FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Krupka, KM Parkhurst, MA Gold, K Arey, BW Jenson, ED Guilmette, RA AF Krupka, Kenneth M. Parkhurst, Mary Ann Gold, Kenneth Arey, Bruce W. Jenson, Evan D. Guilmette, Raymond A. TI PHYSICOCHEMICAL CHARACTERIZATION OF CAPSTONE DEPLETED URANIUM AEROSOLS III: MORPHOLOGIC AND CHEMICAL OXIDE ANALYSES SO HEALTH PHYSICS LA English DT Article DE aerosols; contamination, environmental; uranium, depleted; radioactivity, airborne ID OXIDATION-STATES; PARTICLES; KOSOVO; PENETRATORS; TANK AB The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments. C1 [Krupka, Kenneth M.; Parkhurst, Mary Ann; Arey, Bruce W.; Jenson, Evan D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Gold, Kenneth] USA, RDECOMARDEC, Picatinny Arsenal, NJ 07806 USA. [Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. RP Krupka, KM (reprint author), Pacific NW Natl Lab, POB 999,K6-81, Richland, WA 99352 USA. EM ken.krupka@pnl.gov FU U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI); U.S. Army; U.S. Department of Energy [DE-AC05-76RL01830] FX The authors thank H. Todd Schaef for his thorough review and helpful comments. We also thank Dr. Larry Thomas for his advice regarding the interpretation of particles evaluated using SEM/EDS, and to Drs. Lee Magness and Joseph McDonald for their reviews. The Capstone DU Aerosol Study was jointly supported by the U.S. Office of the Special Assistant for Gulf War Illnesses, Medical Readiness and Military Deployment (OSAGWI, currently referred to as Force Health Protection & Readiness Policy & Programs) and the U.S. Army. The Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. NR 30 TC 14 Z9 14 U1 1 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 276 EP 291 PG 16 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900006 PM 19204486 ER PT J AU Miller, G Cheng, YS Traub, RJ Little, TT Guilmette, RA AF Miller, Guthrie Cheng, Yung Sung Traub, Richard J. Little, Tom T. Guilmette, Raymond A. TI METHODS USED TO CALCULATE DOSES RESULTING FROM INHALATION OF CAPSTONE DEPLETED URANIUM AEROSOLS SO HEALTH PHYSICS LA English DT Article DE analysis, statistical; dose, internal; Monte Carlo; uranium, depleted ID CASCADE IMPACTOR; PARAMETERS; MODEL AB The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a U.S. Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions are described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size-resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus the backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described. C1 [Miller, Guthrie; Little, Tom T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cheng, Yung Sung; Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. [Traub, Richard J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miller, G (reprint author), Los Alamos Natl Lab, MS G761 RP2, Los Alamos, NM 87545 USA. EM guthrie@lanl.gov FU U.S. Army Center for Health promotion and Preventive Medicine (LJSACHPPM), Aberdeen, MD FX The authors wish to thank Fran Szrom, Mary Ann Parkhurst, Gerald Falo, LTC Gordon Lodde (USA-ret.), and David Alberth for helping to develop the exposure scenarios used in these intake, dose, and concentration calculations. Funding was provided by the U.S. Army Center for Health promotion and Preventive Medicine (LJSACHPPM), Aberdeen, MD. NR 37 TC 7 Z9 7 U1 1 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 306 EP 327 PG 22 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900008 PM 19204488 ER PT J AU Guilmette, RA Miller, G Parkhurst, MA AF Guilmette, Raymond A. Miller, Guthrie Parkhurst, Mary Ann TI CAPSTONE DEPLETED URANIUM AEROSOL BIOKINETICS, CONCENTRATIONS, AND DOSES SO HEALTH PHYSICS LA English DT Article DE uranium, depleted; biokinetics; dose assessment; internal dose ID RESPIRATORY-TRACT MODEL; PARAMETER UNCERTAINTIES; TISSUES AB One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being for a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1 min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately. C1 [Guilmette, Raymond A.] Lovelace Resp Res Inst, Ctr Countermeasures Radiat, Albuquerque, NM 87108 USA. [Miller, Guthrie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Guilmette, RA (reprint author), Lovelace Resp Res Inst, Ctr Countermeasures Radiat, 2425 Ridgecrest Dr SE, Albuquerque, NM 87108 USA. EM rguilmette@lrri.org FU U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen FX The authors wish to acknowledge the Capstone HHRA team (Guthrie Miller, Fletcher Hahn, Laurie Roszell, Eric Daxon. Thomas Little, Jeffrey Whicker, Yung Sung Cheng, Rick Traub, Gordon Lodde, Fran Szrom, Don Bihl, Kathy Creek, and Chad McKee) for their assistance in developing the strategies used to calculate concentrations and doses. Special thanks is extended to Rick Traub for generating the biokinetic figures used in the text. The authors also want to recognize the contribution of Wes Van Pelt, one of the external panel reviewers, who suggested evaluating doses by individual Cl stages because the activity median aerodynamic diameters poorly characterized many of our aerosol samples. His independent realization of this need helped support Our resolve to proceed with the much more complicated evaluation process using the titanium content of each Cl substrate filter. Funding for the Capstone HHRA was provided by the U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD. NR 22 TC 5 Z9 5 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 328 EP 342 PG 15 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900009 PM 19204489 ER PT J AU Roszell, LE Hahn, FF Lee, RB Parkhurst, MA AF Roszell, Laurie E. Hahn, Fletcher F. Lee, Robyn B. Parkhurst, Mary Ann TI ASSESSING THE RENAL TOXICITY OF CAPSTONE DEPLETED URANIUM OXIDES AND OTHER URANIUM COMPOUNDS SO HEALTH PHYSICS LA English DT Article DE uranium, depleted; kidneys; modeling, dose assessment; risk estimates ID GULF-WAR VETERANS; FOLLOW-UP; URANYL; RAT; NEPHROTOXICITY; CELLS AB The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiological Protection value of 3 mu g U g(-1) kidney, a value that is based largely upon chronic studies in animals. In the present effort, a risk model equation was developed to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to + + +) and then placed into it Renal Effects Group (REG). A discriminant analysis was used to build it model equation to predict the REG based on the amount of uranium in the kidneys. The model equation was able to predict the REG, with 85% accuracy. The risk model was used to predict the REG for soldiers exposed to depleted uranium as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the REG of new cases in which acute exposures to uranium have occurred. C1 [Roszell, Laurie E.; Lee, Robyn B.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA. [Hahn, Fletcher F.] Lovelace Resp Res Inst, Albuquerque, NM 87105 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Roszell, LE (reprint author), USA, Ctr Hlth Promot & Prevent Med, 5159 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM laurie.roszell@us.army.mil FU U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD FX The authors want to thank Raymond Guilmette, Guthrie Miller. and Thomas Little for the dose modeling that provided the predicted kidney uranium concentrations, and Eric Daxon, Gerald Falo, Fran Szrom and LTC Gordon Lodde (USA-Ret.) for reviews of early versions of this manuscript. Funding was provided by the U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD. NR 34 TC 11 Z9 11 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 343 EP 351 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900010 PM 19204490 ER PT J AU Hahn, FF Roszell, LE Daxon, EG Guilmette, RA Parkhurst, MA AF Hahn, Fletcher F. Roszell, LaLtrie E. Daxon, Eric G. Guilmette, Raymond A. Parkhurst, Mary Ann TI RADIOLOGICAL RISK ASSESSMENT OF CAPSTONE DEPLETED URANIUM AEROSOLS SO HEALTH PHYSICS LA English DT Article DE radiation risk; health effects; uranium, depleted; inhalation ID LUNG-CANCER RISK; NATURAL URANIUM; EXPOSURE; TISSUES; RADIONUCLIDES; INHALATION; ISOTOPES; DUST AB Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-y doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth, and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation. C1 [Hahn, Fletcher F.; Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87105 USA. [Roszell, LaLtrie E.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA. [Daxon, Eric G.] Battelle Mem Inst, San Antonio, TX 78228 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hahn, FF (reprint author), Lovelace Resp Res Inst, 2425 Ridgecrest Dr SE, Albuquerque, NM 87105 USA. EM fhahn@LLRI.org FU U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD FX Funding and technical guidance were provided by the U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD. NR 45 TC 6 Z9 6 U1 1 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 352 EP 362 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900011 PM 19204491 ER PT J AU Szrom, F Falo, GA Lodde, GM Parkhurst, MA Daxon, EG AF Szrom, Frances Falo, Gerald A. Lodde, Gordon M. Parkhurst, Mary Ann Daxon, Eric G. TI INHALATION AND INGESTION INTAKES WITH ASSOCIATED DOSE ESTIMATES FOR LEVEL II AND LEVEL III PERSONNEL USING CAPSTONE STUDY DATA SO HEALTH PHYSICS LA English DT Article DE ingestion; inhalation; radioactivity, airborne; uranium, depleted ID HAND EXPOSURE AB Depleted uranium (DU) intake rates and subsequent dose rates were estimated for personnel entering armored combat vehicles perforated with DU penetrators (level II and level III personnel) using data generated during the Capstone DU Aerosol Study. Inhalation intake rates and associated dose rates were estimated from cascade impactors worn by sample recovery personnel and from cascade impactors that served as area monitors. Ingestion intake rates and associated dose rates were estimated from cotton gloves worn by sample recovery personnel and from wipe-tests samples from the interior of vehicles perforated with large-caliber DU munitions. The mean DU inhalation intake rate for level II personnel ranged from 0.447 mg h(-1) based on breathing zone monitor data (in and around a perforated vehicle) to 14.5 rug h(-1) based on area monitor data (in a perforated vehicle). The mean DU ingestion intake rate for level II ranged from 4.8 mg h(-1) to 38.9 mg h(-1) based on the wipe-tests data including surface-to-glove transfer factors derived from the Capstone data. Based on glove contamination data, the mean DU ingestion intake rates for level II and level III personnel were 10.6 mg h(-1) and 1.78 mg h(-1), respectively. Effective dose rates and peak kidney uranium concentration rates were calculated based on the intake rates. The peak kidney uranium concentration rate cannot be multiplied by the total exposure duration when multiple intakes occur because uranium will clear from the kidney between the exposures. C1 [Szrom, Frances; Falo, Gerald A.; Lodde, Gordon M.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Daxon, Eric G.] Battelle Columbus Operat, San Antonio, TX 78228 USA. RP Szrom, F (reprint author), USA, Ctr Hlth Promot & Prevent Med, 5158 Blackliawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM fran.szrom@us.army.mil NR 22 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 363 EP 379 PG 17 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900012 PM 19204492 ER PT J AU Daxon, EG Parkhurst, MA Melanson, MA Roszell, LE AF Daxon, Eric G. Parkhurst, Mary Ann Melanson, Mark A. Roszell, Laurie E. TI APPLICATIONS OF CAPSTONE DEPLETED URANIUM AEROSOL RISK DATA TO MILITARY COMBAT RISK MANAGEMENT SO HEALTH PHYSICS LA English DT Article DE aerosols; uranium, depleted; inhalation; risk analysis AB Risks to personnel engaged in military operations include not only the threat of enemy firepower but also risks from exposure to other hazards such as radiation. Combatant commanders of the U.S. Army carefully weigh risks of casualties before implementing battlefield actions using an established paradigm that takes these risks into consideration. As a result of the inclusion of depleted uranium (DU) anti-armor ammunition in the conventional (non-nuclear) weapons arsenal, the potential for exposure to DU aerosols and its associated chemical and radiological effects becomes an element of the commanders' risk assessment. The Capstone DU Aerosol Study measured the range of likely DU oxide aerosol concentrations created inside a combat vehicle perforated with a DU munition, and the Capstone Human Health Risk Assessment (HHRA) estimated the associated doses and calculated risks. This paper focuses on the development of a scientific approach to adapt the risks from DU's non-uniform dose distribution within the body using the current U.S. Department of Defense radiation risk management approach. The approach developed equates the Radiation Exposure Status categories to the estimated radiological risks of DU and makes use of the Capstone-developed Renal Effects Group as a measure of chemical risk from DU intake. Recommendations are provided for modifying Army guidance and policy in order to better encompass the potential risks from DU aerosol inhalation during military operations. C1 [Daxon, Eric G.] Battelle San Antonio Operat, San Antonio, TX 78228 USA. [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Melanson, Mark A.] USA, Walter Reed Army Med Ctr, Washington, DC 20307 USA. [Roszell, Laurie E.] USA, Ctr Hlth Promot & Prevent Med, Aberdeen Proving Ground, MD 21010 USA. RP Daxon, EG (reprint author), Battelle San Antonio Operat, 4100 Piedras Dr E,Suite 185, San Antonio, TX 78228 USA. EM daxone@battelle.org FU U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD FX The author wish to thank Raymond A. Guilmette and Chad B. McKee for their ideas and guidance, Fletcher Hahn and Robyn Lee for their assistance with the development of the Renal Effects Groups, and reviews by Fran Szrom, Gerald Falo, David Alberth, Donald Bihl, and Joseph McDonald. Funding was provided by the U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD. NR 35 TC 1 Z9 1 U1 1 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 380 EP 392 PG 13 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900013 PM 19204493 ER PT J AU Parkhurst, MA Guilmette, RA AF Parkhurst, Mary Ann Guilmette, Raymond A. TI CONCLUSIONS OF THE CAPSTONE DEPLETED URANIUM AEROSOL CHARACTERIZATION AND RISK ASSESSMENT STUDY SO HEALTH PHYSICS LA English DT Article DE air sampling; dose assessment; inhalation; uranium, depleted ID VETERANS; SURVEILLANCE AB The rationale for the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study and its results and applications have been examined in the previous 13 articles of this special issue. This paper summarizes the study's results and discusses its successes and lessons learned. The robust data from the Capstone DU Aerosol Study have provided a sound basis for assessing the inhalation exposure to DU aerosols and the (lose and risk to personnel in combat vehicles at the time or perforation and to those entering immediately after perforation. The Human Health Risk Assessment provided a technically sound process for evaluating chemical and radiological doses and risks from DU aerosol exposure using well-accepted biokinetic and dosimetric models innovatively applied. An independent review of the study process and results is summarized, and recommendations for possible avenues of future study are provided by the authors anti by other major reviews of DU health hazards. C1 [Parkhurst, Mary Ann] Pacific NW Natl Lab, Richland, WA 99352 USA. [Guilmette, Raymond A.] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA. RP Parkhurst, MA (reprint author), Pacific NW Natl Lab, POB 999,K3-55, Richland, WA 99352 USA. EM maryann.parkhurst@pnl.gov FU U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM) FX The authors gratefully thank the Capstone team members who contributed to the original reports on which Much of this text is based. If the list were significantly shorter (more than 20 authors contributed to these journal articles and to the Capstone reports), all Would be listed as authors. The authors want to especially acknowledge Fran Szrom, Gerald Falo, and David Alberth, of U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM), Aberdeen, MD. for their assistance particularly with level II and III information used in this article, and Don Bihl and Joseph McDonald. Emeritus Laboratory Fellow of Pacific Northwest National Laboratory, for their input. Thanks also to Mark Hoover for encouraging the authors to write this concluding paper to summarize the Capstone Study. Funding for the Capstone HHRA was provided by the USACHPPM. NR 41 TC 4 Z9 5 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2009 VL 96 IS 3 BP 393 EP 409 PG 17 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 407DD UT WOS:000263342900014 PM 19204494 ER PT J AU Buhlmann, KA Congdon, JD Gibbons, JW Greene, JL AF Buhlmann, Kurt A. Congdon, Justin D. Gibbons, J. Whitfield Greene, Judith L. TI ECOLOGY OF CHICKEN TURTLES (DEIROCHELYS RETICULARIA) IN A SEASONAL WETLAND ECOSYSTEM: EXPLOITING RESOURCE AND REFUGE ENVIRONMENTS SO HERPETOLOGICA LA English DT Article DE Chelonia; Chicken turtle; Deirochelys reticularia; Life history; Reproduction; Seasonal wetlands; Survivorship ID SOUTH-CAROLINA; CHELYDRA-SERPENTINA; EMYDOIDEA-BLANDINGI; LIFE-HISTORY; MUD TURTLE; REPRODUCTION; CONSERVATION; POPULATION; TESTUDINES; LONG AB Chicken turtles (Deirochelys reticularia) were studied at Dry Bay, a Carolina bay wetland in South Carolina, USA, between 1994 and 2005. A total of 461. individual turtles was marked from 1993-1998. Minimum ages at maturity for mates and females were 2 and 5 yr, respectively. All females reproduced each year, and 60% of reproductive females produced two clutches per season. Clutch size averaged 9.8 eggs, and both clutch and egg size increased with body size. Hatchlings averaged 29.2 tool PL, and body sizes were similar among years. Yearling survivorship varied from 7.0-43.0% (mean = 20.4%) among years. The highest survivorship of a hatchling cohort to age 5 was 0.21. Survivorships of juveniles and adults while in terrestrial refugia were higher than survivorships while in aquatic habitats. No adult females survived a 2-yr drought (2001-2003), and the hay was repopulated by mature males and juvenile females (most front the 1998 hatchling cohort) that had survived the extended drought in terrestrial refugia. Three of those juvenile females Matured and produced eggs in 2004. The traits of early maturity, high susceptibility to predation, and shortened longevity characteristic of chicken turtles are consistent with predictions for species that live in seasonally fluctuating and highly unpredictable aquatic habitats. C1 [Buhlmann, Kurt A.; Congdon, Justin D.; Gibbons, J. Whitfield; Greene, Judith L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Buhlmann, Kurt A.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. RP Buhlmann, KA (reprint author), Univ Georgia, Savannah River Ecol Lab, Drawer E, Aiken, SC 29802 USA. EM kbuhlmann@earthlink.net FU Office of Biological and Environmental Research; U.S. Department of Energy [DE-FC09-96SR18546]; University of Georgia Research Foundation; Savannah River Ecology Laboratory Graduate Fellowship FX Special thanks to A. Belden, R. Bodie, N. Buschhaus, C. Coffman, C. Davis, J. Demuth, M. Dorcas, C. Harrison, F. Janzen, R. Kennett, C. Ludwig, S. McKeon, S. Miller, M. Mills, T. Mills, J. Ott, A. Page, M. Pilgrim, T. Ryan, T. Tuberville, A. Tucker and others for help with field work at Dry Bay. The procedures used in this study were approved by the University of Georgia animal care and use committee (A2003-10024, "Reptile and amphibian research-general field studies") and the South Carolina Department of Natural Resources (Collection Permits: 562003 and 072004). Research and manuscript preparation were aided by the Office of Biological and Environmental Research, U.S. Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation and by the Savannah River Ecology Laboratory Graduate Fellowship Program. N. Dickson and R. van Loben Sels provided comments on earlier drafts of the manuscript. NR 44 TC 14 Z9 15 U1 2 U2 16 PU HERPETOLOGISTS LEAGUE PI EMPORIA PA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA SN 0018-0831 J9 HERPETOLOGICA JI Herpetologica PD MAR PY 2009 VL 65 IS 1 BP 39 EP 53 PG 15 WC Zoology SC Zoology GA 449HH UT WOS:000266320900004 ER PT J AU Sherman, MH Walker, IS AF Sherman, Max H. Walker, Iain S. TI Measured Air Distribution Effectiveness for Residential Mechanical Ventilation SO HVAC&R RESEARCH LA English DT Article ID TRACER GAS MEASUREMENTS AB The purpose of ventilation is to dilute or remove indoor contaminants that an occupant is exposed to. In a multizone environment, such as a house, there will be different dilution rates and different source strengths in every zone. Most homes in the United States have central HVAC systems, which tend to mix the air, and thus, the indoor conditions between zones. Different types of ventilation systems provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multitracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ANSI/ASHRAE Standard 62.2-2007, Ventilation for Acceptable Indoor Air Quality in Low-Rise Residential Buildings compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2 (ASHRAE 2007). C1 [Sherman, Max H.; Walker, Iain S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Energy Performance Bldg Grp, Berkeley, CA 94720 USA. RP Sherman, MH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Energy Performance Bldg Grp, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of the Building Technologies Program, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 22 TC 2 Z9 2 U1 2 U2 6 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 1078-9669 J9 HVAC&R RES JI HVAC&R Res. PD MAR PY 2009 VL 15 IS 2 BP 211 EP 229 DI 10.1080/10789669.2009.10390834 PG 19 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 532YU UT WOS:000272788100004 ER PT J AU Armstrong, PR Jiang, W Winiarski, D Katipamula, S Norford, LK Willingham, RA AF Armstrong, P. R. Jiang, W. Winiarski, D. Katipamula, S. Norford, L. K. Willingham, R. A. TI Efficient Low-Lift Cooling with Radiant Distribution, Thermal Storage, and Variable-Speed Chiller Controls-Part I: Component and Subsystem Models SO HVAC&R RESEARCH LA English DT Article AB Component and subsystem models used to evaluate the performance of a low-lift cooling system am described. An air-cooled chiller, a hydronic radiant distribution system, variable-speed control, and peak-shifting controls are modeled. A variable-speed compressor that operates over 20:1 speed range and pressure ratio., ranging from one to six is at the heart of the chiller. Condenser fan and chilled-water pump motors have independent speed controls. The load-side distribution is modeled from the refrigerant side of the evaporator to the conditioned zone as a single subsystem controlled by chilled-water flow rate for a specified instantaneous cooling load. Performance of the same chiller when operating with an all-air distribution system is also modeled. The compressor, condenser fan, and chilled-water pump motor speeds that achieve maximum coefficient of performance (COP) at a given condition are solved at each point on a grid of load and outdoor temperature. A variable-speed dehumidification subsystem is modeled and simulated as part of a dedicated outdoor air system to condition the ventilation air. A companion paper evaluates the annual cooling system energy use and potential energy savings to be gained by integrating radiant cooling, cool storage, and variable-speed compressor and transport motor controls. C1 [Armstrong, P. R.] Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates. [Jiang, W.; Winiarski, D.; Katipamula, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Norford, L. K.; Willingham, R. A.] MIT, Cambridge, MA 02139 USA. RP Armstrong, PR (reprint author), Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates. FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Building Technologies FX The authors would like to acknowledge the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Building Technologies Program for supporting the work. Support of the MIT authors by the Masdar Initiative is gratefully acknowledged. The authors would also like to thank John Ryan and Dru Crawley, and Alan Schroeder, DOE technology development manager, Andrew Nicholls, program manager at Pacific Northwest National Laboratory (PNNL)-for insightful comments, and Sue Arey for editing the manuscript. Thanks to Tom Watson of McQuay, John Seem of Johnson Controls, Dan Manole of Tecumseh, Steve Holden and Alex Lifson of Carrier, Chuncheng Piao of Daikin, Hidekazu Tani of Mitsubishi, Gary Nettinger of Sanyo, and numerous PNNL colleagues for thoughtful discussions on the low-lift systems approach. Jaclyn Phillips and Jessica Knappek exercised the compressor sizing tool with exceptional diligence and good cheer. NR 32 TC 4 Z9 4 U1 0 U2 3 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 1078-9669 J9 HVAC&R RES JI HVAC&R Res. PD MAR PY 2009 VL 15 IS 2 BP 367 EP 401 PG 35 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 532YU UT WOS:000272788100012 ER PT J AU Armstrong, PR Jiang, W Winiarski, D Katipamula, S Norford, LK AF Armstrong, P. R. Jiang, W. Winiarski, D. Katipamula, S. Norford, L. K. TI Efficient Low-Lift Cooling with Radiant Distribution, Thermal Storage, and Variable-Speed Chiller Controls-Part II: Annual Energy Use and Savings SO HVAC&R RESEARCH LA English DT Review ID DISPLACEMENT VENTILATION; HEAT-STORAGE; AIR SYSTEM; MODEL; MASS; PERFORMANCE; STRATEGIES; PANELS AB This paper evaluates the cooling efficiency improvements that can be achieved by integrating radiant cooling, cool storage, and variable-speed compressor and transport motor controls. Performance estimates of a baseline system and seven useful combinations of these three efficient low-lift inspired cooling technologies are reported. The technology configurations are simulated in a prototypical office building with three levels of envelope and balance-of-plant performance: standard-, mid- and high-performance, and in five climates. The standard performance level corresponds to ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004a). From the savings estimates for an office building prototype in five representative climates, estimates of national energy saving technical potential are developed. Component and subsystem models used in the energy simulations are developed in a companion paper. C1 [Armstrong, P. R.] Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates. [Jiang, W.; Winiarski, D.; Katipamula, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Norford, L. K.] MIT, Cambridge, MA 02139 USA. RP Armstrong, PR (reprint author), Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates. FU DOE Office of Energy Efficiency and Renewable Energy's Building Technologies FX The authors would like to acknowledge the DOE Office of Energy Efficiency and Renewable Energy's Building Technologies Program for supporting the work. The authors also would like to acknowledge insightful comments from John Ryan and Dru Crawley, and Alan Schroeder, DOE technology development manager, Andrew Nicholls, program manager at Pacific Northwest National Laboratory (PNNL), end Sue Arey for editing the manuscript. Support of the MIT authors by the Masdar Initiative is gratefully acknowledged. Thanks to Tom Watson of McQuay, John Seem of Johnson Controls, Dan Manole of Tecumseh, Steve Holden and Alex Lifson of Carrier, Chuncheng Piao of Daikin, Hidekazu Tani of Mitsubishi, Gary Nettinger of Sanyo, and numerous PNNL colleagues for thoughtful discussions on the low-lift systems approach. NR 131 TC 2 Z9 2 U1 2 U2 7 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1078-9669 EI 1938-5587 J9 HVAC&R RES JI HVAC&R Res. PD MAR PY 2009 VL 15 IS 2 BP 403 EP 433 PG 31 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 532YU UT WOS:000272788100013 ER PT J AU Orrego, R Adams, S Barra, R Chiang, G Gavilan, JF AF Orrego, Rodrigo Marshall Adams, S. Barra, Ricardo Chiang, Gustavo Gavilan, Juan F. TI Patterns of fish community composition along a river affected by agricultural and urban disturbance in south-central Chile SO HYDROBIOLOGIA LA English DT Article DE Fish; Assemblages; Sewage; Cause-effect relationship ID WATER-QUALITY; ASSEMBLAGES; FRANCE; STREAM; PARAMETERS; DIVERSITY; POLLUTION AB Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of the stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river. C1 [Orrego, Rodrigo] Univ Ontario, Inst Technol, Oshawa, ON L1H 7K4, Canada. [Orrego, Rodrigo; Barra, Ricardo; Chiang, Gustavo] Univ Concepcion, Environm Sci Ctr EULA Chile, Aquat Syst Res Unit, Concepcion, Chile. [Marshall Adams, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Gavilan, Juan F.] Univ Concepcion, Fac Biol Sci, Dept Cellular Biol, Concepcion, Chile. RP Orrego, R (reprint author), Univ Ontario, Inst Technol, 2000 Simcoe St N, Oshawa, ON L1H 7K4, Canada. EM Rodrigo.Orrego@uoit.ca RI Barra, Ricardo/A-5543-2009 OI Barra, Ricardo/0000-0002-1567-7722 FU Chilean Agricultural and Livestock Service [4-36-0199]; Universidad de Concepcion, Chile [202.031.090-1.0] FX This work was partially financed by the Chilean Agricultural and Livestock Service (Servicio Agricola y Ganadero (SAG) de Chile Fondo SAG No. VIII 4-36-0199) and by the Project P. I. No. 202.031.090-1.0 of the Research Directorate of the Universidad de Concepcion, Chile. NR 39 TC 17 Z9 18 U1 0 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0018-8158 J9 HYDROBIOLOGIA JI Hydrobiologia PD MAR PY 2009 VL 620 BP 35 EP 46 DI 10.1007/s10750-008-9613-8 PG 12 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA 387YQ UT WOS:000261987900004 ER PT J AU Goel, N Gilmer, DC Park, H Diaz, V Sun, Y Price, J Park, C Pianetta, P Kirsch, PD Jammy, R AF Goel, N. Gilmer, D. C. Park, H. Diaz, V. Sun, Y. Price, J. Park, C. Pianetta, P. Kirsch, P. D. Jammy, R. TI Erase and Retention Improvements in Charge Trap Flash Through Engineered Charge Storage Layer SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Memory; NAND; retention; TANOS ID MEMORY CELL; PRECISE DETERMINATION AB The simultaneous improvement in the erase and retention characteristics in a TANOS (TaN-Al(2)O(3)-Si(3)N(4)SiO(2)-Si) Flash memory transistor by utilizing the band-engineered and compositionally graded SiN(x) trap layer is demonstrated. With the process optimizations, a > 4 V memory window and excellent 150 degrees C 24-h retention (0.1-0.5 V charge loss) for a programmed Delta V(t) = 4 V with respect to the initial state are obtained. The band-engineered SiN(x) charge storage layer enables Flash scaling beyond the floating-gate technology with a promise for improved erase speed, retention, lower supply voltages, and multilevel cell applications. C1 [Goel, N.] SEMATECH, FEB Grp, Austin, TX 78741 USA. [Gilmer, D. C.; Park, H.; Diaz, V.; Price, J.; Park, C.; Kirsch, P. D.; Jammy, R.] SEMATECH, Front End Proc Grp, Austin, TX 78741 USA. [Sun, Y.; Pianetta, P.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Goel, N (reprint author), SEMATECH, FEB Grp, Austin, TX 78741 USA. EM niti.goel@sematech.org NR 10 TC 18 Z9 18 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD MAR PY 2009 VL 30 IS 3 BP 216 EP 218 DI 10.1109/LED.2009.2012397 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 415FT UT WOS:000263920400005 ER PT J AU Park, J Kwon, S Jun, SI Mcknight, TE Melechko, AV Simpson, ML Dhindsa, M Heikenfeld, J Rack, PD AF Park, Jungwon Kwon, Seyeoul Jun, Seung Ik Mcknight, Timothy E. Melechko, Anatoli V. Simpson, Michael L. Dhindsa, Manjeet Heikenfeld, Jason Rack, Philip D. TI Active-Matrix Microelectrode Arrays Integrated With Vertically Aligned Carbon Nanofibers SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Active matrix addressing; microelectrode array (MEA); thin-film transistor (TFT); vertically aligned carbon nanofiber (VACNF) ID THIN-FILM TRANSISTORS; SILICON FILMS; HYDROGEN; CELLS AB In this letter, we have successfully integrated vertically aligned carbon nanofibers (VACNFs) onto active matrix thin-film transistor (TFT) and demonstrate a new microelectrode array (MEA) platform. The materials and processes of the bottom gate inverted staggered TFT structure were designed to be compatible with the requisite high-temperature (similar to 700 degrees C) and direct current plasma-enhanced chemical vapor deposition VACNF growth process. The critical device integration issues are elaborated, and initial device characteristics are reported. This device platform provides great potential as an advanced MEA for direct cell sensing, probing, and recording with a high electrode density and active addressability. C1 [Park, Jungwon; Kwon, Seyeoul; Simpson, Michael L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Jun, Seung Ik] DpiX LLC, Colorado Springs, CO 80916 USA. [Mcknight, Timothy E.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. [Melechko, Anatoli V.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Simpson, Michael L.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dhindsa, Manjeet; Heikenfeld, Jason] Univ Cincinnati, Dept Elect & Comp Engn, Cincinnati, OH 45220 USA. RP Park, J (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM jpark25@utk.edu; skwon1@utk.edu; jun@dpix.com; mcknightte@oml.gov; avmelech@unity.nesu.edu; simpsonml1@ornl.gov; m.dhindsa@yahoo.com; heikenjc@ececs.uc.edu; prack@utk.edu RI Simpson, Michael/A-8410-2011; Melechko, Anatoli/B-8820-2008; McKnight, Tim/H-3087-2011; OI Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117; Rack, Philip/0000-0002-9964-3254 FU National Science Foundation [0729250] FX The work of P. D. Rack and J. Heikenfeld was supported by the National Science Foundation Division of Chemical, Bioengineening, Environmental, and Transport Systems under NSF Award 0729250. NR 18 TC 8 Z9 8 U1 0 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD MAR PY 2009 VL 30 IS 3 BP 254 EP 257 DI 10.1109/LED.2008.2011927 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA 415FT UT WOS:000263920400017 ER PT J AU Smith, SF Moore, JA AF Smith, Stephen F. Moore, James A. TI A Precision, Low-Cost GPS-Based Transmitter Synchronization Scheme for Improved AM Reception SO IEEE TRANSACTIONS ON BROADCASTING LA English DT Article DE AM; beats; GPS; synchronization AB This paper describes a highly accurate carrier-frequency synchronization scheme for actively, automatically locking multiple, remotely located AM broadcast transmitters to a common frequency/timing reference source such as GPS. The extremely tight frequency lock (to similar to 1 part in 10(9) or better) permits the effective elimination of audible and even sub-audible beats between the local (desired) station's carrier signal and the distant stations' carriers, usually received via skywave propagation during the evening and nighttime hours. These carrier-beat components cause annoying modulations of the desired station's audio at the receiver and concurrent distortion of the audio modulation from the distant station(s) and often cause listeners to "tune out" due to the low reception quality. Significant reduction or elimination of the beats and related effects will greatly enlarge the effective (interference-limited) listening area of the desired station (from 4 to 10 times as indicated in our tests) and simultaneously reduce the corresponding interference of the local transmitter to the distant stations as well. In addition, AM stereo (CQUAM) reception will be particularly improved by minimizing the phase shifts induced by co-channel interfering signals; hybrid digital (HD) signals will also benefit via reduction in beats from analog signals. The automatic frequency-control hardware described is inexpensive ($1000-$2000), requires no periodic recalibration, has essentially zero long-term drift, and could employ alternate wide-area frequency references of suitable accuracy, including broadcasts from WWVB, LORAN-C, and equivalent sources. The basic configuration of the GPS-disciplined oscillator which solves this problem is extremely simple. The main oscillator is a conventional high-stability quartz-crystal type. To counter long-term drifts, the oscillator is slightly adjusted to track a high-precision source of standard frequency obtained from a specialized GPS receiver (or other source), usually at 10.000 MHz. This very stable local reference frequency is then used as a clock for a standard digitally implemented frequency synthesizer, which is programmed to generate the specific carrier frequency desired. The stability of the disciplining source, typically similar to 1 part in 10(9) to 10(11), is thus transferred to the final AM transmitter carrier output frequency. C1 [Smith, Stephen F.; Moore, James A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Smith, SF (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM smithsf@ornl.gov; mooreja2@ornl.gov NR 4 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0018-9316 J9 IEEE T BROADCAST JI IEEE Trans. Broadcast. PD MAR PY 2009 VL 55 IS 1 BP 71 EP 78 DI 10.1109/TBC.2008.2012026 PG 8 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 415FK UT WOS:000263919500008 ER PT J AU Bikhazi, NW Jensen, MA Anderson, AL AF Bikhazi, Nicolas W. Jensen, Michael A. Anderson, Adam L. TI MIMO Signaling over the MMF Optical Broadcast Channel with Square-Law Detection SO IEEE TRANSACTIONS ON COMMUNICATIONS LA English DT Article DE MIMO systems; optical fiber communication; broadcast channels; multimode waveguides ID MULTIMODE FIBER LINK; OFFSET; COMIMO AB This paper proposes an architecture for using multiple-input multiple-output techniques for a multimode fiber broadcast channel, allowing simultaneous transmission of unique streams to different users on the same fiber while using square-law detection. The resulting system throughput scales nearly linearly with the number of transmitters and receivers. The paper also proposes a training scheme appropriate for use with square-law detection. C1 [Bikhazi, Nicolas W.; Jensen, Michael A.] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA. [Anderson, Adam L.] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92103 USA. RP Bikhazi, NW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM nbikhaz@sandia.gov; jensen@ee.byu.edu FU National Science Foundation [CCR-0313056, CCF-0428004]; U. S. Army Research Office [W911NF-04-1-0224, W911NF-07-1-0318] FX This work was supported in part by the National Science Foundation under Information Technology Grants CCR-0313056 and CCF-0428004, and in part by the U. S. Army Research Office under the Multi-University Research Initiative (MURI) Grants # W911NF-04-1-0224 and # W911NF-07-1-0318. NR 17 TC 9 Z9 9 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0090-6778 J9 IEEE T COMMUN JI IEEE Trans. Commun. PD MAR PY 2009 VL 57 IS 3 BP 614 EP 617 DI 10.1109/TCOMM.2009.03.070029 PG 4 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 415WT UT WOS:000263967900007 ER PT J AU Ropp, ME Gonzalez, S AF Ropp, Michael E. Gonzalez, Sigifredo TI Development of a MATLAB/Simulink Model of a Single-Phase Grid-Connected Photovoltaic System SO IEEE TRANSACTIONS ON ENERGY CONVERSION LA English DT Article DE Inverters; islanding detection; modeling and simulation; photovoltaics (PVs) ID PREVENTION AB Because of their deployment in dispersed locations on the lowest voltage portions of the grid, photovoltaic (PV) systems pose unique challenges to power system engineers. Computer models that accurately simulate the relevant behavior of PV systems would thus be of high value. However, most of today's models either do not accurately model the dynamics of the maximum power point trackers (MPPTs) or anti-islanding algorithms, or they involve excessive computational overhead for this application. To address this need, a MATLAB/Simulink model of a single-phase grid-connected PV inverter has been developed and experimentally tested. The development of the PV array model, the integration of the MPPT with an averaged model of the power electronics, and the Simulink implementation are described. It is experimentally demonstrated that the model works well in predicting the general behaviors of single-phase grid-connected PV systems. This paper concludes with a discussion of the need for a full gradient-based MPPT model, as opposed to a commonly used simplified MPPT model. C1 [Ropp, Michael E.] S Dakota State Univ, Dept Elect Engn, Brookings, SD 57007 USA. [Gonzalez, Sigifredo] Sandia Natl Labs, Distributed Energy Test Lab, Albuquerque, NM 87185 USA. RP Ropp, ME (reprint author), S Dakota State Univ, Dept Elect Engn, Brookings, SD 57007 USA. EM michael.ropp@ieee.org; sgonza@sandia.gov FU National Science Foundation [ECS-0238533] FX This work was supported in part by the National Science Foundation under Grant ECS-0238533. NR 16 TC 69 Z9 73 U1 1 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0885-8969 J9 IEEE T ENERGY CONVER JI IEEE Trans. Energy Convers. PD MAR PY 2009 VL 24 IS 1 BP 195 EP 202 DI 10.1109/TEC.2008.2003206 PG 8 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA 411HC UT WOS:000263639000021 ER PT J AU Filippi, AM Archibald, R AF Filippi, Anthony M. Archibald, Rick TI Support Vector Machine-Based Endmember Extraction SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Endmember extraction; hyperspectral imaging; remote sensing; support vector machines (SVMs) ID SPECTRAL MIXTURE ANALYSIS; REMOTE-SENSING IMAGES; HYPERSPECTRAL DATA; IMAGING SPECTROMETER; COMPONENT ANALYSIS; CLASSIFICATION; CUPRITE; NEVADA; ALGORITHM; MODEL AB Introduced in this paper is the utilization of support vector machines (SVMs) to semiautomatically perform endmember extraction front hyperspectral data. The strengths of SVM are exploited to pro-vide a fast and accurate calculated representation of high-dimensional data sets that may consist of multiple distributions. Once this representation is computed, the number of distributions can be determined without prior knowledge. For each distribution, an optimal transform can be determined that preserves informational content while reducing the data dimensionality and, hence, the computational cost. Finally, endmember extraction for the whole data set is accomplished. Results indicate that this SVM-based endmember extraction algorithm has the capability of semiautonomously determining endmembers from multiple clusters with computational speed and accuracy while maintaining a robust tolerance to noise. C1 [Filippi, Anthony M.] Texas A&M Univ, Dept Geog, College Stn, TX 77843 USA. [Archibald, Rick] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Filippi, AM (reprint author), Texas A&M Univ, Dept Geog, College Stn, TX 77843 USA. EM filippi@tamu.edu; archibaldrk@ornl.gov RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Householder Fellowship FX Manuscript received February 15, 2008: revised June 30, 2008. First published December 9, 2008: current version published February 19, 2009. This work was supported in part by an appointment to the U.S. Department of Energy (DOE) Higher Education Research Experiences (HERE) for Faculty at the Oak Ridge National Laboratory (ORNL) administered by the Oak Ridge Institute for Science and Education. The work of R. Archibald was supported by the Householder Fellowship that is supported under the Mathematical, Information, and Computational Sciences Division. Office of Advanced Scientific Computing Research. U.S. Department of Energy under Grant DE-AC05-00OR22725. NR 75 TC 24 Z9 24 U1 4 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0196-2892 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD MAR PY 2009 VL 47 IS 3 BP 771 EP 791 DI 10.1109/TGRS.2008.2004708 PG 21 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 415JA UT WOS:000263928900009 ER PT J AU Yan, GH Eidenbenz, S AF Yan, Guanhua Eidenbenz, Stephan TI Modeling Propagation Dynamics of Bluetooth Worms (Extended Version) SO IEEE TRANSACTIONS ON MOBILE COMPUTING LA English DT Article DE Bluetooth; Bluetooth worm; epidemic modeling; propagation dynamics AB In the last few years, the growing popularity of mobile devices has made them attractive to virus and worm writers. One communication channel often exploited by mobile malware is the Bluetooth interface. In this paper, we present a detailed analytical model that characterizes the propagation dynamics of Bluetooth worms. Our model captures not only the behavior of the Bluetooth protocol but also the impact of mobility patterns on the Bluetooth worm propagation. Validation experiments against a detailed discrete-event Bluetooth worm simulator reveal that our model predicts the propagation dynamics of Bluetooth worms with high accuracy. We further use our model to efficiently predict the propagation curve of Bluetooth worms in big cities such as Los Angeles. Our model not only sheds light on the propagation dynamics of Bluetooth worms but also allows one to predict spreading curves of Bluetooth worm propagation in large areas without the high computational cost of discrete-event simulation. C1 [Yan, Guanhua; Eidenbenz, Stephan] Los Alamos Natl Lab, Informat Sci Grp CCS 3, Los Alamos, NM 87545 USA. RP Yan, GH (reprint author), Los Alamos Natl Lab, Informat Sci Grp CCS 3, POB 1663,MS B256, Los Alamos, NM 87545 USA. EM ghyan@lanl.gov; eidenben@lanl.gov OI Eidenbenz, Stephan/0000-0002-2628-1854 NR 20 TC 25 Z9 27 U1 0 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1536-1233 J9 IEEE T MOBILE COMPUT JI IEEE. Trans. Mob. Comput. PD MAR PY 2009 VL 8 IS 3 BP 353 EP 367 DI 10.1109/TMC.2008.129 PG 15 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA 394IK UT WOS:000262440200005 ER PT J AU Tatebayashi, J Liang, BL Bussian, DA Htoon, H Huang, SH Balakrishnan, G Klimov, V Dawson, LR Huffaker, DL AF Tatebayashi, Jun Liang, Baolai Bussian, David A. Htoon, Han Huang, Shenghong Balakrishnan, Ganesh Klimov, Victor Dawson, L. Ralph Huffaker, Diana L. TI Formation and Optical Characteristics of Type-II Strain-Relieved GaSb/GaAs Quantum Dots by Using an Interfacial Misfit Growth Mode SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE GaSb/GaAs; interfacial misfit (IMF); quantum dots (QDs); strain-relieved; time-resolved photoluminescence (TRPL); type-II ID MOLECULAR-BEAM EPITAXY; RADIATIVE RECOMBINATION; GASB; RELAXATION; LASER; HETEROSTRUCTURES AB We report the formation and optical characteristics of GaSb/GaAs type-II quantum dots (QDs) by using an interfacial misfit (IMF) growth mode. A V/III ratio during the growth of GaSb QDs determines the selectivity of IMF and conventional Stranski-Krastanov (SK) growth modes. This transition between SK and optimized IMF QDs is rather abrupt and occurs within a factor-of-2 variations in V/III ratio. The IMF QDs emit at longer wavelength (congruent to 1.1 mu m) compared to the SK QD peak emission at congruent to 1.02 mu m at low temperature (UY) (41 K) because of their strain-free nature of the IMF growth mode. A blueshift of the photoluminescence (PL) peak is observed with increased excitation densities due to the Coulomb interaction between physically separated electrons and holes characteristics of the type-II band alignment. LT timeresolved PL measurements show a long decay time of congruent to 20-40 ns from the transition between GaSb IMF QDs and GaAs 2-D electron gas, which is characteristic of the type-II band alignment. C1 [Tatebayashi, Jun; Liang, Baolai; Huffaker, Diana L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Tatebayashi, Jun; Liang, Baolai; Huffaker, Diana L.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Huang, Shenghong; Balakrishnan, Ganesh; Dawson, L. Ralph] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Bussian, David A.; Htoon, Han; Klimov, Victor] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tatebayashi, J (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. EM tatebaya@ee.ucla.edu; bliang@ee.ucla.edu; dabus@lanl.gov; htoon@lanl.gov; shuang@ece.unm.edu; gunny@unm.edu; klimov@lanl.gov; rdawson@chtm.unm.edu; huffaker@ee.ucla.edu RI balakrishnan, ganesh/F-7587-2011; OI Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896 FU Air Force Office of Scientific Research [FA9550-06-1-0407] FX This work was supported in part by the Air Force Office of Scientific Research under Contract FA9550-06-1-0407 under Gernot Pornrenke and Kitt Rheinhardt. The review of this paper was arranged by Associate Editor H. Misawa. NR 35 TC 6 Z9 6 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 1536-125X J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD MAR PY 2009 VL 8 IS 2 BP 269 EP 274 DI 10.1109/TNANO.2008.2008717 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 421FA UT WOS:000264343600020 ER PT J AU Marques, RCP de Medeiros, FNS Ushizima, DM AF Marques, Regis C. P. Sombra de Medeiros, Fatima N. Ushizima, Daniela M. TI Target Detection in SAR Images Based on a Level Set Approach SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS LA English DT Article DE Image analysis; object detection; partial differential equations; radar target recognition; speckle; synthetic aperture radar ID CURVE EVOLUTION; SEGMENTATION; INFORMATION; CLUTTER; MODEL AB This paper introduces a new framework for point target detection in synthetic aperture radar (SAR) images. We focus on the task of locating reflective small regions using a level-set-based algorithm. Unlike most of the approaches in image segmentation, we address an algorithm that incorporates speckle statistics instead of empirical parameters and also discards speckle filtering. The curve evolves according to speckle statistics, initially propagating with a maximum upward velocity in homogeneous areas. Our approach is validated by a series of tests on synthetic and real SAR images and compared with three other segmentation algorithms, demonstrating that it configures a novel and efficient method for target-detection purpose. C1 [Marques, Regis C. P.] Fed Ctr Technol Educ CEFETCE, BR-60455900 Fortaleza, CE, Brazil. [Sombra de Medeiros, Fatima N.] Univ Fed Ceara, Dept Teleinformat, BR-60455900 Fortaleza, CE, Brazil. [Ushizima, Daniela M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Math Grp, Berkeley, CA 94720 USA. [Ushizima, Daniela M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Visualizat Grp, Berkeley, CA 94720 USA. RP Marques, RCP (reprint author), Fed Ctr Technol Educ CEFETCE, BR-60455900 Fortaleza, CE, Brazil. EM regismarques@cefet-ce.br; fsombra@deti.ufc.br; dushizima@lbl.gov RI Medeiros, Fatima/E-1168-2011; Marques, Regis/D-2039-2013 OI Medeiros, Fatima/0000-0002-4143-1486; FU CNPq; U.S. Department of Energy [DE-AC03-76SFOO098] FX This work was supported in part by the CNPq and in part by the Office of Energy Research, U.S. Department of Energy, under the Applied Mathematical Science Subprogram under Contract DE-AC03-76SFOO098. NR 37 TC 9 Z9 11 U1 1 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1094-6977 EI 1558-2442 J9 IEEE T SYST MAN CY C JI IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev. PD MAR PY 2009 VL 39 IS 2 BP 214 EP 222 DI 10.1109/TSMCC.2008.2006685 PG 9 WC Computer Science, Artificial Intelligence; Computer Science, Cybernetics; Computer Science, Interdisciplinary Applications SC Computer Science GA 413YU UT WOS:000263831900006 ER PT J AU May, EE Schiek, RL AF May, E. E. Schiek, R. L. TI BioXyce: an engineering platform for the study of cellular systems SO IET SYSTEMS BIOLOGY LA English DT Article CT 1st q-bio Conference on Cellular Information Processing CY AUG 08-11, 2007-2008 CL Santa Fe, NM ID SEGMENT POLARITY NETWORK; TRANSCRIPTIONAL REGULATION; SOFTWARE ENVIRONMENT; ESCHERICHIA-COLI; SIMULATION; DROSOPHILA; MODELS AB Researchers use constructs from the field of electrical engineering for the modelling and analysis of biological systems, but few exploit parallels between electrical and biological circuits for simulation purposes. The authors discuss the development of BioXyce, a circuit-based biological simulation platform that uses Xyce (TM), a large-scale electrical circuit simulator, as its simulation engine. BioXyce is capable of simulating whole-cell and multicellular systems. Simulation results for the central metabolism in Escherichia coli K12 and cellular differentiation in Drosophila sp. are presented. C1 [May, E. E.] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA. [Schiek, R. L.] Sandia Natl Labs, Elect & Microsyst Modeling Dept, Albuquerque, NM 87185 USA. RP May, EE (reprint author), Sandia Natl Labs, Discrete Math & Complex Syst Dept, POB 5800, Albuquerque, NM 87185 USA. EM eemay@sandia.gov RI Schiek, Richard/A-9192-2011 FU NHLBI NIH HHS [5K25HL 75105-3] NR 29 TC 5 Z9 5 U1 0 U2 6 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8849 J9 IET SYST BIOL JI IET Syst. Biol. PD MAR PY 2009 VL 3 IS 2 BP 77 EP 89 DI 10.1049/iet-syb.2007.0086 PG 13 WC Cell Biology; Mathematical & Computational Biology SC Cell Biology; Mathematical & Computational Biology GA 422VA UT WOS:000264454600002 PM 19292562 ER PT J AU Au-Yeung, BB Deindl, S Hsu, LY Palacios, EH Levin, SE Kuriyan, J Weiss, A AF Au-Yeung, Byron B. Deindl, Sebastian Hsu, Lih-Yun Palacios, Emil H. Levin, Susan E. Kuriyan, John Weiss, Arthur TI The structure, regulation, and function of ZAP-70 SO IMMUNOLOGICAL REVIEWS LA English DT Review DE ZAP-70; signal transduction; T-cell receptor; pre-TCR signals; autoinhibition; ITAM ID T-CELL-RECEPTOR; CHRONIC LYMPHOCYTIC-LEUKEMIA; PROTEIN-TYROSINE KINASE; SEVERE COMBINED IMMUNODEFICIENCY; OF-FUNCTION MUTATION; ANTIGEN RECEPTOR; CRYSTAL-STRUCTURE; THYMOCYTE DEVELOPMENT; AUTOIMMUNE ARTHRITIS; INTERDOMAIN B AB The tyrosine ZAP-70 (zeta-associated protein of 70 kDa) kinase plays a critical role in activating many downstream signal transduction pathways in T cells following T-cell receptor (TCR) engagement. The importance of ZAP-70 is evidenced by the severe combined immunodeficiency that occurs in ZAP-70-deficient mice and humans. In this review, we describe recent analyses of the ZAP-70 crystal structure, revealing a complex regulatory mechanism of ZAP-70 activity, the differential requirements for ZAP-70 and spleen tyrosine kinase (SyK) in early T-cell development, as well as the role of ZAP-70 in chronic lymphocytic leukemia and autoimmunity. Thus, the critical importance of ZAP-70 in TCR signaling and its predominantly T-cell-restricted expression pattern make ZAP-70 an attractive drug target for the inhibition of pathological T-cell responses in disease. C1 [Au-Yeung, Byron B.; Hsu, Lih-Yun; Weiss, Arthur] Univ Calif San Francisco, Howard Hughes Med Inst, Rosalind Russell Med Res Ctr Arthrit, Dept Med, San Francisco, CA 94143 USA. [Deindl, Sebastian; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Deindl, Sebastian; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Chem, Berkeley, CA 94720 USA. [Palacios, Emil H.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, Sandler Ctr Basic Res Parasit Dis, San Francisco, CA 94143 USA. [Levin, Susan E.] Williams Coll, Dept Biol, Williamstown, MA 01267 USA. [Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Weiss, A (reprint author), Univ Calif San Francisco, Howard Hughes Med Inst, Rosalind Russell Med Res Ctr Arthrit, Dept Med, 513 Parnassus Ave,Room S-1032C, San Francisco, CA 94143 USA. EM aweiss@medicine.ucsf.edu OI Au-Yeung, Byron/0000-0002-6446-9102; Deindl, Sebastian/0000-0001-6807-8654 FU Howard Hughes Medical Institute NR 75 TC 106 Z9 109 U1 1 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0105-2896 J9 IMMUNOL REV JI Immunol. Rev. PD MAR PY 2009 VL 228 BP 41 EP 57 DI 10.1111/j.1600-065X.2008.00753.x PG 17 WC Immunology SC Immunology GA 415WD UT WOS:000263966200004 PM 19290920 ER PT J AU Chang, SJ Winkeler, K Collins, C Thomas, R Johnson, J Wood, L Rottmann, W Gunter, L Tuskan, J Hinchee, M AF Chang, Shujun Winkeler, Kim Collins, Cassandra Thomas, Robert Johnson, Jessica Wood, Lindsey Rottmann, Will Gunter, Lee Tuskan, Jerry Hinchee, Maud TI Populus deltoides Transformation to Identify Genes That Contribute to Recalcitrance in Conversion of Lignocellulosics to Bioethanol. SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Meeting Abstract C1 [Gunter, Lee; Tuskan, Jerry] Oak Ridge Natl Lab, Div Biosci, Oak Ridge, TN 37831 USA. EM SXCHANG@ARBORGEN.COM RI Gunter, Lee/L-3480-2016 OI Gunter, Lee/0000-0003-1211-7532 NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-2690 J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD SPR PY 2009 VL 45 SU S BP S80 EP S81 PG 2 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 481ZS UT WOS:000268853400203 ER PT J AU Tuskan, GA AF Tuskan, Gerald A. TI Populus Genomics, Candidate Gene Identification and Accelerated Domestication. SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Meeting Abstract C1 [Tuskan, Gerald A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM gtk@ornl.gov RI Tuskan, Gerald/A-6225-2011 OI Tuskan, Gerald/0000-0003-0106-1289 NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-2690 J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD SPR PY 2009 VL 45 BP S24 EP S24 PG 1 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 481ZS UT WOS:000268853400062 ER PT J AU Vogel, CJ Mayer, K Rokhsar, D Schmutz, J Mockler, T Huo, N Bragg, J Wu, J Gu, Y Garvin, D Bevan, M AF Vogel, Crops. J. Mayer, K. Rokhsar, D. Schmutz, J. Mockler, T. Huo, N. Bragg, J. Wu, J. Gu, Y. Garvin, D. Bevan, M. TI Brachypodium distachyon: a New Model for Biomass Crops SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL LA English DT Meeting Abstract C1 [Vogel, Crops. J.; Huo, N.; Bragg, J.; Wu, J.; Gu, Y.] USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA. [Mayer, K.] Helmholz Zentrum, MIPS, Munich, Germany. [Rokhsar, D.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Schmutz, J.] Hudson Alpha Inst Biotechnol, Huntsville, AL USA. [Mockler, T.] Oregon State Univ, Corvallis, OR 97331 USA. [Garvin, D.] Univ Minnesota, USDA ARS, Plant Sci Res Unit, St Paul, MN 55108 USA. [Bevan, M.] John Innes Ctr, Norwich, NY USA. EM john.vogel@ars.usda.gov RI Schmutz, Jeremy/N-3173-2013 OI Schmutz, Jeremy/0000-0001-8062-9172 NR 0 TC 0 Z9 0 U1 2 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-2690 J9 IN VITRO CELL DEV-AN JI In Vitro Cell. Dev. Biol.-Anim. PD SPR PY 2009 VL 45 BP S6 EP S6 PG 1 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 481ZS UT WOS:000268853400017 ER PT J AU Aragon, CR Poon, SS Aldering, GS Thomas, RC Quimby, R AF Aragon, Cecilia R. Poon, Sarah S. Aldering, Gregory S. Thomas, Rollin C. Quimby, Robert TI Using visual analytics to develop situation awareness in astrophysics SO INFORMATION VISUALIZATION LA English DT Article DE data and knowledge visualization; scientific visualization; scientific analytics; visual analytics; situation awareness; astrophysics AB We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness. Information Visualization (2009) 8, 30-41. doi: 10.1057/ivs.2008.30 C1 [Aragon, Cecilia R.; Poon, Sarah S.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Aldering, Gregory S.; Thomas, Rollin C.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Quimby, Robert] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Aragon, CR (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd,MS 50B-2239, Berkeley, CA 94720 USA. EM CRAragon@lbl.gov FU Director, Office of Science, Office of Advanced Scientific Computing Research, of the US Department of Energy [DE-AC02-05CH11231]; Director, Office of Science, Office of High Energy Physics, of the US Department of Energy [DE-FG02-92ER40704]; Gordon & Betty Moore Foundation FX We thank the anonymous reviewers for their thoughtful suggestions, and the scientists of the SNfactory collaboration for their time and detailed feedback. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work was supported in part by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231; by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under Contract No. DE-FG02-92ER40704, and by a grant from the Gordon & Betty Moore Foundation. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 40 TC 2 Z9 2 U1 0 U2 1 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1473-8716 J9 INFORM VISUAL JI Inf. Vis. PD SPR PY 2009 VL 8 IS 1 BP 30 EP 41 DI 10.1057/ivs.2008.30 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 497WA UT WOS:000270093100003 ER PT J AU Pike, W Bruce, J Baddeley, B Best, D Franklin, L May, R Rice, D Riensche, R Younkin, K AF Pike, William Bruce, Joe Baddeley, Bob Best, Daniel Franklin, Lyndsey May, Richard Rice, Douglas Riensche, Rick Younkin, Katarina TI The Scalable Reasoning System: Lightweight visualization for distributed analytics SO INFORMATION VISUALIZATION LA English DT Article DE web visualization; mobile visualization; analytic reasoning; law enforcement; multiple views; concept mapping AB A central challenge in visual analytics is the creation of accessible, widely distributable analysis applications that bring the benefits of visual discovery to as broad a user base as possible. Moreover, to support the role of visualization in the knowledge creation process, it is advantageous to allow users to describe the reasoning strategies they employ while interacting with analytic environments. We introduce an application suite called the scalable reasoning system (SRS), which provides web-based and mobile interfaces for visual analysis. The service-oriented analytic framework that underlies SRS provides a platform for deploying pervasive visual analytic environments across an enterprise. SRS represents a 'lightweight' approach to visual analytics whereby thin client analytic applications can be rapidly deployed in a platform-agnostic fashion. Client applications support multiple coordinated views while giving analysts the ability to record evidence, assumptions, hypotheses and other reasoning artifacts. We describe the capabilities of SRS in the context of a real-world deployment at a regional law enforcement organization. Information Visualization (2009) 8, 71-84. doi: 10.1057/ivs.2008.33 C1 [Pike, William; Bruce, Joe; Baddeley, Bob; Best, Daniel; Franklin, Lyndsey; May, Richard; Rice, Douglas; Riensche, Rick; Younkin, Katarina] Pacific NW Natl Lab, MSIN, Richland, WA 99352 USA. RP Pike, W (reprint author), Pacific NW Natl Lab, MSIN, K7-28,POB 999, Richland, WA 99352 USA. EM william.pike@pnl.gov OI Franklin, Lyndsey/0000-0002-4494-7111 FU National Visualization and Analytics Center (NVAC); Pacific Northwest National Laboratory FX This work was supported by the National Visualization and Analytics Center (NVAC), a US Department of Homeland Security program operated by the Pacific Northwest National Laboratory. NR 21 TC 5 Z9 5 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1473-8716 EI 1473-8724 J9 INFORM VISUAL JI Inf. Vis. PD SPR PY 2009 VL 8 IS 1 BP 71 EP 84 DI 10.1057/ivs.2008.33 PG 14 WC Computer Science, Software Engineering SC Computer Science GA 497WA UT WOS:000270093100006 ER PT J AU Leyffer, S AF Leyffer, Sven TI A Complementarity Constraint Formulation of Convex Multiobjective Optimization Problems SO INFORMS JOURNAL ON COMPUTING LA English DT Article DE multiobjective optimization; nonlinear programming; complementarity constraints; mathematical program with complementarity constraints ID MATHEMATICAL PROGRAMS; GLOBAL CONVERGENCE AB We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding a maximally uniform representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise from modeling the set of Pareto points, and the objective maximizes some quality measure of this discrete set. We present encouraging numerical experience on a range of test problems collected from the literature. C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Leyffer, S (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM leyffer@mcs.anl.gov FU U. S. Department of Energy [DE-AC02-06CH11357, DE-FG02-05ER25694] FX The author is grateful to the area editor and to two anonymous referees for their insightful comments that improved the presentation of the manuscript. This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U. S. Department of Energy, under Contracts DE-AC02-06CH11357 and DE-FG02-05ER25694. NR 37 TC 8 Z9 8 U1 0 U2 1 PU INFORMS PI HANOVER PA 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA SN 1091-9856 J9 INFORMS J COMPUT JI INFORMS J. Comput. PD SPR PY 2009 VL 21 IS 2 BP 257 EP 267 DI 10.1287/ijoc.1080.0290 PG 11 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 441GI UT WOS:000265756900006 ER PT J AU Guo, HB Gorin, A Guo, H AF Guo, Haobo Gorin, Andrey Guo, Hong TI A Peptide-Linkage Deletion Procedure for Estimate of Energetic Contributions of Individual Peptide Groups in a Complex Environment: Application to Parallel beta-Sheets SO INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES LA English DT Article DE peptide hydrogen bonds; beta-sheets; C-alpha-H hydrogen bonds; protein stability; quantum mechanical calculations AB A peptide-linkage deletion procedure is introduced for extracting the quantum mechanical (QM) interaction energies of individual groups in a complex environment and applied for the determination of the energetic contributions of the individual hydrogen bond acceptors (C=O's) and donors (N-H's) in parallel beta-sheets. For the beta-sheets studied here, the results show that the contributions from the H-bond acceptors (C=O) can be significantly greater than the contributions from the donors (N-H). It is suggested that this imbalance may be induced, at least in part, by the inter-strand C alpha-H center dot center dot center dot O-C interactions which may play an important role in stabilizing beta-sheets. The results demonstrate the usefulness of the approach proposed in this paper to study interactions in complex protein environments. C1 [Guo, Haobo; Guo, Hong] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Gorin, Andrey] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Guo, Hong] Oak Ridge Natl Lab, Ctr Biophys Mol, UT ORNL, Oak Ridge, TN 37830 USA. RP Guo, H (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM hguo1@utk.edu RI Guo, Hao-Bo/B-7486-2009; Guo, Hong/E-6357-2010; Gorin, Andrey/B-1545-2014 OI Guo, Hao-Bo/0000-0003-1321-1758; FU UT-ORNL Science Alliance; University of Tennessee; ACS Petroleum Research Fund; US National Science Foundation FX Supports from the UT-ORNL Science Alliance, University of Tennessee, and the ACS Petroleum Research Fund, and US National Science Foundation are gratefully acknowledged. We thank Prof. Alex MacKerell for useful discussions. NR 37 TC 5 Z9 6 U1 0 U2 5 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1913-2751 EI 1867-1462 J9 INTERDISCIP SCI JI Interdiscip. Sci. PD MAR PY 2009 VL 1 IS 1 BP 12 EP 20 DI 10.1007/s12539-008-0011-8 PG 9 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA V28VP UT WOS:000208708600002 PM 20640814 ER PT J AU Zhang, W Li, YL Xu, TF Cheng, HL Zheng, Y Xiong, P AF Zhang, Wei Li, Yilian Xu, Tianfu Cheng, Huilin Zheng, Yan Xiong, Peng TI Long-term variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological storage; Carbon dioxide; Numerical simulation; Saline formation; Songliao Basin; China ID REACTIVE GEOCHEMICAL TRANSPORT; CARBON-DIOXIDE; NUMERICAL-SIMULATION; SEDIMENTARY BASINS; CLIMATE-CHANGE; AQUIFER DISPOSAL; GEOLOGICAL MEDIA; GREENHOUSE GASES; NORTH-SEA; SEQUESTRATION AB The geological storage of CO2 in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases to the atmosphere. There are numerous sedimentary basins in China, in which a number of suitable CO2 geologic reservoirs are potentially available. To identify the multi-phase processes, geochemical changes and mineral alteration, and CO2 trapping mechanisms after CO2 injection, reactive geochemical transport simulations using a simple 2D model were performed. Mineralogical composition and water chemistry from a deep saline formation of Songliao Basin were used. Results indicate that different storage forms Of CO2 vary with time. In the CO2 injection period, a large amount Of CO2 remains as a free supercritical phase (gas trapping), and the amount dissolved in the formation water (solubility trapping) gradually increases. Later, gas trapping decrease, solubility trapping increases significantly due to the migration and diffusion Of CO2 plume and the convective mixing between CO2-saturated water and unsaturated water, and the amount trapped by carbonate minerals increases gradually with time. The residual CO2 gas keeps dissolving into groundwater and precipitating carbonate minerals. For the Songliao Basin sandstone, variations in the reaction rate and abundance of chlorite, and plagioclase composition affect significantly the estimates of mineral alteration and CO2 storage in different trapping mechanisms. The effect of vertical permeability and residual gas saturation on the overall storage is smaller compared to the geochemical factors. However, they can affect the spatial distribution of the injected CO2 in the formations. The CO2 mineral trapping capacity could be in the order of 10 kg/m(3) medium for the Songliao Basin sandstone, and may be higher depending on the composition of primary aluminosilicate minerals especially the content of Ca, Mg, and Fe. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Zhang, Wei; Li, Yilian; Cheng, Huilin; Zheng, Yan; Xiong, Peng] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. [Xu, Tianfu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Li, YL (reprint author), China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. EM yl.li309@gmail.com RI Zhang, Wei/E-4440-2010 OI Zhang, Wei/0000-0001-9620-1023 FU National Natural Science Foundation of China (NSFC) [40472122, 40672168]; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Stefan Bachu and two anonymous reviewers for their constructive comments and suggestions during the review process, which greatly improve the quality of the paper. We would also like to acknowledge helpful comments from and discussions with colleagues Chenxi Wu, Liqun Sun, Sylvester Mumba and Anne Ornambia. This work was supported by the National Natural Science Foundation of China (NSFC, Nos. 40472122 and 40672168). The third author of this paper (Tianfu Xu) was supported by the Zero Emission Research and Technology project (ZERT) of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. NR 61 TC 84 Z9 98 U1 3 U2 43 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2009 VL 3 IS 2 BP 161 EP 180 DI 10.1016/j.ijggc.2008.07.007 PG 20 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 417BM UT WOS:000264049600005 ER PT J AU Birkholzer, JT Zhou, QL Tsang, CF AF Birkholzer, Jens T. Zhou, Quanlin Tsang, Chin-Fu TI Large-scale impact of CO2 storage in deep saline aquifers: A sensitivity study on pressure response in stratified systems SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological sequestration; Saline aquifer; Pressure buildup; Numerical simulation; Multilayered system ID CARBON-DIOXIDE; HYDRAULIC CONDUCTIVITY; DISPOSAL; BASIN AB Large volumes of CO2 captured from carbon emitters (such as coal-fired power plants) may be stored in deep saline aquifers as a means of mitigating climate change. Storing these additional fluids may cause pressure changes and displacement of native brines, affecting subsurface volumes that can be significantly larger than the CO2 plume itself This study aimed at determining the three-dimensional region of influence during/after injection of CO2 and evaluating the possible implications for shallow groundwater resources, with particular focus on the effects of interlayer communication through low-permeability seals. To address these issues quantitatively, we conducted numerical simulations that provide a basic understanding of the large-scale flow and pressure conditions in response to industrial-scale CO2 injection into a laterally open saline aquifer. The model domain included an idealized multilayered groundwater system, with a sequence of aquifers and aquitards (sealing units) extending from the deep saline storage formation to the uppermost freshwater aquifer. Both the local CO2-brine flow around the single injection site and the single-phase water flow (with salinity changes) in the region away from the CO2 plume were simulated. Our simulation results indicate considerable pressure buildup in the storage formation more than 100 km away from the injection zone, whereas the lateral distance migration of brine is rather small. In the vertical direction, the pressure perturbation from CO2 storage may reach shallow groundwater resources only if the deep storage formation communicates with the shallow aquifers through sealing units of relatively high permeabilities (higher than 10(-18) m(2)). vertical brine migration through a sequence of layers into shallow groundwater bodies is extremely unlikely. overall, large-scale pressure changes appear to be of more concern to groundwater resources than changes in water quality caused by the migration of displaced saline water. Published by Elsevier Ltd. C1 [Birkholzer, Jens T.; Zhou, Quanlin; Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Birkholzer, JT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM jtbirkholzer@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011 OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912 FU U.S. Department of Energy; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors wish to thank Larry Myer at Lawrence Berkeley National Laboratory (LBNL) for his careful internal review of the manuscript. Thanks are also due to two anonymous reviewers for their constructive suggestions for improving the quality of the manuscript. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory, of the U.S. Department of Energy, and by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 25 TC 227 Z9 237 U1 7 U2 61 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2009 VL 3 IS 2 BP 181 EP 194 DI 10.1016/j.ijggc.2008.08.002 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 417BM UT WOS:000264049600006 ER PT J AU Haji-Sheikh, A Amos, DE Beck, JV AF Haji-Sheikh, A. Amos, Donald E. Beck, J. V. TI Temperature field in a moving semi-infinite region with a prescribed wall heat flux SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Heat transfer; Moving boundary; Axial conduction; Slug flow; Thermal entrance ID EXTENDED GRAETZ PROBLEM; AXIAL CONDUCTION; ENTRANCE REGION; FLOW; DUCTS AB Steady state conduction of heat from a stationary wall to a medium moving at a uniform velocity is the subject herein. This medium can be a solid or a fluid moving at a constant velocity. The surface of this medium is insulated until a change in the surface heat flux occurs. The determination of temperature field is the main objective herein. The results show that the surface temperature begins to increase before its arrival to the heater's location where there is an abrupt change in the surface heat flux. The application of this phenomenon to a moving wall with frictional heating at its surface and to classical heat transfer in ducts can lead to new information. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Haji-Sheikh, A.] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA. [Amos, Donald E.] Sandia Natl Labs, Albuquerque, NM 87110 USA. [Beck, J. V.] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA. RP Haji-Sheikh, A (reprint author), Univ Texas Arlington, Dept Mech & Aerosp Engn, 500 W 1st St, Arlington, TX 76019 USA. EM haji@uta.edu NR 23 TC 5 Z9 6 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD MAR PY 2009 VL 52 IS 7-8 BP 2092 EP 2101 DI 10.1016/j.ijheatmasstransfer.2008.11.005 PG 10 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 416JR UT WOS:000264002700049 ER PT J AU Hardy, BJ Anton, DL AF Hardy, Bruce J. Anton, Donald L. TI Hierarchical methodology for modeling hydrogen storage systems. Part I: Scoping models SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage modeling; Hydrogen storage systems; Metal hydrides; Hierarchical modeling system AB Detailed models for hydrogen storage systems provide essential design information about flow and temperature distributions, as well as, the utilization of a hydrogen storage media. However, before constructing a detailed model it is necessary to know the geometry and length scales of the system, along with its heat transfer requirements, which depend on the limiting reaction kinetics. More fundamentally, before committing significant time and resources to the development of a detailed model, it is necessary to know whether a conceptual storage system design is viable. For this reason, a hierarchical system of models progressing from scoping models to detailed analyses was developed. This paper, which discusses the scoping models, is the first in a two part series that presents a collection of hierarchical models for the design and evaluation of hydrogen storage systems. Published by Elsevier Ltd on behalf of International Association for Hydrogen Energy. C1 [Hardy, Bruce J.; Anton, Donald L.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Hardy, BJ (reprint author), Savannah River Natl Lab, Bldg 773-42A, Aiken, SC 29808 USA. EM bruce.hardy@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-08SR22470] FX This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. NR 9 TC 32 Z9 32 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2009 VL 34 IS 5 BP 2269 EP 2277 DI 10.1016/j.ijhydene.2008.12.070 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 423YL UT WOS:000264532600022 ER PT J AU Johnson, C Orlovskaya, N Coratolo, A Cross, C Wu, J Gemmen, R Liu, X AF Johnson, Christopher Orlovskaya, Nina Coratolo, Anthony Cross, Caleb Wu, Junwei Gemmen, Randall Liu, Xingbo TI The effect of coating crystallization and substrate impurities on magnetron sputtered doped LaCrO3 coatings for metallic solid oxide fuel cell interconnects SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE SOFC; Interconnect; Impurities; Coatings ID ALLOY INTERCONNECTS; SOFC; OXIDATION; CHROMIA; PEROVSKITES; DEGRADATION; TEMPERATURE; STATIONARY; RESISTANCE; BEHAVIOR AB For IT-SOFC metallic interconnects, surface coating is effective for reducing Cr poisoning of the cathode and controlling scale growth. In this work, LaCrO3 and doped LaCrO3 coatings were deposited by magnetron sputtering on SS446 and Crofer 22 APU substrates. The crystallization process was studied by means of X-ray Diffraction (XRD) during the annealing of the sputter coated samples in ambient and reducing environments. The formation of intermediate phases when annealed in air, LaCrO4 and La2CrO6, results in vacancy formation upon subsequent transformation to the LaCrO3 phase and thus a decreased oxidation resistance. While the avoidance of an intermediate phase change when the coatings are initially annealed in a reducing environment leads to dense and compact coatings. This confirmed both by XRD and by scanning electron microscopy (SEM) of coating cross-sections. Crofer 22 APU alloys with various silicon and aluminum levels are deposited with doped LaCrO3 coating to study substrate impurity effects on coating properties. It was found that silicon content in the substrates leads to increased ASR of the coatings. in addition, long term annealing in air shows that aluminum impurities in the substrate can lead to the formation of alumina at substrate grain boundaries, which in turn leads to enhanced Mn migration at the grain boundaries. Increased manganese concentrations at the film/grain boundary interface in coated samples produces larger than normal amounts of (Mn,Cr)(3)O-4 spinel in these regions, which cracks the coating and reduces the ASR value due to extra electronic conduction path. A similar mechanism is not observed in a low Al/Si alloy. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Johnson, Christopher; Cross, Caleb; Wu, Junwei; Gemmen, Randall; Liu, Xingbo] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Orlovskaya, Nina] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. [Coratolo, Anthony] Drexel Univ, Dept Mat Engn, Philadelphia, PA 19104 USA. [Wu, Junwei; Liu, Xingbo] W Virginia Univ, Mech & Aerosp Dept, Morgantown, WV 26505 USA. RP Liu, X (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM xingbo.liu@mail.wvu.edu NR 35 TC 17 Z9 18 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2009 VL 34 IS 5 BP 2408 EP 2415 DI 10.1016/j.ijhydene.2008.12.072 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 423YL UT WOS:000264532600039 ER PT J AU Houf, W Schefer, R AF Houf, W. Schefer, R. TI Analytical and Experimental Investigation of Small-scale Unintended Releases of Hydrogen (vol 33, pg 1435, 2008) SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Correction C1 [Houf, W.; Schefer, R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Houf, W (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM will@sandia.gov RI Schefer, Jurg/G-3960-2012 NR 1 TC 0 Z9 0 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2009 VL 34 IS 5 BP 2517 EP 2518 DI 10.1016/j.ijhydene.2009.01.020 PG 2 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 423YL UT WOS:000264532600055 ER PT J AU Nagarajan, V Ponyavin, V Chen, Y Vernon, ME Pickard, P Hechanova, AE AF Nagarajan, Vijaisri Ponyavin, Valery Chen, Yituny Vernon, Milton E. Pickard, Paul Hechanova, Anthony E. TI CFD modeling and experimental validation of sulfur trioxide decomposition in bayonet type heat exchanger and chemical decomposer for different packed bed designs SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Bayonet heat exchanger; Hydrogen production; Sulfuric acid decomposition; SI thermochemical cycle; Packed bed design ID HYDROGEN-PRODUCTION PROCESS; THERMAL-DECOMPOSITION; REACTOR; H2SO4; CYCLE; ACID; FLOW; SO2 AB The growth of global energy demand during the 21st century, combined with the necessity to master greenhouse gas emissions has lead to the introduction of a new and universal energy carrier: hydrogen. The Department of Energy (DOE) Nuclear Hydrogen initiative was investigating thermochemical cycles for hydrogen production using high-temperature heat exchangers. in this study a three-dimensional computational model of high- temperature heat exchanger and decomposer for decomposition of sulfur trioxide by the sulfur-iodine thermochemical water-splitting cycle with different packed bed designs has been done. The decomposer region of the bayonet heat exchanger also called as silicon carbide integrated decomposer (SID) is designed as the packed bed region. Cylindrical, spherical, cubical and hollow cylindrical pellets have been arranged inside the packed bed. The engineering design of the packed bed was very much influenced by the structure of the packing matrix, which was governed by the shape, dimension and the loading of the constituent particles. Staggered and regular packing methods are used for packing the pellets in the packed bed region. The numerical model is created using GAMBIT and fluid, thermal and chemical analyses were performed using FLUENT. The decomposition percentage of sulfur trioxide is found for the packed bed region with different pellets and the numerical results obtained is compared with the experimental results. A comparison is made for the decomposition percentage of SO(3) for the packed bed approach and the porous media approach. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved. C1 [Nagarajan, Vijaisri; Ponyavin, Valery; Chen, Yituny] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA. [Vernon, Milton E.; Pickard, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hechanova, Anthony E.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. RP Nagarajan, V (reprint author), Univ Nevada, Dept Mech Engn, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM vijaisri.n@gmail.com FU US Department of Energy [DE-FG04-01AL67356] FX This study was funded by the US Department of Energy under the contract DE-FG04-01AL67356. NR 31 TC 16 Z9 16 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2009 VL 34 IS 6 BP 2543 EP 2557 DI 10.1016/j.ijhydene.2008.10.094 PG 15 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 436PF UT WOS:000265425600003 ER PT J AU Shrestha, RP Diyabalanage, HVK Semelsberger, TA Ott, KC Burrell, AK AF Shrestha, Roshan P. Diyabalanage, Himashinie V. K. Semelsberger, Troy A. Ott, Kevin C. Burrell, Anthony K. TI Catalytic dehydrogenation of ammonia borane in non-aqueous medium SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Ammonia borane; Catalyst; Hydrogen storage; Catalysis; Dehydrogenation; Kinetics ID CHEMICAL HYDROGEN STORAGE; THERMAL-DECOMPOSITION; COMPLEX AB Dehydrogenation of Ammonia Borane (NH3BH3, AB) catalyzed by transition metal heterogeneous catalysts was carried out in non-aqueous solution at temperatures below the standard polymer electrolyte membrane (PEM) fuel cell operating conditions. The introduction of a catalytic amount (similar to 2 mol%) of platinum to a solution of AB in 2-methoxyethyl ether (0.02-0.33 M) resulted in a rapid evolution of H-2 gas at room temperature. At 70 degrees C, the rate of platinum catalyzed hydrogen release from AB was the dehydrogenation rate which was 0.04 g s(-1) H-2 kW(-1). Published by Elsevier Ltd on behalf of International Association for Hydrogen Energy. C1 [Shrestha, Roshan P.; Diyabalanage, Himashinie V. K.; Semelsberger, Troy A.; Ott, Kevin C.; Burrell, Anthony K.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Burrell, AK (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Mail Stop J514, Los Alamos, NM 87545 USA. EM burrell@lanl.gov FU U.S. Department of Energy; Office of Energy Efficiency and Renewable Energy FX We would like to acknowledge the support of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy for providing funding and R. Tom Baker, Benjamin Davis, Charles Hamilton, and Vincent Pons for helpful discussions. NR 21 TC 69 Z9 71 U1 4 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2009 VL 34 IS 6 BP 2616 EP 2621 DI 10.1016/j.ijhydene.2009.01.014 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 436PF UT WOS:000265425600011 ER PT J AU Groger, R Vitek, V AF Groeger, Roman Vitek, Vaclav TI Temperature and strain rate dependent flow criterion for bcc transition metals based on atomistic analysis of dislocation glide SO INTERNATIONAL JOURNAL OF MATERIALS RESEARCH LA English DT Article; Proceedings Paper CT 11th International Symposium on Physics of Materials (ISPMA) CY AUG 24-28, 2008 CL Charles Univ, Fac Math & Phys, Prague, CZECH REPUBLIC HO Charles Univ, Fac Math & Phys DE Transition metals; Screw dislocation; Peierls barrier; Flow criterion; Non-glide stress ID CENTERED-CUBIC METALS; MOLYBDENUM SINGLE-CRYSTALS; PLASTIC-DEFORMATION; SCREW DISLOCATIONS; PEIERLS MECHANISM; CORE STRUCTURES; YIELD BEHAVIOR; STRESS; MOTION; SIMULATIONS AB 1/2(111) screw dislocations that possess non-planar cores and thus a high lattice friction (Peierls) stress control the plastic deformation of pure bcc metals. In this paper we formulate an analytical flow criterion based on the recognition that at finite temperatures the screw dislocations glide via formation and Subsequent propagation of pairs of kinks. This development employs first an atomistically calculated dependence of the Peierls stress on the applied loading to construct the Peierls potential that depends on the applied stress tensor. This Peierls potential is then used to evaluate the activation enthalpy for the kink-pair formation employing mesoscopic dislocation models and its dependence on the applied stress tensor is then approximated by a relatively simple analytical form. Using the standard transition state theory to ascertain the dislocation velocity and related strain rate allows us to formulate the temperature and strain rate dependent flow criterion. Implications of this criterion are then compared with available experimental data demonstrating its excellent predictive value. C1 [Groeger, Roman; Vitek, Vaclav] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Groeger, Roman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Vitek, V (reprint author), Univ Penn, Dept Mat Sci & Engn, 3231 Walnut St, Philadelphia, PA 19104 USA. EM vitek@seas.upenn.edu RI Groger, Roman/G-3608-2010 NR 45 TC 6 Z9 6 U1 2 U2 18 PU CARL HANSER VERLAG PI MUNICH PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY SN 1862-5282 EI 2195-8556 J9 INT J MATER RES JI Int. J. Mater. Res. PD MAR PY 2009 VL 100 IS 3 BP 315 EP 321 DI 10.3139/146.110046 PG 7 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 428SR UT WOS:000264870600010 ER PT J AU Kassner, ME Geantil, P Levine, LE Larson, BC AF Kassner, M. E. Geantil, P. Levine, L. E. Larson, B. C. TI Long-range internal stresses in monotonically and cyclically deformed metallic single crystals SO INTERNATIONAL JOURNAL OF MATERIALS RESEARCH LA English DT Article; Proceedings Paper CT 11th International Symposium on Physics of Materials (ISPMA) CY AUG 24-28, 2008 CL Charles Univ, Fac Math & Phys, Prague, CZECH REPUBLIC HO Charles Univ, Fac Math & Phys DE Long-range internal stress; Backstress; Synchrotron; Microdiffraction ID LATTICE PLANE MISORIENTATIONS; BEAM ELECTRON-DIFFRACTION; RAY STRUCTURAL MICROSCOPY; PLASTIC-DEFORMATION; DISLOCATION MICROSTRUCTURE; PART II; COPPER; STRAIN; CREEP; CELL AB Selected experimental measurements and theoretical predictions for the magnitude of long-range internal stress in monotonically and cyclically deformed metals are assessed and recently developed, spatially-resolved X-ray microbeam techniques for direct measurements of long-range internal stress are discussed. The results of previously reported differential-aperture X-ray microscopy spatially-resolved measurements of long-range internal stress in dislocation-cell interiors in monotonically deformed copper are compared with predictions and analyses associated with the composite model of deformation. In addition, the results of volume-integrating X-ray line-profile measurements and spatially-resolved differential-aperture X-ray microscopy measurements of strains in (100) oriented copper single crystals that were cyclically deformed to pre-saturation (without persistent slip bands) are presented. C1 [Kassner, M. E.; Geantil, P.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Levine, L. E.] NIST, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Larson, B. C.] ORNL, Mater Sci Tech Div, Oak Ridge, TN USA. RP Kassner, ME (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM kassner@usc.edu NR 38 TC 3 Z9 3 U1 0 U2 5 PU CARL HANSER VERLAG PI MUNICH PA KOLBERGERSTRASSE 22, POSTFACH 86 04 20, D-81679 MUNICH, GERMANY SN 1862-5282 J9 INT J MATER RES JI Int. J. Mater. Res. PD MAR PY 2009 VL 100 IS 3 BP 333 EP 339 DI 10.3139/146.110050 PG 7 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 428SR UT WOS:000264870600014 ER PT J AU Jirimutu Wang, HJ Zhang, WN Wong, CY AF Jirimutu Wang, Hai-Jun Zhang, Wei-Ning Wong, Cheuk-Yin TI QUARK MODEL WITH A REGULARIZED BREIT POTENTIAL SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Quark model; regularized Breit potential; q(q)over-bar bound states ID MESONS; CHROMODYNAMICS; SCATTERING; EQUATION AB The Breit interaction contains terms that are singular in nature and cannot be used non-perturbatively for quark-antiquark bound state studies. We regularize the Breit interaction by subtraction such that the interaction is not singular at the origin but the intermediate and long-range parts of the interaction remain unchanged. With the regularized quark-antiquark potential and the confining potential, the solution of q (q) over bar bound states are therefore stable possessing wave functions that can be used for future applications in other study of scattering and reaction problems. C1 [Jirimutu; Zhang, Wei-Ning] Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. [Wang, Hai-Jun] Jilin Univ, Ctr Theoret Phys, Changchun 130023, Jilin, Peoples R China. [Wang, Hai-Jun] Jilin Univ, Sch Phys, Changchun 130023, Jilin, Peoples R China. [Zhang, Wei-Ning; Wong, Cheuk-Yin] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Jirimutu (reprint author), Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. OI Wong, Cheuk-Yin/0000-0001-8223-0659 NR 22 TC 2 Z9 2 U1 0 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD MAR PY 2009 VL 18 IS 3 BP 729 EP 745 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 443WH UT WOS:000265941000011 ER PT J AU Maniadis, P Rasmussen, KO Thompson, RB Kober, EM AF Maniadis, Panagiotis Rasmussen, Kim O. Thompson, Russell B. Kober, Edward M. TI Ordering and Reverse Ordering Mechanisms of Triblock Copolymers in the Presence of Solvent SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE Triblock copolymers; self-assembly; self-consistent field theory ID MICROPHASE-SEPARATION; NEUTRAL SOLVENT; FIELD-THEORY; BLOCK; TERPOLYMER; BEHAVIOR; BLENDS AB Self-consistent field theory is used to study the self-assembly of a triblock copolymer melt. Two different external factors (temperature and solvent) are shown to affect the self-assembly. Either one or two-step self-assembly can be found as a function of temperature in the case of a neat triblock melt, or as a function of increasing solvent content (for non-selective solvents) in the case of a triblock-solvent mixture. For selective solvents, it is shown that increasing the solvent content leads to more complicated self-assembly mechanisms, including a reversed transition where order is found to increase instead of decreasing as expected, and re-entrant behavior where order is found to increase at first, and then decrease to a previous state of disorder. C1 [Maniadis, Panagiotis; Rasmussen, Kim O.; Kober, Edward M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Maniadis, Panagiotis; Rasmussen, Kim O.; Kober, Edward M.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Thompson, Russell B.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. RP Rasmussen, KO (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM kor@lanl.gov RI Rasmussen, Kim/B-5464-2009; Maniadis, Panagiotis/A-7861-2012; Thompson, Russell/J-6326-2012 OI Rasmussen, Kim/0000-0002-4029-4723; Thompson, Russell/0000-0002-6571-558X FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; NSERC of Canada FX This research was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, and was additionally supported by NSERC of Canada. NR 13 TC 1 Z9 1 U1 0 U2 8 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD MAR PY 2009 VL 10 IS 3 BP 805 EP 816 DI 10.3390/ijms10030805 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA 424KJ UT WOS:000264565300004 PM 19399221 ER PT J AU Ingber, MS Graham, AL Mondy, LA Fang, ZW AF Ingber, Marc S. Graham, Alan L. Mondy, Lisa A. Fang, Zhiwu TI An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article ID PRESSURE-DRIVEN FLOW; COUETTE APPARATUS; APPARENT SLIP; WALL SLIP; EQUATION; VELOCITY AB Several rheological constitutive equations for the modeling of dense suspensions in nonlinear shear flows have been developed over the last three decades. Although these models have been able to predict the correct steady-state solid-phase concentration profile, none have been able to follow the transient experimentally measured concentration profile over a range of suspended particle radii with a consistent set of diffusion coefficients. In this research, two improvements are made to the diffusive-flux model, namely, modeling the diffusion coefficients as linear functions of the so-called nonlinearity parameter and adding slip boundary conditions at the wall. A particle-level explanation for the linear dependence of the diffusion coefficients on the nonlinearity parameter is provided. With these two improvements, it is shown that the modified diffusive flux model can accurately predict the transient solid-phase concentration profile in a Couette device over a wide range of particle radii. Published by Elsevier Ltd. C1 [Graham, Alan L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ingber, Marc S.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Mondy, Lisa A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Fang, Zhiwu] Amgen Inc, Dept Informat Syst, Newbury Pk, CA 91320 USA. RP Graham, AL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM graham@lanl.gov FU U.S. Department of Energy (DOE) [DE-FG02-05ER25705]; Los Alamos National Laboratory Directed Research and Development Program; National Science Foundation; [DE-AC52-06NA25396] FX This work was partially supported by the U.S. Department of Energy (DOE) Grant DE-FG02-05ER25705. This financial support does not constitute an endorsement by the DOE of the views expressed in this paper. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. Additional funding for this project was provided by the Los Alamos National Laboratory Directed Research and Development Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors would like to acknowledge the support of DOE ASCR's Mul-tiscale Mathematics program. This material was based on work supported by the National Science Foundation, while Marc Ingber was working at the Foundation. NR 27 TC 22 Z9 22 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD MAR PY 2009 VL 35 IS 3 BP 270 EP 276 DI 10.1016/j.ijmultiphaseflow.2008.11.003 PG 7 WC Mechanics SC Mechanics GA 413AQ UT WOS:000263765700006 ER PT J AU Vrugt, JA ter Braak, CJF Diks, CGH Robinson, BA Hyman, JM Higdon, D AF Vrugt, Jasper A. ter Braak, C. J. F. Diks, C. G. H. Robinson, Bruce A. Hyman, James M. Higdon, Dave TI Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling SO INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION LA English DT Article DE MCMC, Markov chain Monte Carlo; RWM, random walk metropolis; DE-MC, differential evolution Markov chain; DRAM, delayed rejection adaptive Metropolis; DREAM, differential evolution adaptive metropolis; SCE-UA, shuffled complex evolution - university of Arizona ID METROPOLIS ALGORITHM; BAYESIAN-INFERENCE; OPTIMIZATION; REGENERATION; UNCERTAINTY; ADAPTATION; MIGRATION; SAMPLERS; PROPOSAL; MODELS AB Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well-constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled Differential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally Superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to Complex, multi-modal search problems. C1 [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [ter Braak, C. J. F.] Univ Wageningen & Res Ctr, NL-6700 AC Wageningen, Netherlands. [Diks, C. G. H.] Univ Amsterdam, Ctr Nonlinear Dynam Econ & Finance, Amsterdam, Netherlands. [Robinson, Bruce A.] Los Alamos Natl Lab, Civilian Nucl Program Off SPO CNP, Los Alamos, NM 87545 USA. [Hyman, James M.] Los Alamos Natl Lab, Math Modeling & Anal Grp T7, Los Alamos, NM 87545 USA. [Higdon, Dave] Los Alamos Natl Lab, Stat Sci CCS6, Los Alamos, NM 87545 USA. RP Vrugt, JA (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM vrugt@lanl.gov RI Vrugt, Jasper/C-3660-2008; Robinson, Bruce/F-6031-2010; ter Braak, Cajo/G-7006-2011 OI ter Braak, Cajo/0000-0002-0414-8745 FU Los - Alamos Postdoctoral Program FX The first author is supported by a J. Robert Oppenheimer Fellowship of the Los - Alamos Postdoctoral Program. The source code of DREAM is written in MATLAB and sequential and parallel irnplernentations of this software can - be obtained from the first author (vrugt@lanl.gov) upon request. NR 38 TC 266 Z9 274 U1 20 U2 122 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 1565-1339 EI 2191-0294 J9 INT J NONLIN SCI NUM JI Int. J. Nonlinear Sci. Numer. Simul. PD MAR PY 2009 VL 10 IS 3 BP 273 EP 290 PG 18 WC Engineering, Multidisciplinary; Mathematics, Applied; Mechanics; Physics, Mathematical SC Engineering; Mathematics; Mechanics; Physics GA 424UM UT WOS:000264593800001 ER PT J AU McCabe, RJ Proust, G Cerreta, EK Misra, A AF McCabe, Rodney J. Proust, Gwenaelle Cerreta, Ellen K. Misra, Amit TI Quantitative analysis of deformation twinning in zirconium SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Zirconium; Twinning; Microstructures; Polycrystalline material; Electron microscopy ID COMMERCIAL-PURITY TITANIUM; FINITE-ELEMENT ANALYSIS; MECHANICAL-PROPERTIES; HARDENING EVOLUTION; PURE TITANIUM; TEMPERATURE; BEHAVIOR; TEXTURE; STRAIN; DIFFRACTION AB We have used electron backscatter diffraction (EBSD) to quantify the contributions of first generation and second generation twinning to the total plastic strain of zirconium compressed at 76 K. For compression parallel to a primary c-axis texture, prismatic slip and first generation {11 (2) over bar2} compression twinning are the dominant deformation mechanisms with twinning accommodating roughly one third of the plastic strain. Second generation {10 (1) over bar2} and {11 (2) over bar1} tensile twins increase with the third power of the first generation {11 (2) over bar2} twin fraction. For compression perpendicular to the primary c-axis texture, prismatic slip and first generation {10 (1) over bar2} tensile twinning are the dominant deformation mechanisms with a small contribution from first generation {11 (2) over bar1} tensile twinning. Above approximately 17% strain, second generation {11 (2) over bar2} compression twins begin to make a contribution to the overall strain. These observations are used to explain the measured mechanical responses and texture evolution during deformation of zirconium. (C) 2008 Elsevier Ltd. All rights reserved. C1 [McCabe, Rodney J.; Proust, Gwenaelle; Cerreta, Ellen K.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Proust, Gwenaelle] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia. [Misra, Amit] Los Alamos Natl Lab, MPA Div, Los Alamos, NM 87545 USA. RP McCabe, RJ (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM rmccabe@lanl.gov RI Proust, Gwenaelle/A-3601-2010; Misra, Amit/H-1087-2012; OI McCabe, Rodney /0000-0002-6684-7410 FU Department of Energy, Office of Science, Office of Basic Energy Sciences FX This research is Supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences. Authors acknowledge discussions with Carlos Tome, Mike Baskes, Irene Beyerlein, Bjorn Clausen, George Kaschner, Marek Niewczas, and S.G. Srinivasan. Manuel Lovato performed the mechanical tests. Ann Kelly helped prepare the EBSD samples. NR 27 TC 76 Z9 77 U1 1 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD MAR PY 2009 VL 25 IS 3 BP 454 EP 472 DI 10.1016/j.ijplas.2008.03.010 PG 19 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 420AL UT WOS:000264260700004 ER PT J AU Kurpinski, K Jang, DJ Bhattacharya, S Rydberg, B Chu, J So, J Wyrobek, A Li, S Wang, DJ AF Kurpinski, Kyle Jang, Deok-Jin Bhattacharya, Sanchita Rydberg, Bjorn Chu, Julia So, Joanna Wyrobek, Andy Li, Song Wang, Daojing TI DIFFERENTIAL EFFECTS OF X-RAYS AND HIGH-ENERGY Fe-56 IONS ON HUMAN MESENCHYMAL STEM CELLS SO INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS LA English DT Article DE Radioresponse; High-LET; Cell cycle; Osteogenic differentiation; Transcriptomics ID BONE-MARROW-TRANSPLANTATION; NORMAL HUMAN FIBROBLASTS; IONIZING-RADIATION; GENOMIC INSTABILITY; SPACE EXPLORATION; LET RADIATION; DNA-DAMAGE; EXPOSURE; CANCER; ARREST AB Purpose: Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) Fe-56 ions on human mesenchymal stem cells (hMSC). Methods and Materials: A multi-functional comparison was carried out to investigate the differential effects of X-rays and Fe-56 ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. Results: X-rays and Fe-56 ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and Fe-56 ions, with more significant effects from Fe-56 ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy Fe-56 ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. Conclusions: Fe-56 ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation. (C) 2009 Elsevier Inc. C1 [Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Wyrobek, Andy; Wang, Daojing] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Kurpinski, Kyle; Chu, Julia; So, Joanna; Li, Song] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Wang, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd,MS 977-225A, Berkeley, CA 94720 USA. EM djwang@lbl.gov FU NHLBI NIH HHS [HL079419] NR 39 TC 19 Z9 22 U1 0 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0360-3016 J9 INT J RADIAT ONCOL JI Int. J. Radiat. Oncol. Biol. Phys. PD MAR 1 PY 2009 VL 73 IS 3 BP 869 EP 877 DI 10.1016/j.ijrobp.2008.10.002 PG 9 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 408NE UT WOS:000263440900034 PM 19101095 ER PT J AU Mari, D Clausen, B Bourke, MAM Buss, K AF Mari, D. Clausen, B. Bourke, M. A. M. Buss, K. TI Measurement of residual thermal stress in WC-Co by neutron diffraction SO INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS LA English DT Article; Proceedings Paper CT 9th International Conference on the Science of Hard Materials (ICSHM9) CY MAR 10-14, 2008 CL Montego Bay, JAMAICA DE Cemented carbides; Cobalt; WC; Residual stresses; Thermal expansion ID ELASTIC-CONSTANTS; COMPOSITES; ALLOYS; SIZE AB The temperature dependence of residual stresses in a WC-17.8vol.%Co cemented carbide was measured by neutron diffraction. The comparison of the WC lattice parameter within the WC-Co and within stress-free WC reference provides a measurement of lattice elastic strains and, using Hooke's law, stresses. WC is found to be under hydrostatic compressive stresses of about -400 MPa at room temperature, which decrease monotonically with temperature to a near-zero value at 800 degrees C. Residual stresses in cobalt also decrease with increasing temperature, but show an apparent increase above 800 degrees C, which is attributed to an increase in lattice parameter due to W dissolution in the Co phase. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Mari, D.; Buss, K.] Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland. [Clausen, B.; Bourke, M. A. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mari, D (reprint author), Ecole Polytech Fed Lausanne, Inst Phys Mat Complexe, CH-1015 Lausanne, Switzerland. EM daniele.mari@epfl.ch RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X NR 28 TC 17 Z9 17 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-4368 J9 INT J REFRACT MET H JI Int. J. Refract. Met. Hard Mat. PD MAR PY 2009 VL 27 IS 2 SI SI BP 282 EP 287 DI 10.1016/j.ijrmhm.2008.11.015 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 420AX UT WOS:000264261900014 ER PT J AU Krawitz, AD Venter, AM Drake, EF Luyckx, SB Clausen, B AF Krawitz, A. D. Venter, A. M. Drake, E. F. Luyckx, S. B. Clausen, B. TI Phase response of WC-Ni to cyclic compressive loading and its relation to toughness SO INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS LA English DT Article; Proceedings Paper CT 9th International Conference on the Science of Hard Materials (ICSHM9) CY MAR 10-14, 2008 CL Montego Bay, JAMAICA DE Residual stress; Neutron diffraction; Cemented carbide composites; Mechanical behavior ID THERMAL RESIDUAL-STRESS; COMPOSITES; CO AB The interaction of uniaxial compressive load and thermal residual stress was measured in a WC-10 wt.% (16 vol.%) Ni cemented carbide composite using neutron diffraction. Loading was from 0 to -2500 MPa in increments of 250 MPa, and measurements were made in situ during load-unload cycles 1, 2, 3, 10, 25, 50 and 100. Plasticity is observed in the Ni from the lowest levels of applied load, leading to continuous curvature of the WC-Ni stress-strain curves, and is believed to be a significant contribution to the composite's toughness. It is due to interaction between local extremes of the thermal residual microstress with the applied macrostress and leads to anisotropic relaxation of the thermal residual stress. Strain distribution and plasticity were observed through peak breadths. Although the initially strong hysteresis is reduced as the cycles increase, there are still changes taking place after 100 cycles. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Krawitz, A. D.] Univ Missouri, Columbia, MO 65211 USA. [Venter, A. M.] Necsa Ltd, ZA-0001 Pretoria, South Africa. [Drake, E. F.] ReedHycalog, Houston, TX USA. [Luyckx, S. B.] Univ Witwatersrand, Johannesburg, South Africa. [Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Krawitz, AD (reprint author), Univ Missouri, Lafferre Hall, Columbia, MO 65211 USA. EM krawitza@missouri.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X NR 8 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-4368 J9 INT J REFRACT MET H JI Int. J. Refract. Met. Hard Mat. PD MAR PY 2009 VL 27 IS 2 SI SI BP 313 EP 316 DI 10.1016/j.ijrmhm.2008.11.010 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 420AX UT WOS:000264261900017 ER PT J AU Warren, TL Silling, SA Askari, A Weckner, O Epton, MA Xu, J AF Warren, Thomas L. Silling, Stewart A. Askari, Abe Weckner, Olaf Epton, Michael A. Xu, Jifeng TI A non-ordinary state-based peridynamic method to model solid material deformation and fracture SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Peridynamics; Transient solid dynamics; Non-local model; Finite elastic-plastic deformation; EMU ID INTEGRATION AB In this paper, we develop a new non-ordinary state-based peridynamic method to solve transient dynamic solid mechanics problems. This new peridynamic method has advantages over the previously developed bond-based and ordinary state-based peridynamic methods in that its bonds are not restricted to central forces, nor is it restricted to a Poisson's ratio of 1/4 as with the bond-based method. First, we obtain non-local nodal deformation gradients that are used to define nodal strain tensors. The deformation gradient tensors are used with the nodal strain tensors to obtain rate of deformation tensors in the deformed configuration. The polar decomposition of the deformation gradient tensors are then used to obtain the nodal rotation tensors which are used to rotate the rate of deformation tensors and previous Cauchy stress tensors into an unrotated configuration. These are then used with conventional Cauchy stress constitutive models in the unrotated state where the unrotated Cauchy stress rate is objective. We then obtain the unrotated Cauchy nodal stress tensors and rotate them back into the deformed configuration where they are used to define the forces in the nodal connecting bonds. As a first example we quasi-statically stretch a bar, hold it, and then rotate it ninety degrees to illustrate the methods finite rotation capabilities. Next, we verify our new method by comparing small strain results from a bar fixed at one end and subjected to an initial velocity gradient with results obtained from the corresponding one-dimensional small strain analytical solution. As a last example, we show the fracture capabilities of the method using both a notched and un-notched bar. (c) 2009 Published by Elsevier Ltd. C1 [Silling, Stewart A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Askari, Abe; Weckner, Olaf; Epton, Michael A.; Xu, Jifeng] Boeing Co, Math Grp, Bellevue, WA 98075 USA. RP Warren, TL (reprint author), 3804 Shenandoah PL NE, Albuquerque, NM 87111 USA. EM Tlwarre@msn.com FU Boeing Company [SSG-02-06-0358] FX This work was carried out in the course of research sponsored by the Boeing Company under Agreement No. SSG-02-06-0358. NR 14 TC 47 Z9 48 U1 2 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD MAR 1 PY 2009 VL 46 IS 5 BP 1186 EP 1195 DI 10.1016/j.ijsolstr.2008.10.029 PG 10 WC Mechanics SC Mechanics GA 408GC UT WOS:000263422500019 ER PT J AU Yergeau, E Schoondermark-Stolk, SA Brodie, EL Dejean, S DeSantis, TZ Goncalves, O Piceno, YM Andersen, GL Kowalchuk, GA AF Yergeau, Etienne Schoondermark-Stolk, Sung A. Brodie, Eoin L. Dejean, Sebastien DeSantis, Todd Z. Goncalves, Olivier Piceno, Yvette M. Andersen, Gary L. Kowalchuk, George A. TI Environmental microarray analyses of Antarctic soil microbial communities SO ISME JOURNAL LA English DT Article DE Antarctic soil ecosystems; GeoChip microarray; microbial community structure; microbial diversity; PhyloChip microarray ID AMMONIA-OXIDIZING BACTERIA; FALKLAND ISLANDS; CLIMATE-CHANGE; DIVERSITY; RESPONSES; DATABASE; ECOLOGY; GENES AB Antarctic ecosystems are fascinating in their limited trophic complexity, with decomposition and nutrient cycling functions being dominated by microbial activities. Not only are Antarctic habitats exposed to extreme environmental conditions, the Antarctic Peninsula is also experiencing unequalled effects of global warming. Owing to their uniqueness and the potential impact of global warming on these pristine systems, there is considerable interest in determining the structure and function of microbial communities in the Antarctic. We therefore utilized a recently designed 16S rRNA gene microarray, the PhyloChip, which targets 8741 bacterial and archaeal taxa, to interrogate microbial communities inhabiting densely vegetated and bare fell-field soils along a latitudinal gradient ranging from 51 degrees S (Falkland Islands) to 72 degrees S (Coal Nunatak). Results indicated a clear decrease in diversity with increasing latitude, with the two southernmost sites harboring the most distinct Bacterial and Archaeal communities. The microarray approach proved more sensitive in detecting the breadth of microbial diversity than polymerase chain reaction-based bacterial 16S rRNA gene libraries of modest size (similar to 190 clones per library). Furthermore, the relative signal intensities summed for phyla and families on the PhyloChip were significantly correlated with the relative occurrence of these taxa in clone libraries. PhyloChip data were also compared with functional gene microarray data obtained earlier, highlighting numerous significant relationships and providing evidence for a strong link between community composition and functional gene distribution in Antarctic soils. Integration of these PhyloChip data with other complementary methods provides an unprecedented understanding of the microbial diversity and community structure of terrestrial Antarctic habitats. C1 [Yergeau, Etienne; Schoondermark-Stolk, Sung A.; Kowalchuk, George A.] Netherlands Inst Ecol NIOO KNAW, Ctr Terr Ecol, NL-6666 ZG Heteren, Netherlands. [Brodie, Eoin L.; DeSantis, Todd Z.; Piceno, Yvette M.; Andersen, Gary L.] Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA USA. [Dejean, Sebastien] Univ Toulouse 3, Inst Math, F-31062 Toulouse, France. [Goncalves, Olivier] Univ Clermont Ferrand, CNRS, Lab Microorganismes Genome & Environm, UMR 6023, Clermont Ferrand 2, France. [Kowalchuk, George A.] Free Univ Amsterdam, Inst Ecol Sci, Amsterdam, Netherlands. RP Kowalchuk, GA (reprint author), Netherlands Inst Ecol NIOO KNAW, Ctr Terr Ecol, POB 40, NL-6666 ZG Heteren, Netherlands. EM g.kowalchuk@nioo.knaw.nl RI Kowalchuk, George/C-4298-2011; Goncalves, Olivier/C-6869-2013; Brodie, Eoin/A-7853-2008; Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016; Yergeau, Etienne/B-5344-2008; OI Goncalves, Olivier/0000-0002-9498-6194; Brodie, Eoin/0000-0002-8453-8435; Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699; Yergeau, Etienne/0000-0002-7112-3425 FU NWO [851.20.018]; U. S. DOE's Office of Science, Biological and Environmental Research Program; University of California, LBNL [DE-AC02-05CH11231]; FQRNT FX This study was supported by NWO grant 851.20.018 to Rien Aerts and GA Kowalchuk. Part of this work was performed under the auspices of the U. S. DOE's Office of Science, Biological and Environmental Research Program, and by the University of California, LBNL under contract no. DE-AC02-05CH11231. E Yergeau was partly supported by a FQRNT postgraduate scholarship. Stef Bokhorst, Merlijn Janssens and Kat Snell are gratefully acknowledged for sampling at Fossil Bluff, Coal Nunatak and Signy Islands. Comments from Eiko Kuramae significantly improved this paper. We thank Pete Convey and the British Antarctic Survey for insightful discussions and logistical support. This is NIOO-KNAW publication # 4400. NR 41 TC 75 Z9 79 U1 5 U2 44 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1751-7362 J9 ISME J JI ISME J. PD MAR PY 2009 VL 3 IS 3 BP 340 EP 351 DI 10.1038/ismej.2008.111 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 415DI UT WOS:000263914100007 PM 19020556 ER PT J AU Kline, K Dale, VH Lee, R Leiby, P AF Kline, Keith Dale, Virginia H. Lee, Russell Leiby, Paul TI In Defense of Biofuels, Done Right SO ISSUES IN SCIENCE AND TECHNOLOGY LA English DT Article ID LAND-COVER C1 [Kline, Keith; Dale, Virginia H.; Lee, Russell; Leiby, Paul] Oak Ridge Natl Lab, Ctr BioEnergy Sustainabil, Oak Ridge, TN 37831 USA. RP Kline, K (reprint author), Oak Ridge Natl Lab, Ctr BioEnergy Sustainabil, Oak Ridge, TN 37831 USA. EM klinekl@ornl.gov; dalevh@ornl.gov; leerm@ornl.gov; leibypn@ornl.gov RI Dale, Virginia/B-6023-2009; OI Kline, Keith/0000-0003-2294-1170 NR 10 TC 26 Z9 28 U1 1 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0748-5492 J9 ISSUES SCI TECHNOL JI Issues Sci. Technol. PD SPR PY 2009 VL 25 IS 3 BP 75 EP 84 PG 10 WC Engineering, Multidisciplinary; Engineering, Industrial; Multidisciplinary Sciences; Social Issues SC Engineering; Science & Technology - Other Topics; Social Issues GA 424UO UT WOS:000264594000030 ER PT J AU Kiener, D Durst, K Rester, M Minor, AM AF Kiener, D. Durst, K. Rester, M. Minor, A. M. TI Revealing deformation mechanisms with nanoindentation SO JOM LA English DT Article ID STRAIN GRADIENT PLASTICITY; IN-SITU NANOINDENTATION; TRANSMISSION ELECTRON-MICROSCOPE; SENSING INDENTATION EXPERIMENTS; SINGLE-CRYSTALS; DISLOCATION NUCLEATION; INCIPIENT PLASTICITY; METALLIC MATERIALS; ROOM-TEMPERATURE; LITHIUM FLUORIDE AB For a better mechanistic understanding of the deformation phenomena that occur during nanoindentation testing, complimentary experimental techniques are critical. This overview presents several methods capable of analyzing the local microstructure of materials undergoing nanoindentation across different length scales, including etch pit analysis, electron backscatter diffraction, and in situ nanoindentation in a transmission electron microscope. Case studies of deformation mechanisms are provided, and the benefits and limitations of these complimentary experimental techniques are discussed. C1 [Kiener, D.; Rester, M.] Austrian Acad Sci, Erich Schmid Inst Mat Sci, Leoben, Austria. [Kiener, D.; Rester, M.] Univ Leoben, Dept Mat Phys, Leoben, Austria. [Durst, K.] Univ Erlangen Nurnberg, Lehrstuhl Allgemeine Werkstoffeigenschaften 1, Erlangen, Germany. [Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Kiener, D.] Univ Munich, Dept Chem & Biochem, D-81377 Munich, Germany. [Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Kiener, D (reprint author), Austrian Acad Sci, Erich Schmid Inst Mat Sci, Leoben, Austria. EM daniel.kiener@cup.uni-muenchen.de RI Kiener, Daniel/B-2202-2008; Durst, Karsten/D-1262-2011; OI Kiener, Daniel/0000-0003-3715-3986; Durst, Karsten/0000-0002-9246-6398 FU Materials Center Leoben (MCL); DFG (Deutsche Forschungsgemeinschaft) [Du 424-1/2]; FWF (Fonds zur Forderung der wissenschaftlichen Forschung) [P 17375-N07]; Scientific User Facilities Division of the Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC02-05CH11231] FX D. K. was supported by the Materials Center Leoben (MCL) within the Austrian Kplus Competence Center Programme. Financial support of K. D. by DFG (Deutsche Forschungsgemeinschaft) under contract Du 424-1/2 is gratefully acknowledged. M. R. acknowledges financial support by the FWF (Fonds zur Forderung der wissenschaftlichen Forschung) through Project P 17375-N07. A. M. M. was supported by the Scientific User Facilities Division of the Office of Basic Energy Sciences, U. S. Department of Energy under Contract # DE-AC02-05CH11231. The authors would like to thank all of their collaborators past and present who contributed to the results presented in this article. NR 86 TC 8 Z9 8 U1 1 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD MAR PY 2009 VL 61 IS 3 BP 14 EP 23 DI 10.1007/s11837-009-0036-4 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 415XE UT WOS:000263969000003 ER PT J AU Wang, GJ Volkow, ND Thanos, PK Fowler, JS AF Wang, Gene-Jack Volkow, Nora D. Thanos, Panayotis K. Fowler, Joanna S. TI Imaging of Brain Dopamine Pathways Implications for Understanding Obesity SO JOURNAL OF ADDICTION MEDICINE LA English DT Review DE brain dopamine; obesity; positron emission tomography ID HIGH-FAT DIET; POSITRON-EMISSION-TOMOGRAPHY; INCREASES ACCUMBENS DOPAMINE; RANDOMIZED CONTROLLED-TRIAL; COCAINE-SEEKING BEHAVIOR; CHRONIC FOOD RESTRICTION; WEIGHT-LOSS; NUCLEUS-ACCUMBENS; DORSAL STRIATUM; IN-VIVO AB Obesity is typically associated with abnormal eating behaviors. Brain imaging studies in humans implicate the involvement of dopamine (DA)-modulated circuits in pathologic eating behavior(s). Food cues increase striatal extracellular DA, providing evidence for the involvement of DA in the nonhedonic motivational properties of food. Food cues also increase metabolism in the orbitofrontal cortex indicating the association of this region with the motivation for food consumption. Similar to drug-addicted subjects, striatal DA D2 receptor availability is reduced in obese subjects, which may predispose obese subjects to seek food as a means to temporarily compensate for understimulated reward circuits. Decreased DA D2 receptors in the obese subjects are also associated with decreased metabolism in prefrontal regions involved in inhibitory control, which may underlie their inability to control food intake. Gastric stimulation in obese subjects activates cortical and limbic regions involved with self-control, motivation, and memory. These brain regions are also activated during drug craving in drug-addicted subjects. Obese subjects have increased metabolism in the somatosensory cortex, which suggests an enhanced sensitivity to the sensory properties of food. The reduction in DA D2 receptors in obese subjects coupled with the enhanced sensitivity to food palatability could make food their most salient reinforcer putting them at risk for compulsive eating and obesity. The results from these studies suggest that multiple but similar brain circuits are disrupted in obesity and drug addiction and suggest that strategies aimed at improving DA function might be beneficial in the treatment and prevention of obesity. C1 [Wang, Gene-Jack; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Wang, Gene-Jack; Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY USA. [Volkow, Nora D.; Thanos, Panayotis K.] NIAAA, Natl Inst Drug Abuse, Bethesda, MD USA. RP Wang, GJ (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM gjwang@bnl.gov FU scientific and technical staffs at the Brookhaven Center; U.S. Department of Energy OBER [DE-ACO2-76CH00016]; National Institute on Drug Abuse [5RO1DA006891-14, 5RO1DA6278-16, 5821, DA018457-2]; National Institute on Alcohol Abuse and Alcoholism [RO1AA9481-11, Y1AA3009]; General Clinical Research Center at Stony Brook University Hospital [NIH MOIRR 10710] FX The authors also thank the scientific and technical staffs at the Brookhaven Center for Translational Neuroimaging, for their support of these research studies as well as the individuals who volunteered for these studies.; Supported in part by grants from the U.S. Department of Energy OBER (DE-ACO2-76CH00016), the National Institute on Drug Abuse (5RO1DA006891-14, 5RO1DA6278-16, 5821, DA018457-2), the National Institute on Alcohol Abuse and Alcoholism (RO1AA9481-11 & Y1AA3009), and by the General Clinical Research Center at Stony Brook University Hospital (NIH MOIRR 10710). NR 155 TC 79 Z9 81 U1 6 U2 22 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1932-0620 J9 J ADDICT MED JI J. Addict. Med. PD MAR PY 2009 VL 3 IS 1 BP 8 EP 18 PG 11 WC Substance Abuse SC Substance Abuse GA 416WD UT WOS:000264035300002 PM 21603099 ER PT J AU Cui, YL Caudel, DD Bhattacharya, P Burger, A Mandal, KC Johnstone, D Payne, SA AF Cui, Yunlong Caudel, David D. Bhattacharya, Pijush Burger, Arnold Mandal, Krishna C. Johnstone, D. Payne, S. A. TI Deep levels in GaTe and GaTe:In crystals investigated by deep-level transient spectroscopy and photoluminescence SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE antisite defects; crystal growth from melt; deep level transient spectroscopy; deep levels; gallium compounds; III-VI semiconductors; indium; interstitials; photoluminescence; Schottky diodes; semiconductor doping; semiconductor growth; vacancies (crystal); valence bands ID TEMPERATURE-DEPENDENCE; SINGLE-CRYSTALS; SEMICONDUCTORS; CDTE AB Deep levels of undoped GaTe and indium-doped GaTe crystals are reported for samples grown by the vertical Bridgman technique. Schottky diodes of GaTe and GaTe:In have been fabricated and characterized using current-voltage, capacitance-voltage, and deep-level transient spectroscopy (DLTS). Three deep levels at 0.40, 0.59, and 0.67 eV above the valence band were found in undoped GaTe crystals. The level at 0.40 eV is associated with the complex consisting of gallium vacancy and gallium interstitial (V(Ga)-Ga(i)), the level at 0.59 eV is identified as the tellurium-on-gallium antisite (Te(Ga)), and the last one is tentatively assigned to be the doubly ionized gallium vacancy (V(Ga)(*)). Indium isoelectronic doping is found to have noticeable impacts on reducing the Schottky saturation current and suppressing the densities of Te(Ga) and V(Ga)(*) defects. The peak which dominated the DLTS spectrum of GaTe:In is assigned to be the defect complex consisting of V(Ga) and indium interstitial (In(i)). Low-temperature photoluminescence (PL) spectroscopy measurements were performed on GaTe and GaTe:In crystals. A shallow acceptor level at 140 meV corresponding to V(Ga) was measured in undoped GaTe. Two shallow acceptor levels at 123 and 74 meV corresponding to V(Ga) and indium-on-gallium antisite In(Ga) were observed in GaTe:In samples. The PL results suggested that the indium atoms could occupy gallium vacant sites during GaTe crystal growth period and thereby change the electrical and optical properties of GaTe crystal. C1 [Cui, Yunlong; Caudel, David D.; Bhattacharya, Pijush; Burger, Arnold] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Mandal, Krishna C.] EIC Labs Inc, Norwood, MA 02062 USA. [Johnstone, D.] SEMETROL, Chesterfield, VA 23838 USA. [Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cui, YL (reprint author), Fisk Univ, Dept Phys, Nashville, TN 37208 USA. EM ycui@fisk.edu FU DHS/DNDO [HSHQDC-07C-00034]; Center of Research Excellence in Science and Technology (CREST) under Cooperative Agreement [CA-0420516] FX The authors acknowledge partial financial support provided by the DHS/DNDO under Contract No. HSHQDC-07C-00034. The authors at Fisk University gratefully acknowledge financial support from the NSF-supported Center of Research Excellence in Science and Technology (CREST) under Cooperative Agreement No. CA-0420516. The authors would also like to thank Mr. S. Swindell for his instrumental part in the study of Schottky contact, Mr. D. Hayden, Mr. R. Dupere, Mr. V. Buliga, and Mr. M. Groza for helping prepare Schottky contacts. NR 20 TC 12 Z9 13 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2009 VL 105 IS 5 AR 053709 DI 10.1063/1.3080157 PG 4 WC Physics, Applied SC Physics GA 418NZ UT WOS:000264156300050 ER PT J AU Farrell, HH Schultz, BD Palmstrom, CJ AF Farrell, H. H. Schultz, B. D. Palmstrom, C. J. TI Comment on "High-resolution core-level photoemission study on GaAs(111)B surfaces" [J. Appl. Phys. 101, 043516 (2007)] SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE core levels; gallium arsenide; III-V semiconductors; photoelectron spectra; surface reconstruction; surface states ID RECONSTRUCTIONS AB Photoemission work by Nakamura [J. Appl. Phys. 101, 043516 (2007)] on the GaAs(111)B(root 19x root 19)R23 degrees surface shows that the surface region contains three different types of As atoms and two different types of Ga atoms. The outstanding feature of their data is the presence of Ga atoms in the outermost layer of the reconstruction, which they conclude is inconsistent with published models. However, there are two published models, which were not identified in the paper, that contain these top-layer Ga atoms. Additionally, one of the two models also contains three distinct types of As surface atoms and two distinct types of Ga surface atoms as identified experimentally by Nakamura [J. Appl. Phys. 101, 043516 (2007)]. C1 [Farrell, H. H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Schultz, B. D.] Int Technol Ctr, Raleigh, NC 27617 USA. [Palmstrom, C. J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Farrell, HH (reprint author), Idaho Natl Lab, POB 1625 MS 2211, Idaho Falls, ID 83415 USA. EM helen.farrell@inl.gov NR 7 TC 2 Z9 2 U1 21 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2009 VL 105 IS 5 AR 056106 DI 10.1063/1.3082490 PG 2 WC Physics, Applied SC Physics GA 418NZ UT WOS:000264156300116 ER PT J AU Knapp, JA Browning, JF Bond, GM AF Knapp, J. A. Browning, J. F. Bond, G. M. TI Evolution of mechanical properties in ErT2 thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE bubbles; dislocation pinning; elastic constants; elasticity; erbium compounds; finite element analysis; hardness; ion beam effects; nanoindentation; softening; thin films; transmission electron microscopy ID COMPOSITE-MATERIALS; ELASTIC-MODULI; HIGH-PRESSURE; ROOM-TEMPERATURE; METAL TRITIDES; HELIUM; NANOINDENTATION; INDENTATION; NICKEL; DISLOCATIONS AB The mechanical properties of rare earth tritide films evolve as tritium decays into He-3, which forms bubbles that influence long-term film stability in applications such as neutron generators. Ultralow load nanoindentation, combined with finite-element modeling to separate the mechanical properties of the thin films from their substrates, has been used to follow the mechanical properties of model ErT2 films as they aged. The size of the growing He-3 bubbles was followed with transmission electron microscopy, while ion beam analysis was used to monitor total T and He-3 content. The observed behavior is divided into two regimes: a substantial increase in layer hardness but elasticity changed little over similar to 18 months, followed by a decrease in elastic stiffness and a modest decease in hardness over the final 24 months. We show that the evolution of properties is explained by a combination of dislocation pinning by the bubbles, elastic softening as the bubbles occupy an increasing fraction of the material, and details of bubble growth modes. C1 [Knapp, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Browning, J. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bond, G. M.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. RP Knapp, JA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jaknapp@sandia.gov OI Browning, James/0000-0001-8379-259X FU National Nuclear Security Administration of the United States Department of Energy [DE-AC04-94AL85000]; United States Department of Energy (DOE); Office of Basic Energy Sciences- Materials Science [DE-AC0500OR22725] FX Discussions with D. M. Follstaedt, S. M. Myers, D. F. Cowgill, and C. S. Snow, ion beam analysis by J. C. Banks, x- ray diffraction by M. A. Rodriguez, sample preparation by L. I. Espada, G. L. Bryant, and M. B. Ritchey, and technical assistance with radiation safety issues by E. A. Staab are all gratefully acknowledged. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC04-94AL85000. Oak Ridge National Laboratory is managed for the United States Department of Energy (DOE), Office of Basic Energy Sciences- Materials Science under Contract No. DE-AC0500OR22725 with UT-Battelle LLC. NR 46 TC 14 Z9 14 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2009 VL 105 IS 5 AR 053501 DI 10.1063/1.3082011 PG 7 WC Physics, Applied SC Physics GA 418NZ UT WOS:000264156300021 ER PT J AU Neumann, JG Fiorito, RB O'Shea, PG Loos, H Sheehy, B Shen, Y Wu, Z AF Neumann, J. G. Fiorito, R. B. O'Shea, P. G. Loos, H. Sheehy, B. Shen, Y. Wu, Z. TI Terahertz laser modulation of electron beams SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE electron beams; free electron lasers; high-speed optical techniques; optical modulation; particle beam bunching; photocathodes ID PHASE-SPACE TOMOGRAPHY; TRANSITION RADIATION; TRANSMISSION; EMISSION; BUNCHES AB The study of modulated electron beams is important because they can be used to produce coherent radiation, but the modulations can cause unwanted instabilities in some devices. Specifically, in a free electron laser, proper prebunching at the desired emission frequency can enhance performance, while bunching resulting from instabilities and bunch compression schemes can degrade performance. In a photoinjector accelerator, tailoring the shape of the drive laser pulse could be used as a technique to either enhance or mitigate the effect of these modulations. This work explores the possibility of creating deeply modulated electron beams at the photocathode by using a modified drive laser designed to produce multiple subpicosecond pulses repeated at terahertz frequencies. Longitudinal space charge forces can strongly influence the evolution of modulations by converting density modulations to energy modulations. Experiments at the Source Development Laboratory electron accelerator at Brookhaven National Laboratory and PARMELA simulations are employed to explore the dynamics of electron beams with varying charge and with varying initial modulation. Finally, terahertz light generated by a transition radiator is used to confirm the structure of the electron beam. C1 [Neumann, J. G.; Fiorito, R. B.; O'Shea, P. G.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Loos, H.; Sheehy, B.; Shen, Y.; Wu, Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [O'Shea, P. G.] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. RP Neumann, JG (reprint author), USN, Res Lab, Washington, DC 20375 USA. EM jonathan.neumann@nrl.navy.mil OI Loos, Henrik/0000-0001-5085-0562 FU U. S. Department of Energy, Division of Materials Sciences; Division of Chemical Sciences [DE-AC02-98CH10886]; Joint Technology Office; Office of Naval Research; Army Research Laboratory FX This work was carried out with the support from the U. S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract No. DE-AC02-98CH10886, with the support from the Joint Technology Office, Office of Naval Research, and Army Research Laboratory, and with the support from Professor Chris Davis at the University of Maryland. NR 40 TC 29 Z9 29 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2009 VL 105 IS 5 AR 053304 DI 10.1063/1.3075563 PG 11 WC Physics, Applied SC Physics GA 418NZ UT WOS:000264156300015 ER PT J AU Priyantha, W Smith, RJ Chen, H Kopczyk, M Lerch, M Key, C Nachimuthu, P Jiang, W AF Priyantha, W. Smith, R. J. Chen, H. Kopczyk, M. Lerch, M. Key, C. Nachimuthu, P. Jiang, W. TI Fe-Al interface intermixing and the role of Ti, V, and Zr as a stabilizing interlayer at the interface SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aluminium; iron; metallic thin films; mixing; multilayers; Rutherford backscattering; sputter deposition; titanium; vanadium; X-ray reflection; zirconium ID X-RAY REFLECTIVITY; AL(110) SURFACES; ROOM-TEMPERATURE; FILMS; MULTILAYERS; CO; AL(001); GROWTH; METALS AB Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 A and 41.1 A for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (similar to 3 A) for these sputtered metallic films. C1 [Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Nachimuthu, P.; Jiang, W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Priyantha, W (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. EM smith@physics.montana.edu OI Jiang, Weilin/0000-0001-8302-8313 FU National Science Foundation (NSF) [DMR-0516603] FX This work was supported by the National Science Foundation (NSF) Grant No. DMR-0516603. The authors would like to thank MMF, Montana State University, Bozeman, MT for providing the facility to prepare samples. A portion of the research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biology and Environmental Research located at the Pacific Northwest National Laboratory, Richmond, WA. NR 27 TC 7 Z9 7 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2009 VL 105 IS 5 AR 053504 DI 10.1063/1.3079521 PG 5 WC Physics, Applied SC Physics GA 418NZ UT WOS:000264156300024 ER PT J AU Schmalhorst, J Ebke, D Meinert, M Thomas, A Reiss, G Arenholz, E AF Schmalhorst, J. Ebke, D. Meinert, M. Thomas, A. Reiss, G. Arenholz, E. TI Element-specific study of the temperature dependent magnetization of Co-Mn-Sb thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE antiferromagnetic materials; antimony alloys; cobalt alloys; ferromagnetic materials; magnetic moments; magnetic thin films; magnetic transition temperature; magnetoelectronics; manganese alloys; metallic thin films; sputter deposition; stoichiometry ID CIRCULAR-DICHROISM; OPTICAL-PROPERTIES; HEUSLER ALLOYS; MAGNETISM AB Magnetron sputtered thin Co-Mn-Sb films were investigated with respect to their element-specific magnetic properties. Stochiometric Co1Mn1Sb1 crystallized in the C1(b) structure has been predicted to be half-metallic and is therefore of interest for spintronic applications. It should show a characteristic antiferromagnetic coupling of the Mn and Co magnetic moments and a transition temperature T-C of about 480 K. Although the observed transition temperature of our 20 nm thick Co32.4Mn33.7Sb33.8, Co37.7Mn34.1Sb28.2, and Co43.2Mn32.6Sb24.2 films is in quite good agreement with the expected value, we found a ferromagnetic coupling of the Mn and Co magnetic moments which indicates that the films do not crystallize in the C1(b) structure and are probably not fully spin polarized. The ratio of the Co and Mn moments does not change up to the transition temperature and the temperature dependence of the magnetic moments can be well described by the mean-field theory. C1 [Schmalhorst, J.; Ebke, D.; Meinert, M.; Thomas, A.; Reiss, G.] Univ Bielefeld, Dept Phys Thin Films & Phys Nanostruct, D-33501 Bielefeld, Germany. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Schmalhorst, J (reprint author), Univ Bielefeld, Dept Phys Thin Films & Phys Nanostruct, D-33501 Bielefeld, Germany. EM jschmalh@physik.uni-bielefeld.de RI Ebke, Daniel/A-4357-2010; Meinert, Markus/E-8794-2011; Schmalhorst, Jan/E-9951-2011; Thomas, Andy/C-7210-2008; Reiss, Gunter/A-3423-2010 OI Meinert, Markus/0000-0002-7813-600X; Thomas, Andy/0000-0001-8594-9060; Reiss, Gunter/0000-0002-0918-5940 FU Deutsche Forschungsgemeinschaft [SCHM 1690/6-1]; U. S. Department of Energy [DE-AC02-05CH11231]; Deutsche Akademische Auslandsamt (DAAD) FX The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG, contract number SCHM 1690/6-1) and the opportunity to work at BL 6.3.1 and BL 4.0.2 of the Advanced Light Source, Berkeley, USA, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Furthermore, we like to thank N. N. Liu for assisting the sample preparation. One of the authors (M.M.) acknowledges the Deutsche Akademische Auslandsamt (DAAD) for supporting his work at AGH Krakow. NR 25 TC 3 Z9 3 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2009 VL 105 IS 5 AR 053906 DI 10.1063/1.3087479 PG 5 WC Physics, Applied SC Physics GA 418NZ UT WOS:000264156300061 ER PT J AU Tenne, DA Lee, HN Katiyar, RS Xi, XX AF Tenne, D. A. Lee, H. N. Katiyar, R. S. Xi, X. X. TI Ferroelectric phase transitions in three-component short-period superlattices studied by ultraviolet Raman spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE barium compounds; calcium compounds; dielectric polarisation; ferroelectric materials; ferroelectric transitions; phonons; pulsed laser deposition; Raman spectra; stress relaxation; strontium compounds; superlattices; ultraviolet spectra ID EPITAXIAL BATIO3/SRTIO3 SUPERLATTICES; OXIDE THIN-FILMS; POLARIZATION ENHANCEMENT; PEROVSKITE FILMS; SRTIO3; NANOSCALE; STABILITY; BATIO3; GROWTH AB Vibrational spectra of three-component BaTiO3/SrTiO3/CaTiO3 short-period superlattices grown by pulsed laser deposition with atomic-layer control have been investigated by ultraviolet Raman spectroscopy. Monitoring the intensity of the first-order phonon peaks in Raman spectra as a function of temperature allowed the determination of the ferroelectric phase transition temperature T-c. Raman spectra indicate that all superlattices remain in the tetragonal ferroelectric phase with out-of-plane polarization in the entire temperature range below T-c. The dependence of T-c on the relative thicknesses of ferroelectric (BaTiO3) to nonferroelectric materials (SrTiO3 and CaTiO3) has been studied. The highest T-c was found in superlattices having the largest relative amount of BaTiO3, provided that the superlattice maintains its coherency with the substrate. Strain relaxation leads to a significant decrease in the ferroelectric phase transition temperature. C1 [Tenne, D. A.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Xi, X. X.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Xi, X. X.] Penn State Univ, Dept Mat Sci & Engn, Mat Res Inst, University Pk, PA 16802 USA. [Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Katiyar, R. S.] Univ Puerto Rico, Dept Phys, San Juan, PR 00931 USA. RP Tenne, DA (reprint author), Boise State Univ, Dept Phys, Boise, ID 83725 USA. EM dmitritenne@boisestate.edu RI Lee, Ho Nyung/K-2820-2012; Tenne, Dmitri/C-3294-2009 OI Lee, Ho Nyung/0000-0002-2180-3975; Tenne, Dmitri/0000-0003-2697-8958 FU National Science Foundation [DMR-0705127]; U. S. Department of Energy [DE-FG02-01ER45907]; DOE EPSCoR [DE-FG02-04ER46142]; Research Corporation for Science Advancement [7134] FX This work was partially supported by the National Science Foundation (Grant No. DMR-0705127), the U. S. Department of Energy (Grant No. DE-FG02-01ER45907), the DOE EPSCoR (Grant No. DE-FG02-04ER46142), and by the Research Corporation for Science Advancement (Grant No. 7134). H. N. L. was sponsored by the Division of Materials Sciences and Engineering, U. S. Department of Energy. NR 47 TC 5 Z9 5 U1 3 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2009 VL 105 IS 5 AR 054106 DI 10.1063/1.3087611 PG 5 WC Physics, Applied SC Physics GA 418NZ UT WOS:000264156300074 ER PT J AU Nagy, M Alleman, TL Dyer, T Ragauskas, AJ AF Nagy, Mate Alleman, Teresa L. Dyer, Thomas Ragauskas, Arthur J. TI Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols SO JOURNAL OF BIOBASED MATERIALS AND BIOENERGY LA English DT Article DE Biodiesel; Phosphitylation; (31)P-NMR; Transesterification ID LIGNINS; CHROMATOGRAPHY; STANDARDS AB Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by (31)P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique (31)P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel. C1 [Nagy, Mate; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Alleman, Teresa L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dyer, Thomas] Georgia Inst Technol, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. [Ragauskas, Arthur J.] Chalmers, SE-41296 Gothenburg, Sweden. RP Ragauskas, AJ (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM Art.Ragauskas@chemistry.gatech.edu RI Alleman, Teresa/F-6281-2011; OI Ragauskas, Arthur/0000-0002-3536-554X FU PSE Fellowship FX The authors would like to thank the National Renewable Energy Laboratory (Golden, CO, USA) for the biodiesel samples and the conventional analytical measurement data and the PSE Fellowship program at IPST@GT for financial support. Arthur J. Ragauskas also wishes to thank the support of the Fulbright Fellowship program for the support of his Chair in Alternative Energy. Portions of this work were used by M. Nagy as partial fulfillment of the requirements for the degree of Ph.D. at the Georgia Institute of Technology. NR 18 TC 4 Z9 4 U1 1 U2 11 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1556-6560 J9 J BIOBASED MATER BIO JI J. Biobased Mater. Bioenergy PD MAR PY 2009 VL 3 IS 1 BP 108 EP 111 DI 10.1166/jbmb.2009.1004 PG 4 WC Chemistry, Applied; Energy & Fuels; Materials Science, Biomaterials SC Chemistry; Energy & Fuels; Materials Science GA 435NB UT WOS:000265349500013 ER PT J AU Raman, RN Pivetti, CD Rubenchik, AM Matthews, DL Troppmann, C Demos, SG AF Raman, Rajesh N. Pivetti, Christopher D. Rubenchik, Alexander M. Matthews, Dennis L. Troppmann, Christoph Demos, Stavros G. TI Evaluation of the contribution of the renal capsule and cortex to kidney autofluorescence intensity under ultraviolet excitation SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE lasers; fluorescence; tissues; microscopy; ultraviolet ID OXIDATION-REDUCTION STATE; TISSUE; FLUORESCENCE AB The use of reduced nicotinamide adenine dinucleotide (NADH) fluorescence to gain metabolic information on kidneys in response to an alteration in oxygen availability has previously been experimentally demonstrated, but signal quantification has not, to date, been addressed. In this work the relative contribution to rat kidney autofluorescence of the capsule versus cortex under ultraviolet excitation is determined from experimental results obtained using autofluorescence microscopy and a suitable mathematical model. The results allow for a quantitative assessment of the relative contribution of the signal originating in the metabolically active cortex as a function of capsule thickness for different wavelengths. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3094948] C1 [Raman, Rajesh N.; Matthews, Dennis L.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Raman, Rajesh N.; Matthews, Dennis L.; Demos, Stavros G.] NSF Ctr Biophoton, Sacramento, CA 95817 USA. [Pivetti, Christopher D.; Troppmann, Christoph] Univ Calif Davis, Med Ctr, Dept Surg, Sacramento, CA 95817 USA. [Rubenchik, Alexander M.; Matthews, Dennis L.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Demos, Stavros G.] Univ Calif Davis, Med Ctr, Dept Urol, Sacramento, CA 95817 USA. RP Raman, RN (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. EM topraman@ucdavis.edu FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Center for Biophotonics; University of California, Davis [PHY 0120999] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and the Center for Biophotonics, an NSF Science and Technology Center managed by the University of California, Davis, under Cooperative Agreement Number PHY 0120999. The authors wish to thank the laboratory of Sarah Yuan of the Division of Research, Department of Surgery, UC Davis School of Medicine, for assistance with tissue samples. NR 15 TC 1 Z9 1 U1 0 U2 0 PU SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 J9 J BIOMED OPT JI J. Biomed. Opt. PD MAR-APR PY 2009 VL 14 IS 2 AR 020505 DI 10.1117/1.3094948 PG 3 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 456SM UT WOS:000266868500004 PM 19405710 ER PT J AU Petti, C Wendt, T Meade, C Mullins, E AF Petti, Carloalberto Wendt, Toni Meade, Conor Mullins, Ewen TI Evidence of genotype dependency within Agrobacterium tumefaciens in relation to the integration of vector backbone sequence in transgenic Phytophthora infestans-tolerant potato SO JOURNAL OF BIOSCIENCE AND BIOENGINEERING LA English DT Article DE Agrobacterium; Transformation; Potato; Transgenic; RB; Backbone integration ID HIGH-EFFICIENCY TRANSFORMATION; BROAD-SPECTRUM RESISTANCE; T-DNA; MEDIATED TRANSFORMATION; GENE-TRANSFER; RICE PLANTS; PARTICLE BOMBARDMENT; LATE BLIGHT; CELLS; ARABIDOPSIS AB In this study the effect of Agrobacterium tumefaciens genotype of two strains AGL1 and LBA4404 was investigated in regard to the propensity for backbone integration during the transformation of potato for blight tolerance conferred by the resistant to blight (RB) gene carried by the vector pCLD04541. A PCR based walking approach was employed to identify left and right backbone sequences as well as for selected genes carried on the plasmid backbone. It was found that adjacent to the left border insertion site, the integration of backbone sequence was greater for AGL1 than for LBA4404; however, the opposite was observed with regards to the right border T-DNA junction. Considering both T-DNA borders LBA4404 was found to have a two fold greater integration potential for backbone than the AGL1. The possibility of only backbone integration in T-DNA negative plants was also investigated with the average rate of integration between the two strains calculated at 4.2% with LBA4404 recording a three fold greater occurrence of backbone integration than AGLI. In summary, evidence of Agrobacterium genotype dependency showed that LBA4404 has greater potential to integrate non-T-DNA vector sequence than AGLI and this should be taken into account when utilising the listed A. tumefaciens genotypes in generating transgenic potato. Additionally, the application of a PCR and primer walking, system proved to be reliable and allows for fine detailed studies of backbone sequence integration of transgenic plant. (C) 2008, The Society for Biotechnology, Japan. All rights reserved. C1 [Petti, Carloalberto; Wendt, Toni; Mullins, Ewen] TEAGASC, Crops Res Ctr, Biotechnol Unit, Carlow, Ireland. [Petti, Carloalberto; Meade, Conor] Natl Univ Ireland, Dept Biol, Inst Bioengn & Agroecol, Maynooth, Kildare, Ireland. RP Mullins, E (reprint author), TEAGASC, Crops Res Ctr, Biotechnol Unit, Oak Pk, Carlow, Ireland. EM Ewen.Mullins@Teagasc.ie OI Mullins, Ewen/0000-0003-3005-4264 FU Irish National Development Plan FX The authors wish to thank Dr. Kathrin Reiber for her critical review of the manuscript. Carloalberto Petti and Ewen Mullins were funded through the Irish National Development Plan (2000-2006). NR 57 TC 9 Z9 11 U1 0 U2 4 PU SOC BIOSCIENCE BIOENGINEERING JAPAN PI OSAKA PA OSAKA UNIV, FACULTY ENGINEERING, 2-1 YAMADAOKA, SUITA, OSAKA, 565-0871, JAPAN SN 1389-1723 J9 J BIOSCI BIOENG JI J. Biosci. Bioeng. PD MAR PY 2009 VL 107 IS 3 BP 301 EP 306 DI 10.1016/j.jbiosc.2008.11.012 PG 6 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 434YW UT WOS:000265311200017 PM 19269597 ER PT J AU Revelli, AL Sprunger, LM Gibbs, J Acree, WE Baker, GA Mutelet, F AF Revelli, Anne-Laure Sprunger, Laura M. Gibbs, Jennifer Acree, William E., Jr. Baker, Gary A. Mutelet, Fabrice TI Activity Coefficients at Infinite Dilution of Organic Compounds in Trihexyl(tetradecyl)phosphonium Bis(trifluoromethylsulfonyl)imide Using Inverse Gas Chromatography SO JOURNAL OF CHEMICAL AND ENGINEERING DATA LA English DT Article ID TEMPERATURE IONIC LIQUIDS; 2ND VIRIAL-COEFFICIENTS; FREE-ENERGY RELATIONSHIP; THERMODYNAMIC PROPERTIES; EQUATION COEFFICIENTS; OXYGEN COMPOUNDS; VAPOR-PRESSURES; NORMAL-HEPTANE; NORMAL-OCTANE; SOLUTES AB Activity coefficients at infinite dilution gamma(infinity) of organic compounds in the ionic liquid (IL) trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide were determined using inverse gas chromatography at three temperatures, T = (302.45, 322.35, and 342.45) K. Linear free energy relationship (LFER) correlations have been obtained for describing the gas-to-IL and water-to-IL partition coefficients. C1 [Revelli, Anne-Laure; Mutelet, Fabrice] Nancy Univ, Lab Thermodynam Milieux Polyphases, F-20451 Nancy, France. [Sprunger, Laura M.; Gibbs, Jennifer; Acree, William E., Jr.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Mutelet, F (reprint author), Nancy Univ, Lab Thermodynam Milieux Polyphases, 1 Rue Grandville,BP 4001, F-20451 Nancy, France. EM mutelet@ensic.inpl-nancy.fr RI MUTELET, Fabrice/H-3677-2013; Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 FU National Science Foundation [CHE-0648843] FX Jennifer Gibbs thanks the National Science Foundation for support received under NSF-REU grant (CHE-0648843). NR 78 TC 57 Z9 58 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9568 J9 J CHEM ENG DATA JI J. Chem. Eng. Data PD MAR PY 2009 VL 54 IS 3 BP 977 EP 985 DI 10.1021/je800754w PG 9 WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA 419CW UT WOS:000264197700049 ER PT J AU Nichols, P Govind, N Bylaska, EJ de Jong, WA AF Nichols, Patrick Govind, Niranjan Bylaska, Eric J. de Jong, W. A. TI Gaussian Basis Set and Planewave Relativistic Spin-Orbit Methods in NWChem SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID ORDER REGULAR APPROXIMATION; DENSITY-FUNCTIONAL CALCULATIONS; EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; PSEUDOPOTENTIALS; QUADRATURE; HAMILTONIANS; OPERATORS; SCHEMES; ENERGY AB Relativistic spin-orbit density functional theory (DFT) methods have been implemented in the molecular Gaussian DFT and pseudopotential planewave DFT modules of the NWChern electronic-structure program. The Gaussian basis set implementation is based upon the zeroth-order regular approximation (ZORA) while the planewave implementation uses spin-orbit pseudopotentials that are directly generated from the atomic Dirac-Kohn-Sham wave functions or atomic ZORA-Kohn-Sham wave functions. Compared to solving the full Dirac equation these methods are computationally efficient but robust enough for a realistic description of relativistic effects such as spin-orbit splitting, molecular orbital hybridization, and core effects. Both methods have been applied to a variety of small molecules, including I(2), IF, HI, Br(2), Bi(2), AuH, and Au(2), using various exchange-correlation functionals. Our results are in good agreement with experiment and previously reported calculations. C1 [Nichols, Patrick; Govind, Niranjan; Bylaska, Eric J.; de Jong, W. A.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Nichols, P (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, 902 Battelle Blvd,POB 999,Mail Stop K8-91, Richland, WA 99352 USA. EM patrick.nichols@pnl.gov; niri.govind@pnl.gov RI DE JONG, WIBE/A-5443-2008; Govind, Niranjan/D-1368-2011 OI DE JONG, WIBE/0000-0002-7114-8315; FU BES Heavy Element Chemistry Program of the U.S. Department of Energy, Office of Science [DE-AC06-76RLO 1830]; DOE BES Geosciences Program; DOE's Office of Biological and Environmental Research FX This research was supported by the BES Heavy Element Chemistry Program of the U.S. Department of Energy, Office of Science (No. DE-AC06-76RLO 1830). E.J.B. would like to acknowledge the DOE BES Geosciences Program for helping support the development of the AIMD and analysis programs. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute. Some of the calculations were performed on the MPP2 computing system at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at PNNL. EMSL operations are supported by the DOE's Office of Biological and Environmental Research. We also wish to thank the Department of Energy for a grant of computer time at the National Energy Research Scientific Computing Center (Berkeley, CA). NR 40 TC 45 Z9 45 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD MAR PY 2009 VL 5 IS 3 BP 491 EP 499 DI 10.1021/ct8002892 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 417OL UT WOS:000264085600007 PM 26610216 ER PT J AU Chirico, RD Steele, WV AF Chirico, Robert D. Steele, William V. TI Thermodynamic properties of tert-butylbenzene and 1,4-di-tert-butylbenzene SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE 1,4-Di-tert-butylbenzene; Entropy; Group contribution; Heat capacity; Ideal gas properties; Phase transition; Plastic crystal; Tert-butylbenzene; Vapor pressure ID SATURATED HEAT-CAPACITIES; 12 AROMATIC-HYDROCARBONS; 3RD VIRIAL-COEFFICIENT; VAPOR-PRESSURES; ALKYLBENZENES; CYCLOHEXANOL; TEMPERATURES; BENZENES; SPECTRA; DENSITY AB Heat capacities, enthalpies of phase transitions, and derived thermodynamic properties over the temperature range 5 < (T/K) < 442 were determined with adiabatic calorimetry for tert-butylbenzene (TBB) {Chemical Abstracts Service registry number (CASRN) [98-06-6]} and 1,4-di-tert-butylbenzene (DTBB) {CASRN [1012-72-2]}. A crystal to plastic crystal transition very near the triple-point temperature of DTBB was observed. New vapor pressures near the triple-point temperature are also reported for DTBB for the liquid and crystal states. These new measurements, when combined with published results. allow calculation of the thermodynamic properties for the ideal gas state for both compounds. The contribution of the tert-butyl group to the entropy of the ideal gas is determined quantitatively here for the first time based on the calorimetric results over the temperature range 298.15 < (T/K) < 600. Comparisons with literature values are shown for all measured and derived properties, including entropies for the ideal gas derived from quantum chemical calculations. Published by Elsevier Ltd. C1 [Chirico, Robert D.] NIST, Phys & Chem Properties Div, Boulder, CO 80305 USA. [Steele, William V.] Univ Tennessee, Dept Chem Engn, Phys Properties Res Facil, Knoxville, TN 37996 USA. [Steele, William V.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Chirico, RD (reprint author), NIST, Phys & Chem Properties Div, Boulder, CO 80305 USA. EM chirico@boulder.nist.gov; wsteele13@comcast.net FU Office of Fossil Energy of the US Department of Energy (DOE) [DE-AC22-94C91008, DE-AC05-000R22725, DE-AI26-02NT15338]; Advanced Oil Recovery (AOR) FX We acknowledge the contributions of An (Andy) Nguyen for the vapor-pressure measurements, and Aaron P. Rau for vapor-transfer of the samples prior to the property measurements. The authors thank Dr. Ala Bazyleva (Belaruisian State University, Minsk, Belarus) for providing details of the quantum chemical and statistical calculations, as well as for additional statistical calculations used in this article for the tert-butyl benzenes. The authors acknowledge the financial support of the Office of Fossil Energy of the US Department of Energy (DOE). This research was funded within the Processing and Downstream Operations section of the Advanced Oil Recovery (AOR) program. The Bartlesville portion of the experiments was completed through BDM-Oklahoma under its contract with DOE for Management and Operations of the National Oil and Related Programs (NORP), Contract Number DE-AC22-94C91008. Manuscript preparation at Oak Ridge National Laboratory was completed under DOE Contract Number DE-AC05-000R22725 with ORNL, which is managed and operated by UT-Battelle, LLC. Preparation of the manuscript at the National Institute of Standards and Technology of the US Department of Commerce in Boulder, Colorado was supported by the National Petroleum Technology Office of DOE, Interagency Agreement number DE-AI26-02NT15338. NR 47 TC 13 Z9 13 U1 0 U2 6 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD MAR PY 2009 VL 41 IS 3 BP 392 EP 401 DI 10.1016/j.jct.2008.10.008 PG 10 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA 404ZS UT WOS:000263192200015 ER PT J AU Hasler, N Werth, D Avissar, R AF Hasler, Natalia Werth, David Avissar, Roni TI Effects of Tropical Deforestation on Global Hydroclimate: A Multimodel Ensemble Analysis SO JOURNAL OF CLIMATE LA English DT Article ID WEST-AFRICAN MONSOONS; CLIMATE-CHANGE; AMAZONIAN DEFORESTATION; VEGETATION CHANGE; GCM SIMULATION; MODEL; ATMOSPHERE; CIRCULATION; SENSITIVITY; TRANSPORT AB Two multimodel ensembles (MME) were produced with the GISS Model II (GM II), the GISS Atmosphere Model (AM), and the NCAR Community Climate System Model (CCSM) to evaluate the effects of tropical deforestation on the global hydroclimate. Each MME used the same 48-yr period but the two were differentiated by their land-cover types. In the "control'' case, current vegetation was used, and in the "deforested'' case, all tropical rain forests were converted to a mixture of shrubs and grassland. Globally, the control simulations produced with the three GCMs compared well to observations, both in the time mean and in the temporal variability, although various biases exist in the different tropical rain forests. The local precipitation response to deforestation is very strong. The remote effect in the tropics (away from the deforested tropical areas) is strong as well, but the effects at midlatitudes are weaker. In the MME, the impacts tend to be attenuated relative to the individual models. The significance of the geopotential and precipitation responses was evaluated with a bootstrap method, and results varied during the year. Tropical deforestation also produced anomalous fluxes in potential energy that were a direct response to the deforestation. These different analyses confirmed the existence of a teleconnection mechanism due to deforestation. C1 [Avissar, Roni] Duke Univ, Dept Civil & Environm Engn, Edmund T Pratt Jr Sch Engn, Durham, NC 27708 USA. [Werth, David] Savannah River Natl Lab, Aiken, SC USA. [Hasler, Natalia] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Avissar, R (reprint author), Duke Univ, Dept Civil & Environm Engn, Edmund T Pratt Jr Sch Engn, 123 Hudson Hall, Durham, NC 27708 USA. EM avissar@duke.edu FU National Science Foundation (NSF) [ATM-0346554, ATM-0634745] FX This research was funded by the National Science Foundation (NSF) under Grants ATM-0346554 and ATM-0634745. The views expressed herein are those of the authors and do not necessarily reflect the views of NSF. We are very grateful to the Terrestrial Science Section at the National Center for Atmospheric Research (NCAR) in Boulder Colorado for their hosting, help, advice and support in using CCSM. We would especially like to thank Dave Schimel, Gordon Bonan, Samuel Levis, and Mariana Vertenstein. NR 49 TC 40 Z9 45 U1 4 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD MAR 1 PY 2009 VL 22 IS 5 BP 1124 EP 1141 DI 10.1175/2008JCLI2157.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 426AZ UT WOS:000264681100004 ER PT J AU Thakkar, A Cohen, AS Connolly, MD Zuckermann, RN Pei, D AF Thakkar, Amit Cohen, Allison S. Connolly, Michael D. Zuckermann, Ronald N. Pei, Dehua TI High-Throughput Sequencing of Peptoids and Peptide-Peptoid Hybrids by Partial Edman Degradation and Mass Spectrometry SO JOURNAL OF COMBINATORIAL CHEMISTRY LA English DT Article ID SOLID-PHASE SYNTHESIS; LIBRARY; SPECIFICITY; CHEMISTRY; DISCOVERY; LIGANDS AB A method for the rapid sequence determination of peptoids [oligo(N-substituted glycines)] and peptide-peptoid hybrids selected from one-bead-one-compound combinatorial libraries has been developed. In this method, beads carrying unique peptoid (or peptide-peptoid) sequences were subjected to multiple cycles of partial Edman degradation (PED) by treatment with a 1:3 (mol/mol) mixture of phenyl isothiocyanate (PITC) and 9-fluorenylmethyl chloroformate (Fmoc-Cl) to generate a series of N-terminal truncation products for each resin-bound peptoid. After PED, the Fmoc group was removed from the N-terminus and any reacted side chains via piperidine treatment. The resulting mixture of the full-length peptoid and its truncation products was analyzed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry, to reveal the sequence of the full-length peptoid. With a slight modification, the method was also effective in the sequence determination of peptide-peptoid hybrids. This rapid, high-throughput, sensitive, and inexpensive sequencing method should greatly expand the utility of combinatorial peptoid libraries in biomedical and materials research. C1 [Thakkar, Amit; Pei, Dehua] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Cohen, Allison S.; Connolly, Michael D.