
by the EC through Project No. CoMePhS 517039. Work at Los Alamos was
performed under the auspices of the U. S. Department of Energy/Office of
Science. Work at Dresden was supported by DFG Research Unit 960. A. J.
S. acknowledges support of the MPI PKS, Dresden where part of this work
was done.
NR 39
TC 5
Z9 5
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094501
DI 10.1103/PhysRevB.79.094501
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200088
ER
PT J
AU Nandi, S
Kreyssig, A
Lee, Y
Singh, Y
Kim, JW
Johnston, DC
Harmon, BN
Goldman, AI
AF Nandi, S.
Kreyssig, A.
Lee, Y.
Singh, Yogesh
Kim, J. W.
Johnston, D. C.
Harmon, B. N.
Goldman, A. I.
TI Magnetic ordering in EuRh2As2 studied by x-ray resonant magnetic
scattering
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; arsenic alloys; europium alloys; magnetic
moments; magnetic structure; rhodium alloys
ID EXCHANGE SCATTERING; EU; EUPD2SI2; EUCU2SI2; ENERGY
AB Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to the lowest achievable temperature of 6 K, an incommensurate antiferromagnetic (ICM) structure with a temperature-dependent propagation vector tau approximate to(0 0 0.9) coexists with a commensurate antiferromagnetic (CM) structure. Angular-dependent measurements of the magnetic intensity indicate that the magnetic moments lie in the tetragonal basal plane and are ferromagnetically aligned within the a-b plane for both magnetic structures. The ICM structure is most likely a spiral-like magnetic structure with a turn angle of similar to 162 degrees (0.9 pi) between adjacent Eu planes in the c direction. In the CM structure, this angle is 180 degrees. These results are consistent with band-structure calculations which indicate a strong sensitivity of the magnetic configuration on the Eu valence.
C1 [Nandi, S.; Kreyssig, A.; Lee, Y.; Singh, Yogesh; Johnston, D. C.; Harmon, B. N.; Goldman, A. I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
[Kim, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Nandi, S.; Kreyssig, A.; Lee, Y.; Singh, Yogesh; Johnston, D. C.; Harmon, B. N.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Nandi, S (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.
RI singh, yogesh/F-7160-2016
FU U.S. DOE [DE-AC0207CH11358, AC0206CH11357]
FX We thank D.S. Robinson for his help during experiments. The work at the
Ames Laboratory and at the MU-CAT sector was supported by the U.S. DOE
under Contract No. DE-AC0207CH11358. Use of the Advanced Photon Source
was supported by U.S. DOE under Contract No. DE-AC0206CH11357.
NR 25
TC 12
Z9 12
U1 8
U2 14
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 100407
DI 10.1103/PhysRevB.79.100407
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600015
ER
PT J
AU Niazi, A
Bud'ko, SL
Schlagel, DL
Yan, JQ
Lograsso, TA
Kreyssig, A
Das, S
Nandi, S
Goldman, AI
Honecker, A
McCallum, RW
Reehuis, M
Pieper, O
Lake, B
Johnston, DC
AF Niazi, A.
Bud'ko, S. L.
Schlagel, D. L.
Yan, J. Q.
Lograsso, T. A.
Kreyssig, A.
Das, S.
Nandi, S.
Goldman, A. I.
Honecker, A.
McCallum, R. W.
Reehuis, M.
Pieper, O.
Lake, B.
Johnston, D. C.
TI Single-crystal growth, crystallography, magnetic susceptibility, heat
capacity, and thermal expansion of the antiferromagnetic S=1 chain
compound CaV2O4
SO PHYSICAL REVIEW B
LA English
DT Article
DE annealing; antiferromagnetic materials; calcium compounds; crystal
growth from melt; crystal orientation; exchange interactions (electron);
Heisenberg model; magnetic anisotropy; magnetic susceptibility; magnetic
transitions; specific heat; thermal expansion
ID METAL-INSULATOR-TRANSITION; GAPLESS CHIRAL PHASE; ANTI-FERROMAGNET;
HALDANE-GAP; V2O3; SPIN; CALCIUM; (V1-XCRX)(2)O-3; RESONANCE; SYSTEMS
AB The compound CaV2O4 contains V+3 cations with spin S=1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c axis. We have grown single crystals of CaV2O4 and report crystallography, static magnetization, magnetic susceptibility chi, ac magnetic susceptibility, heat capacity C-p, and thermal expansion measurements in the temperature T range of 1.8-350 K on the single crystals and on polycrystalline samples. An orthorhombic-to-monoclinic structural distortion and a long-range antiferromagnetic (AF) transition were found at sample-dependent temperatures T-S approximate to 108-145 K and T-N approximate to 51-76 K, respectively. In two annealed single crystals, another transition was found at approximate to 200 K. In one of the crystals, this transition is mostly due to V2O3 impurity phase that grows coherently in the crystals during annealing. However, in the other crystal the origin of this transition at 200 K is unknown. The chi(T) shows a broad maximum at approximate to 300 K associated with short-range AF ordering and the anisotropy of chi above T-N is small. The anisotropic chi(T -> 0) data below T-N show that the (average) easy axis of the AF magnetic structure is the b axis. The C-p(T) data indicate strong short-range AF ordering above T-N, consistent with the chi(T) data. We fitted our chi data by a J(1)-J(2) S=1 Heisenberg chain model, where J(1)(J(2)) is the (next)-nearest-neighbor exchange interaction. We find J(1)approximate to 230 K and surprisingly, J(2)/J(1)approximate to 0 (or J(1)/J(2)approximate to 0). The interaction J(perpendicular to) between these S=1 chains leading to long-range AF ordering at T-N is estimated to be J(perpendicular to)/J(1)greater than or similar to 0.04.
C1 [Niazi, A.; Schlagel, D. L.; Yan, J. Q.; Lograsso, T. A.; McCallum, R. W.] Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA.
[Bud'ko, S. L.; Kreyssig, A.; Das, S.; Nandi, S.; Goldman, A. I.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Honecker, A.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany.
[Reehuis, M.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany.
[Reehuis, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
[Pieper, O.; Lake, B.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany.
[Pieper, O.; Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany.
RP Niazi, A (reprint author), Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA.
RI Honecker, Andreas/A-7941-2008; Reehuis, Manfred/J-3383-2013;
OI Honecker, Andreas/0000-0001-6383-3200; Reehuis,
Manfred/0000-0002-6461-4074; Lake, Bella/0000-0003-0034-0964
FU United States Department of Energy-Basic Energy Sciences
[DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science
[DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science,
through the Ames Laboratory [DE-AC02-07CH11358]; Deutsche
Forschungsgemeinschaft [HO 2325/4-1, UL 164/4]
FX We acknowledge useful discussions with R. J. McQueeney and we thank D.
Robinson for the excellent technical support of our high-energy x-ray
diffraction study. Work at Ames Laboratory was supported by the United
States Department of Energy-Basic Energy Sciences under Contract No.
DE-AC02-07CH11358. Use of the Advanced Photon Source (APS) was supported
by the U.S. Department of Energy, Office of Science, under Contract No.
DE-AC02-06CH11357. The Midwest Universities Collaborative Access Team
(MUCAT) sector at the APS is supported by the U.S. Department of Energy,
Office of Science, through the Ames Laboratory under Contract No.
DE-AC02-07CH11358. The work of A. H. was supported by the Deutsche
Forschungsgemeinschaft through a Heisenberg Fellowship and under Grant
No. HO 2325/4-1. M. R. acknowledges fundings from Deutsche
Forschungsgemeinschaft (Grant No. UL 164/4).
NR 55
TC 21
Z9 21
U1 2
U2 37
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104432
DI 10.1103/PhysRevB.79.104432
PG 21
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600088
ER
PT J
AU Noffsinger, J
Giustino, F
Louie, SG
Cohen, ML
AF Noffsinger, Jesse
Giustino, Feliciano
Louie, Steven G.
Cohen, Marvin L.
TI Origin of superconductivity in boron-doped silicon carbide from first
principles
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; boron; doping; electron-phonon interactions;
silicon compounds; superconducting transition temperature; two-photon
processes; type I superconductors
ID WANNIER FUNCTIONS; PSEUDOPOTENTIALS; DIAMOND; SYSTEMS; ENERGY
AB We investigate the origin of superconductivity in boron-doped silicon carbide using a first-principles approach. The strength of the electron-phonon coupling calculated for cubic SiC at the experimental doping level suggests that the superconductivity observed in this material is phonon mediated. Analysis of the 2H-SiC, 4H-SiC, 6H-SiC, and 3C-SiC polytypes indicates that superconductivity depends on the stacking of the Si and C layers and that the cubic polytype will exhibit the highest transition temperature. In contrast to the cases of silicon and diamond, acoustic phonons are found to play a major role in the superconductivity of silicon carbide.
C1 [Noffsinger, Jesse] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RI Giustino, Feliciano/F-6343-2013;
OI Giustino, Feliciano/0000-0001-9293-1176
FU NSF [DMR07-05941]; U.S. DOE [DE-AC02-05CH11231]
FX The authors are grateful to M. CotE for fruitful discussions. This work
was supported by the NSF under Grant No. DMR07-05941 and by the
Director, Office of Science, Office of Basic Energy Sciences, Division
of Materials Sciences and Engineering Division, U.S. DOE under Contract
No. DE-AC02-05CH11231. Computational resources were provided by SDSC and
NPACI. Calculations were performed using modified versions of the
QUANTUM-ESPRESSO (Ref. 33) and WANNIER90 packages (Ref. 34).
NR 31
TC 16
Z9 16
U1 3
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104511
DI 10.1103/PhysRevB.79.104511
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600105
ER
PT J
AU Pan, ZH
Richard, P
Xu, YM
Neupane, M
Bishay, P
Fedorov, AV
Luo, H
Fang, L
Wen, HH
Wang, Z
Ding, H
AF Pan, Z. -H.
Richard, P.
Xu, Y. -M.
Neupane, M.
Bishay, P.
Fedorov, A. V.
Luo, H.
Fang, L.
Wen, H. -H.
Wang, Z.
Ding, H.
TI Evolution of Fermi surface and normal-state gap in the chemically
substituted cuprates Bi2Sr2-xBixCuO6+delta
SO PHYSICAL REVIEW B
LA English
DT Article
DE bismuth compounds; doping; d-wave superconductivity; Fermi surface;
high-temperature superconductors; photoelectron spectra; spectral line
breadth; strontium compounds; superconducting energy gap
ID BI2SR2CACU2O8+DELTA; SUPERCONDUCTORS; PSEUDOGAP
AB We have performed a systematic angle-resolved photoemission study of chemically substituted cuprates Bi2Sr2-xBixCuO6+delta. We observed that the Fermi-surface area shrinks linearly with Bi-substitution content x, reflecting the electron doping nature of this chemical substitution. In addition, the spectral linewidth broadens rapidly with increasing x and becomes completely incoherent at the superconducting-insulating boundary. The d-wave-like normal-state gap observed in the lightly underdoped region gradually evolves into a large soft gap, which suppresses antinodal spectral weight linearly in both the excitation energy and temperature. Combining with the bulk resistivity data obtained on the same samples, we establish the emergence of the Coulomb gap behavior in the very underdoped regime. Our results reveal the dual roles, doping and disorder, of off-plane chemical substitutions in high-T-c cuprates and elucidate the nature of the quantum electronic states due to strong correlation and disorder.
C1 [Pan, Z. -H.; Richard, P.; Xu, Y. -M.; Neupane, M.; Bishay, P.; Wang, Z.; Ding, H.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA.
[Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Luo, H.; Fang, L.; Wen, H. -H.] Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China.
[Luo, H.; Fang, L.; Wen, H. -H.] Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China.
RP Pan, ZH (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA.
EM dingh@bc.edu
RI Richard, Pierre/F-7652-2010; Luo, Huiqian/F-4049-2012; Fang, Lei
/K-2017-2013; Xu, Yiming/B-3966-2011;
OI Richard, Pierre/0000-0003-0544-4551; Ding, Hong/0000-0003-4422-9248
FU U.S. NSF [DMR-0353108, DMR-0704545]; DOE [DEFG02-99ER45747,
DE-AC02-05CH11231]; NSFC,; MOST [2006CB601000, 2006CB921802]; ITSNEM
FX This work was supported by grants from the U.S. NSF under Contracts No.
DMR-0353108 and No. DMR-0704545 and the DOE under Contract No.
DEFG02-99ER45747. This work was based on the research conducted at the
Synchrotron Radiation Center supported by NSF under Contract No.
DMR-0537588 and the Advanced Light Source supported by DOE under
Contract No. DE-AC02-05CH11231. The work at the IOP, Beijing was
supported by the NSFC, the MOST 973 project (Contracts No. 2006CB601000
and No. 2006CB921802), and the CAS project ITSNEM.
NR 18
TC 14
Z9 14
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 092507
DI 10.1103/PhysRevB.79.092507
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200029
ER
PT J
AU Petrova, AE
Krasnorussky, VN
Lograsso, TA
Stishov, SM
AF Petrova, Alla E.
Krasnorussky, Vladimir N.
Lograsso, T. A.
Stishov, Sergei M.
TI High-pressure study of the magnetic phase transition in MnSi
SO PHYSICAL REVIEW B
LA English
DT Article
DE critical points; electrical resistivity; high-pressure effects; magnetic
susceptibility; magnetic transitions; manganese alloys; silicon alloys;
solidification
ID ITINERANT FERROMAGNET; HYDROSTATIC-PRESSURE; METAL
AB Measurements of ac magnetic susceptibility and dc resistivity of a high-quality single-crystal MnSi were carried out at high pressure making use of helium as a pressure medium. The form of the ac magnetic susceptibility curves at the magnetic phase transition suddenly changes upon helium solidification. This implies strong sensitivity of magnetic properties of MnSi to nonhydrostatic stresses and suggests that the early claims on the existence of a tricritical point at the phase-transition line are probably a result of misinterpretation of the experimental data. At the same time resistivity behavior at the phase transition does not show such a significant influence of helium solidification. The sharp peak at the temperature derivative of resistivity, signifying the first-order nature of the phase transition in MnSi successfully survived helium crystallization and continued the same way to the highest pressure.
C1 [Petrova, Alla E.; Krasnorussky, Vladimir N.; Stishov, Sergei M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia.
[Lograsso, T. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RP Petrova, AE (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia.
EM sergei@hppi.troitsk.ru
NR 25
TC 11
Z9 11
U1 7
U2 19
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 100401
DI 10.1103/PhysRevB.79.100401
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600009
ER
PT J
AU Phelan, D
Louca, D
Ancona, SN
Rosenkranz, S
Zheng, H
Mitchell, JF
AF Phelan, D.
Louca, Despina
Ancona, S. N.
Rosenkranz, S.
Zheng, H.
Mitchell, J. F.
TI Neutron scattering study of the competing magnetic correlations in
La0.85Sr0.15CoO3
SO PHYSICAL REVIEW B
LA English
DT Article
DE ferromagnetic materials; lanthanum compounds; long-range order; magnetic
structure; magnetic susceptibility; neutron diffraction; short-range
order; spin glasses; strontium compounds
ID PHASE-SEPARATION; LA1-XSRXCOO3
AB The nature of the competing ferromagnetic and incommensurate spin correlations in the spin-glass phase of La0.85Sr0.15CoO3 has been investigated by various neutron scattering techniques. Spin-polarized scattering indicates that the observed incommensurate peaks are dominantly magnetic in nature. Magnetic field experiments show that a field applied perpendicular to the short-range ordering wave vector destroys the incommensurate correlations and induces long-range ferromagnetic order. However, even for fields up to 7 T, short-range ferromagnetic correlations still coexist with the long-range ordered regions.
C1 [Phelan, D.; Louca, Despina] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
[Phelan, D.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Ancona, S. N.; Rosenkranz, S.; Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Phelan, D (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA.
RI Rosenkranz, Stephan/E-4672-2011
OI Rosenkranz, Stephan/0000-0002-5659-0383
FU U. S. Department of Energy [DE-FG02-01ER45927, DE-AC02-06CH11357]; U. S.
DOC [NIST-70NANB5H1152]; NSF [DMR-9986442, DMR-0086210.]
FX The authors would like to acknowledge fruitful discussions with C.
Leighton and thank him for discussing his unpublished data. They would
also like to thank W. Ratcliff, C. F. Majkrzak, and B. J. Kirby of the
NCNR for their assistance in the neutron scattering experiments and S.
McKinney, E. Fitzgerald, and D. Dender of the NCNR for their assistance
operating the superconducting magnet. This work is supported by the U.
S. Department of Energy under Contracts No. DE-FG02-01ER45927 and No.
DE-AC02-06CH11357, and the U. S. DOC through Contract No.
NIST-70NANB5H1152. The use of the neutron scattering facilities at NIST
was supported in part through NSF Grants No. DMR-9986442 and No.
DMR-0086210.
NR 15
TC 7
Z9 7
U1 2
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094420
DI 10.1103/PhysRevB.79.094420
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200077
ER
PT J
AU Raekers, M
Kuepper, K
Bartkowski, S
Prinz, M
Postnikov, AV
Potzger, K
Zhou, S
Arulraj, A
Stusser, N
Uecker, R
Yang, WL
Neumann, M
AF Raekers, M.
Kuepper, K.
Bartkowski, S.
Prinz, M.
Postnikov, A. V.
Potzger, K.
Zhou, S.
Arulraj, A.
Stuesser, N.
Uecker, R.
Yang, W. L.
Neumann, M.
TI Electronic and magnetic structure of RScO3 (R=Sm,Gd,Dy) from x-ray
spectroscopies and first-principles calculations
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; antiferromagnetism; dysprosium compounds; energy
gap; magnetic structure; magnetisation; neutron diffraction; samarium
compounds; scandium compounds; X-ray absorption spectra; X-ray emission
spectra; X-ray photoelectron spectra
ID EARTH/TRANSITION METAL-OXIDES; HIGH-K DIELECTRICS; RARE-EARTH-METALS;
BATIO3 THIN-FILMS; FERROELECTRICITY; PHOTOEMISSION; SPECTRA; DENSITY;
STATES; 4F
AB The electronic structures of SmScO3, GdScO3, and DyScO3 are investigated by means of x-ray photoelectron spectroscopy, x-ray emission spectroscopy (XES), and x-ray absorption spectroscopy (XAS). A strong hybridization between Sc 3d and O 2p is found, and a contribution of the rare-earth 5d states to this hybridization is not excluded. The band gaps of the compounds are determined by combining XES and XAS measurements. For SmScO3, GdScO3, and DyScO3 the band gaps were determined to be 5.6, 5.8, and 5.9 eV, respectively. Magnetization versus temperature measurements reveal antiferromagnetic coupling at 2.96 (SmScO3), 2.61 (GdScO3), and 3.10 K (DyScO3). For DyScO3 a Rietveld refinement of a 2 K neutron-diffraction data set gives the spin arrangement of Dy in the Pbnm structure (Shubnikov group: Pb(')n(')m(')).
C1 [Raekers, M.; Bartkowski, S.; Prinz, M.; Neumann, M.] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany.
[Kuepper, K.; Potzger, K.; Zhou, S.] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany.
[Postnikov, A. V.] Unversite Paul Verlaine, Lab Phys Milieux Denses, F-57078 Metz, France.
[Arulraj, A.; Stuesser, N.] Hahn Meitner Inst Berlin GmbH, Dept Magnetism, D-14109 Berlin, Germany.
[Uecker, R.] Inst Crystal Growth, D-12489 Berlin, Germany.
[Yang, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
RP Raekers, M (reprint author), Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany.
EM mraekers@uos.de; karsten.kuepper@uni-ulm.de; mneumann@uos.de
RI Zhou, Shengqiang/C-1497-2009; Yang, Wanli/D-7183-2011; Kupper,
Karsten/G-1397-2016
OI Zhou, Shengqiang/0000-0002-4885-799X; Yang, Wanli/0000-0003-0666-8063;
FU Lawrence Berkeley National Laboratory, Berkeley, USA
[DE-AC03-76SF00098]; Ph. D. program (Lower Saxony) [GRK695]
FX Part of this work has been performed at the Advanced Light Source (ALS),
Lawrence Berkeley National Laboratory, Berkeley, USA, which is operated
under Contract No. DE-AC03-76SF00098. M. R. gratefully acknowledges
financial support from the GRK695: Nonlinearities of optical materials.
Financial support by the Ph. D. program (Lower Saxony) is gratefully
acknowledged by M. P.
NR 43
TC 12
Z9 12
U1 5
U2 44
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 125114
DI 10.1103/PhysRevB.79.125114
PG 9
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300033
ER
PT J
AU Sales, BC
Sefat, AS
McGuire, MA
Jin, RY
Mandrus, D
Mozharivskyj, Y
AF Sales, B. C.
Sefat, A. S.
McGuire, M. A.
Jin, R. Y.
Mandrus, D.
Mozharivskyj, Y.
TI Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1-x
SO PHYSICAL REVIEW B
LA English
DT Article
DE crystal growth from melt; iron compounds; magnetic susceptibility;
specific heat; superconductivity; tellurium compounds
ID LAYERED QUATERNARY COMPOUND; IRON
AB Resistivity, magnetic susceptibility, and heat-capacity measurements are reported for single crystals of Fe1+yTexSe1-x grown via a modified Bridgeman method with 0 < y < 0.15 and x=1, 0.9, 0.75, 0. 67, 0.55, and 0.5. Although resistivity measurements show traces of superconductivity near 14 K for all x except x=1, only crystals grown with compositions near x=0.5 exhibit bulk superconductivity. The appearance of bulk superconductivity correlates with a reduction in the magnitude of the magnetic susceptibility at room temperature and smaller values of y, the concentration of Fe in the Fe(2) site.
C1 [Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Jin, R. Y.; Mandrus, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Mozharivskyj, Y.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
RP Sales, BC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat,
Athena/R-5457-2016
OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504
FU Division of Materials Sciences and Engineering, Office of Basic Energy
Sciences, U. S. Department of Energy
FX It is a pleasure to acknowledge enlightening discussions with David
Singh, Mark Lumsden, Andrew Christianson, Steve Nagler, and Herb Mook as
well as the technical assistance of Larry McCollum, Jason Craig, Elder
Mellon, and Midge Mckinney. This research was supported by the Division
of Materials Sciences and Engineering, Office of Basic Energy Sciences,
U. S. Department of Energy. Part of this research was performed by
Eugene P. Wigner Fellows at ORNL.