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA. [Cohen, Allison S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Pei, D (reprint author), Ohio State Univ, Dept Chem, 100 W 18th Ave, Columbus, OH 43210 USA. EM pei.3@osu.edu RI Zuckermann, Ronald/A-7606-2014 OI Zuckermann, Ronald/0000-0002-3055-8860 FU National Institutes of Health [GM062820]; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; NTH Chemistry/Biology Interface [T32 GM08512]; Office of Naval Research [11398-23845-44-EKMAJ] FX This work was supported by the National Institutes of Health (GM062820 to D.P.), and portions of this work were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. A.T. was supported by an NTH Chemistry/Biology Interface training grant (T32 GM08512), and A.S.C. was supported by the Office of Naval Research (Grant No. 11398-23845-44-EKMAJ). NR 29 TC 28 Z9 28 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-4766 J9 J COMB CHEM JI J. Comb. Chem. PD MAR-APR PY 2009 VL 11 IS 2 BP 294 EP 302 DI 10.1021/cc8001734 PG 9 WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Chemistry; Pharmacology & Pharmacy GA 417XC UT WOS:000264110800018 PM 19154119 ER PT J AU Giannakis, D Fischer, PF Rosner, R AF Giannakis, Dimitrios Fischer, Paul F. Rosner, Robert TI A spectral Galerkin method for the coupled Orr-Sommerfeld and induction equations for free-surface MHD SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Eigenvalue problems; Spectral Galerkin method; Hydrodynamic stability; Orr-Sommerfeld equations; Free-surface MHD ID TRANSVERSE MAGNETIC-FIELD; HYDRODYNAMIC STABILITY PROBLEMS; SPURIOUS EIGENVALUES; LIQUID-GALLIUM; INCLINED PLANE; FLOW; CONVECTION; TENSION; LAYER; POLYNOMIALS AB We develop and test spectral Galerkin schemes to solve the coupled Orr-Sommerfeld and induction equations for parallel. incompressible MHD in free-surface and fixed-boundary, geometries. The schemes' discrete bases consist of Legendre internal shape functions, supplemented with nodal shape functions for the weak imposition of the stress and insulating boundary conditions. The orthogonality properties of the basis polynomials solve the matrix-coefficient growth problem, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p = 3000 with p-independent roundoff error. Accuracy is limited instead by roundoff sensitivity due to non-normality of the stability operators at large hydrodynamic and/or magnetic Reynolds numbers (Re. Rm greater than or similar to 4 x 10(4)). In problems with Hartmann velocity and magnetic-field profiles we employ suitable Gauss quadrature rules to evaluate the associated exponentially weighted sesquilinear forms without error. An alternative approach. which involves approximating the forms by means of Legendre-Gauss-Lobatto quadrature at the 2p - 1 precision level, is found to yield equal eigenvalues within roundoff error. As a consistency check, we compare modal growth rates to energy growth rates in nonlinear simulations and record relative discrepancy smaller that, 10(5) for the least stable mode in free-surface flow at Re = 3 x 10(4). Moreover, we confirm that the computed normal modes satisfy an energy conservation law for free-surface MHD with error smaller than 10(6). The critical Reynolds number in free-surface MHD is found to be sensitive to the magnetic Prandtl number Pin, even at the Pm = O(10(5)) regime of liquid metals. (C) 2008 Elsevier Inc. All rights reserved. C1 [Giannakis, Dimitrios; Rosner, Robert] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Fischer, Paul F.; Rosner, Robert] Argonne Natl Lab, Argonne, IL 60439 USA. [Rosner, Robert] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Giannakis, D (reprint author), Univ Chicago, Dept Phys, 5720 S Ellis Av, Chicago, IL 60637 USA. EM dg227@uchicago.edu RI Giannakis, Dimitrios/K-3575-2012 NR 66 TC 9 Z9 9 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2009 VL 228 IS 4 BP 1188 EP 1233 DI 10.1016/j.jcp.2008.10.016 PG 46 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 401UC UT WOS:000262966900015 ER PT J AU Zhang, QH Liu, PLF AF Zhang, Qinghai Liu, Philip L. -F. TI HyPAM: A hybrid continuum-particle model for incompressible free-surface flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Free-surface flow; Interface tracking; The Polygonal Area Mapping method; 2-Connectedness; Material topology graph; Single-phase decomposition; Passive-response assumption; Hybrid continuum-particle method; Pressure-incremental projection method; Droplet impact; Dam-break problem; Solitary wave propagation ID NAVIER-STOKES EQUATIONS; IMMERSED INTERFACE METHOD; PROJECTION METHOD; SEMIIMPLICIT METHOD; NUMERICAL-SIMULATION; TURBULENT FLOWS; BREAKING WAVES; INITIAL-STAGES; 2-PHASE FLOWS; MESH METHOD AB Three Major issues associated with numerical simulations of complex free-surface flows, viz. interface tracking, fragmentation and large physical jumps, are addressed by a new hybrid continuum-particle model (HyPAM). The new model consists of three parts: (I) the Polygonal Area Mapping method IQ. Zhang, P.L.-F. Liu, A new interface tracking method: the polygonal area mapping method, J. Comput. Phys. 227(8) (2008) 406340881: (2) a new algorithm that decomposes the interested (water) phase into a continuum zone, a buffer zone and a particle zone, based on material topology and graph theory: (3) a. 'passive-response' assumption, in which the air phase is assumed to respond passively to the Continuum part of the water phase. The incompressible inviscid Euler equations and the equations describing the free fall of rigid bodies are used as the governing equations for the continuum-buffer zone and the particle zone, respectively, and separately. A number of examples, including water droplet impact, solitary wave propagation, and dambreak problems, are simulated for the illustration and validation of HyPAM. It is shown that HyPAM is more accurate and versatile than a continuum-based Volume-of-Fluid model. One major contribution of this work is the single-phase decomposition algorithm, useful for many other hybrid formulations. Neglecting surface tension, viscosity and particle interactions, HyPAM is currently limited to mildly-fragmented free-surface flows with high Reynolds and Weber numbers. (C) 2008 Elsevier Inc. All rights reserved. C1 [Zhang, Qinghai; Liu, Philip L. -F.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Liu, Philip L. -F.] Natl Cent Univ, Inst Hydrol & Ocean Sci, Jhongli, Taiwan. [Zhang, Qinghai] Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. RP Zhang, QH (reprint author), Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. EM QHZhang@lbl.gov; pll3@cornell.edu RI Zhang, Qinghai/A-3637-2009; Liu, Philip/E-3619-2013 OI Zhang, Qinghai/0000-0002-3655-4190; FU National Science Foundations FX We would like to acknowledge the supports from National Science Foundations through research grants to Cornell University. We also thank Prof. Stephen B. Pope, Prof. Stephen Vavasis and Prof. Edwin A. Cowen III for their valuable comments. NR 98 TC 9 Z9 9 U1 2 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD MAR 1 PY 2009 VL 228 IS 4 BP 1312 EP 1342 DI 10.1016/j.jcp.2008.10.029 PG 31 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 401UC UT WOS:000262966900019 ER PT J AU Slosar, A AF Slosar, Anze TI Optimal weighting in f(NL) constraints from large scale structure in an idealised case SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; inflation ID INFLATIONARY UNIVERSE SCENARIO; PRIMORDIAL NON-GAUSSIANITY; FLUCTUATIONS; PERTURBATIONS; LUMINOSITY; SPECTRUM; FLATNESS; HORIZON; MODELS; BIAS AB We consider the problem of optimal weighting of tracers of structure for the purpose of constraining the non-Gaussianity parameter f(NL). We work within the Fisher matrix formalism expanded around fiducial model with f(NL) = 0 and make several simplifying assumptions. By slicing a general sample in to infinitely many samples with different biases, we derive the analytic expression for the relevant Fisher matrix element. We next consider weighting schemes that construct two effective samples from a single sample of tracers with a continuously varying bias. We show that a particularly simple ansatz for weighting functions can recover all information about f(NL) in the initial sample that is recoverable using a given bias observable and that simple division into two equal samples is considerably suboptimal when sampling of modes is good, but only marginally sub optimal in the limit where Poisson errors dominate. C1 [Slosar, Anze] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Slosar, Anze] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia. RP Slosar, A (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Dept Phys, Berkeley, CA 94720 USA. EM anze@berkeley.edu OI Slosar, Anze/0000-0002-8713-3695 FU BCCP Fellowship FX Numerical codes used in preparation of this paper used the mass functions prepared using code by Darren Reed [35]. Author thanks Will Percival for pointing out analogies with optimal weighting of biased tracers for power spectrum estimation and acknowledges useful discussions with Uros Seljak. This work is supported by the inaugural BCCP Fellowship. NR 34 TC 29 Z9 29 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD MAR PY 2009 IS 3 AR 004 DI 10.1088/1475-7516/2009/03/004 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 444HX UT WOS:000265972500025 ER PT J AU Howells, MR Hitchcock, AP Jacobsen, CJ AF Howells, Malcolm R. Hitchcock, Adam P. Jacobsen, Chris J. TI Introduction: Special issue on radiation damage SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Editorial Material ID X-RAY MICROSCOPY; MACROMOLECULAR CRYSTALS; BIOLOGICAL-MATERIALS; ELECTRON-MICROSCOPY; TRANSMISSION; LIMITATIONS; RESOLUTION C1 [Howells, Malcolm R.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Hitchcock, Adam P.] McMaster Univ, Dept Chem, Hamilton, ON, Canada. [Jacobsen, Chris J.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Howells, MR (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. EM MRHowells@lbl.gov; aph@mcmaster.ca; Chris.Jacobsen@stonybrook.edu RI Jacobsen, Chris/E-2827-2015 OI Jacobsen, Chris/0000-0001-8562-0353 NR 30 TC 15 Z9 15 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD MAR PY 2009 VL 170 IS 1-3 BP 1 EP 3 DI 10.1016/j.elspec.2009.01.004 PG 3 WC Spectroscopy SC Spectroscopy GA 435AO UT WOS:000265315800001 ER PT J AU Howells, MR Beetz, T Chapman, HN Cui, C Holton, JM Jacobsen, CJ Kirz, J Lima, E Marchesini, S Miao, H Sayre, D Shapiro, DA Spence, JCH Starodub, D AF Howells, M. R. Beetz, T. Chapman, H. N. Cui, C. Holton, J. M. Jacobsen, C. J. Kirz, J. Lima, E. Marchesini, S. Miao, H. Sayre, D. Shapiro, D. A. Spence, J. C. H. Starodub, D. TI An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Coherent X-rays; Diffraction imaging; Radiation damage; Dose fractionation; Frozen-hydrated samples ID PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALS; ELECTRON-MICROSCOPY; LOW-TEMPERATURE; SPECIMENS; TOMOGRAPHY; PHASE; CRYSTALLOGRAPHY; RECONSTRUCTION; PULSES AB X-ray diffraction microscopy (XDM) is a new form of X-ray imaging that is being practiced at several third-generation synchrotron-radiation X-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nanometer resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available X-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm. (C) 2008 Elsevier B.V. All rights reserved. C1 [Howells, M. R.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Marchesini, S.; Shapiro, D. A.; Spence, J. C. H.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Beetz, T.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Sayre, D.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Chapman, H. N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Holton, J. M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Spence, J. C. H.; Starodub, D.] Arizona State Univ, Dept Phys & Astron, Tempe, AZ 85287 USA. RP Howells, MR (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mrhowells@lbl.gov RI Marchesini, Stefano/A-6795-2009; Chapman, Henry/G-2153-2010; Jacobsen, Chris/E-2827-2015 OI Chapman, Henry/0000-0002-4655-1743; Jacobsen, Chris/0000-0001-8562-0353 FU Director, Office of Energy Research, Office of Basics Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC03-76SF00098]; National Institutes of Health (NIH) [5U54 GM074929-02, 1P50 GM082250-02, 1R01 GM64846-01]; University of California, Lawrence Livermore National Laboratory [W-740740 5-Eng-48]; U.S. Department of Energy [DEFG0204ER46128]; NSF [IDBR 0555845] FX The authors are grateful to Dr. A. Vila-Sanjurjo and Prof J. Cate for permission to use the ribosome crystal, to Prof. R.M. Glaeser for extended and valuable discussions and comments and to Dr. H.A. Padmore for sustained encouragement of this work. The Lawrence Berkeley National Laboratory authors and the Advanced Light source facility at Lawrence Berkeley National Laboratory are supported by the Director, Office of Energy Research, Office of Basics Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. J.M. Holton is additionally supported by National Institutes of Health (NIH) grant numbers 5U54 GM074929-02 and 1P50 GM082250-02. The work of the LLNL authors was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-740740 5-Eng-48. The Stony Brook group has been supported by NIH grant number 1R01 GM64846-01, and by U.S. Department of Energy grant number DEFG0204ER46128. ASU work supported by NSF award IDBR 0555845. NR 62 TC 193 Z9 194 U1 9 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD MAR PY 2009 VL 170 IS 1-3 BP 4 EP 12 DI 10.1016/j.elspec.2008.10.008 PG 9 WC Spectroscopy SC Spectroscopy GA 435AO UT WOS:000265315800002 PM 20463854 ER PT J AU Wang, J Morin, C Li, L Hitchcock, AP Scholl, A Doran, A AF Wang, J. Morin, C. Li, L. Hitchcock, A. P. Scholl, A. Doran, A. TI Radiation damage in soft X-ray microscopy SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Radiation damage; Soft X-rays; Photoemission electron microscopy; Scanning transmission X-ray microscopy; Polystyrene; Poly(methyl methacrylate); Fibrinogen; Polymer thin films ID ADVANCED LIGHT-SOURCE; EDGE STRUCTURE SPECTROSCOPY; INDUCED DECOMPOSITION; ELECTRON-MICROSCOPY; SPATIAL-RESOLUTION; PROTEIN CRYSTALS; SHELL EXCITATION; AMINO-ACIDS; TRANSMISSION; SPECTROMICROSCOPY AB The rates of chemical transformation by radiation damage of polystyrene (PS), poly(methyl methacrylate) (PMMA), and fibrinogen (Fg) in a X-ray photoemission electron microscope (X-PEEM) and in a scanning transmission X-ray microscope (STXM) have been measured quantitatively using synchrotron radiation. As part of the method of dose evaluation in X-PEEM, the characteristic (1/e) sampling depth of X-PEEM for polystyrene in the C 1s region was measured to be 4 1 nm. Critical doses for chemical change as monitored by changes in the X-ray absorption spectra are 80 (12),280 (40) and 1230 (180) MGy (1 MGy = 6.242* rho eV/nm(3), where rho is the polymer density in g/cm(3)) at 300 eV photon energy for PMMA, Fg and PS, respectively. The critical dose for each material is comparable in X-PEEM and STXM and the values cited are thus the mean of the values determined by X-PEEM and STXM. C 1s, N 1s and O 1s spectroscopy of the damaged materials is used to gain insight into the chemical changes that soft X-rays induce in these materials. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wang, J.; Morin, C.; Li, L.; Hitchcock, A. P.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Wang, J.; Morin, C.; Li, L.; Hitchcock, A. P.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Scholl, A.; Doran, A.] Berkeley Lob, Adv Light Source, Berkeley, CA 94720 USA. RP Hitchcock, AP (reprint author), McMaster Univ, Brockhouse Inst Mat Res, 1280 Main St W, Hamilton, ON L8S 4M1, Canada. EM aph@mcmaster.ca RI Wang, Jian/M-1805-2013; Scholl, Andreas/K-4876-2012 FU NSF [DMR-9975694]; DOE [DE-FG02-98ER45737]; Dow Chemical; Canadian Foundation for Innovation; NSERC (Canada); Canada Research Chair Program; Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC03-76SF00098] FX This research is supported by NSERC (Canada) and the Canada Research Chair Program. Cynthia Morin acknowledges the support of an ALS graduate fellowship duringwhich time much of this work was performed. We thank X. Zhang and T. Araki for assistance with the measurements. Construction and operation of the STXM 53.2 microscope is supported by NSF DMR-9975694, DOE DE-FG02-98ER45737, Dow Chemical, NSERC and the Canadian Foundation for Innovation. We thank David Kilcoyne, the 5.3.2 beamline scientist for his contributions to developing and maintaining the instrument. The Advanced Light Source is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. NR 60 TC 71 Z9 71 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD MAR PY 2009 VL 170 IS 1-3 BP 25 EP 36 DI 10.1016/j.elspec.2008.01.002 PG 12 WC Spectroscopy SC Spectroscopy GA 435AO UT WOS:000265315800005 ER PT J AU Braun, A Kubatova, A Wirick, S Mun, SB AF Braun, A. Kubatova, A. Wirick, S. Mun, S. B. TI Radiation damage from EELS and NEXAFS in diesel soot and diesel soot extracts SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE NEXAFS; Scanning X-ray microscope; EELS; Radiation damage; Soot ID X-RAY-ABSORPTION; ELECTRON-ENERGY-LOSS; CARBON; SPECTROSCOPY; MICROSCOPE; SPECTROMICROSCOPY; SCATTERING; PARTICLES; GRAPHITE; TEM AB Carbon NEXAFS and EELS spectra of soot, and NEXAFS spectra of soot extracts, are presented. The EELS spectra of solid soot particles from a TEM-EELS show fewer structures than the corresponding NEXAFS spectra obtained at two different synchrotron beamlines. We attribute radiation damage in the TEM-EELS to the failure at resolving structures of surface functional carbon groups in or on soot. NEXAFS spectra of soot extracts studied with a scanning transmission X-ray microscope show alterations during X-ray exposure, which can be explained by a simple chemical model where oxygen apparently reacts with the sample. When the same extract is studied in an ultrahigh-vacuum beamline, no such alterations are observed. (C) 2007 Elsevier B.V. All rights reserved. C1 [Braun, A.] EMPA Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Braun, A.] Univ Kentucky, Consortium Fossil Fuel Sci, Lexington, KY 40515 USA. [Braun, A.] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40515 USA. [Kubatova, A.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA. [Kubatova, A.] Univ N Dakota, Dept Chem, Grand Forks, ND 58202 USA. [Wirick, S.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Mun, S. B.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Braun, A (reprint author), EMPA Swiss Fed Labs Mat Testing & Res, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. EM artur.braun@alumni.ethz.ch RI BRAUN, Artur/A-1154-2009; OI BRAUN, Artur/0000-0002-6992-7774; Kubatova, Alena/0000-0002-2318-5883 FU National Science Foundation [CHE-0891333]; Office of Biological and Environmental Research, U.S. DOE [DE-FG02-89ER60858]; NSF [DBI-9605045, ECS-9510499]; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy [DE-AC03-76SF00098]; European Commission [MIRG-CT-2006-042095]; [DE-AC02-76CH-00016] FX We are grateful to K.E. Kelly (University of Utah) for providing us with the soot samples. Help with data acquisition by Y. Chen, and N. Shah is acknowledged, as well as help from F.E. Huggins with interpretation of carbon data, and G.P. Huffman for benuvolent support (University of Kentucky). Financial support by the National Science Foundation, Grant # CHE-0891333 is gratefully acknowledged. Data taken using the X-1A STXM developed by the group of J. Kirz and C. Jacobsen at SUNY Stony Brook [23,24], with support from the Office of Biological and Environmental Research, U.S. DOE under contract DE-FG02-89ER60858, and the NSF under grant DBI-9605045. Zone plates were developed by S. Spector and C. Jacobsen of Stony Brook and D. Tennant of Lucent Technologies Bell Labs [25], with support from the NSF under grant ECS-9510499. NSLS is operated by the SUNY for the U.S. Dept. of Energy, Contract # DE-AC02-76CH-00016. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory. During finalization of this manuscript, AB had funds by the European Commission, contract # MIRG-CT-2006-042095 at his disposal. NR 31 TC 27 Z9 31 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD MAR PY 2009 VL 170 IS 1-3 BP 42 EP 48 DI 10.1016/j.elspec.2007.08.002 PG 7 WC Spectroscopy SC Spectroscopy GA 435AO UT WOS:000265315800007 ER PT J AU Budiman, AS Besser, PR Hau-Riege, CS Marathe, A Joo, YC Tamura, N Patel, JR Nix, WD AF Budiman, A. S. Besser, P. R. Hau-Riege, C. S. Marathe, A. Joo, Y. -C. Tamura, N. Patel, J. R. Nix, W. D. TI Electromigration-Induced Plasticity: Texture Correlation and Implications for Reliability Assessment SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Electromigration; copper; interconnects; texture; plasticity; reliability; dislocations; x-ray microdiffraction ID X-RAY MICRODIFFRACTION; INTERCONNECT LINES; THIN-FILMS; CU LINES; DEFORMATION; COPPER; DIFFUSION; METALLIZATION; FAILURE AB Plastic behavior has previously been observed in metallic interconnects undergoing high-current-density electromigration (EM) loading. In this study of Cu interconnects, using the synchrotron technique of white-beam x-ray microdiffraction, we have further found preliminary evidence of a texture correlation. In lines with strong (111) textures, the extent of plastic deformation is found to be relatively large compared with that of weaker textures. We suggest that this strong (111) texture may lead to an extra path of mass transport in addition to the dominant interface diffusion in Cu EM. When this extra mass transport begins to affect the overall transport process, the effective diffusivity, D (eff), of the EM process is expected to deviate from that of interface diffusion only. This would have fundamental implications. We have some preliminary observations that this might be the case, and report its implications for EM lifetime assessment herein. C1 [Budiman, A. S.; Patel, J. R.; Nix, W. D.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Budiman, A. S.] Spansion Inc, TRE, Sunnyvale, CA 94088 USA. [Besser, P. R.; Hau-Riege, C. S.; Marathe, A.] Adv Micro Devices Inc, Sunnyvale, CA 94088 USA. [Joo, Y. -C.] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul, South Korea. [Tamura, N.; Patel, J. R.] LBNL, ALS, Berkeley, CA 94720 USA. RP Budiman, AS (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM suriadi@stanfordalumni.org NR 27 TC 25 Z9 25 U1 2 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD MAR PY 2009 VL 38 IS 3 BP 379 EP 391 DI 10.1007/s11664-008-0602-5 PG 13 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 404IN UT WOS:000263145100001 ER PT J AU Neidigk, MA Shen, YL AF Neidigk, M. A. Shen, Y. -L. TI Nonlinear Viscoelastic Finite Element Analysis of Physical Aging in an Encapsulated Transformer SO JOURNAL OF ELECTRONIC PACKAGING LA English DT Article DE cooling; electronics packaging; failure (mechanical); finite element analysis; thermal stresses; transformers ID EPOXY GLASSES; MODEL AB The generation of thermal stresses is a major cause for mechanical failure in encapsulated electronic components. In this study numerical modeling is employed to analyze thermal stresses in a high-voltage transformer encapsulated with filled epoxy. The transformer assembly consists of materials with an extremely disparate range of thermomechanical properties. The thermal histories considered mimic those in the operational condition. It is found that, upon thermal cooling from elevated temperature, the ceramic core can be under local tensile stress although it is entirely surrounded by materials with much greater coefficients of thermal expansion. The unique aspect of this paper originates from the fact that the volume shrinkage of the viscoelastic encapsulant during physical aging contributes to an increase in stress over time, thus increasing the tendency of fracture. This counter intuitive result (stress increase due to nonlinear viscoelastic physical aging) can now be predicted using constitutive models recently developed at Sandia National Laboratories. When a silicone coating between the core and the encapsulation is included, the stress is significantly reduced. The modeling result is shown to corroborate with the actual performance of the transformer. C1 [Neidigk, M. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Neidigk, M. A.; Shen, Y. -L.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Neidigk, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Shen, Yu-Lin/C-1942-2008 FU United States Department of Energy's [DE-AC04-94AL85000] FX The authors would like to thank Doug Adolf and Bob Chambers of Sandia National Laboratories for their contributions of time and expertise to the creation of this paper. In addition, the authors acknowledge Robert Sanchez of Sandia National Laboratories for the X-ray figure of the cracked transformer and for the opportunity to investigate this problem. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 14 TC 2 Z9 2 U1 2 U2 11 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1043-7398 J9 J ELECTRON PACKAGING JI J. Electron. Packag. PD MAR PY 2009 VL 131 IS 1 AR 011003 DI 10.1115/1.3068298 PG 8 WC Engineering, Electrical & Electronic; Engineering, Mechanical SC Engineering GA 412IH UT WOS:000263718000003 ER PT J AU Pierce, DM Sheppard, SD Vianco, PT AF Pierce, David M. Sheppard, Sheri D. Vianco, Paul T. TI A General Methodology to Predict Fatigue Life in Lead-Free Solder Alloy Interconnects SO JOURNAL OF ELECTRONIC PACKAGING LA English DT Article DE ball grid arrays; copper alloys; cracks; creep testing; fatigue testing; finite element analysis; integrated circuit interconnections; integrated circuit packaging; integrated circuit reliability; life testing; silver alloys; solders; stress-strain relations; tin alloys ID CONTINUUM DAMAGE MECHANICS; HIGH-DENSITY PACKAGES; LOW-CYCLE FATIGUE; SN-AG-CU; FAILURE ANALYSIS; JOINT RELIABILITY; 60SN-40PB SOLDER; MODEL; MICROSTRUCTURE; DEFORMATION AB The ubiquitous eutectic tin-lead (Sn-Pb) solder alloys are soon to be replaced with lead-free alternatives. In light of this transition, new computational tools for predicting the fatigue life of lead-free solders are required. A fatigue life prediction methodology was developed, based on stress-strain, creep, and isothermal fatigue data; the latter generated using a double lap-shear (DLS) test assembly. The proposed fatigue life prediction methodology builds on current practices in fatigue prediction for solder alloys, particularly the concepts of unpartitioned energy methods in finite element analysis (FEA) and continuum damage mechanics. As such, the current state of these fields is briefly discussed. Next, the global and local FEA simulations of the DLS test assembly are detailed. A correlation is then made between the empirical data and the FEA simulations. A general fatigue life prediction methodology is next described in detail. Finally, this methodology is tested and verified against the empirical data. C1 [Pierce, David M.; Sheppard, Sheri D.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pierce, DM (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. FU U. S. Department of Energy [DE-A04-94AL85000] FX The authors would like to acknowledge the technical support of Arlo F. Fossum, Mike K. Neilsen, and Drew V. Nelson, the laboratory work of Mark Grazier, Jerry Rejent, and Joseph Martin, and the ANSYS (R) support and modeling work of Mark Rodamaker. Furthermore, the authors gratefully acknowledge the support of the Advanced Simulation and Computing Materials and Physics Models Program led by Elizabeth Holm of Sandia National Laboratories, and the Solder Joint Degradation (TCG XIV) Program under the joint munitions program between Sandia National Laboratories and the Department of Defense. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U. S. Department of Energy under Contract No. DE-A04-94AL85000. NR 65 TC 3 Z9 3 U1 0 U2 7 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1043-7398 J9 J ELECTRON PACKAGING JI J. Electron. Packag. PD MAR PY 2009 VL 131 IS 1 AR 011008 DI 10.1115/1.3068313 PG 11 WC Engineering, Electrical & Electronic; Engineering, Mechanical SC Engineering GA 412IH UT WOS:000263718000008 ER PT J AU Acharya, A AF Acharya, Amit TI Use of Thermodynamic Formalism in Generalized Continuum Theories and a Model for Damage Evolution SO JOURNAL OF ENGINEERING MECHANICS LA English DT Article DE Thermodynamics; Damage; Methodology ID GRADIENT DAMAGE; FORMULATION; FRAMEWORK AB A technique for setting up generalized continuum theories based on a balance law and nonlocal thermodynamics is suggested. The methodology does not require the introduction of gradients of the internal variable in the free energy, while allowing for its possibility. Elements of a generalized (brittle) damage model with porosity as the internal variable are developed as an example. The notion of a flux of porosity arises, and we distinguish between the physical notion of a flux of voids (with underpinnings of corpuscular transport) and a flux of void volume that can arise merely due to void expansion. A hypothetical, local free energy function with classical limits for the damaged stress and modulus is constructed to show that the model admits a nonlinear diffusion-advection equation with positive diffusivity for the porosity as a governing equation. This equation is shown to be intimately related to Burgers equation of fluid dynamics, and an analytical solution of the corresponding constant-coefficient, semilinear equation without source term is solved by the Hopf-Cole transformation, that admits the Hopf-Lax entropy weak solution for the corresponding Hamilton-Jacobi equation in the limit of vanishing diffusion. Constraints on the class of admissible porosity and strain-dependent free energy functions arising from the mathematical structure of the theory are deduced. This work may be thought of as providing a continuum thermodynamic formalism for the internal variable gradient models proposed by Aifantis in 1984 in the context of local stress and free-energy functions. However, the degree of diffusive smoothing is not found to be arbitrarily specifiable as mechanical coupling produces an "antidiffusion" effect, and the model also inextricably links propagation of regions of high gradients with their diffusive smoothing. C1 [Acharya, Amit] Carnegie Mellon Univ, Natl Energy Technol Lab, Pittsburgh, PA 15213 USA. [Acharya, Amit] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. RP Acharya, A (reprint author), Carnegie Mellon Univ, Natl Energy Technol Lab, Pittsburgh, PA 15213 USA. EM acharyaamit@cmu.edu RI Acharya, Amit/A-4706-2010 OI Acharya, Amit/0000-0002-6184-3357 FU National Energy Technology Laboratory's ongoing research in High-Pressure High-Temperature Drilling [DE-AC26-04NT41817] FX The writer thanks Ron Peerlings and Natarajan Sukumar for helpful discussion. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in High-Pressure High-Temperature Drilling under the Research and Development Solutions (RDS) Contract No. DE-AC26-04NT41817. NR 15 TC 0 Z9 0 U1 0 U2 5 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9399 EI 1943-7889 J9 J ENG MECH JI J. Eng. Mech. PD MAR PY 2009 VL 135 IS 3 BP 171 EP 177 DI 10.1061/(ASCE)0733-9399(2009)135:3(171) PG 7 WC Engineering, Mechanical SC Engineering GA 407YO UT WOS:000263400400007 ER PT J AU Nelson, RG Hellwinckel, CM Brandt, CC West, TO Ugarte, DGD Marland, G AF Nelson, Richard G. Hellwinckel, Chad M. Brandt, Craig C. West, Tristram O. Ugarte, Daniel G. De La Torre Marland, Gregg TI Energy Use and Carbon Dioxide Emissions from Cropland Production in the United States, 1990-2004 SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID CO2 EMISSIONS; TILLAGE PRACTICES; CROPPING SYSTEMS; SEQUESTRATION; FLUX AB Changes in cropland production and management influence energy consumption and emissions of CO(2) from fossil-fuel combustion. A method was developed to calculate on-site and off-site energy and CO(2) emissions for cropping practices in the United States at the county scale. Energy consumption and emissions occur on-site from the operation of farm machinery and occur off-site from the manufacture and transport of cropland production inputs, such as fertilizers, pesticides, and agricultural lime. Estimates of fossil-fuel consumption and associated CO(2) emissions for cropping practices enable (i) the monitoring of energy and emissions with changes in land management and (h) the calculation and balancing of regional and national carbon budgets. Results indicate on-site energy use and total energy use (i.e., the sum of on-site and off-site) on U.S. croplands in 2004 ranged from 1.6 to 7.9 GJ ha(-1) yr(-1) and from 5.5 to 20.5 GJ ha(-1) yr(-1), respectively. On-site and total CO(2) emissions in 2004 ranged from 23 to 176 kg C hr(-1) yr(-1) and from 91 to 365 kg C ha(-1) yr(-1), respectively. During the period of this analysis (1990-2004), national total energy consumption for crop production ranged from 1204 to 1297 PJ yr(-1) (Petajoule = 1 x 10(15) Joule) with associated total fossil CO(2) emissions ranging from 21.5 to 23.2 Tg C yr(-1) (Teragram = 1 x 10(12) gram). The annual proportion of on-site CO(2) EO total CO(2) emissions changed depending on the diversity of crops planted. Adoption of reduced tillage practices in the United States from 1990 to 2004 resulted in a net fossil emissions reduction of 2.4 Tg C. C1 [West, Tristram O.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37861 USA. [Nelson, Richard G.] Kansas State Univ, Manhattan, KS 66502 USA. [Hellwinckel, Chad M.; Ugarte, Daniel G. De La Torre] Univ Tennessee, Agr Policy Anal Ctr, Knoxville, TN 37996 USA. [Marland, Gregg] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. RP West, TO (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37861 USA. EM westto@ornl.gov RI West, Tristram/C-5699-2013 OI West, Tristram/0000-0001-7859-0125 FU U.S. Dep. of Energy, Office of Biomass program; Office of Biological and Environmental Research through the Consortium for Carbon Sequestration in Terrestrial Ecosystems; Carbon Dioxide Information Analysis Center; U.S. Dep. of Energy; National Energy Technology Laboratory Oak Ridge National Laboratory is managed by UT-Battelle; LLC, for the US Dep. of Energy [DE-AC05-00OR22725] FX This research was, supported by the U.S. Dep. of Energy, Office of Biomass program; Office of Biological and Environmental Research through the Consortium for Carbon Sequestration in Terrestrial Ecosystems; and the Carbon Dioxide Information Analysis Center. Additional resources were contributed by the U.S. National Aeronautics and Space Administration, Earth Science Division. Contributions from R. Nelson were supported by the U.S. Dep. of Energy, National Energy Technology Laboratory Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Dep. of Energy under contract DE-AC05-00OR22725. NR 32 TC 26 Z9 33 U1 3 U2 23 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 J9 J ENVIRON QUAL JI J. Environ. Qual. PD MAR-APR PY 2009 VL 38 IS 2 BP 418 EP 425 DI 10.2134/jeq2008.0262 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA 416NV UT WOS:000264013700006 PM 19202012 ER PT J AU Fowler, TK Jayakumar, R McLean, HS AF Fowler, T. K. Jayakumar, R. McLean, H. S. TI Stable Spheromaks Sustained by Neutral Beam Injection SO JOURNAL OF FUSION ENERGY LA English DT Article DE Fusion; Spheromak; Magnetohydrodynamics; Stability; Neutral beam injection ID HELICITY INJECTION; TOKAMAK; RELAXATION; PRESSURE; PLASMAS; PINCH AB It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors. C1 [Fowler, T. K.; Jayakumar, R.; McLean, H. S.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP McLean, HS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM carolfow@aol.com; mclean1@llnl.gov FU US Department of Energy [W7405-ENG-48, DEAC 52-07NA27344] FX The authors wish to thank D. Brennan, B. I. Cohen, E. B. Hooper, L. L. Lodestro and C. R. Sovinec for many helpful discussions. We especially thank L. D. Pearlstein for his unpublished calculations of Delta' for the cylinder approximation of a spheromak that helped motivate this work. This work was supported in part by the US Department of Energy under contracts W7405-ENG-48 and DEAC 52-07NA27344 at the Lawrence Livermore National Laboratory. NR 22 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0164-0313 J9 J FUSION ENERG JI J. Fusion Energy PD MAR PY 2009 VL 28 IS 1 BP 118 EP 123 DI 10.1007/s10894-008-9157-y PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 397GN UT WOS:000262651000007 ER PT J AU Al-Kiswany, S Ripeanu, M Iamnitchi, A Vazhkudai, S AF Al-Kiswany, Samer Ripeanu, Matei Iamnitchi, Adriana Vazhkudai, Sudharshan TI Beyond Music Sharing: An Evaluation of Peer-to-Peer Data Dissemination Techniques in Large Scientific Collaborations SO JOURNAL OF GRID COMPUTING LA English DT Article DE Data dissemination; Application level multicast; Peer-to-peer; Performance evaluation AB The avalanche of data from scientific instruments and the ensuing interest from geographically distributed users to analyze and interpret it accentuates the need for efficient data dissemination. A suitable data distribution scheme will find the delicate balance between conflicting requirements of minimizing transfer times, minimizing the impact on the network, and uniformly distributing load among participants. We identify several data distribution techniques, some successfully employed by today's peer-to-peer networks: staging, data partitioning, orthogonal bandwidth exploitation, and combinations of the above. We use simulations to explore the performance of these techniques in contexts similar to those used by today's data-centric scientific collaborations and derive several recommendations for efficient data dissemination. Our experimental results show that the peer-to-peer solutions that offer load balancing and good fault tolerance properties and have embedded participation incentives lead to unjustified costs in today's scientific data collaborations deployed on over-provisioned network cores. However, as user communities grow and these deployments scale, peer-to-peer data delivery mechanisms will likely outperform other techniques. C1 [Al-Kiswany, Samer; Ripeanu, Matei] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada. [Iamnitchi, Adriana] Univ S Florida, Tampa, FL USA. [Vazhkudai, Sudharshan] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Al-Kiswany, S (reprint author), Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V5Z 1M9, Canada. EM samera@ece.ubc.ca; matei@ece.ubc.ca; anda@cse.usf.edu; vazhkudaiss@ornl.gov NR 49 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 J9 J GRID COMPUT JI J. Comput. PD MAR PY 2009 VL 7 IS 1 BP 91 EP 114 DI 10.1007/s10723-008-9113-0 PG 24 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 525VG UT WOS:000272244100005 ER PT J AU Bardakci, K AF Bardakci, Korkut TI Mean field method applied to the new world sheet field theory: string formation SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Nonperturbative Effects; Bosonic Strings ID DUAL AMPLITUDES; MODEL AB The present article is based on a previous one, where a second quantized field theory on the world sheet for summing the planar graphs of phi(3) theory was developed. In this earlier work, the ground state of the model was determined using a variational approximation. Here, starting with the same world sheet field theory, we instead use the mean field method to compute the ground state, and find results that are in agreement with the variational calculation. Apart from serving as a check on the variational calculation, the mean field method enables us to go beyond the ground state to compute the excited states of the model. The spectrum of these states is that of a string with linear trajectories, plus a continuum that starts at higher energy. We show that, by appropriately tuning the parameters of the model, the string spectrum can be cleanly seperated from the continuum. C1 [Bardakci, Korkut] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bardakci, Korkut] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Bardakci, K (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM kbardakci@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 16 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 088 DI 10.1088/1126-6708/2009/03/088 PG 23 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800088 ER PT J AU Baumann, D Dymarsky, A Kachru, S Klebanov, IR McAllister, L AF Baumann, Daniel Dymarsky, Anatoly Kachru, Shamit Klebanov, Igor R. McAllister, Liam TI Holographic systematics of D-brane inflation SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Gauge-gravity correspondence; Cosmology of Theories beyond the SM ID CONFORMAL FIELD-THEORIES; STRING THEORY; SYMMETRY-BREAKING; COSMOLOGY; SUPERGRAVITY; FLATNESS; UNIVERSE; GRAVITY; HORIZON AB We provide a systematic treatment of possible corrections to the inflaton potential for D-brane inflation in the warped deformed conifold. We consider the D3-brane potential in the presence of the most general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi-Yau space. This corresponds to the potential on the Coulomb branch of the dual gauge theory, in the presence of arbitrary perturbations of the Lagrangian. The leading contributions arise from perturbations by the most relevant operators that do not destroy the throat geometry. We find a generic contribution from a non-chiral operator of dimension Delta = 2 associated with a global symmetry current, resulting in a negative contribution to the inflaton mass-squared. If the Calabi-Yau preserves certain discrete symmetries, this is the dominant correction to the inflaton potential, and fine-tuning of the inflaton mass is possible. In the absence of such discrete symmetries, the dominant contribution comes from a chiral operator with Delta = 3/2, corresponding to a phi(3/2) term in the inflaton potential. The resulting inflationary models are phenomenologically similar to the inflection point scenarios arising from specific D7-brane embeddings, but occur under far more general circumstances. Our strategy extends immediately to other warped geometries, given sufficient knowledge of the Kaluza-Klein spectrum. C1 [Baumann, Daniel] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Baumann, Daniel; Klebanov, Igor R.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Dymarsky, Anatoly; Kachru, Shamit] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kachru, Shamit] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [McAllister, Liam] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Klebanov, Igor R.] Princeton Univ, Ctr Theoret Sci, Princeton, NJ 08544 USA. RP Baumann, D (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM dbaumann@physics.harvard.edu; dymarsky@stanford.edu; skachru@stanford.edu; klebanov@princeton.edu; McAllister@cornell.edu RI Dymarsky, Anatoly/S-2084-2016; OI Dymarsky, Anatoly/0000-0001-5762-6774 FU David and Lucile Packard Foundation; Alfred P. Sloan Foundation; Center for the Fundamental Laws of Nature and the Center for Astrophysics at Harvard; Stanford Institute for Theoretical Physics; NSF [PHY-0756174, PHY-0756966, PHY-0355005]; DOE [DE-AC03-76SF00515]; RFBR [07-02-00878]; [NSh-3035.2008.2] FX We are grateful to O. DeWolfe, L. Kofman, J. Maldacena, and M. Mulligan for useful discussions. The research of D. B. is supported in part by the David and Lucile Packard Foundation and the Alfred P. Sloan Foundation and by Fellowships of the Center for the Fundamental Laws of Nature and the Center for Astrophysics at Harvard. A. D. and S. K. are supported by the Stanford Institute for Theoretical Physics, the NSF under grant PHY-0756174, and the DOE under contract DE-AC03-76SF00515. The research of A. D. is also supported in part by grant RFBR 07-02-00878, and Grant for Support of Scientific Schools NSh-3035.2008.2. A. D. would like to thank the Galileo Galilei Institute for Theoretical Physics, where part of this work was done, for hospitality. S. K. is grateful to the Kavli Institute for Theoretical Physics, the Aspen Center for Physics, and the Institute for Advanced Study for hospitality while some of these ideas were being finalized. The research of I. R. K. was supported in part by the NSF under grant PHY-0756966. I. R. K. thanks the IHES for hospitality during the final stages of this work. The research of L. M. is supported by NSF grant PHY-0355005. L. M. thanks the Stanford Institute for Theoretical Physics for hospitality while some of this work was performed, and the high energy theory group at Harvard for hospitality while it was finalized. NR 66 TC 52 Z9 52 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 093 DI 10.1088/1126-6708/2009/03/093 PG 27 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800093 ER PT J AU Burns, M Kong, K Matchev, KT Park, M AF Burns, Michael Kong, Kyoungchul Matchev, Konstantin T. Park, Myeonghun TI Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology; Phenomenology of Field Theories in Higher Dimensions ID DARK-MATTER; LHC AB We propose to use the M-T2 concept to measure the masses of all particles in SUSY-like events with two unobservable, identical particles. To this end we generalize the usual notion of M-T2 and define a new M-T2((n,p,c)) variable, which can be applied to various subsystem topologies, as well as the full event topology. We derive analytic formulas for its endpoint M-T2,max((n,p,c)) as a function of the unknown test mass (M) over tilde (c) of the final particle in the subchain and the transverse momentum p(T) due to radiation from the initial state. We show that the endpoint functions M-T2,max((n,p,c)) ((M) over tilde (c), p(T)) may exhibit three different types of kinks and discuss the origin of each type. We prove that the subsystem M-T2((n,p,c)) variables by themselves already yield a sufficient number of measurements for a complete determination of the mass spectrum (including the overall mass scale). As an illustration, we consider the simple case of a decay chain with up to three heavy particles, X-2 -> X-1 -> X-0, which is rather problematic for all other mass measurement methods. We propose three different M-T2-based methods, each of which allows a complete determination of the masses of particles X-0, X-1 and X-2. The first method only uses M-T2((n,p,c)) endpoint measurements at a single fixed value of the test mass (M) over tilde (c). In the second method the unknown mass spectrum is fitted to one or more endpoint functions M-T2,max((n,p,c))((M) over tilde (c), pT) exhibiting a kink. The third method is hybrid, combining M-T2 endpoints with measurements of kinematic edges in invariant mass distributions. As a practical application of our methods, we show that the dilepton W+W- and t (t) over bar samples at the Tevatron can be used for an independent determination of the masses of the top quark, the W boson and the neutrino, without any prior assumptions. C1 [Burns, Michael; Matchev, Konstantin T.; Park, Myeonghun] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Kong, Kyoungchul] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Burns, M (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM burns@phys.ufl.edu; kckong@fnal.gov; matchev@phys.ufl.edu; ishaed@phys.ufl.edu NR 52 TC 81 Z9 81 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 143 DI 10.1088/1126-6708/2009/03/143 PG 47 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800143 ER PT J AU Chen, HY Hung, LY Shiu, G AF Chen, Heng-Yu Hung, Ling-Yan Shiu, Gary TI Inflation on an open racetrack SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Flux compactifications; dS vacua in string theory; Superstring Vacua ID SUPERSYMMETRY BREAKING; STRING THEORY; BRANE INFLATION; F-THEORY; COSMOLOGY; COMPACTIFICATION; LECTURES; FLATNESS; UNIVERSE; HORIZON AB We present a variant of warped D-brane inflation by incorporating multiple sets of holomorphically-embedded D7-branes involved in moduli stabilization with extent into a warped throat. The resultant D3-brane motion depends on the D7-brane configuration and the relative position of the D3-brane in these backgrounds. The non-perturbative moduli stabilization superpotential takes the racetrack form, but the additional D3-brane open string moduli dependence provides more flexibilities in model building. For concreteness, we consider D3-brane motion in the warped deformed conifold with the presence of multiple D7-branes, and derive the scalar potential valid for the entire throat. By explicit tuning of the microphysical parameters, we obtain inflationary trajectories near an inflection point for various D7-brane configurations. Moreover, the open racetrack potential admits approximate Minkowski vacua before uplifting. We demonstrate with a concrete D-brane inflation model where the Hubble scale during inflation can exceed the gravitino mass. Finally, the multiple sets of D7-branes present in this open racetrack setup also provides a mechanism to stabilize the D3-brane to metastable vacua in the intermediate region of the warped throat. C1 [Chen, Heng-Yu; Shiu, Gary] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Shiu, Gary] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Shiu, Gary] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Hung, Ling-Yan] Univ Cambridge, Ctr Math Sci, DAMTP, Cambridge CB3 0WA, England. RP Chen, HY (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM hchen46@wisc.edu; lyh20@cam.ac.uk; shiu@physics.wisc.edu FU NSF [PHY-0348093]; DOE [DE-FG-02-95ER40896]; Research Corporation; University of Wisconsin; John Simon Guggenheim Memorial Foundation; Gates Cambridge Trust FX We are grateful to Konstantin Bobkov, Fang Chen, Jim Cline, Shamit Kachru, Renata Kallosh, Andrei Linde, Yu Nakayama, Peter Ouyang, Fernando Quevedo, Stuart Raby, Alexander Westphal, and Piljin Yi for discussions. The work of HYC and GS was supported in part by NSF CAREER Award No. PHY-0348093, DOE grant DE-FG-02-95ER40896, a Research Innovation Award and a Cottrell Scholar Award from Research Corporation, a Vilas Associate Award from the University of Wisconsin, and a John Simon Guggenheim Memorial Foundation Fellowship. HYC and GS also thank the Stanford Institute for Theoretical Physics and SLAC for hospitality and support while this work was written. LYH is supported by the Gates Cambridge Trust. NR 89 TC 20 Z9 20 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 083 DI 10.1088/1126-6708/2009/03/083 PG 31 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800083 ER PT J AU Goh, HS Ibe, M AF Goh, Hock-Seng Ibe, Masahiro TI R-axion detection at LHC SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID DYNAMICAL SUPERSYMMETRY BREAKING; CONFORMAL GAUGE MEDIATION; LARGE TRANSVERSE-MOMENTUM; HIGGS-BOSON PRODUCTION; HADRON SUPERCOLLIDERS; PARTICLE PHYSICS; CP CONSERVATION; STANDARD MODEL; LOW ENERGIES; DECAYS AB Supersymmetric models with spontaneously broken approximate R-symmetry contain a light spin 0 particle, the R-axion. The properties of the particle can be a powerful probe of the structure of the new physics. In this paper, we discuss the possibilities of the R-axion detection at the LHC experiments. It is challenge to observe this light particle in the LHC environment. However, for typical values in which the mass of the R-axion is a few hundred MeV, we show that those particles can be detected by searching for displaced vertices from R-axion decay. C1 [Goh, Hock-Seng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Goh, Hock-Seng] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. [Ibe, Masahiro] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. RP Goh, HS (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM hsgoh@berkeley.edu; ibe@slac.stanford.edu FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC02-05CH11232]; U.S. National Science Foundation [PHY-04-57315] FX We appreciate M. Peskin for a lot of discussion and advice very much. We also appreciate T. Barklow and D. Miller for useful comments. MI also appreciate D. Su for useful discussion. MI appreciate Y. Nakayama and T. T Yanagida for useful discussion on the low energy properties of the R-axion. HSG would also like to thank I. Hinchliffe, M. Shapiro, J. Thaler and D. Walker for discussions. We appreciate the hospitality of the Aspen Center for Physics, where this collaboration began. The work of MI was supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. The work of HSG was supported in part by DOE under contract number DE-AC02-05CH11232 and by the U.S. National Science Foundation under grants PHY-04-57315. NR 77 TC 11 Z9 11 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 049 PG 31 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800049 ER PT J AU Horava, P AF Horava, Petr TI Membranes at quantum criticality SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article; Proceedings Paper CT Workshop on AdS, Condensed Matter and QCD CY OCT, 2008 CL McGill Univ, Montreal, CANADA HO McGill Univ DE p-branes; Models of Quantum Gravity; Classical Theories of Gravity; Bosonic Strings ID STOCHASTIC QUANTIZATION; DIMENSIONS; SUPERSYMMETRY; FIELDS; MODELS AB We propose a quantum theory of membranes designed such that the ground-state wavefunction of the membrane with compact spatial topology Sigma(h) reproduces the partition function of the bosonic string on worldsheet Sigma(h). The construction involves worldvolume matter at quantum criticality, described in the simplest case by Lifshitz scalars with dynamical critical exponent z = 2. This matter system must be coupled to a novel theory of worldvolume gravity, also exhibiting quantum criticality with z = 2. We first construct such a nonrelativistic "gravity at a Lifshitz point" with z = 2 in D + 1 spacetime dimensions, and then specialize to the critical case of D = 2 suitable for the membrane worldvolume. We also show that in the second-quantized framework, the string partition function is reproduced if the spacetime ground state takes the form of a Bose-Einstein condensate of membranes in their first-quantized ground states, correlated across all genera. C1 [Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Horava, Petr] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Horava, Petr] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM horava@berkeley.edu NR 39 TC 247 Z9 248 U1 0 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 020 DI 10.1088/1126-6708/2009/03/020 PG 34 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800020 ER PT J AU Konar, P Kong, K Matchev, KT AF Konar, Partha Kong, Kyoungchul Matchev, Konstantin T. TI root(s)over-cap(min): a global inclusive variable for determining the mass scale of new physics in events with missing energy at hadron colliders SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Supersymmetric Standard Model; Hadronic Colliders ID CASCADE DECAYS; LHC; SHAPE AB We propose a new global and fully inclusive variable (s) over cap (1/2)(min) for determining the mass scale of new particles in events with missing energy at hadron colliders. We define (s) over cap (1/2)(min) as the minimum center-of-mass parton level energy consistent with the measured values of the total calorimeter energy E and the total visible momentum (P) over right arrow. We prove that for an arbitrary event, (s) over cap (1/2)(min) is simply given by the formula (s) over cap (1/2)(min) = root E-2-P-z(2) + root E-T(2) + M-inv(2), where M-inv is the total mass of all invisible particles produced in the event. We use t (t) over bar production and several supersymmetry examples to argue that the peak in the (s) over cap (1/2)(min) distribution is correlated with the mass threshold of the parent particles originally produced in the event. This conjecture allows an estimate of the heavy superpartner mass scale (as a function of the LSP mass) in a completely general and model-independent way, and with out the need for any exclusive event reconstruction. In our SUSY examples of several multijet plus missing energy signals, the accuracy of the mass measurement based on (s) over cap (1/2)(min) is typically at the percent level, and never worse than 10%. After including the effects of initial state radiation and multiple parton interactions, the precision gets worse, but for heavy SUSY mass spectra remains similar to 10%. C1 [Konar, Partha; Matchev, Konstantin T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Kong, Kyoungchul] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Konar, P (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM konar@phys.ufl.edu; kckong@fnal.gov; matchev@phys.ufl.edu FU US Department of Energy [DE-FG02-97ER41029]; U. S. Department of Energy [DE-AC02-07CH11359] FX We are grateful to A. Barr, R. Cavanaugh, R. Field, A. Korytov, C. Lester and B. Webber for useful discussions and correspondence. This work is supported in part by a US Department of Energy grant DE-FG02-97ER41029. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U. S. Department of Energy. NR 63 TC 31 Z9 31 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 085 DI 10.1088/1126-6708/2009/03/085 PG 33 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800085 ER PT J AU Morris, RD Cohen-Tanugi, J AF Morris, Robin D. Cohen-Tanugi, Johann TI A parameterization invariant approach to the statistical estimation of the CKM phase alpha SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Statistical Methods; B-Physics; CP violation ID DISTRIBUTIONS AB In contrast to previous analyses, we demonstrate a Bayesian approach to the estimation of the CKM phase alpha that is invariant to parameterization. We also show that in addition to computing the marginal posterior in a Bayesian manner, the distribution must also be interpreted from a subjective Bayesian viewpoint. Doing so gives a very natural interpretation to the distribution. We also comment on the effect of removing information about B-00 C1 [Morris, Robin D.] USRA RIACS, Mountain View, CA 94306 USA. [Cohen-Tanugi, Johann] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Cohen-Tanugi, Johann] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. RP Morris, RD (reprint author), USRA RIACS, 444 Castro St,Suite 320, Mountain View, CA 94306 USA. EM rdm@riacs.edu; cohen@slac.stanford.edu NR 17 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 010 DI 10.1088/1126-6708/2009/03/010 PG 14 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800010 ER PT J AU Poppitz, E Unsal, M AF Poppitz, Erich Unsal, Mithat TI Index theorem for topological excitations on R-3 x S-1 and Chern-Simons theory SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Solitons Monopoles and Instantons; Nonperturbative Effects; Chern-Simons Theories; Anomalies in Field and String Theories ID MULTIMONOPOLE SOLUTIONS; SPECTRAL ASYMMETRY; INSTANTONS; DIMENSIONS; MONOPOLES; ANOMALIES; SPACE AB We derive an index theorem for the Dirac operator in the background of various topological excitations on an R-3 x S-1 geometry. The index theorem provides more refined data than the APS index for an instanton on R-4 and reproduces it in decompactification limit. In the R-3 limit, it reduces to the Callias index theorem. The index is expressed in terms of topological charge and the eta-invariant associated with the boundary Dirac operator. Neither topological charge nor eta-invariant is typically an integer, however, the non-integer parts cancel to give an integer-valued index. Our derivation is based on axial current non-conservation-an exact operator identity valid on any four-manifold-and on the existence of a center symmetric, or approximately center symmetric, boundary holonomy (Wilson line). We expect the index theorem to usefully apply to many physical systems of interest, such as low temperature (large S-1, confined) phases of gauge theories, center stabilized Yang-Mills theories with vector-like or chiral matter (at S-1 of any size), and supersymmetric gauge theories with supersymmetry-preserving boundary conditions (also at any S-1). In QCD-like and chiral gauge theories, the index theorem should shed light into the nature of topological excitations responsible for chiral symmetry breaking and the generation of mass gap in the gauge sector. We also show that imposing chirally-twisted boundary condition in gauge theories with fermions induces a Chern-Simons term in the infrared. This suggests that some QCD-like gauge theories should possess components with a topological Chern-Simons phase in the small S-1 regime. C1 [Poppitz, Erich] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Unsal, Mithat] Stanford Univ, SLAC, Stanford, CA 94025 USA. [Unsal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94025 USA. RP Poppitz, E (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM poppitz@physics.utoronto.ca; unsal@slac.stanford.edu NR 30 TC 30 Z9 30 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 027 PG 29 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800027 ER PT J AU Schmaltz, M Thaler, J AF Schmaltz, Martin Thaler, Jesse TI Collective quartics and dangerous singlets in little Higgs SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Higgs Physics; Technicolor and Composite Models AB An extension of the standard model that aims to describe TeV-scale physics without fine-tuning must have a radiatively-stable Higgs potential. In little Higgs theories, radiative stability is achieved through so-called collective symmetry breaking. In this letter, we focus on the necessary conditions for a little Higgs to have a collective Higgs quartic coupling. In one-Higgs doublet models, a collective quartic requires an electroweak triplet scalar. In two-Higgs doublet models, a collective quartic requires a triplet or singlet scalar. As a corollary of this study, we show that some little Higgs theories have dangerous singlets, a pathology where collective symmetry breaking does not suppress quadratically-divergent corrections to the Higgs mass. C1 [Schmaltz, Martin] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Schmaltz, Martin; Thaler, Jesse] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Schmaltz, Martin; Thaler, Jesse] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Schmaltz, M (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM schmaltz@bu.edu; jthaler@jthaler.net OI Thaler, Jesse/0000-0002-2406-8160 NR 16 TC 13 Z9 13 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2009 IS 3 AR 137 DI 10.1088/1126-6708/2009/03/137 PG 9 WC Physics, Particles & Fields SC Physics GA 439BD UT WOS:000265600800137 ER PT J AU Carini, GA Chen, W Dragone, A Fried, J Jakoncic, J Kuczweski, A Li, Z Mead, J Michta, R Pratte, JF Rehak, P Siddons, DP AF Carini, G. A. Chen, W. Dragone, A. Fried, J. Jakoncic, J. Kuczweski, A. Li, Z. Mead, J. Michta, R. Pratte, J. -F. Rehak, P. Siddons, D. P. TI Tests of small X-ray Active Matrix Pixel Sensor prototypes at the National Synchrotron Light Source SO JOURNAL OF INSTRUMENTATION LA English DT Article CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE X-ray detectors; Pixelated detectors and associated VLSI electronics ID HIGH-RESISTIVITY SILICON AB X-ray Active Matrix Pixel Sensors (XAMPS) were designed and fabricated at Brookhaven National Laboratory. Devices based on J-FET technology were produced on 100 mm high-resistivity silicon, typically 400 m m-thick. The prototypes are square matrices with n rows and n columns with n = 16, 32, 64, 128, 256, 512. Each pixel of the matrix is 90 x 90 mu m(2) and contains a JFET switch to control the charge readout. The XAMPS is a position sensitive ionization detector made on high resistivity silicon. It consists of a pixel array detector with integrated switches. Pixels are isolated from each other by a potential barrier and the device is fully depleted by applying a high voltage bias to the junction on the entrance window of the sensor. The small features of the design presented some technological challenges fully addressed during this production. The first prototypes were tested at the National Synchrotron Light Source (NSLS) with a monochromatic beam of 8 keV and millisecond readout and exhibit good performances at room temperature. C1 [Carini, G. A.; Chen, W.; Fried, J.; Jakoncic, J.; Kuczweski, A.; Li, Z.; Mead, J.; Michta, R.; Pratte, J. -F.; Rehak, P.; Siddons, D. P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dragone, A.] SLAC Natl Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Carini, GA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM carini@bnl.gov NR 6 TC 6 Z9 6 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2009 VL 4 AR P03014 DI 10.1088/1748-0221/4/03/P03014 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 442YU UT WOS:000265878200014 ER PT J AU Garcia-Sciveres, M AF Garcia-Sciveres, Maurice TI Post-installation status of the ATLAS pixel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE Particle tracking detectors; Solid state detectors; Hybrid detectors AB The ATLAS pixel detector was installed in June 2007 and was fully connected and operating at the time of this conference. An assessment is given of the state of the as-installed system in the context of the technological challenges of hybrid pixels. Comparisons with CMS are made drawing on material presented at this conference. This paper is intended as a companion to the talk slides presented at the conference and excludes the many photographs from the talk. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Garcia-Sciveres, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mgs@lbl.gov NR 12 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2009 VL 4 AR P03021 DI 10.1088/1748-0221/4/03/P03021 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 442YU UT WOS:000265878200021 ER PT J AU Greiner, L Anderssen, E Matis, HS Ritter, HG Stezelberger, T Szelezniak, M Sun, X Vu, C Wieman, H AF Greiner, L. Anderssen, E. Matis, H. S. Ritter, H. G. Stezelberger, T. Szelezniak, M. Sun, X. Vu, C. Wieman, H. TI Sensor development and readout prototyping for the STAR Pixel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE Solid state detectors; Electronic detector readout concepts (solid-state) AB The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D(0) by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor ( MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 mu s integration time, 400 M pixels and a coverage of -1< eta <1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished. C1 [Greiner, L.; Anderssen, E.; Matis, H. S.; Ritter, H. G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Greiner, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 70R0319, Berkeley, CA 94720 USA. EM LCGreiner@lbl.gov NR 8 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2009 VL 4 AR P03008 DI 10.1088/1748-0221/4/03/P03008 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 442YU UT WOS:000265878200008 ER PT J AU Li, Z AF Li, Z. TI Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE Hybrid detectors; Neutron detectors (cold, thermal, fast neutrons); dE/dx detectors; Pixelated detectors and associated VLSI electronics ID IRRADIATED SILICON DETECTORS; CHARGE COLLECTION EFFICIENCY; ELECTRIC-FIELD DISTRIBUTION; OXYGEN-ENRICHED SILICON; FAST-NEUTRON RADIATION; LONG-TERM STABILITY; N-EFF; PARTICLE DETECTORS; JUNCTION DETECTORS; ROSE COLLABORATION AB Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, space charge concentration, and free carrier trapping. For LHC applications, where the total fluence is in the order of 1x10(15) n(eq)/cm(2) for 10 years, the increase in space charge concentration has been the main problem since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. For LHC Upgrade, or the SLHC, however, whit an increased total fluence up to 1x10(16) n(eq)/cm(2), the main limiting factor for Si detector operation is the severe trapping of free carriers by radiation-induced defect levels. Several new approaches have been developed to make Si detector more radiation hard/tolerant to such ultra-high radiation, including 3D Si detectors, Current-Injected-Diodes (CID) detectors, and Elevated temperature annealing. C1 Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Li, Z (reprint author), Brookhaven Natl Lab, Instrumentat Div, 20 Technol St, Upton, NY 11973 USA. EM zhengl@bnl.gov NR 59 TC 7 Z9 7 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2009 VL 4 AR P03011 DI 10.1088/1748-0221/4/03/P03011 PG 32 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 442YU UT WOS:000265878200011 ER PT J AU Miceli, A AF Miceli, A. TI Application of Pixel array detectors at X-ray synchrotrons SO JOURNAL OF INSTRUMENTATION LA English DT Article CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE X-ray detectors; Pixelated detectors and associated VLSI electronics; X-ray fluorescence (XRF) systems; X-ray diffraction detectors AB Pixel array detectors have only recently been seriously used at x-ray synchrotrons. We describe the application of a digital pixel array detector (Pilatus100k) to a variety of synchrotron experiments at the Advanced Photon Source at Argonne National Laboratory. The Pilatus100k was developed at the Paul Scherrer Institut (PSI). It has been commercialized by a PSI spinoff (Dectrics Ltd.) This is the first commercially available pixel array detector for x-ray synchrotron applications. The APS synchrotron provides tunable x-ray pulses with duration of similar to 80 ps and a repetition period of 153 ns (24-bunch mode). The Pilatus100k is a direct detection x-ray detector where each 172 micron pixel counts individual x-ray pulses above a lower threshold. It consists of similar to 100k pixels each of which is capable of single-photon counting (> 3 keV) at count rates up to similar to 1 MHz. In addition, the Pilatus100k is an electronically gateable detector. We present data showing that the Pilatus100k is capable of isolating a single x-ray bunch at the APS in 24 bunch mode. We will also present a variety of different experiments exploiting the unique capabilities of the Pilatus100k. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Miceli, A (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amiceli@aps.anl.gov NR 11 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2009 VL 4 AR P03024 DI 10.1088/1748-0221/4/03/P03024 PG 8 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 442YU UT WOS:000265878200024 ER PT J AU Radeka, V Frank, J Geary, JC Gilmore, DK Kotov, I O'Connor, P Takacs, P Tyson, JA AF Radeka, V. Frank, J. Geary, J. C. Gilmore, D. K. Kotov, I. O'Connor, P. Takacs, P. Tyson, J. A. TI LSST sensor requirements and characterization of the prototype LSST CCDs SO JOURNAL OF INSTRUMENTATION LA English DT Article CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE Detectors for UV, visible and IR photons; Optics ID CHARGE DIFFUSION; ELECTRIC-FIELD; SILICON; THICK AB LSST parameters are discussed and requirements on the LSST camera are presented. Characterization methods and results on a number of new devices produced specifically to address LSST's performance goals, including flatness, QE, full well capacity, linearity, dark current, read noise, CTE, and image persistence are presented. The results indicate that commercially produced, thick n-channel over-depleted CCDs can achieve excellent red response, high CTE, low dark current and satisfy LSST requirements with no evidence of persistent image artifacts. We will also report ongoing studies of mosaic assembly techniques to achieve chip-to-chip co-planarity, high fill factor, and thermal stability. C1 [Radeka, V.; Frank, J.; Kotov, I.; O'Connor, P.; Takacs, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Geary, J. C.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Gilmore, D. K.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Tyson, J. A.] Univ Calif Davis, Davis, CA 95616 USA. RP Kotov, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM kotov@bnl.gov NR 15 TC 16 Z9 16 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2009 VL 4 AR P03002 DI 10.1088/1748-0221/4/03/P03002 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 442YU UT WOS:000265878200002 ER PT J AU Strandberg, S AF Strandberg, Sara TI Results from the commissioning of the ATLAS Pixel detector SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT PIXEL 2008 International Workshop CY SEP 23-26, 2008 CL Fermilab, Batavia, IL HO Fermilab DE Particle tracking detectors; Solid state detectors; Front-end electronics for detector readout AB The ATLAS pixel detector is a high resolution, silicon based, tracking detector with its innermost layer located only 5 cm away from the ATLAS interaction point. It is designed to provide good hit resolution and low noise, both important qualities for pattern recognition and for finding secondary vertices originating from decays of long-lived particles. The pixel detector has 80 million readout channels and is built up of three barrel layers and six disks, three on each side of the barrel. The detector was installed in the center of ATLAS in June 2007 and is currently being calibrated and commissioned. Details from the installation, commissioning and calibration are presented together with the current status. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Strandberg, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. EM sara.strandberg@cern.ch NR 3 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2009 VL 4 AR P03020 DI 10.1088/1748-0221/4/03/P03020 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 442YU UT WOS:000265878200020 ER PT J AU Farinholt, KM Pedrazas, NA Schluneker, DM Burt, DW Farrar, CR AF Farinholt, Kevin M. Pedrazas, Nicholas A. Schluneker, David M. Burt, David W. Farrar, Charles R. TI An Energy Harvesting Comparison of Piezoelectric and Ionically Conductive Polymers SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES LA English DT Article DE electroactive polymers; energy harvesting; ionic polymers; PVDF ID LINEAR ELECTROMECHANICAL MODEL; TRANSDUCERS AB With advances in wireless communications and low power electronics there is an ever increasing need for efficient self-contained power systems. Traditional batteries are often selected for this purpose; however, there are limitations due to finite life-spans and the need to periodically recharge or replace the spent power source. One method to address this issue is the inclusion of an energy harvesting strategy that can scavenge energy from the surrounding environment and convert it into usable electrical energy. Since civil, industrial, and aerospace applications are often plagued with an overabundance of ambient vibrations, electromechanical transducers are often considered a viable choice for energy scavengers. In this study, two classes of transducer are considered: the piezoelectric polymer polyvinylidene fluoride and the ionically conductive ionic polymer transducer. Analytical models are formed for each material assuming axial loading and simulation results are compared with experimental results for each test. Each material is then compared to examine the effectiveness of their mechanoelectric conversion properties. C1 [Farinholt, Kevin M.; Pedrazas, Nicholas A.; Schluneker, David M.; Burt, David W.; Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Farinholt, KM (reprint author), Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. EM farinholt@lanl.gov RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 FU Engineering Institute at Los Alamos National Laboratory FX This research was conducted as part of the Los Alamos Dynamic Summer School, a program sponsored by the Engineering Institute at Los Alamos National Laboratory. NR 20 TC 40 Z9 40 U1 3 U2 16 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1045-389X J9 J INTEL MAT SYST STR JI J. Intell. Mater. Syst. Struct. PD MAR PY 2009 VL 20 IS 5 BP 633 EP 642 DI 10.1177/1045389X08099604 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 414MJ UT WOS:000263867700013 ER PT J AU Rabb, DJ Anderson, BL Cowan, WD Spahn, OB AF Rabb, David J. Anderson, Betty Lise Cowan, William D. Spahn, Olga Blum TI Spherical Fourier Cell and Application for Optical True Time Delay SO JOURNAL OF LIGHTWAVE TECHNOLOGY LA English DT Article DE Beam forming; Fourier optics; optical signal processing; optical time delay; phased array antenna ID WHITE CELL; DEVICE; DESIGN AB A new optical configuration for switching light beams called a spherical Fourier cell is explained. Its use for optical true time delay is outlined. An experimental apparatus was constructed for a 6-bit delay system, with 2 bits demonstrated. Delays of 0, 2.1, 4.1, and 6.2 ns were measured. Loss and crosstalk measurements are also given. C1 [Rabb, David J.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Anderson, Betty Lise] Ohio State Univ, Columbus, OH 43210 USA. [Cowan, William D.; Spahn, Olga Blum] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rabb, DJ (reprint author), USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. EM david.rabb@wpafb.af.mil; anderson@ece.osu.edu; wdcowan@sandia.gov; oblum@sandia.gov NR 8 TC 3 Z9 3 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855 USA SN 0733-8724 J9 J LIGHTWAVE TECHNOL JI J. Lightwave Technol. PD MAR-APR PY 2009 VL 27 IS 5-8 BP 879 EP 886 DI 10.1109/JLT.2008.927762 PG 8 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA 439HH UT WOS:000265617700046 ER PT J AU Chiaramonte, T Romero, MJ Fabreguette, F Cardoso, LP Sacilotti, M AF Chiaramonte, Th. Romero, Manuel J. Fabreguette, F. Cardoso, L. P. Sacilotti, M. TI Cathodoluminescence and structural studies of nitrided 3D gallium structures grown by MOCVD SO JOURNAL OF LUMINESCENCE LA English DT Article DE Cathodoluminescence; MOCVD; Metal-organic; GaN 3D structure ID THIN-FILMS; GAN AB Cathodoluminescence (CL) spectrum imaging and grazing incidence X-ray diffraction (GIXRD) are employed to investigate nitride three-dimensional (3D) gallium structures. The metallic precursors are naturally obtained on a large variety of substrates by metal-organic chemical vapor deposition (CVD) with different shape/size controlled by the growth conditions, especially the temperature. These 3D metallic structures are subsequently exposed to a nitridation process in a conventional CVD reactor to form GaN nanocrystals, as confirmed by GIXRD measurements. CL spectroscopy shows visible light emission (2.5-2.8 eV) excited from the GaN in the 3D structures. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chiaramonte, Th.; Cardoso, L. P.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil. [Chiaramonte, Th.; Sacilotti, M.] Univ Bourgogne, CNRS, Couches Minces & Nanostruct Grp, FR 2604, F-21078 Dijon, France. [Romero, Manuel J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Fabreguette, F.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Chiaramonte, T (reprint author), Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil. EM thalita@ifi.unicamp.br RI Cardoso, Lisandro/G-5766-2012; Sacilotti, Marco/E-8621-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Cardoso, Lisandro/0000-0003-3910-2293; FU ANR-Filemon 3-5 France; Conseil Regional de Bourgogne-France; CAPES and CNPq Brazilian agencies; Department of Energy [DE-AC36-99GO10337] FX This work was partially supported by the Department of Energy under Contract DE-AC36-99GO10337. NR 19 TC 0 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD MAR PY 2009 VL 129 IS 3 BP 176 EP 180 DI 10.1016/j.jlumin.2008.09.011 PG 5 WC Optics SC Optics GA 400QU UT WOS:000262884400003 ER PT J AU Rohwer, LS Martin, JE AF Rohwer, L. S. Martin, J. E. TI Reply to 'Comment on "Measuring the absolute quantum efficiency of luminescent materials" SO JOURNAL OF LUMINESCENCE LA English DT Editorial Material ID OPTICAL-PROPERTIES; NANOCLUSTERS; DYES C1 [Rohwer, L. S.; Martin, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rohwer, LS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM leshea@sandia.gov NR 7 TC 1 Z9 1 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD MAR PY 2009 VL 129 IS 3 BP 331 EP 333 DI 10.1016/j.jlumin.2008.02.016 PG 3 WC Optics SC Optics GA 400QU UT WOS:000262884400033 ER PT J AU Bobrovskii, V Kazantsev, V Mirmelstein, A Mushnikov, N Proskurnina, N Voronin, V Pomjakushina, E Conder, K Podlesnyak, A AF Bobrovskii, V. Kazantsev, V. Mirmelstein, A. Mushnikov, N. Proskurnina, N. Voronin, V. Pomjakushina, E. Conder, K. Podlesnyak, A. TI Spontaneous and field-induced magnetic transitions in YBaCo2O5.5 SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Cobaltite; Metamagnetic transition; Pressure effect ID VISCOSITY; STATE; GD AB A detailed study of magnetic properties of cobaltite YBaCo2O5.5 has been performed in high ( up to 35 T) magnetic fields and under hydrostatic pressure up to 0.8 GPa. The temperatures of paramagnet-ferromagnet (PM-FM) and ferromagnet-antiferromagnet (FM-AF) phase transitions and their pressure derivatives have been determined. It has been revealed that in the compound with yttrium, in contrast to those with magnetic rare earth atoms, the AF-FM field-induced magnetic phase transition is accompanied by a considerable field hysteresis below 240 K, and the magnetic field of 35 T is not sufficient to complete this transition at low temperatures. The hysteresis value depends on the magnetic field sweep rate, which considered as an evidence of magnetic viscosity that is especially strong in the region of coexistence of the FM and AF phases. High values of susceptibility for the field-induced FM phase show that Co spin state in these compounds changes in strong magnetic field. (c) 2008 Elsevier B. V. All rights reserved. C1 [Bobrovskii, V.; Kazantsev, V.; Mirmelstein, A.; Mushnikov, N.; Proskurnina, N.; Voronin, V.] Inst Met Phys UB RAS, Ekaterinburg 620041, Russia. [Pomjakushina, E.; Conder, K.] PSI, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Podlesnyak, A.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. [Podlesnyak, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bobrovskii, V (reprint author), Inst Met Phys UB RAS, S Kovalevskaya St 18, Ekaterinburg 620041, Russia. EM bobrovskii@imp.uran.ru RI Podlesnyak, Andrey/A-5593-2013; Bobrovskii, Vladimir/J-5901-2013; Voronin, Vladimir/J-7733-2013; Proskurnina, Natalia/J-8145-2013; Mushnikov, Nikolay/K-9076-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Bobrovskii, Vladimir/0000-0002-4692-8889; Voronin, Vladimir/0000-0002-3901-9812; Proskurnina, Natalia/0000-0001-5423-6180; Mushnikov, Nikolay/0000-0002-6354-2558 FU Swiss National Science Foundation [IB7320-110895]; US Department of Energy [DE-AC05-00OR22725] FX This work is supported by the Swiss National Science Foundation through Grant SCOPES IB7320-110895; by the RAS Priority Program "Quantum Macrophysics'' (Project no. 3 of the RAS Ural Branch). ORNL/SNS is managed by UT-Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725. NR 34 TC 5 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD MAR PY 2009 VL 321 IS 5 BP 429 EP 437 DI 10.1016/j.jmmm.2008.09.030 PG 9 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 376LE UT WOS:000261184300020 ER PT J AU Pharr, GM Cheng, YT Hutchings, IM Sakai, M Moody, NR Sundararajan, G Swain, MV AF Pharr, George M. Cheng, Yang-Tse Hutchings, Ian M. Sakai, Mototsugu Moody, Neville R. Sundararajan, G. Swain, Michael V. TI INDENTATION METHODS IN ADVANCED MATERIALS RESEARCH Introduction SO JOURNAL OF MATERIALS RESEARCH LA English DT Editorial Material C1 [Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Pharr, George M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Knoxville, TN 37996 USA. [Cheng, Yang-Tse] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. [Hutchings, Ian M.] Univ Cambridge, Dept English, Cambridge CB2 1RX, England. [Sakai, Mototsugu] Toyohashi Univ Technol, Dept Mat Sci, Toyohashi, Aichi 4418580, Japan. [Moody, Neville R.] Sandia Natl Labs, Dept Hydrogen & Met Sci, Livermore, CA 94550 USA. [Sundararajan, G.] Int Adv Res Ctr Powder Met & New Mat, Hyderabad 500005, Andhra Pradesh, India. [Swain, Michael V.] Univ Sydney, Fac Dent, Biomat Sci Res Unit, Eveleigh, NSW 1430, Australia. RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RI Cheng, Yang-Tse/B-5424-2012; Hyderabad, ARCI/F-8552-2013 NR 6 TC 4 Z9 6 U1 1 U2 7 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2009 VL 24 IS 3 BP 579 EP 580 DI 10.1557/JMR.2009.0146 PG 2 WC Materials Science, Multidisciplinary SC Materials Science GA 460ST UT WOS:000267208100001 ER PT J AU Herbert, EG Oliver, WC Lumsdaine, A Pharr, GM AF Herbert, E. G. Oliver, W. C. Lumsdaine, A. Pharr, G. M. TI Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID CREEP COMPLIANCE; INDENTATION; LOAD AB The purpose of this work is to further develop experimental methodologies using flat punch nanoindentation to measure the constitutive behavior of viscoelastic solids in the frequency and time domain. The reference material used in this investigation is highly plasticized polyvinylchloride (PVC) with a glass transition temperature of - 17 degrees C. The nanoindentation experiments were conducted using a 983-mu m-diameter flat punch. For comparative purposes, the storage and loss modulus obtained by nanoindentation with a 103-mu m-diameter flat Punch and dynamic mechanical analysis are also presented. Over the frequency range of 0.01-50 Hz, the storage and loss modulus measured using nanoindentation and uniaxial compression is shown to be in excellent agreement. The creep compliance function measured using a constant stress test performed in uniaxial compression and flat punch nanoindentation is also shown to correlate well over nearly 4 decades in time. In addition, the creep compliance function predicted from nanoindentation data acquired in the frequency domain is shown to correlate strongly with the creep compliance function measured in the time domain. Time-temperature superposition of nanoindentation data taken at 5, 10, 15, and 22 degrees C shows the sample is not thermorheologically simple. and thus the technique cannot be used to expand the mechanical characterization of this material. Collectively, these results clearly demonstrate the ability of flat punch nanoindentation to accurately and precisely determine the constitutive behavior of viscoelastic solids in the time and frequency domain. C1 [Herbert, E. G.; Oliver, W. C.; Lumsdaine, A.] Agilent Technol, Nanotechnol Measurements Div, Res & Dev, Oak Ridge, TN 37830 USA. [Pharr, G. M.] Univ Tennessee, Coll Engn, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Herbert, EG (reprint author), Agilent Technol, Nanotechnol Measurements Div, Res & Dev, Oak Ridge, TN 37830 USA. EM erik.herbert@agilent.com NR 18 TC 37 Z9 38 U1 3 U2 39 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2009 VL 24 IS 3 BP 626 EP 637 DI 10.1557/JMR.2009.0089 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 460ST UT WOS:000267208100007 ER PT J AU Pharr, GM Strader, JH Oliver, WC AF Pharr, G. M. Strader, J. H. Oliver, W. C. TI Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID CONTACT STIFFNESS; ELASTIC-MODULUS; INSTRUMENTED INDENTATION; FORCE MODULATION; LOAD; HARDNESS; CURVES; AREA AB Experiments were performed on a (100) copper single crystal to examine the influences that small displacement oscillations used in continuous stiffness measurement techniques have on hardness and elastic-modulus measurements in nanoindentation experiments. For the commonly used 2-nm oscillation, significant errors were observed in the measured properties, especially the hardness, at penetration depths as large as 100 rim. The errors originate from the large amount of dynamic unloading that occurs in materials like copper that have high contact stiffness resulting from their high modulus-to-hardness ratios. A simple model for the loading and unloading behavior of an elastic-plastic material is presented that quantitatively describes the errors and can be used to partially correct for them. By correcting the data in accordance with model and performing measurements at smaller displacement oscillation amplitudes, the errors can be reduced. The observations have important implications for the interpretation of the indentation size effect. C1 [Pharr, G. M.; Strader, J. H.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Oliver, W. C.] Agilent Technol, Nanotechnol Measurement Div, Oak Ridge, TN 37830 USA. RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pharr@utk.edu NR 21 TC 72 Z9 74 U1 12 U2 78 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2009 VL 24 IS 3 BP 653 EP 666 DI 10.1557/JMR.2009.0096 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA 460ST UT WOS:000267208100010 ER PT J AU Cordill, MJ Moody, NR Prasad, SV Michael, JR Gerberich, WW AF Cordill, M. J. Moody, N. R. Prasad, S. V. Michael, J. R. Gerberich, W. W. TI Characterization of the mechanical behavior of wear surfaces on single crystal nickel by nanomechanical techniques SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID LIGA NICKEL; INDENTATION; HARDNESS; NANOINDENTATION; DEFORMATION; CONTACT; STRAINS; BEAM AB In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, < 001 > and < 001 >. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns. C1 [Cordill, M. J.] Austrian Acad Sci, Erich Schmid Inst, A-8700 Leoben, Austria. [Cordill, M. J.; Gerberich, W. W.] Univ Minnesota, Minneapolis, MN 55455 USA. [Moody, N. R.] Sandia Natl Labs, Livermore, CA 94551 USA. [Prasad, S. V.; Michael, J. R.] Sandia Natl Labs, Albuquerque, NM USA. RP Cordill, MJ (reprint author), Austrian Acad Sci, Erich Schmid Inst, A-8700 Leoben, Austria. EM megan.cordill@oeaw.ac.at OI Cordill, Megan/0000-0003-1142-8312 NR 28 TC 2 Z9 2 U1 3 U2 10 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2009 VL 24 IS 3 BP 844 EP 852 DI 10.1557/JMR.2009.0075 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 460ST UT WOS:000267208100027 ER PT J AU Lin, WC Otim, KJ Lenhart, JL Cole, PJ Shull, KR AF Lin, Wei-Chun Otim, Kathryn J. Lenhart, Joseph L. Cole, Phillip J. Shull, Kenneth R. TI Indentation fracture of silicone gels SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID TRIBLOCK COPOLYMER GELS; SOFT SOLIDS; POLY(DIMETHYLSILOXANE) NETWORKS; DEEP PENETRATION; MECHANICS; COMPRESSION; ELASTOMERS; BEHAVIOR; CONTACT; MODULUS AB Indentation tests were performed, using a flat punch probe, oil silicone gels to induce failure under compression. The silicone gels were formed from networks of vinyl-terminated polydimethylsiloxane (PDMS) with molecular weights of 800 and 28,000 g/mol and a sol fraction of trimethylsiloxy-terminated PDMS with molecular weights ranging from 1250 to 139,000 g/mol. Cone cracks were observed in samples that fractured from defects at the sample surface, but failure more commonly originated from the corners of the indenter. Ring cracks were observed for the most highly compliant samples that fractured at indentation depths approaching the overall thickness of the sample. In these cases we generally observed a delayed fracture response, with a time delay that increased with increasing sol fraction and decreased with increasing indentation load. C1 [Lin, Wei-Chun; Otim, Kathryn J.; Shull, Kenneth R.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Lenhart, Joseph L.; Cole, Phillip J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shull, KR (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM k-shull@northwestern.edu RI Shull, Kenneth/B-7536-2009; Lin, Wei-Chung/B-7248-2009 NR 28 TC 2 Z9 2 U1 1 U2 17 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2009 VL 24 IS 3 BP 957 EP 965 DI 10.1557/JMR.2009.0128 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 460ST UT WOS:000267208100039 ER PT J AU Jakes, JE Frihart, CR Beecher, JF Moon, RJ Resto, PJ Melgarejo, ZH Suarez, OM Baumgart, H Elmustafa, AA Stone, DS AF Jakes, J. E. Frihart, C. R. Beecher, J. F. Moon, R. J. Resto, P. J. Melgarejo, Z. H. Suarez, O. M. Baumgart, H. Elmustafa, A. A. Stone, D. S. TI Nanoindentation near the edge SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID ELASTIC QUARTER SPACE; INDENTATION EXPERIMENTS; LAYERED SPECIMEN; HARDNESS; MODULUS; COMPOSITES; INDENTER; LOAD AB Whenever a nanoindent is placed near an edge, such as the free edge of the specimen or heterophase interface intersecting the surface, the elastic discontinuity associated with the edge produces artifacts in the load-depth data. Unless properly handled in the data analysis, the artifacts can produce spurious results that obscure any real trends in properties as functions of position. Previously, we showed that the artifacts can be understood in terms of a structural compliance, C(s), which is independent of the size of the indent. In the present work, the utility of the SYS (Stone, Yoder, Sproul) correlation is demonstrated in its ability to remove the artifacts caused by C(s). We investigate properties: (i) near the surface of an extruded polymethyl methacrylate rod tested in cross section, (ii) of compound corner middle lamellae of loblolly pine (Pinus taeda) surrounded by relatively stiff wood cell walls, (iii) of wood cell walls embedded in a polypropylene matrix with some poorly bonded wood-matrix interfaces, (iv) of AlB(2) particles embedded in an aluminum matrix, and (v) of silicon-on-insulator thin film on substrate near the free edge of the specimen. C1 [Jakes, J. E.; Resto, P. J.; Melgarejo, Z. H.; Stone, D. S.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Jakes, J. E.; Frihart, C. R.; Beecher, J. F.; Moon, R. J.] US Forest Serv, Forest Prod Lab, Madison, WI 53726 USA. [Suarez, O. M.] Univ Puerto Rico, Dept Mat Sci & Engn, Mayaguez, PR 00681 USA. [Baumgart, H.; Elmustafa, A. A.] Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA. [Baumgart, H.; Elmustafa, A. A.] Old Dominion Univ, Dept Elect Engn, Norfolk, VA 23529 USA. [Stone, D. S.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Stone, DS (reprint author), Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. EM dsstone@wisc.edu RI Stone, Donald/A-7496-2016; OI Suarez, Oscar/0000-0002-3797-4787 NR 34 TC 42 Z9 42 U1 1 U2 27 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2009 VL 24 IS 3 BP 1016 EP 1031 DI 10.1557/JMR.2009.0076 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA 460ST UT WOS:000267208100047 ER PT J AU Bhattacharyya, D Mara, NA Dickerson, P Hoagland, RG Misra, A AF Bhattacharyya, D. Mara, N. A. Dickerson, P. Hoagland, R. G. Misra, A. TI Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID MECHANICAL-PROPERTIES; METALLIC MULTILAYERS; THIN-FILMS; COMPOSITES; DISLOCATION; CU; MICROSTRUCTURE; STRENGTH; HARDNESS; AG AB Nanoscale metallic multilayers, comprising two sets of materials-Cu/Nb and Cu/Ni-were deposited in two different layer thicknesses-nominally 20 and 5 nm. These multilayer samples were indented, and the microstructural changes under the indent tips were studied by extracting samples from underneath the indents using the focused ion beam (FIB) technique and by examining them under a transmission electron microscope (TEM). The deformation behavior underneath the indents, manifested in the bending of layers, reduction in layer thickness, shear band formation, dislocation crossing of interfaces, and orientation change of grains, has been characterized and interpreted in terms of the known deformation mechanisms of nanoscale multilayers. C1 [Bhattacharyya, D.; Mara, N. A.; Dickerson, P.; Hoagland, R. G.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bhattacharyya, D (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dhriti@lanl.gov RI Hoagland, Richard/G-9821-2012; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 NR 30 TC 29 Z9 29 U1 2 U2 39 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2009 VL 24 IS 3 BP 1291 EP 1302 DI 10.1557/JMR.2009.0147 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 460ST UT WOS:000267208100075 ER PT J AU Chandrasekar, R Zhang, LF Howe, JY Hedin, NE Zhang, Y Fong, H AF Chandrasekar, Ramya Zhang, Lifeng Howe, Jane Y. Hedin, Nyle E. Zhang, Yan Fong, Hao TI Fabrication and characterization of electrospun titania nanofibers SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID POLYMER-SOLUTIONS; TIO2 NANOFIBERS; SOLAR-CELLS; FIBERS; EFFICIENCIES; MORPHOLOGY AB Titania (TiO(2)) nanofibers were fabricated by electrospinning three representative spin dopes made of titanium (IV) n-butoxide (TNBT) and polyvinylpyrrolidone (PVP) with the TNBT/PVP mass ratio being 1/2 in three solvent systems including N,N-dimethylformamide (DMF), isopropanol, and DMF/isopropanol (1/1 mass ratio) mixture, followed by pyrolysis at 500 A degrees C. The detailed morphological and structural properties of both the as-electrospun precursor nanofibers and the resulting final TiO(2) nanofibers were characterized by SEM, TEM, and XRD. The results indicated that the precursor nanofibers and the final TiO(2) nanofibers made from the spin dopes containing DMF alone or DMF/isopropanol mixture as the solvent had the common cylindrical morphology with diameters ranging from tens to hundreds of nanometers, while those made from the spin dope containing isopropanol alone as the solvent had an abnormal concave morphology with sizes/widths ranging from sub-microns to microns. Despite the morphological discrepancies, all precursor nanofibers were structurally amorphous without distinguishable phase separation, while all final TiO(2) nanofibers consisted of anatase-phased TiO(2) single-crystalline grains with sizes of approximately 10 nm. The electrospun TiO(2) nanofiber mat is expected to significantly outperform other forms (such as powder and film) of TiO(2) for the solar cell (particularly dye-sensitized solar cell) and photo-catalysis applications. C1 [Chandrasekar, Ramya; Zhang, Lifeng; Hedin, Nyle E.; Fong, Hao] S Dakota Sch Mines & Technol, Dept Chem, Rapid City, SD 57701 USA. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Anhui Univ, Sch Phys & Mat Sci, Hefei 230039, Anhui, Peoples R China. RP Fong, H (reprint author), S Dakota Sch Mines & Technol, Dept Chem, Rapid City, SD 57701 USA. EM zhangyaner2005@163.com; hao.fong@sdsmt.edu RI Howe, Jane/G-2890-2011 FU U.S. Air Force Research Laboratory (AFRL) [FA9453-06-C-0366]; U.S. Department of Energy, the Assistant Secretary for Energy Efficiency & Renewable Energy, Office of FreedomCAR and Vehicle Technologies, though the High Temperature Materials Laboratory (HTML) at the Oak Ridge National Laboratory (ORNL) FX This research was supported by the U.S. Air Force Research Laboratory (AFRL) under the Cooperative Agreement Number (CAN) of FA9453-06-C-0366. TEM study was sponsored by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency & Renewable Energy, Office of FreedomCAR and Vehicle Technologies, though the High Temperature Materials Laboratory (HTML) at the Oak Ridge National Laboratory (ORNL). NR 26 TC 51 Z9 53 U1 7 U2 72 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD MAR PY 2009 VL 44 IS 5 BP 1198 EP 1205 DI 10.1007/s10853-008-3201-1 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 407QN UT WOS:000263379500007 ER PT J AU Kane, SR Letant, SE Alfaro, TM Krauter, PW Mahnke, R Legler, TC Raber, E AF Kane, S. R. Letant, S. E. Alfaro, T. M. Krauter, P. W. Mahnke, R. Legler, T. C. Raber, E. TI Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Rapid viability PCR; Bacillus anthracis; Bacillus atrophaeus; High throughput viability; Decontamination ID BIOLOGICAL WARFARE AGENTS; PROBABLE-NUMBER-PCR; SERIAL DILUTION; CLEAN ENOUGH; SEQUENCE; SURFACE; SECTOR; ASSAY AB To rapidly remediate facilities after a biothreat agent release, improved turnaround times are needed for sample analysis. Current methods to confirm the presence of a viable biothreat agent are limited by low sample throughput. We have developed a rapid-viability-polymerase chain reaction (RV-PCR) method to determine the presence of viable spores. The method combines high-throughput sample processing with 96-well PCR analysis, which measures a change in real-time, quantitative PCR response arising from increased target-cell populations during culturing. The method accurately detects 1 to 10 live spores in a high-dead spore background (10(6)). Field tests using approximately 1000 biological indicators, each containing 106 spores of the B. anthracis surrogate, Bacillus atrophaeus, exposed to seven lethal and sub-lethal chlorine dioxide levels showed no significant difference (p>0.05) between RV-PCR and standard culturing methods for detecting the percent survival of spores. RV-PCR results were obtained in <17 h compared to 7 days for the standard culturing method. High-throughput sample processing and RV-PCR protocols were also developed and tested for synthetic wipe samples containing reference dirt material. RV-PCR protocols allowed processing and accurate analysis of similar to 100 dirty wipe samples (2 '' x 2 '' synthetic) containing similar to 10 viable B. atrophaeus spores in <24 h. Quantitative RV-PCR protocols based on a Most-Probable-Number (MPN) statistical approach developed for B. anthracis Sterne resulted in more rapid turnaround times than those for traditional culturing and no significant difference in log colony-forming units compared to traditional viability analysis. Integration of RV-PCR assays with high-throughput protocols will allow the processing of 200 wipe samples per day per robot using commercially available automation. Published by Elsevier B.V. C1 [Kane, S. R.; Letant, S. E.; Alfaro, T. M.; Krauter, P. W.; Mahnke, R.; Legler, T. C.; Raber, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kane, SR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM kane11@llnl.gov FU U.S. Department of Energy [AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funding for this research was provided by the Department of Homeland Security and the Defense Threat Reduction Agency. The authors specially thank Joe Dalmasso, Apex Laboratories, for helpful discussions about protocol development and for production of highly pure spore preparations. The authors are also grateful to Dave Skodack, Darrell Dechant, Kevin Wade, Bob Summerville, and Buddy Britton at Sabre Technologies, Inc. and Paris Althouse (LLNL) for technical assistance with the chlorine dioxide fumigation study. Finally, the authors thank Bob Kirvel for technical editing. NR 18 TC 12 Z9 12 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD MAR PY 2009 VL 76 IS 3 BP 278 EP 284 DI 10.1016/j.mimet.2008.12.005 PG 7 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 421VJ UT WOS:000264386100009 PM 19141303 ER PT J AU Yang, C Jiang, W Chen, DH Adiga, U Ng, EG Chiu, W AF Yang, C. Jiang, W. Chen, D. -H. Adiga, U. Ng, E. G. Chiu, W. TI Estimating contrast transfer function and associated parameters by constrained non-linear optimization SO JOURNAL OF MICROSCOPY LA English DT Article DE Contrast transfer function; cryo-electron microscopy; parameter estimation ID SINGLE-PARTICLE RECONSTRUCTION; ELECTRON CRYOMICROSCOPY; CRYOELECTRON MICROGRAPHS; POWER SPECTRA; PROTEIN FOLD; IMAGES; MICROSCOPY; RESOLUTION; ALGORITHM; GROEL AB The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes. C1 [Yang, C.; Adiga, U.; Ng, E. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Jiang, W.] Purdue Univ, Dept Biol Sci, Markey Ctr Struct Biol, W Lafayette, IN 47907 USA. [Chen, D. -H.; Chiu, W.] Baylor Coll Med, Verna & Marrs McLean Dept Biochem & Mol Biol, Natl Ctr Macromol Imaging, Houston, TX 77030 USA. RP Yang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM CYang@lbl.gov; jiang12@purdue.edu FU NIH [P01GM064692, P41RR02250, R01GM070557] FX This research has been supported by NIH grants (P01GM064692, P41RR02250 and R01GM070557). We thank Dr. Robert M. Glaeser at University of California, Berkeley for helpful discussions. NR 41 TC 20 Z9 20 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-2720 EI 1365-2818 J9 J MICROSC-OXFORD JI J. Microsc.. PD MAR PY 2009 VL 233 IS 3 BP 391 EP 403 DI 10.1111/j.1365-2818.2009.03137.x PG 13 WC Microscopy SC Microscopy GA 412XR UT WOS:000263758000005 PM 19250460 ER PT J AU Craig, NC Moore, MC Neese, CF Oertel, DC Pedraza, L Masiello, T AF Craig, Norman C. Moore, Michael C. Neese, Chistopher F. Oertel, David C. Pedraza, Laura Masiello, Tony TI High-resolution infrared spectra of the two nonpolar isomers of 1,4-difluorobutadiene SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE 1,4-Difluorobutadiene isomers; High-resolution; Infrared; Rotational analysis; Rotational constants ID EQUILIBRIUM STRUCTURES; CIS; SPECTROSCOPY AB High-resolution (0.0013 cm(-1)) infrared spectra have been recorded for trans, trans-1,4-difluorobutadiene (ttDFBD) and cis,cis-1,4-difluorobutadiene (ccDFBD). The rotational structure in two C-type bands (v(10) and nu(12)) and one A-type band (nu(22)) for ttDFBD and in two C-type bands (nu(11) and nu(12)) for ccDFBD has been analyzed. Ground state and upper state rotational constants, except for nu(10) of ttDFBD, have been fitted. Band centers are 934.1 cm(-1) (nu(10)), 227.985 cm(-1) (nu(12)), and 1087.919 cm(-1) (nu(22)) for ttDFBD. Band centers are 762.891 cm(-1) (nu(11)) and 327.497 cm(-1) (nu(12)) for ccDFBD. The small inertial defects in the ground state confirm that both isomers are planar. Obtaining the ground state rotational constants for the two isomers of DFBD is a first step toward determining their semi-experimental equilibrium structures. (C) 2009 Elsevier Inc. All rights reserved. C1 [Craig, Norman C.; Moore, Michael C.; Neese, Chistopher F.; Oertel, David C.; Pedraza, Laura] Oberlin Coll, Dept Chem & Biochem, Oberlin, OH 44074 USA. [Masiello, Tony] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Craig, NC (reprint author), Oberlin Coll, Dept Chem & Biochem, 119 Woodland St, Oberlin, OH 44074 USA. EM norm.craig@oberlin.edu RI Neese, Christopher/B-5550-2013 OI Neese, Christopher/0000-0002-6014-5004 FU NSF [CHE-9710375]; Dreyfus Senior Scholar Mentor; National Science Foundation [0420717]; United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division; Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory; Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle [DE-AC05-76RLO 1830] FX We are grateful to Dr. Michael Lock, who recorded the initial high-resolution spectra of ttDFBD and ccDFBD at Justus Liebig Universitat in Giessen, Germany. Deacon J. Nemchick assisted in the analysis of the bands for ttDFBD. The initial part of the investigation of the ttDFBD isomer was supported by NSF CHE-9710375. Most of the work was done under a Dreyfus Senior Scholar Mentor grant. National Science Foundation Grant 0420717 underwrote the purchase and technical support for the Beowulf computer cluster at Oberlin College. This research was also supported, in part, by the United States Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division. The high-resolution spectroscopy was performed at the W.R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC05-76RLO 1830. NR 14 TC 3 Z9 3 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAR PY 2009 VL 254 IS 1 BP 39 EP 46 DI 10.1016/j.jms.2009.01.003 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 422BA UT WOS:000264400800007 ER PT J AU Brunger, AT Weninger, K Vrljic, M Choi, UB Bowen, MA Chu, S AF Brunger, A. T. Weninger, K. Vrljic, M. Choi, U. B. Bowen, M. A. Chu, S. TI SINGLE MOLECULE STUDIES OF THE SYNAPTIC VESICLE FUSION MACHINERY SO JOURNAL OF NEUROCHEMISTRY LA English DT Meeting Abstract CT 40th Annual Meeting of the American-Society-for-Neurochemistry CY MAR 07-11, 2009 CL Charleston, SC SP Amer Soc Neurochem C1 [Brunger, A. T.; Vrljic, M.] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA. [Chu, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Weninger, K.; Choi, U. B.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Bowen, M. A.] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3042 J9 J NEUROCHEM JI J. Neurochem. PD MAR PY 2009 VL 108 BP 55 EP 55 PG 1 WC Biochemistry & Molecular Biology; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 407AU UT WOS:000263336800116 ER PT J AU Duong, TTH Witting, PK Antao, ST Parry, SN Kennerson, M Lai, B Vogt, S Lay, PA Harris, HH AF Duong, Thi Thuy Hong Witting, Paul Kenneth Antao, Shane Tony Parry, Sarah Nicole Kennerson, Marina Lai, Barry Vogt, Stefan Lay, Peter Andrew Harris, Hugh Hamlyn TI Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury SO JOURNAL OF NEUROCHEMISTRY LA English DT Article DE antioxidant; apoptosis; neuroglobin; neuro-protection; oxidative stress; synchrotron radiation; X-ray fluorescence imaging ID NUCLEOTIDE DISSOCIATION INHIBITOR; HUMAN NEUROBLASTOMA-CELLS; OXIDATIVE STRESS; GLUCOSE-DEPRIVATION; CEREBRAL-ISCHEMIA; SH-SY5Y CELLS; MOUSE-BRAIN; IN-VIVO; NEUROPROTECTION; OXYGEN AB Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca(2+), and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a similar to 4 to 5-fold increase in cell death (maximum similar to 25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of beta-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca(2+) contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the beta-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca(2+) influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis. C1 [Harris, Hugh Hamlyn] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Lai, Barry; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Lay, Peter Andrew] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Kennerson, Marina] Concord Hosp, ANZAC Res Inst, Northcott Neurosci Lab, Concord, NSW, Australia. [Duong, Thi Thuy Hong; Witting, Paul Kenneth; Antao, Shane Tony; Parry, Sarah Nicole] Concord Hosp, ANZAC Res Inst, Vasc Biol Grp, Concord, NSW, Australia. RP Harris, HH (reprint author), Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. EM hugh.harris@adelaide.edu.au RI Harris, Hugh/A-4983-2008; Kennerson, Marina/B-5058-2014; Lay, Peter/B-4698-2014; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Lay, Peter/0000-0002-3232-2720; Harris, Hugh/0000-0002-3472-8628 FU Commonwealth of Australia; US Department of Energy, Office of Science [W-31-109-Eng-38]; ARC Research Fellowship [DP034325]; National Heart Foundation [G 07S30435]; ARC Discovery [DP0664706]; ARC Professorial Fellowship [DP0208409] FX We thank Dr Anne Rich and Ms Sandra Wang for their excellent technical assistance with XRF data collection and production of the human Nb construct, respectively. This research was supported by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, under contract no. W-31-109-Eng-38. The research was also supported by an ARC Research Fellowship (DP034325) and National Heart Foundation grant (G 07S30435) to PKW; and an ARC Discovery Grant DP0664706 to PAL and HHH and an ARC Professorial Fellowship DP0208409 to PAL. NR 56 TC 44 Z9 45 U1 1 U2 12 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3042 J9 J NEUROCHEM JI J. Neurochem. PD MAR PY 2009 VL 108 IS 5 BP 1143 EP 1154 DI 10.1111/j.1471-4159.2008.05846.x PG 12 WC Biochemistry & Molecular Biology; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA 402WW UT WOS:000263044800005 PM 19154338 ER PT J AU Wang, SY Wang, CZ Zheng, CX Ho, KM AF Wang, Songyou Wang, C. Z. Zheng, C. X. Ho, K. M. TI Structure and dynamics of liquid Al1-xSix alloys by ab initio molecular dynamics simulations SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Liquid alloys and liquid metals; Ab initio; Molecular dynamics; Short-range order ID TOTAL-ENERGY CALCULATIONS; COOLING RATE DEPENDENCE; WAVE BASIS-SET; METALS; SOLIDIFICATION; ALUMINUM; GLASS; MELT AB First-principles molecular dynamics (MD) simulations are performed to study the structure and dynamics of liquid Al1-xSix (x = 0.0, 0,12, 0.2, 0.4, 0.6. 0.8) at the temperature of 1573 K. The composition dependence of static structure factors, pair correlation functions, and diffusion constants are investigated. We found that the structure of the liquid Al1-xSix alloys is strongly dependent on the composition. From our simulation and analysis, we can see that although liquid Al1-xSix is metallic, there are some degrees of covalent tetrahedral short-range order in the liquid. The degree of tetrahedral short-range order increases linearly as the Si concentration in the liquid increased. The diffusion coefficients of both Al and Si atoms in liquid Al1-xSix alloys at 1573 K are not very sensitive to the composition. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wang, Songyou] Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China. [Wang, Songyou; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Wang, Songyou; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zheng, C. X.] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. RP Wang, SY (reprint author), Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Handan Rd 220, Shanghai 200433, Peoples R China. EM sywang@fudan.ac.cn RI Wang, Songyou/H-4529-2011 OI Wang, Songyou/0000-0002-4249-3427 FU Director for Energy Research, Office of Basic Energy Sciences; NSF of China [60578046]; Fudan High-End Computing Center FX Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No.DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences. One of the authors (S.Y.W.) was supported by the NSF of China (Grant No. 60578046), and the Fudan High-End Computing Center. NR 31 TC 12 Z9 12 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAR 1 PY 2009 VL 355 IS 6 BP 340 EP 347 DI 10.1016/j.jnoncrysol.2009.01.007 PG 8 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 424VC UT WOS:000264595400002 ER PT J AU Bolch, WE Eckerman, KF Sgouros, G Thomas, SR AF Bolch, Wesley E. Eckerman, Keith F. Sgouros, George Thomas, Stephen R. TI MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry-Standardization of Nomenclature SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE MIRD schema; ICRP schema; absorbed dose; equivalent dose; effective dose ID DOSE-RATE; RADIO-IMMUNOTHERAPY; RADIOIMMUNOTHERAPY; RADIONUCLIDES; RADIOTHERAPY; EQUIVALENT; THERAPY; TOXICITY; EMITTERS; ALPHA AB The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations for limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy. C1 [Bolch, Wesley E.] Univ Florida, Dept Nucl & Radiol Engn, MIRD Comm, Gainesville, FL 32611 USA. [Eckerman, Keith F.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Sgouros, George] Johns Hopkins Med Inst, Dept Radiol, Baltimore, MD 21205 USA. [Thomas, Stephen R.] Univ Cincinnati, Dept Radiol, Cincinnati, OH USA. RP Bolch, WE (reprint author), Univ Florida, Dept Nucl & Radiol Engn, MIRD Comm, 202 Nucl Sci Ctr, Gainesville, FL 32611 USA. EM wbotch@ufl.edu NR 46 TC 166 Z9 169 U1 2 U2 13 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD MAR PY 2009 VL 50 IS 3 BP 477 EP 484 DI 10.2967/jnumed.108.056036 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 417OB UT WOS:000264084500028 PM 19258258 ER PT J AU Sgouros, G Howell, RW Bolch, WE Fisher, DR AF Sgouros, George Howell, Roger W. Bolch, Wesley E. Fisher, Darrell R. TI MIRD Commentary: Proposed Name for a Dosimetry Unit Applicable to Deterministic Biological Effects-The Barendsen (Bd) SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE MIRD; barendsen (Bd); dosimetry ID DIFFERENT IONIZING RADIATIONS; DOUBLE-STRAND BREAKS; 15 MEV NEUTRONS; KV X-RAYS; HUMAN CELLS; TISSUE CULTURE; MAMMALIAN-CELLS; ALPHA-PARTICLES; EXPERIMENTAL RADIOTHERAPY; PROLIFERATIVE CAPACITY AB The fundamental physical quantity for relating all biologic effects to radiation exposure is the absorbed dose, the energy imparted per unit mass of tissue. Absorbed dose is expressed in units of joules per kilogram (J/kg) and is given the special name gray (Gy). Exposure to ionizing radiation may cause both deterministic and stochastic biologic effects. To account for the relative effect per unit absorbed dose that has been observed for different types of radiation, the International Commission on Radiological Protection (ICRP) has established radiation weighting factors for stochastic effects. The product of absorbed dose in Gy and the radiation weighting factor is defined as the equivalent dose. Equivalent dose values are designated by a special named unit, the sievert (Sv). Unlike the situation for stochastic effects, no well-defined formalism and associated special named quantities have been widely adopted for deterministic effects. The therapeutic application of radionuclides and, specifically, alpha-particle emitters in nuclear medicine has brought to the forefront the need for a well-defined dosimetry formalism applicable to deterministic effects that is accompanied by corresponding special named quantities. This commentary reviews recent proposals related to this issue and concludes with a recommendation to establish a new named quantity. C1 [Sgouros, George] Johns Hopkins Univ, Sch Med, Dept Radiol & Radiol Sci, Baltimore, MD 21231 USA. [Howell, Roger W.] Univ Med & Dent New Jersey, New Jersey Med Sch, Canc Res Ctr, Dept Radiol, Newark, NJ 07103 USA. [Bolch, Wesley E.] Univ Florida, Dept Nucl & Radiol Engn, Gainesville, FL USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sgouros, G (reprint author), Johns Hopkins Univ, Sch Med, Dept Radiol & Radiol Sci, CRB 2 4M61,1550 Orleans St, Baltimore, MD 21231 USA. EM gsgouros@jhml.edu NR 45 TC 15 Z9 15 U1 1 U2 2 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD MAR PY 2009 VL 50 IS 3 BP 485 EP 487 DI 10.2967/jnumed.108.057398 PG 3 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 417OB UT WOS:000264084500029 PM 19258259 ER PT J AU Ramseier, CA Kinney, JS Herr, AE Braun, T Sugai, JV Shelburne, CA Rayburn, LA Tran, HM Singh, AK Giannobile, WV AF Ramseier, Christoph A. Kinney, Janet S. Herr, Amy E. Braun, Thomas Sugai, James V. Shelburne, Charlie A. Rayburn, Lindsay A. Tran, Huu M. Singh, Anup K. Giannobile, William V. TI Identification of Pathogen and Host-Response Markers Correlated With Periodontal Disease SO JOURNAL OF PERIODONTOLOGY LA English DT Article DE Diagnosis; periodontal disease; saliva ID GINGIVAL CREVICULAR FLUID; OF-CARE DIAGNOSTICS; CROSS-LINKS ICTP; SUBGINGIVAL PLAQUE; SALIVARY DIAGNOSTICS; ADULT PERIODONTITIS; HEALTH; TECHNOLOGIES; BIOMARKERS; INFECTION AB Background: Periodontitis is the major cause of tooth loss in adults and is linked to systemic illnesses, such as cardiovascular disease and stroke. The development of rapid point-of-care (POC) chairside diagnostics has the potential for the early detection of periodontal infection and progression to identify incipient disease and reduce health care costs. However, validation of effective diagnostics requires the identification and verification of biomarkers correlated with disease progression. This clinical study sought to determine the ability of putative host- and microbially derived biomarkers to identify periodontal disease status from whole saliva and plaque biofilm. Methods: One hundred human subjects were equally recruited into a healthy/gingivitis group or a periodontitis population. Whole saliva was collected from all subjects and analyzed using antibody arrays to measure the levels of multiple proinflammatory cytokines and bone resorptive/turnover markers. Results: Salivary biomarker data were correlated to comprehensive clinical, radiographic, and microbial plaque biofilm levels measured by quantitative polymerase chain reaction (qPCR) for the generation of models for periodontal disease identification. Significantly elevated levels of matrix metalloproteinase (MMP)-8 and -9 were found in subjects with advanced periodontitis with Random Forest importance scores of 7.1 and 5.1, respectively. The generation of receiver operating characteristic curves demonstrated that permutations of salivary biomarkers and pathogen biofilm values augmented the prediction of disease category. Multiple combinations of salivary biomarkers (especially MMP-8 and -9 and osteoprotegerin) combinedwith red-complex anaerobic periodontal pathogens (such as Porphyromonas gingivalis or Treponema denticola) provided highly accurate predictions of periodontal disease category. Elevated salivary MMP-8 and T denticola biofilm levels displayed robust combinatorial characteristics in predicting periodontal disease severity (area under the curve 0.88; odds ratio = 24.6; 95% confidence interval: 5.2 to 116.5). Conclusions: Using qPCR and sensitive immunoassays, we identified host- and bacterially derived biomarkers correlated with periodontal disease. This approach offers significant potential for the discovery of biomarker signatures useful in the development of rapid POC chairside diagnostics for oral and systemic diseases. Studies are ongoing to apply this approach to the longitudinal predictions of disease activity. J Periodontol 2009;80:436-446. C1 [Ramseier, Christoph A.; Kinney, Janet S.; Braun, Thomas; Sugai, James V.; Rayburn, Lindsay A.; Giannobile, William V.] Univ Michigan, Sch Dent, Michigan Ctr Oral Hlth Res, Dept Periodont & Oral Med, Ann Arbor, MI 48106 USA. [Herr, Amy E.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Braun, Thomas] Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48106 USA. [Shelburne, Charlie A.] Univ Michigan, Sch Dent, Dept Biol & Mat Sci, Ann Arbor, MI 48106 USA. [Tran, Huu M.; Singh, Anup K.] Sandia Natl Labs, Biosyst Res Dept, Livermore, CA USA. [Giannobile, William V.] Univ Michigan, Coll Engn, Dept Biomed Engn, Ann Arbor, MI 48106 USA. RP Giannobile, WV (reprint author), Univ Michigan, Sch Dent, Michigan Ctr Oral Hlth Res, Dept Periodont & Oral Med, 24 Frank Lloyd Wright Dr,Lobby M,Box 422, Ann Arbor, MI 48106 USA. EM william.giannobile@umich.edu RI Rastelli, Marcio/B-8034-2011; OI Herr, Amy/0000-0002-6906-2985; Giannobile, William/0000-0002-7102-9746 FU National Institute of Dental and Craniofacial Research [U01-DE014961]; National Center for Research Resources [M01-RR000042]; Swiss Society of Periodontology, Brig, Switzerland FX This work was supported by the National Institute of Dental and Craniofacial Research (U01-DE014961) and the National Center for Research Resources (M01-RR000042), Bethesda, Maryland, and the Swiss Society of Periodontology, Brig, Switzerland. Dr. Singh is a manager and Dr. Tran is a principal technologist in the Biosystems Research Department at Sandia National Laboratories. Drs. Herr, Shelburne, Braun, Singh, and Giannobile hold intellectual property related to this article. This trial is registered on the www.clinicaltrials.gov database (NCT00277745). The authors appreciate the clinical assistance of Drs. Thiago Morelli, Amy Kim, and Noah Smith, Michigan Center for Oral Health Research. NR 40 TC 131 Z9 132 U1 2 U2 23 PU AMER ACAD PERIODONTOLOGY PI CHICAGO PA 737 NORTH MICHIGAN AVENUE, SUITE 800, CHICAGO, IL 60611-2690 USA SN 0022-3492 J9 J PERIODONTOL JI J. Periodont. PD MAR PY 2009 VL 80 IS 3 BP 436 EP 446 DI 10.1902/jop.2009.080480 PG 11 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 419YX UT WOS:000264256700011 PM 19254128 ER PT J AU Engel, EC Weltzin, JF Norby, RJ Classen, AT AF Engel, E. Cayenne Weltzin, Jake F. Norby, Richard J. Classen, Aimee T. TI Responses of an old-field plant community to interacting factors of elevated [CO2], warming, and soil moisture SO JOURNAL OF PLANT ECOLOGY LA English DT Article DE climate change; foliar cover; multi-factor interactions; diversity; richness ID ATMOSPHERIC CO2; CALCAREOUS GRASSLAND; WATER AVAILABILITY; SPECIES RICHNESS; ECOSYSTEM; TEMPERATURE; ENRICHMENT; SUCCESSION; DIVERSITY; GROWTH AB Aims The direct effects of atmospheric and climatic change factors-atmospheric [CO2], air temperature and changes in precipitation-can shape plant community composition and alter ecosystem function. It is essential to understand how these factors interact to make better predictions about how ecosystems may respond to change. We investigated the direct and interactive effects of [CO2], warming and altered soil moisture in open-top chambers (OTCs) enclosing a constructed old-field community to test how these factors shape plant communities. Material and methods The experimental facility in Oak Ridge, TN, USA, made use of 4-m diameter OTCs and rain shelters to manipulate [CO2] (ambient, ambient + 300 ppm), air temperature (ambient, ambient + 3.5 degrees C) and soil moisture (wet, dry). The plant communities within the chambers comprised seven common old-field species, including grasses, forbs and legumes. We tracked foliar cover for each species and calculated community richness, evenness and diversity from 2003 to 2005. Important findings This work resulted in three main findings: (1) warming had species-specific effects on foliar cover that varied through time and were altered by soil moisture treatments; (2) [CO2] had little effect on individual species or the community; (3) diversity, evenness and richness were influenced most by soil moisture, primarily reflecting the response of one dominant species. We conclude that individualistic species responses to atmospheric and climatic change can alter community composition and that plant populations and communities should be considered as part of analyses of terrestrial ecosystem response to climate change. However, prediction of plant community responses may be difficult given interactions between factors and changes in response through time. C1 [Engel, E. Cayenne; Weltzin, Jake F.; Classen, Aimee T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Engel, EC (reprint author), Univ Nevada, Publ Lands Inst, 4505 Maryland Pkwy,RAJ 280 Box 452040, Las Vegas, NV 89154 USA. EM cayenne.engel@unlv.edu RI Classen, Aimee/C-4035-2008; Norby, Richard/C-1773-2012 OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828 NR 59 TC 31 Z9 35 U1 2 U2 56 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1752-9921 J9 J PLANT ECOL-UK JI J. Plant Ecol. PD MAR PY 2009 VL 2 IS 1 BP 1 EP 11 DI 10.1093/jpe/rtn026 PG 11 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA 441SN UT WOS:000265790900001 ER PT J AU Adachi, H Ahmed, S Lee, SHD Papadias, D Ahluwalia, RK Bendert, JC Kanner, SA Yamazaki, Y AF Adachi, H. Ahmed, S. Lee, S. H. D. Papadias, D. Ahluwalia, R. K. Bendert, J. C. Kanner, S. A. Yamazaki, Y. TI A natural-gas fuel processor for a residential fuel cell system SO JOURNAL OF POWER SOURCES LA English DT Article DE Fuel cell systems; Distributed power generation; Cogeneration of heat and power; Polymer electrolyte; Autothermal reforming; Natural gas ID PARTIAL OXIDATION; HEXAALUMINATE CATALYSTS; METALLIC FOAMS; SHIFT REACTION; PERFORMANCE; METHANE; GASOLINE; REACTOR; OXIDES; COMBUSTION AB A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing similar to 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored. (C) 2008 Elsevier B.V. All rights reserved. C1 [Adachi, H.] Japan Inst Energy, Tokyo, Japan. [Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Yamazaki, Y.] Tokyo Inst Technol Nagatsuta, Yokohama, Kanagawa, Japan. RP Ahluwalia, RK (reprint author), Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM papadias@anl.gov FU New Energy and Industrial Technology Development Organization (NEDO), Japan FX The authors thank Mr. Steve Calderone, Dr. Magali Ferrandon, Dr. Theodore Krause and Dr. Romesh Kumar for their help and support on this project. This work was funded by New Energy and Industrial Technology Development Organization (NEDO),Japan. The submitted manuscript has been created by the UChicago LLC, as operator of Argonne National Laboratory under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public and perform publicly and display publicly, by or on behalf of the Government. NR 24 TC 16 Z9 16 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2009 VL 188 IS 1 BP 244 EP 255 DI 10.1016/j.jpowsour.2008.11.097 PG 12 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 421XK UT WOS:000264391400036 ER PT J AU Jung, YS Lee, S Ahn, D Dillon, AC Lee, SH AF Jung, Yoon S. Lee, Sangkyoo Ahn, Dongjoon Dillon, Anne C. Lee, Se-Hee TI Electrochemical reactivity of ball-milled MoO(3-y) as anode materials for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-ion batteries; Metal oxide; Ball-milling; Nanostructure; Conversion reaction; Reactivity ID NEGATIVE-ELECTRODE MATERIALS; SECONDARY BATTERIES; MOLYBDENUM DIOXIDE; LI-STORAGE; PERFORMANCE; INTERCALATION; ALPHA-FE2O3; REDUCTION; CAPACITY; POWDER AB The electrochemical reactivity of ball-milled MoO(3) powders was investigated in Li rechargeable cells. High-energy ball-milling converts highly-crystalline MoO(3) bulk powders into partially reduced low-crystalline MoO(3-y) materials with a reduced particle size. Both bulk and ball-milled MoO(3) exhibit a first discharge capacity beyond 1100 mAh g(-1) when tested in the 0-3 V (vs. Li/Li(+)) range, which is indicative of a complete conversion reaction. It is found that partial reduction caused by ball-milling results in a reduction in the conversion reaction. Additionally, incomplete re-oxidation during subsequent charge results in the formation of MoO(2) instead of MoO(3), which in turn affects the reactivity in subsequent cycles. As compared to bulk MoO(3), ball-milled MoO(3-y) showed significantly enhanced cycle performance (bulk: 27.6% charge capacity retention at the 10th cycle vs. ball-milled for 8 h: 64.4% at the 35th cycle), which can be attributed to the nano-texture wherein nanometer-sized particles aggregate to form secondary ones. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jung, Yoon S.; Lee, Sangkyoo; Ahn, Dongjoon; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM sehee.lee@colorado.edu RI Lee, Sehee/A-5989-2011; Jung, Yoon Seok/B-8512-2011 OI Jung, Yoon Seok/0000-0003-0357-9508 FU U.S. Department of Energy [DE-AC36-99-GO10337]; Korea Research Foundation [KRF-2008-357-D00066] FX This work Was funded by the U.S. Department of Energy under Subcontract number DE-AC36-99-GO10337 through the Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies Program. Dr. Yoon S. Jung acknowledges the Korea Research Foundation Grant funded by the Korean Government [KRF-2008-357-D00066]. Sangkyoo Lee acknowledges the Korea South-East Power Generation Co. NR 46 TC 73 Z9 76 U1 4 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2009 VL 188 IS 1 BP 286 EP 291 DI 10.1016/j.jpowsour.2008.11.125 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 421XK UT WOS:000264391400042 ER PT J AU Nam, KW Lee, CW Yang, XQ Cho, BW Yoon, WS Kim, KB AF Nam, Kyung-Wan Lee, Chang-Wook Yang, Xiao-Qing Cho, Byung Won Yoon, Won-Sub Kim, Kwang-Bum TI Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Supercapacitor; Nanocomposite; Organic electrolyte; Manganese oxide; Carbon nanotube; Specific energy ID RECHARGEABLE LITHIUM BATTERIES; CHARGE STORAGE MECHANISM; ELECTROCHEMICAL CAPACITORS; ACETYLENE BLACK; ENERGY-STORAGE; MNO2; PERFORMANCE; COMPOSITES; DIOXIDE; INTERCALATION AB Thin amorphous manganese oxide layers with a thickness of 3-5 nm are electrodeposited on a carbon nanotube (CNT) film substrate that has a three-dimensional nanoporous structure(denoted as MnO(2)/CNT electrode). For the purpose of comparison, manganese oxide films are also electrodeposited on a flat Pt-coated Si wafer substrate (denoted as MnO(2) film electrode). The pseudocapacitive properties of the MnO2 film and MnO(2)/CNT electrodes are examined in both aqueous electrolyte (1.0 M KCl) and nonaqueous organic electrolyte (1.0 M LiClO(4) in propylene carbonate). While both types of electrode show Pseudocapacitive behaviour in the aqueous electrolyte, only the MnO(2)/CNT electrode does so in the organic electrolyte, due to its high oxide/electrolyte interfacial area and improved electron conduction through the CNT substrate. Compared with the MnO(2) film electrode, the MnO2/CNT electrode shows a much higher specific capacitance and better high-rate capability, regardless of the electrolyte used. Use of the organic electrolyte results in a similar to 6 times higher specific energy compared with that obtained with the aqueous electrolyte, while maintaining a similar specific power. The construction of a three-dimensional nanoporous network structure consisting of a thin oxide layer on a CNT film substrate at the nm scale and the use of an organic electrolyte are promising approaches to improving the specific energy of supercapacitors. (C) 2008 Elsevier B.V. All rights reserved. C1 [Nam, Kyung-Wan; Lee, Chang-Wook; Kim, Kwang-Bum] Yonsei Univ, Div Mat Sci & Engn, Seoul 120749, South Korea. [Nam, Kyung-Wan; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Cho, Byung Won] Korea Inst Sci & Technol, Battery Res Ctr, Seoul 130650, South Korea. [Yoon, Won-Sub] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. RP Kim, KB (reprint author), Yonsei Univ, Div Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea. EM wsyoon@kookmin.ac.kr; kbkim@yonsei.ac.kr RI Nam, Kyung-Wan Nam/G-9271-2011; Yoon, Won-Sub/H-2343-2011; wu, peng/E-4864-2012; Nam, Kyung-Wan/B-9029-2013; Nam, Kyung-Wan/E-9063-2015 OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369 FU Korea Science & Engineering Foundation (KOSEF); Ministry of Science and Technology [ROA-2007-000-10042-0]; U.S. Department of Energy [DEAC02-98CH10886] FX This work was supported by the Korea Science & Engineering Foundation (KOSEF) through the National Research Lab. Program funded by the Ministry of Science and Technology (No. ROA-2007-000-10042-0). The work at Brookhaven National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of "Hybrid and Electric Systems", of the U.S. Department of Energy under Contract Number DEAC02-98CH10886. NR 44 TC 132 Z9 136 U1 12 U2 144 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2009 VL 188 IS 1 BP 323 EP 331 DI 10.1016/j.jpowsour.2008.11.133 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 421XK UT WOS:000264391400049 ER PT J AU Wu, S Lourette, NM Tolic, N Zhao, R Robinson, EW Tolmachev, AV Smith, RD Pasa-Tolic, L AF Wu, Si Lourette, Natacha M. Tolic, Nikola Zhao, Rui Robinson, Errol W. Tolmachev, Aleksey V. Smith, Richard D. Pasa-Tolic, Ljiljana TI An Integrated Top-Down and Bottom-Up Strategy for Broadly Characterizing Protein Isoforms and Modifications SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Top-down; bottom-up; proteomics; intact proteins; HPLC; tandem MS; mass spectrometry; FTICR; RPLC ID ELECTRON-CAPTURE DISSOCIATION; TANDEM MASS-SPECTROMETRY; INTACT PROTEINS; POSTTRANSLATIONAL MODIFICATIONS; SHEWANELLA-ONEIDENSIS; HISTONE H3; IDENTIFICATION; PROTEOMICS; RESOLUTION; MS AB We present an integrated top-down and bottom-up approach that is facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs high-resolution, reversed-phase (RP) LC separations coupled on-line with a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer to profile and tentatively identify modified proteins, using detected intact protein masses in conjunction with bare protein identifications from the bottom-up analysis of the corresponding LC fractions. Selected identifications are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original fraction used for bottom-up analysis. In a proof-of-principle demonstration, this comprehensive strategy was applied to identify protein isoforms arising from various amino acid modifications (e.g., acetylation, phosphorylation) and genetic variants (e.g., single nucleotide polymorphisms, SNPs). This strategy overcomes major limitations of traditional bottom-up (e.g., inability to characterize multiple unexpected protein isoforms and genetic variants) and top-down (e.g., low throughput) approaches. C1 [Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, EMSL, MSIN K8 98, Richland, WA 99352 USA. RP Pasa-Tolic, L (reprint author), Pacific NW Natl Lab, EMSL, MSIN K8 98, POB 999, Richland, WA 99352 USA. EM ljiljana.pasatolic@pnl.gov RI Robinson, Errol/I-3148-2012; Smith, Richard/J-3664-2012 OI Robinson, Errol/0000-0003-0696-6239; Smith, Richard/0000-0002-2381-2349 FU National Center for Research Resources [RR 018522]; National Institute of Allergy and Infectious Diseases [YI-AI-4894-01]; National Institute of General Medical Sciences [1101 GM063883]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research FX The authors thank Drs. Robert A Maxwell, Keqi Tang, Anil Shukla, and Rui Zhang for helpful discussions and contributing to the improvement of instrumental capabilities and performance. Penny Colton is gratefully acknowledged. for her helpful manuscript review. Portions of this work were supported by the National Center for Research Resources (RR 018522), the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement YI-AI-4894-01), the National Institute of General Medical Sciences (NIGMS, 1101 GM063883), and the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. Work was performed in the Environmental Molecular Science Laboratory, a DOE national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DEAC05-76RLO 1830. NR 63 TC 52 Z9 53 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAR PY 2009 VL 8 IS 3 BP 1347 EP 1357 DI 10.1021/pr800720d PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 416WA UT WOS:000264035000024 PM 19206473 ER PT J AU Chowdhury, SM Shi, L Yoon, HJ Ansong, C Rommereim, LM Norbeck, AD Auberry, KJ Moore, RJ Adkins, JN Heffron, F Smith, RD AF Chowdhury, Saiful M. Shi, Liang Yoon, Hyunjin Ansong, Charles Rommereim, Leah M. Norbeck, Angela D. Auberry, Kenneth J. Moore, Ronald J. Adkins, Joshua N. Heffron, Fred Smith, Richard D. TI A Method for Investigating Protein-Protein Interactions Related to Salmonella Typhimurium Pathogenesis SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE HBH tag; formaldehyde; cross-linking; mass spectrometry; in vivo interactions ID ENTERICA SEROVAR TYPHIMURIUM; FORMALDEHYDE-INDUCED MODIFICATIONS; INTEGRATION HOST FACTOR; MASS-SPECTROMETRY; ESCHERICHIA-COLI; CROSS-LINKING; SACCHAROMYCES-CEREVISIAE; PROTEOMIC ANALYSIS; CHROMOSOMAL GENES; VIRULENCE GENE AB We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella enterica serovar Typhimurium (Salmonella Typhimurium). This method includes (i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques, (ii) in vivo cross-linking with formaldehyde, (iii) tandem affinity purification of bait proteins under fully denaturing conditions, and (iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions and permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of noncross-linked proteins to bait proteins. Two different negative controls were employed to eliminate the possibility of identifying background and nonspecific proteins as interacting partners, especially those caused by nonspecific binding to the stationary phase used for protein purification. In an initial demonstration of this approach, we tagged three Salmonella proteins-HimD, PduB and PhoP-with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified for each bait protein, including the known binding partners such as HimA for HimD, as well as unexpected binding partners. Our results suggest that novel protein-protein interactions identified may be critical to pathogenesis by Salmonella. C1 [Chowdhury, Saiful M.; Shi, Liang; Ansong, Charles; Norbeck, Angela D.; Auberry, Kenneth J.; Moore, Ronald J.; Adkins, Joshua N.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yoon, Hyunjin; Heffron, Fred] Oregon Hlth & Sci Univ, Portland, OR 97239 USA. [Rommereim, Leah M.] Dartmouth Coll, Hanover, NH 03755 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-98, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU National Institute of Allergy and Infectious Diseases NIH/DHHS [Y1-AI-4894-01]; National Center for Research Resources (NCRR) [RR18522]; Laboratory Directed Research and Development program; DOE Battelle Memorial Institute [DE-AC05-76RLO01830] FX We gratefully acknowledge the contributions of Therese R. W. Clauss, Brianne O. Petritis, Karl K. Weitz, Nikola ToM, Samuel O. Purvine, Penny Colton, and Drs. Xiuxia Du, Joshua Turse, Ashoka D. Polpitiya, Matthew E. Monroe and Joseph N. Brown for discussions, input, and suggestions in preparing this publication. We also thank Dr. Peter Kaiser at University of California, Irvine for providing pFA6a-HBH-kanMX6. Portions of this work were supported by the National Institute of Allergy and Infectious Diseases NIH/DHHS through interagency agreement Y1-AI-4894-01, National Center for Research Resources (NCRR) grant no. RR18522, and the Laboratory Directed Research and Development program at PNNL. Significant portions of this work were performed in the Environmental Molecular Sciences Laboratory, a United States Department of Energy (DOE) national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA. PNNL is operated for the DOE Battelle Memorial Institute under contract DE-AC05-76RLO01830. NR 42 TC 13 Z9 13 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAR PY 2009 VL 8 IS 3 BP 1504 EP 1514 DI 10.1021/pr800865d PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 416WA UT WOS:000264035000038 PM 19206470 ER PT J AU Oji, LN Martin, KB Hobbs, DT AF Oji, L. N. Martin, K. B. Hobbs, D. T. TI Development of prototype titanate ion-exchange loaded-membranes for strontium, cesium and actinide decontamination from aqueous media SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article ID MONOSODIUM TITANATE; REMOVAL; SILICOTITANATES; WASTE AB We have successfully incorporated high surface area particles of titanate ion-exchange materials (monosodium titanate and crystalline silicotitanate) into porous and inert support membrane fibrils. The resulting membrane sheets were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. The membrane supports met the nominal requirement for non-chemical interaction with the embedded ion-exchange materials and were porous enough to allow sufficient liquid flow. Most of the stamped out 47-mm size titanium impregnated ion-exchange membrane discs removed more than 96% of dissolved cesium-133 and strontium-88 from caustic nuclear waste salt simulants. C1 [Oji, L. N.; Martin, K. B.; Hobbs, D. T.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Oji, LN (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM lawrence.oji@srnl.doe.gov NR 16 TC 9 Z9 9 U1 2 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2009 VL 279 IS 3 BP 847 EP 854 DI 10.1007/s10967-008-7365-6 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 416AT UT WOS:000263978300022 ER PT J AU Wang, WD Wang, ZJ Tang, JK Yang, SZ Jin, H Zhao, GL Li, Q AF Wang, Wendong Wang, Zhenjun Tang, Jinke Yang, Shizhong Jin, Hua Zhao, Guang-Lin Li, Qiang TI Seebeck coefficient and thermal conductivity in doped C-60 SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; SEMICONDUCTORS; METALS AB Pressed bulk samples of C-60 doped with P, Co, Al, and Bi have been investigated for their thermoelectric properties. These samples show extremely low thermal conductivity, typically in the range of 0.1-0.3 W/Km at room temperature. The Seebeck coefficients of Co, Al, and Bi doped C-60 solids are in the tens of mu V/K; however, for P doped C-60 samples, a very large Seebeck coefficient in the order of 10(3) mu V/K was observed. The value of the Seebeck coefficient seems to depend sensitively on the P concentration and changes sign upon annealing at 100 degrees C. Ab initio density functional theory calculations show that the calculated electronic structures and the activation energies strongly depend on the dopants in C-60 solids. The high Seebeck coefficient in studied P doped C-60 is due to the system's unique dopant and concentration. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3106303] C1 [Wang, Wendong; Wang, Zhenjun; Tang, Jinke] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Yang, Shizhong; Jin, Hua; Zhao, Guang-Lin] So Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Yang, Shizhong; Jin, Hua; Zhao, Guang-Lin] A&M Coll, Baton Rouge, LA 70813 USA. [Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wang, WD (reprint author), Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. EM jtang2@uwyo.edu FU National Science Foundation [CBET-0754821]; UW/SER; U.S. Dept. of Energy, Office of Basic Energy Science [DE-AC-02-98CH10886] FX This work is funded in part by the National Science Foundation Award No. CBET-0754821 and UW/SER MGF grant. Q. L. was supported by the U.S. Dept. of Energy, Office of Basic Energy Science, under Contract No. DE-AC-02-98CH10886. NR 15 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD MAR 1 PY 2009 VL 1 IS 2 AR 023104 DI 10.1063/1.3106303 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 583LH UT WOS:000276676300005 ER PT J AU Krenkova, J Svec, F AF Krenkova, Jana Svec, Frantisek TI Less common applications of monoliths: IV. Recent developments in immobilized enzyme reactors for proteomics and biotechnology SO JOURNAL OF SEPARATION SCIENCE LA English DT Review DE Enzyme reactor; Immobilization; Monolith; Review; Support ID PERFORMANCE LIQUID-CHROMATOGRAPHY; POROUS POLYMER MONOLITHS; SYNTHETICALLY USEFUL ENZYMES; AFFINITY-CHROMATOGRAPHY; TRYPSIN MICROREACTOR; REACTIVE POLYMERS; MASS-SPECTROMETRY; MICROFLUIDIC DEVICES; PROTEIN DIGESTION; SUPPORTS AB Use of monolithic supports for enzyme immobilization has rapidly expanded since we published the preceding paper in the series of articles concerned with this topic almost three years ago. Many groups worldwide have realized the benefits of applying monoliths as support structures and used a variety of techniques to immobilize many different enzymes. Although some of these new developments are just refinements of the methods developed previously, some notable new approaches have also been reported. This review summarizes the literature published since 2006 and demonstrates the broad variability of reactive monoliths prepared from silica as well as from organic polymers in the form of disks, columns, and capillaries. All these monoliths were prepared by direct formation from reactive precursors or activation of preformed inactive structures. Interestingly, most of the applications of monolithic enzyme reactors target proteolytic digestion of proteins for proteomic analysis. C1 [Krenkova, Jana; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM fsvec@lbl.gov FU NIGMS NIH HHS [GM-48364, R01 GM048364, R01 GM048364-17] NR 63 TC 107 Z9 108 U1 7 U2 88 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9306 J9 J SEP SCI JI J. Sep. Sci. PD MAR PY 2009 VL 32 IS 5-6 BP 706 EP 718 DI 10.1002/jssc.200800641 PG 13 WC Chemistry, Analytical SC Chemistry GA 427UZ UT WOS:000264805900003 PM 19194973 ER PT J AU Beresh, SJ Smith, JA Henfling, JF Grasser, TW Spillers, RW AF Beresh, Steven J. Smith, Justin A. Henfling, John F. Grasser, Thomas W. Spillers, Russell W. TI Interaction of a Fin Trailing Vortex with a Downstream Control Surface SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID VORTICES; MISSILE; VELOCIMETRY; PARTICLES; FLOW AB A subscale experiment has been constructed using fins mounted on one wall of a transonic wind tunnel to investigate the influence of fin trailing vortices upon downstream control surfaces. Data were collected using a fin balance instrumenting the downstream fin to measure the aerodynamic forces of the interaction, combined with stereoscopic particle image velocimetry to determine vortex properties. The fin balance data show that the response of the downstream fin essentially is shifted from the baseline single-fin data dependent upon the angle of attack of the upstream fin. Freestream Mach number and the spacing between fins have secondary effects. The velocimetry shows the increase in vortex strength with upstream fin angle of attack, hot no variation with Mach number can be discerned in the normalized velocity data. Correlations between the force data and the velocimetry indicate that the interaction is fundamentally a result of an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin tip. The Mach number influence arises from differing vortex lift on the leading edge of the downstream fin even when the impinging vortex is Mach invariant. C1 [Beresh, Steven J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800,Mailstop 0825, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov FU Sandia National Laboratories; United states Department of Energy; Sandia Corporation; Lockheed Martin Company; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories and the United states Department of Energy. Sandia is a multiprogram laboratory-operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors. would like to thank Walter P. Wolfe of Sandia National Laboratories for numerous fruitful discussions regarding fin aerodynamics and trailing vortices. NR 26 TC 5 Z9 5 U1 0 U2 0 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD MAR-APR PY 2009 VL 46 IS 2 BP 318 EP 328 DI 10.2514/1.40294 PG 11 WC Engineering, Aerospace SC Engineering GA 429EI UT WOS:000264903200013 ER PT J AU Morris, MD Higdon, D AF Morris, Max D. Higdon, Dave TI Comments on Goldstein and Rougier SO JOURNAL OF STATISTICAL PLANNING AND INFERENCE LA English DT Editorial Material C1 [Morris, Max D.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. [Morris, Max D.] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA USA. [Higdon, Dave] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM USA. RP Morris, MD (reprint author), Iowa State Univ, Dept Stat, Ames, IA 50011 USA. EM mmorris@iastate.edu NR 2 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3758 J9 J STAT PLAN INFER JI J. Stat. Plan. Infer. PD MAR 1 PY 2009 VL 139 IS 3 BP 1249 EP 1250 DI 10.1016/j.jspi.2008.08.009 PG 2 WC Statistics & Probability SC Mathematics GA 389AE UT WOS:000262061300049 ER PT J AU Holton, JM AF Holton, James M. TI A beginner's guide to radiation damage SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE radiation damage; minimum crystal size; protein macromolecular crystallography; dose doubling; radioprotectant; data collection strategy ID X-RAY-ABSORPTION; PROTEIN CRYSTALS; MACROMOLECULAR CRYSTALS; SYNCHROTRON-RADIATION; DATA-COLLECTION; ACTIVE-SITE; POLARIZATION CORRECTION; CRYOGENIC TEMPERATURES; ANGSTROM RESOLUTION; STRUCTURAL-CHANGES AB Many advances in the understanding of radiation damage to protein crystals, particularly at cryogenic temperatures, have been made in recent years, but with this comes an expanding literature, and, to the new breed of protein crystallographer who is not really interested in X-ray physics or radiation chemistry but just wants to solve a biologically relevant structure, the technical nature and breadth of this literature can be daunting. The purpose of this paper is to serve as a rough guide to radiation damage issues, and to provide references to the more exacting and detailed work. No attempt has been made to report precise numbers (a factor of two is considered satisfactory), and, since there are aspects of radiation damage that are demonstrably unpredictable, the 'worst case scenario' as well as the 'average crystal' are discussed in terms of the practicalities of data collection. C1 [Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Holton, James M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Holton, JM (reprint author), Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. EM jmholton@lbl.gov FU National Institutes of Health [GM074929, GM082250]; US Department of Energy [DE-AC03-76SF00098]; Lawrence Berkeley National Laboratory FX I would like to thank Elspeth Garman, Frank Von Delft, Ana Gonzalez and Julie Lougheed for extremely helpful discussions of this manuscript. This work was supported by grants from the National Institutes of Health (GM074929 and GM082250) and the US Department of Energy under contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory. NR 100 TC 104 Z9 104 U1 3 U2 22 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2009 VL 16 BP 133 EP 142 DI 10.1107/S0909049509004361 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 412JC UT WOS:000263720100002 PM 19240325 ER PT J AU Owen, RL Holton, JM Schulze-Briese, C Garman, EF AF Owen, Robin L. Holton, James M. Schulze-Briese, Clemens Garman, Elspeth F. TI Determination of X-ray flux using silicon pin diodes SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE macromolecular crystallography; flux determination; silicon pin diode; absorbed dose ID RADIATION-DAMAGE; SYNCHROTRON-RADIATION; PROTEIN CRYSTALS; DATA-COLLECTION; MACROMOLECULAR CRYSTALLOGRAPHY; IONIZATION-CHAMBER; ELECTRON; AIR; SEMICONDUCTORS; PHOTODIODES AB Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced. C1 [Garman, Elspeth F.] Univ Oxford, Dept Biochem, Lab Mol Biophys, Oxford OX1 3QU, England. [Owen, Robin L.; Schulze-Briese, Clemens] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Holton, James M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Garman, EF (reprint author), Univ Oxford, Dept Biochem, Lab Mol Biophys, S Parks Rd, Oxford OX1 3QU, England. EM elspeth.garman@bioch.ox.ac.uk OI Owen, Robin/0000-0002-2104-7057 FU National Institutes of Health [GM074929, GM082250]; US Department of Energy [DE-AC03-76SF00098]; Lawrence Berkeley National Laboratory FX We would like to thank Uwe Flechsig, Ken Frankel, Eric Gullickson, Michael Krumrey, Malcom Howells, James Glossinger, Alastair MacDowell and Simon Morton for useful discussions. EFG wishes to gratefully acknowledge many enlightening and informative exchanges over the last eight years on the subject of MX beamline flux calibration and characterization with Pascal Theveneau and Raimond Ravelli, and the ESRF Detector Group for making available to her the calibrated 500 mm Canberra pin diode used in the study above. JMH was supported by grants GM074929 and GM082250 from the National Institutes of Health. The Advanced Light Source is supported by the US Department of Energy under contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory. NR 26 TC 49 Z9 49 U1 1 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2009 VL 16 BP 143 EP 151 DI 10.1107/S0909049508040429 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 412JC UT WOS:000263720100003 PM 19240326 ER PT J AU Fischetti, RF Xu, SL Yoder, DW Becker, M Nagarajan, V Sanishvili, R Hilgart, MC Stepanov, S Makarov, O Smith, JL AF Fischetti, Robert F. Xu, Shenglan Yoder, Derek W. Becker, Michael Nagarajan, Venugopalan Sanishvili, Ruslan Hilgart, Mark C. Stepanov, Sergey Makarov, Oleg Smith, Janet L. TI Mini-beam collimator enables microcrystallography experiments on standard beamlines SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE mini-beam; microbeam; microdiffraction; macromolecular crystallography ID PROTEIN-COUPLED RECEPTOR; CRYSTAL-STRUCTURE; SYNCHROTRON-RADIATION; CRYSTALLOGRAPHY; MICRODIFFRACTION AB The high-brilliance X-ray beams from undulator sources at third-generation synchrotron facilities are excellent tools for solving crystal structures of important and challenging biological macromolecules and complexes. However, many of the most important structural targets yield crystals that are too small or too inhomogeneous for a 'standard' beam from an undulator source, similar to 25-50 mu m (FWHM) in the vertical and 50-100 mu m in the horizontal direction. Although many synchrotron facilities have microfocus beamlines for other applications, this capability for macromolecular crystallography was pioneered at ID-13 of the ESRF. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team (GM/CA-CAT) dual canted undulator beamlines at the APS deliver high-intensity focused beams with a minimum focal size of 20 mu m x 65 mu m at the sample position. To meet growing user demand for beams to study samples of 10 mu m or less, a 'mini-beam' apparatus was developed that conditions the focused beam to either 5 mu m or 10 mu m (FWHM) diameter with high intensity. The mini-beam has a symmetric Gaussian shape in both the horizontal and vertical directions, and reduces the vertical divergence of the focused beam by 25%. Significant reduction in background was achieved by implementation of both forward- and back-scatter guards. A unique triple-collimator apparatus, which has been in routine use on both undulator beamlines since February 2008, allows users to rapidly interchange the focused beam and conditioned mini-beams of two sizes with a single mouse click. The device and the beam are stable over many hours of routine operation. The rapid-exchange capability has greatly facilitated sample screening and resulted in several structures that could not have been obtained with the larger focused beam. C1 [Fischetti, Robert F.; Xu, Shenglan; Yoder, Derek W.; Becker, Michael; Nagarajan, Venugopalan; Sanishvili, Ruslan; Hilgart, Mark C.; Stepanov, Sergey; Makarov, Oleg; Smith, Janet L.] Argonne Natl Lab, Adv Photon Source, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. [Smith, Janet L.] Univ Michigan, Dept Biol Chem, Inst Life Sci, Ann Arbor, MI 48109 USA. RP Fischetti, RF (reprint author), Argonne Natl Lab, Adv Photon Source, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. EM rfischetti@anl.gov FU National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Science [Y1-GM-1104]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX GM/CA CAT is supported by Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-1104). Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No. DE-AC02-06CH11357. We thank B. K. Kobilka and W. I. Weis of Stanford University for helpful discussions and suggestions during initial mini-beam experiments; F. Cipriani of EMBL-Grenoble for helpful discussions; G. Decker, L. Emery and K. Schroeder of APS for improvements to the APS beam stabilization and helpful discussions. NR 29 TC 63 Z9 64 U1 0 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2009 VL 16 BP 217 EP 225 DI 10.1107/S0909049508040612 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 412JC UT WOS:000263720100010 PM 19240333 ER PT J AU Sarin, P Haggerty, RP Yoon, W Knapp, M Berghaeuser, A Zschack, P Karapetrova, E Yang, N Kriven, WM AF Sarin, P. Haggerty, R. P. Yoon, W. Knapp, M. Berghaeuser, A. Zschack, P. Karapetrova, E. Yang, N. Kriven, W. M. TI A curved image-plate detector system for high-resolution synchrotron X-ray diffraction SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray detectors; image-plate detector; powder diffraction; high-resolution diffraction; in situ diffraction ID POSITION-SENSITIVE DETECTOR; LASER STIMULATED LUMINESCENCE; POWDER DIFFRACTION; RIETVELD REFINEMENT; HIGH-TEMPERATURE; SPRING-8 BL02B2; GUINIER CAMERA; CHARGE-DENSITY; IN-SITU; RADIATION AB The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 degrees 2 theta range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in <= 30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD. C1 [Sarin, P.; Haggerty, R. P.; Yoon, W.; Kriven, W. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Knapp, M.] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany. [Berghaeuser, A.] Univ Hamburg, Inst Mineral & Petrog, D-20146 Hamburg, Germany. [Zschack, P.; Karapetrova, E.; Yang, N.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kriven, WM (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM kriven@illinois.edu RI Knapp, Michael/B-4258-2014 OI Knapp, Michael/0000-0003-0091-8463 FU AFOSR DURIP [FA9550-04-1-0345]; AFOSR [FA9550-06-1-0386, F49620-03-1-0082]; NSF [DMR 02-11139]; Advanced Photon Source at Argonne National Laboratory; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DEAC0206CH11357] FX The CIP detector was designed and built under an AFOSR DURIP grant, number FA9550-04-1-0345. The authors were supported under the following grants for the duration of this work: AFOSR grant FA9550-06-1-0386 for PS and RPH; AFOSR grant F49620-03-1-0082 for WY; NSF grant NSF DMR 02-11139 for PS for one year. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DEAC0206CH11357. NR 42 TC 7 Z9 7 U1 1 U2 5 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2009 VL 16 BP 273 EP 282 DI 10.1107/S0909049509001265 PG 10 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 412JC UT WOS:000263720100017 PM 19240340 ER PT J AU Melcher, RJ AF Melcher, Ryan J. TI Evaluating the Onset of Tearing in Elastic-Plastic Fracture Toughness Testing Using In Situ Optical Microscopy SO JOURNAL OF TESTING AND EVALUATION LA English DT Article DE fracture toughness; crack-tip opening displacement; optical microscopy ID PLANE-STRAIN; SPECIMEN; STEEL AB Fracture toughness, in the sense of material resistance to ductile tearing from an initial sharp defect, is a common metric for structural integrity assessments of engineering components. While standardized test methods are well-suited for repeatable estimation of this metric, physical observation of crack-tip opening displacement (CTOD) and tearing may provide a supplemental means of evaluating the onset of tearing with greater accuracy in ductile materials. In contrast to previously documented methods of physical CTOD measurement, in situ optical microscopy on standard sidegrooved fracture toughness specimens presents an easily implemented, cost-effective tool for observing tearing onset. As an additional benefit, quantitative measurements of CTOD from in situ optical microscopy also provide a means of cross-checking standard J-integral results as determined from load-displacement test data. C1 [Melcher, Ryan J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Melcher, RJ (reprint author), Cessna Aircraft Co, Mail Stop A6, Wichita, KS 67215 USA. EM rjmetcher@yahoo.com FU U.S. Department of Energy [DE-AC52-06NA25396] FX Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Adrninistration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The author wishes to thank Philip Schembri of the Los Alamos National Laboratory and J. David McColskey of the United States National Institute of Standards and Technology for their technical discussions regarding CTOD behavior and measurement. NR 21 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC TESTING MATERIALS PI W CONSHOHOCKEN PA 100 BARR HARBOR DR, W CONSHOHOCKEN, PA 19428-2959 USA SN 0090-3973 J9 J TEST EVAL JI J. Test. Eval. PD MAR PY 2009 VL 37 IS 2 BP 89 EP 94 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA 416DE UT WOS:000263984600001 ER PT J AU Balogun, O Huber, R Chinn, D Spicer, JB AF Balogun, O. Huber, R. Chinn, D. Spicer, J. B. TI Laser ultrasonic inspection of the microstructural state of thin metal foils SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article DE foils; laser beam applications; metallic thin films; photoacoustic effect; tungsten; ultrasonic absorption; ultrasonic materials testing ID POLYCRYSTALLINE MATERIALS; GENERATED ULTRASOUND; HARMONIC-GENERATION; ATTENUATION; WAVES; SCATTERING; NONLINEARITY; DISLOCATIONS; DEPENDENCE; SURFACES AB A laser-based ultrasonic technique suitable for characterization of the microstructural state of metal foils is presented. The technique relies on the measurement of the intrinsic attenuation of laser-generated longitudinal waves at frequencies reaching 1 GHz resulting from ultrasonic interaction with the sample microstructure. In order to facilitate accurate measurement of the attenuation, a theoretical model-based signal analysis approach is used. The signal analysis approach isolates aspects of the measured attenuation that depend strictly on the microstructure from geometrical effects. Experimental results obtained in commercially cold worked tungsten foils show excellent agreement with theoretical predictions. Furthermore, the experimental results show that the longitudinal wave attenuation at gigahertz frequencies is strongly influenced by the dislocation content of the foils and may find potential application in the characterization of the microstructure of micron thick metal foils. C1 [Balogun, O.; Huber, R.; Chinn, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Balogun, O.; Spicer, J. B.