NR 23
TC 277
Z9 278
U1 6
U2 43
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094521
DI 10.1103/PhysRevB.79.094521
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200108
ER
PT J
AU Sefat, AS
McGuire, MA
Jin, R
Sales, BC
Mandrus, D
Ronning, F
Bauer, ED
Mozharivskyj, Y
AF Sefat, Athena S.
McGuire, Michael A.
Jin, Rongying
Sales, Brian C.
Mandrus, David
Ronning, Filip
Bauer, E. D.
Mozharivskyj, Yurij
TI Structure and anisotropic properties of BaFe2-xNixAs2 (x=0, 1, and 2)
single crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE arsenic alloys; barium alloys; electrical resistivity; iron alloys;
magnetic anisotropy; magnetic susceptibility; magnetic transitions;
nickel alloys; paramagnetic materials; solid-state phase
transformations; specific heat; superconducting transition temperature
ID LAYERED SUPERCONDUCTOR; TEMPERATURE; SPIN; HEAT
AB The crystal structure, electrical resistivity, magnetic susceptibility, and heat capacity of single crystals of BaFe2As2, BaNi2As2, and BaFeNiAs2 are reported. BaFe2As2 data indicate the equivalence of C(T), d(chi T)/dT, and d rho/dT results in determining the antiferromagnetic transition at T-N=132(1)K. BaNi2As2 shows a structural phase transition from a high-temperature tetragonal phase to a low-temperature triclinic phase (P1 symmetry) at T-0=131 K, with superconducting critical temperature T-c=0.69 K. BaFeNiAs2 does not show any sign of superconductivity and its properties resemble BaCo2As2, a renormalized paramagnetic metal.
C1 [Sefat, Athena S.; McGuire, Michael A.; Jin, Rongying; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Ronning, Filip; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Mozharivskyj, Yurij] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RI McGuire, Michael/B-5453-2009; Bauer, Eric/D-7212-2011; Mandrus,
David/H-3090-2014; Sefat, Athena/R-5457-2016;
OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504;
Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937
FU Division of Materials Science and Engineering, Office of Basic Energy
Sciences; U. S. Department of Energy
FX Research sponsored by the Division of Materials Science and Engineering,
Office of Basic Energy Sciences. Part of this research was performed by
Eugene P. Wigner Fellows at ORNL. Work at Los Alamos was performed under
the auspices of the U. S. Department of Energy.
NR 40
TC 67
Z9 67
U1 3
U2 44
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094508
DI 10.1103/PhysRevB.79.094508
PG 8
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200095
ER
PT J
AU Singh, DJ
Sefat, AS
McGuire, MA
Sales, BC
Mandrus, D
VanBebber, LH
Keppens, V
AF Singh, D. J.
Sefat, A. S.
McGuire, M. A.
Sales, B. C.
Mandrus, D.
VanBebber, L. H.
Keppens, V.
TI Itinerant antiferromagnetism in BaCr2As2: Experimental characterization
and electronic structure calculations
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferrimagnetism; band model of magnetism; band structure; barium
compounds; chromium compounds; electrical resistivity; electronic
density of states; specific heat
AB We report single-crystal synthesis, specific-heat and resistivity measurements and electronic structure calculations for BaCr2As2. This material is a metal with itinerant antiferromagnetism, similar to the parent phases of Fe-based high-temperature superconductors, but differs in magnetic order. Comparison of bare band-structure density of states and the low-temperature specific heat implies a mass renormalization of similar to 2. BaCr2As2 shows stronger transition-metal-pnictogen covalency than the Fe compounds, and in this respect is more similar to BaMn2As2. This provides an explanation for the observation that Ni and Co doping is effective in the Fe-based superconductors, but Cr or Mn doping is not.
C1 [Singh, D. J.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[VanBebber, L. H.; Keppens, V.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus,
David/H-3090-2014; Sefat, Athena/R-5457-2016
OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504
FU Department of Energy, Division of Materials Sciences and Engineering;
ORNL LDRD program
FX This work was supported by the Department of Energy, Division of
Materials Sciences and Engineering and by the ORNL LDRD program.
NR 22
TC 30
Z9 30
U1 9
U2 70
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094429
DI 10.1103/PhysRevB.79.094429
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200086
ER
PT J
AU Singh, NK
Paudyal, D
Mudryk, Y
Pecharsky, VK
Gschneidner, KA
AF Singh, Niraj K.
Paudyal, Durga
Mudryk, Ya.
Pecharsky, V. K.
Gschneidner, K. A., Jr.
TI Magnetostructural transition in Ho5Ge4
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; density functional theory; germanium
alloys; giant magnetoresistance; high-temperature effects; holmium
alloys; magnetic structure; magnetocaloric effects; magnetostriction;
paramagnetic-antiferromagnetic transitions; solid-state phase
transformations
ID GD-5(SI2GE2); MAGNETISM
AB First-principles calculations predict that, in the antiferromagnetic state, Ho5Ge4 should adopt a unique monoclinic structure with an unusual distortion in the ac plane, making it a unique member of a broadly researched R5T4 family of compounds that are best known for their giant magnetocaloric, magnetoresistive, and magnetostrictive effects. Experiments prove that, in Ho5Ge4, the magnetic transition from the paramagnetic to the antiferromagnetic state is indeed accompanied by a structural transformation from the Sm5Ge4-type orthorhombic to the predicted monoclinic structure. Surprisingly, a magnetic field can partially reconstruct the high-temperature paramagnetic Sm5Ge4-type structure of Ho5Ge4 when applied to the magnetically ordered compound.
C1 [Singh, Niraj K.; Paudyal, Durga; Mudryk, Ya.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
EM vitkp@ameslab.gov
FU U.S. Department of Energy [DE-AC02-07CH11358]; Iowa State University of
Science and Technology
FX This work was supported by the Office of Basic Energy Sciences of the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-07CH11358 with Iowa State University of Science and Technology.
NR 37
TC 15
Z9 15
U1 3
U2 18
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094115
DI 10.1103/PhysRevB.79.094115
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200045
ER
PT J
AU Singh, Y
Ellern, A
Johnston, DC
AF Singh, Yogesh
Ellern, A.
Johnston, D. C.
TI Magnetic, transport, and thermal properties of single crystals of the
layered arsenide BaMn2As2
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; barium compounds; crystal growth;
electrical resistivity; magnetic susceptibility; magnetisation;
manganese compounds; narrow band gap semiconductors; specific heat
AB Growth of BaMn2As2 crystals using both MnAs and Sn fluxes is reported. Room-temperature crystallography, anisotropic isothermal magnetization M versus field H and magnetic susceptibility chi versus temperature T, electrical resistivity in the ab plane rho(T), and heat capacity C(T) measurements on the crystals were carried out. The tetragonal ThCr2Si2-type structure of BaMn2As2 is confirmed. After correction for traces of ferromagnetic MnAs impurity phase using M(H) isotherms, the inferred intrinsic chi(T) data of the crystals are anisotropic with chi(ab)/chi(c)approximate to 7.5 at T=2 K. The temperature dependences of the anisotropic chi data suggest that BaMn2As2 is a collinear antiferromagnet at room temperature with the easy axis along the c axis, and with an extrapolated Neel temperature T-N similar to 500 K. The rho(T) decreases with decreasing T below 310 K but then increases below similar to 50 K, suggesting that BaMn2As2 is a small band-gap semiconductor with an activation energy of order 0.03 eV. The C(T) data from 2 to 5 K are consistent with this insulating ground state, exhibiting a low temperature Sommerfeld coefficient gamma=0.0(4) mJ/mol K-2. The Debye temperature is determined from these data to be theta(D)=246(4) K. BaMn2As2 is a potential parent compound for ThCr2Si2-type superconductors.
C1 [Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Ellern, A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Singh, Y (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
RI singh, yogesh/F-7160-2016
FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]
FX We are grateful to J. Schmalian for helpful discussions. Work at the
Ames Laboratory was supported by the Department of Energy-Basic Energy
Sciences under Contract No. DE-AC02-07CH11358.
NR 38
TC 64
Z9 64
U1 5
U2 58
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094519
DI 10.1103/PhysRevB.79.094519
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200106
ER
PT J
AU Soderlind, P
Klepeis, JE
AF Soederlind, Per
Klepeis, John E.
TI First-principles elastic properties of alpha-Pu
SO PHYSICAL REVIEW B
LA English
DT Article
DE ab initio calculations; antiferromagnetic materials; band structure;
density functional theory; elastic constants; electron correlations;
exchange interactions (electron); plutonium
ID GENERALIZED GRADIENT APPROXIMATION; DELTA-PLUTONIUM; BRILLOUIN-ZONE;
SPECIAL POINTS; METALS; MODULI
AB Density-functional electronic-structure calculations have been used to investigate the ambient pressure and low temperature elastic properties of the ground-state alpha phase of plutonium metal. The electronic structure and correlation effects are modeled within a fully relativistic antiferromagnetic treatment with a generalized gradient approximation for the electron exchange and correlation functional. The 13 independent elastic constants, for the monoclinic alpha-Pu system, are calculated for the observed geometry. A comparison of the results with measured data from recent resonant ultrasound spectroscopy for a cast sample is made.
C1 [Soederlind, Per; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA.
FU U. S. Department of Energy [DE-AC52-07NA27344]
FX J. Pask is acknowledged for help with matrix manipulations. R. Rudd is
thanked for helpful discussions. This work was performed under the
auspices of the U. S. Department of Energy by Lawrence Livermore
National Laboratory under Contract No. DE-AC52-07NA27344.
NR 42
TC 20
Z9 22
U1 0
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104110
DI 10.1103/PhysRevB.79.104110
PG 7
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600037
ER
PT J
AU Tanatar, MA
Ni, N
Martin, C
Gordon, RT
Kim, H
Kogan, VG
Samolyuk, GD
Bud'ko, SL
Canfield, PC
Prozorov, R
AF Tanatar, M. A.
Ni, N.
Martin, C.
Gordon, R. T.
Kim, H.
Kogan, V. G.
Samolyuk, G. D.
Bud'ko, S. L.
Canfield, P. C.
Prozorov, R.
TI Anisotropy of the iron pnictide superconductor Ba(Fe1-xCox)(2)As-2
(x=0.074, T-c=23 K)
SO PHYSICAL REVIEW B
LA English
DT Article
DE arsenic alloys; barium alloys; cobalt alloys; critical currents;
electrical resistivity; high-temperature superconductors; iron alloys;
penetration depth (superconductivity); specific heat; superconducting
critical field; superconducting transition temperature
ID SINGLE-CRYSTAL Y1BA2CU3O7-X; MAGNETIC PENETRATION DEPTH;
UPPER-CRITICAL-FIELD; HARD SUPERCONDUCTORS; FERMI-SURFACE; TEMPERATURE;
CONDUCTIVITY; RESISTIVITY; TRANSITION; PARALLEL
AB Anisotropies of electrical resistivity, upper critical field, London penetration depth, and critical currents have been measured in single crystals of the optimally doped iron pnictide superconductor Ba(Fe1-xCox)(2)As-2 (x=0.074 and T-c similar to 23 K). The normal-state resistivity anisotropy was obtained by employing both the Montgomery technique and direct measurements on samples cut along principal crystallographic directions. The ratio gamma(rho)=rho(c)/rho(a) is about 4 +/- 1 just above T-c and becomes half of that at room temperature. The anisotropy of the upper critical field, gamma(H)=H-c2,H-ab/H-c2,H-c, as determined from specific-heat measurements close to T-c is in the range of 2.1-2.6, depending on the criterion used. A comparable low anisotropy of the London penetration depth, gamma(lambda)=lambda(c)/lambda(ab), was recorded from tunnel diode resonator measurements and found to persist deep into the superconducting state. An anisotropy of comparable magnitude was also found in the critical currents, gamma(j)=j(c,ab)/j(c,c), as determined from both direct transport measurements (similar to 1.5) and from the analysis of the magnetization data (similar to 3). Overall, our results show that iron pnictide superconductors manifest anisotropies consistent with essentially three-dimensional intermetallic compounds and bear little resemblance to cuprates.
C1 [Tanatar, M. A.; Ni, N.; Martin, C.; Gordon, R. T.; Kim, H.; Kogan, V. G.; Samolyuk, G. D.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA.
[Ni, N.; Gordon, R. T.; Kim, H.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA.
EM tanatar@ameslab.gov; prozorov@ameslab.gov
RI Prozorov, Ruslan/A-2487-2008
OI Prozorov, Ruslan/0000-0002-8088-6096
FU Department of Energy Basic Energy Sciences [DE-AC02-07CH11358.]; Alfred
P. Sloan Foundation
FX We thank A. Kaminski and Y. Lee for discussions and M. Kano for
inspiration. M. A. T. acknowledges continuing cross appointment with the
Institute of Surface Chemistry, National Ukrainian Academy of Sciences.
Work at the Ames Laboratory was supported by the Department of Energy
Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P.
acknowledges support from Alfred P. Sloan Foundation.
NR 65
TC 142
Z9 142
U1 4
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094507
DI 10.1103/PhysRevB.79.094507
PG 10
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200094
ER
PT J
AU Tseng, YC
Souza-Neto, NM
Haskel, D
Gich, M
Frontera, C
Roig, A
van Veenendaal, M
Nogues, J
AF Tseng, Yuan-Chieh
Souza-Neto, Narcizo M.
Haskel, Daniel
Gich, Marti
Frontera, Carlos
Roig, Anna
van Veenendaal, Michel
Nogues, Josep
TI Nonzero orbital moment in high coercivity epsilon-Fe2O3 and
low-temperature collapse of the magnetocrystalline anisotropy
SO PHYSICAL REVIEW B
LA English
DT Article
DE bond lengths; coercive force; iron compounds; magnetic anisotropy;
magnetic circular dichroism; magnetic moments; magnetisation;
magnetoelectric effects; nanoparticles; permanent magnets; spin-orbit
interactions; sum rules
ID RAY CIRCULAR-DICHROISM; MAGNETIC-PROPERTIES; NANOPARTICLES; TRANSITION;
COBALT; PHASE; IRON; NANOCOMPOSITE; FIELDS
AB The magnetic properties of epsilon-Fe2O3 nanoparticles are investigated by x-ray magnetic circular dichroism. Sum rules relating the orbital and spin moment in the Fe 3d band to the Fe L-2,L-3 absorption cross sections show that the Fe orbital moment (m(orb)) is considerably high, explaining the origin of the large coercivity of this material at room temperature. Moreover, at T similar to 110 K, the collapse of the coercivity (H-c) and the magnetocrystalline anisotropy coincides with a strong reduction of the spin-orbit coupling evidenced by a drastic drop of m(orb). The decrease in m(orb) originates from changes in the electron transfer between Fe and O ions accompanied by significant modifications of some of the Fe-O bond distances. Similarly, the recovery of m(orb) at lower temperatures mimics the behavior of the Fe-O bond lengths.
C1 [Tseng, Yuan-Chieh; Souza-Neto, Narcizo M.; Haskel, Daniel; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Tseng, Yuan-Chieh] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60201 USA.
[Gich, Marti] St Gobain Res, F-93303 Aubervilliers, France.
[Frontera, Carlos; Roig, Anna] ICMAB CSIC, Bellaterra 08193, Catalunya, Spain.
[van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Nogues, Josep] ICREA, Bellaterra 08193, Catalunya, Spain.
[Nogues, Josep] Ctr Invest Nanociencia & Nanotecnol ICN CSIC, Bellaterra 08193, Catalunya, Spain.
RP Haskel, D (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
EM haskel@aps.anl.gov; Marti.Gich@saint-gobain.com; roig@icmab.es
RI Souza-Neto, Narcizo/G-1303-2010; Frontera, Carlos/B-4910-2008; Nogues,
Josep/D-7791-2012; ROIG, ANNA/E-7616-2011; Hernandez, Tonia/J-9335-2012;
D20, Diffractometer/O-3123-2013; Gich, Marti/H-7179-2012
OI Souza-Neto, Narcizo/0000-0002-7474-8017; Frontera,
Carlos/0000-0002-0091-4756; Nogues, Josep/0000-0003-4616-1371; ROIG,
ANNA/0000-0001-6464-7573; D20, Diffractometer/0000-0002-1572-1367; Gich,
Marti/0000-0001-9958-0057
FU U. S. Department of Energy, Office of Science [DE-AC-02-06CH11357];
Catalan DGR [2005GR-00401, 2005SGR-00452]; Spanish CICYT
[MAT-200766302-C02, NANOBIOMED-CSD2006-00012, CONSOLIDER-CSD2007-00041]
FX Work at Argonne is supported by the U. S. Department of Energy, Office
of Science, under Contract No. DE-AC-02-06CH11357. The authors thank P.
Gambardella and J. Fontcuberta for enlightening discussions and J. Sort
for his help in the magnetization measurements. The authors are also
grateful to R. Rosenberg for help with the XMCD measurements. We
acknowledge the ESRF and the ILL for the provision of x- ray and neutron
beam time. We also thank C. Ritter and F. Fauth for their assistance
during neutron and x-ray data collection. Partial financial support from
Catalan DGR (Contracts No. 2005GR-00401 and No. 2005SGR-00452) and the
Spanish CICYT (Contracts No. MAT-200766302-C02, No.
NANOBIOMED-CSD2006-00012, and CONSOLIDER-CSD2007-00041) research
projects is also acknowledged.
NR 44
TC 39
Z9 40
U1 1
U2 32
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094404
DI 10.1103/PhysRevB.79.094404
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200061
ER
PT J
AU Tuttle, BR
Pantelides, ST
AF Tuttle, Blair R.
Pantelides, Sokrates T.
TI Vacancy-related defects and the E-delta(') center in amorphous silicon
dioxide: Density functional calculations
SO PHYSICAL REVIEW B
LA English
DT Article
DE amorphous state; band structure; density functional theory; localised
states; noncrystalline defects; paramagnetic resonance; silicon
compounds
ID TRIPLET-STATE; BURIED SIO2; INTERFACE; QUARTZ
AB The microscopic identification of vacancy-related defects in silicon dioxide has been a major challenge. Particularly in amorphous silica, the role of vacancy clusters is still controversial. Experimental data have led to suggestions that the E-delta(') center is a four-vacancy cluster instead of a single vacancy. Here we report density functional calculations that explore the energetics and electronic structure of single vacancies and clusters of four vacancies in realistic models of amorphous silica. A total of 76 O vacancies and 38 four-vacancy clusters were examined, and their energy levels and hyperfine parameters were calculated. Results for single vacancies compare well to previous theory. A key result for four-vacancy clusters is that relaxations localize the unpaired electron preferentially on one Si atom, resulting in a strongly anisotropic electron-paramagnetic-resonance signal. Electrons at single vacancies have a more benign anisotropy which is more compatible with the observed isotropic signal.
C1 [Tuttle, Blair R.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
[Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Tuttle, Blair R.] Penn State Behrend, Dept Phys, Erie, PA 16563 USA.
RP Tuttle, BR (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
FU Air Force Office of Scientific Research; MURI [FA9550-05-1-06]; U.S.
Navy; NCSA supercomputers in Urbana, IL
FX This work was supported in part by the Air Force Office of Scientific
Research under a MURI grant (Grant No. FA9550-05-1-06) and by the U. S.
Navy. Calculations were performed on the NCSA supercomputers in Urbana,
IL.
NR 28
TC 16
Z9 16
U1 0
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 115206
DI 10.1103/PhysRevB.79.115206
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900074
ER
PT J
AU Welp, U
Xie, R
Koshelev, AE
Kwok, WK
Luo, HQ
Wang, ZS
Mu, G
Wen, HH
AF Welp, U.
Xie, R.
Koshelev, A. E.
Kwok, W. K.
Luo, H. Q.
Wang, Z. S.
Mu, G.
Wen, H. H.
TI Anisotropic phase diagram and strong coupling effects in Ba1-xKxFe2As2
from specific-heat measurements
SO PHYSICAL REVIEW B
LA English
DT Article
DE barium compounds; fluctuations in superconductors; Ginzburg-Landau
theory; high-temperature superconductors; iron compounds; phase
diagrams; potassium compounds; specific heat; superconducting critical
field
ID NODELESS SUPERCONDUCTING GAPS; MAGNETIC-FIELD; SINGLE-CRYSTAL;
LAO1-XFXFEAS; TRANSITION; COMPOUND; BEHAVIOR
AB We present a thermodynamic study of the phase diagram of single-crystal Ba1-xKxFe2As2 using specific-heat measurements. In zero-magnetic field a clear step in the heat capacity of Delta C/T-c=0.1 J/mol K-2 is observed at T-c approximate to 34.6 K for a sample with x=0.4. This material is characterized by extraordinarily high slopes of the upper critical field of mu(0)partial derivative H-c2(c)/partial derivative T=-6.5 T/K and mu(0)partial derivative H-c2(ab)/partial derivative T=-17.4 T/K and a surprisingly low anisotropy of Gamma similar to 2.6 near T-c. A consequence of the large field scale is the effective suppression of superconducting fluctuations. Using thermodynamic relations we determine Ginzburg-Landau parameters of kappa(c)similar to 100 and kappa(ab)similar to 260 identifying Ba1-xKxFe2As2 as extreme type II. The large value of the normalized discontinuity of the slopes of the specific heat at T-c, (T-c/Delta C)Delta(dC/dT)(Tc)similar to 6, indicates strong-coupling effects in Ba1-xKxFe2As2.
C1 [Welp, U.; Xie, R.; Koshelev, A. E.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Xie, R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Luo, H. Q.; Wang, Z. S.; Mu, G.; Wen, H. H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.
RP Welp, U (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
RI Mu, Gang/G-9407-2011; Luo, Huiqian/F-4049-2012; Koshelev,
Alexei/K-3971-2013; Wang, Zhaosheng/G-5162-2016;
OI Mu, Gang/0000-0001-5676-4702; Koshelev, Alexei/0000-0002-1167-5906; Xie,
Ruobing/0000-0003-0266-9122
FU U. S. Department of Energy Basic Energy Science [DE-AC02-06CH11357];
Natural Science Foundation of China; Ministry of Science and Technology
of China [2006CB60100, 2006CB921802, 2006CB921107]; Chinese Academy of
Sciences
FX This work was supported by the U. S. Department of Energy Basic Energy
Science under Contract No. DE-AC02-06CH11357, by the Natural Science
Foundation of China, the Ministry of Science and Technology of China
(973 Projects No. 2006CB60100, No. 2006CB921802, and No. 2006CB921107)
and the Chinese Academy of Sciences (Project ITSNEM).