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RP Balogun, O (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Balogun, Oluwaseyi/B-7543-2009; Spicer, James/A-3312-2010 OI Spicer, James/0000-0002-3512-5503 FU U.S. Department of Energy by the Lawrence Livermore National Laboratory, University of California; W-7405-Eng-48; Office of Basic Energy Sciences, U. S. Department of Energy [DEFG0203ER46090]; Air Force Office of Scientific Research [FA9550-06-1-0309] FX This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory, University of California under Contract No. W-7405-Eng-48 and was based on work supported by, or in part by, the Office of Basic Energy Sciences, U. S. Department of Energy under Grant No. DEFG0203ER46090 and the Air Force Office of Scientific Research under Grant No. FA9550-06-1-0309. NR 36 TC 3 Z9 3 U1 1 U2 11 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD MAR PY 2009 VL 125 IS 3 BP 1437 EP 1443 DI 10.1121/1.3068447 PG 7 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 415CL UT WOS:000263911800023 PM 19275301 ER PT J AU Tan, Y Longtin, JP Sampath, S Wang, H AF Tan, Yang Longtin, Jon P. Sampath, Sanjay Wang, Hsin TI Effect of the Starting Microstructure on the Thermal Properties of As-Sprayed and Thermally Exposed Plasma-Sprayed YSZ Coatings SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID YTTRIA-STABILIZED ZIRCONIA; BARRIER COATINGS; HEAT-TREATMENT; IMPURITY CONTENT; CONDUCTIVITY; POROSITY; POWDER; ANGLE; TEMPERATURE; PARTICLES AB Thermal barrier coatings (TBCs) experience thermal gradients, excessive temperature, and high heat flux from hot gases in turbines during service. These extended thermal effects induce sintering and significant microstructure changes, which alter the resulting thermal conductivity of the TBCs. To study the effects of different starting microstructures on the sintering behavior, plasma-sprayed yttria-stabilized zirconia (YSZ) TBCs produced from different starting powders and process parameters were subjected to thermal aging at several temperatures and time intervals, after which their thermal conductivity was measured at room temperature. The thermal conductivity results were analyzed by introducing the Larson-Miller parameter, that describes the creep-like behavior of thermal conductivity increase with annealing temperature and time. One set of coatings was also annealed under the same conditions and the thermal conductivities were measured at elevated temperatures. The temperature-dependent thermal conductivity data were analyzed and used to predict the long-term thermal property behavior for a general YSZ coating design. C1 [Tan, Yang; Longtin, Jon P.; Sampath, Sanjay] SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. [Wang, Hsin] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Tan, Y (reprint author), SUNY Stony Brook, Ctr Thermal Spray Res, Stony Brook, NY 11794 USA. EM yangtan@gmail.com RI Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 FU National Science Foundation [CMMI 0605704]; Oak Ridge National Laboratory; Department of Energy [DE-AC05000OR22725] FX This work was financially supported by the GOALI-FRG program sponsored by National Science Foundation under award CMMI 0605704. The high-temperature thermal conductivity measurement conducted at Oak Ridge is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory managed by the UT-Battelle LLC for the Department of Energy under contract DE-AC05000OR22725. NR 49 TC 34 Z9 34 U1 3 U2 16 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAR PY 2009 VL 92 IS 3 BP 710 EP 716 DI 10.1111/j.1551-2916.2009.02953.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 419SY UT WOS:000264241200023 ER PT J AU Muehleman, C Li, J Schiff, A Zhong, Z AF Muehleman, Carol Li, Jun Schiff, Adam Zhong, Zhong TI Diffraction-Enhanced Imaging for Achilles Tendon Lesions A Preliminary Study SO JOURNAL OF THE AMERICAN PODIATRIC MEDICAL ASSOCIATION LA English DT Article ID ARTICULAR-CARTILAGE; SOFT-TISSUE; RUPTURE; TENDINOPATHY; RADIOGRAPHY AB Background: Computed tomography, ultrasonography, and magnetic resonance imaging are useful in the diagnosis of tears of the Achilles tendon, but none are capable of detecting early or small tears. Herein, we applied diffraction-enhanced imaging, a radiographic technique that detects x-ray attenuation and x-ray refraction, to the imaging of compromised Achilles tendons. Methods: Diffraction-enhanced imaging was used to detect incomplete surgically induced tears of the Achilles tendon in nine cadaveric human feet and ankles. Results: Complete and significant partial tears were detectable in diffraction-enhanced images as x-ray refraction changes. Conclusions: Although still in the experimental stages, diffraction-enhanced imaging may eventually prove useful for the diagnosis of Achilles tendon tears. (J Am Podiatr Med Assoc 99(2): 95-99, 2009) C1 [Muehleman, Carol; Li, Jun; Schiff, Adam] Rush Med Coll, Chicago, IL 60612 USA. [Zhong, Zhong] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Muehleman, C (reprint author), Rush Med Coll, 1735 W Harrison St,Cohn Res Bldg,Room 524, Chicago, IL 60612 USA. EM carol_muehleman@rush.edu FU National Institutes of Health [RO1 48292-05] FX Financial Disclosure: This work was supported by grant RO1 48292-05 from the National Institutes of Health. NR 16 TC 3 Z9 3 U1 0 U2 1 PU AMER PODIATRIC MED ASSOC PI BETHESDA PA 9312 OLD GEORGETOWN ROAD, BETHESDA, MD 20814-1621 USA SN 8750-7315 J9 J AM PODIAT MED ASSN JI J. Am. Podiatr. Med. Assoc. PD MAR-APR PY 2009 VL 99 IS 2 BP 95 EP 99 PG 5 WC Orthopedics SC Orthopedics GA 423WA UT WOS:000264525200001 PM 19299343 ER PT J AU Srinivasan, R Pepe, A Rodriguez, MA AF Srinivasan, Ramesh Pepe, Alberto Rodriguez, Marko A. TI A Clustering-Based Semi-Automated Technique to Build Cultural Ontologies SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY LA English DT Article ID INFORMATION-RETRIEVAL; FINDING COMMUNITIES; KNOWLEDGE; NETWORKS; SYSTEMS; SEARCH; USERS; ENVIRONMENTS; CONNECTIONS; IMMIGRANTS AB This article presents and validates a clustering-based method for creating cultural ontologies for community-oriented information systems. The introduced semi-automated approach merges distributed annotation techniques, or subjective assessments of similarities between cultural categories, with established clustering methods to produce "cognate" ontologies. This approach is validated against a locally authentic ethnographic method, involving direct work with communities for the design of "fluid" ontologies. The evaluation is conducted with of a set of Native American communities located in San Diego County (CA, US). The principal aim of this research is to discover whether distributing the annotation process among isolated respondents would enable ontology hierarchies to be created that are similar to those that are crafted according to collaborative ethnographic processes, found to be effective in generating continuous usage across several studies. Our findings suggest that the proposed semiautomated solution best optimizes among issues of interoperability and scalability, deemphasized in the fluid ontology approach, and sustainable usage. C1 [Srinivasan, Ramesh; Pepe, Alberto] Univ Calif Los Angeles, Dept Informat Studies, Los Angeles, CA 90095 USA. [Rodriguez, Marko A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87501 USA. RP Srinivasan, R (reprint author), Univ Calif Los Angeles, Dept Informat Studies, Los Angeles, CA 90095 USA. EM srinivasan@ucla.edu; apepe@ucla.edu; marko@lanl.gov NR 97 TC 1 Z9 1 U1 3 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-2882 EI 1532-2890 J9 J AM SOC INF SCI TEC JI J. Am. Soc. Inf. Sci. Technol. PD MAR PY 2009 VL 60 IS 3 BP 608 EP 620 DI 10.1002/asi.20998 PG 13 WC Computer Science, Information Systems; Information Science & Library Science SC Computer Science; Information Science & Library Science GA 415LK UT WOS:000263935100014 ER PT J AU Higdon, D AF Higdon, D. TI A Spatio-Temporal Model for Mean, Anomaly, and Trend Fields of North Atlantic Sea Surface Temperature Comment SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION LA English DT Editorial Material C1 Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Higdon, D (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663,MS-F600, Los Alamos, NM 87545 USA. EM dhigdon@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 1429 DUKE ST, ALEXANDRIA, VA 22314 USA SN 0162-1459 J9 J AM STAT ASSOC JI J. Am. Stat. Assoc. PD MAR PY 2009 VL 104 IS 485 BP 18 EP 20 DI 10.1198/jasa.2009.0031 PG 3 WC Statistics & Probability SC Mathematics GA 425PI UT WOS:000264649200003 ER PT J AU Raskovic, M Popovic, S Upadhyay, J Vuskovic, L Phillips, L Valente-Feliciano, AM AF Raskovic, M. Popovic, S. Upadhyay, J. Vuskovic, L. Phillips, L. Valente-Feliciano, A. -M. TI High etching rates of bulk Nb in Ar/Cl-2 microwave discharge SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article DE glow discharges; high-frequency discharges; niobium; penetration depth (superconductivity); plasma density; plasma impurities; plasma pressure; sputter etching; type II superconductors ID TUNNEL-JUNCTIONS; NIOBIUM; FABRICATION; CF4 AB Plasma-based Nb surface treatment provides an excellent opportunity to eliminate surface imperfections and increase the cavity quality factor in important applications such as particle accelerators and cavity quantum electrodynamics, as well as Josephson junctions. In this study, plasma etching of bulk Nb is performed on the surface of disk-shaped samples with the goal of eliminating nonsuperconductive pollutants in the penetration depth region and the mechanically damaged surface layer. The authors have demonstrated that in the microwave glow discharge, an etching rate of 1.5 mu m/min can be achieved using Cl-2 as a reactive gas. The influence of plasma parameters such as input power, pressure, and concentration of the reactive gas on the etching rate is determined. Simultaneously, plasma emission spectroscopy was used to estimate the densities of Cl, Cl+, and Cl-2 under various plasma conditions. C1 [Raskovic, M.; Popovic, S.; Upadhyay, J.; Vuskovic, L.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Phillips, L.; Valente-Feliciano, A. -M.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Raskovic, M (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM raskovic@jlab.org FU Office of High Energy Physics; Office of Science; Department of Energy [DE-FG02-05ER41396]; Jefferson Science Associates; U.S. DOE [DE-AC05-06OR23177] FX This work was supported by the NSF/DOE collaborative effort through the Office of High Energy Physics, Office of Science, Department of Energy under Grant No. DE-FG02-05ER41396. Tomas Jefferson National Accelerator Facility, Accelerator Division supports M. Raskovic and J. Upadhyay through fellowships. This was authored by the Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 25 TC 4 Z9 4 U1 1 U2 3 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAR PY 2009 VL 27 IS 2 BP 301 EP 305 DI 10.1116/1.3077298 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 416PH UT WOS:000264017500020 ER PT J AU Uhlrich, JJ Olson, DC Hsu, JWP Kuech, TF AF Uhlrich, J. J. Olson, D. C. Hsu, J. W. P. Kuech, T. F. TI Surface chemistry and surface electronic properties of ZnO single crystals and nanorods SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article DE II-VI semiconductors; nanostructured materials; ozone; solar cells; surface chemistry; surface states; ultraviolet photoelectron spectra; ultraviolet radiation effects; wide band gap semiconductors; X-ray photoelectron spectra; zinc compounds ID RAY PHOTOELECTRON-SPECTROSCOPY; ENERGY-LEVEL ALIGNMENT; ZINC-OXIDE SURFACES; PHOTOVOLTAIC DEVICES; SOLAR-CELLS; N-TYPE; WORK-FUNCTION; ELECTRICAL CHARACTERISTICS; POINT-DEFECTS; FILMS AB The surface chemistry of ZnO single crystals of (0001) and (1010) orientations and ZnO nanorods was studied using x-ray and ultraviolet photoelectron spectroscopies. Air drying and UV-ozone preparations were studied in particular as chemical treatments that could be applied to poly(3-hexylthiophene) (P3HT)-ZnO solar cells to enhance performance. The UV-ozone treatment showed negligible effect by photoelectron spectroscopy on the ZnO single crystal surfaces, but brought about electronic shifts consistent with increased upward band bending by similar to 0.25 eV on the ZnO nanorod surface. Modest interface dipoles of similar to 0.15 and similar to 0.25 eV were measured between P3HT and the (1010) and (0001) single crystal orientations, respectively, with the dipole moment pointing from ZnO to the P3HT layer. The sol-gel films showed evidence of forming a small interface dipole in the opposite direction, which illustrates the difference in surface chemistry between the solution-grown ZnO and the ZnO single crystals. C1 [Uhlrich, J. J.; Kuech, T. F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Olson, D. C.; Hsu, J. W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Uhlrich, JJ (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. EM jjuhlrich@wisc.edu OI Uhlrich, John/0000-0001-5773-1486 FU Materials Research Science and Engineering Center at the University of Wisconsin; National Science Foundation Graduate Research Fellowship FX The authors would like to acknowledge funding from the Materials Research Science and Engineering Center at the University of Wisconsin as well as from the National Science Foundation Graduate Research Fellowship Program. The authors would also like to acknowledge funding from Sandia DOE BES Core programs and LDRD programs for funding this research. D.C.O. would also like to acknowledge support from the IC Postdoctoral Fellowship Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 61 TC 18 Z9 18 U1 4 U2 26 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAR PY 2009 VL 27 IS 2 BP 328 EP 335 DI 10.1116/1.3085723 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 416PH UT WOS:000264017500024 ER PT J AU Dinh, LN Sze, J Schildbach, MA Chinn, SC Maxwell, RS Raboin, P McLean, W AF Dinh, L. N. Sze, J. Schildbach, M. A. Chinn, S. C. Maxwell, R. S. Raboin, P. McLean, W., II TI Vacuum outgassing of high density polyethylene SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article DE decomposition; outgassing; polymers; reaction kinetics; thermal analysis; thermally stimulated desorption ID DIFFERENTIAL THERMAL ANALYSIS; KINETICS; TEMPERATURE; POLYSTYRENE; DEGRADATION; TR55 AB A combination of thermogravimetric analysis and temperature programmed decomposition was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H2O and CnHx, with n as high as 9 and x centering around 2n, are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly. C1 [Dinh, L. N.; Sze, J.; Schildbach, M. A.; Chinn, S. C.; Maxwell, R. S.; Raboin, P.; McLean, W., II] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Dinh, LN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM dinh1@llnl.gov RI Chinn, Sarah/E-1195-2011 NR 22 TC 4 Z9 4 U1 1 U2 10 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAR PY 2009 VL 27 IS 2 BP 376 EP 380 DI 10.1116/1.3085719 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 416PH UT WOS:000264017500031 ER PT J AU Czaplewski, DA Tallant, DR Patrizi, GA Wendt, JR Montoya, B AF Czaplewski, David A. Tallant, David R. Patrizi, Gary A. Wendt, Joel R. Montoya, Bertha TI Improved etch resistance of ZEP 520A in reactive ion etching through heat and ultraviolet light treatment SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID INFRARED-SPECTROSCOPY; PLASMA; LITHOGRAPHY; FABRICATION; RESOLUTION AB The authors have developed a treatment process to improve the etch resistance of,in electron beam lithography resist (ZEP 520A) to allow direct pattern transfer from the resist into a hard mask using plasma etching without a metal lift-off process. When heated to 90 degrees C and exposed for 17 min to a dose of approximately 8 mW/cm(2) at 248 nm, changes occur in the resist that are observable using infrared spectroscopy. These changes increase the etch resistance of ZEP 520A to a CF(4)/O(2) plasma. This article will document the observed changes in the improved etch resistance of the ZEP 520A electron beam resist. 2009 American Vacuum Society. [DOI: 10.1116/1.3086721] C1 [Czaplewski, David A.; Tallant, David R.; Patrizi, Gary A.; Wendt, Joel R.; Montoya, Bertha] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Czaplewski, DA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM daczapl@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the sponsor of this project, Amit Lal, from the DARPA NEMS program, Franklin H. Austin and the MESA Fab for device fabrication, and Bonnie B. McKenzie and Michael J. Rye for SEM analysis. Sandia National Laboratory is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No, DE-AC04-94AL85000. NR 12 TC 5 Z9 5 U1 1 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR-APR PY 2009 VL 27 IS 2 BP 581 EP 584 DI 10.1116/1.3086721 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 442KF UT WOS:000265839400006 ER PT J AU Anderson, CN Naulleau, PP AF Anderson, Christopher N. Naulleau, Patrick P. TI Do not always blame the photons: Relationships between deprotection blur, line-edge roughness, and shot noise in extreme ultraviolet photoresists SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SENSITIVITY; RESOLUTION; METRICS; BASE AB A corner rounding metric has been used to determine the deprotection blur of Rohm and Haas XP 5435, XP 5271, and XP 5496 extreme ultraviolet (EUV) photoresists as base wt % is varied, an experimental open platform photoresist (EH27) as base wt % is varied, and TOK EUVR P1123 and FUJI 1195 photoresists as postexposure bake temperature is varied. In the XP 5435, XP 5271, XP 5496, and EH27 resist platforms, a six times increase in base wt % reduces the size of successfully patterned 1:1 lines by over 10 nm and lowers intrinsic line-edge roughness (LER) by over 2.5 nun without changing deprotection blur. In TOK EUVR P1123 photoresist, lowering the PEB temperature from 100 to 80 degrees C reduces measured deprotection blur (using the corner metric) from 30 to 20 run and reduces the LER of 50 nm 1:1 lines from 4.8 to 4.3 urn. These data are used to drive a lengthy discussion about the relationships between deprotection blur, LER, and shot noise in EUV photoresists. The authors provide two separate conclusions: (1) shot noise is probably not the dominant mechanism causing the 3-4 nun EUV LER floor that has been observed over the past several years; (2) chemical contrast contributes to LER whenever deprotection blur is large relative to the printed half-pitch. (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3100270] C1 [Anderson, Christopher N.] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Naulleau, Patrick P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Anderson, CN (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. EM cnanderson@berkeley.edu RI Anderson, Christopher/H-9526-2015 OI Anderson, Christopher/0000-0002-2710-733X NR 21 TC 15 Z9 15 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR-APR PY 2009 VL 27 IS 2 BP 665 EP 670 DI 10.1116/1.3100270 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 442KF UT WOS:000265839400020 ER PT J AU Kong, WP Wu, L Wallstrom, TC Fischer, W Yang, ZY Ko, SY Letvin, NL Haynes, BF Hahn, BH Korber, B Nabel, GJ AF Kong, Wing-Pui Wu, Lan Wallstrom, Timothy C. Fischer, Will Yang, Zhi-Yong Ko, Sung-Youl Letvin, Norman L. Haynes, Barton F. Hahn, Beatrice H. Korber, Bette Nabel, Gary J. TI Expanded Breadth of the T-Cell Response to Mosaic Human Immunodeficiency Virus Type 1 Envelope DNA Vaccination SO JOURNAL OF VIROLOGY LA English DT Article ID LYMPHOCYTE-BASED CONTROL; SUBTYPE-B ENVELOPE; IMMUNE-RESPONSES; HIV-1 INFECTION; RHESUS-MONKEYS; IMMUNOGENICITY; REPLICATION; GLYCOPROTEIN; VACCINES; AIDS AB An effective AIDS vaccine must control highly diverse circulating strains of human immunodeficiency virus type 1 (HIV-1). Among HIV-1 gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV-1 Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential T-cell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. One-, two-, and three-mosaic sets that increased theoretical epitope coverage were developed. The breadth and magnitude of T-cell immunity stimulated by these vaccines were compared to those for natural strain Envs; additional comparisons were performed on mutant Envs, including gp160 or gp145 with or without V regions and gp41 deletions. Among them, the two-or three-mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the three-mosaic set elicited responses to an average of eight peptide pools, compared to two pools for a set of three natural Envs. Synthetic mosaic HIV-1 antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T-cell-based HIV-1 vaccines. C1 [Kong, Wing-Pui; Wu, Lan; Yang, Zhi-Yong; Ko, Sung-Youl; Nabel, Gary J.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Wallstrom, Timothy C.; Fischer, Will; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Letvin, Norman L.] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Div Viral Pathogenesis,Dept Med, Boston, MA 02115 USA. [Haynes, Barton F.] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27710 USA. [Hahn, Beatrice H.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Nabel, GJ (reprint author), NIAID, Vaccine Res Ctr, NIH, Bldg 40,Room 4502,MSC 3005,40 Convent Dr, Bethesda, MD 20892 USA. EM gnabel@nih.gov RI Fischer, Will/B-1323-2013; OI Fischer, Will/0000-0003-4579-4062; Wallstrom, Timothy/0000-0002-9295-2441; Korber, Bette/0000-0002-2026-5757 FU Intramural Research Program of the National Institutes of Health, Vaccine Research Center, National Institute of Allergy and Infectious Disease; Los Alamos National Laboratory FX This work was supported in part by the Intramural Research Program of the National Institutes of Health, Vaccine Research Center, National Institute of Allergy and Infectious Disease, and by Los Alamos National Laboratory directed research funding. NR 38 TC 43 Z9 44 U1 1 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD MAR 1 PY 2009 VL 83 IS 5 BP 2201 EP 2215 DI 10.1128/JVI.02256-08 PG 15 WC Virology SC Virology GA 405GB UT WOS:000263209900014 PM 19109395 ER PT J AU Habel, MA Liddon, N Stryker, JE AF Habel, Melissa A. Liddon, Nicole Stryker, Jo E. TI The HPV Vaccine: A Content Analysis of Online News Stories SO JOURNAL OF WOMENS HEALTH LA English DT Article ID MEDIA; COVERAGE; WEB AB Purpose: Approximately 73 million adults in the United States report using the Internet as a source for health information. This study examines the quality, content, and scope of human papillomavirus (HPV) vaccine Internet news coverage starting on the day of its licensure. Information about the HPV vaccine in the media may influence personal attitudes and vaccine uptake. Methods: Using four search engines and six search terms, a sample of 250 Internet articles on the HPV vaccine were identified between June 8, 2006, and September 26, 2006. The coding instrument captured how the headline was depicted and how the vaccine was labeled in addition to information about HPV, cervical cancer, the HPV vaccine, and current social issues and concerns about the vaccine. Results: Analysis revealed balanced Internet news coverage; 52.4% of Internet news stories were coded as neutral toward the vaccine. Eighty-eight percent of articles labeled the vaccine as a cervical cancer vaccine; 73.5% explained the link between HPV and cervical cancer, although without providing background information on HPV or cervical cancer. Vaccine affordability was the most cited social concern (49.2%). Information about vaccine safety and side effects, duration of vaccine protection, and availability of the catchup vaccine for females aged 13-26 was repeatedly missing. Conclusions: The HPV vaccine is being marketed as a vaccine to prevent cervical cancer. Comprehensive information on the vaccine, HPV, and cervical cancer continues to be missing from media coverage. Public health educators should monitor online media in an effort to respond to inaccurate information. Barriers to vaccine cost and funding mechanisms need to be addressed more effectively by states. Knowledge of particular media messages could provide a starting point for tackling opposition and uptake issues for future sexually transmitted infection (STI) vaccines. C1 [Habel, Melissa A.] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Atlanta, GA 30333 USA. [Stryker, Jo E.] Emory Univ, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA. RP Habel, MA (reprint author), Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, 1600 Clifton Rd, Atlanta, GA 30333 USA. EM mhabel@cdc.gov NR 27 TC 51 Z9 52 U1 3 U2 16 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1540-9996 J9 J WOMENS HEALTH JI J. Womens Health PD MAR PY 2009 VL 18 IS 3 BP 401 EP 407 DI 10.1089/jwh.2008.0920 PG 7 WC Public, Environmental & Occupational Health; Medicine, General & Internal; Obstetrics & Gynecology; Women's Studies SC Public, Environmental & Occupational Health; General & Internal Medicine; Obstetrics & Gynecology; Women's Studies GA 417ZF UT WOS:000264116300018 PM 19281323 ER PT J AU Seifter, A Kyrala, GA Goldman, SR Hoffman, NM Kline, JL Batha, SH AF Seifter, A. Kyrala, G. A. Goldman, S. R. Hoffman, N. M. Kline, J. L. Batha, S. H. TI Demonstration of symcaps to measure implosion symmetry in the foot of the NIF scale 0.7 hohlraums SO LASER AND PARTICLE BEAMS LA English DT Article DE Drive temperature; Inertial Confinement Fusion; Symcaps ID INERTIAL CONFINEMENT FUSION; MULTIPLE-BEAM CONES; INTENSE HEAVY-ION; LASER FUSION; IGNITION; COMPRESSION; DRIVEN; ENERGY; FACILITY; DENSITY AB Implosions using inertial confinement fusion must be highly symmetric to achieve ignition on the National Ignition Facility. This requires precise control of the drive symmetry from the radiation incident on the ignition capsule. For indirect drive implosions, low mode residual perturbations in the drive are generated by the laser-heated hohlraum geometry. To diagnose the drive symmetry, previous experiments used simulated capsules by which the self-emission X-rays front gas in the center of the capsule during the implosion are used to infer the shape of the drive. However, those experiments used hohlraum radiation temperatures higher than 200 eV (Hauer et (it., 1995; Murphy et al., 1998a, 1998b) with small NOVA scale hohlraums tinder which conditions the symcaps produced large X-ray signals. At the foot of the NH-ignition pulse, where controlling the symmetry has been shown to be crucial for obtaining a symmetric implosion (Clark et id., 2009), the radiation drive is much smaller, reducing the X-ray emission from the imploded capsule. For the first time, the feasibility of using symcaps to diagnose the radiation drive for low radiation temperatures, <120 eV and large 0.7 linear scales NIF Rev3.1 (Haan et al., 2008) vacuum hohlraums is demonstrated. Here we used experiments at the Omega laser facility to demonstrate and develop the symcap technique for tuning the symmetry of the NIF ignition capsule in the foot of the drive pulse. C1 [Seifter, A.] Los Alamos Natl Lab, AOT ABS, Los Alamos, NM 87545 USA. RP Seifter, A (reprint author), Los Alamos Natl Lab, AOT ABS, MS F1817, Los Alamos, NM 87545 USA. EM seif@lanl.gov OI Kline, John/0000-0002-2271-9919 FU Department of Energy [DOE-AC52-06NA25396] FX The authors would like to thank the LANL personnel who supported these experiments, T. N. Archuleta, J. S. Cowan, S. C. Evans, and T. J. Sedillo in the Physics Division, as well as the target fabrication team of E. Breden, D. Capelli, R. D. Day, K. A. Defriend Obrey, D. J. Hatch, R. V. Lucero, B. M. Patterson, R. B. Randolph, D. W. Schmidt, and A. C. Valdez. We also thank J. Schein and C. Sorce of Lawrence Livermore National Laboratory for operating the Dante Spectrometer and the Ornega operations crew for their efforts during the experiments, especially S. Regan for help with the EIDI phase plate use. This work was performed by Los Alamos National Laboratory under the auspices of University of California and later the Los Alamos National Security, LLC, for the Department of Energy undercontract number DOE-AC52-06NA25396. NR 23 TC 15 Z9 15 U1 0 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD MAR PY 2009 VL 27 IS 1 BP 123 EP 127 DI 10.1017/S0263034609000184 PG 5 WC Physics, Applied SC Physics GA 413CE UT WOS:000263769700018 ER PT J AU Kline, JL Montgomery, DS Rousseaux, C Baton, SD Tassin, V Hardin, RA Flippo, KA Johnson, RP Shimada, T Yin, L Albright, BJ Rose, HA Amiranoff, F AF Kline, J. L. Montgomery, D. S. Rousseaux, C. Baton, S. D. Tassin, V. Hardin, R. A. Flippo, K. A. Johnson, R. P. Shimada, T. Yin, L. Albright, B. J. Rose, H. A. Amiranoff, F. TI Investigation of stimulated Raman scattering using a short-pulse diffraction limited laser beam near the instability threshold SO LASER AND PARTICLE BEAMS LA English DT Article DE Nonlinear kinetic plasma effects; Raman scattering; Short pulse laser beams ID SINGLE-HOT-SPOT; INERTIAL CONFINEMENT FUSION; FREQUENCY-SHIFT; FAST-IGNITION; PLASMA; AMPLIFICATION; GENERATION; FACILITY; SCALE; GAIN AB Short Pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of stimulated Raman scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations (>1 kJ and >1 ps). Using short laser Pulses, experiments call be modeled over the entire interaction time of the laser using particle-in-cell codes to validate our understanding quantitatively. Experiments have been conducted it the Trident laser facility and the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) to investigate stimulated Raman scattering near the threshold of the instability using 527 nm and 1059 nm laser light, respectively, with 1.5-3.0 ps pulses. In both experiments, the interaction beam Was focused into pre-ionized helium gas-jet plasma. Measurements of the reflectivity as a function of intensity and k lambda(D) were completed at the Trident laser facility, where k is the electron plasma wave number and lambda(D), is the plasma Debye length. At LUL1, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Work is currently underway comparing the results of the experiments with simulations using the VPIC particle-in-cell code. Details of the experimental results are presented ill this manuscript. C1 [Kline, J. L.; Montgomery, D. S.; Flippo, K. A.; Johnson, R. P.; Shimada, T.; Yin, L.; Albright, B. J.; Rose, H. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rousseaux, C.; Tassin, V.] DIF, DAM, CEA, Arpajon, France. [Baton, S. D.; Amiranoff, F.] Univ Paris 06, Ecole Polytech, CNRS CEA, LULI,UMR 7605, Palaiseau, France. [Hardin, R. A.] W Virginia Univ, Morgantown, WV 26506 USA. RP Kline, JL (reprint author), Los Alamos Natl Lab, P-24,MS F526, Los Alamos, NM 87545 USA. EM jkline@lanl.gov RI Flippo, Kirk/C-6872-2009; OI Flippo, Kirk/0000-0002-4752-5141; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Kline, John/0000-0002-2271-9919 NR 30 TC 27 Z9 27 U1 1 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD MAR PY 2009 VL 27 IS 1 BP 185 EP 190 DI 10.1017/S0263034609000251 PG 6 WC Physics, Applied SC Physics GA 413CE UT WOS:000263769700025 ER PT J AU Ebsers, C Caird, J Moses, E AF Ebsers, Chris Caird, John Moses, Edward TI The Mercury laser moves toward practical laser fusion SO LASER FOCUS WORLD LA English DT Article AB The diode-pumped Mercury laser will deliver 100 J pulses at 10 Hz under automatic control, advancing the development of high-repetition-rate inertial laser fusion. C1 [Moses, Edward] Lawrence Livermore Natl Lab, NIF & Photon Sci Directorate, Livermore, CA 94551 USA. EM ebbersl@llnl.gov NR 0 TC 1 Z9 1 U1 0 U2 0 PU PENNWELL PUBL CO PI NASHUA PA 98 SPIT BROOK RD, NASHUA, NH 03062-2801 USA SN 1043-8092 J9 LASER FOCUS WORLD JI Laser Focus World PD MAR PY 2009 VL 45 IS 3 BP 51 EP + PG 4 WC Optics SC Optics GA 423VH UT WOS:000264523300022 ER PT J AU Sheik-Bahae, M Epstein, RI AF Sheik-Bahae, Mansoor Epstein, Richard I. TI Laser cooling of solids SO LASER & PHOTONICS REVIEWS LA English DT Review DE Solid-state laser cooling; optical refrigeration; anti-Stokes fluorescence; luminescence up-conversion; rare-earth doped solids; direct band-gap semiconductors; all-solid-state cryocooler; external quantum efficiency; GaAs; differential luminescence thermometry ID THULIUM-DOPED GLASS; ROOM-TEMPERATURE; OPTICAL REFRIGERATION; INTERFACE RECOMBINATION; DOUBLE HETEROSTRUCTURES; SPONTANEOUS EMISSION; QUANTUM EFFICIENCY; UP-CONVERSION; SEMICONDUCTORS; ABSORPTION AB We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocoolers. We chart the evolution of this science in rare-earth doped solids and semiconductors. C1 [Sheik-Bahae, Mansoor; Epstein, Richard I.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Epstein, Richard I.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Sheik-Bahae, M (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM msb@unm.edu NR 84 TC 71 Z9 71 U1 6 U2 54 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1863-8880 J9 LASER PHOTONICS REV JI Laser Photon. Rev. PD MAR PY 2009 VL 3 IS 1-2 BP 67 EP 84 DI 10.1002/lpor.200810038 PG 18 WC Optics; Physics, Applied; Physics, Condensed Matter SC Optics; Physics GA 422IL UT WOS:000264420800006 ER PT J AU Madden, ME Ulrich, S Szymcek, P McCallum, S Phelps, T AF Madden, Megan Elwood Ulrich, Shannon Szymcek, Phillip McCallum, Scott Phelps, Tommy TI Experimental formation of massive hydrate deposits from accumulation of CH4 gas bubbles within synthetic and natural sediments SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Methane hydrates; Sediments; Massive deposits; Nodules; Veins; Free gas; Methane ID MOSBY MUD VOLCANO; STABILITY ZONE; CONTINENTAL-SLOPE; METHANE HYDRATE; SEA-FLOOR; MICROBIAL PROCESSES; BLAKE RIDGE; FORE-ARC; SUBSURFACE; MIGRATION AB In order for methane to be economically produced from the seafloor, prediction and detection of massive hydrate deposits will be necessary. In many cases, hydrate samples recovered from seafloor sediments appear as veins or nodules, suggesting that there are strong geologic controls on where hydrate is likely to accumulate. Experiments have been conducted examining massive hydrate accumulation from methane gas bubbles within natural and synthetic sediments in a large volume pressure vessel through temperature and pressure data, as well as visual observations. Observations of hydrate growth suggest that accumulation of gas bubbles within void spaces and at sediment interfaces likely results in the formation of massive hydrate deposits. Methane hydrate was first observed as a thin film forming at the gas/water interface of methane bubbles trapped within sediment void spaces. As bubbles accumulated, massive hydrate growth occurred. These experiments suggest that in systems containing free methane gas, bubble pathways and accumulation points likely control the location and habit of massive hydrate deposits. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Madden, Megan Elwood] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. [Ulrich, Shannon; Szymcek, Phillip; McCallum, Scott; Phelps, Tommy] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Madden, ME (reprint author), Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. EM melwood@ou.edu RI phelps, tommy/A-5244-2011; Elwood Madden, Megan/C-3381-2009; Mavoa, Suzanne/B-5372-2010; Ulrich, Shannon/J-9492-2012 FU DOE's Fossil Energy Methane Hydrate Program; ORNL's Wigner Fellowship Program [DE-AC05-00OR22725] FX Funding for this project was provided by DOE's Fossil Energy Methane Hydrate Program. MEEM was supported by ORNL's Wigner Fellowship Program. ORNL is managed by UT-Battelle, LCC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The authors wish to thank Dave Riestenberg, Patricia Taboada-Serrano, and Lisa Fagan who provided experimental and technical support for the project as well as helpful discussions. NR 44 TC 12 Z9 18 U1 0 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD MAR PY 2009 VL 26 IS 3 BP 369 EP 378 DI 10.1016/j.marpetgeo.2008.04.002 PG 10 WC Geosciences, Multidisciplinary SC Geology GA 411AW UT WOS:000263620800006 ER PT J AU Tang, YJ Martin, HG Myers, S Rodriguez, S Baidoo, EEK Keasling, JD AF Tang, Yinjie J. Martin, Hector Garcia Myers, Samuel Rodriguez, Sarah Baidoo, Edward E. K. Keasling, Jay D. TI ADVANCES IN ANALYSIS OF MICROBIAL METABOLIC FLUXES VIA C-13 ISOTOPIC LABELING SO MASS SPECTROMETRY REVIEWS LA English DT Review DE steady state; mini-bioreactor; mass spectrometry; isotopomer modeling; functional genomics ID BIDIRECTIONAL REACTION STEPS; SHEWANELLA-ONEIDENSIS MR-1; CENTRAL CARBON METABOLISM; CHROMATOGRAPHY-MASS SPECTROMETRY; GC-MS ANALYSIS; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; AMINO-ACIDS; CORYNEBACTERIUM-GLUTAMICUM; C-13-LABELING EXPERIMENTS AB Metabolic flux analysis via C-13 labeling (C-13 MFA) quantitatively tracks metabolic pathway activity and determines overall enzymatic function in cells. Three core techniques are necessary for C-13 MFA: (1) a steady state cell culture in a defined medium with labeled-carbon substrates; (2) precise measurements of the labeling pattern of targeted metabolites; and (3) evaluation of the data sets obtained from mass spectrometry measurements with a computer model. to calculate the metabolic fluxes. In this review, we summarize recent advances in the C-13-flux analysis technologies, including mini-bioreactor usage for tracer experiments. isotopomer analysis of metabolites via high resolution mass spectrometry (such as GC-MS, LC-MS, or FT-ICR), high performance and large-scale isotopomer modeling programs for flux analysis, and the integration of fluxomics with other functional genomics studies. It will be shown that there is a significant value for 13 C-based metabolic flux analysis in many biological research fields. (C) 2008 Wiley Periodicals, Inc., Mass Spec Rev 28:362-375, 2009 C1 [Tang, Yinjie J.; Martin, Hector Garcia; Keasling, Jay D.] Joint Bioenergy Inst, Emeryville, CA 94608 USA. [Tang, Yinjie J.; Baidoo, Edward E. K.; Keasling, Jay D.] Virtual Inst Microbial Stress & Survival, Berkeley, CA USA. [Tang, Yinjie J.; Martin, Hector Garcia; Baidoo, Edward E. K.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Tang, Yinjie J.; Myers, Samuel; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Rodriguez, Sarah] Univ Calif Berkeley, Dept Mol Cell Biol, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint Bioenergy Inst, 5885 Hollis, Emeryville, CA 94608 USA. EM keasling@berkeley.edu RI Garcia Martin, Hector/B-5357-2009; Keasling, Jay/J-9162-2012 OI Garcia Martin, Hector/0000-0002-4556-9685; Keasling, Jay/0000-0003-4170-6088 NR 101 TC 78 Z9 84 U1 7 U2 50 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0277-7037 J9 MASS SPECTROM REV JI Mass Spectrom. Rev. PD MAR-APR PY 2009 VL 28 IS 2 BP 362 EP 375 DI 10.1002/mas.20191 PG 14 WC Spectroscopy SC Spectroscopy GA 410MA UT WOS:000263580200007 PM 19025966 ER PT J AU Picard, RR Booth, TE AF Picard, Richard R. Booth, Thomas E. TI Ensuring finite moments in Monte Carlo simulations via iterated ex post facto sampling SO MATHEMATICS AND COMPUTERS IN SIMULATION LA English DT Article DE Central limit theorem; Valid confidence intervals; Infinite variance distributions AB Monte Carlo simulations may involve skewed, heavy-tailed distributions. When variances of those distributions exist, statistically valid confidence intervals can be obtained using the central limit theorem, providing that the simulation is run "long enough." If variances do not exist, however, valid confidence intervals are difficult or impossible to obtain. The main result in this paper establishes that upon replacing ordinary Monte Carlo sampling of such heavy-tailed distributions with ex post facto sampling, estimates having finite moments of all orders are ensured for the most common class of infinite variance distributions. We conjecture that this phenomenon applies to all distributions (having finite means) when the ex post facto process is iterated. (C) 2008 Published by Elsevier B.V. on behalf of IMACS. C1 [Picard, Richard R.] Los Alamos Natl Lab, Stat Grp, Los Alamos, NM 87545 USA. [Booth, Thomas E.] Los Alamos Natl Lab, Computat Anal & Simulat Grp, Los Alamos, NM 87545 USA. RP Picard, RR (reprint author), Los Alamos Natl Lab, Stat Grp, POB 1663, Los Alamos, NM 87545 USA. EM picard@lanl.gov; teb@lanl.gov NR 8 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4754 EI 1872-7166 J9 MATH COMPUT SIMULAT JI Math. Comput. Simul. PD MAR PY 2009 VL 79 IS 7 BP 2106 EP 2121 DI 10.1016/j.matcom.2008.11.014 PG 16 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 429KB UT WOS:000264918200009 ER PT J AU Chen, XY Beyerlein, IJ Brinson, LC AF Chen, Xinyu Beyerlein, Irene J. Brinson, L. Catherine TI Curved-fiber pull-out model for nanocomposites. Part 1: Bonded stage formulation SO MECHANICS OF MATERIALS LA English DT Article ID NANOTUBE-REINFORCED COMPOSITES; BRITTLE-MATRIX COMPOSITES; MECHANICAL-PROPERTIES; FRACTURE-TOUGHNESS; CARBON NANOTUBES; POLYMER COMPOSITES; STRESS TRANSFER; SHEAR-LAG; LOAD-TRANSFER; INTERFACE AB This is the first part of two papers in which an analytical curved-fiber pull-out model for nanocomposites is proposed. In nanotube-reinforced polymer composites, nanotubes are typically Curved and entangled, a reinforcement morphology that will greatly impact the thermomechanical properties of the material. As the first step to explicitly take into account nanotube curvature and study its effect on nanocomposite mechanical properties, we develop a pull-out model in which the fiber has constant curvature. The model includes the entire pull-out process, namely the bonded, debonding, and sliding stages. In this first paper we formulate the bonded stage based on classic shear lag model assumptions and develop a 3D finite element model to verify assumptions. The results from a parametric study indicate that fibers with more curvature and longer embedded length need higher debond initiation force. The finite element results and analytical results show agreement both qualitatively and quantitatively. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Chen, Xinyu; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM cbrinson@northwestern.edu RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013; Beyerlein, Irene/A-4676-2011 OI Brinson, L Catherine/0000-0003-2551-1563; NR 84 TC 23 Z9 23 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD MAR PY 2009 VL 41 IS 3 BP 279 EP 292 DI 10.1016/j.mechmat.2008.12.004 PG 14 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 425QN UT WOS:000264652300009 ER PT J AU Chen, XY Beyerlein, IJ Brinson, LC AF Chen, Xinyu Beyerlein, Irene J. Brinson, L. Catherine TI Curved-fiber pull-out model for nanocomposites. Part 2: Interfacial debonding and sliding SO MECHANICS OF MATERIALS LA English DT Article ID NANOTUBE-REINFORCED COMPOSITES; CERAMIC MATRIX COMPOSITES; MECHANICAL-PROPERTIES; POLYMER COMPOSITES; CARBON NANOTUBES; STRESS TRANSFER; FIBROUS COMPOSITES; SHEAR-STRENGTH; BOND STRENGTH; MODULUS AB This paper is the second part in a series of works in which an analytical curved-fiber pull-out model for nanocomposites is proposed. The model includes the three stages of interface conditions-well-bonded, debonding, and sliding-involved in the entire pull-out process of a single curved fiber. In the first paper, the fiber and matrix are well-bonded, while in this second paper, the fiber and matrix are allowed to debond and slide, two relevant mechanisms in the later stages of pull-out. With either a constant or Coulomb friction interface, the pull-out model predicts higher pull-out forces as the fiber curvature increases, with zero fiber curvature (a straight fiber) producing the lowest pull-out forces. Fiber curvature effects are more pronounced, however, for the Coulomb friction model than the constant friction model because it considers radial compressive stresses at fiber/matrix interface. For the Coulomb friction model, two-dimensional finite element simulations are performed to test some of the model's approximation. Results indicate reasonable agreement between the two. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Chen, Xinyu; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM cbrinson@northwestern.edu RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013; Beyerlein, Irene/A-4676-2011 OI Brinson, L Catherine/0000-0003-2551-1563; NR 68 TC 22 Z9 22 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD MAR PY 2009 VL 41 IS 3 BP 293 EP 307 DI 10.1016/j.mechmat.2008.12.002 PG 15 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 425QN UT WOS:000264652300010 ER PT J AU Shah, AP Strauss, JB Kirk, MC Chen, SS Kroc, TK Zusag, TW AF Shah, Anand P. Strauss, Jonathan B. Kirk, Michael C. Chen, Sea S. Kroc, Thomas K. Zusag, Thomas W. TI UPRIGHT 3D TREATMENT PLANNING USING A VERTICAL CT SO MEDICAL DOSIMETRY LA English DT Article DE Vertical CT; Radiation; Upright; Immobilization ID IRRADIATION; VOLUME AB In this report, we describe a novel technique used to plan and administer external beam radiation therapy to a patient in the upright position. A patient required reirradiation for thymic carcinoma but was unable to tolerate the supine position due to bilateral phrenic nerve injury and paralysis of the diaphragm. Computed tomography (CT) images in the upright position were acquired at the Northern Illinois University Institute for Neutron Therapy at Fermilab. The CT data were imported into a standard 3-dimensional (3D) treatment planning system. Treatment was designed to deliver 24 Gy to the target volume while respecting normal tissue tolerances. A custom chair that locked into the treatment table indexing system was constructed for immobilization, and port films verified the reproducibility of setup. Radiation was administered using mixed photon and electron AP fields. (C) 2009 American Association of Medical Dosimetrists. C1 [Shah, Anand P.] Rush Univ, Med Ctr, Womens Board Treatment Ctr, Dept Radiat Oncol, Chicago, IL 60612 USA. No Illinois Univ, Inst Neutron Therapy, Fermilab, Batavia, IL USA. RP Shah, AP (reprint author), Rush Univ, Med Ctr, Womens Board Treatment Ctr, Dept Radiat Oncol, 500 S Paulina,Atrium Bldg, Chicago, IL 60612 USA. EM anand_shah@rush.edu OI Strauss, Jonathan/0000-0003-0175-7251 NR 7 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0958-3947 J9 MED DOSIM JI Med. Dosim. PD SPR PY 2009 VL 34 IS 1 BP 82 EP 86 DI 10.1016/j.meddos.2008.05.004 PG 5 WC Oncology; Radiology, Nuclear Medicine & Medical Imaging SC Oncology; Radiology, Nuclear Medicine & Medical Imaging GA 413SK UT WOS:000263812600013 PM 19181260 ER PT J AU Williams, PT AF Williams, Paul T. TI Lower Prevalence of Hypertension, Hypercholesterolemia, and Diabetes in Marathoners SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE EXERCISE; RUNNING; BODY MASS INDEX; METABOLIC SYNDROME; PREVENTION ID AMERICAN-HEART-ASSOCIATION; RISK-FACTORS; PHYSICAL-ACTIVITY; VIGOROUS EXERCISE; SKELETAL-MUSCLE; SPORTS-MEDICINE; FEMALE RUNNERS; MEDICATION USE; AEROBIC POWER; WEIGHT-GAIN AB WILLIAMS, P. T. Lower Prevalence of hypertension, hypercholesterolemia, and Diabetes in Marathoners. Med. Sci, Sports Exerc., Vol, 41, No. 3, pp. 523 529, 2009. Purpose: To test whether the prevalence of hypertension, hypercholesterolemia, and diabetes declines with marathon participation independent of annual running mileage. Methods: Cross-sectional associations of self-reported medication use in 62,294 male and 45,040 female participants of the National Runners' Health Study adjusted for age, diet, alcohol, and annual distance run. Results: By self-report, 31.7% of men and 29.1% of women ran 0.2 and 0.8 marathons per year, 8.6% of men and 4.4% of women ran between 1.0 and 1.8 marathons per year, and 3.8% of men and 1.5% of women ran all average of >= 2 marathons per year. The men's odds ratio per marathons per year run was 0.85 for antillypertensive (P < 0.0001), 0.87 for LDL-cholesterol lowering (P < 0.002), and 0.52 for antidiabetic medication use (P < 0.0001), Compared with nonmarathoners, men who averaged 0.2-0.8 marathons per year had 13% lower odds for antihypertensive medication use, 22% lower odds for LDL-cholesterol lowering medication use, and 67% lower odds for antidiabetic medication use. Marathon participation was also associated with lower LDL-cholesterol-lowering and antidiabetic medication use in women, bill not when adjusted for annual distance run. Each additional hour required to complete their marathon had odds ratio of 1.31 and 1.22 for men's antihypertensive and LDL-cholesterol lowering medication use and 2.01 for women's antidiabetic medication use (all P < 0.0001). Among all runners (marathoners and nonmarathoners combined), prevalence in the use of all three medications decreased in association with the length of the longest usual run, independent of total annual mileage. Conclusion: Prevalence of hypertension, hypercholesterolemia, and diabetes decreases with the frequency of marathon participation independent of annual running distance. This may be due to the inclusion of longer training runs in preparation for marathons or to genetic or other innate differences between marathon and nonmarathon runners. C1 Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU NHLBI NIH HHS [R01 HL072110, HL-72110, R01 HL072110-04, HL-45652]; NIDDK NIH HHS [R01 DK066738-04, DK066738, R01 DK066738] NR 40 TC 11 Z9 12 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD MAR PY 2009 VL 41 IS 3 BP 523 EP 529 DI 10.1249/MSS.0b13e31818c1752 PG 7 WC Sport Sciences SC Sport Sciences GA 412VL UT WOS:000263752200006 PM 19204599 ER PT J AU Fan, TWM Bird, JA Brodie, EL Lane, AN AF Fan, Teresa W. -M. Bird, Jeffrey A. Brodie, Eoin L. Lane, Andrew N. TI C-13-Isotopomer-based metabolomics of microbial groups isolated from two forest soils SO METABOLOMICS LA English DT Article DE 2D solution-state NMR; 2D solid-state C-13 NMR; Gram negative bacteria; Gram positive bacteria; Actinobacteria; Fungi ID CARBON; NMR; TRANSCRIPTOMICS; IDENTIFICATION; METABOLITES; PATTERNS; WORLD AB Soil microorganisms are the primary mediators of organic matter decomposition and humification processes in soil, which represent a critical C flux in the global C cycle. Little is known about how soil microbes regulate carbon cycling including the contribution of their own biomass to stable soil organic matter. A comprehensive understanding of microbial composition is a first step to unraveling microbial regulation of soil humification processes. For this purpose, we isolated 23 microbial strains representing four major groups (Gram (+) bacteria, Gram (-) bacteria, Actinobacteria, and Fungi) from a temperate and a tropical forest soil. The microbial isolates were cultured with uniformly C-13-labeled glucose as the C source such that all biochemical components synthesized from glucose were C-13 labeled. This approach enabled field mesocosm experiments on tracking microbial decomposition, while facilitating solution- and solid-state NMR analysis of microbial composition. Polar and lipid extracts of labeled biomass of the four microbial groups from the two forest sites were profiled by 2D NMR methods, including high-resolution heteronuclear single quantum coherence spectroscopy and HCCH-total correlation spectroscopy. This C-13 labeling approach also enabled the analysis of intact biomass by 2D solid-state C-13-C-13 correlation spectroscopy. Distinction between microbial groups and sites was observed in the polar and lipophilic metabolite profiles. Dominant differences could also be related to the capacity for lipid beta-oxidation or adaptation to desiccation. Solid-state NMR further revealed differential synthetic capacity for glycolipids among groups. This technology coupled with C-13 metabolite profiling should facilitate future functional annotation of indigenous microbial genomes. C1 [Fan, Teresa W. -M.; Lane, Andrew N.] Univ Louisville, Dept Chem, CREAM, Louisville, KY 40208 USA. [Fan, Teresa W. -M.; Lane, Andrew N.] Univ Louisville, James Graham Brown Canc Ctr, Louisville, KY 40202 USA. [Bird, Jeffrey A.] CUNY, Queens Coll, Sch Earth & Environm Sci, Flushing, NY 11367 USA. [Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. RP Fan, TWM (reprint author), Univ Louisville, Dept Chem, CREAM, 2210 S Brook St,Belknap Res Bldg,Rm 348, Louisville, KY 40208 USA. EM teresa.fan@louisville.edu RI Bird, Jeffrey/H-8751-2012; Brodie, Eoin/A-7853-2008 OI Bird, Jeffrey/0000-0002-0939-0637; Brodie, Eoin/0000-0002-8453-8435 FU NSF [DEB0343577, EPS-0447479]; U. S. Department of Energy; University of California; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by NSF grants DEB0343577 and EPS-0447479. NMR spectra were recorded at the J. G. Brown Cancer Center NMR facility. Part of this work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231. We thank T. Shimada, E. Long and J. Fortney for their assistance with the microbial isolation, screening and culture of the microorganisms; and S. Arumugam for help with solid state NMR. We also thank Drs. Mary Firestone and Richard Higashi for helpful discussion. NR 25 TC 14 Z9 14 U1 1 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1573-3882 J9 METABOLOMICS JI Metabolomics PD MAR PY 2009 VL 5 IS 1 BP 108 EP 122 DI 10.1007/s11306-008-0150-2 PG 15 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 413MW UT WOS:000263798200010 ER PT J AU Goldstein, JI Yang, J Kotula, PG Michael, JR Scott, ERD AF Goldstein, J. I. Yang, J. Kotula, P. G. Michael, J. R. Scott, E. R. D. TI Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID METALLOGRAPHIC COOLING RATES; TEMPERATURE PHASE-DECOMPOSITION; STONY-IRON; METAL; MODEL AB We have measured the size of the high-Ni particles in the cloudy zone and the width of the outer taenite rim in eight low shocked and eight moderately to heavily shocked IVA irons Using a transmission electron microscope (TEM). Thin sections for TEM analysis were produced by a focused ion beam instrument. Use of the TEM allowed LIS to avoid potential artifacts which may be introduced during specimen preparation for SEM analysis of high Ni particles < 30 nm in size and to identify microchemical and microstructural changes due to the effects of shock induced reheating. No cloudy zone was observed in five of the eight moderately to highly shocked (> 13 GPa) IVA irons that were examined in the TEM. Shock induced reheating has allowed for diffusion from 20 nm to 400 nm across kamacite/taenite boundaries, recrystallization of kamacite, and the formation, in Jamestown. of taenite grain boundaries. In the eleven IVA irons With cloudy zone microstructure, the size of the high-Ni particles in the cloudy zone increases directly with increasing bulk Ni content. Our data and the inverse correlation between cooling rate and high-Ni particle size for irons and stony-irons show that IVA cooling rates at 350-200 degrees C are inversely correlated with bulk Ni concentration and vary by a factor of about 15. This cooling rate variation is incompatible with cooling in a metallic core that was insulated with a silicate mantle, but is compatible with cooling in a metallic body of radius 150 +/- 50 kill. The widths of the tetrataenite regions next to the cloudy zone correlate directly with high-Ni particle size providing another method to measure low, temperature cooling rates. C1 [Goldstein, J. I.; Yang, J.] Univ Massachusetts, Dept Mech & Ind Engn, Engn Lab 313, Amherst, MA 01003 USA. [Kotula, P. G.; Michael, J. R.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [Scott, E. R. D.] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. RP Goldstein, JI (reprint author), Univ Massachusetts, Dept Mech & Ind Engn, Engn Lab 313, 160 Governors Dr, Amherst, MA 01003 USA. EM jig0@ecs.umass.edu RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU NASA [NNG05GK84G, NNX08AE08G]; United Stated Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX The financial Support from NASA through grant NNG05GK84G (J. I. Goldstein, P. I.) and NNX08AE08G (K. Keil, P. I.) is acknowledged. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under contract DE-AC0494AL85000. We thank Mr. Michael Rye and Ms. Bonnie McKensie (Sandia) for assistance with the FIB samples and SEM analysis, respectively. We also thank H. Haack, H. Watson, and N. Chabot for their helpful reviews. NR 19 TC 20 Z9 20 U1 0 U2 13 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD MAR PY 2009 VL 44 IS 3 BP 343 EP 358 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 445EM UT WOS:000266032600002 ER PT J AU Scheibe, TD Mahadevan, R Fang, YL Garg, S Long, PE Lovley, DR AF Scheibe, Timothy D. Mahadevan, Radhakrishnan Fang, Yilin Garg, Srinath Long, Philip E. Lovley, Derek R. TI Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation SO MICROBIAL BIOTECHNOLOGY LA English DT Article ID GEOBACTER-SULFURREDUCENS; ESCHERICHIA-COLI; BIOGEOCHEMICAL PROCESSES; CONTAMINATED AQUIFER; FIELD-SCALE; REDUCTION; GROWTH; SEDIMENTS; GROUNDWATER; FE(III) AB The increasing availability of the genome sequences of microorganisms involved in important bioremediation processes makes it feasible to consider developing genome-scale models that can aid in predicting the likely outcome of potential subsurface bioremediation strategies. Previous studies of the in situ bioremediation of uranium-contaminated groundwater have demonstrated that Geobacter species are often the dominant members of the groundwater community during active bioremediation and the primary organisms catalysing U(VI) reduction. Therefore, a genome-scale, constraint-based model of the metabolism of Geobacter sulfurreducens was coupled with the reactive transport model HYDRO-GEOCHEM in an attempt to model in situ uranium bioremediation. In order to simplify the modelling, the influence of only three growth factors was considered: acetate, the electron donor added to stimulate U(VI) reduction; Fe(III), the electron acceptor primarily supporting growth of Geobacter; and ammonium, a key nutrient. The constraint-based model predicted that growth yields of Geobacter varied significantly based on the availability of these three growth factors and that there are minimum thresholds of acetate and Fe(III) below which growth and activity are not possible. This contrasts with typical, empirical microbial models that assume fixed growth yields and the possibility for complete metabolism of the substrates. The coupled genome-scale and reactive transport model predicted acetate concentrations and U(VI) reduction rates in a field trial of in situ uranium bioremediation that were comparable to the predictions of a calibrated conventional model, but without the need for empirical calibration, other than specifying the initial biomass of Geobacter. These results suggest that coupling genome-scale metabolic models with reactive transport models may be a good approach to developing models that can be truly predictive, without empirical calibration, for evaluating the probable response of subsurface microorganisms to possible bioremediation approaches prior to implementation. C1 [Scheibe, Timothy D.; Fang, Yilin; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Mahadevan, Radhakrishnan; Garg, Srinath] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 1A1, Canada. [Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. RP Scheibe, TD (reprint author), Pacific NW Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA. EM tim.scheibe@pnl.gov RI Scheibe, Timothy/A-8788-2008; Mahadevan, Radhakrishnan/A-8502-2008; Long, Philip/F-5728-2013; Fang, Yilin/J-5137-2015 OI Scheibe, Timothy/0000-0002-8864-5772; Mahadevan, Radhakrishnan/0000-0002-1270-9063; Long, Philip/0000-0003-4152-5682; FU Office of Science (BER), US Deparment of Energy [DE-FC02-02ER63446, DE-FG02-07ER64367] FX This research was supported by the Office of Science (BER), US Deparment of Energy, Cooperative Agreement No. DE-FC02-02ER63446 and Grant No. DE-FG02-07ER64367. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. NR 53 TC 44 Z9 45 U1 2 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1751-7907 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD MAR PY 2009 VL 2 IS 2 SI SI BP 274 EP 286 DI 10.1111/j.1751-7915.2009.00087.x PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA V16XX UT WOS:000207903400034 PM 21261921 ER PT J AU Keller, M Hettich, R AF Keller, Martin Hettich, Robert TI Environmental Proteomics: a Paradigm Shift in Characterizing Microbial Activities at the Molecular Level SO MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS LA English DT Review ID MASS-SPECTROMETRY; GEL-ELECTROPHORESIS; PROTEIN IDENTIFICATION; COMMUNITY PROTEOMICS; MICROFLUIDIC DEVICE; DIRECT EXTRACTION; ACTIVATED-SLUDGE; LC-MS/MS; SOIL; REACTOR AB The increase in sequencing capacity led to a new wave of metagenomic projects, enabling and setting the prerequisite for the application of environmental proteomics technologies. This review describes the current status of environmental proteomics. It describes sample preparation as well as the two major technologies applied within this field: two-dimensional electrophoresis-based environmental proteomics and liquid chromatography-mass spectrometry-based environmental proteomics. It also highlights current publications and describes major scientific findings. The review closes with a discussion of critical improvements in the area of integrating experimental mass spectrometry technologies with bioinformatics as well as improved sample handling. C1 [Keller, Martin] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Hettich, Robert] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Keller, M (reprint author), Oak Ridge Natl Lab, Biosci Div, 1 Bethel Valley Rd,POB 2008,MS 6026, Oak Ridge, TN 37831 USA. EM kellerm@ornl.gov RI Keller, Martin/C-4416-2012; Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU U. S. Department of Energy Office of Science; Department of Energy [DOE-AC05-00OR22725] FX M. K. and R. H. are partially supported by the U. S. Department of Energy through the BioEnergy Science Center. The BioEnergy Science Center is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the U. S. Department of Energy Office of Science. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle, LLC, for the Department of Energy under contract DOE-AC05-00OR22725. NR 67 TC 72 Z9 74 U1 1 U2 38 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 1092-2172 J9 MICROBIOL MOL BIOL R JI Microbiol. Mol. Biol. Rev. PD MAR PY 2009 VL 73 IS 1 BP 62 EP + DI 10.1128/MMBR.00028-08 PG 10 WC Microbiology SC Microbiology GA 414ID UT WOS:000263856200005 PM 19258533 ER PT J AU Lucovsky, G Lee, S Long, JP Seo, H Luning, J AF Lucovsky, G. Lee, S. Long, J. P. Seo, H. Luening, J. TI Interfacial transition regions at germanium/Hf oxide based dielectric interfaces: Qualitative differences between non-crystalline Hf Si oxynitride and nanocrystalline HfO2 gate stacks SO MICROELECTRONIC ENGINEERING LA English DT Article; Proceedings Paper CT 4th IEEE International Symposium on Advanced Gate Stack Technology (ISAGST) CY 2007 CL Dallas, TX SP IEEE DE High-K gate dielectrics; MOS devices; Interfacial transition regions; X-ray absorption spectroscopy; Spectroscopic ellipsometry; Di-vacancy defects; Native Ge dielectrics; Ge Substrates ID INTRINSIC DEFECTS; ELEMENTAL OXIDES; MOS CAPACITORS; DEVICES; PHASE AB The contribution from a relatively low-K SiON (K similar to 6) interfacial transition region (ITR) between Si and transition metal high-K gate dielectric such as nanocrystalline HfO2 (K similar to 20), and non-crystalline Hf Si oxynitride (K similar to 10-12) places a significant limitation on equivalent oxide thickness (EOT) scaling. This limitation is equally Significant for metal-oxide-semiconductor capacitors and field effect transistors, MOSCAPs and MOSFETs, respectively, fabricated on Ge substrates. This article uses a novel remote plasma processing approach to remove native Ge ITRs and bond transition metal gate dielectrics directly onto crystalline Ge Substrates. Proceeding in this way we identify(i) the source of significant electron trapping at interfaces between Ge and Ge native oxide, nitride and oxynitride ITRs, and (ii) a methodology for eliminating native oxide, or nitride IRTs on Ge, and achieving direct contact between nanocrystalline HfO2 and non-crystalline high Si3N4 content Hf Si oxynitride alloys, and crystalline Ge substrates. We their combine spectroscopic studies, theory and modeling with electrical measurements to demonstrate the relative performance of qualitatively different nanocrystalline and non-crystalline gate dielectrics to MOS Ge test devices. (C) 2008 Elsevier B.V. All rights reserved C1 [Lucovsky, G.; Lee, S.; Long, J. P.; Seo, H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Lucovsky, G.; Lee, S.; Long, J. P.; Seo, H.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. [Luening, J.] SSRL, Menlo Pk, CA 94025 USA. RP Lucovsky, G (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM lucovsky@ncsu.edu NR 40 TC 6 Z9 6 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9317 J9 MICROELECTRON ENG JI Microelectron. Eng. PD MAR PY 2009 VL 86 IS 3 BP 224 EP 234 DI 10.1016/j.mee.2008.05.023 PG 11 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Physics, Applied SC Engineering; Science & Technology - Other Topics; Optics; Physics GA 426XZ UT WOS:000264743100005 ER PT J AU Kudrawiec, R Poloczek, P Misiewicz, J Shafi, M Ibanez, J Mari, RH Henini, M Schmidbauer, M Novikov, SV Turyanska, L Molina, SI Sales, DL Chisholm, MF AF Kudrawiec, R. Poloczek, P. Misiewicz, J. Shafi, M. Ibanez, J. Mari, R. H. Henini, M. Schmidbauer, M. Novikov, S. V. Turyanska, L. Molina, S. I. Sales, D. L. Chisholm, M. F. TI Photomodulated transmittance of GaBiAs layers grown on (001) and (311)B GaAs substrates SO MICROELECTRONICS JOURNAL LA English DT Article CT Workshop on Recent Advances on Low Dimensional Structures and Devices CY APR 07-09, 2008 CL Univ Nottingham, Nottingham, ENGLAND HO Univ Nottingham DE GaBiAs; Photomodulated transmittance; Energy gap ID MOLECULAR-BEAM EPITAXY; MODULATION SPECTROSCOPY; GAAS1-XBIX AB In this work, photomodulated transmittance (PT) has been applied to investigate the energy gap of GaBiAs layers grown on (001) and (311)B GaAs substrates. In PT spectra, a clear resonance has been observed below the GaAs edge. This resonance has been attributed to the energy gap-related absorption in GaBiAs. The energy and broadening of PT resonances have been determined using a standard approach in electromodulation spectroscopy. it has been found that the crystallographic orientation of GaAs substrate influences on the incorporation of Bi atoms into GaAs and quality of GaBiAs layers. The Bi-related energy gap reduction has been determined to be similar to 90 meV per percent of Bi. In addition to PT spectra, common transmittance spectra have been measured and the energy gap of GaBiAs has been determined from the square of the absorption coefficient alpha(2) around the band-gap edge. It has been found that the tail of density of states is significant for GaBiAs and influences the accuracy of energy gap determination from the alpha(2) plot. In the case of PT spectra, the energy gap is determined unambiguously since this technique is directly sensitive to singularities in the density of states. (c) 2008 Published by Elsevier Ltd. C1 [Kudrawiec, R.; Poloczek, P.; Misiewicz, J.] Wroclaw Univ Technol, Inst Phys, PL-50370 Wroclaw, Poland. [Shafi, M.; Mari, R. H.; Henini, M.; Novikov, S. V.; Turyanska, L.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Ibanez, J.] Consell Super Invest Cient, Inst Jaume Almera, Barcelona 08028, Catalonia, Spain. [Schmidbauer, M.] Inst Crystal Growth, D-12489 Berlin, Germany. [Molina, S. I.; Sales, D. L.] Univ Cadiz, Dept Ciencia Mat IM & Ql, Fac Ciencias, Cadiz 11510, Spain. [Chisholm, M. F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kudrawiec, R (reprint author), Wroclaw Univ Technol, Inst Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland. EM robert.kudrawiec@pwr.wroc.pl RI Molina, Sergio/A-8241-2008; Schaff, William/B-5839-2009; Henini, Mohamed/E-8520-2012; Ibanez-Insa, Jordi/F-6995-2014; Sales, David/K-9453-2014; OI Molina, Sergio/0000-0002-5221-2852; Henini, Mohamed/0000-0001-9414-8492; Novikov, Sergei/0000-0002-3725-2565; Ibanez-Insa, Jordi/0000-0002-8909-6541; Sales, David/0000-0001-6652-514X; Turyanska, Lyudmila/0000-0002-9552-6501 NR 14 TC 5 Z9 5 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0026-2692 J9 MICROELECTRON J JI Microelectron. J. PD MAR PY 2009 VL 40 IS 3 BP 537 EP 539 DI 10.1016/j.mejo.2008.06.025 PG 3 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 426FZ UT WOS:000264694700044 ER PT J AU Clark, BG Ferreira, P Robertson, IM AF Clark, Blythe G. Ferreira, Paulo Robertson, Ian M. TI In Situ Electron Microscopy Methods SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Editorial Material C1 [Clark, Blythe G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ferreira, Paulo] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Robertson, Ian M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Clark, BG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 0 TC 2 Z9 2 U1 1 U2 5 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD MAR PY 2009 VL 72 IS 3 BP 121 EP 121 DI 10.1002/jemt.20663 PG 1 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 419RZ UT WOS:000264238500001 PM 19130507 ER PT J AU Taheri, ML Lagrange, T Reed, BW Armstrong, MR Campbell, GH DeHope, WJ Kim, JS King, WE Masiel, DJ Browning, ND AF Taheri, Mitra L. Lagrange, Thomas Reed, Bryan W. Armstrong, Michael R. Campbell, Geoffrey H. DeHope, William J. Kim, Judy S. King, Wayne E. Masiel, Daniel J. Browning, Nigel D. TI Laser-Based In Situ Techniques: Novel Methods for Generating Extreme Conditions in TEM Samples SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE in situ; laser; transmission electron microscopy; dynamic; transformation; growth ID TRANSMISSION ELECTRON-MICROSCOPE; GRAIN-BOUNDARY MIGRATION; DELTA-PHASE-TRANSITION; THIN-FILM TRANSISTORS; CRYSTAL-STRUCTURE; NANOWIRE GROWTH; SINGLE-CRYSTAL; GOLD CRYSTALS; GAN NANOWIRES; METAL-FILMS AB The dynamic transmission electron microscope (DTEM) is introduced as a novel tool for in situ processing of materials. Examples of various types of dynamic studies outline the advantages and differences of laser-based heating in the DTEM in comparison to conventional (resistive) heating in situ TEM methods. We demonstrate various unique capabilities of the drive laser, namely, in situ processing of nanoscale materials, rapid and high temperature phase transformations, and controlled thermal activation of materials. These experiments would otherwise be impossible without the use of the DTEM drive laser. Thus, the potential of the DTEM as a new technique to process and characterize the growth of a myriad of micro and nanostructures is demonstrated. Microsc. Res. Tech. 72:122-130, 2009. Published 2009 Wiley-Liss, Inc. C1 [Taheri, Mitra L.; Lagrange, Thomas; Reed, Bryan W.; Armstrong, Michael R.; Campbell, Geoffrey H.; DeHope, William J.; Kim, Judy S.; King, Wayne E.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA USA. [Kim, Judy S.; Masiel, Daniel J.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM mtaheri@coe.drexel.edu RI Campbell, Geoffrey/F-7681-2010; Taheri, Mitra/F-1321-2011; Reed, Bryan/C-6442-2013; Armstrong, Michael/I-9454-2012; OI Browning, Nigel/0000-0003-0491-251X NR 50 TC 10 Z9 10 U1 2 U2 20 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD MAR PY 2009 VL 72 IS 3 BP 122 EP 130 DI 10.1002/jemt.20664 PG 9 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 419RZ UT WOS:000264238500002 PM 19165740 ER PT J AU Kirk, MA Baldo, PM Liu, ACY Ryan, EA Birtcher, RC Yao, ZW Xu, S Jenkins, ML Hernandez-Mayoral, M Kaoumi, D Motta, AT AF Kirk, Marquis A. Baldo, Peter M. Liu, Amelia C. Y. Ryan, Edward A. Birtcher, Robert C. Yao, Zhongwen Xu, Sen Jenkins, Michael L. Hernandez-Mayoral, Mercedes Kaoumi, Djamel Motta, Arthur T. TI In Situ Transmission Electron Microscopy and Ion Irradiation of Ferritic Materials SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE in-situ; ion-irradiation; ferritic alloys ID ALLOYS AB The intermediate voltage electron microscope-tandem user facility in the Electron Microscopy Center at Argonne National Laboratory is described. The primary purpose of this facility is electron microscopy with in situ ion irradiation at controlled sample temperatures. To illustrate its capabilities and advantages a few results of two outside user projects are presented. The motion of dislocation loops formed during ion irradiation is illustrated in video data that reveals a striking reduction of motion in Fe-8%Cr over that in pure Fe. The development of extended defect structure is then shown to depend on this motion and the influence of nearby surfaces in the transmission electron microscopy thin samples. In a second project, the damage microstructure is followed to high dose (200 dpa) in an oxide dispersion strengthened ferritic alloy at 500 degrees C, and found to be qualitatively similar to that observed in the same alloy neutron irradiated at 420 degrees C. Microsc. Res. Tech. 72:182-186, 2009. (C) 2009 Wiley-Liss, Inc. C1 [Kirk, Marquis A.; Baldo, Peter M.; Liu, Amelia C. Y.; Ryan, Edward A.; Birtcher, Robert C.] Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, Argonne, IL 60439 USA. [Yao, Zhongwen; Xu, Sen; Jenkins, Michael L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Hernandez-Mayoral, Mercedes] CIEMAT, Div Mat, E-28040 Madrid, Spain. [Kaoumi, Djamel; Motta, Arthur T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. RP Kirk, MA (reprint author), Argonne Natl Lab, Div Mat Sci, Ctr Electron Microscopy, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kirk@anl.gov RI Hernandez Mayoral, Mercedes/F-8985-2016 OI Hernandez Mayoral, Mercedes/0000-0003-4504-7577 FU UChicago Argonne, LLC [DE-AC02-06CH 11357]; US DOE Office of Science; UKAEA, Culham Science Centre; Nuclear Engineering Division at ANL; Pennsylvania State University FX Contract grant sponsor: UChicago Argonne, LLC; Contract grant number: DE-AC02-06CH 11357; Contract grant sponsors: US DOE Office of Science; UKAEA, Culham Science Centre; Nuclear Engineering Division at ANL; Pennsylvania State University. NR 9 TC 23 Z9 23 U1 1 U2 17 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD MAR PY 2009 VL 72 IS 3 BP 182 EP 186 DI 10.1002/jemt.20670 PG 5 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 419RZ UT WOS:000264238500007 PM 19189372 ER PT J AU Tanase, M Petford-Long, AK AF Tanase, Mihaela Petford-Long, Amanda K. TI In Situ TEM Observation of Magnetic Materials SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE magnetic nanostructures; domains; magnetization reversal; in situ transmission electron microscopy; Lorentz microscopy; electron holography; differential phase contrast; transport of intensity; magnetic phase; magnetic imaging; phase retrieval; phase reconstruction ID TRANSMISSION ELECTRON-MICROSCOPY; LORENTZ MICROSCOPY; PHASE RETRIEVAL; INTENSITY EQUATION; REVERSAL MECHANISM; TUNNEL-JUNCTIONS; ELEMENTS; MAGNETORESISTANCE; TRANSPORT; NANOSTRUCTURES AB Magnetic nanostructures and thin films display novel magnetization reversal behavior as a function of size and shape, which makes them appropriate for a range of technological applications. The spatial resolution of in situ transmission electron microscopy techniques such as Lorentz TEM (LTEM) and off-axis electron holography are well suited to analysis of the magnetic domain structure and magnetization behavior of these magnetic nanostructures and thin films. In this article the various techniques that are applicable are described, including the qualitative LTEM imaging modes and the differential phase contrast technique. In addition, quantitative methods for mapping the magnetic induction via phase reconstruction are discussed. In each case the advantages and limitations are presented. Application of the techniques to various types of magnetic structures is then presented, and the article ends with a short summary and a discussion of future developments in this field. Microsc. Res. Tech. 72:187-196, 2009. Published 2009 Wiley-Liss, Inc. C1 [Tanase, Mihaela; Petford-Long, Amanda K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Tanase, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tanase@anl.gov RI Petford-Long, Amanda/P-6026-2014 OI Petford-Long, Amanda/0000-0002-3154-8090 FU Argonne (U.S. Department of Energy Office of Science Laboratory) [DE-AC02-06CH11357] FX Contract grant sponsor: Argonne (U.S. Department of Energy Office of Science Laboratory); Contract grant number: DE-AC02-06CH11357. NR 57 TC 7 Z9 7 U1 3 U2 29 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD MAR PY 2009 VL 72 IS 3 BP 187 EP 196 DI 10.1002/jemt.20671 PG 10 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 419RZ UT WOS:000264238500008 PM 19165741 ER PT J AU Allard, LF Bigelow, WC Jose-Yacaman, M Nackashi, DP Damiano, J Mick, SE AF Allard, Lawrence F. Bigelow, Wilbur C. Jose-Yacaman, Miguel Nackashi, David P. Damiano, John Mick, Stephen E. TI A New MEMS-Based System for Ultra-High-Resolution Imaging at Elevated Temperatures SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE MEMS device; electron microscopy; aberration-corrected; STEM; elevated temperature; in situ ID TRANSMISSION ELECTRON-MICROSCOPE AB In recent years, an increasing number of laboratories have been applying in situ heating (and ultimately, gas reaction) techniques in electron microscopy studies of catalysts and other nanophase materials. With the advent of aberration-corrected electron microscopes that provide sub-Angstrom image resolution, it is of great interest to study the behavior of materials at elevated temperatures while maintaining the resolution capabilities of the microscope. In collaboration with Protochips Inc., our laboratory is developing an advanced capability for in situ heating experiments that overcomes a number of performance problems with standard heating stage technologies. The new heater device allows, for example, temperature cycling from room temperature to greater than 1000 degrees C in 1 ms (a heating rate of I million Centigrade degrees per second) and cooling at nearly the same rate. It also exhibits a return to stable operation (drift controlled by the microscope stage, not the heater) in a few seconds after large temperature excursions. With Protochips technology, we were able to demonstrate single atom imaging and the behavior of nanocrystals at high temperatures, using high-angle annular dark-field imaging in an aberration-corrected (S)TEM. The new capability has direct applicability for remote operation and (ultimately) for gas reaction experiments using a specially designed environmental cell. Microsc. Res. Tech. 72:208215,2009. (C) 2009 Wiley-Liss. Inc. C1 [Allard, Lawrence F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bigelow, Wilbur C.