NR 47
TC 45
Z9 46
U1 0
U2 11
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094505
DI 10.1103/PhysRevB.79.094505
PG 5
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200092
ER
PT J
AU Yoon, Y
Kang, MG
Morimoto, T
Mourokh, L
Aoki, N
Reno, JL
Bird, JP
Ochiai, Y
AF Yoon, Y.
Kang, M. -G.
Morimoto, T.
Mourokh, L.
Aoki, N.
Reno, J. L.
Bird, J. P.
Ochiai, Y.
TI Detector backaction on the self-consistent bound state in quantum point
contacts
SO PHYSICAL REVIEW B
LA English
DT Article
DE aluminium compounds; bound states; gallium arsenide; quantum point
contacts; wave functions
ID ELECTRON-SPIN; DOT
AB Bound-state (BS) formation in quantum point contacts (QPCs) may offer a convenient way to localize and probe single spins. In this Rapid Communication, we investigate how such BSs are affected by monitoring them with a second QPC, which is coupled to the BS via wave-function overlap. We show that this coupling leads to a unique detector backaction, in which the BS is weakened by increasing its proximity to the detector. We also show, however, that this interaction between the QPCs can be regulated at will by using an additional gate to control their wave-function overlap.
C1 [Yoon, Y.; Kang, M. -G.; Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA.
[Morimoto, T.] RIKEN, Adv Device Lab, Wako, Saitama 3510198, Japan.
[Mourokh, L.] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA.
[Aoki, N.; Bird, J. P.; Ochiai, Y.] Chiba Univ, Grad Sch Adv Integrat Sci, Inage Ku, Chiba 2638522, Japan.
[Reno, J. L.] Sandia Natl Labs, CINT Sci Dept, Albuquerque, NM 87185 USA.
RP Yoon, Y (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA.
RI Bird, Jonathan/G-4068-2010
OI Bird, Jonathan/0000-0002-6966-9007
FU DOE [DE-FG03-01ER45920]; Center for Integrated Nanotechnologies; U. S.
DOE Office of Basic Energy Sciences nanoscale science research center;
[DE-AC04-94AL85000]
FX This work was supported by the DOE (Contract No. DE-FG03-01ER45920) and
was performed, in part, at the Center for Integrated Nanotechnologies, a
U. S. DOE Office of Basic Energy Sciences nanoscale science research
center. Sandia National Laboratories is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. DOE
(Contract No. DE-AC04-94AL85000).
NR 27
TC 17
Z9 17
U1 1
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 121304
DI 10.1103/PhysRevB.79.121304
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300008
ER
PT J
AU Yu, R
Trinh, KT
Moreo, A
Daghofer, M
Riera, JA
Haas, S
Dagotto, E
AF Yu, Rong
Trinh, Kien T.
Moreo, Adriana
Daghofer, Maria
Riera, Jose A.
Haas, Stephan
Dagotto, Elbio
TI Magnetic and metallic state at intermediate Hubbard U coupling in
multiorbital models for undoped iron pnictides
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetic materials; Fermi surface; high-temperature
superconductors; Hubbard model; iron compounds; neutron diffraction;
photoelectron spectra; variational techniques
ID NODELESS SUPERCONDUCTING GAPS; LAYERED QUATERNARY COMPOUND;
SPIN-DENSITY-WAVE; PHASE-TRANSITIONS; PHOTOEMISSION-SPECTROSCOPY;
INSULATOR-TRANSITION; BAND-STRUCTURE; ANTIFERROMAGNETISM; INSTABILITY;
DIAGRAM
AB Multiorbital Hubbard model Hamiltonians for the undoped parent compounds of the Fe-pnictide superconductors are investigated here using mean-field techniques. For a realistic four-orbital model, our results show the existence of an intermediate Hubbard U coupling regime where the mean-field ground state has a (pi,0) antiferromagnetic order, as in neutron-scattering experiments, while remaining metallic due to the phenomenon of band overlaps. The angle-resolved photoemission intensity and Fermi surface of this magnetic and metallic state are discussed. Other models are also investigated, including a two-orbital model where not only the mean-field technique can be used but also the exact diagonalization in small clusters and the variational cluster approximation in the bulk. The combined results of the three techniques point toward the existence of an intermediate-coupling magnetic and metallic state in the two-orbital model, similar to the intermediate-coupling mean-field state of the four-orbital model. We conclude that the state discussed here is compatible with the experimentally known properties of the undoped Fe pnictides.
C1 [Yu, Rong; Moreo, Adriana; Daghofer, Maria; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Yu, Rong; Moreo, Adriana; Daghofer, Maria; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Trinh, Kien T.; Haas, Stephan] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
[Riera, Jose A.] Univ Nacl Rosario, Consejo Nacl Invest Cient & Tecn, Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina.
RP Yu, R (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
RI Daghofer, Maria/C-5762-2008; Riera, Jose/A-1234-2008; YU,
RONG/C-1506-2012; Yu, Rong/K-5854-2012; Yu, Rong/H-3355-2016
OI Daghofer, Maria/0000-0001-9434-8937; Riera, Jose/0000-0003-4546-1137;
FU NSF [DMR-0706020, DMR-0804914]; Division of Materials Science and
Engineering; U.S. DOE [DE-FG02-05ER46240]
FX This work was mainly supported by the NSF under Grant No. DMR-0706020
and the Division of Materials Science and Engineering, U.S. DOE under
contract with UT-Battelle, LLC. Computation for part of the work
described in this paper was supported by the University of Southern
California Center for High Performance Computing and Communications. S.
H. and K. T. acknowledge financial support from the National Science
Foundation under Grant No. DMR-0804914 and the Department of Energy
under Grant No. DE-FG02-05ER46240.
NR 83
TC 55
Z9 55
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 10
AR 104510
DI 10.1103/PhysRevB.79.104510
PG 16
WC Physics, Condensed Matter
SC Physics
GA 427GU
UT WOS:000264768600104
ER
PT J
AU Zhang, LJ
Singh, DJ
AF Zhang, Lijun
Singh, D. J.
TI Density functional study of the overdoped iron chalcogenide TlFe2Se2
with ThCr2Si2 structure
SO PHYSICAL REVIEW B
LA English
DT Article
DE antiferromagnetism; density functional theory; doping profiles; Fermi
surface; ground states; iron compounds; magnetic moments; magnetoelastic
effects; selenium compounds; spin density waves; superconducting
materials; thallium compounds
ID SUPERCONDUCTIVITY
AB We report density functional calculations of electronic structure and magnetic properties of ternary iron chalcogenide TlFe2Se2, which occurs in the ThCr2Si2 structure and discuss the results in relation to the iron-based superconductors. The ground state is antiferromagnetic with checkerboard order and Fe moment similar to 1.90 mu(B). There is strong magnetoelastic coupling similar to the Fe-based superconductors, reflected in a sensitivity of the Se position to magnetism. Tl is monovalent in this compound, providing heavy electron doping of 0.5 additional carriers per Fe relative to the parent compounds of the Fe-based superconductors. Other than the change in electron count, the electronic structure is rather similar to those materials. In particular, the Fermi surface is closely related to those of the Fe-based superconductors, except that the electron cylinders are larger, and the hole sections are suppressed. This removes the tendency toward a spin-density wave.
C1 [Zhang, Lijun; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012
FU Department of Energy, Division of Materials Sciences and Engineering
FX We are grateful for helpful discussions with M. H. Du, A. Subedi, and D.
Mandrus. Some figures were produced with the XCRYSDEN
program.48 This work was supported by the Department of
Energy, Division of Materials Sciences and Engineering.
NR 47
TC 39
Z9 39
U1 5
U2 29
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 094528
DI 10.1103/PhysRevB.79.094528
PG 6
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200115
ER
PT J
AU Zhang, XW
Trimarchi, G
Zunger, A
AF Zhang, Xiuwen
Trimarchi, Giancarlo
Zunger, Alex
TI Possible pitfalls in theoretical determination of ground-state crystal
structures: The case of platinum nitride
SO PHYSICAL REVIEW B
LA English
DT Article
DE crystal structure; mechanical stability; minimisation; platinum
compounds
ID SEMICONDUCTORS; CUN; CON; NIN
AB In many theoretical studies of the properties of solids, the first and often crucial step entails the determination of the crystal structure via some form of energy minimization. Here we discuss general potential pitfalls that are often encountered in such calculations. We do so in the context of the classic zinc-blende crystal structure that underlines all octet semiconductors and was more recently invoked to explain nonoctet half-metallic magnets such as CrAs, as well as noble-metal nitrides such as PtN, PdN, and NiN. These pitfalls are related to the way in which mechanical instabilities of assumed structures are identified, discarded, and replaced. Using a more general global space-group optimization (GSGO) approach uncovers different and more complex structures that have much lower energies and do not have mechanical instabilities.
C1 [Zhang, Xiuwen; Trimarchi, Giancarlo; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Zhang, XW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM Alex_Zunger@nrel.gov
RI Zunger, Alex/A-6733-2013; ZHANG, XIUWEN/K-7383-2012; Trimarchi,
Giancarlo/A-8225-2010
OI Trimarchi, Giancarlo/0000-0002-0365-3221
FU U.S. Department of Energy; Office of Science; Basic Energy Sciences;
Materials Sciences and Engineering Division [DE-AC3608GO28308]
FX X.Z. thanks Mayeul d'Avezac for useful discussions. This work was funded
by the U.S. Department of Energy, Office of Science, Basic Energy
Sciences, Materials Sciences and Engineering Division under Contract No.
DE-AC3608GO28308 to NREL.
NR 35
TC 25
Z9 25
U1 1
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 9
AR 092102
DI 10.1103/PhysRevB.79.092102
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427GQ
UT WOS:000264768200002
ER
PT J
AU Zhou, JF
Dong, JF
Wang, BN
Koschny, T
Kafesaki, M
Soukoulis, CM
AF Zhou, Jiangfeng
Dong, Jianfeng
Wang, Bingnan
Koschny, Thomas
Kafesaki, Maria
Soukoulis, Costas M.
TI Negative refractive index due to chirality
SO PHYSICAL REVIEW B
LA English
DT Article
DE circular dichroism; metamaterials; optical rotation; refractive index
ID METAMATERIALS
AB We demonstrate experimentally and numerically that metamaterials based on bilayer cross wires give giant optical activity, circular dichroism, and negative refractive index. The presented chiral design offers a much simpler geometry and more efficient way to realize negative refractive index at any frequency. We also developed a retrieval procedure for chiral materials which works successfully for circularly polarized waves.
C1 [Zhou, Jiangfeng; Dong, Jianfeng; Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Zhou, Jiangfeng; Dong, Jianfeng; Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA.
[Dong, Jianfeng] Ningbo Univ, Inst Opt Fiber Commun & Network Technol, Ningbo 315211, Zhejiang, Peoples R China.
[Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Inst Elect Struct & Laser, Fdn Res & Technol Hellas FORTH, Iraklion 71110, Greece.
[Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Greece.
RP Zhou, JF (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
EM soukoulis@ameslab.gov
RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou,
Jiangfeng/D-4292-2009
OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342
FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358];
Department of Navy, Office of the Naval Research [N00014-07-1-0359];
European Community FET project PHOME [213390]; USAFOSR [FA
9550-06-1-0337]; W. C. Wong Education Foundation, Hong Kong; National
Basic Research Program (973) of China [2004CB719805]; National Natural
Science Foundation of China [60777037]
FX Work at Ames Laboratory was supported by the Department of Energy (Basic
Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was
partially supported by the Department of Navy, Office of the Naval
Research (Award No. N00014-07-1-0359), European Community FET project
PHOME (Contract No. 213390), and USAFOSR under MURI Grant No. FA
9550-06-1-0337. The author J.D. gratefully acknowledges support of the
W. C. Wong Education Foundation, Hong Kong, the National Basic Research
Program (973) of China (Grant No. 2004CB719805), and the National
Natural Science Foundation of China (Grant No. 60777037).
NR 22
TC 225
Z9 230
U1 10
U2 66
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 12
AR 121104
DI 10.1103/PhysRevB.79.121104
PG 4
WC Physics, Condensed Matter
SC Physics
GA 427HB
UT WOS:000264769300004
ER
PT J
AU Zhou, XW
Aubry, S
Jones, RE
Greenstein, A
Schelling, PK
AF Zhou, X. W.
Aubry, S.
Jones, R. E.
Greenstein, A.
Schelling, P. K.
TI Towards more accurate molecular dynamics calculation of thermal
conductivity: Case study of GaN bulk crystals
SO PHYSICAL REVIEW B
LA English
DT Article
DE gallium compounds; III-V semiconductors; molecular dynamics method;
Monte Carlo methods; probability; thermal conductivity; wide band gap
semiconductors
ID OVERGROWN GAN/SAPPHIRE 0001; GALLIUM NITRIDE; HEAT-CONDUCTION;
GRAIN-BOUNDARIES; EXTENDED DEFECTS; QUANTUM-WELL; SIMULATION; TRANSPORT;
NANOWIRE; NANODEVICES
AB Significant differences exist among literature for thermal conductivity of various systems computed using molecular dynamics simulation. In some cases, unphysical results, for example, negative thermal conductivity, have been found. Using GaN as an example case and the direct nonequilibrium method, extensive molecular dynamics simulations and Monte Carlo analysis of the results have been carried out to quantify the uncertainty level of the molecular dynamics methods and to identify the conditions that can yield sufficiently accurate calculations of thermal conductivity. We found that the errors of the calculations are mainly due to the statistical thermal fluctuations. Extrapolating results to the limit of an infinite-size system tend to magnify the errors and occasionally lead to unphysical results. The error in bulk estimates can be reduced by performing longer time averages using properly selected systems over a range of sample lengths. If the errors in the conductivity estimates associated with each of the sample lengths are kept below a certain threshold, the likelihood of obtaining unphysical bulk values becomes insignificant. Using a Monte Carlo approach developed here, we have determined the probability distributions for the bulk thermal conductivities obtained using the direct method. We also have observed a nonlinear effect that can become a source of significant errors. For the extremely accurate results presented here, we predict a [0001] GaN thermal conductivity of 185 W/K m at 300 K, 102 W/K m at 500 K, and 74 W/K m at 800 K. Using the insights obtained in the work, we have achieved a corresponding error level (standard deviation) for the bulk (infinite sample length) GaN thermal conductivity of less than 10 W/K m, 5 W/K m, and 15 W/K m at 300 K, 500 K, and 800 K, respectively.
C1 [Zhou, X. W.; Jones, R. E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
[Aubry, S.] Stanford Univ, Mech & Computat Grp, Dept Mech Engn, Stanford, CA 94304 USA.
[Aubry, S.] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA.
[Greenstein, A.] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA.
[Schelling, P. K.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA.
[Schelling, P. K.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA.
RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA.
EM xzhou@sandia.gov
NR 52
TC 53
Z9 53
U1 3
U2 37
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
EI 1550-235X
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2009
VL 79
IS 11
AR 115201
DI 10.1103/PhysRevB.79.115201
PG 17
WC Physics, Condensed Matter
SC Physics
GA 427GX
UT WOS:000264768900069
ER
PT J
AU Abelev, BI
Aggarwal, MM
Ahammed, Z
Anderson, BD
Arkhipkin, D
Averichev, GS
Bai, Y
Balewski, J
Barannikova, O
Barnby, LS
Baudot, J
Baumgart, S
Beavis, DR
Bellwied, R
Benedosso, F
Betts, RR
Bhardwaj, S
Bhasin, A
Bhati, AK
Bichsel, H
Bielcik, J
Bielcikova, J
Biritz, B
Bland, LC
Bombara, M
Bonner, BE
Botje, M
Bouchet, J
Braidot, E
Brandin, AV
Bruna, E
Bueltmann, S
Burton, TP
Bystersky, M
Cai, XZ
Caines, H
Sanchez, MCD
Callner, J
Catu, O
Cebra, D
Cendejas, R
Cervantes, MC
Chajecki, Z
Chaloupka, P
Chattopadhyay, S
Chen, HF
Chen, JH
Chen, JY
Cheng, J
Cherney, M
Chikanian, A
Choi, KE
Christie, W
Chung, SU
Clarke, RF
Codrington, MJM
Coffin, JP
Cormier, TM
Cosentino, MR
Cramer, JG
Crawford, HJ
Das, D
Dash, S
Daugherity, M
De Silva, C
Dedovich, TG
DePhillips, M
Derevschikov, AA
de Souza, RD
Didenko, L
Djawotho, P
Dogra, SM
Dong, X
Drachenberg, JL
Draper, JE
Du, F
Dunlop, JC
Mazumdar, MRD
Edwards, WR
Efimov, LG
Elhalhuli, E
Elnimr, M
Emelianov, V
Engelage, J
Eppley, G
Erazmus, B
Estienne, M
Eun, L
Fachini, P
Fatemi, R
Fedorisin, J
Feng, A
Filip, P
Finch, E
Fine, V
Fisyak, Y
Gagliardi, CA
Gaillard, L
Gangadharan, DR
Ganti, MS
Garcia-Solis, E
Ghazikhanian, V
Ghosh, P
Gorbunov, YN
Gordon, A
Grebenyuk, O
Grosnick, D
Grube, B
Guertin, SM
Guimaraes, KSFF
Gupta, A
Gupta, N
Guryn, W
Haag, B
Hallman, TJ
Hamed, A
Harris, JW
He, W
Heinz, M
Heppelmann, S
Hippolyte, B
Hirsch, A
Hjort, E
Hoffman, AM
Hoffmann, GW
Hofman, DJ
Hollis, RS
Huang, HZ
Humanic, TJ
Igo, G
Iordanova, A
Jacobs, P
Jacobs, WW
Jakl, P
Jin, F
Jones, PG
Joseph, J
Judd, EG
Kabana, S
Kajimoto, K
Kang, K
Kapitan, J
Kaplan, M
Keane, D
Kechechyan, A
Kettler, D
Khodyrev, VY
Kiryluk, J
Kisiel, A
Klein, SR
Knospe, AG
Kocoloski, A
Koetke, DD
Kopytine, M
Kotchenda, L
Kouchpil, V
Kravtsov, P
Kravtsov, VI
Krueger, K
Krus, M
Kuhn, C
Kumar, L
Kurnadi, P
Lamont, MAC
Landgraf, JM
LaPointe, S
Lauret, J
Lebedev, A
Lednicky, R
Lee, CH
LeVine, MJ
Li, C
Li, Y
Lin, G
Lin, X
Lindenbaum, SJ
Lisa, MA
Liu, F
Liu, H
Liu, J
Liu, L
Ljubicic, T
Llope, WJ
Longacre, RS
Love, WA
Lu, Y
Ludlam, T
Lynn, D
Ma, GL
Ma, YG
Mahapatra, DP
Majka, R
Mall, OI
Mangotra, LK
Manweiler, R
Margetis, S
Markert, C
Matis, HS
Matulenko, YA
McShane, TS
Meschanin, A
Millane, J
Miller, ML
Minaev, NG
Mioduszewski, S
Mischke, A
Mitchell, J
Mohanty, B
Molnar, L
Morozov, DA
Munhoz, MG
Nandi, BK
Nattrass, C
Nayak, TK
Nelson, JM
Nepali, C
Netrakanti, PK
Ng, MJ
Nogach, LV
Nurushev, SB
Odyniec, G
Ogawa, A
Okada, H
Okorokov, V
Olson, D
Pachr, M
Page, BS
Pal, SK
Pandit, Y
Panebratsev, Y
Pawlak, T
Peitzmann, T
Perevoztchikov, V
Perkins, C
Peryt, W
Phatak, SC
Planinic, M
Pluta, J
Poljak, N
Poskanzer, AM
Potukuchi, BVKS
Prindle, D
Pruneau, C
Pruthi, NK
Putschke, J
Raniwala, R
Raniwala, S
Ray, RL
Reed, R
Ridiger, A
Ritter, HG
Roberts, JB
Rogachevskiy, OV
Romero, JL
Rose, A
Roy, C
Ruan, L
Russcher, MJ
Rykov, V
Sahoo, R
Sakrejda, I
Sakuma, T
Salur, S
Sandweiss, J
Sarsour, M
Schambach, J
Scharenberg, RP
Schmitz, N
Seger, J
Selyuzhenkov, I
Seyboth, P
Shabetai, A
Shahaliev, E
Shao, M
Sharma, M
Shi, SS
Shi, XH
Sichtermann, EP
Simon, F
Singaraju, RN
Skoby, MJ
Smirnov, N
Snellings, R
Sorensen, P
Sowinski, J
Spinka, HM
Srivastava, B
Stadnik, A
Stanislaus, TDS
Staszak, D
Strikhanov, M
Stringfellow, B
Suaide, AAP
Suarez, MC
Subba, NL
Sumbera, M
Sun, XM
Sun, Y
Sun, Z
Surrow, B
Symons, TJM
de Toledo, AS
Takahashi, J
Tang, AH
Tang, Z
Tarnowsky, T
Thein, D
Thomas, JH
Tian, J
Timmins, AR
Timoshenko, S
Tlusty, D
Tokarev, M
Tram, VN
Trattner, AL
Trentalange, S
Tribble, RE
Tsai, OD
Ulery, J
Ullrich, T
Underwood, DG
Buren, GV
van Leeuwen, M
Molen, AMV
Vanfossen, JA
Varma, R
Vasconcelos, GMS
Vasilevski, IM
Vasiliev, AN
Videbaek, F
Vigdor, SE
Viyogi, YP
Vokal, S
Voloshin, SA
Wada, M
Waggoner, WT
Wang, F
Wang, G
Wang, JS
Wang, Q
Wang, X
Wang, XL
Wang, Y
Webb, JC
Westfall, GD
Whitten, C
Wieman, H
Wissink, SW
Witt, R
Wu, Y
Xu, N
Xu, QH
Xu, Y
Xu, Z
Yepes, P
Yoo, IK
Yue, Q
Zawisza, M
Zbroszczyk, H
Zhan, W
Zhang, H
Zhang, S
Zhang, WM
Zhang, Y
Zhang, ZP
Zhao, Y
Zhong, C
Zhou, J
Zoulkarneev, R
Zoulkarneeva, Y
Zuo, JX
AF Abelev, B. I.
Aggarwal, M. M.
Ahammed, Z.
Anderson, B. D.
Arkhipkin, D.
Averichev, G. S.
Bai, Y.
Balewski, J.
Barannikova, O.
Barnby, L. S.
Baudot, J.
Baumgart, S.
Beavis, D. R.
Bellwied, R.
Benedosso, F.
Betts, R. R.
Bhardwaj, S.
Bhasin, A.
Bhati, A. K.
Bichsel, H.
Bielcik, J.
Bielcikova, J.
Biritz, B.
Bland, L. C.
Bombara, M.
Bonner, B. E.
Botje, M.
Bouchet, J.
Braidot, E.
Brandin, A. V.
Bruna, E.
Bueltmann, S.
Burton, T. P.
Bystersky, M.
Cai, X. Z.
Caines, H.
Sanchez, M. Calderson de la Barca
Callner, J.
Catu, O.
Cebra, D.
Cendejas, R.
Cervantes, M. C.
Chajecki, Z.
Chaloupka, P.
Chattopadhyay, S.
Chen, H. F.
Chen, J. H.
Chen, J. Y.
Cheng, J.
Cherney, M.
Chikanian, A.
Choi, K. E.
Christie, W.
Chung, S. U.
Clarke, R. F.
Codrington, M. J. M.
Coffin, J. P.
Cormier, T. M.
Cosentino, M. R.
Cramer, J. G.
Crawford, H. J.
Das, D.
Dash, S.
Daugherity, M.
De Silva, C.
Dedovich, T. G.
DePhillips, M.
Derevschikov, A. A.
de Souza, R. Derradi
Didenko, L.
Djawotho, P.
Dogra, S. M.
Dong, X.
Drachenberg, J. L.
Draper, J. E.
Du, F.
Dunlop, J. C.
Mazumdar, M. R. Dutta
Edwards, W. R.
Efimov, L. G.
Elhalhuli, E.
Elnimr, M.
Emelianov, V.
Engelage, J.
Eppley, G.
Erazmus, B.
Estienne, M.
Eun, L.
Fachini, P.
Fatemi, R.
Fedorisin, J.
Feng, A.
Filip, P.
Finch, E.
Fine, V.
Fisyak, Y.
Gagliardi, C. A.
Gaillard, L.
Gangadharan, D. R.
Ganti, M. S.
Garcia-Solis, E.
Ghazikhanian, V.
Ghosh, P.
Gorbunov, Y. N.
Gordon, A.
Grebenyuk, O.
Grosnick, D.
Grube, B.
Guertin, S. M.
Guimaraes, K. S. F. F.
Gupta, A.
Gupta, N.
Guryn, W.
Haag, B.
Hallman, T. J.
Hamed, A.
Harris, J. W.
He, W.
Heinz, M.
Heppelmann, S.
Hippolyte, B.
Hirsch, A.
Hjort, E.
Hoffman, A. M.
Hoffmann, G. W.
Hofman, D. J.
Hollis, R. S.
Huang, H. Z.
Humanic, T. J.
Igo, G.
Iordanova, A.
Jacobs, P.
Jacobs, W. W.
Jakl, P.
Jin, F.
Jones, P. G.
Joseph, J.
Judd, E. G.
Kabana, S.
Kajimoto, K.
Kang, K.
Kapitan, J.
Kaplan, M.
Keane, D.
Kechechyan, A.
Kettler, D.
Khodyrev, V. Yu.
Kiryluk, J.
Kisiel, A.
Klein, S. R.
Knospe, A. G.
Kocoloski, A.
Koetke, D. D.
Kopytine, M.
Kotchenda, L.
Kouchpil, V.
Kravtsov, P.
Kravtsov, V. I.
Krueger, K.
Krus, M.
Kuhn, C.
Kumar, L.
Kurnadi, P.
Lamont, M. A. C.
Landgraf, J. M.
LaPointe, S.
Lauret, J.
Lebedev, A.
Lednicky, R.
Lee, C. -H.
LeVine, M. J.
Li, C.
Li, Y.
Lin, G.
Lin, X.
Lindenbaum, S. J.
Lisa, M. A.
Liu, F.
Liu, H.
Liu, J.
Liu, L.
Ljubicic, T.
Llope, W. J.
Longacre, R. S.
Love, W. A.
Lu, Y.
Ludlam, T.
Lynn, D.
Ma, G. L.
Ma, Y. G.
Mahapatra, D. P.
Majka, R.
Mall, O. I.
Mangotra, L. K.
Manweiler, R.
Margetis, S.
Markert, C.
Matis, H. S.
Matulenko, Yu. A.
McShane, T. S.
Meschanin, A.
Millane, J.
Miller, M. L.
Minaev, N. G.
Mioduszewski, S.
Mischke, A.
Mitchell, J.
Mohanty, B.
Molnar, L.
Morozov, D. A.
Munhoz, M. G.
Nandi, B. K.
Nattrass, C.
Nayak, T. K.
Nelson, J. M.
Nepali, C.
Netrakanti, P. K.
Ng, M. J.
Nogach, L. V.
Nurushev, S. B.
Odyniec, G.
Ogawa, A.
Okada, H.
Okorokov, V.
Olson, D.
Pachr, M.
Page, B. S.
Pal, S. K.
Pandit, Y.
Panebratsev, Y.
Pawlak, T.
Peitzmann, T.
Perevoztchikov, V.
Perkins, C.
Peryt, W.
Phatak, S. C.
Planinic, M.
Pluta, J.
Poljak, N.
Poskanzer, A. M.
Potukuchi, B. V. K. S.
Prindle, D.
Pruneau, C.
Pruthi, N. K.
Putschke, J.
Raniwala, R.
Raniwala, S.
Ray, R. L.
Reed, R.
Ridiger, A.
Ritter, H. G.
Roberts, J. B.
Rogachevskiy, O. V.
Romero, J. L.
Rose, A.
Roy, C.
Ruan, L.
Russcher, M. J.
Rykov, V.
Sahoo, R.
Sakrejda, I.
Sakuma, T.
Salur, S.
Sandweiss, J.
Sarsour, M.
Schambach, J.
Scharenberg, R. P.
Schmitz, N.
Seger, J.
Selyuzhenkov, I.
Seyboth, P.
Shabetai, A.
Shahaliev, E.
Shao, M.
Sharma, M.
Shi, S. S.
Shi, X. -H.
Sichtermann, E. P.
Simon, F.
Singaraju, R. N.
Skoby, M. J.
Smirnov, N.
Snellings, R.
Sorensen, P.
Sowinski, J.
Spinka, H. M.
Srivastava, B.
Stadnik, A.
Stanislaus, T. D. S.
Staszak, D.
Strikhanov, M.
Stringfellow, B.
Suaide, A. A. P.
Suarez, M. C.
Subba, N. L.
Sumbera, M.
Sun, X. M.
Sun, Y.
Sun, Z.
Surrow, B.
Symons, T. J. M.
de Toledo, A. Szanto
Takahashi, J.
Tang, A. H.
Tang, Z.
Tarnowsky, T.
Thein, D.
Thomas, J. H.
Tian, J.
Timmins, A. R.
Timoshenko, S.
Tlusty, D.
Tokarev, M.
Tram, V. N.
Trattner, A. L.
Trentalange, S.
Tribble, R. E.
Tsai, O. D.
Ulery, J.
Ullrich, T.
Underwood, D. G.
Buren, G. Van
van Leeuwen, M.
Molen, A. M. Vander
Vanfossen, J. A., Jr.
Varma, R.
Vasconcelos, G. M. S.
Vasilevski, I. M.
Vasiliev, A. N.
Videbaek, F.
Vigdor, S. E.
Viyogi, Y. P.
Vokal, S.
Voloshin, S. A.
Wada, M.
Waggoner, W. T.
Wang, F.
Wang, G.
Wang, J. S.
Wang, Q.
Wang, X.
Wang, X. L.
Wang, Y.
Webb, J. C.
Westfall, G. D.
Whitten, C., Jr.
Wieman, H.
Wissink, S. W.
Witt, R.
Wu, Y.
Xu, N.
Xu, Q. H.
Xu, Y.
Xu, Z.
Yepes, P.
Yoo, I. -K.
Yue, Q.
Zawisza, M.
Zbroszczyk, H.
Zhan, W.
Zhang, H.
Zhang, S.
Zhang, W. M.
Zhang, Y.
Zhang, Z. P.
Zhao, Y.
Zhong, C.
Zhou, J.
Zoulkarneev, R.
Zoulkarneeva, Y.
Zuo, J. X.
CA STAR Collaboration
TI Systematic measurements of identified particle spectra in pp, d plus Au,
and Au plus Au collisions at the STAR detector
SO PHYSICAL REVIEW C
LA English
DT Review
ID HEAVY-ION COLLISIONS; QUARK-GLUON-PLASMA; NUCLEUS-NUCLEUS COLLISIONS;
TIME PROJECTION CHAMBER; IMPACT PARAMETER REPRESENTATION;
PROTON-ANTIPROTON COLLISIONS; TRANSVERSE-MOMENTUM SPECTRA; RESISTIVE
PLATE CHAMBERS; HIGH-DENSITY QCD; AU+AU COLLISIONS
AB Identified charged-particle spectra of pi(+/-), K-+/-, p, and (p) over bar at midrapidity (vertical bar y vertical bar < 0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d + Au collisions at root s(NN) = 200 GeV and for Au + Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm(3) for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase-transition temperature, suggesting that chemical freeze-out happens in the vicinity of hadronization and the chemical freeze-out temperature is universal despite the vastly different initial conditions in the collision systems. The extracted kinetic freeze-out temperature, while similar to the chemical freeze-out temperature in pp, d + Au, and peripheral Au + Au collisions, drops significantly with centrality in Au + Au collisions, whereas the extracted transverse radial flow velocity increases rapidly with centrality. There appears to be a prolonged period of particle elastic scatterings from chemical to kinetic freeze-out in central Au + Au collisions. The bulk properties extracted at chemical and kinetic freeze-out are observed to evolve smoothly over the measured energy range, collision systems, and collision centralities.
C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA.
[Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England.
[Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Buren, G. Van; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Sanchez, M. Calderson de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA.
[Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil.
[Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cherney, M.; Garcia-Solis, E.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA.
[Bielcikova, J.; Cervantes, M. C.; Chaloupka, P.; Gorbunov, Y. N.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Nucl Res Inst AS CR, CZ-25068 Rez, Czech Republic.
[Averichev, G. S.; Dong, X.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia.
[Arkhipkin, D.; Efimov, L. G.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia.
[Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India.
[Dash, S.; Nandi, B. K.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India.
[He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA.
[Baudot, J.; Coffin, J. P.; Estienne, M.; Kuhn, C.] Inst Rech Subatom, Strasbourg, France.
[Bhasin, A.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India.
[Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Rykov, V.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA.
[Fatemi, R.; Nepali, C.] Univ Kentucky, Lexington, KY 40506 USA.
[Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China.
[Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
[Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Surrow, B.] MIT, Cambridge, MA 02139 USA.
[Schmitz, N.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA.
[Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA.
[Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Vasiliev, A. N.] NIKHEF, Amsterdam, Netherlands.
[Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Vasiliev, A. N.] Univ Utrecht, Amsterdam, Netherlands.
[Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA.
[Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India.
[Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA.
[Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia.
[Molnar, L.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, G.; Wang, Q.] Purdue Univ, W Lafayette, IN 47907 USA.
[Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea.
[Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India.
[Bonner, B. E.; Eppley, G.; Liu, L.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA.
[Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil.
[Chen, H. F.; Li, C.; Lu, Y.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France.
[Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA.
[Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA.
[Cheng, J.; Kang, K.; Lin, X.; Pal, S. K.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Witt, R.] USN Acad, Annapolis, MD 21402 USA.
[Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA.
[Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Singaraju, R. N.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India.
[Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland.
[Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA.
[Bellwied, R.; Cormier, T. M.; De Silva, C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA.
[Chen, J. Y.; Feng, A.; Lin, X.; Liu, F.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA.
[Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia.
RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA.
RI Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Fornazier
Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012;
Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013;
Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb
Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma,
Yu-Gang/M-8122-2013; Witt, Richard/H-3560-2012; Barnby, Lee/G-2135-2010;
Mischke, Andre/D-3614-2011; Voloshin, Sergei/I-4122-2013; Takahashi,
Jun/B-2946-2012; Pandit, Yadav/I-2170-2013; Lednicky,
Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera,
Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Planinic,
Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann,
Thomas/K-2206-2012
OI Bhasin, Anju/0000-0002-3687-8179; van Leeuwen,
Marco/0000-0002-5222-4888; Lee, Chang-Hwan/0000-0003-3221-1171;
Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass,
Christine/0000-0002-8768-6468; Derradi de Souza,
Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556;
Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900;
Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779;
Pandit, Yadav/0000-0003-2809-7943; Cosentino,
Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323;
Strikhanov, Mikhail/0000-0003-2586-0405; Peitzmann,
Thomas/0000-0002-7116-899X
NR 171
TC 382
Z9 388
U1 3
U2 63
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034909
DI 10.1103/PhysRevC.79.034909
PG 58
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100047
ER
PT J
AU Bertsch, GF
Bertulani, CA
Nazarewicz, W
Schunck, N
Stoitsov, MV
AF Bertsch, G. F.
Bertulani, C. A.
Nazarewicz, W.
Schunck, N.
Stoitsov, M. V.
TI Odd-even mass differences from self-consistent mean field theory
SO PHYSICAL REVIEW C
LA English
DT Article
ID FOCK-BOGOLYUBOV EQUATIONS; HARMONIC-OSCILLATOR BASIS; PAIRING
INTERACTION; DRIP-LINE; NUCLEI; NEUTRON; MODELS; GAP; DEPENDENCE;
DENSITIES
AB We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare the results with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization, and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form c/A(alpha). The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects, (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel, and (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences.
C1 [Bertsch, G. F.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA.
[Bertulani, C. A.] Texas A&M Univ, Dept Phys, Commerce, TX 75429 USA.
[Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Nazarewicz, W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
[Nazarewicz, W.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland.
[Schunck, N.; Stoitsov, M. V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria.
[Bertsch, G. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA.
RP Bertsch, GF (reprint author), Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA.
OI Schunck, Nicolas/0000-0002-9203-6849
FU US Department of Energy [DE-FC02-07ER41457, DE-FG02-00ER41132,
DE-FG02-96ER40963, DE-AC05-00OR22725]
FX We thank A. Bulgac, W. Friedman, and P.-H. Heenen for helpful
discussions. This work was supported in part by the US Department of
Energy under Contract Nos. DE-FC02-07ER41457 (UNEDF SciDAC
Collaboration), DE-FG02-00ER41132 (University of Washington),
DE-FG02-96ER40963 (University of Tennessee), and DE-AC05-00OR22725 with
UT-Battelle, LLC (Oak Ridge National Laboratory). Computational
resources were provided by the National Center for Computational
Sciences at Oak Ridge and the National Energy Research Scientific
Computing Facility. Computations were also carried out on the Athena
cluster of the University of Washington.
NR 64
TC 78
Z9 78
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034306
DI 10.1103/PhysRevC.79.034306
PG 12
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100017
ER
PT J
AU Chang, L
Liu, YX
Roberts, CD
Shi, YM
Sun, WM
Zong, HS
AF Chang, Lei
Liu, Yu-xin
Roberts, Craig D.
Shi, Yuan-mei
Sun, Wei-min
Zong, Hong-shi
TI Chiral susceptibility and the scalar Ward identity
SO PHYSICAL REVIEW C
LA English
DT Article
ID DYSON-SCHWINGER EQUATIONS; QUARK BOUND-STATES; QUANTUM CHROMODYNAMICS;
VACUUM SUSCEPTIBILITY; SYMMETRY BREAKING; DECAY CONSTANT; MODEL; QCD;
CONFINEMENT; LATTICE
AB The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansatze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.
C1 [Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Chang, Lei] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China.
[Liu, Yu-xin] Peking Univ, Dept Phys, Beijing 100871, Peoples R China.
[Liu, Yu-xin] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.
[Liu, Yu-xin] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China.
[Roberts, Craig D.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia.
[Shi, Yuan-mei; Sun, Wei-min; Zong, Hong-shi] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China.
[Sun, Wei-min; Zong, Hong-shi] Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China.
RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
EM yxliu@pku.edu.cn; cdroberts@anl.gov
OI Roberts, Craig/0000-0002-2937-1361
NR 58
TC 37
Z9 37
U1 1
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 035209
DI 10.1103/PhysRevC.79.035209
PG 9
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100057
ER
PT J
AU Dvorak, J
Bruchle, W
Dullmann, CE
Dvorakova, Z
Eberhardt, K
Eichler, R
Jager, E
Nagame, Y
Qin, Z
Schadel, M
Schausten, B
Schimpf, E
Schuber, R
Semchenkov, A
Thorle, P
Turler, A
Wegrzecki, M
Yakushev, A
AF Dvorak, J.
Bruechle, W.
Duellmann, Ch. E.
Dvorakova, Z.
Eberhardt, K.
Eichler, R.
Jaeger, E.
Nagame, Y.
Qin, Z.
Schaedel, M.
Schausten, B.
Schimpf, E.
Schuber, R.
Semchenkov, A.
Thoerle, P.
Tuerler, A.
Wegrzecki, M.
Yakushev, A.
TI Cross section limits for the Cm-248(Mg-25,4n-5n)(268,269)Hs reactions
SO PHYSICAL REVIEW C
LA English
DT Article
ID GROUND-STATE PROPERTIES; DECAY HALF-LIVES; SUPERHEAVY NUCLEI;
SPONTANEOUS-FISSION; HEAVIEST NUCLEI; ELEMENTS; MODELS; HEAVY
AB We report on an attempt to produce and detect (268)Hs and (269)Hs in the nuclear fusion reaction Mg-25+Cm-248 using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of (269)Hs we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction Cm-248(Mg-25,4n)(269)Hs at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the Cm-248(Mg-25,5n)(268)Hs reaction depends on the assumed half-life of unknown (268)Hs. Current systematics of the half-lives for even-even Hs isotopes suggests a value of 0.5 s, resulting in a cross section limit of 1.3 pb.
C1 [Dvorak, J.; Dvorakova, Z.; Schuber, R.; Semchenkov, A.; Tuerler, A.; Yakushev, A.] Tech Univ Munich, D-85748 Garching, Germany.
[Bruechle, W.; Duellmann, Ch. E.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E.; Semchenkov, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany.
[Eberhardt, K.; Thoerle, P.] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany.
[Eichler, R.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland.
[Nagame, Y.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan.
[Qin, Z.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China.
[Wegrzecki, M.] Inst Electr Mat Technol, PL-02668 Warsaw, Poland.
RP Dvorak, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RI Eichler, Robert/G-5130-2011; Turler, Andreas/D-3913-2014
OI Turler, Andreas/0000-0002-4274-1056
NR 24
TC 12
Z9 12
U1 0
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 037602
DI 10.1103/PhysRevC.79.037602
PG 4
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100074
ER
PT J
AU Ferroni, L
Koch, V
AF Ferroni, L.
Koch, V.
TI Crossover transition in bag-like models
SO PHYSICAL REVIEW C
LA English
DT Article
ID SU(2) GAUGE-THEORY; THERMAL HADRON-PRODUCTION; QUARK-GLUON PLASMA;
PHASE-TRANSITION; STATISTICAL HADRONIZATION; CRITICAL-BEHAVIOR;
MASS-SPECTRUM; COLLISIONS; PERCOLATION; GAS
AB We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consist of a finite number of infinitely extended bags, which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons.
C1 [Ferroni, L.; Koch, V.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RP Ferroni, L (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.
FU US Department of Energy [DE-AC02-05CH11231]
FX The authors thank M. I. Gorenstein for a critical reading of the
manuscript and for useful suggestions. This work is supported by the
Director, Office of Energy Research, Office of High Energy and Nuclear
Physics, Divisions of Nuclear Physics, of the US Department of Energy
under Contract No. DE-AC02-05CH11231.
NR 39
TC 19
Z9 19
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034905
DI 10.1103/PhysRevC.79.034905
PG 14
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100043
ER
PT J
AU Flambaum, VV
Wiringa, RB
AF Flambaum, V. V.
Wiringa, R. B.
TI Enhanced effect of quark mass variation in Th-229 and limits from Oklo
data
SO PHYSICAL REVIEW C
LA English
DT Article
ID FINE-STRUCTURE CONSTANT; FUNDAMENTAL CONSTANTS; TIME-VARIATION;
SIGMA-TERMS; TRANSITION; UNIFICATION; SENSITIVITY
AB The effects of the variation of the dimensionless strong interaction parameter X-q=m(q)/Lambda(QCD) (m(q) is the quark mass, Lambda(QCD) is the QCD scale) are enhanced about 1.5x10(5) times in the 7.6 eV "nuclear clock" transition between the ground and first excited states in the Th-229 nucleus and about 1x10(8) times in the relative shift of the 0.1 eV compound resonance in Sm-150. The best terrestrial limit on the temporal variation of the fundamental constants, |delta X-q/X-q|< 4x10(-9) at 1.8 billion years ago (|X center dot(q)/X-q|< 2.2x10(-18)y(-1)), is obtained from the shift of this Sm resonance derived from the Oklo natural nuclear reactor data. The results for Th-229 and Sm-150 are obtained by extrapolation from light nuclei where the many-body calculations can be performed more accurately. The errors produced by such extrapolation may be smaller than the errors of direct calculations in heavy nuclei. The extrapolation results are compared with the "direct" estimates obtained using the Walecka model. A number of numerical relations needed for the calculations of the variation effects in nuclear physics and atomic spectroscopy have been obtained: for the nuclear binding energy delta E/E approximate to-1.45 delta m(q)/m(q), for the spin-orbit intervals delta E-so/E-so approximate to-0.22 delta m(q)/m(q), for the nuclear radius delta r/r approximate to 0.3 delta m(q)/m(q) (in units of Lambda(QCD)); for the shifts of nuclear resonances and weakly bound energy levels delta E-r approximate to 10 delta X-q/X-q MeV.
C1 [Flambaum, V. V.; Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Flambaum, V. V.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia.
[Flambaum, V. V.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada.
RP Flambaum, VV (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RI Wiringa, Robert/M-4970-2015
FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357];
Australian Research Council
FX V. V. F. is grateful to H. Feldmeier for useful discussions. This work
is supported by the US Department of Energy, Office of Nuclear Physics,
under contract DE-AC02-06CH11357, and by the Australian Research
Council. Calculations were made at Argonne's Laboratory Computing
Resource Center.
NR 41
TC 35
Z9 35
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034302
DI 10.1103/PhysRevC.79.034302
PG 8
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100013
ER
PT J
AU Fries, RJ
Muller, B
Schafer, A
AF Fries, Rainer J.
Mueller, Berndt
Schaefer, Andreas
TI Decoherence and entropy production in relativistic nuclear collisions
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; QUANTUM DECOHERENCE; ELLIPTIC
FLOW; HIGH-ENERGY; SMALL X; THERMALIZATION; COLLABORATION;
EQUILIBRATION; SATURATION
AB Short thermalization times of less than 1 fm/c for quark and gluon matter have been suggested by recent experiments at the Relativistic Heavy Ion Collider. It has been difficult to justify this rapid thermalization in first-principle calculations based on perturbation theory or the color glass condensate picture. Here, we address the related question of the decoherence of the gluon field, which is a necessary component of thermalization. We present a simplified leading-order computation of the decoherence time of a gluon ensemble subject to an incoming flux of Weizsacker-Williams gluons. We also discuss the entropy produced during the decoherence process and its relation to the entropy in the final state that has been measured experimentally.
C1 [Fries, Rainer J.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77801 USA.
[Fries, Rainer J.] Texas A&M Univ, Dept Phys, College Stn, TX 77801 USA.
[Fries, Rainer J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Mueller, Berndt] Duke Univ, Dept Phys, Durham, NC 27708 USA.
[Schaefer, Andreas] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany.
RP Fries, RJ (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77801 USA.
FU Alexander von Humboldt Foundation; BMBF; RIKEN/BNL; Texas A&M College of
Science; DOE [DE-AC02-98CH10886]
FX This work was supported by the Alexander von Humboldt Foundation, BMBF,
RIKEN/BNL, the Texas A&M College of Science, and DOE Grant
DE-AC02-98CH10886.
NR 39
TC 10
Z9 10
U1 0
U2 1
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034904
DI 10.1103/PhysRevC.79.034904
PG 7
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100042
ER
PT J
AU Goeke, K
Guzey, V
Siddikov, M
AF Goeke, K.
Guzey, V.
Siddikov, M.
TI Leading twist nuclear shadowing, nuclear generalized parton
distributions, and nuclear deeply virtual Compton scattering at small x
SO PHYSICAL REVIEW C
LA English
DT Article
ID INELASTIC SCATTERING; CROSS-SECTION; HERA; ELECTROPRODUCTION;
FACTORIZATION; HADRONS; MESONS; QCD
AB We generalize the leading twist theory of nuclear shadowing and calculate quark and gluon generalized parton distributions (GPDs) of spinless nuclei. We predict very large nuclear shadowing for nuclear GPDs. In the limit of the purely transverse momentum transfer, our nuclear GPDs become impact-parameter-dependent nuclear parton distribution functions (PDFs). Nuclear shadowing induces nontrivial correlations between the impact parameter b and the light-cone fraction x. We make predictions for the deeply virtual Compton scattering (DVCS) amplitude and the DVCS cross section on Pb-208 at high energies. We calculate the cross section of the Bethe-Heitler (BH) process and address the issue of the extraction of the DVCS signal from the eA -> e gamma A cross section. We find that the eA -> e gamma A differential cross section is dominated by DVCS at the momentum transfer t near the minima of the nuclear form factor. We also find that nuclear shadowing leads to dramatic oscillations of the DVCS beam-spin asymmetry, A(LU), as a function of t. The position of the points where A(LU) changes sign is directly related to the magnitude of nuclear shadowing.
C1 [Goeke, K.; Siddikov, M.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany.
[Guzey, V.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA.
[Siddikov, M.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile.
[Siddikov, M.] Univ Tecn Federico Santa Maria, Ctr Estudios Subatom, Valparaiso, Chile.
[Siddikov, M.] Uzbekistan Natl Univ, Dept Theoret Phys, Tashkent 700174, Uzbekistan.
RP Goeke, K (reprint author), Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany.
EM Klaus.Goeke@tp2.rub.de; vguzey@jlab.org; marat.siddikov@tp2.rub.de
RI Siddikov, Marat/H-6629-2013;
OI Siddikov, Marat/0000-0002-9290-3236; Guzey, Vadim/0000-0002-2393-8507
FU Jefferson Science Associates, LLC; US DOE [DE-AC05-06OR23177]; The US
Government
FX We would like to thank M. Strikman for useful discussions. This paper is
authored by Jefferson Science Associates, LLC under US DOE Contract No.
DE- AC05-06OR23177. The US Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce this manuscript
for US Government purposes.
NR 48
TC 6
Z9 6
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 035210
DI 10.1103/PhysRevC.79.035210
PG 17
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100058
ER
PT J
AU Goodin, C
Stone, JR
Stone, NJ
Ramayya, AV
Daniel, AV
Hamilton, JH
Li, K
Hwang, JK
Ter-Akopian, GM
Rasmussen, JO
AF Goodin, C.
Stone, J. R.
Stone, N. J.
Ramayya, A. V.
Daniel, A. V.
Hamilton, J. H.
Li, K.
Hwang, J. K.
Ter-Akopian, G. M.
Rasmussen, J. O.
TI g factors of first 2(+) states of neutron-rich Xe, Ba, and Ce isotopes
SO PHYSICAL REVIEW C
LA English
DT Article
ID MAGNETIC-MOMENTS; ANGULAR-CORRELATIONS; SPONTANEOUS FISSION; EVEN
NUCLEI; FIELD; DEFORMATIONS; SYSTEMATICS; CF-252; PROTON; BA-138
AB Using new techniques developed for measuring angular correlations with large detector arrays, the g factors of 2(+) states in Xe-140,Xe-142 are measured for the first time by the method of correlation attenuation in randomly oriented magnetic fields. g factors in Ba-146 and Ce-146,Ce-148 are measured to establish the method by comparison with previous values. The results are discussed in terms of IBM-2 and rotation-vibration models.
C1 [Goodin, C.; Ramayya, A. V.; Hamilton, J. H.; Li, K.; Hwang, J. K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA.
[Stone, J. R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Stone, J. R.; Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Daniel, A. V.; Ter-Akopian, G. M.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia.
[Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA.
[Stone, J. R.; Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
RP Goodin, C (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA.
OI Hwang, Jae-Kwang/0000-0002-4100-3473
FU US Department of Energy [DE-FG05-88ER40407, DE-FG05-87ER40311,
DE-FG02-96ER40983, DE-FG02-94ER40834]; University of Tennessee;
Vanderbilt University; [W-7405-ENG48]
FX The authors thank F. Iachello for his discussions. The work at
Vanderbilt University and Lawrence Berkeley National Laboratory was
supported by the US Department of Energy under Grant No.
DE-FG05-88ER40407 and Contract No. W-7405-ENG48. The Joint Institute for
Heavy Ion Research is supported by the University of Tennessee,
Vanderbilt University, and the US DOE through Contract No.
DE-FG05-87ER40311 with the University of Tennessee. The authors are
indebted for the use of 252Cf to the office of Basic Energy
Sciences, U. S. Department of Energy, through the transplutonium element
production facilities at the Oak Ridge National Laboratory. Support by
U. S. DOE Grant Nos. DE-FG02-96ER40983 (N.J.S.) and DE-FG02-94ER40834
(J.R.S.) is gratefully acknowledged.
NR 27
TC 12
Z9 13
U1 0
U2 4
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034316
DI 10.1103/PhysRevC.79.034316
PG 7
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100027
ER
PT J
AU Jeppesen, HB
Dragojevic, I
Clark, RM
Gregorich, KE
Ali, MN
Allmond, JM
Beausang, CW
Bleuel, DL
Cromaz, M
Deleplanque, MA
Ellison, PA
Fallon, P
Garcia, MA
Gates, JM
Greene, JP
Gros, S
Lee, IY
Liu, HL
Macchiavelli, AO
Nelson, SL
Nitsche, H
Pavan, JR
Stavsetra, L
Stephens, FS
Wiedeking, M
Wyss, R
Xu, FR
AF Jeppesen, H. B.
Dragojevic, I.
Clark, R. M.
Gregorich, K. E.
Ali, M. N.
Allmond, J. M.
Beausang, C. W.
Bleuel, D. L.
Cromaz, M.
Deleplanque, M. A.
Ellison, P. A.
Fallon, P.
Garcia, M. A.
Gates, J. M.
Greene, J. P.
Gros, S.
Lee, I. Y.
Liu, H. L.
Macchiavelli, A. O.
Nelson, S. L.
Nitsche, H.
Pavan, J. R.
Stavsetra, L.
Stephens, F. S.
Wiedeking, M.
Wyss, R.
Xu, F. R.
TI Multi-quasiparticle states in (256)Rf
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEI; STABILITY; ELEMENTS; ISOMERS; CF-250; DECAY
AB Excited states in (256)Rf were populated via the Pb-208(Ti-50,2n) fusion-evaporation reaction. Delayed gamma-ray and electron decay spectroscopy was performed and three isomeric states in (256)Rf have been identified. A fourth low-energy nonyrast state was identified from the gamma-ray decay of one of the higher lying isomers. The states are interpreted as multi-quasiparticle excitations.
C1 [Jeppesen, H. B.; Dragojevic, I.; Clark, R. M.; Gregorich, K. E.; Ali, M. N.; Cromaz, M.; Deleplanque, M. A.; Ellison, P. A.; Fallon, P.; Garcia, M. A.; Gates, J. M.; Gros, S.; Lee, I. Y.; Macchiavelli, A. O.; Nelson, S. L.; Nitsche, H.; Pavan, J. R.; Stavsetra, L.; Stephens, F. S.; Wiedeking, M.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
[Dragojevic, I.; Ali, M. N.; Ellison, P. A.; Garcia, M. A.; Gates, J. M.; Nelson, S. L.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Allmond, J. M.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA.
[Bleuel, D. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Greene, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Liu, H. L.; Xu, F. R.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China.
[Wyss, R.] Royal Inst Technol, KTH, AlbaNova Univ Ctr, S-10405 Stockholm, Sweden.
RP Jeppesen, HB (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA.
RI Ali, Mazhar/C-6473-2013; Xu, Furong/K-4178-2013
OI Ali, Mazhar/0000-0002-1129-6105;
FU US Department of Energy [DE-AC02-05CH11231, DE-FG52-06NA26206,
DE-FG02-05ER41379]; US Department of Energy Lawrence Livermore National
Laboratory [DE-AC52-07NA27344]
FX We thank the operations staff of the 88-Inch Cyclotron. One of us (RMC)
would like to express gratitude to Kurt Hillgruber for his invaluable
help during the experiment. This work has been supported in part by the
US Department of Energy under Contract No. DE-AC02-05CH11231 (LBNL) and
under Grant Nos. DE-FG52-06NA26206 and DE-FG02-05ER41379. Part of this
work was performed under the auspices of the US Department of Energy
Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.
NR 14
TC 39
Z9 39
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 031303
DI 10.1103/PhysRevC.79.031303
PG 5
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100003
ER
PT J
AU Kahn, Y
Melnitchouk, W
Kulagin, SA
AF Kahn, Yonatan
Melnitchouk, W.
Kulagin, S. A.
TI New method for extracting neutron structure functions from nuclear data
SO PHYSICAL REVIEW C
LA English
DT Article
ID DEEP-INELASTIC-SCATTERING; QUARK-HADRON DUALITY; PARTON DISTRIBUTIONS;
ELECTRON-SCATTERING; DEUTERON; PROTON
AB We propose a new method for extracting neutron structure functions from inclusive structure functions of nuclei, which employs an iterative procedure of solving integral convolution equations. Unlike earlier approaches, the new method is applicable to both spin-averaged and spin-dependent structure functions. We test the reliability of the method on unpolarized F-2 and polarized g(1) structure functions of the deuteron in both the nucleon resonance and deep inelastic regions. The new method is able to reproduce known input functions of almost arbitrary shape to very good accuracy with only several iterations.
C1 [Kahn, Yonatan] Northwestern Univ, Evanston, IL 60208 USA.
[Kahn, Yonatan; Melnitchouk, W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Kulagin, S. A.] Inst Nucl Res, RU-117312 Moscow, Russia.
RP Kahn, Y (reprint author), Northwestern Univ, Evanston, IL 60208 USA.
NR 45
TC 34
Z9 34
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 035205
DI 10.1103/PhysRevC.79.035205
PG 11
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100053
ER
PT J
AU Pereira, J
Hennrich, S
Aprahamian, A
Arndt, O
Becerril, A
Elliot, T
Estrade, A
Galaviz, D
Kessler, R
Kratz, KL
Lorusso, G
Mantica, PF
Matos, M
Moller, P
Montes, F
Pfeiffer, B
Schatz, H
Schertz, F
Schnorrenberger, L
Smith, E
Stolz, A
Quinn, M
Walters, WB
Wohr, A
AF Pereira, J.
Hennrich, S.
Aprahamian, A.
Arndt, O.
Becerril, A.
Elliot, T.
Estrade, A.
Galaviz, D.
Kessler, R.
Kratz, K. -L.
Lorusso, G.
Mantica, P. F.
Matos, M.
Moeller, P.
Montes, F.
Pfeiffer, B.
Schatz, H.
Schertz, F.
Schnorrenberger, L.
Smith, E.
Stolz, A.
Quinn, M.
Walters, W. B.
Woehr, A.
TI beta-decay half-lives and beta-delayed neutron emission probabilities of
nuclei in the region A less than or similar to 110, relevant for the r
process
SO PHYSICAL REVIEW C
LA English
DT Article
ID PROJECTILE FRAGMENT SEPARATOR; ATOMIC MASS EVALUATION; EXTREMELY
METAL-POOR; GROUND-STATE; RICH NUCLEI; STRENGTH FUNCTIONS; SHAPE
COEXISTENCE; LIFE PREDICTIONS; LEVEL STRUCTURE; MO-ISOTOPES
AB Measurements of beta-decay properties of A less than or similar to 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. beta-decay half-lives for Y-105, Zr-106,Zr-107, and Mo-111, along with beta-delayed neutron emission probabilities of Y-104, Mo-109,Mo-110 and upper limits for Y-105, Zr103-107, and Mo-108,Mo-111 have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei.
C1 [Pereira, J.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Lorusso, G.; Mantica, P. F.; Matos, M.; Montes, F.; Schatz, H.; Stolz, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
[Pereira, J.; Hennrich, S.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Kessler, R.; Lorusso, G.; Matos, M.; Montes, F.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, E.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA.
[Hennrich, S.; Arndt, O.; Kessler, R.; Pfeiffer, B.; Schertz, F.] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany.
[Hennrich, S.; Arndt, O.; Kessler, R.; Kratz, K. -L.; Pfeiffer, B.; Schertz, F.] Virtuelles Inst Struktur Kerne & Nukl Astrophys, Mainz, Germany.
[Aprahamian, A.; Quinn, M.; Woehr, A.] Univ Notre Dame, Inst Struct & Nucl Astrophys, South Bend, IN USA.
[Aprahamian, A.; Quinn, M.; Woehr, A.] Univ Notre Dame, Joint Inst Nucl Astrophys, South Bend, IN USA.
[Becerril, A.; Elliot, T.; Estrade, A.; Lorusso, G.; Schatz, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Kratz, K. -L.] Max Planck Inst Chem, Otto Hahn Inst, D-55128 Mainz, Germany.
[Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA.
[Moeller, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Schnorrenberger, L.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany.
[Smith, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
RP Pereira, J (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.
EM pereira@nscl.msu.edu
RI Galaviz Redondo, Daniel/A-7325-2008; Matos, Milan/G-6947-2012
OI Galaviz Redondo, Daniel/0000-0003-2992-4496; Matos,
Milan/0000-0003-1722-9509
NR 96
TC 55
Z9 55
U1 2
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 035806
DI 10.1103/PhysRevC.79.035806
PG 18
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100067
ER
PT J
AU Podolyak, Z
Steer, SJ
Pietri, S
Xu, FR
Liu, HL
Regan, PH
Rudolph, D
Garnsworthy, AB
Hoischen, R
Gorska, M
Gerl, J
Wollersheim, HJ
Kurtukian-Nieto, T
Benzoni, G
Shizuma, T
Becker, F
Bednarczyk, P
Caceres, L
Doornenbal, P
Geissel, H
Grebosz, J
Kelic, A
Kojouharov, I
Kurz, N
Montes, F
Prokopowicz, W
Saito, T
Schaffner, H
Tashenov, S
Heinz, A
Pfutzner, M
Jungclaus, A
Balabanski, DL
Brandau, C
Bruce, AM
Catford, WN
Cullen, IJ
Dombradi, Z
Estevez, E
Gelletly, W
Ilie, G
Jolie, J
Jones, GA
Kmiecik, M
Kondev, FG
Krucken, R
Lalkovski, S
Liu, Z
Maj, A
Myalski, S
Schwertel, S
Walker, PM
Werner-Malento, E
Wieland, O
AF Podolyak, Zs.
Steer, S. J.
Pietri, S.
Xu, F. R.
Liu, H. L.
Regan, P. H.
Rudolph, D.
Garnsworthy, A. B.
Hoischen, R.
Gorska, M.
Gerl, J.
Wollersheim, H. J.
Kurtukian-Nieto, T.
Benzoni, G.
Shizuma, T.
Becker, F.
Bednarczyk, P.
Caceres, L.
Doornenbal, P.
Geissel, H.
Grebosz, J.
Kelic, A.
Kojouharov, I.
Kurz, N.
Montes, F.
Prokopowicz, W.
Saito, T.
Schaffner, H.
Tashenov, S.
Heinz, A.
Pfutzner, M.
Jungclaus, A.
Balabanski, D. L.
Brandau, C.
Bruce, A. M.
Catford, W. N.
Cullen, I. J.
Dombradi, Zs.
Estevez, E.
Gelletly, W.
Ilie, G.
Jolie, J.
Jones, G. A.
Kmiecik, M.
Kondev, F. G.
Kruecken, R.
Lalkovski, S.
Liu, Z.
Maj, A.
Myalski, S.
Schwertel, S.
Walker, P. M.
Werner-Malento, E.
Wieland, O.
TI Weakly deformed oblate structures in Os-198(76)122
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEAR-DATA SHEETS; ISOMER SPECTROSCOPY; OS; FRAGMENTATION; TRANSITION;
ISOTOPES; STATES
AB Gamma rays de-exciting isomeric states in the neutron-rich nucleus Os-198(76)122 have been observed following relativistic projectile fragmentation of a 1 GeV per nucleon Pb-208 beam. The ground-state band has properties compatible with oblate deformation. The evolution of the structure of Os isotopes characterized by sudden prolate-oblate shape change is discussed and contrasted with the smooth change known in the Pt chain.
C1 [Podolyak, Zs.; Steer, S. J.; Pietri, S.; Regan, P. H.; Garnsworthy, A. B.; Shizuma, T.; Brandau, C.; Catford, W. N.; Cullen, I. J.; Gelletly, W.; Jones, G. A.; Liu, Z.; Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England.
[Xu, F. R.; Liu, H. L.] Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China.
[Rudolph, D.; Hoischen, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden.
[Garnsworthy, A. B.; Heinz, A.] Yale Univ, WNSL, New Haven, CT 06520 USA.
[Hoischen, R.; Gorska, M.; Gerl, J.; Wollersheim, H. J.; Becker, F.; Bednarczyk, P.; Caceres, L.; Doornenbal, P.; Geissel, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tashenov, S.; Werner-Malento, E.] GSI Darmstadt, D-64291 Darmstadt, Germany.
[Kurtukian-Nieto, T.; Estevez, E.] Univ Santiago Compostela, E-15706 Santiago De Compostela, Spain.
[Benzoni, G.; Wieland, O.] Univ Milan, INFN, I-20133 Milan, Italy.
[Bednarczyk, P.; Grebosz, J.; Prokopowicz, W.; Kmiecik, M.; Maj, A.; Myalski, S.] Henry Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
[Caceres, L.; Jungclaus, A.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain.
[Pfutzner, M.] Warsaw Univ, IEP, PL-00681 Warsaw, Poland.
[Balabanski, D. L.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria.
[Dombradi, Zs.] ATOMKI, Inst Nucl Res, H-4001 Debrecen, Hungary.
[Ilie, G.; Jolie, J.] Univ Cologne, IKP, D-50937 Cologne, Germany.
[Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA.
[Kruecken, R.; Schwertel, S.] Tech Univ Munich, Phys Dept E12, Garching, Germany.
[Werner-Malento, E.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland.
[Bruce, A. M.; Lalkovski, S.] Univ Brighton, Sch Engn, Brighton BN2 4GJ, E Sussex, England.
[Shizuma, T.] Japan Atom Energy Agcy, Kizu, Kyoto 6190215, Japan.
RP Podolyak, Z (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England.
EM Z.Podolyak@surrey.ac.uk
RI Rudolph, Dirk/D-4259-2009; Gerl, Juergen/A-3255-2011; Wieland,
Oliver/G-1784-2011; Dombradi, Zsolt/B-3743-2012; Xu, Furong/K-4178-2013;
Heinz, Andreas/E-3191-2014; Kurtukian-Nieto, Teresa/J-1707-2014; Bruce,
Alison/K-7663-2016; Kruecken, Reiner/A-1640-2013
OI benzoni, giovanna/0000-0002-7938-0338; Rudolph,
Dirk/0000-0003-1199-3055; Kurtukian-Nieto, Teresa/0000-0002-0028-0220;
Bruce, Alison/0000-0003-2871-0517; Kruecken, Reiner/0000-0002-2755-8042
FU STFC/EPSRC (UK); AWE plc. (UK); EU [506065]; Swedish Research Council;
Polish Ministry of Science and Higher Education [1 P03B 030 30, N N202
309135]; Bulgarian Science Fund; US DOE [DE-FG02-91ER-40609]; Spanish
Ministerio de Educacion y Ciencia; German BMBF; Hungarian Science
Foundation; Italian INFN
FX The excellent work of the GSI accelerator staff is acknowledged. This
work is supported by the STFC/EPSRC (UK) and AWE plc. (UK), the EU
Access to Large Scale Facilities Programme (EURONS, EU Contract No.
506065), the Swedish Research Council, the Polish Ministry of Science
and Higher Education (Grant Nos. 1 P03B 030 30 and N N202 309135), the
Bulgarian Science Fund, the US DOE (Grant No. DE-FG02-91ER-40609), the
Spanish Ministerio de Educacion y Ciencia, the German BMBF, the
Hungarian Science Foundation, and the Italian INFN.
NR 28
TC 22
Z9 22
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 031305
DI 10.1103/PhysRevC.79.031305
PG 4
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100005
ER
PT J
AU Roger, T
Savajols, H
Tanihata, I
Mittig, W
Alcorta, M
Bandyopadhyay, D
Bieri, R
Buchmann, L
Caamano, M
Davids, B
Galinski, N
Gallant, A
Howell, D
Kanungo, R
Mills, W
Mythili, S
Notani, M
Openshaw, R
Padilla-Rodal, E
Roussel-Chomaz, P
Ruprecht, G
Savard, G
Sheffer, G
Shotter, AC
Trinczek, M
Walden, P
AF Roger, T.
Savajols, H.
Tanihata, I.
Mittig, W.
Alcorta, M.
Bandyopadhyay, D.
Bieri, R.
Buchmann, L.
Caamano, M.
Davids, B.
Galinski, N.
Gallant, A.
Howell, D.
Kanungo, R.
Mills, W.
Mythili, S.
Notani, M.
Openshaw, R.
Padilla-Rodal, E.
Roussel-Chomaz, P.
Ruprecht, G.
Savard, G.
Sheffer, G.
Shotter, A. C.
Trinczek, M.
Walden, P.
TI Mass of Li-11 from the H-1(Li-11,Li-9)H-3 reaction
SO PHYSICAL REVIEW C
LA English
DT Article
AB The mass of Li-11 has been determined from Q-value measurements of the H-1(Li-11,Li-9)H-3 reaction. The experiment was performed at TRIUMF laboratory with the GANIL active target MAYA. Energy-energy and angle-angle kinematics reconstruction give a Q value of 8.119(22) MeV for the reaction. The derived Li-11 two-neutron separation energy is S-2n=363(22) keV.
C1 [Roger, T.; Savajols, H.; Mittig, W.; Caamano, M.; Roussel-Chomaz, P.] GANIL, F-14076 Caen 05, France.
[Tanihata, I.; Alcorta, M.; Bandyopadhyay, D.; Bieri, R.; Buchmann, L.; Davids, B.; Galinski, N.; Howell, D.; Mills, W.; Mythili, S.; Openshaw, R.; Padilla-Rodal, E.; Ruprecht, G.; Sheffer, G.; Shotter, A. C.; Trinczek, M.; Walden, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Gallant, A.; Kanungo, R.] St Marys Univ, Halifax, NS B3H 3C3, Canada.
[Notani, M.; Savard, G.] ANL, Argonne, IL 60439 USA.
RP Roger, T (reprint author), GANIL, Blvd Henri Becquerel,Boite Postale 55027, F-14076 Caen 05, France.
RI Alcorta, Martin/G-7107-2011; caamano, manuel/A-1832-2013
OI Alcorta, Martin/0000-0002-6217-5004; caamano, manuel/0000-0002-5045-003X
NR 11
TC 17
Z9 17
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 031603
DI 10.1103/PhysRevC.79.031603
PG 4
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100008
ER
PT J
AU Schenke, B
Strickland, M
Dumitru, A
Nara, Y
Greiner, C
AF Schenke, Bjoern
Strickland, Michael
Dumitru, Adrian
Nara, Yasushi
Greiner, Carsten
TI Transverse momentum diffusion and collisional jet energy loss in
non-Abelian plasmas
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION COLLISIONS; CLASSICAL TRANSPORT-THEORY; QUARK-GLUON PLASMA;
HARD THERMAL LOOPS; NUCLEAR COLLISIONS; QCD PLASMA; BOLTZMANN-EQUATION;
CASCADE MODELS; ELLIPTIC FLOW; CAUSALITY
AB We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p(perpendicular to) distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R-AA due to elastic energy loss of a jet in a classical Yang-Mills field.
C1 [Schenke, Bjoern] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Schenke, Bjoern; Strickland, Michael; Greiner, Carsten] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany.
[Strickland, Michael] Gettysburg Coll, Gettysburg, PA 17325 USA.
[Dumitru, Adrian] CUNY Grad Sch & Univ Ctr, New York, NY 10016 USA.
[Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.
[Nara, Yasushi] Akita Int Univ, Akita 0101211, Japan.
RP Schenke, B (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.
RI Strickland, Michael/A-4149-2013
OI Strickland, Michael/0000-0003-0489-4278
FU DFG [GR 1536/6-1]; McGill University; Natural Sciences and Engineering
Research Council of Canada; Japan MEXT [20540276]; Yukawa Institute
FX We thank Oliver Fochler, Charles Gale, Sangyong Jeon, Berndt Muller, and
Zhe Xu for helpful discussions and comments. A. D. thanks
J.Jalilian-Marian and D. Kharzeev for emphasizing the importance of
energy loss in a classical Yang-Mills field. The numerical simulations
were performed at the Center for Scientific Computing (CSC) of Goethe
University, Frankfurt am Main. M. S. and B. S. were in part supported by
DFG Grant GR 1536/6-1. B.S. gratefully acknowledges a Richard H.
Tomlinson grant by McGill University as well as support from the Natural
Sciences and Engineering Research Council of Canada. Y.N. is supported
by Japan MEXT Grant No. 20540276. M. S. and Y.N. acknowledge support
from the Yukawa Institute for Theoretical Physics during the "Entropy
Production Before QGP" workshop.
NR 75
TC 13
Z9 13
U1 0
U2 2
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034903
DI 10.1103/PhysRevC.79.034903
PG 10
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100041
ER
PT J
AU Shyam, R
Mosel, U
AF Shyam, R.
Mosel, U.
TI Dilepton production in nucleon-nucleon collisions reexamined
SO PHYSICAL REVIEW C
LA English
DT Article
ID HEAVY-ION COLLISIONS; CHIRAL-SYMMETRY; PP-COLLISIONS; ENERGIES; MATTER;
MODEL; BREMSSTRAHLUNG; RADIATION; PHOTON; HOT
AB We present a fully relativistic and gauge-invariant framework for calculating the cross sections of dilepton production in nucleon-nucleon (NN) collisions that is based on the meson-exchange approximation for the NN-scattering amplitudes. Predictions of our model are compared with those of other covariant models that have been used earlier to describe this reaction. Our results are also compared with those of the semiclassical models that are employed to get the input elementary cross sections in the transport model calculations of the dilepton production in nucleus-nucleus collisions. It is found that cross sections obtained within the semiclassical and quantum mechanical models differ noticeably from each other.
C1 [Shyam, R.] Saha Inst Nucl Phys, Kolkata 700064, India.
[Shyam, R.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA.
[Mosel, U.] Univ Giessen, Inst Theoret Phys, D-35392 Giessen, Germany.
RP Shyam, R (reprint author), Saha Inst Nucl Phys, Kolkata 700064, India.
RI Mosel, Ulrich/E-2565-2012;
OI Mosel, Ulrich/0000-0002-1826-0797
FU United States Department of Energy [DE-AC05-06OR23176]
FX We are grateful to Dr. G.Lykasov and Ingo Frohlich for a careful reading
of the manuscript and helpful comments. R. S. thanks A. W. Thomas for
his very kind hospitality at the Theory Center of the Thomas Jefferson
National Accelerator Facility where a part of this work was done. The
Jefferson Science Associates operates the Thomas Jefferson National
Accelerator Facility for the United States Department of Energy under
contract DE-AC05-06OR23176.
NR 42
TC 12
Z9 12
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 035203
DI 10.1103/PhysRevC.79.035203
PG 5
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100051
ER
PT J
AU Soltz, RA
Newby, RJ
Klay, JL
Heffner, M
Beaulieu, L
Lefort, T
Kwiatkowski, K
Viola, VE
AF Soltz, R. A.
Newby, R. J.
Klay, J. L.
Heffner, M.
Beaulieu, L.
Lefort, T.
Kwiatkowski, K.
Viola, V. E.
TI Centrality dependence of the thermal excitation-energy deposition in
8-15 GeV/c hadron-Au reactions
SO PHYSICAL REVIEW C
LA English
DT Article
ID NUCLEI; COLLISIONS; PROTONS; MULTIFRAGMENTATION
AB The excitation energy per residue nucleon (E*/A) and fast and thermal light particle multiplicities are studied as a function of centrality defined as the number of grey tracks emitted N-grey and by the mean number of primary hadron-nucleon scatterings () and the mean impact parameter (< b >) extracted from it. The value of E*/A and the multiplicities show an increase with centrality for all systems, 14.6 GeV p-Au and 8.0 GeV pi-Au and (p) over bar -Au collisions, and the excitation energy per residue nucleon exhibits a uniform dependence on N-grey.
C1 [Soltz, R. A.; Newby, R. J.; Klay, J. L.; Heffner, M.] Lawrence Livermore Natl Lab, Div N, Livermore, CA 94550 USA.
[Beaulieu, L.; Lefort, T.; Kwiatkowski, K.; Viola, V. E.] Indiana Univ, Dept Chem, Bloomington, IN 47304 USA.
[Beaulieu, L.; Lefort, T.; Kwiatkowski, K.; Viola, V. E.] Indiana Univ, IUCF, Bloomington, IN 47304 USA.
RP Soltz, RA (reprint author), Lawrence Livermore Natl Lab, Div N, 7000 E Ave, Livermore, CA 94550 USA.
EM soltz@llnl.gov
RI Beaulieu, Luc/A-6803-2009;
OI Beaulieu, Luc/0000-0003-0429-6366; Newby, Robert/0000-0003-3571-1067
FU US Department of Energy by Lawrence Livermore National Laboratory
[W-7405-Eng-48, DE-AC52-07NA27344.]
FX The experiments on which this work was based were performed by the AGS
E900 Collaboration. This work was performed under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory in part
under Contract W-7405-Eng-48 and in part under Contract
DE-AC52-07NA27344.
NR 24
TC 5
Z9 6
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 2469-9985
EI 2469-9993
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034607
DI 10.1103/PhysRevC.79.034607
PG 4
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100038
ER
PT J
AU Stefanescu, I
Walters, WB
Janssens, RVF
Hoteling, N
Broda, R
Carpenter, MP
Fornal, B
Hecht, AA
Krolas, W
Lauritsen, T
Pawlat, T
Seweryniak, D
Stone, JR
Wang, X
Wohr, A
Wrzesinski, J
Zhu, S
AF Stefanescu, I.
Walters, W. B.
Janssens, R. V. F.
Hoteling, N.
Broda, R.
Carpenter, M. P.
Fornal, B.
Hecht, A. A.
Krolas, W.
Lauritsen, T.
Pawlat, T.
Seweryniak, D.
Stone, J. R.
Wang, X.
Woehr, A.
Wrzesinski, J.
Zhu, S.
TI Levels above the 19/2(-) isomer in Cu-71: Persistence of the N=40
neutron shell gap
SO PHYSICAL REVIEW C
LA English
DT Article
ID SUBSHELL CLOSURE; NI-68; DECAY; ISOTOPES; NUCLEUS
AB Two prompt gamma rays of energies 2020 and 554 keV were observed in coincidence with delayed transitions depopulating the 19/2(-) isomer in the Z=29, N=42 Cu-71 nucleus. The newly identified transitions are proposed to deexcite the 4776- and 5330-keV levels above the 19/2(-) isomer. Based on the comparison with the low-lying positive-parity states observed in the Z=42, N=50 Mo-92 nucleus, spin and parity 23/2(-) are proposed for the 4776-keV level in Cu-71. The high-energy, 2020-keV transition is interpreted as arising from the breaking of the N=40 neutron core. Shell-model calculations with a Ni-56 core reproduce the (23/2(-))->(19/2(-)) gap well, suggesting that the 23/2(-) state is dominated by pi p(3/2)nu((fp)(10)(g(9/2))(4)) configurations. The present result constitutes further evidence supporting the view that the N=40 subshell closure persists in Cu-71, herewith challenging recent suggestions that the coupling of two or more proton or neutron quasiparticles induces a large polarization of the Ni-68 core.
C1 [Stefanescu, I.; Walters, W. B.; Hoteling, N.; Hecht, A. A.; Stone, J. R.; Woehr, A.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
[Stefanescu, I.; Janssens, R. V. F.; Hoteling, N.; Carpenter, M. P.; Hecht, A. A.; Lauritsen, T.; Seweryniak, D.; Wang, X.; Woehr, A.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
[Stefanescu, I.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania.
[Broda, R.; Fornal, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
[Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA.
[Wang, X.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
[Stone, J. R.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England.
RP Stefanescu, I (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA.
RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015
OI Carpenter, Michael/0000-0002-3237-5734
FU US Department of Energy [DEFG0294ER40834, DE- AC02- O6CH11357]; Polish
Scientific Grant [2PO3B- 074- 18]
FX This work was supported by the US Department of Energy, Office of
Nuclear Physics, under Contracts DEFG0294ER40834 and DE- AC02- O6CH11357
and by Polish Scientific Grant 2PO3B- 074- 18.
NR 27
TC 14
Z9 14
U1 0
U2 0
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0556-2813
EI 1089-490X
J9 PHYS REV C
JI Phys. Rev. C
PD MAR
PY 2009
VL 79
IS 3
AR 034319
DI 10.1103/PhysRevC.79.034319
PG 6
WC Physics, Nuclear
SC Physics
GA 427FV
UT WOS:000264766100030
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Albrow, MG
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Azzurri, P
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Husemann, U
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kusakabe, Y
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Loreti, M
Lovas, L
Lucchesi, D
Luci, C
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lyons, L
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maki, T
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Maruyama, T
Mastrandrea, P
Masubuchi, T
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Merkel, P
Mesropian, C
Miao, T
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Morlok, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Mumford, R
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Nagano, A
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Necula, V
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Griso, SP
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramonov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Poukhov, O
Pounder, N
Prakoshyn, F
Pronko, A
Proudfoot, J
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Safonov, A
Sakumoto, WK
Salto, O
Santi, L
Sarkar, S
Sartori, L
Sato, K
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Sidoti, A
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Spalding, J
Spreitzer, T
Squillacioti, P
Stanitzki, M
Denis, RS
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Stuart, D
Suh, JS
Sukhanov, A
Suslov, I
Suzuki, T
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tecchio, M
Teng, PK
Terashi, K
Thom, J
Thompson, AS
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Tourneur, S
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Vallecorsa, S
van Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Veszpremi, V
Vidal, M
Vidal, R
Vila, I
Vilar, R
Vine, T
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wright, T
Wu, X
Wurthwein, F
Wynne, SM
Xie, S
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanello, L
Zanetti, A
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Akimoto, T.
Albrow, M. G.
Gonzalez, B. Alvarez
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Apresyan, A.
Arisawa, T.
Artikov, A.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Azzurri, P.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Bartsch, V.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Beringer, J.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bolla, G.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burke, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Choudalakis, G.
Chuang, S. H.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Cordelli, M.
Cortiana, G.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demortier, L.
Deng, J.
Deninno, M.
Derwent, P. F.
di Giovanni, G. P.
Dionisi, C.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Donini, J.
Dorigo, T.
Dube, S.
Efron, J.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Genser, K.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, K.
Hahn, S. R.
Halkiadakis, E.
Han, B. -Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harper, S.
Harr, R. F.
Harris, R. M.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heijboer, A.
Heinrich, J.
Henderson, C.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Huffman, B. T.
Hughes, R. E.
Husemann, U.
Hussein, M.
Husemann, U.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Knuteson, B.
Ko, B. R.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kubo, T.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kusakabe, Y.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C. -S.
Linacre, J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Loreti, M.
Lovas, L.
Lucchesi, D.
Luci, C.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lyons, L.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maki, T.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Maruyama, T.
Mastrandrea, P.
Masubuchi, T.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Merkel, P.
Mesropian, C.
Miao, T.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlok, J.
Fernandez, P. Movilla
Muelmenstaedt, J.
Mukherjee, A.
Muller, Th.
Mumford, R.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Nagano, A.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Necula, V.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Griso, S. Pagan
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramonov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Poukhov, O.
Pounder, N.
Prakoshyn, F.
Pronko, A.
Proudfoot, J.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Safonov, A.
Sakumoto, W. K.
Salto, O.
Santi, L.
Sarkar, S.
Sartori, L.
Sato, K.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Sidoti, A.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Spalding, J.
Spreitzer, T.
Squillacioti, P.
Stanitzki, M.
Denis, R. St.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Stuart, D.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Suzuki, T.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tecchio, M.
Teng, P. K.
Terashi, K.
Thom, J.
Thompson, A. S.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Tourneur, S.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Vallecorsa, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Veszpremi, V.
Vidal, M.
Vidal, R.
Vila, I.
Vilar, R.
Vine, T.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wright, T.
Wu, X.
Wuerthwein, F.
Wynne, S. M.
Xie, S.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanello, L.
Zanetti, A.
Zhang, X.
Zheng, Y.
Zucchelli, S.
CA CDF Collaboration
TI Search for new physics in the mu mu+e/mu + is not an element of T
channel with a low-pT lepton threshold at the Collider Detector at
Fermilab
SO PHYSICAL REVIEW D
LA English
DT Article
ID FERMILAB TEVATRON COLLIDER; SUPERGAUGE TRANSFORMATIONS; PBARP COLLIDERS;
SUPERSYMMETRY; NEUTRALINOS; CHARGINOS; GAUGINOS
AB A search for new physics using three-lepton (trilepton) data collected with the CDF II detector and corresponding to an integrated luminosity of 976 pb(-1) is presented. The standard model predicts a low rate of trilepton events, which makes some supersymmetric processes, such as chargino-neutralino production, measurable in this channel. The mu mu + l signature is investigated, where l is an electron or a muon, with the additional requirement of large missing transverse energy. In this analysis, the lepton transverse momenta with respect to the beam direction (p(T)) are as low as 5 GeV/c, a selection that improves the sensitivity to particles that are light as well as to ones that result in leptonically decaying tau leptons. At the same time, this low-p(T) selection presents additional challenges due to the non-negligible heavy-quark background at low lepton momenta. This background is measured with an innovative technique using experimental data. Several dimuon and trilepton control regions are investigated, and good agreement between experimental results and standard-model predictions is observed. In the signal region, we observe one three-muon event and expect 0.4 +/- 0.1 mu mu + l events from standard-model processes.
C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Castro, A.; Mussini, M.; Rimondi, F.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA.
[Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Plager, C.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Anastassov, A.; Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA.
[Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA.
[Bussey, P.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Penzo, A.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Harper, S.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain.
[Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber, I.] Moscow Theoret & Expt Phys Inst, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France.
[Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sfyrla, A.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Loreti, M.; Morello, M. J.; Punzi, G.; Scribano, A.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Catastini, P.; Ciocci, M. A.; Latino, G.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA.
[De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Giagu, S.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy.
[Cauz, D.; Dionisi, C.; Iori, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy.
[Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Kondo, K.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera,
Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose
/H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza,
Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi,
Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016;
Canelli, Florencia/O-9693-2016; Ivanov, Andrew/A-7982-2013; Ruiz,
Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; Annovi,
Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco,
Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim,
Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon,
Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein,
Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014
OI Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271;
Robson, Aidan/0000-0002-1659-8284; Torre, Stefano/0000-0002-7565-0118;
Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611;
Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese
/0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678;
Introzzi, Gianluca/0000-0002-1314-2580; Gorelov,
Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli,
Florencia/0000-0001-6361-2117; Ivanov, Andrew/0000-0002-9270-5643; Ruiz,
Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052;
Annovi, Alberto/0000-0002-4649-4398; Warburton,
Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829;
Scodellaro, Luca/0000-0002-4974-8330; Grinstein,
Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787
FU U.S. Department of Energy and National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science, and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A. P. Sloan
Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean
Science and Engineering Foundation; Korean Research Foundation; Science
and Technology Facilities Council; Royal Society, UK; Institut National
de Physique Nucleaire et Physique des Particules/CNRS; Russian
Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and
Programa Consolider-Ingenio 2010, Spain; Slovak Ramp; D Agency; Academy
of Finland
FX We thank the Fermilab staff and the technical staff of the participating
institutions for their vital contributions. This work was supported by
the U.S. Department of Energy and National Science Foundation; the
Italian Istituto Nazionale di Fisica Nucleare; the Ministry of
Education, Culture, Sports, Science, and Technology of Japan; the
Natural Sciences and Engineering Research Council of Canada; the
National Science Council of the Republic of China; the Swiss National
Science Foundation; the A. P. Sloan Foundation; the Bundesministerium
fur Bildung und Forschung, Germany; the Korean Science and Engineering
Foundation, and the Korean Research Foundation; the Science and
Technology Facilities Council and the Royal Society, UK; the Institut
National de Physique Nucleaire et Physique des Particules/CNRS; the
Russian Foundation for Basic Research; the Ministerio de Ciencia e
Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R &
D Agency; and the Academy of Finland.
NR 38
TC 9
Z9 9
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD MAR
PY 2009
VL 79
IS 5
AR 052004
DI 10.1103/PhysRevD.79.052004
PG 16
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 427EK
UT WOS:000264762400011
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Azzurri, P
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinemann, B
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Husemann, U
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
Lipeles, E
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Loreti, M
Lovas, L
Lucchesi, D
Luci, C
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lyons, L
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maki, T
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Maruyama, T
Mastrandrea, P
Masubuchi, T
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Merkel, P
Mesropian, C
Miao, T
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Morlok, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Mumford, R
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Nagano, A
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Necula, V
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Griso, SP
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramonov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Poukhov, O
Pounder, N
Prakoshyn, F
Pronko, A
Proudfoot, J
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Safonov, A
Sakumoto, WK
Salto, O
Santi, L
Sarkar, S
Sartori, L
Sato, K
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Sidoti, A
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Spalding, J
Spreitzer, T
Squillacioti, P
Stanitzki, M
Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Stuart, D
Suh, JS
Sukhanov, A
Suslov, I
Suzuki, T
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tecchio, M
Teng, PK
Terashi, K
Thom, J
Thompson, AS
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Tourneur, S
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Vallecorsa, S
van Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Veszpremi, V
Vidal, M
Vidal, R
Vila, I
Vilar, R
Vine, T
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wright, T
Wu, X
Wurthwein, F
Wynne, SM
Xie, S
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanello, L
Zanetti, A
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Akimoto, T.
Gonzalez, B. Alvarez
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Apresyan, A.
Arisawa, T.
Artikov, A.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Azzurri, P.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Bartsch, V.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Beringer, J.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bolla, G.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burke, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Choudalakis, G.
Chuang, S. H.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Cordelli, M.
Cortiana, G.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demortier, L.
Deng, J.
Deninno, M.
Derwent, P. F.
di Giovanni, G. P.
Dionisi, C.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Donini, J.
Dorigo, T.
Dube, S.
Efron, J.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Genser, K.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, K.
Hahn, S. R.
Halkiadakis, E.
Han, B. -Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harper, S.
Harr, R. F.
Harris, R. M.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heijboer, A.
Heinemann, B.
Heinrich, J.
Henderson, C.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Huffman, B. T.
Hughes, R. E.
Husemann, U.
Hussein, M.
Husemann, U.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Knuteson, B.
Ko, B. R.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kubo, T.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C. -S.
Linacre, J.
Lindgren, M.
Lipeles, E.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Loreti, M.
Lovas, L.
Lucchesi, D.
Luci, C.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lyons, L.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maki, T.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Maruyama, T.
Mastrandrea, P.
Masubuchi, T.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Merkel, P.
Mesropian, C.
Miao, T.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlok, J.
Fernandez, P. Movilla
Muelmenstaedt, J.
Mukherjee, A.
Muller, Th.
Mumford, R.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Nagano, A.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Necula, V.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Griso, S. Pagan
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramonov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Poukhov, O.
Pounder, N.
Prakoshyn, F.
Pronko, A.
Proudfoot, J.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Safonov, A.
Sakumoto, W. K.
Salto, O.
Santi, L.
Sarkar, S.
Sartori, L.
Sato, K.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Sidoti, A.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Spalding, J.
Spreitzer, T.
Squillacioti, P.
Stanitzki, M.
St. Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Stuart, D.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Suzuki, T.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tecchio, M.
Teng, P. K.
Terashi, K.
Thom, J.
Thompson, A. S.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Tourneur, S.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Vallecorsa, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vazquez, F.
Velev, G.
Vellidis, C.
Veszpremi, V.
Vidal, M.
Vidal, R.
Vila, I.
Vilar, R.
Vine, T.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wright, T.
Wu, X.
Wuerthwein, F.
Wynne, S. M.
Xie, S.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanello, L.
Zanetti, A.
Zhang, X.
Zheng, Y.
Zucchelli, S.
CA CDF Collaboration
TI Measurement of cross sections for b jet production in events with a Z
boson in p(p)over-bar collisions at root s=1.96 TeV
SO PHYSICAL REVIEW D
LA English
DT Article
ID ELECTROMAGNETIC CALORIMETER; CDF; DETECTOR; COLLIDER; UPGRADE
AB A measurement of the b jet production cross section is presented for events containing a Z boson produced in p (p) over bar collisions at root s = 1.96 TeV, using data corresponding to an integrated luminosity of 2 fb(-1) collected by the CDF II detector at the Tevatron. Z bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy E-T > 20 GeV and pseudorapidity vertical bar eta vertical bar < 1.5 and are identified as b jets using a secondary vertex algorithm. The ratio of the integrated Z + b jet cross section to the inclusive Z production cross section is measured to be 3.32 +/- 0.53(stat) +/- 0.42(syst) x 10(-3). This ratio is also measured differentially in jet E-T, jet eta, Z-boson transverse momentum, number of jets, and number of b jets. The predictions from leading-order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties.
C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Bussey, P.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA.
[Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Anastassov, A.; Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Rusu, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Anastassov, A.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA.
[Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain.
[Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France.
[Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Squillacioti, P.] Univ Pisa, I-56127 Pisa, Italy.
[Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Azzurri, P.; Ferrazza, C.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA.
[De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy.
[Dionisi, C.; Giagu, S.; Loreti, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Chang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste, Udine, Italy.
[Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy.
[Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco,
Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca,
giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi,
Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov,
Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim,
Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon,
Chang-Seong/J-3619-2014; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016;
Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein,
Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ,
James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014;
Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci,
maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015;
Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015
OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052;
Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643;
Warburton, Andreas/0000-0002-2298-7315; Moon,
Chang-Seong/0000-0001-8229-7829; Gorelov, Igor/0000-0001-5570-0133; Xie,
Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117;
Scodellaro, Luca/0000-0002-4974-8330; Grinstein,
Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787;
Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611;
ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt,
Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580
FU U.S. Department of Energy and National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A. P. Sloan
Foundation; Bundesministeriumfur Bildung und Forschung, Germany; Korean
Science and Engineering Foundation; Korean Research Foundation; Science
and Technology Facilities Council; Royal Society, United Kingdom;
Institut National de Physique Nucleaire et Physique des Particules/CNRS;
Russian Foundation for Basic Research; Ministerio de Ciencia e
Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RDAgency;
Academy of Finland
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. We are
thankful to J. Campbell, F. Maltoni, M. Mangano, M. Seymour, T.
Sjostrand and J. Thaler for the many interesting and helpful discussions
regarding the theoretical predictions. This work was supported by the
U.S. Department of Energy and National Science Foundation; the Italian
Istituto Nazionale di Fisica Nucleare; the Ministry of Education,
Culture, Sports, Science and Technology of Japan; the Natural Sciences
and Engineering Research Council of Canada; the National Science Council
of the Republic of China; the Swiss National Science Foundation; the A.
P. Sloan Foundation; the Bundesministeriumfur Bildung und Forschung,
Germany; the Korean Science and Engineering Foundation and the Korean
Research Foundation; the Science and Technology Facilities Council and
the Royal Society, United Kingdom; the Institut National de Physique
Nucleaire et Physique des Particules/CNRS; the Russian Foundation for
Basic Research; the Ministerio de Ciencia e Innovacion, and Programa
Consolider-Ingenio 2010, Spain; the Slovak R & DAgency; and the Academy
of Finland.
NR 49
TC 23
Z9 23
U1 1
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD MAR
PY 2009
VL 79
IS 5
AR 052008
DI 10.1103/PhysRevD.79.052008
PG 13
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 427EK
UT WOS:000264762400015
ER
PT J
AU Aaltonen, T
Adelman, J
Akimoto, T
Gonzalez, BA
Amerio, S
Amidei, D
Anastassov, A
Annovi, A
Antos, J
Apollinari, G
Apresyan, A
Arisawa, T
Artikov, A
Ashmanskas, W
Attal, A
Aurisano, A
Azfar, F
Azzurri, P
Badgett, W
Barbaro-Galtieri, A
Barnes, VE
Barnett, BA
Bartsch, V
Bauer, G
Beauchemin, PH
Bedeschi, F
Beecher, D
Behari, S
Bellettini, G
Bellinger, J
Benjamin, D
Beretvas, A
Beringer, J
Bhatti, A
Binkley, M
Bisello, D
Bizjak, I
Blair, RE
Blocker, C
Blumenfeld, B
Bocci, A
Bodek, A
Boisvert, V
Bolla, G
Bortoletto, D
Boudreau, J
Boveia, A
Brau, B
Bridgeman, A
Brigliadori, L
Bromberg, C
Brubaker, E
Budagov, J
Budd, HS
Budd, S
Burke, S
Burkett, K
Busetto, G
Bussey, P
Buzatu, A
Byrum, KL
Cabrera, S
Calancha, C
Campanelli, M
Campbell, M
Canelli, F
Canepa, A
Carls, B
Carlsmith, D
Carosi, R
Carrillo, S
Carron, S
Casal, B
Casarsa, M
Castro, A
Catastini, P
Cauz, D
Cavaliere, V
Cavalli-Sforza, M
Cerri, A
Cerrito, L
Chang, SH
Chen, YC
Chertok, M
Chiarelli, G
Chlachidze, G
Chlebana, F
Cho, K
Chokheli, D
Chou, JP
Choudalakis, G
Chuang, SH
Chung, K
Chung, WH
Chung, YS
Chwalek, T
Ciobanu, CI
Ciocci, MA
Clark, A
Clark, D
Compostella, G
Convery, ME
Conway, J
Cordelli, M
Cortiana, G
Cox, CA
Cox, DJ
Crescioli, F
Almenar, CC
Cuevas, J
Culbertson, R
Cully, JC
Dagenhart, D
Datta, M
Davies, T
de Barbaro, P
De Cecco, S
Deisher, A
De Lorenzo, G
Dell'Orso, M
Deluca, C
Demortier, L
Deng, J
Deninno, M
Derwent, PF
di Giovanni, GP
Dionisi, C
Di Ruzza, B
Dittmann, JR
D'Onofrio, M
Donati, S
Dong, P
Donini, J
Dorigo, T
Dube, S
Efron, J
Elagin, A
Erbacher, R
Errede, D
Errede, S
Eusebi, R
Fang, HC
Farrington, S
Fedorko, WT
Feild, RG
Feindt, M
Fernandez, JP
Ferrazza, C
Field, R
Flanagan, G
Forrest, R
Frank, MJ
Franklin, M
Freeman, JC
Furic, I
Gallinaro, M
Galyardt, J
Garberson, F
Garcia, JE
Garfinkel, AF
Genser, K
Gerberich, H
Gerdes, D
Gessler, A
Giagu, S
Giakoumopoulou, V
Giannetti, P
Gibson, K
Gimmell, JL
Ginsburg, CM
Giokaris, N
Giordani, M
Giromini, P
Giunta, M
Giurgiu, G
Glagolev, V
Glenzinski, D
Gold, M
Goldschmidt, N
Golossanov, A
Gomez, G
Gomez-Ceballos, G
Goncharov, M
Gonzalez, O
Gorelov, I
Goshaw, AT
Goulianos, K
Gresele, A
Grinstein, S
Grosso-Pilcher, C
Group, RC
Grundler, U
da Costa, JG
Gunay-Unalan, Z
Haber, C
Hahn, K
Hahn, SR
Halkiadakis, E
Han, BY
Han, JY
Happacher, F
Hara, K
Hare, D
Hare, M
Harper, S
Harr, RF
Harris, RM
Hartz, M
Hatakeyama, K
Hays, C
Heck, M
Heijboer, A
Heinrich, J
Henderson, C
Herndon, M
Heuser, J
Hewamanage, S
Hidas, D
Hill, CS
Hirschbuehl, D
Hocker, A
Hou, S
Houlden, M
Hsu, SC
Huffman, BT
Hughes, RE
Husemann, U
Hussein, M
Huston, J
Incandela, J
Introzzi, G
Iori, M
Ivanov, A
James, E
Jang, D
Jayatilaka, B
Jeon, EJ
Jha, MK
Jindariani, S
Johnson, W
Jones, M
Joo, KK
Jun, SY
Jung, JE
Junk, TR
Kamon, T
Kar, D
Karchin, PE
Kato, Y
Kephart, R
Keung, J
Khotilovich, V
Kilminster, B
Kim, DH
Kim, HS
Kim, HW
Kim, JE
Kim, MJ
Kim, SB
Kim, SH
Kim, YK
Kimura, N
Kirsch, L
Klimenko, S
Knuteson, B
Ko, BR
Kondo, K
Kong, DJ
Konigsberg, J
Korytov, A
Kotwal, AV
Kreps, M
Kroll, J
Krop, D
Krumnack, N
Kruse, M
Krutelyov, V
Kubo, T
Kuhr, T
Kulkarni, NP
Kurata, M
Kwang, S
Laasanen, AT
Lami, S
Lammel, S
Lancaster, M
Lander, RL
Lannon, K
Lath, A
Latino, G
Lazzizzera, I
LeCompte, T
Lee, E
Lee, HS
Lee, SW
Leone, S
Lewis, JD
Lin, CS
Linacre, J
Lindgren, M
Lipeles, E
Liss, TM
Lister, A
Litvintsev, DO
Liu, C
Liu, T
Lockyer, NS
Loginov, A
Loreti, M
Lovas, L
Lucchesi, D
Luci, C
Lueck, J
Lujan, P
Lukens, P
Lungu, G
Lyons, L
Lys, J
Lysak, R
MacQueen, D
Madrak, R
Maeshima, K
Makhoul, K
Maki, T
Maksimovic, P
Malde, S
Malik, S
Manca, G
Manousakis-Katsikakis, A
Margaroli, F
Marino, C
Marino, CP
Martin, A
Martin, V
Martinez, M
Martinez-Ballarin, R
Maruyama, T
Mastrandrea, P
Masubuchi, T
Mathis, M
Mattson, ME
Mazzanti, P
McFarland, KS
McIntyre, P
McNulty, R
Mehta, A
Mehtala, P
Menzione, A
Merkel, P
Mesropian, C
Miao, T
Miladinovic, N
Miller, R
Mills, C
Milnik, M
Mitra, A
Mitselmakher, G
Miyake, H
Moggi, N
Moon, CS
Moore, R
Morello, MJ
Morlock, J
Fernandez, PM
Mulmenstadt, J
Mukherjee, A
Muller, T
Mumford, R
Murat, P
Mussini, M
Nachtman, J
Nagai, Y
Nagano, A
Naganoma, J
Nakamura, K
Nakano, I
Napier, A
Necula, V
Nett, J
Neu, C
Neubauer, MS
Neubauer, S
Nielsen, J
Nodulman, L
Norman, M
Norniella, O
Nurse, E
Oakes, L
Oh, SH
Oh, YD
Oksuzian, I
Okusawa, T
Orava, R
Osterberg, K
Griso, SP
Palencia, E
Papadimitriou, V
Papaikonomou, A
Paramonov, AA
Parks, B
Pashapour, S
Patrick, J
Pauletta, G
Paulini, M
Paus, C
Peiffer, T
Pellett, DE
Penzo, A
Phillips, TJ
Piacentino, G
Pianori, E
Pinera, L
Pitts, K
Plager, C
Pondrom, L
Poukhov, O
Pounder, N
Prakoshyn, F
Pronko, A
Proudfoot, J
Ptohos, F
Pueschel, E
Punzi, G
Pursley, J
Rademacker, J
Rahaman, A
Ramakrishnan, V
Ranjan, N
Redondo, I
Renton, P
Renz, M
Rescigno, M
Richter, S
Rimondi, F
Ristori, L
Robson, A
Rodrigo, T
Rodriguez, T
Rogers, E
Rolli, S
Roser, R
Rossi, M
Rossin, R
Roy, P
Ruiz, A
Russ, J
Rusu, V
Rutherford, B
Saarikko, H
Safonov, A
Sakumoto, WK
Salto, O
Santi, L
Sarkar, S
Sartori, L
Sato, K
Savoy-Navarro, A
Schlabach, P
Schmidt, A
Schmidt, EE
Schmidt, MA
Schmidt, MP
Schmitt, M
Schwarz, T
Scodellaro, L
Scribano, A
Scuri, F
Sedov, A
Seidel, S
Seiya, Y
Semenov, A
Sexton-Kennedy, L
Sforza, F
Sfyrla, A
Shalhout, SZ
Shears, T
Shepard, PF
Shimojima, M
Shiraishi, S
Shochet, M
Shon, Y
Shreyber, I
Sidoti, A
Sinervo, P
Sisakyan, A
Slaughter, AJ
Slaunwhite, J
Sliwa, K
Smith, JR
Snider, FD
Snihur, R
Soha, A
Somalwar, S
Sorin, V
Spalding, J
Spreitzer, T
Squillacioti, P
Stanitzki, M
Denis, R
Stelzer, B
Stelzer-Chilton, O
Stentz, D
Strologas, J
Strycker, GL
Stuart, D
Suh, JS
Sukhanov, A
Suslov, I
Suzuki, T
Taffard, A
Takashima, R
Takeuchi, Y
Tanaka, R
Tecchio, M
Teng, PK
Terashi, K
Thom, J
Thompson, AS
Thompson, GA
Thomson, E
Tipton, P
Ttito-Guzman, P
Tkaczyk, S
Toback, D
Tokar, S
Tollefson, K
Tomura, T
Tonelli, D
Torre, S
Torretta, D
Totaro, P
Tourneur, S
Trovato, M
Tsai, SY
Tu, Y
Turini, N
Ukegawa, F
Vallecorsa, S
Remortel, N
Varganov, A
Vataga, E
Vazquez, F
Velev, G
Vellidis, C
Vidal, M
Vidal, R
Vila, I
Vilar, R
Vine, T
Vogel, M
Volobouev, I
Volpi, G
Wagner, P
Wagner, RG
Wagner, RL
Wagner, W
Wagner-Kuhr, J
Wakisaka, T
Wallny, R
Wang, SM
Warburton, A
Waters, D
Weinberger, M
Weinelt, J
Wester, WC
Whitehouse, B
Whiteson, D
Wicklund, AB
Wicklund, E
Wilbur, S
Williams, G
Williams, HH
Wilson, P
Winer, BL
Wittich, P
Wolbers, S
Wolfe, C
Wright, T
Wu, X
Wurthwein, F
Xie, S
Yagil, A
Yamamoto, K
Yamaoka, J
Yang, UK
Yang, YC
Yao, WM
Yeh, GP
Yoh, J
Yorita, K
Yoshida, T
Yu, GB
Yu, I
Yu, SS
Yun, JC
Zanello, L
Zanetti, A
Zhang, X
Zheng, Y
Zucchelli, S
AF Aaltonen, T.
Adelman, J.
Akimoto, T.
Gonzalez, B. Alvarez
Amerio, S.
Amidei, D.
Anastassov, A.
Annovi, A.
Antos, J.
Apollinari, G.
Apresyan, A.
Arisawa, T.
Artikov, A.
Ashmanskas, W.
Attal, A.
Aurisano, A.
Azfar, F.
Azzurri, P.
Badgett, W.
Barbaro-Galtieri, A.
Barnes, V. E.
Barnett, B. A.
Bartsch, V.
Bauer, G.
Beauchemin, P. -H.
Bedeschi, F.
Beecher, D.
Behari, S.
Bellettini, G.
Bellinger, J.
Benjamin, D.
Beretvas, A.
Beringer, J.
Bhatti, A.
Binkley, M.
Bisello, D.
Bizjak, I.
Blair, R. E.
Blocker, C.
Blumenfeld, B.
Bocci, A.
Bodek, A.
Boisvert, V.
Bolla, G.
Bortoletto, D.
Boudreau, J.
Boveia, A.
Brau, B.
Bridgeman, A.
Brigliadori, L.
Bromberg, C.
Brubaker, E.
Budagov, J.
Budd, H. S.
Budd, S.
Burke, S.
Burkett, K.
Busetto, G.
Bussey, P.
Buzatu, A.
Byrum, K. L.
Cabrera, S.
Calancha, C.
Campanelli, M.
Campbell, M.
Canelli, F.
Canepa, A.
Carls, B.
Carlsmith, D.
Carosi, R.
Carrillo, S.
Carron, S.
Casal, B.
Casarsa, M.
Castro, A.
Catastini, P.
Cauz, D.
Cavaliere, V.
Cavalli-Sforza, M.
Cerri, A.
Cerrito, L.
Chang, S. H.
Chen, Y. C.
Chertok, M.
Chiarelli, G.
Chlachidze, G.
Chlebana, F.
Cho, K.
Chokheli, D.
Chou, J. P.
Choudalakis, G.
Chuang, S. H.
Chung, K.
Chung, W. H.
Chung, Y. S.
Chwalek, T.
Ciobanu, C. I.
Ciocci, M. A.
Clark, A.
Clark, D.
Compostella, G.
Convery, M. E.
Conway, J.
Cordelli, M.
Cortiana, G.
Cox, C. A.
Cox, D. J.
Crescioli, F.
Almenar, C. Cuenca
Cuevas, J.
Culbertson, R.
Cully, J. C.
Dagenhart, D.
Datta, M.
Davies, T.
de Barbaro, P.
De Cecco, S.
Deisher, A.
De Lorenzo, G.
Dell'Orso, M.
Deluca, C.
Demortier, L.
Deng, J.
Deninno, M.
Derwent, P. F.
di Giovanni, G. P.
Dionisi, C.
Di Ruzza, B.
Dittmann, J. R.
D'Onofrio, M.
Donati, S.
Dong, P.
Donini, J.
Dorigo, T.
Dube, S.
Efron, J.
Elagin, A.
Erbacher, R.
Errede, D.
Errede, S.
Eusebi, R.
Fang, H. C.
Farrington, S.
Fedorko, W. T.
Feild, R. G.
Feindt, M.
Fernandez, J. P.
Ferrazza, C.
Field, R.
Flanagan, G.
Forrest, R.
Frank, M. J.
Franklin, M.
Freeman, J. C.
Furic, I.
Gallinaro, M.
Galyardt, J.
Garberson, F.
Garcia, J. E.
Garfinkel, A. F.
Genser, K.
Gerberich, H.
Gerdes, D.
Gessler, A.
Giagu, S.
Giakoumopoulou, V.
Giannetti, P.
Gibson, K.
Gimmell, J. L.
Ginsburg, C. M.
Giokaris, N.
Giordani, M.
Giromini, P.
Giunta, M.
Giurgiu, G.
Glagolev, V.
Glenzinski, D.
Gold, M.
Goldschmidt, N.
Golossanov, A.
Gomez, G.
Gomez-Ceballos, G.
Goncharov, M.
Gonzalez, O.
Gorelov, I.
Goshaw, A. T.
Goulianos, K.
Gresele, A.
Grinstein, S.
Grosso-Pilcher, C.
Group, R. C.
Grundler, U.
da Costa, J. Guimaraes
Gunay-Unalan, Z.
Haber, C.
Hahn, K.
Hahn, S. R.
Halkiadakis, E.
Han, B. -Y.
Han, J. Y.
Happacher, F.
Hara, K.
Hare, D.
Hare, M.
Harper, S.
Harr, R. F.
Harris, R. M.
Hartz, M.
Hatakeyama, K.
Hays, C.
Heck, M.
Heijboer, A.
Heinrich, J.
Henderson, C.
Herndon, M.
Heuser, J.
Hewamanage, S.
Hidas, D.
Hill, C. S.
Hirschbuehl, D.
Hocker, A.
Hou, S.
Houlden, M.
Hsu, S. -C.
Huffman, B. T.
Hughes, R. E.
Husemann, U.
Hussein, M.
Huston, J.
Incandela, J.
Introzzi, G.
Iori, M.
Ivanov, A.
James, E.
Jang, D.
Jayatilaka, B.
Jeon, E. J.
Jha, M. K.
Jindariani, S.
Johnson, W.
Jones, M.
Joo, K. K.
Jun, S. Y.
Jung, J. E.
Junk, T. R.
Kamon, T.
Kar, D.
Karchin, P. E.
Kato, Y.
Kephart, R.
Keung, J.
Khotilovich, V.
Kilminster, B.
Kim, D. H.
Kim, H. S.
Kim, H. W.
Kim, J. E.
Kim, M. J.
Kim, S. B.
Kim, S. H.
Kim, Y. K.
Kimura, N.
Kirsch, L.
Klimenko, S.
Knuteson, B.
Ko, B. R.
Kondo, K.
Kong, D. J.
Konigsberg, J.
Korytov, A.
Kotwal, A. V.
Kreps, M.
Kroll, J.
Krop, D.
Krumnack, N.
Kruse, M.
Krutelyov, V.
Kubo, T.
Kuhr, T.
Kulkarni, N. P.
Kurata, M.
Kwang, S.
Laasanen, A. T.
Lami, S.
Lammel, S.
Lancaster, M.
Lander, R. L.
Lannon, K.
Lath, A.
Latino, G.
Lazzizzera, I.
LeCompte, T.
Lee, E.
Lee, H. S.
Lee, S. W.
Leone, S.
Lewis, J. D.
Lin, C. -S.
Linacre, J.
Lindgren, M.
Lipeles, E.
Liss, T. M.
Lister, A.
Litvintsev, D. O.
Liu, C.
Liu, T.
Lockyer, N. S.
Loginov, A.
Loreti, M.
Lovas, L.
Lucchesi, D.
Luci, C.
Lueck, J.
Lujan, P.
Lukens, P.
Lungu, G.
Lyons, L.
Lys, J.
Lysak, R.
MacQueen, D.
Madrak, R.
Maeshima, K.
Makhoul, K.
Maki, T.
Maksimovic, P.
Malde, S.
Malik, S.
Manca, G.
Manousakis-Katsikakis, A.
Margaroli, F.
Marino, C.
Marino, C. P.
Martin, A.
Martin, V.
Martinez, M.
Martinez-Ballarin, R.
Maruyama, T.
Mastrandrea, P.
Masubuchi, T.
Mathis, M.
Mattson, M. E.
Mazzanti, P.
McFarland, K. S.
McIntyre, P.
McNulty, R.
Mehta, A.
Mehtala, P.
Menzione, A.
Merkel, P.
Mesropian, C.
Miao, T.
Miladinovic, N.
Miller, R.
Mills, C.
Milnik, M.
Mitra, A.
Mitselmakher, G.
Miyake, H.
Moggi, N.
Moon, C. S.
Moore, R.
Morello, M. J.
Morlock, J.
Fernandez, P. Movilla
Muelmenstaedt, J.
Mukherjee, A.
Muller, Th.
Mumford, R.
Murat, P.
Mussini, M.
Nachtman, J.
Nagai, Y.
Nagano, A.
Naganoma, J.
Nakamura, K.
Nakano, I.
Napier, A.
Necula, V.
Nett, J.
Neu, C.
Neubauer, M. S.
Neubauer, S.
Nielsen, J.
Nodulman, L.
Norman, M.
Norniella, O.
Nurse, E.
Oakes, L.
Oh, S. H.
Oh, Y. D.
Oksuzian, I.
Okusawa, T.
Orava, R.
Osterberg, K.
Griso, S. Pagan
Palencia, E.
Papadimitriou, V.
Papaikonomou, A.
Paramonov, A. A.
Parks, B.
Pashapour, S.
Patrick, J.
Pauletta, G.
Paulini, M.
Paus, C.
Peiffer, T.
Pellett, D. E.
Penzo, A.
Phillips, T. J.
Piacentino, G.
Pianori, E.
Pinera, L.
Pitts, K.
Plager, C.
Pondrom, L.
Poukhov, O.
Pounder, N.
Prakoshyn, F.
Pronko, A.
Proudfoot, J.
Ptohos, F.
Pueschel, E.
Punzi, G.
Pursley, J.
Rademacker, J.
Rahaman, A.
Ramakrishnan, V.
Ranjan, N.
Redondo, I.
Renton, P.
Renz, M.
Rescigno, M.
Richter, S.
Rimondi, F.
Ristori, L.
Robson, A.
Rodrigo, T.
Rodriguez, T.
Rogers, E.
Rolli, S.
Roser, R.
Rossi, M.
Rossin, R.
Roy, P.
Ruiz, A.
Russ, J.
Rusu, V.
Rutherford, B.
Saarikko, H.
Safonov, A.
Sakumoto, W. K.
Salto, O.
Santi, L.
Sarkar, S.
Sartori, L.
Sato, K.
Savoy-Navarro, A.
Schlabach, P.
Schmidt, A.
Schmidt, E. E.
Schmidt, M. A.
Schmidt, M. P.
Schmitt, M.
Schwarz, T.
Scodellaro, L.
Scribano, A.
Scuri, F.
Sedov, A.
Seidel, S.
Seiya, Y.
Semenov, A.
Sexton-Kennedy, L.
Sforza, F.
Sfyrla, A.
Shalhout, S. Z.
Shears, T.
Shepard, P. F.
Shimojima, M.
Shiraishi, S.
Shochet, M.
Shon, Y.
Shreyber, I.
Sidoti, A.
Sinervo, P.
Sisakyan, A.
Slaughter, A. J.
Slaunwhite, J.
Sliwa, K.
Smith, J. R.
Snider, F. D.
Snihur, R.
Soha, A.
Somalwar, S.
Sorin, V.
Spalding, J.
Spreitzer, T.
Squillacioti, P.
Stanitzki, M.
St. Denis, R.
Stelzer, B.
Stelzer-Chilton, O.
Stentz, D.
Strologas, J.
Strycker, G. L.
Stuart, D.
Suh, J. S.
Sukhanov, A.
Suslov, I.
Suzuki, T.
Taffard, A.
Takashima, R.
Takeuchi, Y.
Tanaka, R.
Tecchio, M.
Teng, P. K.
Terashi, K.
Thom, J.
Thompson, A. S.
Thompson, G. A.
Thomson, E.
Tipton, P.
Ttito-Guzman, P.
Tkaczyk, S.
Toback, D.
Tokar, S.
Tollefson, K.
Tomura, T.
Tonelli, D.
Torre, S.
Torretta, D.
Totaro, P.
Tourneur, S.
Trovato, M.
Tsai, S. -Y.
Tu, Y.
Turini, N.
Ukegawa, F.
Vallecorsa, S.
van Remortel, N.
Varganov, A.
Vataga, E.
Vaezquez, F.
Velev, G.
Vellidis, C.
Vidal, M.
Vidal, R.
Vila, I.
Vilar, R.
Vine, T.
Vogel, M.
Volobouev, I.
Volpi, G.
Wagner, P.
Wagner, R. G.
Wagner, R. L.
Wagner, W.
Wagner-Kuhr, J.
Wakisaka, T.
Wallny, R.
Wang, S. M.
Warburton, A.
Waters, D.
Weinberger, M.
Weinelt, J.
Wester, W. C., III
Whitehouse, B.
Whiteson, D.
Wicklund, A. B.
Wicklund, E.
Wilbur, S.
Williams, G.
Williams, H. H.
Wilson, P.
Winer, B. L.
Wittich, P.
Wolbers, S.
Wolfe, C.
Wright, T.
Wu, X.
Wuerthwein, F.
Xie, S.
Yagil, A.
Yamamoto, K.
Yamaoka, J.
Yang, U. K.
Yang, Y. C.
Yao, W. M.
Yeh, G. P.
Yoh, J.
Yorita, K.
Yoshida, T.
Yu, G. B.
Yu, I.
Yu, S. S.
Yun, J. C.
Zanello, L.
Zanetti, A.
Zhang, X.
Zheng, Y.
Zucchelli, S.
CA CDF Collaboration
TI Measurement of the t(t)over-bar production cross section in 2 fb(-1) of
p(p)over-bar collisions at root s = 1.96 TeV using lepton plus jets
events with soft muon b tagging
SO PHYSICAL REVIEW D
LA English
DT Article
ID PARTON DISTRIBUTIONS
AB We present a measurement of the t (t) over bar production cross section in p (p) over bar collisions at root s = 1.96 TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with t (t) over bar decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF run II data sample corresponding to 2 fb(-1) of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of 79.5 +/- 5.3 events, we measure a production cross section of 9.1 +/- 1.6 pb.
C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
[Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland.
[Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan.
[Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece.
[Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain.
[Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA.
[Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy.
[Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy.
[Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA.
[Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA.
[Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA.
[Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA.
[Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA.
[Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain.
[Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Oakes, L.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA.
[Antos, J.; Lister, A.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia.
[Antos, J.; Lister, A.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia.
[Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Goshaw, A. T.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia.
[Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA.
[Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, K.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vaezquez, F.] Univ Florida, Gainesville, FL 32611 USA.
[Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy.
[Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland.
[Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA.
[Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Liss, T. M.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA.
[Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA.
[Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea.
[Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea.
[Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England.
[Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England.
[Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain.
[Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada.
[Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada.
[Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA.
[Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA.
[Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA.
[Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA.
[Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan.
[Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan.
[Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England.
[Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy.
[Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy.
[Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France.
[Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA.
[Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy.
[Azzurri, P.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Squillacioti, P.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy.
[Cavaliere, V.; Ciocci, M. A.; Scribano, A.; Turini, N.] Univ Siena, I-56127 Pisa, Italy.
[Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy.
[Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA.
[Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA.
[Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA.
[De Cecco, S.; Dionisi, C.; Gallinaro, M.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy.
[Dionisi, C.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy.
[Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA.
[Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA.
[Cauz, D.; Di Ruzza, B.; Giagu, S.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy.
[Cauz, D.; Di Ruzza, B.; Giagu, S.; Giordani, M.; Pauletta, G.; Rossi, M.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy.
[Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan.
[Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA.
[Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan.
[Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA.
[Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA.
[Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA.
RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland.
RI Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli,
Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein,
Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ,
James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera,
Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose
/H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza,
Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi,
Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson,
Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis,
Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio,
Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi,
Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton,
Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak,
Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014
OI Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli,
Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330;
Grinstein, Sebastian/0000-0002-6460-8694; Paulini,
Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan,
zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531;
ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt,
Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580;
Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052;
Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643;
Warburton, Andreas/0000-0002-2298-7315; Moon,
Chang-Seong/0000-0001-8229-7829
FU U.S. Department of Energy and the National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture,
Sports, Science and Technology of Japan; Natural Sciences and
Engineering Research Council of Canada; National Science Council of the
Republic of China; Swiss National Science Foundation; A. P. Sloan
Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean
Science and Engineering Foundation; Korean Research Foundation; Science
and Technology Facilities Council; Royal Society, UK; Institut National
de Physique Nucleaire et Physique des Particules/CNRS; Russian
Foundation for Basic Research; Ministerio de Ciencia e Innovacion;
Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of
Finland
FX We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. This work was
supported by the U.S. Department of Energy and the National Science
Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the
Ministry of Education, Culture, Sports, Science and Technology of Japan;
the Natural Sciences and Engineering Research Council of Canada; the
National Science Council of the Republic of China; the Swiss National
Science Foundation; the A. P. Sloan Foundation; the Bundesministerium
fur Bildung und Forschung, Germany; the Korean Science and Engineering
Foundation and the Korean Research Foundation; the Science and
Technology Facilities Council and the Royal Society, UK; the Institut
National de Physique Nucleaire et Physique des Particules/CNRS; the
Russian Foundation for Basic Research; the Ministerio de Ciencia e
Innovacion, and the Programa Consolider-Ingenio 2010, Spain; the Slovak
R&D Agency; and the Academy of Finland.
NR 29
TC 13
Z9 13
U1 1
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1550-7998
EI 1550-2368
J9 PHYS REV D
JI Phys. Rev. D
PD MAR
PY 2009
VL 79
IS 5
AR 052007
DI 10.1103/PhysRevD.79.052007
PG 25
WC Astronomy & Astrophysics; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 427EK
UT WOS:000264762400014
ER
PT J
AU Abbasi, R
Ackermann, M
Adams, J
Ahlers, M
Ahrens, J
Andeen, K
Auffenberg, J
Bai, X
Baker, M
Baret, B
Barwick, SW
Bay, R
Alba, JLB
Beattie, K
Becka, T
Becker, JK
Becker, KH
Berdermann, J
Berghaus, P
Berley, D
Bernardini, E
Bertrand, D
Besson, DZ
Blaufuss, E
Boersma, DJ
Bohm, C
Bolmont, J
Boser, S
Botner, O
Braun, J
Breder, D
Burgess, T
Castermans, T
Chirkin, D
Christy, B
Clem, J
Cowen, DF
D'Agostino, MV
Danninger, M
Davour, A
Day, CT
Depaepe, O
De Clercq, C
Demirors, L
Descamps, F
Desiati, P
de Vries-Uiterweerd, G
DeYoung, T
Diaz-Velez, JC
Dreyer, J
Dumm, JP
Duvoort, MR
Edwards, WR
Ehrlich, R
Eisch, J
Ellsworth, RW
Engdegard, O
Euler, S
Evenson, PA
Fadiran, O
Fazely, AR
Filimonov, K
Finley, C
Foerster, MM
Fox, BD
Franckowiak, A
Franke, R
Gaisser, TK
Gallagher, J
Ganugapati, R
Gerhardt, L
Gladstone, L
Goldschmidt, A
Goodman, JA
Gozzini, R
Grant, D
Griesel, T
Gross, A
Grullon, S
Gunasingha, RM
Gurtner, M
Ha, C
Hallgren, A
Halzen, F
Han, K
Hanson, K
Hardtke, R
Hasegawa, Y
Heise, J
Helbing, K
Hellwig, M
Herquet, P
Hickford, S
Hill, GC
Hodges, J
Hoffman, KD
Hoshina, K
Hubert, D
Huelsnitz, W
Hughey, B
Hulss, JP
Hulth, PO
Hultqvist, K
Hundertmark, S
Hussain, S
Imlay, RL
Inaba, M
Ishihara, A
Jacobsen, J
Japaridze, GS
Johansson, H
Joseph, JM
Kampert, KH
Kappes, A
Karg, T
Karle, A
Kawai, H
Kelley, JL
Kiryluk, J
Kislat, F
Klein, SR
Klepser, S
Kohnen, G
Kolanoski, H
Kopke, L
Kowalski, M
Kowarik, T
Krasberg, M
Kuehn, K
Kuwabara, T
Labare, M
Laihem, K
Landsman, H
Lauer, R
Leich, H
Leier, D
Lewis, C
Lucke, A
Lundberg, J
Lunemann, J
Madsen, J
Maruyama, R
Mase, K
Matis, HS
McParland, CP
Meagher, K
Meli, A
Merck, M
Messarius, T
Meszaros, P
Miyamoto, H
Mohr, A
Montaruli, T
Morse, R
Movit, SM
Munich, K
Nahnhauer, R
Nam, JW
Niessen, P
Nygren, DR
Odrowski, S
Olivas, A
Olivo, M
Ono, M
Panknin, S
Patton, S
de los Heros, CP
Petrovic, J
Piegsa, A
Pieloth, D
Pohl, AC
Porrata, R
Potthoff, N
Pretz, J
Price, PB
Przybylski, GT
Rawlins, K
Razzaque, S
Redl, P
Resconi, E
Rhode, W
Ribordy, M
Rizzo, A
Robbins, WJ
Rodriguez, J
Roth, P
Rothmaier, F
Rott, C
Roucelle, C
Rutledge, D
Ryckbosch, D
Sander, HG
Sarkar, S
Satalecka, K
Schlenstedt, S
Schmidt, T
Schneider, D
Schultz, O
Seckel, D
Semburg, B
Seo, SH
Sestayo, Y
Seunarine, S
Silvestri, A
Smith, AJ
Song, C
Spiczak, GM
Spiering, C
Stamatikos, M
Stanev, T
Stezelberger, T
Stokstad, RG
Stoufer, MC
Stoyanov, S
Strahler, EA
Straszheim, T
Sulanke, KH
Sullivan, GW
Swillens, Q
Taboada, I
Tarasova, O
Tepe, A
Ter-Antonyan, S
Tilav, S
Tluczykont, M
Toale, PA
Tosi, D
Turcan, D
van Eijndhoven, N
Vandenbroucke, J
Van Overloop, A
Viscomi, V
Vogt, C
Voigt, B
Walck, C
Waldenmaier, T
Walter, M
Wendt, C
Westerhoff, S
Whitehorn, N
Wiebusch, CH
Wiedemann, C
Wikstrom, G
Williams, DR
Wischnewski, R
Wissing, H
Woschnagg, K
Xu, XW
Yodh, G
Yoshida, S
AF Abbasi, R.
Ackermann, M.
Adams, J.
Ahlers, M.
Ahrens, J.
Andeen, K.
Auffenberg, J.
Bai, X.
Baker, M.
Baret, B.
Barwick, S. W.
Bay, R.
Alba, J. L. Bazo
Beattie, K.
Becka, T.
Becker, J. K.
Becker, K. -H.
Berdermann, J.
Berghaus, P.
Berley, D.
Bernardini, E.
Bertrand, D.
Besson, D. Z.
Blaufuss, E.
Boersma, D. J.
Bohm, C.
Bolmont, J.
Boeser, S.
Botner, O.
Braun, J.
Breder, D.
Burgess, T.
Castermans, T.
Chirkin, D.
Christy, B.
Clem, J.
Cowen, D. F.
D'Agostino, M. V.
Danninger, M.
Davour, A.
Day, C. T.
Depaepe, O.
De Clercq, C.
Demiroers, L.
Descamps, F.
Desiati, P.
de Vries-Uiterweerd, G.
DeYoung, T.
Diaz-Velez, J. C.
Dreyer, J.
Dumm, J. P.
Duvoort, M. R.
Edwards, W. R.
Ehrlich, R.
Eisch, J.
Ellsworth, R. W.
Engdegard, O.
Euler, S.
Evenson, P. A.
Fadiran, O.
Fazely, A. R.
Filimonov, K.
Finley, C.
Foerster, M. M.
Fox, B. D.
Franckowiak, A.
Franke, R.
Gaisser, T. K.
Gallagher, J.
Ganugapati, R.
Gerhardt, L.
Gladstone, L.
Goldschmidt, A.
Goodman, J. A.
Gozzini, R.
Grant, D.
Griesel, T.
Gross, A.
Grullon, S.
Gunasingha, R. M.
Gurtner, M.
Ha, C.
Hallgren, A.
Halzen, F.
Han, K.
Hanson, K.
Hardtke, R.
Hasegawa, Y.
Heise, J.
Helbing, K.
Hellwig, M.
Herquet, P.
Hickford, S.
Hill, G. C.
Hodges, J.
Hoffman, K. D.
Hoshina, K.
Hubert, D.
Huelsnitz, W.
Hughey, B.
Huelss, J.-P.
Hulth, P. O.
Hultqvist, K.
Hundertmark, S.
Hussain, S.
Imlay, R. L.
Inaba, M.
Ishihara, A.
Jacobsen, J.
Japaridze, G. S.
Johansson, H.
Joseph, J. M.
Kampert, K. -H.
Kappes, A.
Karg, T.
Karle, A.
Kawai, H.
Kelley, J. L.
Kiryluk, J.
Kislat, F.
Klein, S. R.
Klepser, S.
Kohnen, G.
Kolanoski, H.
Koepke, L.
Kowalski, M.
Kowarik, T.
Krasberg, M.
Kuehn, K.
Kuwabara, T.
Labare, M.
Laihem, K.
Landsman, H.
Lauer, R.
Leich, H.
Leier, D.
Lewis, C.
Lucke, A.
Lundberg, J.
Luenemann, J.
Madsen, J.
Maruyama, R.
Mase, K.
Matis, H. S.
McParland, C. P.
Meagher, K.
Meli, A.
Merck, M.
Messarius, T.
Meszaros, P.
Miyamoto, H.
Mohr, A.
Montaruli, T.
Morse, R.
Movit, S. M.
Muenich, K.
Nahnhauer, R.
Nam, J. W.
Niessen, P.
Nygren, D. R.
Odrowski, S.
Olivas, A.
Olivo, M.
Ono, M.
Panknin, S.
Patton, S.
de los Heros, C. Perez
Petrovic, J.
Piegsa, A.
Pieloth, D.
Pohl, A. C.
Porrata, R.
Potthoff, N.
Pretz, J.
Price, P. B.
Przybylski, G. T.
Rawlins, K.
Razzaque, S.
Redl, P.
Resconi, E.
Rhode, W.
Ribordy, M.
Rizzo, A.
Robbins, W. J.
Rodriguez, J.
Roth, P.
Rothmaier, F.
Rott, C.
Roucelle, C.
Rutledge, D.
Ryckbosch, D.
Sander, H. -G.
Sarkar, S.
Satalecka, K.
Schlenstedt, S.
Schmidt, T.
Schneider, D.
Schultz, O.
Seckel, D.
Semburg, B.
Seo, S. H.
Sestayo, Y.
Seunarine, S.
Silvestri, A.
Smith, A. J.
Song, C.
Spiczak, G. M.
Spiering, C.
Stamatikos, M.
Stanev, T.
Stezelberger, T.
Stokstad, R. G.
Stoufer, M. C.
Stoyanov, S.
Strahler, E. A.
Straszheim, T.
Sulanke, K. -H.
Sullivan, G. W.
Swillens, Q.
Taboada, I.
Tarasova, O.
Tepe, A.
Ter-Antonyan, S.
Tilav, S.
Tluczykont, M.
Toale, P. A.
Tosi, D.
Turcan, D.
van Eijndhoven, N.
Vandenbroucke, J.
Van Overloop, A.
Viscomi, V.
Vogt, C.
Voigt, B.
Walck, C.
Waldenmaier, T.
Walter, M.
Wendt, C.
Westerhoff, S.
Whitehorn, N.
Wiebusch, C. H.
Wiedemann, C.
Wikstrom, G.
Williams, D. R.
Wischnewski, R.
Wissing, H.
Woschnagg, K.
Xu, X. W.
Yodh, G.
Yoshida, S.
TI Search for point sources of high energy neutrinos with final data from
AMANDA-II
SO PHYSICAL REVIEW D
LA English
DT Article
ID COSMIC-RAYS; TELESCOPES; SELECTION; DETECTOR; OBJECTS; LIMITS
AB We present a search for point sources of high energy neutrinos using 3.8 yr of data recorded by AMANDA-II during 2000-2006. After reconstructing muon tracks and applying selection criteria designed to optimally retain neutrino-induced events originating in the northern sky, we arrive at a sample of 6595 candidate events, predominantly from atmospheric neutrinos with primary energy 100 GeV to 8 TeV. Our search of this sample reveals no indications of a neutrino point source. We place the most stringent limits to date on E-2 neutrino fluxes from points in the northern sky, with an average upper limit of E-2 Phi(nu mu)+nu(tau)<= 5.2x10(-11) TeV cm(-2) s(-1) on the sum of nu(mu) and nu(tau) fluxes, assumed equal, over the energy range from 1.9 TeV to 2.5 PeV.
C1 [Abbasi, R.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hodges, J.; Hoshina, K.; Hughey, B.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Lewis, C.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodriguez, J.; Schneider, D.; Song, C.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Euler, S.; Vogt, C.; Wiebusch, C. H.; Wis