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Jose-Yacaman, Miguel] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Nackashi, David P.; Damiano, John; Mick, Stephen E.] Protochips Inc, Raleigh, NC 27606 USA. RP Allard, LF (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM allardlfjr@ornl.gov RI jose yacaman, miguel/B-5622-2009 FU Protochips Inc [IAN 14B569801]; U.S. Department of Energy [DE-AC05-00OR22725]; SBIR [DE-FG02-05ER84252]; HTML User Program; User Program, Asst. Sec. for Energy Efficiency and Renewable Energy; Office of Vehicle Technologies; US Department of Energy; Welch Foundation; NSF Materials Division FX Contract grant sponsor: Protochips Inc. (Work-for-Others Program); Contract grant number: IAN # 14B569801; Contract grant sponsor: U.S. Department of Energy; Contract grant number: DE-AC05-00OR22725; Contract grant sponsor: SBIR; Contract grant number: DE-FG02-05ER84252; Contract grant sponsors: HTML User Program, User Program, Asst. Sec. for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, US Department of Energy, Welch Foundation, NSF Materials Division. NR 19 TC 45 Z9 46 U1 5 U2 46 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD MAR PY 2009 VL 72 IS 3 BP 208 EP 215 DI 10.1002/jemt.20673 PG 8 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 419RZ UT WOS:000264238500010 PM 19165742 ER PT J AU Qu, WG Tan, XL Yang, P AF Qu, Weiguo Tan, Xiaoli Yang, Pin TI In Situ Transmission Electron Microscopy Study on Nb-Doped Pb(Zr0.95Ti0.05)O-3 Ceramics SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE TEM; lead zirconate titanate; phase transition; electric field-induced ID LEAD-ZIRCONATE-TITANATE; RHOMBOHEDRAL PHASE; BOUNDARY CRACKING; SINGLE-CRYSTALS AB The ferroelectric-to-ferroelectric phase transition between the high temperature (FERH) and the low temperature (FERL) rhombohedral phases in a Nb-doped Pb(Zr0.95Ti0.05)O-3 ceramic was investigated with transmission electron microscopy (TEM). Both bright field images and electron diffraction patterns were monitored as a function of temperature as well as dc electric field. A special TEM specimen holder that permits the application of electric voltage up to 600 V was employed for the study of electric field-induced phase transition. It was found that both [1/2](011)(c)- and [1/2](111)(c)-type superlattice diffraction spots were present at room temperature when the specimen was under no electric field. The [1/2](111)(c)-type superlattice spots were observed to disappear during heating above the phase transition temperature. When dc electric fields were applied at room temperature, the [1/2](111)(c)-type superlattice spots vanished as the electric field-induced FERL -> FERH phase transition occurred. Microsc. Res. Tech. 72:216-222, 2009. (C) 2009 Wil y-Liss, Inc. C1 [Qu, Weiguo; Tan, Xiaoli] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Yang, Pin] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tan, XL (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM xtan@iastate.edu RI Tan, Xiaoli/C-3376-2013; Qu, Weiguo/D-9875-2013 OI Tan, Xiaoli/0000-0002-4182-663X; Qu, Weiguo/0000-0001-7925-7340 FU Sandia National Laboratories [679766]; United States Department of Energy - Basic Energy Sciences [DE-AC02-07CH11358]; United States Department of Energy [DE-AC04-94AL85000] FX Contract grant sponsor: Sandia National Laboratories; Contract grant number: 679766; Contract grant sponsor: United States Department of Energy - Basic Energy Sciences (Materials & Engineering Physics Program, Ames Laboratory); Contract grant number: DE-AC02-07CH11358; Contract grant sponsor: United States Department of Energy (Sandia Corporation, a Lockheed Martin Company); Contract grant number: DE-AC04-94AL85000. NR 21 TC 3 Z9 4 U1 4 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1059-910X J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD MAR PY 2009 VL 72 IS 3 BP 216 EP 222 DI 10.1002/jemt.20674 PG 7 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 419RZ UT WOS:000264238500011 PM 19130612 ER PT J AU Bonny, G Erhart, P Caro, A Pasianot, RC Malerba, L Caro, M AF Bonny, G. Erhart, P. Caro, A. Pasianot, R. C. Malerba, L. Caro, M. TI The influence of short range order on the thermodynamics of Fe-Cr alloys SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID AB-INITIO; FREE-ENERGY; CU ALLOYS; IRRADIATION; MOSSBAUER; SYSTEMS; IRON; FCC AB Using atomistic simulations of Fe-Cr alloys and computational thermodynamics techniques, we study the influence of short range order (SRO) on the location of the alpha-alpha' miscibility gap. By comparing the random alloy with the short range ordered alloy, we extract the contributions of SRO to the free energy coming from the enthalpy of mixing and from the vibrational and configurational entropies. We conclude that the effects of SRO are significant, doubling the solubility limit of Cr at low temperatures (approximate to 300 K), and that this effect is mainly due to the contribution of SRO to the enthalpy. The result is relevant to the nuclear applications of these alloys where irradiation accelerates alpha' precipitation. C1 [Bonny, G.; Malerba, L.] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium. [Bonny, G.; Erhart, P.; Caro, A.; Caro, M.] LLNL, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. [Bonny, G.] Univ Ghent, Ctr Mol Modeling, B-9000 Ghent, Belgium. [Pasianot, R. C.] CAC CNEA, Dept Mat, RA-1650 Buenos Aires, DF, Argentina. [Pasianot, R. C.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Pasianot, R. C.] UNSAM CNEA, Inst Sabato, RA-1650 Buenos Aires, DF, Argentina. RP Bonny, G (reprint author), CEN SCK, Nucl Mat Sci Inst, Boeretang 200, B-2400 Mol, Belgium. EM GBonny@sckcen.be RI Erhart, Paul/G-6260-2011 OI Erhart, Paul/0000-0002-2516-6061 NR 44 TC 25 Z9 25 U1 2 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR PY 2009 VL 17 IS 2 AR 025006 DI 10.1088/0965-0393/17/2/025006 PG 16 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 396HO UT WOS:000262583000006 ER PT J AU Granovsky, AE Clark, MC McElheny, D Heil, G Hong, J Liu, XD Kim, Y Joachimiak, G Joachimiak, A Koide, S Rosner, MR AF Granovsky, Alexey E. Clark, Matthew C. McElheny, Dan Heil, Gary Hong, Jia Liu, Xuedong Kim, Youngchang Joachimiak, Grazyna Joachimiak, Andrzej Koide, Shohei Rosner, Marsha Rich TI Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism SO MOLECULAR AND CELLULAR BIOLOGY LA English DT Article ID PHOSPHATIDYLETHANOLAMINE-BINDING PROTEIN; BACKBONE DYNAMICS; METASTASIS SUPPRESSOR; SIGNAL-TRANSDUCTION; CANCER METASTASIS; CRYSTAL-STRUCTURE; PROSTATE-CANCER; CELL-LINES; N-REGION; EXPRESSION AB Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding-and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. C1 [Rosner, Marsha Rich] Univ Chicago, Ben May Dept Canc Res, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA. [Clark, Matthew C.; Hong, Jia; Rosner, Marsha Rich] Univ Chicago, Dept Neurobiol Pharmacol & Physiol, Chicago, IL 60637 USA. [McElheny, Dan; Heil, Gary; Koide, Shohei] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Liu, Xuedong] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Rosner, MR (reprint author), Univ Chicago, Ben May Dept Canc Res, Gordon Ctr Integrat Sci, 929 E 57th St, Chicago, IL 60637 USA. EM m-rosner@uchicago.edu OI Koide, Shohei/0000-0001-5473-4358 FU Howard Hughes Medical Institute; NCI NIH HHS [CA112310, R01 CA112310]; NINDS NIH HHS [NS33858, R01 NS033858] NR 45 TC 14 Z9 21 U1 0 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0270-7306 J9 MOL CELL BIOL JI Mol. Cell. Biol. PD MAR 1 PY 2009 VL 29 IS 5 BP 1306 EP 1320 DI 10.1128/MCB.01271-08 PG 15 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 406KI UT WOS:000263293500018 PM 19103740 ER PT J AU Zhang, XP Fournier, MV Ware, JL Bissell, MJ Yacoub, A Zehner, ZE AF Zhang, Xueping Fournier, Marcia V. Ware, Joy L. Bissell, Mina J. Yacoub, Adly Zehner, Zendra E. TI Inhibition of vimentin or beta(1) integrin revert morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo SO MOLECULAR CANCER THERAPEUTICS LA English DT Article ID EPITHELIAL-MESENCHYMAL TRANSITION; BREAST-CANCER CELLS; INTERMEDIATE-FILAMENTS; BASEMENT-MEMBRANE; ALPHA-6-BETA-1 INTEGRIN; 3-DIMENSIONAL CULTURE; ACINAR MORPHOGENESIS; INVASIVE PHENOTYPE; LINE M12; EXPRESSION AB Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (IrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional IrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M 12 resulted in a poorly tumorigenic subline, designated F6. When embedded in IrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to beta-catenin, E-cadherin, or alpha(6) and beta(1) integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression Of alpha(6) and beta(1)integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional IrECM gels. These studies suggest that the levels of vimentin and beta(1) integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis. [Mol Cancer Ther 2009;8(3):499 - 508] C1 [Zhang, Xueping; Zehner, Zendra E.] Virginia Commonwealth Univ, Dept Biochem & Mol Biophys, Richmond, VA 23298 USA. [Ware, Joy L.] Virginia Commonwealth Univ, Dept Pathol, Richmond, VA 23298 USA. [Yacoub, Adly] Virginia Commonwealth Univ, Dept Radiat Oncol, Richmond, VA 23298 USA. [Yacoub, Adly] Virginia Commonwealth Univ, Massey Canc Ctr, Richmond, VA 23298 USA. [Fournier, Marcia V.; Bissell, Mina J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. RP Zehner, ZE (reprint author), Virginia Commonwealth Univ, Dept Biochem & Mol Biophys, Med Campus,POB 980614, Richmond, VA 23298 USA. EM zezehner@vcu.edu FU Department of Defense [DAMD 17-00-1-0296]; Virginia Commonwealth Health Research Board [40-06]; U.S. DOE; OBER Office of Biological and Environmental Research [DE-AC0205CH 1123, 03-76SFOO098]; Distinguished Fellow Award; NCI awards [R01CA064786, R01CA057621, U54CA126552, U54CAl 12970]; U.S. DOD [W81 XWHO810736, W81 XWHO510338] FX Department of Defense grant DAMD 17-00-1-0296 and Virginia Commonwealth Health Research Board 40-06 (Z.E. Zehner) and U.S. DOE, OBER Office of Biological and Environmental Research, DE-AC0205CH 1123, 03-76SFOO098 and a Distinguished Fellow Award; NCI awards R01CA064786, R01CA057621, U54CA126552 and U54CAl 12970; U.S. DOD W81 XWHO810736 and W81 XWHO510338 (M.J. Bissell). NR 47 TC 32 Z9 33 U1 0 U2 3 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1535-7163 J9 MOL CANCER THER JI Mol. Cancer Ther. PD MAR PY 2009 VL 8 IS 3 BP 499 EP 508 DI 10.1158/1535-7163.MCT-08-0544 PG 10 WC Oncology SC Oncology GA 423CZ UT WOS:000264475300003 PM 19276168 ER PT J AU Zhang, HZ Tang, XT Munske, GR Tolic, N Anderson, GA Bruce, JE AF Zhang, Haizhen Tang, Xiaoting Munske, Gerhard R. Tolic, Nikola Anderson, Gordon A. Bruce, James E. TI Identification of Protein-Protein Interactions and Topologies in Living Cells with Chemical Cross-linking and Mass Spectrometry SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; SACCHAROMYCES-CEREVISIAE; LARGE-SCALE; PROTEOMIC APPROACH; COMPLEX; PURIFICATION; REAGENTS; MICROARRAYS; TECHNOLOGY; CHROMATIN AB We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches. Molecular & Cellular Proteomics 8:409-420, 2009. C1 [Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Bruce, James E.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Tolic, Nikola; Anderson, Gordon A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Bruce, JE (reprint author), Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. EM jimbruce@u.washington.edu FU National Institutes of Health [1 R01 RR023334-01A1, 1S10RR017805-01]; National Center for Research Resources [1S10RR022538-01]; Office of Science (Biological and Environmental Research), United States Department of Energy [DE-FG02-04ER63924] FX This work was supported, in whole or in part, by National Institutes of Health Grants 1 R01 RR023334-01A1, 1S10RR017805-01, and 1S10RR022538-01 from the National Center for Research Resources. This work was also supported by Office of Science (Biological and Environmental Research), United States Department of Energy Grant DE-FG02-04ER63924. NR 52 TC 80 Z9 81 U1 1 U2 21 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD MAR PY 2009 VL 8 IS 3 BP 409 EP 420 DI 10.1074/mcp.M800232-MCP200 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 419SM UT WOS:000264240000002 PM 18936057 ER PT J AU Pascau, J Gispert, JD Michaelides, M Thanos, P Volkow, N Vaquero, JJ Soto-Montenegro, ML Desco, M AF Pascau, Javier Gispert, Juan Domingo Michaelides, Michael Thanos, Panayotis K. Volkow, Nora D. Vaquero, Juan Jose Soto-Montenegro, Maria Luisa Desco, Manuel TI Automated Method for Small-Animal PET Image Registration with Intrinsic Validation SO MOLECULAR IMAGING AND BIOLOGY LA English DT Article DE Image registration; Positron emission tomography (PET); Validation; Algorithm; Rats ID MUTUAL-INFORMATION; RAT-BRAIN; INTERPOLATION ARTIFACTS; PROBABILISTIC ATLASES; MICROPET; MRI; MAXIMIZATION AB We propose and compare different registration approaches to align small-animal PET studies and a procedure to validate the results by means of objective registration consistency measurements. Procedures: We have applied a registration algorithm based on information theory, using different approaches to mask the reference image. The registration consistency allows for the detection of incorrect registrations. This methodology has been evaluated on a test dataset (FDG-PET rat brain images). Results: The results show that a multiresolution two-step registration approach based on the use of the whole image at the low resolution step, while masking the brain at the high resolution step, provides the best robustness (87.5% registration success) and highest accuracy (0.67-mm average). Conclusions: The major advantages of our approach are minimal user interaction and automatic assessment of the registration error, avoiding visual inspection of the results, thus facilitating the accurate, objective, and rapid analysis of large groups of rodent PET images. C1 [Pascau, Javier; Vaquero, Juan Jose; Soto-Montenegro, Maria Luisa; Desco, Manuel] Hosp Gen Gregorio Maranon, Unidad Med & Cirugia Expt, Madrid 28007, Spain. [Gispert, Juan Domingo] CRC Corp Sanitaria, Inst Alta Tecnol, Barcelona 08003, Spain. [Michaelides, Michael; Thanos, Panayotis K.] Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA. [Michaelides, Michael; Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Lab Neuroimaging, Dept Hlth & Human Serv, NIH, Bethesda, MD 20892 USA. [Michaelides, Michael] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA. [Thanos, Panayotis K.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA. [Thanos, Panayotis K.] SUNY Stony Brook, Dept Neurosci & Biomed Engn, Stony Brook, NY 11794 USA. RP Pascau, J (reprint author), Hosp Gen Gregorio Maranon, Unidad Med & Cirugia Expt, C Doctor Esquerdo 46, Madrid 28007, Spain. EM jpascau@mce.hggm.es RI Pascau, Javier/B-5734-2013; Michaelides, Michael/K-4736-2013; Vaquero, Juan Jose/D-3033-2009; Desco, Manuel/D-2822-2009; OI Pascau, Javier/0000-0003-1484-731X; Michaelides, Michael/0000-0003-0398-4917; Vaquero, Juan Jose/0000-0001-9200-361X; Desco, Manuel/0000-0003-0989-3231; Gispert, Juan Domingo/0000-0002-6155-0642 FU CIBER [CB06/01/0079]; CDTEAM (CENIT program, Ministerio de Industria); NIAAA Intramural Research Program [AA 11034, AA07574, AA07611]; US Department of Energy [DE-AC02-98CH10886] FX This work was supported by projects CIBER CB06/01/0079 (Ministerio de Sanidad y Consumo) and CDTEAM (CENIT program, Ministerio de Industria). Further support came from NIAAA Intramural Research Program (AA 11034 and AA07574, AA07611) and the US Department of Energy (DE-AC02-98CH10886). NR 27 TC 14 Z9 14 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1536-1632 EI 1860-2002 J9 MOL IMAGING BIOL JI Mol. Imaging. Biol. PD MAR PY 2009 VL 11 IS 2 BP 107 EP 113 DI 10.1007/s11307-008-0166-z PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 403XW UT WOS:000263116300008 PM 18670824 ER PT J AU Panaitescu, A AF Panaitescu, A. TI An external-shock origin of the E-p proportional to epsilon(1/2)(gamma) relation for gamma-ray bursts SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; shock waves; gamma-rays: bursts ID PEAK; EMISSION; ENERGY; ENERGETICS; INTENSITY; SPECTRUM; FLASHES; MODELS; SWIFT; BATSE AB We investigate the possibility that the E-p proportional to epsilon(1/2)(gamma). relation between the peak energy Ep of the nu F-nu spectrum and energy output epsilon(gamma) for long-duration gamma-ray bursts (GRBs) arises from the external shock produced by the interaction of a relativistic outflow with the ambient medium. To that aim, we take into account the dependence of all parameters which determine E-p and epsilon(gamma) on the radial distribution of the ambient medium density and find that the E-p proportional to epsilon(1/2)(gamma). relation can be explained if the medium around GRBs has a universal radial stratification. For various combinations of GRB radiative process (synchrotron or inverse-Compton) and dissipation mechanism (reverse or forward shock), we find that the circumburst medium must have a particle density with a radial distribution different than the R-2 expected for the stellar wind corresponding to a constant mass-loss rate and terminal speed. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Panaitescu, A (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87545 USA. EM alin@lanl.gov FU US Department of Energy through the LANL/LDRD [20080039DR] FX The author acknowledges the support of the US Department of Energy through the LANL/LDRD 20080039DR program. NR 25 TC 8 Z9 8 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR 1 PY 2009 VL 393 IS 3 BP 1010 EP 1015 DI 10.1111/j.1365-2966.2008.14240.x PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 407JL UT WOS:000263359300024 ER PT J AU Chrzan, DC Morris, JW Osetsky, YN Stoller, RE Zinkle, SJ AF Chrzan, D. C. Morris, J. W., Jr. Osetsky, Y. N. Stoller, R. E. Zinkle, S. J. TI What is the Limit of Nanoparticle Strengthening? SO MRS BULLETIN LA English DT Article ID COMPUTER-SIMULATION; DISLOCATION GLIDE; ELECTRON-MICROSCOPY; DISTINCT OBSTACLES; STATISTICAL-THEORY; POINT OBSTACLES; TEM OBSERVATION; RANDOM MIXTURE; RANDOM ARRAYS; ALPHA-IRON AB The stress required to deform a perfect crystal to its elastic limit while maintaining perfect periodicity the so-called ideal strength, sets the gold standard for the strength of a given material. Materials this strong would be of obvious engineering importance, potentially enabling more efficient turbines for energy production, lighter materials for transportation applications, and more reliable materials for nuclear reactor applications. In practice, the strength of engineering materials is often more than two orders of magnitude less than the Ideal strength due to easily activated deformation processes involving dislocations. For many materials, precipitate strengthening is a promising approach to impede dislocation motion and thereby improves strength and creep resistance. This observation begs the question: What are the limits of nanoparticle strengthening? Can the ideal strength of a matrix material be reached? To answer these questions, we need a detailed, atomic scale understanding of the interactions between dislocations and obstacles. Fortunately, simulations are beginning to explore this interaction. C1 [Chrzan, D. C.; Morris, J. W., Jr.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zinkle, S. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Chrzan, DC (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM dcchrzan@berkeley.edu; jwmorris@berkeley.edu; osetskiyyn@ornl.gov; stollerre@ornl.gov; zinklesj@ornl.gov RI Stoller, Roger/H-4454-2011; OI Zinkle, Steven/0000-0003-2890-6915; Osetskiy, Yury/0000-0002-8109-0030 FU National Science Foundation [DMR-0706554]; Division of Materials Sciences and Engineering; Office of Fusion Energy Sciences, U.S. Department of Energy [DE-AC05-000R22725] FX DCC and JWM acknowledge the support of the National Science Foundation under Grant No. DMR-0706554. YNO, RES, and SJZ acknowledge the support of the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-000R22725 with UT-Battelle, LLC. NR 46 TC 6 Z9 6 U1 0 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD MAR PY 2009 VL 34 IS 3 BP 173 EP 177 DI 10.1557/mrs2009.48 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 420YM UT WOS:000264325100013 ER PT J AU Derlet, PM Gumbsch, P Hoagland, R Li, J McDowell, DL Van Swygenhoven, H Wang, J AF Derlet, P. M. Gumbsch, P. Hoagland, R. Li, J. McDowell, D. L. Van Swygenhoven, H. Wang, J. TI Atomistic Simulations of Dislocations in Confined Volumes SO MRS BULLETIN LA English DT Article ID TILT GRAIN-BOUNDARIES; COHERENT TWIN BOUNDARIES; CENTERED-CUBIC METALS; NANOCRYSTALLINE METALS; MOLECULAR-DYNAMICS; RATE SENSITIVITY; NANOLAYERED COMPOSITES; MECHANICAL-PROPERTIES; BICRYSTAL INTERFACES; SLIDING MECHANISMS AB Internal microstructural length scales play a fundamental role in the strength and ductility of a material. Grain boundaries in nanocrystalline structures and heterointerfaces in nanolaminates can restrict dislocation propagation and also act as a source for new dislocations, thereby affecting the detailed dynamics of dislocation-mediated plasticity Atomistic simulation has played an important and complementary role to experiment in elucidating the nature of the dislocation/interface interaction, demonstrating a diversity of atomic-scale processes covering dislocation nucleation, propagation, absorption, and transmission at interfaces. This article reviews some atomistic simulation work that has made progress in this field and discusses possible strategies in overcoming the inherent time scale challenge of finite temperature molecular dynamics. C1 [Derlet, P. M.; Van Swygenhoven, H.] Paul Scherrer Inst, Mat Sci & Simulat Div, Wurenlingen, Switzerland. [Gumbsch, P.] Univ Karlsruhe TH, Karlsruhe, Germany. [Gumbsch, P.] Fraunhofer Inst Mech Mat IWM, Freiburg, Germany. [Gumbsch, P.] Fraunhofer Inst Mech Mat IWM, Halle, Germany. [Hoagland, R.; Wang, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Li, J.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [McDowell, D. L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Derlet, PM (reprint author), Paul Scherrer Inst, Mat Sci & Simulat Div, Wurenlingen, Switzerland. EM peter.derlet@psi.ch; peter.gumbsch@iwm.fraunhofer.de; hoagland@lanl.gov; liju@seas.upenn.edu; david.mcdowell@me.gatech.edu; helena.vs@psi.ch; wangj6@lanl.gov RI Li, Ju/A-2993-2008; Gumbsch, Peter/E-5879-2012; Wang, Jian/F-2669-2012 OI Li, Ju/0000-0002-7841-8058; Gumbsch, Peter/0000-0001-7995-228X; Wang, Jian/0000-0001-5130-300X FU U.S. National Science Foundation (NSF) [0728069]; Office of Naval Research [N00014-05-1-0504]; Air Force Office of Scientific Research; European Commission [016710]; Swiss National Science Foundation; Paden Chair in Metals Processing FX J. Li acknowledges support by the U.S. National Science Foundation (NSF) CMMI-0728069, Office of Naval Research N00014-05-1-0504, and the Air Force Office of Scientific Research and interactions with Ting Zhu and Subra Suresh. P. Gumbsch and H. Van Swygenhoven acknowledge the financial support of the European Commission (FP6-NANOMESO, Grant No. 016710). P.M. Derlet and H. Van Swygenhoven acknowledge their work with E. Bitzek and C. Brandl and the support of the Swiss National Science Foundation. D.L. McDowell acknowledges support of the U.S. NSF and the Paden Chair in Metals Processing. NR 69 TC 36 Z9 36 U1 2 U2 30 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD MAR PY 2009 VL 34 IS 3 BP 184 EP 189 DI 10.1557/mrs2009.50 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 420YM UT WOS:000264325100015 ER PT J AU Levy, N Comstock, MJ Cho, J Berbil-Bautista, L Kirakosian, A Lauterwasser, F Poulsen, DA Frechet, JMJ Crommie, MF AF Levy, Niv Comstock, Matthew J. Cho, Jongweon Berbil-Bautista, Luis Kirakosian, Armen Lauterwasser, Frank Poulsen, Daniel A. Frechet, Joan M. J. Crommie, Michael F. TI Self-Patterned Molecular Photoswitching in Nanoscale Surface Assemblies SO NANO LETTERS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; THERMAL-ACTIVATION; LIGHT; AZOBENZENE; PHOTOEMISSION; STABILITY; MOTION; GOLD AB Photomechanical switching (photoisomerization) of molecules at a surface Is found to strongly depend on molecule-molecule interactions and molecule-surface orientation. Scanning tunneling microscopy was used to image photoswitching behavior in the single-molecule limit of tetra-terf-butyl-azobenzene molecules adsorbed onto Au(111) at 30 K. Photoswitching behavior varied strongly with surface molecular Island structure, and self-patterned stripes of switching and nonswitching regions were observed having similar to 10 nm pitch. These findings can be summarized Into photoswitching selection rules that highlight the important role played by a molecule's nanoscale environment In determining its switching properties. C1 [Levy, Niv; Comstock, Matthew J.; Cho, Jongweon; Berbil-Bautista, Luis; Kirakosian, Armen; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Levy, Niv; Comstock, Matthew J.; Cho, Jongweon; Berbil-Bautista, Luis; Kirakosian, Armen; Lauterwasser, Frank; Poulsen, Daniel A.; Frechet, Joan M. J.; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lauterwasser, Frank; Poulsen, Daniel A.; Frechet, Joan M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM crommie@berkeley.edu RI Cho, Jongweon/F-3704-2011; OI Frechet, Jean /0000-0001-6419-0163 FU U.S. Department or Energy [DE-AC03-76SF0098]; National Science Foundation [CCR-0210176]; Office of Science; Office of Basic Energy Sciences; Division of Materials Sciences and Engineering Division FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department or Energy under Contract No. DE-AC03-76SF0098 and by the National Science Foundation Grant CCR-0210176. NR 26 TC 23 Z9 23 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 935 EP 939 DI 10.1021/nl802632g PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100004 PM 19193016 ER PT J AU Zhou, XJ Zifer, T Wong, BM Krafcik, KL Leonard, F Vance, AL AF Zhou, Xinjian Zifer, Thomas Wong, Bryan M. Krafcik, Karen L. Leonard, Francois Vance, Andrew L. TI Color Detection Using Chromophore-Nanotube Hybrid Devices SO NANO LETTERS LA English DT Article ID FIELD-EFFECT TRANSISTORS; CARBON NANOTUBES AB We present a nanoscale color detector based on a single-walled carbon nanotube functionalized with azobenzene chromophores, where the chromophores serve as photoabsorbers and the nanotube as the electronic read-out. By synthesizing chromophores with specific absorption windows in the visible spectrum and anchoring them to the nanotube surface, we demonstrate the controlled detection of visible light of low intensity in narrow ranges of wavelengths. Our measurements suggest that upon photoabsorption, the chromophores isomerize from the ground state trans configuration to the excited state cis configuration, accompanied by a large change in dipole moment, changing the electrostatic environment of the nanotube. All-electron ab initio calculations are used to study the chromophore-nanotube hybrids and show that the chromophores bind strongly to the nanotubes without disturbing the electronic structure of either species. Calculated values of the dipole moments support the notion of dipole changes as the optical detection mechanism. C1 [Zhou, Xinjian; Zifer, Thomas; Wong, Bryan M.; Krafcik, Karen L.; Leonard, Francois; Vance, Andrew L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Zhou, XJ (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM xinzhou@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU United States Department of Energy [DE-AC04-94-AL85000]; Laboratory Directed Research and Development program at Sandia National Laboratories FX The authors thank J. M. Simmons for valuable discussions. This project is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. NR 19 TC 66 Z9 67 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1028 EP 1033 DI 10.1021/nl8032922 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100021 PM 19206226 ER PT J AU Martinez, JA Misra, N Wang, YM Stroeve, P Grigoropoulos, CP Noy, A AF Martinez, Julio A. Misra, Nipun Wang, Yinmin Stroeve, Pieter Grigoropoulos, Costas P. Noy, Aleksandr TI Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with Functional Biological Pore Channels SO NANO LETTERS LA English DT Article ID SCANNING ELECTROCHEMICAL MICROSCOPY; DIMENSIONAL LIPID-BILAYERS; SELF-ASSEMBLED MONOLAYER; CARBON NANOTUBES; GOLD ELECTRODES; ELECTRICAL DETECTION; ALPHA-HEMOLYSIN; MEMBRANE; STABILITY; SURFACES AB Nanoscale electrodes based on one-dimensional Inorganic conductors could possess significant advantages for electrochemical measurements over their macroscopic counterparts In a variety of electrochemical applications. We show that the efficiency of the electrodes constructed of Individual highly doped silicon nanowires greatly exceeds the efficiency of flat SI electrodes. Modification of the surfaces of the nanowire electrodes with phospholipid bilayers produces an efficient biocompatible barrier to transport of the solution redox species to the nanoelectrode surface. Incorporating functional alpha-hemolysin protein pores in the lipid bilayer results in a partial recovery of the Faradic current due to the specific transport through the protein pore. These assemblies represent a robust and versatile platform for building a new generation of highly specific biosensors and nano/bioelectronic devices. C1 [Martinez, Julio A.; Misra, Nipun; Wang, Yinmin; Noy, Aleksandr] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Martinez, Julio A.; Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. [Misra, Nipun; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Noy, Aleksandr] Univ Calif, Sch Nat Sci, Merced, CA 95344 USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM noy1@llnl.gov RI Han, Kyuhee/B-6201-2009; Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 FU U.S. Department of Energy [DE-AC52-07NA27344] FX A.N. acknowledges support from the Biomolecular Materials Program at the DOE Office of Basic Energy Sciences. J.M. acknowledges support from the LSP program at LLNL. J.M. and N.M. contributed equally to this work. Parts of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 42 TC 33 Z9 34 U1 4 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1121 EP 1126 DI 10.1021/nl8036504 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100036 PM 19203205 ER PT J AU Van Petegem, S Brandstetter, S Maass, R Hodge, AM El-Dasher, BS Biener, J Schmitt, B Borca, C Van Swygenhoven, H AF Van Petegem, Steven Brandstetter, Stefan Maass, Robert Hodge, Andrea M. El-Dasher, Bassem S. Biener, Juergen Schmitt, Bernd Borca, Camelia Van Swygenhoven, Helena TI On the Microstructure of Nanoporous Gold: An X-ray Diffraction Study SO NANO LETTERS LA English DT Article ID POROUS GOLD; AU; EVOLUTION; BEHAVIOR; SENSORS; STRAIN AB The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (31)) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread in orientations within individual grains. Initially, most grains develop in-plane tensile stresses, which are partly released during further dealloying. Simultaneously, the feature size of the developing nanoporous structure increases with increasing dealloying time. Finally, microdiffraction experiments on dealloyed micron-sized nanoporous pillars reveal significant surface damage introduced by focused ion beam milling. C1 [Van Petegem, Steven; Brandstetter, Stefan; Maass, Robert; Schmitt, Bernd; Borca, Camelia; Van Swygenhoven, Helena] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Hodge, Andrea M.; El-Dasher, Bassem S.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94551 USA. RP Van Swygenhoven, H (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM helena.vanswygenhoven@psi.ch RI Maass, Robert/F-6306-2011; Schmitt, Bernd/H-9365-2013; Van Petegem, Steven/D-5908-2014; Van Petegem, Steven/E-9807-2016 OI Schmitt, Bernd/0000-0002-5778-0680; Van Petegem, Steven/0000-0002-3015-7725 FU Swiss National Science Foundation; European Commission; U.S. Department of Energy [DE-AC52-07NA27344] FX The authors thank D. Grolimund and M. Willimann from the MicroXAS beam line at the Swiss Light Source for technical support and C. A. Volkert for providing the nanoporous gold micropillars. H.V.S. thanks the Swiss National Science Foundation and the European Commission (6th Framework) for financial support of the project NANOMESO. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 31 TC 40 Z9 40 U1 5 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1158 EP 1163 DI 10.1021/nl803799q PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100042 PM 19193021 ER PT J AU Malen, JA Doak, P Baheti, K Tilley, TD Segalman, RA Majumdar, A AF Malen, Jonathan A. Doak, Peter Baheti, Kanhayalal Tilley, T. Don Segalman, Rachel A. Majumdar, Arun TI Identifying the Length Dependence of Orbital Alignment and Contact Coupling in Molecular Heterojunctions SO NANO LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; METAL WORK FUNCTION; JUNCTIONS; CONDUCTANCE; RESISTANCE; THERMOELECTRICITY; TRANSPORT; CIRCUITS; SAMS AB Transport in metal-molecule-metal junctions is defined by the alignment and coupling of molecular orbitals with continuum electronic states in the metal contacts. Length-dependent changes in molecular orbital alignment and coupling with contact states were probed via measurements and comparisons of thermopower (S) of a series of phenylenes and alkanes with varying binding groups. S increases linearly with length for phenylenediames and phenylenedithiols while it decreases linearly in alkanedithiols. Comparison of these data suggests that the molecular backbone determines the length dependence of S, while the binding group determines the zero length or contact S. Transport in phenylenes was dominated by the highest occupied molecular orbital (HOMO), which aligns closer to the Fermi energy of the contacts as similar to L(-1), but becomes more decoupled from them as similar to e(-L). In contrast, the decreasing trend in S for alkanedithiols suggests that transmission is largely affected by gold-sulfur metal induced gap states residing between the HOMO and lowest unoccupied molecular orbital. C1 [Malen, Jonathan A.; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Malen, Jonathan A.; Doak, Peter; Segalman, Rachel A.; Majumdar, Arun] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Doak, Peter; Baheti, Kanhayalal] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tilley, T. Don] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Segalman, Rachel A.; Majumdar, Arun] Univ Calif Berkeley, Appl Sci & Technol Program, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu; majumdar@me.berkeley.edu RI Malen, Jonathan/D-5954-2013; Doak, Peter/A-1910-2016; OI Malen, Jonathan/0000-0003-4560-4476; Doak, Peter/0000-0001-6039-9752; Segalman, Rachel/0000-0002-4292-5103 FU Department of Energy Basic Energy Sciences (DOEBES) FX We gratefully acknowledge support from the Division of Materials Sciences and Engineering in the Department of Energy Basic Energy Sciences (DOEBES) through the Helios Program at Lawrence Berkeley National Laboratory (LBNL). We also gratefully acknowledge support in the form of instrumentation from the NSF-NSEC-COINS at UC Berkeley. We thank J. B. Neaton and Su Ying Quek from LBNL, as well as S. Yee from UC Berkeley, for insightful conversations that benefited this work. NR 29 TC 114 Z9 114 U1 3 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1164 EP 1169 DI 10.1021/nl803814f PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100043 PM 19239204 ER PT J AU Gomez, ED Panday, A Feng, EH Chen, V Stone, GM Minor, AM Kisielowski, C Downing, KH Borodin, O Smith, GD Balsara, NP AF Gomez, Enrique D. Panday, Ashoutosh Feng, Edward H. Chen, Vincent Stone, Gregory M. Minor, Andrew M. Kisielowski, Christian Downing, Kenneth H. Borodin, Oleg Smith, Grant D. Balsara, Nitash P. TI Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes SO NANO LETTERS LA English DT Article ID CRYSTALLINE POLYMER ELECTROLYTES; MOLECULAR-DYNAMICS SIMULATIONS; RECHARGEABLE LITHIUM BATTERIES; ATOMIC-RESOLUTION; SOLID-STATE; TRANSPORT; IONOMERS; WEIGHT AB Energy-filtered transmission electron microscopy (EFTEM) was used to determine the distribution of lithium ions in solid polymer electrolytes for lithium batteries. The electrolytes of interest are mixtures of bis(trifluoromethane)sulfonimide lithium salt and symmetric poly(styrene-block-ethylene oxide) copolymers (SEO). In contrast to current solid and liquid electrolytes, the conductivity of SEO/salt mixtures increases with increasing molecular weight of the copolymers. EFTEM results show that the salt is increasingly localized in the middle of the poly(ethylene oxide) (PEO) lamellae as the molecular weight of the copolymers is increased. Calculations of the inhomogeneous local stress field in block copolymer microdomains, modeled using self-consistent field theory, provide a quantitative explanation for this observation. These stresses, which increase with increasing molecular weight, interfere with the ability of PEO chains to coordinate with lithium cations near the walls of the PEO channels where ion mobility is expected to be low. C1 [Gomez, Enrique D.; Panday, Ashoutosh; Feng, Edward H.; Chen, Vincent; Stone, Gregory M.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Gomez, Enrique D.; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Panday, Ashoutosh; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. [Minor, Andrew M.; Kisielowski, Christian] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Downing, Kenneth H.; Smith, Grant D.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Borodin, Oleg] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Borodin, Oleg/B-6855-2012; Gomez, Enrique/E-5887-2013 OI Borodin, Oleg/0000-0002-9428-5291; FU Electron Microscopy of Soft Matter Program at Lawrence Berkeley National Laboratory (LBNL); Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley Laboratory; U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences; [DE-AC0205CHI 1231 PO 6515401] FX Major funding for this work was provided through the Electron Microscopy of Soft Matter Program at Lawrence Berkeley National Laboratory (LBNL) supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Laboratory, which is supported by the U.S. Department of Energy under Contract # DE-AC0205CHI 1231 PO No. 6515401. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 42 TC 106 Z9 107 U1 10 U2 123 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1212 EP 1216 DI 10.1021/nl900091n PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100051 PM 19193125 ER PT J AU Ji, MB Park, S Connor, ST Mokari, T Cui, Y Gaffney, KJ AF Ji, Minbiao Park, Sungnam Connor, Stephen T. Mokari, Taleb Cui, Yi Gaffney, Kelly J. TI Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation SO NANO LETTERS LA English DT Article ID CARRIER MULTIPLICATION; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS; DYNAMICS; LIMITS AB We have spectrally resolved the Intraband transient absorption of photogenerated excitons to quantity the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited In a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally Integrated. With spectral Integration, we observe efficient multiple exciton generation in colloidal PbSe QDs. C1 [Ji, Minbiao; Park, Sungnam; Gaffney, Kelly J.] Stanford Univ, PULSE Inst, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Ji, Minbiao] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Connor, Stephen T.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Mokari, Taleb] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gaffney, KJ (reprint author), Stanford Univ, PULSE Inst, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. RI Ji, Minbiao/C-7793-2011; Park, Sungnam /F-3626-2012; MOKARI, TALEB/F-1685-2012; Cui, Yi/L-5804-2013 OI Ji, Minbiao/0000-0002-9066-4008; Cui, Yi/0000-0002-6103-6352 FU Global Climate and Energy Project (GCEP) at Stanford University; the King Abdullah University of Science and Technology (KAUST); Global Research Partnership (GRP); Center for Advanced Molecular Photovoltaics (CAMP); National Science Foundation Graduate Fellowship; Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering, U.S. Department of Energy [DE-AC0205CHII231] FX The work has been supported by the Global Climate and Energy Project (GCEP) at Stanford University, the King Abdullah University of Science and Technology (KAUST): Global Research Partnership (GRP) through the Center for Advanced Molecular Photovoltaics (CAMP), and the Department of Energy. S.T.C. acknowledges the support from a National Science Foundation Graduate Fellowship. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering, U.S. Department of Energy, under contract DE-AC0205CHII231. NR 33 TC 94 Z9 94 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1217 EP 1222 DI 10.1021/nl900103f PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100052 PM 19226125 ER PT J AU Sun, B Findikoglu, AT Sykora, M Werder, DJ Klimov, VI AF Sun, Baoquan Findikoglu, Alp T. Sykora, Milan Werder, Donald J. Klimov, Victor I. TI Hybrid Photovoltaics Based on Semiconductor Nanocrystals and Amorphous Silicon SO NANO LETTERS LA English DT Article ID LIGHT-EMITTING-DIODES; SOLAR-CELLS; QUANTUM DOTS; POLYMER; SOLIDS; PHOTOCONDUCTIVITY; COMPOSITES; INJECTION; EFFICIENT; FILMS AB Semiconductor nanocrystals (NCs) are promising materials for applications In photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their Integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which Is exclusively due to the NCs. On the other hand, In devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar calls show external quantum efficiencies of similar to 7% at infrared energies and similar to 50% In the visible and a power conversion efficiency 0 up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs. C1 [Sun, Baoquan; Sykora, Milan; Werder, Donald J.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Findikoglu, Alp T.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Klimov, Victor I.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI sun, Baoquan/N-7225-2013; OI Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences and Geosciences Division of the Office of Basic Energy Sciences, U.S.; Department of Energy (DOE) and Los Alamos LDRD funds; Center for Integrated Nanotechnologies jointly operated for DOE; Los Alamos and Sandia National Laboratories FX We thank Patricia Dickerson for assistance with the MB sample preparation. This work was supported by the Chemical Sciences, Biosciences and Geosciences Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE) and Los Alamos LDRD funds. V.I.K. acknowledges partial support from the Center for Integrated Nanotechnologies jointly operated for DOE by Los Alamos and Sandia National Laboratories. NR 29 TC 67 Z9 67 U1 7 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1235 EP 1241 DI 10.1021/nl9001469 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100055 PM 19209920 ER PT J AU Huo, ZY Tsung, CK Huang, WY Fardy, M Yan, RX Zhang, XF Li, YD Yang, PD AF Huo, Ziyang Tsung, Chia-Kuang Huang, Wenyu Fardy, Melissa Yan, Ruoxue Zhang, Xiaofeng Li, Yadong Yang, Peidong TI Self-Organized Ultrathin Oxide Nanocrystals SO NANO LETTERS LA English DT Article ID SHAPE CONTROL; QUANTUM RODS; SEMICONDUCTOR; NANOPARTICLES; ASSEMBLIES; NANOWIRES AB Sub-2-nm (down to one-unit cell) uniform oxide nanocrystals; and highly ordered superstructures were obtained in one step using oleylamine and oleic acid as capping and structure directing agents. The cooperative nature of the nanocrystal growth and assembly resulted in mesoscopic one-dimensional ribbon-like superstructures made of these ultrathin nanocrystals. The process reported here is general and can be readily extended to the production of many other transition metal (TiO(2), ZnO, Nb(2)O(5)) and rare earth oxide (Eu(2)O(3), Sm(2)O(3), Er(2)O(3), Y(2)O(3), Tb(2)O(3), and Yb(2)O(3)) systems. C1 [Huo, Ziyang; Tsung, Chia-Kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Huo, Ziyang; Tsung, Chia-Kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Huo, Ziyang; Li, Yadong] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Zhang, Xiaofeng] Hitachi High Technol Amer Inc, Nanotechnol Syst Div, Pleasanton, CA 94588 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 NR 26 TC 81 Z9 81 U1 12 U2 166 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2009 VL 9 IS 3 BP 1260 EP 1264 DI 10.1021/nl900209w PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 418IO UT WOS:000264142100059 PM 19206219 ER PT J AU Toner, BM Fakra, SC Manganini, SJ Santelli, CM Marcus, MA Moffett, J Rouxel, O German, CR Edwards, KJ AF Toner, Brandy M. Fakra, Sirine C. Manganini, Steven J. Santelli, Cara M. Marcus, Matthew A. Moffett, JamesW. Rouxel, Olivier German, Christopher R. Edwards, Katrina J. TI Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume SO NATURE GEOSCIENCE LA English DT Article ID EAST PACIFIC RISE; DISSOLVED ORGANIC-CARBON; MID-ATLANTIC RIDGE; DE-FUCA RIDGE; OXIDATION-KINETICS; OCEAN; SEA; PARTICLES; SYSTEMS; FLUXES AB Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread(1). This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff(2). For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated(3), and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals(4,5). Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans. C1 [Toner, Brandy M.; Manganini, Steven J.; Santelli, Cara M.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Fakra, Sirine C.; Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Moffett, JamesW.; Edwards, Katrina J.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. RP Toner, BM (reprint author), Univ Minnesota Twin Cities, Dept Soil Water & Climate, St Paul, MN 55108 USA. EM toner@umn.edu RI Rouxel, Olivier/F-3954-2014; Toner, Brandy/N-7911-2016; OI Toner, Brandy/0000-0002-3681-3455; Santelli, Cara/0000-0001-8617-0008 NR 32 TC 95 Z9 95 U1 8 U2 66 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD MAR PY 2009 VL 2 IS 3 BP 197 EP 201 DI 10.1038/NGEO433 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 420KY UT WOS:000264289900020 ER PT J AU Sutter, P AF Sutter, Peter TI EPITAXIAL GRAPHENE How silicon leaves the scene SO NATURE MATERIALS LA English DT News Item C1 Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov NR 8 TC 151 Z9 156 U1 8 U2 95 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2009 VL 8 IS 3 BP 171 EP 172 DI 10.1038/nmat2392 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 410DK UT WOS:000263556800012 PM 19229263 ER PT J AU Emtsev, KV Bostwick, A Horn, K Jobst, J Kellogg, GL Ley, L McChesney, JL Ohta, T Reshanov, SA Rohrl, J Rotenberg, E Schmid, AK Waldmann, D Weber, HB Seyller, T AF Emtsev, Konstantin V. Bostwick, Aaron Horn, Karsten Jobst, Johannes Kellogg, Gary L. Ley, Lothar McChesney, Jessica L. Ohta, Taisuke Reshanov, Sergey A. Roehrl, Jonas Rotenberg, Eli Schmid, Andreas K. Waldmann, Daniel Weber, Heiko B. Seyller, Thomas TI Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide SO NATURE MATERIALS LA English DT Article ID EPITAXIAL GRAPHENE; BILAYER GRAPHENE; BERRYS PHASE; GRAPHITE; GAS AB Graphene, a single monolayer of graphite, has recentlyattracted considerable interest owing to its novel magneto-transport properties(1-3), high carrier mobility and ballistic transport up to room temperature(4). It has the potential for technological applications as a successor of silicon in the post Moore's law era(5-7), as a single-molecule gas sensor(8), in spintronics(9-11), in quantum computing(12) or as a terahertz oscillator(13). For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices(5,6). However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu = 2,000 cm(2) V(-1) s(-1) at T = 27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis. C1 [Emtsev, Konstantin V.; Ley, Lothar; Roehrl, Jonas; Seyller, Thomas] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, D-91058 Erlangen, Germany. [Bostwick, Aaron; McChesney, Jessica L.; Rotenberg, Eli] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. [Jobst, Johannes; Reshanov, Sergey A.; Waldmann, Daniel; Weber, Heiko B.] Univ Erlangen Nurnberg, Lehrstuhl Angew Phys, D-91058 Erlangen, Germany. [Ohta, Taisuke] Sandia Natl Labs, Surface & Interface Sci Dept, Albuquerque, NM 87185 USA. [Schmid, Andreas K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Emtsev, KV (reprint author), Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany. EM thomas.seyller@physik.uni-erlangen.de RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013; Jobst, Johannes/H-6502-2013; Weber, Heiko/D-2654-2012 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; McChesney, Jessica/0000-0003-0470-2088; Jobst, Johannes/0000-0002-2422-1209; Weber, Heiko/0000-0002-6403-9022 NR 30 TC 1331 Z9 1354 U1 95 U2 1019 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2009 VL 8 IS 3 BP 203 EP 207 DI 10.1038/NMAT2382 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 410DK UT WOS:000263556800018 PM 19202545 ER PT J AU Ross, RB Cardona, CM Guldi, DM Sankaranarayanan, SG Reese, MO Kopidakis, N Peet, J Walker, B Bazan, GC Van Keuren, E Holloway, BC Drees, M AF Ross, Russel B. Cardona, Claudia M. Guldi, Dirk M. Sankaranarayanan, Shankara Gayathri Reese, Matthew O. Kopidakis, Nikos Peet, Jeff Walker, Bright Bazan, Guillermo C. Van Keuren, Edward Holloway, Brian C. Drees, Martin TI Endohedral fullerenes for organic photovoltaic devices SO NATURE MATERIALS LA English DT Article ID OPEN-CIRCUIT VOLTAGE; PLASTIC SOLAR-CELLS; METALLOFULLERENES; DERIVATIVES; REACTIVITY; EFFICIENCY; FILMS AB So far, one of the fundamental limitations of organic photovoltaic (OPV) device power conversion efficiencies (PCEs) has been the low voltage output caused by a molecular orbital mismatch between the donor polymer and acceptor molecules. Here, we present a means of addressing the low voltage output by introducing novel trimetallic nitride endohedral fullerenes (TNEFs) as acceptor materials for use in photovoltaic devices. TNEFs were discovered in 1999 by Stevenson et al.(1); for the first time derivatives of the TNEF acceptor, Lu(3)N@ C(80), are synthesized and integrated into OPV devices. The reduced energy offset of the molecular orbitals of Lu3N@ C80 to the donor, poly(3-hexyl)thiophene (P3HT), reduces energy losses in the charge transfer process and increases the open circuit voltage (V(oc)) to 260mV above reference devices made with [6,6]-phenyl-C(61)-butyric methyl ester (C(60)-PCBM) acceptor. PCEs > 4% have been observed using P3HT as the donor material. This work clears a path towards higher PCEs in OPV devices by demonstrating that high-yield charge separation can occur with OPV systems that have a reduced donor/acceptor lowest unoccupied molecular orbital energy offset. C1 [Ross, Russel B.; Van Keuren, Edward] Georgetown Univ, Washington, DC 20057 USA. [Cardona, Claudia M.; Holloway, Brian C.; Drees, Martin] Luna Innovat Inc, Danville, VA 24541 USA. [Guldi, Dirk M.; Sankaranarayanan, Shankara Gayathri] Univ Erlangen Nurnberg, Dept Chem & Pharm, D-91058 Erlangen, Germany. [Guldi, Dirk M.; Sankaranarayanan, Shankara Gayathri] Univ Erlangen Nurnberg, ICMM, D-91058 Erlangen, Germany. [Reese, Matthew O.; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Peet, Jeff; Bazan, Guillermo C.] Univ Calif Santa Barbara, Ctr Polymer & Organ Solids, Santa Barbara, CA 93106 USA. [Walker, Bright] Univ Calif Santa Barbara, Dept Chem & Biochem, Ctr Polymer & Organ Solids, Santa Barbara, CA 93117 USA. RP Ross, RB (reprint author), Georgetown Univ, 37th & Ost NW, Washington, DC 20057 USA. EM dreesm@lunainnovations.com RI Van Keuren, Edward/E-5581-2010; Guldi, Dirk/G-1422-2015; Kopidakis, Nikos/N-4777-2015; Bazan, Guillermo/B-7625-2014 OI Van Keuren, Edward/0000-0001-8348-7587; NR 22 TC 376 Z9 379 U1 13 U2 157 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2009 VL 8 IS 3 BP 208 EP 212 DI 10.1038/NMAT2379 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 410DK UT WOS:000263556800019 PM 19202546 ER PT J AU Vajda, S Pellin, MJ Greeley, JP Marshall, CL Curtiss, LA Ballentine, GA Elam, JW Catillon-Mucherie, S Redfern, PC Mehmood, F Zapol, P AF Vajda, Stefan Pellin, Michael J. Greeley, Jeffrey P. Marshall, Christopher L. Curtiss, Larry A. Ballentine, Gregory A. Elam, Jeffrey W. Catillon-Mucherie, Stephanie Redfern, Paul C. Mehmood, Faisal Zapol, Peter TI Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane SO NATURE MATERIALS LA English DT Article ID SUPPORTED METAL-CLUSTERS; C-H; ACTIVATION; SIZE; METHANE; ETHANE; GOLD; NANOPARTICLES; OXIDE; SITE AB Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis(1-6). Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms(7-9). Here, we show that size-preselected Pt(8-10) clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes(10,11). C1 [Vajda, Stefan; Marshall, Christopher L.; Curtiss, Larry A.; Ballentine, Gregory A.; Catillon-Mucherie, Stephanie; Redfern, Paul C.; Zapol, Peter] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Vajda, Stefan; Greeley, Jeffrey P.; Curtiss, Larry A.; Zapol, Peter] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Dept Chem Engn, Sch Engn & Appl Sci, New Haven, CT 06520 USA. [Pellin, Michael J.; Curtiss, Larry A.; Mehmood, Faisal; Zapol, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Vajda, S (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vajda@anl.gov; curtiss@anl.gov RI Pellin, Michael/B-5897-2008; Zapol, Peter/G-1810-2012; Marshall, Christopher/D-1493-2015 OI Pellin, Michael/0000-0002-8149-9768; Zapol, Peter/0000-0003-0570-9169; Marshall, Christopher/0000-0002-1285-7648 NR 29 TC 311 Z9 311 U1 25 U2 319 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2009 VL 8 IS 3 BP 213 EP 216 DI 10.1038/NMAT2384 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 410DK UT WOS:000263556800020 PM 19202544 ER PT J AU Armatas, GS Kanatzidis, MG AF Armatas, Gerasimos S. Kanatzidis, Mercouri G. TI Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation SO NATURE MATERIALS LA English DT Article ID HYDROGEN PURIFICATION; PORE ORGANIZATION; MEMBRANES; SEMICONDUCTORS; COMPLEXES; SULFIDES; CLUSTERS; AEROGELS; SILICA; XPS AB Mesoporous materials with tunable non-oxidic framework compositions can exhibit new kinds of functionality including internal surfaces with high polarizability. As the chemical and physical characteristics of the framework components can induce useful catalytic, absorption and optoelectronic features, the mesoporous structure can promote fast mass diffusion kinetics and size-selective transport of guest molecules(1). So far, synthetic efforts have resulted in mesoporous metal chalcogenides on using structure-directing moulds of soft or hard templates. These include ordered mesoporous II-VI semiconductors (such as CdS (refs 2,3), ZnS (ref. 4) and CdTe (ref. 5)). Recently, template-free synthetic routes for high-surface-area chalcogenide aerogels have been reported(6,7). Here, we describe a novel kind of porous materials based on germanium-rich chalcogenide networks and 'soft' highly polarizable surfaces. We demonstrate that these materials can exhibit excellent selectivity for separating hydrogen from carbon dioxide and methane. These highly polarizable mesoporous structures have important implications for membrane-based gas separation process technologies including hydrogen purification. C1 [Armatas, Gerasimos S.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Armatas, GS (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Armatas, Gerasimos/F-4753-2011 OI Armatas, Gerasimos/0000-0001-9475-1929 FU Nanoscale Science and Engineering Initiative; National Science Foundation [EEC-0647560] FX These studies were supported primarily by the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award Number EEC-0647560. We thank Peter C. Stair for the use of a mass-spectrometer gas analyser. This work made use of the J.B. Cohen X-ray Diffraction facility and the Electron Probe Instrumentation Center (EPIC) and Keck Interdisciplinary Surface Science (Keck-II) facility of NUANCE Center at Northwestern University. NR 29 TC 42 Z9 42 U1 3 U2 69 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2009 VL 8 IS 3 BP 217 EP 222 DI 10.1038/NMAT2381 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 410DK UT WOS:000263556800021 PM 19219031 ER PT J AU Wu, CJ Soderlind, P Glosli, JN Klepeis, JE AF Wu, Christine J. Soederlind, Per Glosli, James N. Klepeis, John E. TI Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting SO NATURE MATERIALS LA English DT Article ID DIAMOND-ANVIL CELL; X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; TRANSITION; PRESSURE; TA; MO; COMPRESSION; SIMULATION; BEHAVIOR AB There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures. C1 [Wu, Christine J.; Soederlind, Per; Glosli, James N.; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wu, CJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM wu5@llnl.gov FU US Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank J. A. Moriarty for providing the MGPT Ta potential, M. Ross, N. C. Holmes, W. J. Evans, M. J. Lipp, M. Tang, R. Gee and D. A. Orlikowski for useful discussions and K. Kline and J. McInnis for their contributions in preparation of the manuscript and figures. This work was carried out under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 47 TC 42 Z9 42 U1 3 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2009 VL 8 IS 3 BP 223 EP 228 DI 10.1038/NMAT2375 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 410DK UT WOS:000263556800022 PM 19169246 ER PT J AU Seidel, J Martin, LW He, Q Zhan, Q Chu, YH Rother, A Hawkridge, ME Maksymovych, P Yu, P Gajek, M Balke, N Kalinin, SV Gemming, S Wang, F Catalan, G Scott, JF Spaldin, NA Orenstein, J Ramesh, R AF Seidel, J. Martin, L. W. He, Q. Zhan, Q. Chu, Y. -H. Rother, A. Hawkridge, M. E. Maksymovych, P. Yu, P. Gajek, M. Balke, N. Kalinin, S. V. Gemming, S. Wang, F. Catalan, G. Scott, J. F. Spaldin, N. A. Orenstein, J. Ramesh, R. TI Conduction at domain walls in oxide multiferroics SO NATURE MATERIALS LA English DT Article ID THIN-FILMS; FERROELECTRIC-FILMS; RECONSTRUCTION; BIFEO3; POLARIZATION; TRANSITIONS; RESOLUTION AB Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features. C1 [Seidel, J.; He, Q.; Yu, P.; Gajek, M.; Balke, N.; Wang, F.; Orenstein, J.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seidel, J.; Martin, L. W.; Zhan, Q.; Chu, Y. -H.; Hawkridge, M. E.; Orenstein, J.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, L. W.; Chu, Y. -H.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Rother, A.] Tech Univ Dresden, Inst Struct Phys, Triebenberg Lab, DE-01062 Dresden, Germany. [Maksymovych, P.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Gemming, S.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Catalan, G.; Scott, J. F.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Spaldin, N. A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Seidel, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jseidel@berkeley.edu RI Gemming, Sibylle/C-6898-2009; Ying-Hao, Chu/A-4204-2008; He, Qing/E-3202-2010; Kim, Yu Jin/A-2433-2012; Spaldin, Nicola/A-1017-2010; Martin, Lane/H-2409-2011; Kalinin, Sergei/I-9096-2012; Catalan, Gustau/D-3233-2015; Yu, Pu/F-1594-2014; Orenstein, Joseph/I-3451-2015; Balke, Nina/Q-2505-2015; Maksymovych, Petro/C-3922-2016; wang, Feng/I-5727-2015 OI Ying-Hao, Chu/0000-0002-3435-9084; Spaldin, Nicola/0000-0003-0709-9499; Martin, Lane/0000-0003-1889-2513; Kalinin, Sergei/0000-0001-5354-6152; Catalan, Gustau/0000-0003-0214-4828; Balke, Nina/0000-0001-5865-5892; Maksymovych, Petro/0000-0003-0822-8459; FU US Department of Energy [DE-AC02-05CH1123]; National Center for Electron Microscopy; Lawrence Berkeley National Laboratory; Alexander von Humboldt Foundation; National Science Council [NSC 97-3114-M-009-001]; Deutsche Forschungsgemeinschaft; Deutsche Akademische Austauschdienst [GE 1202/5-1]; NSF [DMR-0605852]; Miller Institute for Basic Research in Science; UC Berkeley FX The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No DE-AC02-05CH1123. The authors from Berkeley would like to acknowledge the support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. J.S. acknowledges support from the Alexander von Humboldt Foundation. Y.H.C. would also like to acknowledge the support of the National Science Council, R.O.C., under contract No NSC 97-3114-M-009-001. A. R. and S. G. acknowledge support from Deutsche Forschungsgemeinschaft through FOR 520 and Deutsche Akademische Austauschdienst through GE 1202/5-1, and N.A.S. acknowledges support from NSF DMR Award No DMR-0605852 and the Miller Institute for Basic Research in Science, UC Berkeley. NR 36 TC 521 Z9 528 U1 53 U2 452 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD MAR PY 2009 VL 8 IS 3 BP 229 EP 234 DI 10.1038/NMAT2373 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 410DK UT WOS:000263556800023 PM 19169247 ER PT J AU Chen, HT Padilla, WJ Cich, MJ Azad, AK Averitt, RD Taylor, AJ AF Chen, Hou-Tong Padilla, Willie J. Cich, Michael J. Azad, Abul K. Averitt, Richard D. Taylor, Antoinette J. TI A metamaterial solid-state terahertz phase modulator SO NATURE PHOTONICS LA English DT Article ID DESIGN AB Over the past two decades, terahertz time-domain spectroscopy(1) and quantum-cascade lasers(2) have been two of the most important developments in terahertz science and technology. These technologies may contribute to a multitude of terahertz applications that are currently under investigation globally(3). However, the devices and components necessary to effectively manipulate terahertz radiation require substantial development beyond what has been accomplished to date. Here we demonstrate an electrically controlled planar hybrid metamaterial device that linearly controls the phase of terahertz radiation with constant insertion loss over a narrow frequency band. Alternatively, our device may operate as a broadband terahertz modulator because of the causal relation between the amplitude modulation and phase shifting. We perform terahertz time-domain spectroscopy, in which our hybrid metamaterial modulator replaces a commercial mechanical optical chopper, demonstrating comparable broadband performance and superior high-speed operation. C1 [Chen, Hou-Tong; Azad, Abul K.; Taylor, Antoinette J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Padilla, Willie J.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Cich, Michael J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Averitt, Richard D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM chenht@lanl.gov RI Chen, Hou-Tong/C-6860-2009; Padilla, Willie/A-7235-2008; OI Chen, Hou-Tong/0000-0003-2014-7571; Padilla, Willie/0000-0001-7734-8847; Azad, Abul/0000-0002-7784-7432 FU US Department of Energy [DE-AC52-06NA25396]; Office of Basic Energy Sciences Nanoscale Science Research; Los Alamos and Sandia National Laboratories; Los Alamos National Security, LLC FX We thank I. Brener for coordinating the sample fabrication, J. F. O'Hara for discussions and the use of the terahertz system, and D. Lippens for useful discussions. We acknowledge support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 30 TC 379 Z9 399 U1 26 U2 160 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD MAR PY 2009 VL 3 IS 3 BP 148 EP 151 DI 10.1038/NPHOTON.2009.3 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 420KV UT WOS:000264289600015 ER PT J AU Zurek, WH AF Zurek, Wojciech Hubert TI Quantum Darwinism SO NATURE PHYSICS LA English DT Article ID CURRENT SITUATION; COHERENT STATES; DECOHERENCE; MECHANICS; EINSELECTION AB Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective 'wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem. C1 LANL, Div Theory, Los Alamos, NM 87545 USA. RP Zurek, WH (reprint author), LANL, Div Theory, MS B213, Los Alamos, NM 87545 USA. EM whzurek@gmail.com FU DoE; LDRD; Foundational Questions Institute (FQXi) FX I am grateful to R. Blume-Kohout, F. Cucchietti, J. P. Paz, D. Poulin, H.- T. Quan and M. Zwolak for stimulating discussions. This research was supported by DoE through an LDRD grant at Los Alamos, and, in part, by the Foundational Questions Institute (FQXi). NR 40 TC 137 Z9 138 U1 4 U2 31 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2009 VL 5 IS 3 BP 181 EP 188 DI 10.1038/NPHYS1202 PG 8 WC Physics, Multidisciplinary SC Physics GA 422RY UT WOS:000264446600011 ER PT J AU Wise, WD Chatterjee, K Boyer, MC Kondo, T Takeuchi, T Ikuta, H Xu, ZJ Wen, JS Gu, GD Wang, YY Hudson, EW AF Wise, W. D. Chatterjee, Kamalesh Boyer, M. C. Kondo, Takeshi Takeuchi, T. Ikuta, H. Xu, Zhijun Wen, Jinsheng Gu, G. D. Wang, Yayu Hudson, E. W. TI Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor SO NATURE PHYSICS LA English DT Article ID QUASI-PARTICLE INTERFERENCE; ATOMIC-SCALE; BI2SR2CACU2O8+DELTA; STATE; CA2-XNAXCUO2CL2; DENSITY; ORIGIN; GAPS AB Particle-wave duality suggests we think of electrons as waves stretched across a sample, with wavevector k proportional to their momentum. Their arrangement in 'k-space', and in particular the shape of the Fermi surface, where the highest-energy electrons of the system reside, determine many material properties. Here we use a novel extension of Fourier-transform scanning tunnelling microscopy to probe the Fermi surface of the strongly inhomogeneous Bi-based cuprate superconductors. Surprisingly, we find that, rather than being globally defined, the Fermi surface changes on nanometre length scales. Just as shifting tide lines expose variations of water height, changing Fermi surfaces indicate strong local doping variations. This discovery, unprecedented in any material, paves the way for an understanding of other inhomogeneous characteristics of the cuprates, such as the pseudogap magnitude, and highlights a new approach to the study of nanoscale inhomogeneity in general. C1 [Wise, W. D.; Chatterjee, Kamalesh; Boyer, M. C.; Kondo, Takeshi; Wang, Yayu; Hudson, E. W.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Kondo, Takeshi; Takeuchi, T.; Ikuta, H.] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan. [Takeuchi, T.] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan. [Xu, Zhijun; Wen, Jinsheng; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Hudson, EW (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM ehudson@mit.edu RI Wen, Jinsheng/F-4209-2010; Hudson, Eric/C-2746-2008; Chatterjee, Kamalesh/G-6340-2011; xu, zhijun/A-3264-2013; Gu, Genda/D-5410-2013; Kondo, Takeshi/H-2680-2016 OI Wen, Jinsheng/0000-0001-5864-1466; Hudson, Eric/0000-0001-7064-0351; xu, zhijun/0000-0001-7486-2015; Gu, Genda/0000-0002-9886-3255; FU Cottrell Scholarship; MRSEC; NSF; DOE FX We thank A. V. Balatsky, N. Gedik, J. E. Hoffman, K. M. Lang, P. A. Lee, Y. Lee, T. Senthil and Z. Wang for comments. This research was supported in part by a Cottrell Scholarship awarded by the Research Corporation, by the MRSEC and CAREER programmes of the NSF and by DOE. NR 29 TC 50 Z9 50 U1 1 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2009 VL 5 IS 3 BP 213 EP 216 DI 10.1038/NPHYS1197 PG 4 WC Physics, Multidisciplinary SC Physics GA 422RY UT WOS:000264446600017 ER PT J AU VerBerkmoes, NC Denef, VJ Hettich, RL Banfield, JF AF VerBerkmoes, Nathan C. Denef, Vincent J. Hettich, Robert L. Banfield, Jillian F. TI SYSTEMS BIOLOGY Functional analysis of natural microbial consortia using community proteomics SO NATURE REVIEWS MICROBIOLOGY LA English DT Review ID TANDEM MASS-SPECTROMETRY; SHEWANELLA-ONEIDENSIS MR-1; WASTE-WATER TREATMENT; SHOTGUN PROTEOMICS; GENOME ANNOTATION; PROTEIN IDENTIFICATION; ABSOLUTE PROTEIN; YEAST PROTEOME; ACCURATE MASS; SARGASSO SEA AB We know very little about the metabolic functioning and evolutionary dynamics of microbial communities. Recent advances in comprehensive, sequencing-based methods, however, are laying a molecular foundation for new insights into how microbial communities shape the Earth's biosphere. Here we explore the convergence of microbial ecology, genomics, biological mass spectrometry and informatics that form the new field of microbial community proteogenomics. We discuss the first applications of proteogenomics and its potential for studying the physiology, ecology and evolution of microbial populations and communities. C1 [VerBerkmoes, Nathan C.; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Denef, Vincent J.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP VerBerkmoes, NC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM verberkmoesn@ornl.gov RI Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU United States Department of Energy [DOE-AC05-00OR22725]; National Science Foundation; NASA Astrobiology Institute FX Funding was provided by the United States Department of Energy: Genomics: Genomes-to-Life Program, the National Science Foundation Biocomplexity Program and the NASA Astrobiology Institute. B. R. Maggard is thanked for secretarial assistance in the preparation of this manuscript. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy under contract DOE-AC05-00OR22725. NR 81 TC 129 Z9 133 U1 4 U2 65 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1740-1526 J9 NAT REV MICROBIOL JI Nat. Rev. Microbiol. PD MAR PY 2009 VL 7 IS 3 BP 196 EP 205 DI 10.1038/nrmicro2080 PG 10 WC Microbiology SC Microbiology GA 407KC UT WOS:000263361000011 PM 19219053 ER PT J AU Radisky, DC Stallings-Mann, M Hirai, Y Bissell, MJ AF Radisky, Derek C. Stallings-Mann, Melody Hirai, Yohei Bissell, Mina J. TI Single proteins might have dual but related functions in intracellular and extracellular microenvironments SO NATURE REVIEWS MOLECULAR CELL BIOLOGY LA English DT Review ID TISSUE TRANSGLUTAMINASE; EPITHELIAL MORPHOGENESIS; CHROMATIN PROTEIN; CROSS-LINKING; CELL-SURFACE; PHOSPHOGLUCOSE ISOMERASE; VESICULAR TRANSPORT; BASEMENT-MEMBRANE; MAMMALIAN-CELLS; ANNEXIN-II AB The maintenance of organ homeostasis and the control of an appropriate response to environmental alterations require the intimate coordination of cellular functions and tissue organization. An important component of this coordination could be provided by proteins that can have distinct but linked functions on both sides of the plasma membrane. We present a model that proposes that unconventional secretion provides a mechanism through which single proteins can integrate complex tissue functions. C1 [Radisky, Derek C.; Stallings-Mann, Melody] Mayo Clin, Ctr Canc, Jacksonville, FL 32224 USA. [Hirai, Yohei] Kyoto Univ, Dept Morphoregulat, Inst Frontier Med Sci, Sakyo Ku, Kyoto 6068507, Japan. [Bissell, Mina J.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Radisky, DC (reprint author), Mayo Clin, Ctr Canc, 4500 San Pablo Rd, Jacksonville, FL 32224 USA. EM radisky.derek@mayo.edu FU Office of Biological and Environmental Research of the Department of Energy [DE-AC03-76SF00098]; Distinguished Fellow Award; National Cancer Institute [CA64786, CA57621, CA122086, CA128660]; Department of Defense FX Our work was supported by grants from the Office of Biological and Environmental Research of the Department of Energy (DE-AC03-76SF00098 and a Distinguished Fellow Award; to M. J. B.); the National Cancer Institute CA64786 (to M. J. B.), CA57621 (to M. J. B. and Z. Werb), CA122086 (to D. C. R.), CA128660 (to C. M. Nelson and D. C. R.) and the Breast Cancer Research Program of the Department of Defense (an Innovator Award; to M. J. B.). NR 64 TC 53 Z9 53 U1 1 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-0072 J9 NAT REV MOL CELL BIO JI Nat. Rev. Mol. Cell Biol. PD MAR PY 2009 VL 10 IS 3 BP 228 EP U85 DI 10.1038/nrm2633 PG 8 WC Cell Biology SC Cell Biology GA 410LI UT WOS:000263578300015 PM 19190671 ER PT J AU Lowe, XR Marchetti, F Lu, XC Wyrobek, AJ AF Lowe, Xiu R. Marchetti, Francesco Lu, Xiaochen Wyrobek, Andrew J. TI Molecular stress response in the CNS of mice after systemic exposure to interferon-alpha, ionizing radiation and ketamine SO NEUROTOXICOLOGY LA English DT Article DE Molecular-response; Troponin T1; Interferon-alpha; Irradiation; Ketamine; Mouse brain; Stress marker ID WHOLE-BRAIN IRRADIATION; GENE-EXPRESSION CHANGES; MICROARRAY ANALYSIS; NERVOUS-SYSTEM; X-IRRADIATION; MOUSE-BRAIN; CELLS; HIPPOCAMPUS; SENSITIVITY; INCREASES AB We previously showed that the expression of troponin T1 (Tnnt 1) was induced in the central nervous system (CNS) of adult mice 30 min after treatment with ketamine, a glutamate N-methyl-D-aspartic acid (NMDA) receptor antagonist. We hypothesized that Tnnt I expression may be an early molecular biomarker of stress response in the CNS of mice. To further evaluate this hypothesis, we investigated the regional expression of Tnnt I in the mouse brain using RNA in situ hybridization 4 h after systemic exposure to interferon-alpha (IFN-alpha) and gamma ionizing radiation, both of which have be associated with wide ranges of neuropsychiatric complications. Adult B6C3F1 male mice were treated with either human IFN-alpha (a single i.p. injection at 1 x 10(5) IU/kg) or whole body gamma-radiation (10 cGy or 2 Gy). Patterns of Tnnt I transcript expression were compared in various CNS regions after IFN-alpha, radiation and ketamine treatments (previous study). Tnnt 1 expression was consistently induced in pyramidal neurons of cerebral cortex and hippocampus after all treatment regimens including 10 cGy of ionizing radiation. Regional expression of Tnnt 1 was induced in Purkinje cells of cerebellum after ionizing radiation and ketamine treatment; but not after IFN-alpha treatment. None of the three treatments induced Tnnt 1 expression in glial cells. The patterns of Tnnt 1 expression in pyramidal neurons of cerebral cortex and hippocampus, which are both known to play important roles in cognitive function, memory and emotion, suggest that the expression of Tom 1 may be an early molecular biomarker of induced CNS stress. (C) 2009 Elsevier Inc. All rights reserved. C1 [Lowe, Xiu R.; Marchetti, Francesco; Wyrobek, Andrew J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Lowe, Xiu R.; Marchetti, Francesco; Lu, Xiaochen; Wyrobek, Andrew J.] Lawrence Livermore Natl Lab, Biosci Directorate, Livermore, CA USA. [Lowe, Xiu R.] Kaiser Permanente Med Grp Inc, Dept Psychiat, Hayward, CA USA. RP Lowe, XR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM XRLowe@lbl.gov OI Marchetti, Francesco/0000-0002-9435-4867 FU U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH1 1231]; U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory [W-7405-ENG-48]; DOE [SCW0391] FX This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory under contract DE-AC02-05CH1 1231 and Lawrence Livermore National Laboratory under contract W-7405-ENG-48. Funded in part by DOE Low Dose Research Program grant (SCW0391) to AJW. NR 52 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0161-813X J9 NEUROTOXICOLOGY JI Neurotoxicology PD MAR PY 2009 VL 30 IS 2 BP 261 EP 268 DI 10.1016/j.neuro.2008.12.012 PG 8 WC Neurosciences; Pharmacology & Pharmacy; Toxicology SC Neurosciences & Neurology; Pharmacology & Pharmacy; Toxicology GA 429HY UT WOS:000264912700012 PM 19162068 ER PT J AU Kaper, HG Wang, SH Yari, M AF Kaper, Hans G. Wang, Shouhong Yari, Masoud TI Dynamical transitions of Turing patterns SO NONLINEARITY LA English DT Article ID SYSTEMS; MODEL AB This paper is concerned with the formation and persistence of spatiotemporal patterns in binary mixtures of chemically reacting species, where one of the species is an activator, the other an inhibitor of the chemical reaction. The system of reaction-diffusion equations is reduced to a finite system of ordinary differential equations by a variant of the centre-manifold reduction method. The reduced system fully describes the local dynamics of the original system near transition points at the onset of instability. The attractor-bifurcation theory is used to give a complete characterization of the bifurcated objects in terms of the physical parameters of the problem. The results are illustrated for the Schnakenberg model. C1 [Kaper, Hans G.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Wang, Shouhong; Yari, Masoud] Indiana Univ, Dept Math, Bloomington, IN 47405 USA. RP Kaper, HG (reprint author), Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA. EM kaper@mcs.anl.gov; showang@indiana.edu; myari@indiana.edu NR 24 TC 4 Z9 4 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0951-7715 EI 1361-6544 J9 NONLINEARITY JI Nonlinearity PD MAR PY 2009 VL 22 IS 3 BP 601 EP 626 DI 10.1088/0951-7715/22/3/006 PG 26 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 405YF UT WOS:000263259400006 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=145 SO NUCLEAR DATA SHEETS LA English DT Review ID HIGH-SPIN STATES; DELAYED-NEUTRON EMISSION; ISOBARIC ANALOG RESONANCES; DECAY BRANCHING RATIOS; DEFICIENT GADOLINIUM ISOTOPES; GAMMA-RAY SPECTROMETER; ANOMALOUS EPSILON-BETA; SHORT-LIVED ISOTOPES; RICH LA-145,LA-147 NUCLEI; SINGLE-PARTICLE STATES AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reactions for all isobars with mass number A = 145. C1 [Browne, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Nucl Data Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Browne, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Nucl Data Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. FU Office of Nuclear Physics; Office of Science; US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 339 TC 8 Z9 8 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAR PY 2009 VL 110 IS 3 BP 507 EP + DI 10.1016/j.nds.2009.02.001 PG 173 WC Physics, Nuclear SC Physics GA 419QV UT WOS:000264235300001 ER PT J AU Wu, SC AF Wu, S-C. TI Nuclear Data Sheets for A=214 SO NUCLEAR DATA SHEETS LA English DT Review ID PHOTON-EMISSION PROBABILITIES; GAMMA-RAY INTENSITIES; PROTON-NEUTRON INTERACTIONS; LINE ALPHA SPECTROSCOPY; ATOMIC MASS EVALUATION; HEAVY-ION REACTIONS; DOUBLY-ODD FR-214; HIGH-SPIN ISOMERS; DECAY PROPERTIES; MAGNETIC-MOMENTS AB The available nuclear structure information for all nuclei with mass number A=214 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. The present evaluation supersedes the earlier one on A=214 by Y. A. Akovali (1995E107), published in Nuclear Data Sheets 76, 127 (1995). C1 [Wu, S-C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Wu, S-C.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30043, Taiwan. RP Wu, SC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC03-76SF00098] FX This work was supported by the Director, office of Science, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy under contract DE-AC03-76SF00098. NR 193 TC 23 Z9 23 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAR PY 2009 VL 110 IS 3 BP 681 EP + DI 10.1016/j.nds.2009.02.002 PG 66 WC Physics, Nuclear SC Physics GA 419QV UT WOS:000264235300002 ER PT J AU Brooks, JN Allain, P Doerner, RP Hassanein, A Nygren, R Rognlien, TD Whyte, DG AF Brooks, J. N. Allain, P. Doerner, R. P. Hassanein, A. Nygren, R. Rognlien, T. D. Whyte, D. G. TI Plasma-surface interaction issues of an all-metal ITER SO NUCLEAR FUSION LA English DT Article ID FUTURE FUSION DEVICES; FACING SURFACES; TUNGSTEN; DIVERTOR; TOKAMAK; CODEPOSITION; PERFORMANCE; COMPONENTS; BERYLLIUM; IMPACT AB We assess key plasma-surface interaction issues of an all-metal plasma facing component (PFC) system for ITER, in particular a tungsten divertor, and a beryllium or tungsten first wall. Such a system eliminates problems with carbon divertor erosion and T/C codeposition, and for an all-tungsten system would better extrapolate to post-ITER devices. The issues studied are sputtering, transport and formation of mixed surface layers, tritium codeposition, plasma contamination, edge-localized mode (ELM) response and He-on-W irradiation effects. Code package OMEGA computes PFC sputtering erosion/redeposition in an ITER full power D-T plasma with convective edge transport. The HEIGHTS package analyses plasma transient response. PISCES and other data are used with code results to assess PFC performance. Predicted outer-wall sputter erosion rates are acceptable for Be (0.3 nm s(-1)) or bare (stainless steel/Fe) wall (0.05 nm s(-1)) for the low duty factor ITER, and are very low (0.002 nm s(-1)) for W. T/Be codeposition in redeposited wall material could be significant (similar to 2 gT/400 s-ITER pulse). Core plasma contamination from wall sputtering appears acceptable for Be (similar to 2%) and negligible for W (or Fe). A W divertor has negligible sputter erosion, plasma contamination and T/W codeposition. Be can grow at/near the strike point region of a W divertor, but for the predicted maximum surface temperature of similar to 800 degrees C, deleterious Be/W alloy formation as well as major He/W surface degradation will probably be avoided. ELMs are a serious challenge to the divertor, but this is true for all materials. We identify acceptable ELM parameters for W. We conclude that an all-metal PFC system is likely a much better choice for ITER D-T operation than a system using C. We discuss critical R&D needs, testing requirements, and suggest employing a 350-400 degrees C baking capability for T/Be reduction and using a deposited tungsten first wall test section. C1 [Brooks, J. N.; Allain, P.; Hassanein, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Doerner, R. P.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Nygren, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rognlien, T. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Whyte, D. G.] MIT, Cambridge, MA 02139 USA. RP Brooks, JN (reprint author), Purdue Univ, 400 Cent Dr, W Lafayette, IN 47907 USA. OI Allain, Jean Paul/0000-0003-1348-262X FU US Department of Energy, Office of Fusion Energy FX This work was supported by the US Department of Energy, Office of Fusion Energy. NR 24 TC 37 Z9 37 U1 8 U2 26 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAR PY 2009 VL 49 IS 3 AR 035007 DI 10.1088/0029-5515/49/3/035007 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 505PQ UT WOS:000270707000005 ER PT J AU Kumar, STA Blackwell, BD Harris, JH AF Kumar, Santhosh T. A. Blackwell, Boyd D. Harris, Jeffrey H. TI Determination of error field sources by accurate mapping of the magnetic geometry of the H-1 heliac SO NUCLEAR FUSION LA English DT Article ID SURFACES; STELLARATOR; TORSATRON; TOKAMAK; DESIGN; SYSTEM AB High precision mapping of the vacuum flux surfaces of the H-1NF heliac is carried out using electron-beam multiwire tomography for various magnetic configurations and field strengths. The extreme accuracy of this technique has been exploited to understand the nature of error fields and to determine the best-fit empirical values for the H-1NF coil parameters, by point-by-point matching experimental surface data with computer modelling results. This has helped in developing a highly accurate computer model for H-1NF magnetic configurations. C1 [Kumar, Santhosh T. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Blackwell, Boyd D.] Australian Natl Univ, Res Sch Phys Sci & Engn, Plasma Res Lab, Canberra, ACT, Australia. [Harris, Jeffrey H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Kumar, STA (reprint author), Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. EM stkumar@wisc.edu RI Kumar, Santhosh/A-1331-2008; Kumar, Santhosh/H-2620-2013; Blackwell, Boyd/M-2717-2015 OI Kumar, Santhosh/0000-0002-6444-5178; Blackwell, Boyd/0000-0002-9091-9269 FU Australian Research Council [DP0344361]; US Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank Mr John Wach and Mr Mark Gwynneth for their technical help and the H-1NF team for the machine operations. This work was performed on the H-1NF National Plasma Fusion Research Facility established by the Australian Government and operated by the Australian National University. This research was supported in part by the Australian Research Council Grant DP0344361 and the US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 24 TC 5 Z9 5 U1 1 U2 3 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAR PY 2009 VL 49 IS 3 AR 035001 DI 10.1088/0029-5515/49/3/035001 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 404XN UT WOS:000263186400002 ER PT J AU Paccagnella, R Strauss, HR Breslau, J AF Paccagnella, R. Strauss, H. R. Breslau, J. TI 3D MHD VDE and disruptions simulations of tokamaks plasmas including some ITER scenarios SO NUCLEAR FUSION LA English DT Article ID STABILITY; CODE AB Tokamaks vertical displacement events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model is completed with the presence of a 2D wall with finite resistivity which allows the study of the relatively slowly growing magnetic perturbation, the resistive wall mode (RWM) which is, in this paper, the main drive of the disruption evolution. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. C1 [Paccagnella, R.] Assoc Euratom ENEA Fusione, Consorzio RFX, Padua, Italy. [Paccagnella, R.] CNR, Rome, Italy. [Strauss, H. R.] Courant Inst Math Sci, New York, NY USA. [Breslau, J.] Princeton Univ, Plasma Phys Lab, Princeton, NJ USA. RP Paccagnella, R (reprint author), Assoc Euratom ENEA Fusione, Consorzio RFX, Padua, Italy. EM roberto.paccagnella@igi.cnr.it FU EFDA [05-1335] FX The authors kindly acknowledge A. Pletzer for the development of the GRIN solver. R.P. thanks Mario Cavinato for providing the ITER equilibria and S. Ortolani, G. Pautasso and V. Riccardo for very helpful discussions. This study was partially carried out under EFDA Contract No 05-1335. NR 10 TC 18 Z9 18 U1 0 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAR PY 2009 VL 49 IS 3 AR 035003 DI 10.1088/0029-5515/49/3/035003 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 404XN UT WOS:000263186400004 ER PT J AU Weber, J Chin, M Sannibale, F Barry, W AF Weber, J. Chin, M. Sannibale, F. Barry, W. TI FPGA-based "bunch cleaning" system at the advanced light source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Bunch purification; Bunch cleaning; FPGA; Storage ring; Synchrotron light source AB A new bunch cleaning system has been designed and is currently in operation in the storage ring of the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The new system provides for high bunch purity, arbitrary filling patterns, and is compatible with the various ALS user operation modes. Design details and performance results of the new system will be described. (C) 2009 Elsevier B.V. All rights reserved. C1 [Weber, J.; Chin, M.; Sannibale, F.; Barry, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Weber, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jmweber@lbl.gov NR 9 TC 1 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2009 VL 600 IS 2 BP 376 EP 382 DI 10.1016/j.nima.2008.11.144 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 421OD UT WOS:000264367300003 ER PT J AU Cerati, GB Dinardo, ME Florez, A Kwan, S Lopez, A Magni, S Malvezzi, S Menasce, D Moroni, L Newsom, CR Pedrini, D Rovere, M Sala, S Tan, P Taroni, S Turqueti, M Uplegger, L AF Cerati, G. B. Dinardo, M. E. Florez, A. Kwan, S. Lopez, A. Magni, S. Malvezzi, S. Menasce, D. Moroni, L. Newsom, C. R. Pedrini, D. Rovere, M. Sala, S. Tan, P. Taroni, S. Turqueti, M. Uplegger, L. TI Radiation tolerance of the CMS forward pixel detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Silicon pixel detector; Radiation tolerance ID READOUT CHIP AB In this paper we present some results on the radiation tolerance of the CMS forward pixel detector. They were obtained from a beam test at Fermilab of a pixel-detector module, which was previously irradiated up to a maximum dose of 45 Mrad of protons at 200 MeV. It is shown that CMS forward pixel detector can tolerate this radiation dose without any major deterioration of its performance. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cerati, G. B.; Magni, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Rovere, M.; Sala, S.; Taroni, S.] Ist Nazl Fis Nucl, I-20126 Milan, Italy. [Cerati, G. B.; Magni, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Rovere, M.; Sala, S.; Taroni, S.] Univ Milano Bicocca, I-20126 Milan, Italy. [Dinardo, M. E.] Univ Colorado, Boulder, CO 80309 USA. [Florez, A.; Lopez, A.] Univ Puerto Rico, Mayaguez, PR USA. [Kwan, S.; Tan, P.; Turqueti, M.; Uplegger, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Newsom, C. R.] Univ Iowa, Iowa City, IA USA. RP Moroni, L (reprint author), Ist Nazl Fis Nucl, Edificio U2,Piazza Sci 3, I-20126 Milan, Italy. EM Luigi.Moroni@mib.infn.it RI Menasce, Dario Livio/A-2168-2016 OI Menasce, Dario Livio/0000-0002-9918-1686 NR 5 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2009 VL 600 IS 2 BP 408 EP 416 DI 10.1016/j.nima.2008.11.114 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 421OD UT WOS:000264367300007 ER PT J AU Luo, YX Hamilton, JH Rasmussen, JO Ramayya, AV Goodin, C Zhu, SJ Hwang, JK Li, K Fong, D Stefanescu, I Lee, IY Ter-Akopian, GM Daniel, AV Stoyer, MA Donangelo, R Ma, WC Cole, JD AF Luo, Y. X. Hamilton, J. H. Rasmussen, J. O. Ramayya, A. V. Goodin, C. Zhu, S. J. Hwang, J. K. Li, Ke Fong, D. Stefanescu, I. Lee, I. Y. Ter-Akopian, G. M. Daniel, A. V. Stoyer, M. A. Donangelo, R. Ma, W. C. Cole, J. D. TI New level schemes and octupole correlations of light neutron-rich lanthanum isotopes La-143,La-144 SO NUCLEAR PHYSICS A LA English DT Article DE RADIOACTIVITY Cf-252(SF); measured E gamma, I gamma, gamma gamma-coin, Gammasphere. La-143,La-144 deduced levels; J, pi, branching ratios, B(E1)/B(E2) ratios. Octupole correlations. Cranked-shell model calculations ID SPONTANEOUS FISSION; BARIUM ISOTOPES; BAND STRUCTURES; NUCLEI; DECAY; DEFORMATION; MASS; ISOTONES; BEHAVIOR; PROTON AB The yrast and near-yrast level scheme of light neutron-rich La-143 (Z = 57, N = 86) is reinvestigated and expanded and that of La-144 (N = 87) is proposed for the first time by measuring prompt gamma rays from the spontaneous fission of Cf-252 at Gammasphere. Spins/parities are assigned to the lowest-lying levels of La-143,La-144 based on the early studies of beta(-) decay, and the assignments for high-spin levels of La-143,La-144 are made by measuring internal conversion coefficients and following the level systematics of the neighboring heavier La isotopes and even-even Ba and Ce nuclei. The B(E1)/B(E2) ratios, energy displacements delta E(1) and rotational frequency ratios omega(-)(I)/omega(+)(I) of the new parity-doublets of La-143,La-144 indicate that octupole deformations/correlations also develop in these nuclei. The band-crossings observed in a rotational frequency range of 0.31 to 0.34 MeV for the two even-parity bands in La-143 but being absent in 144La are interpreted as due to alignment of a pair of i(13/2) neutrons in La-143. (C) 2008 Elsevier B.V. All rights reserved. C1 [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Luo, Y. X.; Hamilton, J. H.; Ramayya, A. V.; Goodin, C.; Zhu, S. J.; Hwang, J. K.; Li, Ke; Fong, D.; Daniel, A. V.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Ter-Akopian, G. M.; Daniel, A. V.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Daniel, A. V.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Donangelo, R.] Univ Fed Rio de Janeiro, BR-68528 Rio De Janeiro, Brazil. [Ma, W. C.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Cole, J. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rasmussen, JO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jorasmussen@lbl.gov RI Sistemas Complexos, Inct/J-8597-2013; OI Hwang, Jae-Kwang/0000-0002-4100-3473 FU US DOE Grants [DE-FG-05-88ER40407, DE-FG02-95ER40934, DE-AC03-76SF00098, DE-FG02-95ER40939, DE-AC07-761DO1570, W-7405-ENG48]; Major State Basic Research Development Program Contract [G2000077405]; NNSF of China Grant [10375032]; Special Program of HESF Grant [20030003090]; Vanderbilt University; University of Tennessee; Oak Ridge National Laboratory FX The work at Vanderbilt University, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Mississippi State University and Idaho National Laboratory was supported by the US DOE Grants DE-FG-05-88ER40407, DE-FG02-95ER40934, DE-AC03-76SF00098, DE-FG02-95ER40939, DE-AC07-761DO1570 and Contract W-7405-ENG48. The work at Tsinghua was supported by the Major State Basic Research Development Program Contract G2000077405, the NNSF of China Grant 10375032, and the Special Program of HESF Grant 20030003090. The Joint Institute for Heavy Ion Research is supported by its members,Vanderbilt University, University of Tennessee and Oak Ridge National Laboratory and the US DOE. NR 43 TC 11 Z9 12 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD MAR 1 PY 2009 VL 818 IS 3-4 BP 121 EP 138 DI 10.1016/j.nuclphysa.2008.12.004 PG 18 WC Physics, Nuclear SC Physics GA 412EK UT WOS:000263706300001 ER PT J AU Prior, G AF Prior, G. CA SNO Collaboration TI Results from the Sudbury Neutrino Observatory Phase III SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Neutrino Oscillation Workshop CY SEP 06-12, 2008 CL Otranto, ITALY SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys AB The third and last phase of the Sudbury Neutrino Observatory (SNO) used a technique independent of previous methods, to measure the rate of neutral-current interactions in heavy water and determine precisely the total active (8)B solar neutrino flux. The total flux obtained is 5.54(-0.31)(+0.33)(stat)(-0.34)(+0.36) x 10(6) cm(-2) s(-1), in agreement with previous measurements and standard solar models. Results from a global analysis of solar and reactor neutrino give Delta m(2) = 7.59(-0.21)(+0.19) x 10(-5) eV(2) and theta = 34.4(-1.2)(+1.3) degrees with a reduced uncertainty on the mixing angle compared to previous phases. C1 [Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Prior, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Prior, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. EM gprior@lbl.gov OI Prior, Gersende/0000-0002-6058-1420 NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAR PY 2009 VL 188 BP 96 EP 100 DI 10.1016/j.nuclphysbps.2009.02.022 PG 5 WC Physics, Particles & Fields SC Physics GA 441CB UT WOS:000265745800023 ER PT J AU Parke, SJ Minakata, H Nunokawa, H Funchal, RZ AF Parke, Stephen J. Minakata, H. Nunokawa, H. Funchal, R. Zukanovich TI Mass Hierarchy via Mossbauer and Reactor Neutrinos SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Neutrino Oscillation Workshop CY SEP 06-12, 2008 CL Otranto, ITALY SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys AB We show how one could determine the neutrino mass hierarchy with Mossbauer neutrinos and also revisit the question of whether the hierarchy can be determined with reactor neutrinos. C1 [Parke, Stephen J.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Minakata, H.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Nunokawa, H.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22452970 Rio De Janeiro, Brazil. [Funchal, R. Zukanovich] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. RP Parke, SJ (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM parke@fnal.gov; nunokawa@fis.puc-rio-br; zukanov@if.usp.br RI Zukanovich Funchal, Renata/C-5829-2013; OI Zukanovich Funchal, Renata/0000-0001-6749-0022; Parke, Stephen/0000-0003-2028-6782 NR 3 TC 10 Z9 10 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAR PY 2009 VL 188 BP 115 EP 117 DI 10.1016/j.nuclphysbps.2009.02.026 PG 3 WC Physics, Particles & Fields SC Physics GA 441CB UT WOS:000265745800027 ER PT J AU Goodman, M AF Goodman, Maury TI Long-Baseline Neutrino Oscillation Experiments in North America SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Neutrino Oscillation Workshop CY SEP 06-12, 2008 CL Otranto, ITALY SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys AB This contribution to the proceedings of the 2008 NOW Workshop summarizes current and future long-baseline neutrino oscillation experiments in the United States. C1 Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Goodman, M (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM maury.goodman@anl.gov NR 25 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAR PY 2009 VL 188 BP 164 EP 169 DI 10.1016/j.nuclphysbps.2009.02.038 PG 6 WC Physics, Particles & Fields SC Physics GA 441CB UT WOS:000265745800039 ER PT J AU Cardall, CY AF Cardall, C. Y. TI Towards neutrino transport with flavor mixing in supernovae: the Liouville operator SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Neutrino Oscillation Workshop CY SEP 06-12, 2008 CL Otranto, ITALY SP Univ Bari, Dipartimento Fis, Dipartimento Fis, Lecce, MIUR, INFN, Univ Salento, European Network Theoret Astroparticle Phys AB The calculation of neutrino decoupling from nuclear matter requires a transport formalism capable of handling both collisions and flavor mixing. The first steps towards such a formalism are the construction of neutrino and antineutrino 'distribution matrices,' and a determination of the Liouville equations they satisfy in the noninteracting case. These steps are accomplished through study of a Wigner-transformed 'density function,' the mean value of paired neutrino quantum field operators. C1 [Cardall, C. Y.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Cardall, C. Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Cardall, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAR PY 2009 VL 188 BP 264 EP 266 DI 10.1016/j.nuclphysbps.2009.02.060 PG 3 WC Physics, Particles & Fields SC Physics GA 441CB UT WOS:000265745800061 ER PT J AU Lewis, EE Smith, MA Palmiotti, G AF Lewis, E. E. Smith, M. A. Palmiotti, G. TI A New Paradigm for Local-Global Coupling in Whole-Core Neutron Transport SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID VARIATIONAL NODAL METHOD; SPATIAL HOMOGENIZATION; C5G7 MOX; BENCHMARK; EQUATIONS AB A new paradigm that increases the efficiency of whole-core neutron transport calculations without lattice homogenization is introduced. Quasi-reflected interface conditions are formulated to partially decouple periodic lattice effects from global flux gradients. The starting point is the finite subelement form of the variational nodal code VARIANT that eliminates fuel-coolant homogenization through the use of heterogeneous nodes. The interface spherical harmonics expansions that couple pin-cell-sized nodes are divided into low-order and high-order terms, and reflected interface conditions are applied to the high-order terms. Combined with an integral transport method within the node, the new approach dramatically reduces both the formation time and the dimensions of the nodal response matrices and leads to sharply reduced memory requirements and computational time. The method is applied to the two-dimensional C5G7 problem, an Organisation for Economic Co-operation and Development/Nuclear Energy Agency pressurized water reactor benchmark containing mixed oxide (MOX) and UO(2) fuel assemblies, as well as to a three-dimensional MOX fuel assembly. Results indicate the new approach results in very little loss of accuracy relative to the corresponding full spherical harmonics expansions while reducing computational times by well over an order of magnitude. C1 [Lewis, E. E.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Smith, M. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Palmiotti, G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Lewis, EE (reprint author), Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. EM e-lewis@northwestern.edu RI Lewis, Elmer/B-7597-2009 FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported in part by the U.S. Department of Energy under contract DE-AC02-06CH11357 NR 20 TC 4 Z9 4 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAR PY 2009 VL 161 IS 3 BP 279 EP 288 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 413ZQ UT WOS:000263834100002 ER PT J AU Hutchinson, J Valentine, T AF Hutchinson, Jesson Valentine, Timothy TI Subcritical Measurements of a Plutonium Sphere Reflected by Polyethylene and Acrylic SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB Subcritical measurements were conducted with an alpha-phase plutonium sphere using the (252)Cf source-driven noise analysis method. Measurements were performed with both polyethylene and acrylic reflectors. For each reflector type, five different reflector thicknesses were investigated: 0 (bare), 1.27, 2.54, 3.81, and 7.62 cm. A certain ratio of spectral quantities that depends on the fluctuations in the fission chain multiplication process was measured for each configuration. In addition, two types of Monte Carlo calculations were employed to estimate the k(eff) and spectral ratio values of each configuration. From the measured and computed quantities, the multiplication and uncertainty of the system can be inferred. The polyethylene measurements compared well to previous measurements conducted with the same plutonium sphere and polyethylene reflector thicknesses. The acrylic measurements provide benchmark data of an alpha-phase plutonium sphere reflected by acrylic. C1 [Hutchinson, Jesson] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Valentine, Timothy] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hutchinson, J (reprint author), Los Alamos Natl Lab, MS-B228,POB 1663, Los Alamos, NM 87545 USA. EM jesson@lanl.gov OI Valentine, Timothy/0000-0001-7495-7348 FU National Criticality Safety Program FX We would like to thank the National Criticality Safety Program for funding this work. In addition, we would like to thank S. Clement, D. Rhodes, R. Sanchez, T. Grove, D. Gehman, D. Hayes, W. Myers, and D. Loaiza from LANL for their help. We would also like to thank the staff at the Device Assembly Facility for their support. NR 8 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAR PY 2009 VL 161 IS 3 BP 357 EP 362 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 413ZQ UT WOS:000263834100008 ER PT J AU Chikazawa, Y Farmer, M Grandy, C AF Chikazawa, Yoshitaka Farmer, Mitchell Grandy, Christopher TI TECHNOLOGY GAP ANALYSIS ON SODIUM-COOLED REACTOR FUEL-HANDLING SYSTEM SUPPORTING ADVANCED BURNER REACTOR DEVELOPMENT SO NUCLEAR TECHNOLOGY LA English DT Review DE fast reactor; fuel handling system; sodium-cooled reactor ID FLUX TEST FACILITY; VAULT DRY STORAGE; EXPERIENCE; FABRICATION; FFTF; SUPERPHENIX-1; DESIGN; PFR AB The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integralfast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fist reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphinix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fivel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling. C1 [Chikazawa, Yoshitaka; Farmer, Mitchell; Grandy, Christopher] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Chikazawa, Y (reprint author), Japan Atom Energy Agcy, 4002 Narita, Oarai, Ibaraki 3111393, Japan. EM chikazawa.yoshitaka@jaea.go.jp FU U.S. Department of Energy Office of Science [DE-AC0206CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract DE-AC0206CH11357. NR 109 TC 6 Z9 6 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2009 VL 165 IS 3 BP 270 EP 292 PG 23 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 412UF UT WOS:000263749000002 ER PT J AU Chikazawa, Y Grandy, C AF Chikazawa, Yoshitaka Grandy, Christopher TI THERMAL ANALYSIS OF A FUEL-HANDLING SYSTEM FOR SODIUM-COOLED REACTOR WITH MINOR ACTINIDE-BEARING METAL FUEL SO NUCLEAR TECHNOLOGY LA English DT Article DE sodium-cooled reactor; fuel handling; fresh fuel shipping cask ID VAULT DRY STORAGE; FORT-ST-VRAIN AB The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactorfuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates afuel-handling concept and potential issues of handling fast reactorfuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent C1 [Chikazawa, Yoshitaka; Grandy, Christopher] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Chikazawa, Y (reprint author), Japan Atom Energy Agcy, 4002 Narita, Oarai, Ibaraki 3111393, Japan. EM chikazawa.yoshitaka@jaea.go.jp FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, operator of ANL. ANL, a U.S. Department of Energy Office of Science laboratory, is operated under contract DE-AC02-06CH11357. NR 16 TC 1 Z9 1 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2009 VL 165 IS 3 BP 321 EP 332 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 412UF UT WOS:000263749000006 ER PT J AU Mitchell, JA Counce, RM Watson, JS Spencer, BB Del Cul, GD AF Mitchell, Jessica A. Counce, R. M. Watson, J. S. Spencer, B. B. Del Cul, G. D. TI REMOVING ACETIC ACID FROM A UREX plus WASTE STREAM: A REVIEW OF TECHNOLOGIES SO NUCLEAR TECHNOLOGY LA English DT Article DE acetic acid removal; UREX; separation technologies ID ACTIVATED CARBON; AQUEOUS-SOLUTIONS; CARBOXYLIC-ACIDS; WATER; SOLVENT; ADSORPTION; OXIDATION; RECOVERY; ADSORBENTS; SEPARATION AB This study explores different technologies for removing acetic acid from a UREX+ waste stream. The waste stream contains both nitric and acetic acids, and the acetic acid must be removed from the waste stream to prevent potential problems in the downstream steps as well as affecting the recycle of nitric acid. The acetic acid is formed after the UREX step of the process as a result of hydrolytic degradation of acetohydroxamic acid used to suppress plutonium extraction. Of the available technologies, the two most attractive approaches are solvent extraction and distillation. In industry, solvent extraction is used for more dilute concentrations of acetic acid while distillation is used for concentrated acetic acid If a liquid-liquid extraction is viable, this would be the best option with the addition of an extractant, like tributyl phosphate or tri-n-octyl amine, if needed However, if acetic acid removal can be delayed until the end of the UREX+ process when the nitric acid may be concentrated for recycle, distillation may remain an option, though not necessarily a better option than solvent extraction. C1 [Mitchell, Jessica A.; Counce, R. M.; Watson, J. S.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Spencer, B. B.; Del Cul, G. D.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Mitchell, JA (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, 1512 Middle Dr, Knoxville, TN 37996 USA. EM Jmitch30@utk.edu FU DOE [DE-PS07-05ID14713] FX This work was supported by the U.S. Department of Energy's Nuclear Energy Research Initiative program, under DOE contract DE-PS07-05ID14713 with Oak Ridge National Laboratory. NR 25 TC 2 Z9 2 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2009 VL 165 IS 3 BP 360 EP 369 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 412UF UT WOS:000263749000008 ER PT J AU Dale, T Fahlman, RP Olejniczak, M Uhlenbeck, OC AF Dale, Taraka Fahlman, Richard P. Olejniczak, Mikoaj Uhlenbeck, Olke C. TI Specificity of the ribosomal A site for aminoacyl-tRNAs SO NUCLEIC ACIDS RESEARCH LA English DT Article ID PEPTIDE-BOND FORMATION; ELONGATION-FACTOR TU; PROTEIN-SYNTHESIS; A-SITE; CODON RECOGNITION; MESSENGER-RNA; INDUCED-FIT; P-SITES; BINDING; SELECTION AB Although some experiments suggest that the ribosome displays specificity for the identity of the esterified amino acid of its aminoacyl-tRNA substrate, a study measuring dissociation rates of several misacylated tRNAs containing the GAC anticodon from the A site showed little indication for such specificity. In this article, an expanded set of misacylated tRNAs and two 2-deoxynucleotide-substituted mRNAs are used to demonstrate the presence of a lower threshold in k(off) values for aa-tRNA binding to the A site. When a tRNA binds sufficiently well to reach this threshold, additional stabilizing effects due to the esterified amino acid or changes in tRNA sequence are not observed. However, specificity for different amino acid side chains and the tRNA body is observed when tRNA binding is sufficiently weaker than this threshold. We propose that uniform aa-tRNA binding to the A site may be a consequence of a conformational change in the ribosome, induced by the presence of the appropriate combination of contributions from the anticodon, amino acid and tRNA body. C1 [Uhlenbeck, Olke C.] Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, Evanston, IL 60208 USA. [Dale, Taraka] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Fahlman, Richard P.] Univ Alberta, Dept Biochem, Edmonton, AB, Canada. [Olejniczak, Mikoaj] Polish Acad Sci, Inst Bioorgan Chem, Poznan, Poland. RP Uhlenbeck, OC (reprint author), Northwestern Univ, Dept Biochem Mol Biol & Cell Biol, 2153 Sheridan Rd, Evanston, IL 60208 USA. EM o-uhlenbeck@northwestern.edu FU National Institutes of Health [R01-GM37552-19]; Foundation for Polish Science; The National Institutes of Health [R01-GM37552-19] FX This work was supported by National Institutes of Health (grant # R01-GM37552-19 to O. C. U) and the Foundation for Polish Science (to M. O.). Funding for open access charge: The National Institutes of Health (R01-GM37552-19). NR 42 TC 17 Z9 18 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAR PY 2009 VL 37 IS 4 BP 1202 EP 1210 DI 10.1093/nar/gkn1040 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 415VA UT WOS:000263962600026 PM 19129224 ER PT J AU Lipnikov, K Shashkov, M Yotov, I AF Lipnikov, Konstantin Shashkov, Mikhail Yotov, Ivan TI Local flux mimetic finite difference methods SO NUMERISCHE MATHEMATIK LA English DT Article ID ANISOTROPIC DIFFUSION OPERATORS; UNSTRUCTURED MESHES; POLYHEDRAL MESHES; ELEMENT-METHOD; DISCONTINUOUS COEFFICIENTS; QUADRILATERAL GRIDS; ELLIPTIC-EQUATIONS; VOLUME SCHEME; DISCRETIZATION; CONVERGENCE AB We develop a local flux mimetic finite difference method for second order elliptic equations with full tensor coefficients on polyhedral meshes. To approximate the velocity (vector variable), the method uses two degrees of freedom per element edge in two dimensions and n degrees of freedom per n-gonal mesh face in three dimensions. To approximate the pressure (scalar variable), the method uses one degree of freedom per element. A specially chosen quadrature rule for the L (2)-product of vector-functions allows for a local flux elimination and reduction of the method to a cell-centered finite difference scheme for the pressure unknowns. Under certain assumptions, first-order convergence is proved for both variables and second-order convergence is proved for the pressure. The assumptions are verified on simplicial meshes for a particular quadrature rule that leads to a symmetric method. For general polyhedral meshes, non-symmetric methods are constructed based on quadrature rules that are shown to satisfy some of the assumptions. Numerical results confirm the theory. C1 [Lipnikov, Konstantin; Shashkov, Mikhail] Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. [Yotov, Ivan] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA. RP Lipnikov, K (reprint author), Los Alamos Natl Lab, Div Theoret, Appl Math & Plasma Phys Grp, Mail Stop B284, Los Alamos, NM 87545 USA. EM lipnikov@lanl.gov; shashkov@lanl.gov; yotov@math.pitt.edu FU NSF [DMS 0411694, DMS 0620402]; DOE [DE-FG02-04ER25618]; Los Alamos National Laboratory; [DE-AC52-06NA25396] FX This work was partly carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The authors acknowledge the partial support of the DOE/ASCR Program in the Applied Mathematical Sciences and DOE's Accelerated Strategic Computing Initiative (ASC). The last author was partially supported by NSF grants DMS 0411694 and DMS 0620402, by DOE grant DE-FG02-04ER25618, and by the Los Alamos National Laboratory through visitor research support. NR 47 TC 61 Z9 61 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-599X J9 NUMER MATH JI Numer. Math. PD MAR PY 2009 VL 112 IS 1 BP 115 EP 152 DI 10.1007/s00211-008-0203-5 PG 38 WC Mathematics, Applied SC Mathematics GA 409SC UT WOS:000263525100006 ER PT J AU Migliorati, M Dattoli, G Schiavi, A Venturini, M AF Migliorati, M. Dattoli, G. Schiavi, A. Venturini, M. TI A Vlasov solver for collective effects in particle accelerators SO NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS LA English DT Article; Proceedings Paper CT Conference on Scientific Computation in Physics CY MAY 27-30, 2008 CL Rimini, ITALY AB Integration techniques based on Lie algebraic methods have been successfully used in beam transport codes for particle accelerators. Generally these methods have been applied to problems of single-particle beam dynamics. Here we present an application of Lie algebraic techniques to the development of a Vlasov solver suitable for problems of beam transport in the presence of non-negligible particle self-fields. The solver we discuss is suitable for modeling a variety of collective effects that may arise at high current. In particular we consider the case of coherent synchrotron radiation effects in magnetic bunch compressors which can cause instabilities limiting performance of high current accelerators. C1 [Migliorati, M.; Schiavi, A.] Univ Roma La Sapienza, Rome, Italy. [Dattoli, G.] ENEA, Ctr Ric Frascali, Rome, Italy. [Venturini, M.] LBNL, Berkeley, CA 94720 USA. RP Migliorati, M (reprint author), Univ Roma La Sapienza, Rome, Italy. EM mauro.migliorati@uniroma1.it RI Schiavi, Angelo/D-2924-2017; OI Schiavi, Angelo/0000-0002-7081-2747; Migliorati, Mauro/0000-0001-7129-7348 NR 8 TC 0 Z9 0 U1 0 U2 0 PU SOC ITALIANA FISICA PI BOLOGNA PA VIA SARAGOZZA, 12, I-40123 BOLOGNA, ITALY SN 1124-1896 J9 NUOVO CIMENTO C JI Nuovo Cimento Soc. Ital. Fis. C-Colloq. Phys. PD MAR-APR PY 2009 VL 32 IS 2 BP 161 EP 164 DI 10.1393/ncc/i2009-10394-7 PG 4 GA 540BH UT WOS:000273305000035 ER PT J AU Wagner, C Salamon, A Edwards, RA Rohwer, F Salamon, P AF Wagner, Chad Salamon, Anna Edwards, Robert A. Rohwer, Forest Salamon, Peter TI Deviations from Ultrametricity in Phage Protein Distances SO OPEN SYSTEMS & INFORMATION DYNAMICS LA English DT Article ID EVOLUTION; MATRICES; TREES AB Distances in biological databases are known not to be ultrametric. Deviations from ultrametricity can however reveal useful features of biodata. In the present study we examine deviations from ultrametricity of the distances between known phage proteins quantified in two senses: (1) the failure of triangles to be isosceles and (2) failure of every point to be the center of any sphere in which it resides. The deviations from these two ultrametric properties undergo qualitative changes as a function of the distance. Below we describe these changes and how they can be observed. We further argue that the distances at which the qualitative changes take place reveal intrinsic scales in the dataset. Such scales are important for choosing threshold values of the distance in various algorithms and reveal natural chuncking of the data that can be used to decide clade levels in phage phylogeny. C1 [Wagner, Chad; Salamon, Anna; Salamon, Peter] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA. [Salamon, Anna] Univ Calif San Diego, Dept Philosophy, La Jolla, CA 92093 USA. [Edwards, Robert A.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Edwards, Robert A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Rohwer, Forest] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. RP Wagner, C (reprint author), San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA. FU National Science Foundation [DE-BE 04-21955] FX This work was supported by grant DE-BE 04-21955 from the National Science Foundation. We thank the Computational Sciences Research Center at San Diego State University for computer time on its LINUX cluster. NR 14 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 1230-1612 EI 1793-7191 J9 OPEN SYST INF DYN JI Open Syst. Inf. Dyn. PD MAR PY 2009 VL 16 IS 1 PG 10 WC Physics, Mathematical; Statistics & Probability SC Physics; Mathematics GA 427VN UT WOS:000264807300005 ER PT J AU Awwal, AAS Rice, KL Taha, TM AF Awwal, Abdul A. S. Rice, Kenneth L. Taha, Tarek M. TI Fast implementation of matched-filter-based automatic alignment image processing SO OPTICS AND LASER TECHNOLOGY LA English DT Article DE Pattern recognition; Automated optical alignment; Reconfigurable computing ID LASER AB Video images of laser beams imprinted with distinguishable features are used for alignment of 192 laser beams at the National Ignition Facility (NIF). Algorithms for determining the position of these beams enable control systems to perform the task of alignment. Real world beam images suffer from intensity fluctuation or other distortions, making algorithms susceptible to higher position measurement variability. Using matched filtering to identify beam positions results in greater stability of position measurement compared to centroiding techniques. However, this gain is achieved at the expense of extra processing time. This work explores the use of FPGAs to accelerate these computations. Results indicate a performance improvement of 20 times for an FPGA over a 3 GHz Pentium 4 processor. Published by Elsevier Ltd. C1 [Awwal, Abdul A. S.] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. [Rice, Kenneth L.; Taha, Tarek M.] Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA. RP Awwal, AAS (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. EM awwal1@llnl.gov; krice@clemson.edu; tarek@clemson.edu FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore Laboratory; National Science Foundation; DOD FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Kenneth Rice acknowledges the summer student support at Lawrence Livermore Laboratory. Kenneth Rice and Tarek Taha acknowledge grants from the Air Force Research Laboratory (including the AFRL Information Directorate) and a National Science Foundation CAREER award. This work was also supported in part by a grant of computer time from the DOD High Performance Computing Modernization Program at the Naval Research Laboratory. Abdul Awwal acknowledges insightful comments provided by Paul Van Arsdall. NR 12 TC 11 Z9 14 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0030-3992 J9 OPT LASER TECHNOL JI Opt. Laser Technol. PD MAR PY 2009 VL 41 IS 2 BP 193 EP 197 DI 10.1016/j.optlastec.2008.05.008 PG 5 WC Optics; Physics, Applied SC Optics; Physics GA 358TQ UT WOS:000259940800013 ER PT J AU Sridharan, AK Pax, P Messerly, MJ Dawson, JW AF Sridharan, Arun Kumar Pax, Paul Messerly, Michael J. Dawson, Jay W. TI High-gain photonic crystal fiber regenerative amplifier SO OPTICS LETTERS LA English DT Article AB We have demonstrated a photonic crystal fiber-based regenerative amplifier at 1.078 mu m. The input signal pulse energy is 20 pJ in a 12 ns pulse at a 3 kHz repetition rate. At 8.6 W of input pump power, the amplified output pulse energy is 157 mu J, yielding a gain of 69 dB. To our knowledge, this is the highest gain achieved in a fiber-based regenerative amplifier to date at any wavelength. (C) 2009 Optical Society of America C1 [Sridharan, Arun Kumar] Lawrence Livermore Natl Lab, NIF, Livermore, CA 94551 USA. Lawrence Livermore Natl Lab, Photon Sci Directorate, Livermore, CA 94551 USA. RP Sridharan, AK (reprint author), Lawrence Livermore Natl Lab, NIF, 7000 East Ave, Livermore, CA 94551 USA. EM sridharan1@llnl.gov NR 4 TC 6 Z9 6 U1 4 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAR 1 PY 2009 VL 34 IS 5 BP 608 EP 610 PG 3 WC Optics SC Optics GA 423UY UT WOS:000264522400020 PM 19252567 ER PT J AU Rick, R Scherz, A Schlotter, WF Zhu, D Luning, J Stohr, J AF Rick, R. Scherz, A. Schlotter, W. F. Zhu, D. Luening, J. Stoehr, J. TI Optimal signal-to-noise ratios for soft x-ray lensless imaging SO OPTICS LETTERS LA English DT Article ID SPATIAL COHERENCE AB We propose and demonstrate a method to gauge and optimize the signal-to-noise ratios (SNRs) in lensless imaging using partially coherent sources. Through spatial filtering we tuned the coherence width of an incoherent soft x-ray undulator source, and we deduce that there exists an optimal spatial filter setting for imaging micrometer-sized objects, while high-resolution imaging is best executed without spatial filtering. Our SNR analysis, given spatial coherence, allows for an estimation of the required exposure time at synchrotron sources and pulse fluence at x-ray laser sources. (C) 2009 Optical Society of America C1 [Rick, R.; Zhu, D.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Rick, R.; Scherz, A.; Zhu, D.; Stoehr, J.] SLAG NAL, SSRL, Menlo Pk, CA 94205 USA. [Schlotter, W. F.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Luening, J.] Univ Paris 06, Lab Chim Phys Mat & Rayonement, F-75005 Paris, France. RP Rick, R (reprint author), Stanford Univ, Dept Appl Phys, 316 Via Pueblo Mall, Stanford, CA 94305 USA. EM rrick@stanford.edu RI Zhu, Diling/D-1302-2013 FU Office of Basic Energy Sciences, United States Department of Energy (DOE). FX This research was funded by the Office of Basic Energy Sciences, United States Department of Energy (DOE). NR 15 TC 3 Z9 3 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAR 1 PY 2009 VL 34 IS 5 BP 650 EP 652 PG 3 WC Optics SC Optics GA 423UY UT WOS:000264522400034 PM 19252581 ER PT J AU Biswas, R Oliker, L Vetter, J AF Biswas, Rupak Oliker, Leonid Vetter, Jeffrey TI Revolutionary technologies for acceleration of emerging petascale applications SO PARALLEL COMPUTING LA English DT Editorial Material C1 [Biswas, Rupak] NASA, Ames Res Ctr, NAS Div, Moffett Field, CA 94035 USA. [Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, NERSC, CRD, Berkeley, CA 94720 USA. [Vetter, Jeffrey] Oak Ridge Natl Lab, CSM Div, Oak Ridge, TN 37831 USA. RP Biswas, R (reprint author), NASA, Ames Res Ctr, NAS Div, Moffett Field, CA 94035 USA. EM rupak.biswas@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD MAR PY 2009 VL 35 IS 3 BP 117 EP 118 DI 10.1016/j.parco.2009.01.002 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA 425SA UT WOS:000264656200001 ER PT J AU Kurzak, J Alvaro, W Dongarra, J AF Kurzak, Jakub Alvaro, Wesley Dongarra, Jack TI Optimizing matrix multiplication for a short-vector SIMD architecture - CELL processor SO PARALLEL COMPUTING LA English DT Article DE Instruction level parallelism; Single Instruction Multiple Data; Synergistic Processing Element; Loop optimizations; Vectorization ID LINEAR-EQUATIONS; SOLVING SYSTEMS; PERFORMANCE; BENCHMARK AB Matrix multiplication is one of the most common numerical operations, especially in the area of dense linear algebra, where it forms the core of many important algorithms, including solvers of linear systems of equations, least square problems, and singular and eigen-value computations. The STI CELL processor exceeds the capabilities of any other processor available today in terms of peak single precision, floating point performance, aside from special purpose accelerators like Graphics Processing Units (GPUs). In order to fully exploit the potential of the CELL processor for a wide range of numerical algorithms, fast implementation of the matrix multiplication operation is essential. The crucial component is the matrix multiplication kernel crafted for the short vector Single Instruction Multiple Data architecture of the Synergistic Processing Element of the CELL processor. In this paper, single precision matrix multiplication kernels are presented implementing the C = C - A x B(T) operation and the C = C - A x B operation for matrices of size 64 x 64 elements. For the latter case, the performance of 25.55 Gflop/s is reported, or 99.80% of the peak, using as little as 5.9 kB of storage for code and auxiliary data structures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kurzak, Jakub; Alvaro, Wesley; Dongarra, Jack] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Sch Math, Manchester, NH USA. [Dongarra, Jack] Univ Manchester, Sch Comp Sci, Manchester, NH USA. RP Kurzak, J (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM dongarra@cs.utk.edu RI Dongarra, Jack/E-3987-2014 NR 46 TC 22 Z9 23 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD MAR PY 2009 VL 35 IS 3 BP 138 EP 150 DI 10.1016/j.parco.2008.12.010 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 425SA UT WOS:000264656200003 ER PT J AU Meredith, JS Alvarez, G Maier, TA Schulthess, TC Vetter, JS AF Meredith, Jeremy S. Alvarez, Gonzalo Maier, Thomas A. Schulthess, Thomas C. Vetter, Jeffrey S. TI Accuracy and performance of graphics processors: A Quantum Monte Carlo application case study SO PARALLEL COMPUTING LA English DT Article DE Graphics processors; Quantum Monte Carlo; Accuracy; Performance; GPU; Parallel computing AB The tradeoffs of accuracy and performance are as yet an unsolved problem when dealing with Graphics Processing Units (GPUs) as a general-purpose computation device. Their high performance and low cost makes them a desirable target for scientific computation, and new language efforts help address the programming challenges of data parallel algorithms and memory management. But the original task of GPUs - real-time rendering has traditionally kept accuracy as a secondary goal, and sacrifices have sometimes been made as a result. In fact, the widely deployed hardware is generally capable of only single precision arithmetic, and even this accuracy is not necessarily equivalent to that of a commodity CPU. In this paper, we investigate the accuracy and performance characteristics of GPUs, including results from a preproduction double precision-capable GPU. We then accelerate the full Quantum Monte Carlo simulation code DCA++, similarly investigating its tolerance to the precision of arithmetic delivered by GPUs. The results show that while DCA++ has some sensitivity to the arithmetic precision, the single-precision GPU results were comparable to single-precision CPU results. Acceleration of the code on a fully GPU-enabled cluster showed that any remaining inaccuracy in GPU precision was negligible; sufficient accuracy was retained for scientifically meaningful results while still showing significant speedups. (C) 2009 Elsevier B.V. All rights reserved. C1 [Meredith, Jeremy S.; Alvarez, Gonzalo; Maier, Thomas A.; Schulthess, Thomas C.; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Meredith, JS (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,MS 6173, Oak Ridge, TN 37831 USA. EM jsmeredith@ornl.gov; alvarezcampg@ornl.gov; maierta@ornl.gov; schulthess@cscs.ch; vetter@ornl.gov RI Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 23 TC 14 Z9 14 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD MAR PY 2009 VL 35 IS 3 SI SI BP 151 EP 163 DI 10.1016/j.parco.2008.12.004 PG 13 WC Computer Science, Theory & Methods SC Computer Science GA 425SA UT WOS:000264656200004 ER PT J AU Williams, S Oliker, L Vuduc, R Shalf, J Yelick, K Demmel, J AF Williams, Samuel Oliker, Leonid Vuduc, Richard Shalf, John Yelick, Katherine Demmel, James TI Optimization of sparse matrix-vector multiplication on emerging multicore platforms SO PARALLEL COMPUTING LA English DT Article DE Multicore; Sparse; Performance; Autotuning; HPC; Cell; Niagara ID KERNELS AB We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quadcore, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one of the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms. (C) 2008 Elsevier B.V. All rights reserved. C1 [Williams, Samuel; Yelick, Katherine; Demmel, James] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA. [Williams, Samuel; Oliker, Leonid; Shalf, John; Yelick, Katherine] Univ Calif Berkeley, Lawrence Berkeley Lab, CRD NERSC, Berkeley, CA 94720 USA. [Vuduc, Richard] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. RP Williams, S (reprint author), Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA. EM samw@cs.berkeley.edu OI Vuduc, Richard/0000-0003-2178-138X NR 31 TC 105 Z9 111 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD MAR PY 2009 VL 35 IS 3 BP 178 EP 194 DI 10.1016/j.parco.2008.12.006 PG 17 WC Computer Science, Theory & Methods SC Computer Science GA 425SA UT WOS:000264656200006 ER PT J AU Crandall, D Ahmadi, G Ferer, M Smith, DH AF Crandall, Dustin Ahmadi, Goodarz Ferer, Martin Smith, Duane H. TI Distribution and occurrence of localized-bursts in two-phase flow through porous media SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE Flow in porous media; Self-organized criticality; Mass avalanches; Interface depinning; Haines jumps ID SELF-ORGANIZED CRITICALITY; INVASION PERCOLATION; MULTIPHASE FLOW; SLOW DRAINAGE; AVALANCHES; DYNAMICS; MODELS; DISPLACEMENTS; BEHAVIOR; SANDPILE AB This study examines the dynamics of two-phase drainage with experiments of air invasion into a translucent water-saturated porous medium, at low injection speeds. Air displaces the water by irregular bursts of motion, suddenly invading small portions of the medium. These periods of activity, followed by dormancy, are similar to descriptions of systems at a self-organized critical point, where a slight disturbance may induce an avalanche of activity. The fractal characteristics of the invading air structure at breakthrough are examined through static (box-counting) calculations of the air mass and through an evaluation of the time-dependent motion of the invading mass; results are compared with prior low-velocity two-phase studies in porous media. Dynamic, power-law scaling for invasion percolation is shown to be well suited to describing the structure of the invading fluid. To examine the applicability of self-organized criticality predictions to the invading fluid movement, a new image analysis procedure was developed to identify the location of individual bursting events during the drainage experiments. The predictions of self-organized criticality, namely the scaling of the occurrence of bursts to the mass of the bursts and a spatio-temporal randomness of different sized bursts, are also examined. Bursts of a wide range of sizes are shown to occur throughout the porous medium, over both time and space. The mass distribution of burst sizes is shown to be well described by self-organized criticality predictions, with an experimentally determined scaling exponent of 1.53. (c) 2008 Elsevier B.V. All rights reserved. C1 [Crandall, Dustin; Ahmadi, Goodarz] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA. [Ferer, Martin; Smith, Duane H.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Crandall, Dustin; Ferer, Martin; Smith, Duane H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26506 USA. RP Crandall, D (reprint author), Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY 13699 USA. EM meDustin@gmail.com RI Crandall, Dustin/B-1257-2010 NR 35 TC 17 Z9 17 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD MAR 1 PY 2009 VL 388 IS 5 BP 574 EP 584 DI 10.1016/j.physa.2008.11.010 PG 11 WC Physics, Multidisciplinary SC Physics GA 405HU UT WOS:000263214600003 ER PT J AU Singleton, J McDonald, RD Cox, S AF Singleton, John McDonald, Ross D. Cox, Susan TI Recent high-magnetic-field experiments on the "High T-c" cuprates; Fermi-surface instabilities as a driver for superconductivity SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 5th International Workshop on Electronic Crystals (ECRYS-2008) CY AUG 24-30, 2008 CL Inst Etudes Sci Cargese, Cargese, FRANCE SP Lab Phys Theor & Modeles Statist, Inst Neel, CNRS, Lab Phys Solides, CNRS, Univ Paris Sud HO Inst Etudes Sci Cargese ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; DOPING DEPENDENCE; LA2-XSRXCUO4 AB We give a brief review of high-magnetic-field quantum-oscillation measurements on cuprate superconductors. In the case of the underdoped cuprates, a number of small Fermi-surface pockets are observed, probably due to the incommensurate nesting of the predicted (large) hole Fermi surface. The Fermi-surface instabilities that drive this nesting are also likely to result in the incommensurate spin fluctuations observed in inelastic neutron-scattering measurements. We suggest that the unusually high superconducting transitions in the cuprates are driven by an exact mapping of these incommensurate spin fluctuations onto the d(x2-y2) Cooper-pair wavefunction. The maximum energy of the fluctuations similar to 100 s of Kelvin gives an appropriate energy scale for the superconducting transition temperature. (C) 2008 Published by Elsevier B.V. C1 [Singleton, John; McDonald, Ross D.; Cox, Susan] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Singleton, J (reprint author), Los Alamos Natl Lab, Natl High Magnet Field Lab, TA 35,MS E536, Los Alamos, NM 87545 USA. EM j.singleton1@physics.ox.ac.uk RI McDonald, Ross/H-3783-2013 OI McDonald, Ross/0000-0002-0188-1087 NR 26 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD MAR 1 PY 2009 VL 404 IS 3-4 BP 350 EP 353 DI 10.1016/j.physb.2008.11.013 PG 4 WC Physics, Condensed Matter SC Physics GA 419NX UT WOS:000264227400004 ER PT J AU Cox, S Singleton, J McDonald, RD Migliori, A Littlewood, PB AF Cox, S. Singleton, J. McDonald, R. D. Migliori, A. Littlewood, P. B. TI Transport properties of La0.5Ca0.5MnO3, a highly disordered charge-density wave system SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 5th International Workshop on Electronic Crystals (ECRYS-2008) CY AUG 24-30, 2008 CL Inst Etudes Sci Cargese, Cargese, FRANCE SP Lab Phys Theor & Modeles Statist, Inst Neel, CNRS, Lab Phys Solides, CNRS, Univ Paris Sud HO Inst Etudes Sci Cargese ID BROAD-BAND NOISE; ELECTRIC-FIELD; NONLINEAR CONDUCTIVITY; MONOCLINIC TAS3; NBSE3; MANGANITES; IMPURITIES; ORIGIN AB Differential resistivity and broadband noise measurements of La0.5Ca0.5MnO3 reveal behaviour typical of a highly disordered charge-density wave system. In addition, the differential resistivity measurements reveal a large hysteresis, with the upper part of the hysteresis curve only appearing when the sample has been annealed by heating to room temperature and then cooling. The variation of the area of the hysteresis loop with temperature is found to be governed by a power law. (c) 2008 Elsevier B.V. All rights reserved. C1 [Cox, S.; Singleton, J.; McDonald, R. D.; Migliori, A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Cox, S (reprint author), Kings Coll London, Randall Div Cell & Mol Biophys, London SE1 1UL, England. EM susan.cox@kcl.ac.uk RI Cavendish, TCM/C-9489-2009; Littlewood, Peter/B-7746-2008; McDonald, Ross/H-3783-2013 OI McDonald, Ross/0000-0002-0188-1087 NR 29 TC 2 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD MAR 1 PY 2009 VL 404 IS 3-4 BP 433 EP 436 DI 10.1016/j.physb.2008.11.222 PG 4 WC Physics, Condensed Matter SC Physics GA 419NX UT WOS:000264227400029 ER PT J AU Drichko, N Kaiser, S Sun, Y Clauss, C Dressel, M Mori, H Schlueter, J Zhyliaeva, EI Torunova, SA Lyubovskaya, RN AF Drichko, Natalia Kaiser, Stefan Sun, Yaxiu Clauss, Conrad Dressel, Martin Mori, Hatsumi Schlueter, John Zhyliaeva, Elena I. Torunova, Svetlana A. Lyubovskaya, Rimma N. TI Evidence for charge order in organic superconductors obtained by vibrational spectroscopy SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 5th International Workshop on Electronic Crystals (ECRYS-2008) CY AUG 24-30, 2008 CL Inst Etudes Sci Cargese, Cargese, FRANCE SP Lab Phys Theor & Modeles Statist, Inst Neel, CNRS, Lab Phys Solides, CNRS, Univ Paris Sud HO Inst Etudes Sci Cargese DE Charge order; Superconductivity; Organic conductors ID OPTICAL-PROPERTIES; CONDUCTORS; BETA''-(ET)(2)SF5CH2CF2SO3; TRANSPORT; STATE AB We study charge disproportionation in few quasi-two-dimensional BEDT-TTF-based compounds by following the temperature dependence of a charge-sensitive vibration v(27)(B(1u)) of BEDT-TTF molecule. While in a charge ordered insulator theta-(BEDT-TTF)(2)RbZn(SCN)(4) a difference between charge on the lattice sites is as high as 0.6e, a small charge disproportionation of 0.15-0.2e is found in two metallic compounds that become superconducting at low temperatures beta ''-(BEDT-TTF)(2)SF(5)CH(2)CF(2)SO(3) and beta-(EDT-TTF)(4)[Hg(3)I(8)]((1-x)). In contrast to these, a pure metallic beta ''-(BEDT-TTF)(2)SO(3)CHFSF(5) does not show any presence of charge disproportionation. This study suggests a correlation between a slight charge disproportionation in the metallic state and superconductivity. (c) 2008 Elsevier B.V. All rights reserved. C1 [Drichko, Natalia; Kaiser, Stefan; Sun, Yaxiu; Clauss, Conrad; Dressel, Martin] Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. [Drichko, Natalia] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Mori, Hatsumi] Univ Tokyo, Inst Solid State Phys, Chiba 2778581, Japan. [Schlueter, John] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zhyliaeva, Elena I.; Torunova, Svetlana A.; Lyubovskaya, Rimma N.] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Russia. RP Drichko, N (reprint author), Univ Stuttgart, Inst Phys 1, D-70550 Stuttgart, Germany. EM drichko@pi1.physik.uni-stuttgart.de RI Kaiser, Stefan/B-7788-2008; Dressel, Martin/D-3244-2012 OI Kaiser, Stefan/0000-0001-9862-2788; NR 23 TC 19 Z9 19 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD MAR 1 PY 2009 VL 404 IS 3-4 BP 490 EP 493 DI 10.1016/j.physb.2008.11.038 PG 4 WC Physics, Condensed Matter SC Physics GA 419NX UT WOS:000264227400044 ER PT J AU Mascarenhas, A Kini, R Zhang, Y France, R Ptak, A AF Mascarenhas, Angelo Kini, Rajeev Zhang, Yong France, Ryan Ptak, Aaron TI Comparison of the dilute bismide and nitride alloys GaAsBi and GaAsN SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 13th International Conference on High Pressure Semiconductor Physics (HPSP-13) CY JUL 22-25, 2008 CL Fortaleza, BRAZIL SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda ID TIME-RESOLVED PHOTOLUMINESCENCE; III-V-SEMICONDUCTORS; INDUCED DEFECT LINES; ISOELECTRONIC TRAPS; GALLIUM-PHOSPHIDE; NITROGEN; GAP; LUMINESCENCE; BAND; BI AB Dilute III-V alloys containing N or Bi share many features that are common, but some that are distinct. In GaP and GaAs, both the substituent species N and Bi behave as isoelectronic impurity traps and both lead to a giant bandgap bowing phenomenon. The isolated N and Bi impurities generate bound states in GaP but resonant states in GaAs. N impurity pairs have been observed as bound states in GaP and in GaAs whereas Bi impurity pairs have not been observed as bound states in GaP nor in GaAs. Low temperature photoluminescence studies on GaAs1-xBix show undulations in the spectra but these are not associated with Bi-Bi pairs. Theoretical arguments for the differing behaviour of the N and Bi isolated impurities in GaAs as a function of pressure are provided. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Mascarenhas, Angelo; Kini, Rajeev; Zhang, Yong; France, Ryan; Ptak, Aaron] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mascarenhas, A (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM angelo_mascarenhas@nrel.gov RI Kini, Rajeev/D-2342-2009 OI Kini, Rajeev/0000-0002-3305-9346 NR 26 TC 8 Z9 8 U1 1 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAR PY 2009 VL 246 IS 3 BP 504 EP 507 DI 10.1002/pssb.200880547 PG 4 WC Physics, Condensed Matter SC Physics GA 419UF UT WOS:000264244500009 ER PT J AU Christensen, NE Gorczyca, I Laskowski, R Svane, A Albers, RC Chantis, AN Kotani, T van Schilfgaarde, M AF Christensen, N. E. Gorczyca, I. Laskowski, R. Svane, A. Albers, R. C. Chantis, A. N. Kotani, T. van Schilfgaarde, M. TI Electronic and optical properties of III-nitrides under pressure SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 13th International Conference on High Pressure Semiconductor Physics (HPSP-13) CY JUL 22-25, 2008 CL Fortaleza, BRAZIL SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda ID FUNDAMENTAL-BAND GAP; EFFECTIVE-MASS; HEXAGONAL INN; AB-INITIO; SEMICONDUCTORS; ABSORPTION; ALLOYS; ALN AB Results of theoretical studies of electronic and optical properties of III-V nitride compound semiconductors under pressure are presented. As representatives InN and AIN have been chosen, and for InN the pressure effects on the fundamental gap as well as the role of conduction-band filling are examined. Both the fundamental gap and the electron effective mass increase with pressure, but due to the strong non-parabolicity of the conduction band, the pressure coefficient of the mass decreases with electron concentration. Particular attention is paid to the electronic states in the gap region. The "local-density gap error" is avoided by performing Quasi Particle self-consistent GW calculations, which produce slightly too large gaps. Including in addition the missing electron-hole excitonic states and the gap renormalization due to electron-phonon interaction a gap reduction is obtained. The c-h correlations are deduced from solutions of the Bethe-Salpeter equation. These are further used to study excitonic states in the gap of AIN under pressure, and for the rocksalt phase a pressure induced delocalized -> localized transition is predicted. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Christensen, N. E.; Svane, A.] Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gorczyca, I.] Polish Acad Sci, Inst High Pressure Phys Unipress, PL-01142 Warsaw, Poland. [Laskowski, R.] Vienna Univ Technol, Inst Mat Chem, A-1060 Vienna, Austria. [Albers, R. C.; Chantis, A. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kotani, T.; van Schilfgaarde, M.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Christensen, NE (reprint author), Univ Aarhus, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM nec@phys.au.dk RI kotani, takao/G-4355-2011 OI kotani, takao/0000-0003-1693-7052 NR 40 TC 10 Z9 10 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAR PY 2009 VL 246 IS 3 BP 570 EP 575 DI 10.1002/pssb.200880549 PG 6 WC Physics, Condensed Matter SC Physics GA 419UF UT WOS:000264244500023 ER PT J AU Chen, SY Gong, XG Wei, SH AF Chen, Shiyou Gong, X. G. Wei, Su-Huai TI Configuration dependence of the electronic structure and optical properties of BC2N alloys SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 13th International Conference on High Pressure Semiconductor Physics (HPSP-13) CY JUL 22-25, 2008 CL Fortaleza, BRAZIL SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda ID SUPERHARD MATERIALS; INTERFACES AB Using the first-principles band structure and total energy method, we have studied the general trend of physical properties of the BC2N alloy as a function of atomic configurations. We found that the mechanical properties of the BC2N alloy are basically determined by the bond components: structures with more C-C and B-N bonds have low energy, high density, and high bulk and shear moduli, which validates the so called the bond counting rule. We also show that the electronic and optical properties of the BC2N alloy are more sensitive to the atomic configuration, thus could be used in future experimental measurement to identify the atomic configuration of BC2N samples. A strong internal electric field produced by the polar interfaces is observed in the long period BC2Nnxn (111) superlattices, which explains the significant band gap decrease as the period n increases. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Chen, Shiyou; Gong, X. G.] Fudan Univ, Surface Sci Lab Natl Key, Shanghai 200433, Peoples R China. RP Wei, SH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM swei@nrel.gov RI gong, xingao /B-1337-2010; gong, xingao/D-6532-2011 NR 22 TC 2 Z9 2 U1 2 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAR PY 2009 VL 246 IS 3 BP 589 EP 593 DI 10.1002/pssb.200880541 PG 5 WC Physics, Condensed Matter SC Physics GA 419UF UT WOS:000264244500027 ER PT J AU Ekimov, EA Sidorov, VA Zoteev, A Lebed, Y Thompson, JD Bauer, ED Stishov, SM AF Ekimov, E. A. Sidorov, V. A. Zoteev, A. Lebed, Yu. Thompson, J. D. Bauer, E. D. Stishov, S. M. TI Superconductivity in diamond induced by boron doping at high pressure SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article; Proceedings Paper CT 13th International Conference on High Pressure Semiconductor Physics (HPSP-13) CY JUL 22-25, 2008 CL Fortaleza, BRAZIL SP Univ Fed Ceara, PETROBRAS, CNPq, CAPES, FUNCAP, FAPEMA, European Phys Soc, FCPC, Quantum Tech, Savassi Distribuidora Ltda, Spectronix Comercio & Representacoes Ltda ID POLYCRYSTALLINE DIAMOND; RAMAN-SPECTROSCOPY; FILMS AB The application of hydrostatic pressure to boron-doped diamond samples produces a linear decrease in the superconducting transition temperature T(c). The values d ln T(c)/dP obtained for samples with different T(c)'s collapse near an average Value -2 x 10(-2) GPa(-1), which is in reasonable agreement with theoretical predictions based on an electron-phonon mechanism of superconductivity in diamond within the virtual crystal approximation [Y. Ma et al., Phys. Rev. B 72, 014306 (2005)]. For the first time, superconducting boron-doped diamond samples were synthesized with (10)B and (13)C isotopes. Isotopic substitution permits us to relate almost all bands in the Raman spectra of heavily boron-doped diamond with the vibrations of carbon atoms. The "500 cm(-1)" Raman band shifts with both carbon and boron isotope substitutions and is associated with vibrations of clustered boron. We claim the presence of a carbon isotope effect in superconducting diamond. This fact supports the importance of the electron-phonon interaction as the mechanism of superconductivity in diamond. The value of the isotope effect coefficient is beta(0) = -d ln T(c)/d ln M = 0.5 +/- 0.3. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Ekimov, E. A.; Sidorov, V. A.; Stishov, S. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Russia. [Zoteev, A.] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119992, Russia. [Lebed, Yu.] Russian Acad Sci, Inst Nucl Res, Troitsk 142190, Russia. [Thompson, J. D.; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ekimov, EA (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Russia. EM ekimov@hppi.troitsk.ru RI Bauer, Eric/D-7212-2011; OI Bauer, Eric/0000-0003-0017-1937 NR 21 TC 0 Z9 1 U1 1 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD MAR PY 2009 VL 246 IS 3 BP 667 EP 672 DI 10.1002/pssb.200880515 PG 6 WC Physics, Condensed Matter SC Physics GA 419UF UT WOS:000264244500043 ER PT J AU Sailer, J Lang, V Abstreiter, G Tsuchiya, G Itoh, KM Ager, JW Haller, EE Kupidura, D Harbusch, D Ludwig, S Bougeard, D AF Sailer, J. Lang, V. Abstreiter, G. Tsuchiya, G. Itoh, K. M. Ager, J. W., III Haller, E. E. Kupidura, D. Harbusch, D. Ludwig, S. Bougeard, D. TI A Schottky top-gated two-dimensional electron system in a nuclear spin free Si/SiGe heterostructure SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS LA English DT Article ID QUANTUM DOTS; SI/SI1-XGEX HETEROSTRUCTURES; SCATTERING TIMES; TRANSPORT; MAGNETOTRANSPORT; OVERSHOOT AB We report on the realization and top-gating of a two-dimensional electron system in a nuclear spin free environment using (28)Si and (70)Ge source material in molecular beam epitaxy. Electron spin decoherence is expected to be minimized in nuclear spin-free materials, making them promising hosts for solid-state based quantum information processing devices. The two-dimensional electron system exhibits a mobility of 18000 cm(2)/(V s) at a sheet carrier density of 4.6 x 10(11) cm(-2) at low temperatures. Feasibility of reliable gating is demonstrated by transport through split-gate structures realized with pallidium Schottky top-gates which effectively control the two-dimensional electron system underneath. Our work forms the basis for the realization of an electrostatically defined quantum dot in a nuclear spin free environment. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Sailer, J.; Lang, V.; Abstreiter, G.; Bougeard, D.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Tsuchiya, G.; Itoh, K. M.] Keio Univ, Dept Appl Phys & Phys Informat, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Ager, J. W., III; Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kupidura, D.; Harbusch, D.; Ludwig, S.] Univ Munich, Fak Phys, D-80539 Munich, Germany. [Kupidura, D.; Harbusch, D.; Ludwig, S.] Univ Munich, Ctr NanoSci, D-80539 Munich, Germany. RP Bougeard, D (reprint author), Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. EM bougeard@wsi.tum.de RI Ludwig, Stefan/A-5199-2009; Itoh, Kohei/C-5738-2014; OI Ludwig, Stefan/0000-0002-0978-7458; Ager, Joel/0000-0001-9334-9751 FU Deutsche Forschungsgerneinschaft [SFB631]; Excellence Cluster Nanosystems Initiative Munich (NIM); MEXT program [18001002]; Special Coordination Funds for Promoting Science and Technology; US NSF [DMR-0405472]; U.S. DOE [DE-AC02-05CH 11231] FX The authors gratefully acknowledge H. Cerva at Siemens AG Corporate Technology for access to electron microscopy facilities and financial support by the Deutsche Forschungsgerneinschaft via SFB631 and the Excellence Cluster Nanosystems Initiative Munich (NIM). The work at Keio was supported in part by MEXT program No. 18001002, by Special Coordination Funds for Promoting Science and Technology, and by Grant-in-Aid for the Global Center of Excellence. Work at the LBNL was supported in part by US NSF Grant No. DMR-0405472 and the U.S. DOE under Contract No. DE-AC02-05CH 11231. NR 15 TC 9 Z9 9 U1 1 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1862-6254 J9 PHYS STATUS SOLIDI-R JI Phys. Status Solidi-Rapid Res. Lett. PD MAR PY 2009 VL 3 IS 2-3 BP 61 EP 63 DI 10.1002/pssr.200802275 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 426EF UT WOS:000264690100012 ER PT J AU Haber, LH Doughty, B Leone, SR AF Haber, Louis H. Doughty, Benjamin Leone, Stephen R. TI Continuum phase shifts and partial cross sections for photoionization from excited states of atomic helium measured by high-order harmonic optical pump-probe velocity map imaging SO PHYSICAL REVIEW A LA English DT Article DE atom-photon collisions; excited states; helium neutral atoms; high-speed optical techniques; optical pumping; photoelectron spectra; photoionisation ID PHOTOELECTRON ANGULAR-DISTRIBUTIONS; 2-PHOTON IONIZATION; THRESHOLD; ELECTRONS; HE+ AB Phase shift differences and ratios of radial dipole matrix elements of the outgoing S and D continuum waves from state-selected helium atoms are directly measured from the photoelectron angular distributions using pump-probe velocity map imaging. Aligned 1s3p (1)P(1) and 1s4p (1)P(1) states in helium are prepared by high-order harmonics and ionized with either 800, 400, or 267 nm light. The results allow for the determination of energy-dependent quantum defect differences and ratios of partial cross sections and agree favorably with theoretical calculations on electron scattering and photoionization. C1 [Haber, Louis H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Haber, LH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Haber, Louis/A-6762-2013; Doughty, Benjamin /M-5704-2016 OI Doughty, Benjamin /0000-0001-6429-9329 FU Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U. S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Daniel Strasser, Frederick Fournier, and Oliver Gessner for their helpful discussions. The authors gratefully acknowledge financial support by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 43 Z9 44 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAR PY 2009 VL 79 IS 3 AR 031401 DI 10.1103/PhysRevA.79.031401 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 427HK UT WOS:000264770200008 ER PT J AU Jackson Kimball, DF Nguyen, K Ravi, K Sharma, A Prabhudesai, VS Rangwala, SA Yashchuk, VV Balabas, MV Budker, D AF Jackson Kimball, D. F. Nguyen, Khoa Ravi, K. Sharma, Arijit Prabhudesai, Vaibhav S. Rangwala, S. A. Yashchuk, V. V. Balabas, M. V. Budker, D. TI Electric-field-induced change of the alkali-metal vapor density in paraffin-coated cells SO PHYSICAL REVIEW A LA English DT Article DE atomic moments; caesium; electric field effects; electric moments; hyperfine structure; organic compounds; polarisability; rubidium; Zeeman effect ID DIPOLE MOMENT; PRECISION-MEASUREMENT; ATOMIC MAGNETOMETERS; MAGNETIC-FIELD; STARK SHIFT; RELAXATION; CESIUM; LIGHT; STATE; LIMIT AB Alkali-metal vapor cells with antirelaxation coating (especially paraffin-coated cells) have been a central tool in optical pumping and atomic spectroscopy experiments for 50 years. We have discovered a dramatic change of the alkali-metal vapor density in a paraffin-coated cell upon application of an electric field to the cell. A systematic experimental characterization of the phenomenon is carried out for electric fields ranging in strength from 0-8 kV/cm for paraffin-coated cells containing rubidium and cells containing cesium. The typical response of the vapor density to a rapid (duration less than or similar to 100 ms) change in electric field of sufficient magnitude includes (a) a rapid (duration of less than or similar to 100 ms) and significant increase in alkali-metal vapor density followed by (b) a less rapid (duration of similar to 1 s) and significant decrease in vapor density (below the equilibrium vapor density), and then (c) a slow (duration of similar to 100 s) recovery of the vapor density to its equilibrium value. Measurements conducted after the alkali-metal vapor density has returned to its equilibrium value indicate minimal change (at the level of less than or similar to 10%) in the relaxation rate of atomic polarization. Experiments suggest that the phenomenon is related to an electric-field-induced modification of the paraffin coating. C1 [Jackson Kimball, D. F.; Nguyen, Khoa] Calif State Univ E Bay, Dept Phys, Hayward, CA 94542 USA. [Ravi, K.; Sharma, Arijit; Prabhudesai, Vaibhav S.; Rangwala, S. A.] Raman Res Inst, Bangalore 560080, Karnataka, India. [Yashchuk, V. V.] Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Balabas, M. V.] SI Vavilov State Opt Inst, St Petersburg 199034, Russia. [Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Jackson Kimball, DF (reprint author), Calif State Univ E Bay, Dept Phys, Hayward, CA 94542 USA. EM derek.jacksonkimball@csueastbay.edu RI Rangwala, Sadiq/E-6899-2012; Balabas, Mikhail/A-5273-2012; SHARMA, ARIJIT/L-4614-2016; Budker, Dmitry/F-7580-2016 OI Balabas, Mikhail/0000-0002-5383-7897; SHARMA, ARIJIT/0000-0002-2143-0574; Budker, Dmitry/0000-0002-7356-4814 FU National Science Foundation, NSF/DST [PHY-0652824, PHY-0425916]; California State University-East Bay FX We would like to thank B. P. Das and E. Krishnakumar for facilitating this work and Arun Roy and N. V. Madhusudana for helpful discussions. We would also like to acknowledge the contribution of Morey Roscrow, Jr. to early parts of the experiment and the excellent technical assistance of Mohammad Ali and Alex Vaynberg in building parts of the apparatus. This work was supported by Grant No. PHY-0652824 from the National Science Foundation, NSF/DST Grant No. PHY-0425916 for U.S.-India cooperative research, and Faculty Support Grants from California State University-East Bay. NR 44 TC 1 Z9 1 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAR PY 2009 VL 79 IS 3 AR 032901 DI 10.1103/PhysRevA.79.032901 PG 14 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 427HK UT WOS:000264770200108 ER PT J AU Mestayer, JJ Wyker, B Dunning, FB Yoshida, S Reinhold, CO Burgdorfer, J AF Mestayer, J. J. Wyker, B. Dunning, F. B. Yoshida, S. Reinhold, C. O. Burgdoerfer, J. TI Creation of nondispersive Bohr-like wave packets SO PHYSICAL REVIEW A LA English DT Article DE hydrogen neutral atoms; Stark effect; light scattering ID POLARIZED ELECTROMAGNETIC-FIELD; ATOM; HYDROGEN AB We demonstrate the use of a periodic train of half-cycle pulses to maintain strongly-localized wave packets in very-high-n (n similar to 300) Rydberg atoms that travel in near-circular orbits about the nucleus. This motion can be followed for hundreds of orbital periods and mimics the original Bohr model of the hydrogen atom which envisioned an electron in circular classical orbit about the nucleus. C1 [Mestayer, J. J.; Wyker, B.; Dunning, F. B.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Mestayer, J. J.; Wyker, B.; Dunning, F. B.] Rice Univ, Rice Quantum Inst, Houston, TX 77005 USA. [Yoshida, S.; Burgdoerfer, J.] Vienna Univ Technol, Inst Theoret Phys, A-1040 Vienna, Austria. [Reinhold, C. O.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Reinhold, C. O.; Burgdoerfer, J.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Mestayer, JJ (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. FU NSF [0650732]; Robert A. Welch Foundation [C-0734]; OBES; U. S. DOE [AC05-00OR22725]; FWF (Austria) [SFB016] FX Research supported by the NSF under Grant No. 0650732, the Robert A. Welch Foundation under Grant No. C-0734, the OBES, U. S. DOE to ORNL, which is managed by UT-Batelle LLC under Contract No. AC05-00OR22725, and by the FWF (Austria) under SFB016. The assistance of Evan Olson is also acknowledged. NR 22 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAR PY 2009 VL 79 IS 3 AR 033417 DI 10.1103/PhysRevA.79.033417 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 427HK UT WOS:000264770200129 ER PT J AU Palacios, A Rescigno, TN McCurdy, CW AF Palacios, A. Rescigno, T. N. McCurdy, C. W. TI Time-dependent treatment of two-photon resonant single and double ionization of helium by ultrashort laser pulses SO PHYSICAL REVIEW A LA English DT Article DE atom-photon collisions; excited states; ground states; helium ions; high-speed optical techniques; photoionisation; positive ions; two-photon processes; wave functions ID COLLISION PROCESSES; CROSS-SECTIONS; INTENSITIES; DYNAMICS; LIGHT; HE AB We report the results of accurate time-dependent calculations of two-photon ionization of helium by ultrashort pulses. Ionization amplitudes and generalized cross sections are extracted from the wave function using exterior complex scaling. For photon energies above the first ionization threshold, two-photon single ionization is enhanced by core excited resonances, in processes visible with pulses as short as 2 fs, when the photon frequency is equal to a transition energy in He(+). We explore the dependence of the total cross section in the vicinity of the threshold for sequential double ionization on pulse duration. A signature in the single differential cross section of two-photon sequential ionization with the ground state of the ion as the intermediate state is seen to be suppressed by sufficiently short pulses in favor of the nonsequential process, while the triple differential cross section shows that attosecond pulses can access different electron dynamics than those of longer duration. The peaks in the single differential cross section due to sequential ionization with the excited intermediate states of the ion are observed to occur at energies displaced by about 2 eV from the expected values by interference effects between continuum channels. C1 [Palacios, A.; Rescigno, T. N.; McCurdy, C. W.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci & Chem, Davis, CA 95616 USA. RP Palacios, A (reprint author), Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Palacios, Alicia/J-6823-2012 OI Palacios, Alicia/0000-0001-6531-9926 FU U.S. Department of Energy by the University of California Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Science Foundation [PHY-0604628] FX This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and was supported by the U. S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences. C. W. M. acknowledges support from the National Science Foundation (Grant No. PHY-0604628). NR 31 TC 56 Z9 56 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAR PY 2009 VL 79 IS 3 AR 033402 DI 10.1103/PhysRevA.79.033402 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 427HK UT WOS:000264770200114 ER PT J AU Aczel, AA Kohama, Y Jaime, M Ninios, K Chan, HB Balicas, L Dabkowska, HA Luke, GM AF Aczel, A. A. Kohama, Y. Jaime, M. Ninios, K. Chan, H. B. Balicas, L. Dabkowska, H. A. Luke, G. M. TI Bose-Einstein condensation of triplons in Ba3Cr2O8 SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; Bose-Einstein condensation; magnetisation; magnetocaloric effects; specific heat ID MAGNETIZATION PLATEAUS; GROUND-STATE; SRCU2(BO3)(2) AB By performing heat-capacity, magnetocaloric effect, torque magnetometry, and force magnetometry measurements up to 33 T, we have mapped out the T-H phase diagram of the S=1/2 spin dimer compound Ba3Cr2O8. We found evidence for field-induced magnetic order between H-c1=12.52(2) T and H-c2=23.60(5) T, with the maximum transition temperature T-c similar to 2.7 K at H similar to 18 T. The lower transition can likely be described by Bose-Einstein condensation of triplons theory, and this is consistent with the absence of any magnetization plateaus in our magnetic torque and force measurements. In contrast, our measurements uncovered magnetic field irreversibility associated with a symmetric specific heat versus temperature near H-c2 suggesting that the upper transition is first order. C1 [Aczel, A. A.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Kohama, Y.; Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Ninios, K.; Chan, H. B.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Balicas, L.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Dabkowska, H. A.; Luke, G. M.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Aczel, AA (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM aczela@mcmaster.ca RI Jaime, Marcelo/F-3791-2015; Luke, Graeme/A-9094-2010; Aczel, Adam/A-6247-2016; OI Jaime, Marcelo/0000-0001-5360-5220; Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173 NR 24 TC 30 Z9 30 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 100409 DI 10.1103/PhysRevB.79.100409 PG 4 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600017 ER PT J AU Bao, W Gasparovic, YC Lynn, JW Ronning, F Bauer, ED Thompson, JD Fisk, Z AF Bao, Wei Gasparovic, Y. C. Lynn, J. W. Ronning, F. Bauer, E. D. Thompson, J. D. Fisk, Z. TI Commensurate magnetic structure of CeRhIn4.85Hg0.15 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; cerium alloys; heavy fermion superconductors; indium alloys; magnetic structure; mercury alloys; neutron diffraction; rhodium alloys ID HEAVY-FERMION MATERIALS; SUPERCONDUCTIVITY; CERHIN5; CEIRIN5; IR; RH AB We show using neutron diffraction that the magnetic structure of CeRhIn4.85Hg0.15 is characterized by a commensurate propagation vector (1/2,1/2,1/2). This is different from the magnetic structure in the parent compound CeRhIn5, which orders with an incommensurate propagation vector (1/2,1/2,0.297). The special relation between the commensurate magnetic mode and unconventional superconductivity has been shown previously for this class of heavy fermion superconductors. This work provides further evidence for the ubiquity of this antiferromagnetic mode. C1 [Bao, Wei; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bao, Wei; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Gasparovic, Y. C.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Bao, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Bao, Wei/E-9988-2011; OI Bao, Wei/0000-0002-2105-461X; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U.S. DOE; UC Irvine; NSF [DMR-053360] FX Work at LANL was supported by U.S. DOE and at UC Irvine by NSF under Grant No. DMR-053360. NR 32 TC 0 Z9 0 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 092415 DI 10.1103/PhysRevB.79.092415 PG 3 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200018 ER PT J AU Bindu, R Maiti, K Khalid, S Sampathkumaran, EV AF Bindu, R. Maiti, Kalobaran Khalid, S. Sampathkumaran, E. V. TI Structural link to precursor effects SO PHYSICAL REVIEW B LA English DT Article DE bond lengths; calcium compounds; Debye-Waller factors; EXAFS; magnetic transitions; nucleation; solid-state phase transformations ID ONE-DIMENSIONAL CA3CO2O6; ELECTRONIC-STRUCTURE; COMPOUND CA3CO2O6; CHAIN COMPOUND; EVOLUTION; IFEFFIT AB We investigate the origin of precursor effect associated to magnetic phase transitions in a quasi-one-dimensional system Ca3Co2O6, employing extended x-ray absorption fine structure technique. Experimental results reveal unusual changes in the Co-O bond lengths in CoO6 units nucleating at a temperature T-star, where the precursor effect occurs. The corresponding Debye-Waller factors representing disorder effect exhibit anomalous evolution across T-star. These results reveal a unique link between the local structural changes and the precursor effect that needs to be considered in the understanding of various phase transitions. C1 [Bindu, R.; Maiti, Kalobaran; Sampathkumaran, E. V.] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India. [Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Maiti, K (reprint author), Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM kbmaiti@tifr.res.in NR 36 TC 14 Z9 14 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094103 DI 10.1103/PhysRevB.79.094103 PG 6 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200033 ER PT J AU Cabot, A Alivisatos, AP Puntes, VF Balcells, L Iglesias, O Labarta, A AF Cabot, Andreu Alivisatos, A. Paul Puntes, Victor F. Balcells, Lluis Iglesias, Oscar Labarta, Amilcar TI Magnetic domains and surface effects in hollow maghemite nanoparticles SO PHYSICAL REVIEW B LA English DT Article DE chemical interdiffusion; coercive force; crystal microstructure; ferrimagnetic materials; iron compounds; magnetic anisotropy; magnetic domains; magnetic moments; magnetic structure; magnetic transitions; Monte Carlo methods; nanoparticles; superparamagnetism; surface magnetism ID GAMMA-FE2O3 NANOPARTICLES; IRON NANOPARTICLES; COBALT; ANISOTROPY; NANOCRYSTALS; NANOSCALE; SPHERES; OXIDE AB In the present work, we investigate the magnetic properties of ferrimagnetic and noninteracting maghemite (gamma-Fe(2)O(3)) hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arrangement in the different temperature regimes. C1 [Cabot, Andreu; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cabot, Andreu; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Puntes, Victor F.] Inst Catala Estudis & Recerca Avancat, E-08193 Barcelona, Spain. [Puntes, Victor F.] Inst Catala Nanotecnol, E-08193 Barcelona, Spain. [Balcells, Lluis] CSIC, Inst Ciencia Mat Barcelona, Bellaterra 08193, Spain. [Iglesias, Oscar; Labarta, Amilcar] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain. [Iglesias, Oscar; Labarta, Amilcar] Univ Barcelona, Inst Nanociencia & Nanotecnol, E-08028 Barcelona, Spain. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Labarta, Amilcar/B-4539-2012; Iglesias, Oscar/A-8274-2008; Puntes, Victor/F-8407-2013; andreu, cabot/B-5683-2014; Balcells, Lluis/B-5027-2013; Alivisatos , Paul /N-8863-2015; OI Labarta, Amilcar/0000-0003-0904-4678; Iglesias, Oscar/0000-0002-5526-9491; Puntes, Victor/0000-0001-8996-9499; Balcells, Lluis/0000-0001-6603-7357; Alivisatos , Paul /0000-0001-6895-9048; cabot, andreu /0000-0002-7533-3251 FU U. S. Department of Energy [DE-AC02-05CH11231]; Generalitat de Catalunya; Departament d'Universitats, Recerca i Societat de l'Informacio; Spanish MCyT [MAT2006-13572-C02-02, MAT2006-13572-C02-01, MAT2006-03999, NAN2004-08805-CO4-01/02]; Consolider-Ingenio [2010 CSD2007-00041, 2010 CSD2006-00012] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. A. C. thanks financial support from the Generalitat de Catalunya, Departament d'Universitats, Recerca i Societat de l'Informacio. V. F. P. thanks financial support from Spanish MCyT though Contract No. MAT2006-13572-C02-02. Ll. B. thanks financial support from Spanish MCyT under Contract No. MAT2006-13572-C02-01 and Consolider-Ingenio under Contract No. 2010 CSD2007-00041. O. I. and A. L. thank financial support from Spanish MCyT through Projects No. MAT2006-03999 and No. NAN2004-08805-CO4-01/02 and Consolider-Ingenio under Contract No. 2010 CSD2006-00012. We acknowledge CESCA and CEPBA under coordination of C4 for computer facilities. We thank J. Long and his group for the assistance and use of their SQUID. NR 26 TC 74 Z9 74 U1 5 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094419 DI 10.1103/PhysRevB.79.094419 PG 7 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200076 ER PT J AU Chen, B Zhang, H Dunphy-Guzman, KA Spagnoli, D Kruger, MB Muthu, DVS Kunz, M Fakra, S Hu, JZ Guo, QZ Banfield, JF AF Chen, Bin Zhang, Hengzhong Dunphy-Guzman, K. A. Spagnoli, D. Kruger, M. B. Muthu, D. V. S. Kunz, M. Fakra, Sirine Hu, J. Z. Guo, Q. Z. Banfield, Jillian F. TI Size-dependent elasticity of nanocrystalline titania SO PHYSICAL REVIEW B LA English DT Article DE compressibility; dislocations; elastic moduli; elasticity; hardening; high-pressure effects; nanoparticles; particle size; semiconductor materials; titanium compounds; X-ray diffraction ID HALL-PETCH RELATION; HIGH-PRESSURE; ATOMISTIC SIMULATION; MECHANICAL-BEHAVIOR; METALS; NICKEL; TIO2; IRON; COMPRESSIBILITY; DISLOCATIONS AB Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks (hardened by overlap of strain fields) that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes. C1 [Chen, Bin; Zhang, Hengzhong; Dunphy-Guzman, K. A.; Spagnoli, D.; Banfield, Jillian F.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dunphy-Guzman, K. A.] Sandia Natl Labs, Dept Syst Studies, Livermore, CA 94551 USA. [Kruger, M. B.; Muthu, D. V. S.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Muthu, D. V. S.] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India. [Kunz, M.; Fakra, Sirine] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hu, J. Z.; Guo, Q. Z.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Chen, B (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM binchen@berkeley.edu RI Kunz, Martin/K-4491-2012; Spagnoli, Dino/F-8641-2011 OI Kunz, Martin/0000-0001-9769-9900; Spagnoli, Dino/0000-0001-6367-4748 FU U. S. Department of Energy [DE-AC0205CH11231, DE-AC02-05CH11232, DE-FG03-01ER15218] FX High-pressure x-ray diffraction was performed at beamline 11.3.1 of Advanced Light Source (ALS), Lawrence Berkeley National Laboratory and beamlines X17C & X17B3 of the National Synchrotron Light Source (NSLS), Brookhaven. We thank J. Giska, M. Finnegan, F. El-Ghussein, and T. Tesileanu for help with the synchrotron measurements; Sergio Speziale and Raymond Jeanloz for their DAC cells; Benjamin Gilbert for helpful discussion; Stephen C. Parker for providing us with the computer code METADISE and for the useful discussions. The authors thank Glenn A. Waychunas for the provision of the Geochemistry computer cluster at the Lawrence Berkeley National Laboratory. Research conducted at the ALS is supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the U. S. Department of Energy under Contract Nos. DE-AC0205CH11231 and DE-AC02-05CH11232. Financial support for this work was provided by the U. S. Department of Energy (Grant No. DE-FG03-01ER15218) NR 56 TC 39 Z9 39 U1 0 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 125406 DI 10.1103/PhysRevB.79.125406 PG 8 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300087 ER PT J AU Choi, HJ Louie, SG Cohen, ML AF Choi, Hyoung Joon Louie, Steven G. Cohen, Marvin L. TI Anisotropic Eliashberg theory for superconductivity in compressed and doped MgB2 SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; doping; electron-phonon interactions; magnesium compounds; phonon spectra; specific heat; strong-coupling superconductors; superconducting energy gap; superconducting transition temperature ID PRESSURE-DEPENDENCE; T-C; TRANSITION-TEMPERATURE; MAGNESIUM DIBORIDE; AB-INITIO; ENERGY AB We have studied superconducting properties of compressed and doped MgB2 by performing first-principles calculations of the normal material properties and by solving the fully anisotropic Eliashberg equations. At each pressure or doping, electronic structures, phonon spectra, and momentum-dependent electron-phonon coupling strengths are calculated. Then using the fully anisotropic Eliashberg equations, the superconducting transition temperatures (T-c), the superconducting energy gaps [Delta(k)], and the specific heats are obtained. Our results show that the multiple-gap nature of Delta(k) in MgB2 is robust with applied pressure although T-c and Delta(k) decrease substantially and that electron doping reduces T-c and degrades severely the superconducting energy gap in the pi bands. C1 [Choi, Hyoung Joon] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Choi, Hyoung Joon] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Louie, Steven G.; Cohen, Marvin L.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Choi, HJ (reprint author), Yonsei Univ, Dept Phys, Seoul 120749, South Korea. EM h.j.choi@yonsei.ac.kr RI Choi, Hyoung Joon/N-8933-2015 OI Choi, Hyoung Joon/0000-0001-8565-8597 FU NSF [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U. S. Department of Energy [DE-AC02-05CH11231]; KRF [KRF-2007-314-C00075]; KOSEF [R01-2007-000-20922-0]; KISTI Supercomputing Center [KSC-2007S00-1011] FX This work was supported by the NSF under Grant No. DMR07-05941, by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231, by the KRF (Grant No. KRF-2007-314-C00075), and by the KOSEF under Grant No. R01-2007-000-20922-0. Computational resources have been provided by NSF through TeraGrid resources at SDSC, DOE at Lawrence Berkeley National Laboratory's NERSC facility, and KISTI Supercomputing Center (Project No. KSC-2007S00-1011). NR 49 TC 8 Z9 8 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094518 DI 10.1103/PhysRevB.79.094518 PG 6 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200105 ER PT J AU Chopdekar, RV Arenholz, E Suzuki, Y AF Chopdekar, Rajesh V. Arenholz, Elke Suzuki, Y. TI Orientation and thickness dependence of magnetization at the interfaces of highly spin-polarized manganite thin films SO PHYSICAL REVIEW B LA English DT Article DE electrical resistivity; electron spin polarisation; interface magnetism; lanthanum compounds; magnetisation; strontium compounds; thin films; X-ray spectra ID ADVANCED LIGHT-SOURCE; CIRCULAR-DICHROISM; COLOSSAL MAGNETORESISTANCE; LATTICE-DISTORTIONS; TRANSITION-METALS; SUM-RULE; STRAIN; LA0.7SR0.3MNO3; ABSORPTION; EPITAXY AB We have probed the nature of magnetism at the surface of (001)-, (110)-, and (111)-oriented La0.7Sr0.3MnO3 thin films. The spin polarization of La0.7Sr0.3MnO3 thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001)-, (110)-, and (111)-oriented La0.7Sr0.3MnO3/SrTiO3 interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110)- and (111)-oriented La0.7Sr0.3MnO3/SrTiO3 interfaces is more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La0.7Sr0.3MnO3/SrTiO3 interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La0.7Sr0.3MnO3 films; for a given film thickness it is the tetragonal distortion of (001) La0.7Sr0.3MnO3 that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depend strongly on the crystal surface orientation as well as epitaxial strain. C1 [Chopdekar, Rajesh V.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Chopdekar, Rajesh V.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Arenholz, Elke] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chopdekar, RV (reprint author), Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. EM rvc2@cornell.edu RI Chopdekar, Rajesh/D-2067-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501 FU U. S. Department of Energy [DE-AC02-05CH11231] FX This research and the Advanced Light Source are supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. R. V. C. thanks Michael F. Toney (SSRL) and Brittany Nelson-Cheeseman for their assistance in verifying film thickness using hard x-ray scattering measurements. NR 41 TC 29 Z9 29 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104417 DI 10.1103/PhysRevB.79.104417 PG 7 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600073 ER PT J AU Clavero, C Skuza, JR Garcia-Martin, JM Cebollada, A Walko, DA Lukaszew, RA AF Clavero, C. Skuza, J. R. Garcia-Martin, J. M. Cebollada, A. Walko, D. A. Lukaszew, R. A. TI Order and phase nucleation in nonequilibrium nanocomposite Fe-Pt thin films with perpendicular magnetic anisotropy SO PHYSICAL REVIEW B LA English DT Article DE annealing; coercive force; ferromagnetic materials; grain size; iron; magnetic thin films; nanocomposites; nucleation; perpendicular magnetic anisotropy; platinum; segregation; X-ray diffraction ID FE/PT MULTILAYERS; GROWTH; AL2O3 AB We report on the time evolution of mass transport upon annealing nonequilibrium Fe-Pt nanocomposite films, leading to nucleation of L1(0) chemically ordered phase. The nonequilibrium nanocomposite films were fabricated by applying Fe(+) ion implantation to epitaxial Pt films grown on (001) MgO substrates, yielding Fe nanoclusters embedded in a Pt matrix at a tailored penetration depth. Time-resolved x-ray diffraction studies were carried out using synchrotron radiation, allowing determination of the activation energy for nucleation of the FePt L1(0) phase within the segregated nanoclusters during annealing. The growth of the segregated L1(0) ordered phase was modeled using ideal grain-size law and found to be dominated by strain-driven surface nucleation. The activation energies were found to correlate with the nanocluster size. Magnetic characterization of selected annealed samples indicates perpendicular magnetic anisotropy with high coercive field coincident with high value of the chemical order parameter of the ordered phase within the magnetic nanoclusters. C1 [Clavero, C.; Lukaszew, R. A.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Clavero, C.; Garcia-Martin, J. M.; Cebollada, A.] IMM CNM CSIC, Madrid 28760, Spain. [Skuza, J. R.; Lukaszew, R. A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Walko, D. A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Clavero, C (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. RI Skuza, Jonathan/E-9048-2010; Garcia-Martin, Jose Miguel/H-4434-2011; Cebollada, Alfonso/B-6754-2012; Clavero, Cesar/C-4391-2008; Microelectronica de Madrid, Instituto de/D-5173-2013 OI Skuza, Jonathan/0000-0002-9252-2708; Garcia-Martin, Jose Miguel/0000-0002-5908-8428; Cebollada, Alfonso/0000-0003-1990-4520; Clavero, Cesar/0000-0001-6665-3141; Microelectronica de Madrid, Instituto de/0000-0003-4211-9045 FU NSF [DMR-0355171]; Research Corporation Cottrell Scholar Award; American Chemical Society [PRF-41319-AC10]; CM [S-0505/MAT/0194]; MEC [MAT2005-05524-C02-01]; Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-06CH11357] FX Funding from NSF (Grant No. DMR-0355171), Research Corporation Cottrell Scholar Award, and the American Chemical Society under Grant No. PRF-41319-AC10 is acknowledged. Funding from different Spanish Institutions, CM (Grant No. S-0505/MAT/0194) (NANOMAGNET) and MEC (Grant No. MAT2005-05524-C02-01), is also acknowledged. Use of the Advanced Photon Source was supported by the Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-06CH11357. The authors also acknowledge R. Irving, M. Brown, and M. Mitra for assistance during ion implantation at the Toledo Heavy Ion Accelerator (THIA) NR 36 TC 3 Z9 3 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104436 DI 10.1103/PhysRevB.79.104436 PG 6 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600092 ER PT J AU Eskildsen, MR Vinnikov, LY Blasius, TD Veshchunov, IS Artemova, TM Densmore, JM Dewhurst, CD Ni, N Kreyssig, A Bud'ko, SL Canfield, PC Goldman, AI AF Eskildsen, M. R. Vinnikov, L. Ya. Blasius, T. D. Veshchunov, I. S. Artemova, T. M. Densmore, J. M. Dewhurst, C. D. Ni, N. Kreyssig, A. Bud'ko, S. L. Canfield, P. C. Goldman, A. I. TI Vortices in superconducting Ba(Fe0.93Co0.07)(2)As-2 studied via small-angle neutron scattering and Bitter decoration SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; cobalt compounds; flux pinning; iron compounds; neutron diffraction; superconducting critical field; superconducting materials ID FLUX-LINE-LATTICE; 43 K; FIELD; TRANSITION; PHASE AB We present small-angle neutron scattering (SANS) and Bitter decoration studies of the superconducting vortices in Ba(Fe0.93Co0.07)(2)As-2. A highly disordered vortex configuration is observed at all measured fields and is attributed to strong pinning. This conclusion is supported by the absence of a Meissner rim in decoration images obtained close to the sample edge. The field dependence of the magnitude of the SANS scattering vector indicates vortex lattice domains of (distorted) hexagonal symmetry, consistent with the decoration images which show primarily sixfold coordinated vortex domains. An analysis of the scattered intensity shows that this decreases much more rapidly than expected from estimates of the upper critical field, consistent with the large degree of disorder. C1 [Eskildsen, M. R.; Blasius, T. D.; Densmore, J. M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Vinnikov, L. Ya.; Veshchunov, I. S.; Artemova, T. M.] Russian Acad Sci, Inst Solid State Phys, Chernogolovka 142432, Moscow Region, Russia. [Dewhurst, C. D.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Ni, N.; Kreyssig, A.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ni, N.; Kreyssig, A.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Blasius, T. D.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Eskildsen, MR (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM eskildsen@nd.edu RI Eskildsen, Morten/E-7779-2011; Densmore, John/G-1228-2011; Canfield, Paul/H-2698-2014 OI Densmore, John/0000-0003-2388-1413; FU National Science Foundation [DMR-0804887, PHY-0552843]; Russian Foundation for Basic Research [07-02-00174]; U.S. Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX This work was supported by the National Science Foundation through Grants No. DMR-0804887 (M.R.E and J.M.D.) and No. PHY-0552843 (T.D.B.). L.Y.V. and I.S.V. thank the Russian Foundation for Basic Research Grant No. RFBR 07-02-00174 for support. Work at the Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 24 TC 42 Z9 42 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 100501 DI 10.1103/PhysRevB.79.100501 PG 4 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600018 ER PT J AU Gooch, M Lv, B Lorenz, B Guloy, AM Chu, CW AF Gooch, Melissa Lv, Bing Lorenz, Bernd Guloy, Arnold M. Chu, Ching-Wu TI Evidence of quantum criticality in the phase diagram of KxSr1-xFe2As2 from measurements of transport and thermoelectricity SO PHYSICAL REVIEW B LA English DT Article DE doping; electrical resistivity; Fermi liquid; phase diagrams; potassium compounds; spin fluctuations; strontium compounds; superconducting materials; thermoelectric power ID LAYERED QUATERNARY COMPOUND; 43 K; SUPERCONDUCTIVITY AB The electrical transport and thermoelectric properties of KxSr1-xFe2As2 are investigated for 0 <= x <= 1. The resistivity rho(T) shows a crossover from Fermi-liquid-like temperature dependence at small x to linear rho similar to T dependence at x(c)similar or equal to 0.4. With further increasing of x, rho(T) becomes nonlinear again. The thermoelectric power S(T) exhibits a similar crossover with increasing x with a logarithmic T dependence, S/T similar to ln(T), near the critical doping x(c). These results provide evidence for a quantum critical behavior due to the coupling of low-energy conduction electrons to two-dimensional spin fluctuations. C1 [Gooch, Melissa; Lorenz, Bernd; Chu, Ching-Wu] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Lv, Bing; Guloy, Arnold M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, Ching-Wu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, Ching-Wu] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China. [Gooch, Melissa; Lv, Bing; Lorenz, Bernd; Guloy, Arnold M.; Chu, Ching-Wu] Univ Houston, TCSUH, Houston, TX 77204 USA. RP Gooch, M (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. RI Lv, Bing/E-3485-2010 FU T.L.L. Temple Foundation; J.J. and R. Moores Endowment; State of Texas through TCSUH; U.S. Air Force Office of Scientific Research, U.S. DOE; NSF [CHE-0616805]; R.A. Welch Foundation FX Stimulating discussions with S. Wirth and Q. Si are gratefully acknowledged. This work is supported in part by the T.L.L. Temple Foundation, the J.J. and R. Moores Endowment, the State of Texas through TCSUH, the U.S. Air Force Office of Scientific Research, and at LBNL through U.S. DOE. A. M. G. and B. L. acknowledge the support from the NSF (Contract No. CHE-0616805) and the R.A. Welch Foundation. NR 33 TC 38 Z9 38 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104504 DI 10.1103/PhysRevB.79.104504 PG 5 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600098 ER PT J AU Gordon, RT Martin, C Kim, H Ni, N Tanatar, MA Schmalian, J Mazin, II Bud'ko, SL Canfield, PC Prozorov, R AF Gordon, R. T. Martin, C. Kim, H. Ni, N. Tanatar, M. A. Schmalian, J. Mazin, I. I. Bud'ko, S. L. Canfield, P. C. Prozorov, R. TI London penetration depth in single crystals of Ba(Fe1-xCox)(2)As-2 spanning underdoped to overdoped compositions SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; carrier density; cobalt compounds; doping profiles; iron compounds; penetration depth (superconductivity) ID SUPERCONDUCTOR AB The London penetration depth lambda(T) has been measured in single crystals of Ba(Fe1-xCox)(2)As-2 using the tunnel diode resonator technique. The measured doping levels of x=0.038, 0.047, 0.058, 0.074, and 0.10 range from underdoped to overdoped concentrations. The measurements have shown that the density of carriers participating in superconductivity decreases sharply in the underdoped regime but the penetration depth as a function of temperature exhibits a robust power law, Delta lambda(T)similar to T-n, for all measured dopings with n being about 2 in underdoped samples and 2.5 in overdoped samples. We discuss the implications of these results and possible interpretations of such a robust behavior. C1 [Gordon, R. T.; Martin, C.; Kim, H.; Ni, N.; Tanatar, M. A.; Schmalian, J.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Mazin, I. I.] USN, Res Lab, Washington, DC 20375 USA. [Gordon, R. T.; Martin, C.; Kim, H.; Ni, N.; Tanatar, M. A.; Schmalian, J.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Ames Lab, Code 6393, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Schmalian, Joerg/H-2313-2011; Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358.]; Alfred P. Sloan Foundation FX We thank A. A. Golubov, O.V. Dolgov, D. Parker, A. V. Chubukov, B. A. Bernevig, and A. Carrington for useful discussions. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 25 TC 85 Z9 85 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 100506 DI 10.1103/PhysRevB.79.100506 PG 4 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600023 ER PT J AU Hao, SG Kramer, MJ Wang, CZ Ho, KM Nandi, S Kreyssig, A Goldman, AI Wessels, V Sahu, KK Kelton, KF Hyers, RW Canepari, SM Rogers, JR AF Hao, S. G. Kramer, M. J. Wang, C. Z. Ho, K. M. Nandi, S. Kreyssig, A. Goldman, A. I. Wessels, V. Sahu, K. K. Kelton, K. F. Hyers, R. W. Canepari, S. M. Rogers, J. R. TI Experimental and ab initio structural studies of liquid Zr2Ni SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; liquid alloys; liquid structure; liquid theory; molecular dynamics method; nickel alloys; nucleation; rapid solidification; supercooling; undercooling; vitrification; X-ray diffraction; zirconium alloys ID SHORT-RANGE ORDER; LOCAL ATOMIC ARRANGEMENTS; TOTAL-ENERGY CALCULATIONS; FORMING QUASI-CRYSTALS; WAVE BASIS-SET; NI-ZR ALLOY; UNDERCOOLED MELTS; AMORPHOUS BINARY; POLYTETRAHEDRAL MATERIALS; MOLECULAR-DYNAMICS AB High-energy x-ray diffraction and ab initio molecular-dynamics simulations demonstrate that the short-range order in the deeply undercooled Zr2Ni liquid is quite nuanced. The second diffuse scattering peak in the total structure factory sharpens with supercooling, revealing a shoulder on the high-Q side that is often taken to be a hallmark of increasing icosahedral order. However, a Voronoi tessellation indicates that only approximately 3.5% of all the atoms are in an icosahedral or icosahedral-like environment. In contrast, a Honeycutt-Andersen analysis indicates that a much higher fraction of the atoms is in icosahedral (15%-18%) or distorted icosahedral (25%-28%) bond-pair environments. These results indicate that the liquid contains a large population of fragmented clusters with pentagonal and distorted pentagonal faces, but the fully developed icosahedral fragments are rare. Interestingly, in both cases, the ordering changes little over the 500 K of cooling. All metrics show that the nearest-neighbor atomic configurations of the most deeply supercooled simulated liquid (1173 K) differ topologically and chemically from those in the stable C16 compound, even though the partial pair distributions are similar. The most significant structural change upon decreasing the temperature from 1673 to 1173 K is an increase in the population of Zr in Ni-centered clusters. The structural differences between the liquid and the C16 increase the nucleation barrier, explaining glass formation in the rapidly quenched alloys. C1 [Hao, S. G.; Kramer, M. J.; Wang, C. Z.; Ho, K. M.; Nandi, S.; Kreyssig, A.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Hao, S. G.; Kramer, M. J.; Wang, C. Z.; Ho, K. M.; Nandi, S.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Ames, IA 50011 USA. [Wessels, V.; Sahu, K. K.; Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Hyers, R. W.; Canepari, S. M.] Univ Massachusetts, Amherst, MA 01003 USA. [Rogers, J. R.] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Hao, SG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Hyers, Robert/G-3755-2010; Hao, Shaogang/E-3527-2010 FU U. S. Department of Energy [DE-AC02-07CH11358]; Director for Energy Research, Office of Basic Energy Sciences; Office of Science, Basic Energy Sciences, U. S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation [DMR-0606065]; NASA [NNM04AA016] FX Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. The high-energy x-ray work at the MUCAT sector of the APS was supported by the Office of Science, Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-06CH11357. The work at Washington University was partially supported by the National Science Foundation under Grant No. DMR-0606065 and by NASA under Contract No. NNM04AA016. NR 53 TC 24 Z9 24 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104206 DI 10.1103/PhysRevB.79.104206 PG 7 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600049 ER PT J AU Hormann, U Remmele, T Klepeis, JE Pankratov, O Grunleitner, H Schulz, M Falke, M Bleloch, A AF Hoermann, Ute Remmele, Thilo Klepeis, John E. Pankratov, Oleg Gruenleitner, Holger Schulz, Max Falke, Meiken Bleloch, Andrew TI Structure and electronic properties of epitaxial fluorite-type IrSi2 on Si(001) SO PHYSICAL REVIEW B LA English DT Article DE anelastic relaxation; crystal structure; dislocations; electrical resistivity; epitaxial growth; infrared spectra; iridium compounds; light transmission; Schottky barriers; transmission electron microscopy ID IRIDIUM SILICIDES; CRYSTAL-STRUCTURE; SILICON; PHASE; FILMS AB An epitaxially stabilized Ir-silicide phase was grown in ultrathin two-phase films on Si(001). Using transmission electron microscopy it was found to have the fluorite structure. Due to the misfit between this epitaxially stabilized phase and the silicon substrate, elastic and plastic strain relaxation can be observed. Optoelectronic measurements of transmission, resistivity, and Schottky barrier height show a transition from infrared absorbing to infrared transparent films depending on thickness and reaction temperature. First-principles calculations confirm the experimental data on the structure and electronic properties of fluorite-type Ir disilicide. C1 [Hoermann, Ute; Remmele, Thilo] Univ Erlangen Nurnberg, Lehrstuhl Mikrocharakterisierung, D-91058 Erlangen, Germany. [Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Pankratov, Oleg] Univ Erlangen Nurnberg, Lehrstuhl Theoret Festkorperphys, D-91058 Erlangen, Germany. [Gruenleitner, Holger; Schulz, Max] Univ Erlangen Nurnberg, Lehrstuhl Angew Phys, D-91058 Erlangen, Germany. [Falke, Meiken; Bleloch, Andrew] SERC, Daresbury Lab, UK SuperSTEM Lab, Warrington WA4 4AD, Cheshire, England. RP Hormann, U (reprint author), Univ Ulm, Albert Einstein Allee 11, D-89069 Ulm, Germany. RI Bleloch, Andrew/A-1350-2009; Pankratov, Oleg/C-5553-2013 FU U. S. DOE [W-7405-Eng-48] FX Part of this work was carried out at the Central Facility for High Resolution Electron Microscopy of the Friedrich-Alexander University Erlangen-Numberg. U. H. wants to thank the Institute of Inorganic Materials Chemistry of the University of Bonn and the Max-Planck Institute of Microstructural Physics in Halle for the excellent technical support at their microscopes. A. B. and M. F. thank the EPSRC for funding the SuperSTEM facility. The work of J. E. K. was performed under the auspices of the U. S. DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. NR 36 TC 3 Z9 3 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104116 DI 10.1103/PhysRevB.79.104116 PG 9 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600043 ER PT J AU Homes, CC Dordevic, SV Gozar, A Blumberg, G Room, T Huvonen, D Nagel, U LaForge, AD Basov, DN Kageyama, H AF Homes, C. C. Dordevic, S. V. Gozar, A. Blumberg, G. Room, T. Huvonen, D. Nagel, U. LaForge, A. D. Basov, D. N. Kageyama, H. TI Infrared spectra of the low-dimensional quantum magnet SrCu2(BO3)(2): Measurements and ab initio calculations SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; density functional theory; infrared spectra; magnets; phonons; reflectivity; sheet materials; strontium compounds ID SPIN SYSTEM SRCU2(BO3)(2); DIMER COMPOUND SRCU2(BO3)(2); SHASTRY-SUTHERLAND MODEL; GROUND-STATE; PHASE-TRANSITIONS; MAGNETIZATION PLATEAUS; ANTIFERROMAGNET; EXCITATIONS AB The reflectance of the insulating quasi-two-dimensional quantum magnet SrCu2(BO3)(2) has been examined over a wide temperature and frequency range for light polarized parallel (a axis) and perpendicular (c axis) to the copper- and boron-oxygen sheets. The spectra have been measured for temperatures below the structural phase transition T-s=395 K for both polarizations; above T-s a limited study of the in-plane properties was undertaken in the far-infrared region only. Several new modes appear in the reflectance just below T-s along the a and c axes, while others are visible only for T < T-s. Below T-s, the intensity of some of the new modes displays little or no temperature dependence, while the intensity of some vibrations increases dramatically with decreasing temperature. Ab initio calculations have been performed for the room-temperature phase using density-functional theory, and the frequencies and atomic characters of the infrared-active phonons at the zone center were obtained using the direct method. The agreement between the calculated and experimentally observed frequencies is quite good, and assignments of the modes are discussed. The vibrational features that are observed only at low temperature appear to be magnetic in origin. C1 [Homes, C. C.; Dordevic, S. V.; Gozar, A.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Homes, C. C.] ESPCI, CNRS, UPR 5, Lab Photons & Mat, F-75231 Paris 5, France. [Dordevic, S. V.] Univ Akron, Dept Phys, Akron, OH 44325 USA. [Blumberg, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Blumberg, G.; Room, T.; Huvonen, D.; Nagel, U.] NICPB, EE-12618 Tallinn, Estonia. [LaForge, A. D.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Kageyama, H.] Kyoto Univ, Grad Sch Sci, Dept Chem, Kyoto 6068502, Japan. RP Homes, CC (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM homes@bnl.gov RI Room, Toomas/A-6412-2008; Nagel, Urmas/A-6402-2008; Huvonen, Dan/A-6664-2008; Kageyama, Hiroshi/A-4602-2010 OI Room, Toomas/0000-0002-6165-8290; Nagel, Urmas/0000-0001-5827-9495; Huvonen, Dan/0000-0002-8906-6588; FU MEXT of Japan [19052004]; NSF [DMR 0705171]; Office of Science, U. S. Department of Energy (DOE) [DE-AC02-98CH10886] FX The authors would like to thank A. Akrap, B. D. Gaulin, J. Hancock, W. Ku, and T. Timusk for useful discussions. This work was supported by Grant-in-Aid for Scientific Research on Priority Areas from MEXT of Japan (Contract No. 19052004). Work at UCSD is supported by NSF Grant No. DMR 0705171; work at BNL is supported by the Office of Science, U. S. Department of Energy (DOE) under Contract No. DE-AC02-98CH10886. NR 52 TC 7 Z9 7 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 125101 DI 10.1103/PhysRevB.79.125101 PG 12 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300020 ER PT J AU Hsu, B Mulligan, M Fradkin, E Kim, EA AF Hsu, Benjamin Mulligan, Michael Fradkin, Eduardo Kim, Eun-Ah TI Universal entanglement entropy in two-dimensional conformal quantum critical points SO PHYSICAL REVIEW B LA English DT Article DE entropy; quantum entanglement ID FIELD-THEORY; STATISTICAL-MECHANICS; BOUNDARY-CONDITIONS; INVARIANT THEORIES; GEOMETRIC ENTROPY; TOPOLOGICAL ORDER; OPERATOR CONTENT; SIZE DEPENDENCE; FUSION RULES; FREE-ENERGY AB We study the scaling behavior of the entanglement entropy of two-dimensional conformal quantum critical systems, i.e., systems with scale-invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that under quite general conditions, the entanglement entropy of a large and simply connected subsystem of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory. C1 [Hsu, Benjamin; Fradkin, Eduardo] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Mulligan, Michael] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Mulligan, Michael] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Kim, Eun-Ah] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. RP Hsu, B (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RI Kim, Eun-Ah/K-6711-2012; Fradkin, Eduardo/B-5612-2013 OI Kim, Eun-Ah/0000-0002-9554-4443; FU National Science Foundation [DMR 0758462]; Stanford Institute for Theoretical Physics; NSF [PHY-0244728]; DOE [DE-AC03-76SF00515]; ARCS Foundation FX We thank John Cardy, Paul Fendley, Greg Moore, and Joel Moore for their comments and suggestions. B. H. and M. M. thank the Les Houches Summer School for its hospitality. The work of E. F. and B. H. was supported by the National Science Foundation under Grant No. DMR 0758462 at the University of Illinois. M. M. was supported by the Stanford Institute for Theoretical Physics, the NSF under Grant No. PHY-0244728, the DOE under Contract No. DE-AC03-76SF00515, and the ARCS Foundation. E. A. K. was supported by the Stanford Institute for Theoretical Physics during a part of this work. NR 75 TC 62 Z9 62 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 115421 DI 10.1103/PhysRevB.79.115421 PG 13 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900128 ER PT J AU Hucker, M AF Huecker, M. TI Electronic interlayer coupling in the low-temperature tetragonal phase of La1.79Eu0.2Sr0.01CuO4 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; europium compounds; high-temperature superconductors; lanthanum compounds; magnetic transitions; magnetoresistance; solid-state phase transformations; strontium compounds ID EARTH-DOPED LA2-XSRXCUO4; SUPERCONDUCTIVITY; TRANSITION; LA2CUO4; LA2-XBAXCUO4; MAGNETORESISTANCE; FERROMAGNETISM; CONDUCTIVITY; DISTORTIONS; CUPRATE AB The electronic interlayer transport of the lightly doped antiferromagnet La1.79Eu0.2Sr0.01CuO4 has been studied by means of magnetoresistance measurements. The central problem addressed concerns the differences between the electronic interlayer coupling in the tetragonal low-temperature (LTT) phase and the orthorhombic low-temperature (LTO) phase. The key observation is that the spin-flip-induced drop in the c-axis magnetoresistance of the LTO phase, which is characteristic for pure La2-xSrxCuO4, dramatically decreases in the LTT phase. The results show that the transition from orthorhombic to tetragonal symmetry and from collinear to noncollinear antiferromagnetic spin structure eliminates the strain dependent anisotropic interlayer hopping as well as the concomitant spin-valve-type transport channel. Implications for the stripe ordered LTT phase of La2-xBaxCuO4 are briefly discussed. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hucker, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU Office of Science, U.S. Department of Energy [DE-AC02-98CH10886] FX The author thanks J. M. Tranquada for fruitful discussions, and P. Reutler and G. Dhalenne for support during the crystal growth experiment at the Laboratoire de Physico-Chimie de l'Etat Solide in Orsay. The work at Brookhaven was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 47 TC 3 Z9 3 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104523 DI 10.1103/PhysRevB.79.104523 PG 8 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600117 ER PT J AU Hwang, CG Shin, SY Choi, SM Kim, ND Uhm, SH Kim, HS Hwang, CC Noh, DY Jhi, SH Chung, JW AF Hwang, C. G. Shin, S. Y. Choi, Seon-Myeong Kim, N. D. Uhm, S. H. Kim, H. S. Hwang, C. C. Noh, D. Y. Jhi, Seung-Hoon Chung, J. W. TI Stability of graphene band structures against an external periodic perturbation: Na on graphene SO PHYSICAL REVIEW B LA English DT Article DE adsorption; band structure; buffer layers; charge exchange; crystallisation; diffusion; Fermi level; graphene; hopping conduction; photoelectron spectra; silicon compounds; sodium ID MASSLESS DIRAC FERMIONS; CARBON NANOTUBES; BACK SCATTERING; BERRYS PHASE; TRANSITION; GRAPHITE; DYNAMICS; ABSENCE AB The electronic structure of Na-adsorbed graphenes formed on the 6H-SiC(0001) substrate was studied using angle-resolved photoemission spectroscopy with synchrotron photons and ab initio pseudopotential calculations. It was found that the band of the graphenes sensitively changes upon Na adsorption especially at low temperature. With increasing Na dose, the pi band appears to be quickly diffused into the background at 85 K whereas it becomes significantly enhanced with its spectral intensity at room temperature (RT). A new parabolic band centered at k similar to 1.15 A(-1) also forms near Fermi energy with Na at 85 K while no such band was observed at RT. Such changes in the band structure are found to be reversible with temperature. The changes in the pi band of graphene are mainly driven by the Na-induced potential especially at low temperature where the potential becomes periodic due to the crystallized Na overlayer. The new parabolic band turns out to be the pi band of the underlying buffer layer partially filled by the charge transfer from Na adatoms. The increase in the hopping rate of Na adatoms at RT by 5 orders of magnitude prevents such a charge transfer, explaining the absence of the new band at RT. C1 [Hwang, C. G.; Shin, S. Y.; Choi, Seon-Myeong; Kim, N. D.; Uhm, S. H.; Kim, H. S.; Jhi, Seung-Hoon; Chung, J. W.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Hwang, C. C.] Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea. [Noh, D. Y.] Gwangju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea. [Hwang, C. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, N. D.] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Hwang, CG (reprint author), Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. EM jwc@postech.ac.kr FU Korea Science and Engineering Foundation (KOSEF); Korea government (MEST) [R01-2008-000-20020-0]; NCRC [R15-2008-006-01001-0]; National Research Laboratory [M10400000045-04J0000-04510] FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government (MEST) under Grant No. R01-2008-000-20020-0 and also in part by the NCRC under Grant No. R15-2008-006-01001-0. D. Y. Noh acknowledges the support from National Research Laboratory under Program No. M10400000045-04J0000-04510. NR 26 TC 19 Z9 19 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 115439 DI 10.1103/PhysRevB.79.115439 PG 5 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900146 ER PT J AU Idrobo, JC Halabica, A Magruder, RH Haglund, RF Pennycook, SJ Pantelides, ST AF Idrobo, J. C. Halabica, A. Magruder, R. H., III Haglund, R. F., Jr. Pennycook, S. J. Pantelides, S. T. TI Universal optical response of Si-Si bonds and its evolution from nanoparticles to bulk crystals SO PHYSICAL REVIEW B LA English DT Article DE bonds (chemical); elemental semiconductors; infrared spectra; nanoparticles; quantum theory; silicon; ultraviolet spectra; visible spectra ID INITIO MOLECULAR-DYNAMICS; SIZED SILICON CLUSTERS; PHOTOABSORPTION SPECTRA; NANOCRYSTALS; SEMICONDUCTOR; CONFINEMENT; EXCITATIONS AB We use quantum-mechanical calculations and classical theories of the optical absorption of free and embedded nanoparticles to demonstrate a universality of the optical response of Si-Si bonds, independent of bonding configurations. We also demonstrate that the classical theory remains valid down to atomic-scale nanoparticles and that the evolution of the optical spectrum of a free nanoparticle would evolve to the bulk spectrum when the particle contains hundreds of thousands of Si atoms. C1 [Idrobo, J. C.; Halabica, A.; Haglund, R. F., Jr.; Pennycook, S. J.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Idrobo, J. C.; Pennycook, S. J.; Pantelides, S. T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Magruder, R. H., III] Belmont Univ, Dept Chem & Phys, Nashville, TN 37212 USA. RP Idrobo, JC (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RI Idrobo, Juan/H-4896-2015 OI Idrobo, Juan/0000-0001-7483-9034 FU National Science Foundation [DMR-0513048]; Alcoa, Inc.; Vanderbilt University; Division of Materials Sciences and Engineering, U. S. Department of Energy FX We thank W. Luo, M. Tiago, and F. Reboredo at ORNL for very helpful discussions. This work was supported in part by the National Science Foundation GOALI under Grant No. DMR-0513048, by Alcoa, Inc., by the McMinn Endowment at Vanderbilt University, and by the Division of Materials Sciences and Engineering, U. S. Department of Energy under contract with UT-Battelle. Computations were supported by the National Center for Supercomputing Applications. NR 34 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 125322 DI 10.1103/PhysRevB.79.125322 PG 6 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300073 ER PT J AU Jensen, TBS Christensen, NB Kenzelmann, M Ronnow, HM Niedermayer, C Andersen, NH Lefmann, K Jimenez-Ruiz, M Demmel, F Li, J Zarestky, JL Vaknin, D AF Jensen, T. B. S. Christensen, N. B. Kenzelmann, M. Ronnow, H. M. Niedermayer, C. Andersen, N. H. Lefmann, K. Jimenez-Ruiz, M. Demmel, F. Li, J. Zarestky, J. L. Vaknin, D. TI Anomalous spin waves and the commensurate-incommensurate magnetic phase transition in LiNiPO4 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; commensurate-incommensurate transformations; exchange interactions (electron); Heisenberg model; lithium compounds; magnetic anisotropy; magnetic transitions; magnetoelectric effects; neutron diffraction; nickel compounds; spin waves ID ANTIFERROMAGNETISM; SPECTROMETER AB Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of the incommensurate (IC) AF phase appearing above T-N. A linear spin-wave model based on Heisenberg exchange couplings and single-ion anisotropies accounts for all the observed spin-wave dispersions and intensities. Along the b axis an unusually strong next-nearest-neighbor AF coupling competes with the dominant nearest-neighbor AF exchange interaction and causes the IC structure. C1 [Jensen, T. B. S.; Christensen, N. B.; Andersen, N. H.; Lefmann, K.] Tech Univ Denmark, Mat Res Div, Riso DTU, Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Christensen, N. B.; Kenzelmann, M.; Ronnow, H. M.; Niedermayer, C.] Paul Scherrer Inst, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Christensen, N. B.; Kenzelmann, M.; Ronnow, H. M.; Niedermayer, C.] Swiss Fed Inst Technol, CH-5232 Villigen, Switzerland. [Christensen, N. B.; Lefmann, K.] Univ Copenhagen, Niels Bohr Inst, Nanosci Ctr, DK-2100 Copenhagen, Denmark. [Kenzelmann, M.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Ronnow, H. M.] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland. [Jimenez-Ruiz, M.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Demmel, F.] ISIS Facil, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Li, J.; Zarestky, J. L.; Vaknin, D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, J.; Zarestky, J. L.; Vaknin, D.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Jensen, TBS (reprint author), Tech Univ Denmark, Mat Res Div, Riso DTU, Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. RI Lefmann, Kim/M-9228-2014; Kenzelmann, Michel/A-8438-2008; Christensen, Niels/A-3947-2012; Vaknin, David/B-3302-2009; Ronnow, Henrik/A-4953-2009; Andersen, Niels/A-3872-2012; Niedermayer, Christof/K-4436-2014 OI Lefmann, Kim/0000-0003-4282-756X; Kenzelmann, Michel/0000-0001-7913-4826; Christensen, Niels/0000-0001-6443-2142; Vaknin, David/0000-0002-0899-9248; Ronnow, Henrik/0000-0002-8832-8865; NR 19 TC 13 Z9 13 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 092413 DI 10.1103/PhysRevB.79.092413 PG 4 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200016 ER PT J AU Jensen, TBS Christensen, NB Kenzelmann, M Ronnow, HM Niedermayer, C Andersen, NH Lefmann, K Schefer, J Von Zimmermann, M Li, J Zarestky, JL Vaknin, D AF Jensen, Thomas Bagger Stibius Christensen, Niels Bech Kenzelmann, Michel Ronnow, Henrik Moodysson Niedermayer, Christof Andersen, Niels Hessel Lefmann, Kim Schefer, Juerg Von Zimmermann, Martin Li, Jiying Zarestky, Jerel L. Vaknin, David TI Field-induced magnetic phases and electric polarization in LiNiPO4 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetism; lithium compounds; magnetic structure; magnetic transitions; magnetoelastic effects; magnetoelectric effects; neutron diffraction; nickel compounds ID FERROELECTRICITY; MULTIFERROICS; LICOPO4 AB Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total magnetoelastic energy. C1 [Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Andersen, Niels Hessel; Lefmann, Kim] Tech Univ Denmark, Mat Res Div, Riso DTU, DK-4000 Roskilde, Denmark. [Christensen, Niels Bech; Kenzelmann, Michel; Ronnow, Henrik Moodysson; Niedermayer, Christof; Schefer, Juerg] Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Christensen, Niels Bech; Kenzelmann, Michel; Ronnow, Henrik Moodysson; Niedermayer, Christof; Schefer, Juerg] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Kenzelmann, Michel] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Ronnow, Henrik Moodysson] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland. [Von Zimmermann, Martin] DESY, Hamburger Synchrotronstrahlungslabor, D-22603 Hamburg, Germany. [Li, Jiying; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, Jiying; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Jensen, TBS (reprint author), Tech Univ Denmark, Mat Res Div, Riso DTU, DK-4000 Roskilde, Denmark. RI Andersen, Niels/A-3872-2012; Schefer, Jurg/G-3960-2012; Niedermayer, Christof/K-4436-2014; Lefmann, Kim/M-9228-2014; Kenzelmann, Michel/A-8438-2008; Christensen, Niels/A-3947-2012; Vaknin, David/B-3302-2009; Ronnow, Henrik/A-4953-2009 OI Lefmann, Kim/0000-0003-4282-756X; Kenzelmann, Michel/0000-0001-7913-4826; Christensen, Niels/0000-0001-6443-2142; Vaknin, David/0000-0002-0899-9248; Ronnow, Henrik/0000-0002-8832-8865 FU DANSCATT; Swiss National Science Foundation [PP002-102831, 200020-105175]; U. S. Department of Energy [DEAC0207CH11358] FX Jens Jensen is greatly acknowledged for illuminating discussions. Work was supported by the Danish Agency for Science, Technology and Innovation under DANSCATT and by the Swiss National Science Foundation via Contracts No. PP002-102831 and No. 200020-105175. This Brief Report was authored, in whole or in part, under Contract No. DEAC0207CH11358 with the U. S. Department of Energy. This research project is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. NR 26 TC 29 Z9 29 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 092412 DI 10.1103/PhysRevB.79.092412 PG 4 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200015 ER PT J AU Jiang, C Stanek, CR Sickafus, KE Uberuaga, BP AF Jiang, Chao Stanek, C. R. Sickafus, K. E. Uberuaga, B. P. TI First-principles prediction of disordering tendencies in pyrochlore oxides SO PHYSICAL REVIEW B LA English DT Article DE bonds (chemical); density functional theory; dysprosium compounds; erbium compounds; gadolinium compounds; neodymium compounds; order-disorder transformations; praseodymium compounds; samarium compounds; terbium compounds ID RADIATION TOLERANCE; ELECTRONIC-PROPERTIES; DEFECT-FLUORITE; THERMODYNAMICS; IRRADIATION; STABILITY; SYSTEMS AB Using first-principles calculations, we systematically predict the order-disorder energetics of series of zirconate (A(2)Zr(2)O(7)), hafnate (A(2)Hf(2)O(7)), titanate (A(2)Ti(2)O(7)), and stannate (A(2)Sn(2)O(7)) pyrochlores. The disordered defect-fluorite structure is modeled using an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most relevant near-neighbor intrasublattice and intersublattice pair-correlation functions of the random mixture. The order-disorder transition temperatures of these pyrochlores estimated from our SQS calculations show overall good agreement with existing experiments. We confirm previous studies suggesting that the bonding in pyrochlores is not purely ionic and thus electronic effects also play a role in determining their disordering tendencies. Our results have important consequences for numerous applications, including nuclear waste forms and fast ion conductors. C1 [Jiang, Chao; Stanek, C. R.; Sickafus, K. E.; Uberuaga, B. P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM chao@lanl.gov RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 FU U. S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering FX This work is sponsored by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering. All calculations are performed using the parallel computing facilities at Los Alamos National Laboratory. NR 35 TC 57 Z9 58 U1 5 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104203 DI 10.1103/PhysRevB.79.104203 PG 5 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600046 ER PT J AU Kemper, AF Doluweera, DGSP Maier, TA Jarrell, M Hirschfeld, PJ Cheng, HP AF Kemper, A. F. Doluweera, D. G. S. P. Maier, T. A. Jarrell, M. Hirschfeld, P. J. Cheng, H-P. TI Insensitivity of d-wave pairing to disorder in the high-temperature cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetism; d-wave superconductivity; high-temperature superconductors; impurities; Monte Carlo methods; spin dynamics; superconducting transition temperature ID ANISOTROPIC IMPURITY SCATTERING; SUPPRESSION; DEFECTS; DENSITY; STATES AB Using a dynamical cluster quantum Monte Carlo approximation, we investigate the effect of local disorder on the stability of d-wave superconductivity including the effect of electronic correlations in both particle-particle and particle-hole channels. With increasing impurity potential, we find an initial rise of the critical temperature due to an enhancement of antiferromagnetic spin correlations, followed by a decrease of T-c due to scattering from impurity-induced moments and ordinary pair breaking. We discuss the weak initial dependence of T-c on impurity concentration found in comparison to experiments on cuprates. C1 [Kemper, A. F.; Hirschfeld, P. J.; Cheng, H-P.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Doluweera, D. G. S. P.; Jarrell, M.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Maier, T. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kemper, AF (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Hirschfeld, Peter /A-6402-2010; Kemper, Alexander/F-8243-2016; Maier, Thomas/F-6759-2012 OI Kemper, Alexander/0000-0002-5426-5181; Maier, Thomas/0000-0002-1424-9996 FU DOE [DE-FG02-02ER45995, DE-FG02-97ER45660, DE-FG02-05ER46236]; NSF [DMR-0706379] FX This work was supported by DOE Grants No. DE-FG02-02ER45995, No. DE-FG02-97ER45660 and No. DE-FG02-05ER46236, and NSF Grant No. DMR-0706379. A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. The authors acknowledge the University of Florida High-Performance Computing Center for providing computational support. NR 35 TC 11 Z9 11 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104502 DI 10.1103/PhysRevB.79.104502 PG 5 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600096 ER PT J AU Kim, J Ellis, DS Zhang, H Kim, YJ Hill, JP Chou, FC Gog, T Casa, D AF Kim, Jungho Ellis, D. S. Zhang, H. Kim, Young-June Hill, J. P. Chou, F. C. Gog, T. Casa, D. TI Comparison of resonant inelastic x-ray scattering spectra and dielectric loss functions in copper oxides SO PHYSICAL REVIEW B LA English DT Article DE bismuth compounds; copper compounds; dielectric losses; ellipsometry; lanthanum compounds; strontium compounds; X-ray scattering ID ELECTRONIC-STRUCTURE; EXCITATIONS; SPECTROSCOPY; DEPENDENCE AB We report empirical comparisons of Cu K-edge indirect resonant inelastic x-ray scattering (RIXS) spectra, taken at the Brillouin-zone center, with optical dielectric loss functions measured in a number of copper oxides. The RIXS data are obtained for Bi2CuO4, CuGeO3, Sr2Cu3O4Cl2, La2CuO4, and Sr2CuO2Cl2, and analyzed by considering both incident and scattered-photon resonances. An incident-energy-independent response function is then extracted. The dielectric loss functions, measured with spectroscopic ellipsometry, agree well with this RIXS response, especially in Bi2CuO4 and CuGeO3. C1 [Kim, Jungho; Ellis, D. S.; Zhang, H.; Kim, Young-June] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Chou, F. C.] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA. [Gog, T.; Casa, D.] Argonne Natl Lab, XOR, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, J (reprint author), Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. EM yjkim@physics.utoronto.ca RI Hill, John/F-6549-2011; Kim, Young-June /G-7196-2011; Casa, Diego/F-9060-2016 OI Kim, Young-June /0000-0002-1172-8895; FU NSERC of Canada; Canadian Foundation for Innovation; Ontario Ministry of Research and Innovation; U. S. DOE, Office of Science [DE-AC02-98CH10886]; U. S. DOE, Office of Science, Office of Basic Energy Sciences [W-31-109-ENG38] FX We would like to thank Luuk Ament, Fiona Forte, and J. van den Brink for the discussions. Research at the University of Toronto was supported by the NSERC of Canada, Canadian Foundation for Innovation, and Ontario Ministry of Research and Innovation. Work at Brookhaven was supported by the U. S. DOE, Office of Science under Contract No. DE-AC02-98CH10886. Use of the Advanced Photon Source was supported by the U. S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG38. NR 39 TC 13 Z9 13 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094525 DI 10.1103/PhysRevB.79.094525 PG 5 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200112 ER PT J AU Kim, YH Sun, YY Zhang, SB AF Kim, Yong-Hyun Sun, Y. Y. Zhang, S. B. TI Ab initio calculations predicting the existence of an oxidized calcium dihydrogen complex to store molecular hydrogen in densities up to 100 g/L SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; adsorption; binding energy; calcium compounds; graphite intercalation compounds; hydrogen storage ID METAL-ORGANIC FRAMEWORKS; AUGMENTED-WAVE METHOD; CARBON; COORDINATION; STATE AB We propose a system that can store molecular hydrogen in densities up to similar to 100 g/L. Our ab initio calculations predict the existence of an oxidized calcium dihydrogen complex, which holds up to eight H(2), i.e., Ca(ion)(H(2))(8). The dihydrogen binding to the Ca is via a weak electron-donation mechanism from the occupied H(2) sigma orbital to the unoccupied, but bound, Ca 3d orbitals. Because of the high concentration of the hydrogen in such complexes, even in calcium-intercalated pillared graphite, one can obtain reversible hydrogen storage denser than that of liquid hydrogen, 70 g/L. C1 [Kim, Yong-Hyun; Sun, Y. Y.; Zhang, S. B.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sun, Y. Y.; Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Kim, YH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yong_hyun_kim@nrel.gov RI Kim, Yong-Hyun/C-2045-2011; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; Sun, Yi-Yang/H-4029-2014 OI Kim, Yong-Hyun/0000-0003-4255-2068; Zhang, Shengbai/0000-0003-0833-5860; FU DOE/OS/BES/DMSE; DOE/EERE; Hydrogen Sorption Center of Excellence [DE-AC36-08GO28308] FX This work was supported by DOE/OS/BES/DMSE and DOE/EERE through the Hydrogen Sorption Center of Excellence under Contract No. DE-AC36-08GO28308 to NREL. NR 32 TC 24 Z9 24 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 115424 DI 10.1103/PhysRevB.79.115424 PG 5 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900131 ER PT J AU Kobrinskii, AL Goldman, AM Varela, M Pennycook, SJ AF Kobrinskii, A. L. Goldman, A. M. Varela, Maria Pennycook, S. J. TI Thickness dependence of the exchange bias in epitaxial manganite bilayers SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; calcium compounds; electron energy loss spectra; exchange interactions (electron); interface magnetism; lanthanum compounds; magnetic anisotropy; magnetic epitaxial layers; magnetic hysteresis; molecular beam epitaxial growth; scanning electron microscopy; transmission electron microscopy; X-ray diffraction ID MOLECULAR-BEAM EPITAXY; THIN-FILMS; MAGNETIC ANISOTROPY; LA2/3CA1/3MNO3/LA1/3CA2/3MNO3 MULTILAYERS; MAGNETORESISTANCE; OXIDE; MAGNETOTRANSPORT; SUPERCONDUCTORS; TRANSPORT; GROWTH AB Exchange bias has been studied in a series of La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers grown on (001) SrTiO3 substrates by ozone-assisted molecular-beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high-resolution x-ray diffractometry and Z-contrast scanning transmission electron microscopy with electron-energy-loss spectroscopy. The dependence of exchange bias on the thickness of the antiferromagnetic layer has been investigated. A critical value for the onset of the hysteresis loop shift has been determined. An antiferromagnetic anisotropy constant has been obtained by fitting the results to the generalized Meiklejohn-Bean model. C1 [Kobrinskii, A. L.; Goldman, A. M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Varela, Maria; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kobrinskii, AL (reprint author), Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. RI Varela, Maria/E-2472-2014; Varela, Maria/H-2648-2012; Kobrinskii, Alexey/E-7561-2013 OI Varela, Maria/0000-0002-6582-7004; FU National Science Foundation through the University of Minnesota Materials Research Science and Engineering Center [NSF/DMR-0212032]; Division of Materials Sciences and Engineering of the U. S. Department of Energy FX The authors would like to thank Konstantin Nikolaev, Dan Dahlberg, Alexander Dobin, Ilya Krivorotov, Chris Leighton, and Jyotirmoy Saha for useful conversations. They would also like to thank Masaya Nishioka for technical assistance. The authors are grateful to J. T. Luck for helping with STEM specimen preparation, to M. Oxley for performing dynamical simulations of electron scattering, and to M. Watanabe for providing a plug-in to carry out PCA in DigitalMicrograph. This work was supported by the National Science Foundation through the University of Minnesota Materials Research Science and Engineering Center under Grant No. NSF/DMR-0212032. Research at ORNL was sponsored by the Division of Materials Sciences and Engineering of the U. S. Department of Energy. NR 40 TC 22 Z9 24 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094405 DI 10.1103/PhysRevB.79.094405 PG 7 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200062 ER PT J AU Leem, CS Kim, C Park, SR Kim, MK Choi, HJ Kim, C Kim, BJ Johnston, S Devereaux, T Ohta, T Bostwick, A Rotenberg, E AF Leem, C. S. Kim, Chul Park, S. R. Kim, Min-Kook Choi, Hyoung Joon Kim, C. Kim, B. J. Johnston, S. Devereaux, T. Ohta, T. Bostwick, A. Rotenberg, E. TI High-resolution angle-resolved photoemission studies of quasiparticle dynamics in graphite SO PHYSICAL REVIEW B LA English DT Article DE electronic density of states; electron-phonon interactions; Fermi level; graphite; photoelectron spectra ID SINGLE-CRYSTAL GRAPHITE; SECONDARY-ELECTRON EMISSION; BAND-STRUCTURE; INVERSE PHOTOEMISSION; SPECTROSCOPY; LIFETIME; GRAPHENE; LATTICE AB We obtained the spectral function of the graphite H point using high-resolution angle-resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photohole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted for by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. We also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature-dependent ARPES data at K shows that the energy of a phonon mode of graphite has a much higher energy scale than 125 K, which is dominant in electron-phonon coupling. C1 [Leem, C. S.; Kim, Chul; Park, S. R.; Kim, Min-Kook; Choi, Hyoung Joon; Kim, C.] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Kim, B. J.] Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea. [Kim, B. J.] Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151742, South Korea. [Johnston, S.; Devereaux, T.] Stanford Univ, Dept Photon Sci, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Johnston, S.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Ohta, T.; Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Leem, CS (reprint author), Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. EM cykim@phya.yonsei.ac.kr RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010; Choi, Hyoung Joon/N-8933-2015; Johnston, Steven/J-7777-2016 OI Rotenberg, Eli/0000-0002-3979-8844; Choi, Hyoung Joon/0000-0001-8565-8597; FU KICOS [K20602000008]; KRF [KRF-2007-314-C00075]; KOSEF [R01-2007000-20922-0]; KISTI Supercomputing Center [KSC-2008-S02-0004] FX The authors acknowledge fruitful discussions with J.H. Han. This work was supported by the KICOS under Grant No. K20602000008. C. S. L. acknowledges support through the BK21 Project and helpful discussions with J.-W. Rhim. H. J. C. acknowledges support from the KRF (Grant No. KRF-2007-314-C00075), the KOSEF (Grant No. R01-2007000-20922-0), and the KISTI Supercomputing Center (Grant No. KSC-2008-S02-0004). ALS is operated by the Office of BES of DOE. NR 40 TC 10 Z9 10 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 125438 DI 10.1103/PhysRevB.79.125438 PG 8 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300119 ER PT J AU Levin, I Krayzman, V Woicik, JC Karapetrova, J Proffen, T Tucker, MG Reaney, IM AF Levin, Igor Krayzman, Victor Woicik, Joseph C. Karapetrova, Jenia Proffen, Thomas Tucker, Matthew G. Reaney, Ian M. TI Structural changes underlying the diffuse dielectric response in AgNbO3 SO PHYSICAL REVIEW B LA English DT Article DE crystal symmetry; dielectric materials; dielectric relaxation; EXAFS; lattice constants; neutron diffraction; silver compounds; X-ray diffraction ID X-RAY; ROOM-TEMPERATURE; PHASE; SCATTERING; SYSTEM; PEROVSKITES; MICROWAVE; SPECTRA; KNBO3 AB Structural differences in the so-called M polymorphs of AgNbO3 were analyzed using combined high-resolution x-ray diffraction, neutron total scattering, electron diffraction, and x-ray absorption fine-structure measurements. These polymorphs all crystallize with Pbcm symmetry and lattice parameters root 2a(c)x root 2a(c)x4a(c) (where a(c)approximate to 4 A corresponds to the lattice parameter of an ideal cubic perovskite) which are determined by a complex octahedral tilt system (a(-)b(-)c(-))/(a(-)b(-)c(+)) involving a sequence of two in-phase and two antiphase rotations around the c axis. Our results revealed that, similar to KNbO3, the Nb cations in AgNbO3 exhibit local off-center displacements correlated along Nb-Nb-Nb chains. The displacements appear to be present even in the high-temperature AgNbO3 polymorphs where the Nb cations, on average, reside on the ideal fixed-coordinate sites. The onset of the (a(-)b(-)c(-))/(a(-)b(-)c(+)) tilting in the M polymorphs lifts the symmetry restrictions on the Nb positions and promotes ordering of the local Nb displacements into a long-range antipolarlike array. This ordering preserves the average Pbcm symmetry but is manifested in electron diffuse scattering and corroborated by other local-structure sensitive techniques. Structural states previously identified as the M-3 and M-2 phases represent different stages of displacive ordering rather than distinct thermodynamic phases. Rietveld refinements indicated intimate coupling between the displacive behavior on the oxygen, Nb, and Ag sublattices. The Pbcm symmetry of the octahedral framework precludes a complete ordering of Nb displacements so that some positional disorder is retained. This partial disorder likely gives a source to the dielectric relaxation which, according to previous spectroscopic studies, is the origin of the diffuse dielectric response exhibited by M-type AgNbO3 at approximate to 250 degrees C. C1 [Levin, Igor; Krayzman, Victor; Woicik, Joseph C.] Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA. [Karapetrova, Jenia] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Proffen, Thomas] Los Alamos Natl Lab, Lujan Neutron Ctr, Los Alamos, NM 87545 USA. [Tucker, Matthew G.] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. [Reaney, Ian M.] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. RP Levin, I (reprint author), Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA. RI Levin, Igor/F-8588-2010; Lujan Center, LANL/G-4896-2012; Proffen, Thomas/B-3585-2009; Tucker, Matt/C-9867-2016 OI Proffen, Thomas/0000-0002-1408-6031; Tucker, Matt/0000-0002-2891-7086 FU Department of Energy Office of Basic Energy Sciences; Los Alamos National Laboratory [W-7405-ENG-36]; Department of Energy Office of Basic Energy Sciences [W-31-109-ENG-38] FX The work was made possible by national user facilities: (1) the Lujan Center at Los Alamos Neutron Science Center funded by the Department of Energy Office of Basic Energy Sciences, and Los Alamos National Laboratory under Contract No. W-7405-ENG-36, and (2) the Advanced Photon Source supported by the Department of Energy Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38. Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beam-time allocation from the Science and Technology Facilities Council. NR 24 TC 44 Z9 45 U1 4 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104113 DI 10.1103/PhysRevB.79.104113 PG 14 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600040 ER PT J AU Li, M Wang, CZ Evans, JW Hupalo, M Tringides, MC Ho, KM AF Li, M. Wang, C. Z. Evans, J. W. Hupalo, M. Tringides, M. C. Ho, K. M. TI Competition between area and height evolution of Pb islands on a Si(111) surface SO PHYSICAL REVIEW B LA English DT Article DE elemental semiconductors; island structure; lead; scanning tunnelling microscopy; silicon; surface structure ID GROWTH AB Scanning tunneling microscopy experiments reveal that small Pb islands with unstable heights, e.g., four layers, on a Si(111) surface decay during coarsening, whereas large islands do not decay but grow to a stable height. This bifurcation in evolution is analyzed by incorporating quantum size effects into theoretical models for island growth dynamics with appropriate geometries. The effective energy barrier for Pb atoms to reach the top of four-layer islands is estimated at about 0.26 eV. C1 [Li, M.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Wang, C. Z.; Hupalo, M.; Tringides, M. C.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, C. Z.; Evans, J. W.; Hupalo, M.; Tringides, M. C.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Li, M (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012 FU NSF of China [10704088, CHE-0809472] FX M. L. was supported for the work by NSF of China under Grant No. 10704088 and J.W.E. by NSF under Grant No. CHE-0809472. Work at Ames Laboratory was supported by the US DOE-BES including the computer time at NERSC in Berkeley. Ames Laboratory is operated for the US DOE by ISU under Contract No. DE- AC02-07CH11358. NR 16 TC 10 Z9 10 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 113404 DI 10.1103/PhysRevB.79.113404 PG 4 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900018 ER PT J AU Luo, JW Bester, G Zunger, A AF Luo, Jun-Wei Bester, Gabriel Zunger, Alex TI Atomistic pseudopotential calculations of thickness-fluctuation GaAs quantum dots SO PHYSICAL REVIEW B LA English DT Article DE aluminium compounds; biexcitons; current fluctuations; gallium arsenide; III-V semiconductors; interface states; optical constants; oscillator strengths; semiconductor quantum dots; semiconductor quantum wells; trions ID SHARP-LINE PHOTOLUMINESCENCE; ELECTRONIC-STRUCTURE; OPTICAL-SPECTRA; WELL STRUCTURES; BAND-STRUCTURE; FINE-STRUCTURE; SEMICONDUCTORS; EXCITONS; NANOSTRUCTURES; SPECTROSCOPY AB We calculate the electronic and optical properties of thickness-fluctuation quantum dots of different sizes and elongations using an atomistic empirical pseudopotential approach and configuration interaction. The carriers are confined by a monolayer fluctuation in the thickness of a GaAs/Al0.3Ga0.7As quantum well with a nominal thickness between 10 and 20 monolayers. For 10 monolayer thickness, we find several confined electron and hole levels of dominant heavy-hole character penetrating deep into the barrier (out of plane) and far beyond the physical dimension of the monolayer step (in-plane). The spatial extent of the states is strongly affected by the random-alloy fluctuations of the barrier, pushing the states toward Ga-rich regions of the interface. The similarity in the spatial extent of the electron and hole states leads to strong oscillator strength and a rich optical spectrum. The exciton as well as biexciton and trions (positive and negative) all show several lines in absorption despite the very shallow confinement potential given in these structures. The effects of correlations is drastic on the optical spectrum with the creation of highly correlated states that deviate strongly from the uncorrelated results. C1 [Luo, Jun-Wei; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bester, Gabriel] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI LUO, JUN-WEI/A-8491-2010; Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 OI Bester, Gabriel/0000-0003-2304-0817; FU U.S. Department of Energy,; Office of Science, Basic Energy Sciences [DE-AC36-08GO28308] FX We acknowledge financial support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 53 TC 16 Z9 16 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 125329 DI 10.1103/PhysRevB.79.125329 PG 15 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300080 ER PT J AU Lyo, SK AF Lyo, S. K. TI Spectral and spatial transfer and diffusion of excitons in multiple quantum dot structures SO PHYSICAL REVIEW B LA English DT Article DE excitons; resonant states; semiconductor quantum dots ID ENERGY-TRANSFER; TRANSPORT; WELLS AB A formalism is developed for resonant and nonresonant spectral and spatial energy transfer of excitons in disordered semiconductor multiple-quantum-dot structures. Dipole-dipole and photon-exchange energy-transfer mechanisms are considered. For nonresonant transfer, we study two-site transfer rates in a disordered system as a function of the energy mismatch, the temperature, and the distance. The total time-dependent decay rate of the initial spectral intensity excited at a given energy in the inhomogeneous spectral profile is calculated. For resonant transfer, two-site transfer rates are studied as a function of the distance. The diffusion constant is calculated exactly in a regular quantum dot lattice in order to assess the upper limit of the diffusion constant of a disordered system. We find that the total time-dependent spectral decay rate and the diffusion constant are dominated by the weak long-range photon-exchange interaction mechanism over the standard short-range Forster (dipole-dipole) mechanism in a uniform macroscopic multi-quantum-dot system due to the long mean-free path of the photons. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lyo, SK (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU LDRD; DOE/BES; U.S. DOE [DE-AC04-94AL85000] FX This work was supported in part by LDRD and DOE/BES at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE under Contract No. DE-AC04-94AL85000. NR 20 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 125328 DI 10.1103/PhysRevB.79.125328 PG 14 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300079 ER PT J AU May, SJ Santos, TS Bhattacharya, A AF May, S. J. Santos, T. S. Bhattacharya, A. TI Onset of metallic behavior in strained (LaNiO3)(n)/(SrMnO3)(2) superlattices SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; hopping conduction; interface roughness; lanthanum compounds; metal-insulator transition; molecular beam epitaxial growth; reflection high energy electron diffraction; strontium compounds; superlattices; X-ray scattering ID LANIO3 THIN-FILMS; ELECTRONIC-PROPERTIES; GROWTH; DEPOSITION AB (LaNiO3)(n)/(SrMnO3)(2) superlattices were grown using ozone-assisted molecular beam epitaxy. In situ reflection high-energy electron diffraction and x-ray scattering has been used to characterize the structural properties of the superlattices, which are strained to the SrTiO3 substrates. The superlattices exhibit excellent crystallinity and interfacial roughness of less than 1 unit cell. A metal-insulator transition is observed as n is decreased from 4 to 1. Analysis of the transport data suggests an evolution from gapped insulator (n=1) to hopping conductor (n=2) to metal (n=4) with increasing LaNiO3 concentration. C1 [May, S. J.; Bhattacharya, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Santos, T. S.; Bhattacharya, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Bhattacharya, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anand@anl.gov RI May, Steven/D-8563-2011; Bhattacharya, Anand/G-1645-2011 OI May, Steven/0000-0002-8097-1549; Bhattacharya, Anand/0000-0002-6839-6860 NR 35 TC 34 Z9 34 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 115127 DI 10.1103/PhysRevB.79.115127 PG 6 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900054 ER PT J AU Mishra, V Boyd, G Graser, S Maier, T Hirschfeld, PJ Scalapino, DJ AF Mishra, V. Boyd, G. Graser, S. Maier, T. Hirschfeld, P. J. Scalapino, D. J. TI Lifting of nodes by disorder in extended-s-state superconductors: Application to ferropnictides SO PHYSICAL REVIEW B LA English DT Article DE superconducting materials; superfluidity; thermodynamics ID D-WAVE SUPERCONDUCTORS; ANISOTROPIC SUPERCONDUCTORS; LAYERED SUPERCONDUCTOR; PENETRATION DEPTH; IMPURITY SCATTERING; TEMPERATURE; GAPS; SPECTROSCOPY AB We show, using a simple model, how ordinary disorder can gap an extended-s- (A(1g)) symmetry superconducting state with nodes. The concomitant crossover of thermodynamic properties, particularly the T dependence of the superfluid density, from pure power-law behavior to an activated one is exhibited. We discuss applications of this scenario to experiments on the ferropnictide superconductors. C1 [Mishra, V.; Boyd, G.; Graser, S.; Hirschfeld, P. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Graser, S.] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany. [Maier, T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Maier, T.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Mishra, V (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI Hirschfeld, Peter /A-6402-2010; Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 FU DOE [DE-FG02-05ER46236]; Deutscheforschungsgemeinschaft; Oak Ridge National Laboratory by the Division of Scientific User Facilities, U. S. Department of Energy FX The authors are grateful for useful communications with D. A. Bonn, J. Bobowski, and A. Carrington. Research was partially supported by DOE under Grant No. DE-FG02-05ER46236 (P. J. H.), and the Deutscheforschungsgemeinschaft (S. G.). T. A. M., D. J. S., and P. J. H. acknowledge the Center for Nanophase Materials Science, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U. S. Department of Energy. NR 52 TC 98 Z9 99 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094512 DI 10.1103/PhysRevB.79.094512 PG 9 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200099 ER PT J AU Mlinar, V Franceschetti, A Zunger, A AF Mlinar, Vladan Franceschetti, Alberto Zunger, Alex TI Rules of peak multiplicity and peak alignment in multiexcitonic spectra of (In,Ga)As quantum dots SO PHYSICAL REVIEW B LA English DT Article DE electron-hole recombination; excitons; gallium arsenide; III-V semiconductors; indium compounds; perturbation theory; semiconductor quantum dots ID EXCITONIC ARTIFICIAL ATOMS; ENERGY AB A simple model-the single-configuration perturbation theory-has traditionally been used to explain the main features of the multiexcitonic spectra of quantum dots, where an electron and a hole recombine in the presence of other N(e)-1 electrons and N(h)-1 holes. The model predicts the (N(h),N(e)) values for which such spectra consist of a single line or multiple lines and whether singlet lines of different (N(h),N(e)) values are energetically aligned. Here we use a nonperturbative, correlated approach that shows when such simple rules work and when they fail, thereby establishing a basis for the appropriate use of such rules. C1 [Mlinar, Vladan; Franceschetti, Alberto; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Zunger, Alex/A-6733-2013 FU U. S. Department of Energy, Office of Science under NREL [DE-AC36-08GO28308] FX This work was funded by the U. S. Department of Energy, Office of Science under NREL Contract No. DE-AC36-08GO28308. NR 13 TC 6 Z9 6 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 121307 DI 10.1103/PhysRevB.79.121307 PG 4 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300011 ER PT J AU Mlinar, V Zunger, A AF Mlinar, Vladan Zunger, Alex TI Effect of atomic-scale randomness on the optical polarization of semiconductor quantum dots SO PHYSICAL REVIEW B LA English DT Article DE excitons; fine structure; gallium arsenide; gallium compounds; III-V semiconductors; indium compounds; light polarisation; semiconductor quantum dots ID ELECTRONIC-STRUCTURE AB Alloy systems such as Ga(1-x)In(x)As consist of different random assignments sigma of the Ga and In atoms onto the cation sublattice; each configuration sigma having, in principle, distinct physical properties. In infinitely large bulk samples different sigma's get self-averaged. However, in finite quantum dots (QDs) (<= 10(5) atoms), self-averaging of such configuration sigma may not be complete, so single-dot spectroscopy might observe atomic-scale alloy randomness effects. We examine theoretically the effect of such atomic-scale alloy randomness on the fine structure-splitting (FSS) of the multiexciton observed via the polarization anisotropy of its components. We find that (i) The FSS of the neutral monoexciton X(0) changes by more than a factor of 7 with sigma. Thus, dots provide clear evidence for the effect of the atomic-scale alloy randomness on the optical properties. (ii) For multiexcitons, the effect of alloy randomness can be so large that the polarization of given emission lines in samples that differ only in random realizations can be dramatically different, so it cannot be said that given transitions have fixed polarization. (iii) Polarization is affected both by atomic-scale randomness and by possible geometric elongation of the QD in one direction. Because of different random realizations, even 50% QD base elongation in [100] direction gives the same polarization as in a geometrically symmetric dot. Thus, measured polarization cannot be used to determine QD elongation. C1 [Mlinar, Vladan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mlinar, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI Zunger, Alex/A-6733-2013 FU U.S. Department of Energy, Office of Science [DE-AC36-08GO28308] FX This work was funded by the U.S. Department of Energy, Office of Science, under NREL Contract No. DE-AC36-08GO28308. NR 27 TC 34 Z9 34 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 115416 DI 10.1103/PhysRevB.79.115416 PG 6 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900123 ER PT J AU Nair, S Nicklas, M Steglich, F Sarrao, JL Thompson, JD Schofield, AJ Wirth, S AF Nair, Sunil Nicklas, M. Steglich, F. Sarrao, J. L. Thompson, J. D. Schofield, A. J. Wirth, S. TI Precursor state to superconductivity in CeIrIn5: Unusual scaling of magnetotransport SO PHYSICAL REVIEW B LA English DT Article DE cerium compounds; Hall effect; heavy fermion superconductors; iridium compounds; magnetoresistance ID QUANTUM CRITICAL-POINT; HEAVY-FERMION COMPOUNDS; SPIN DYNAMICS; HALL ANGLE; MAGNETORESISTANCE; FILMS AB We present an analysis of the normal-state Hall effect and magnetoresistance in the heavy-fermion superconductor CeIrIn5. It is demonstrated that the modified Kohler's scaling-which relates the magnetoresistance to the Hall angle-breaks down prior to the onset of superconductivity due to the presence of a precursor state to superconductivity in this system. A model-independent single-parameter scaling of the Hall angle governed solely by this precursor state is observed. Neither the Hall coefficient nor the resistivity exhibits this scaling, implying that this precursor state preferentially influences the Hall channel. C1 [Nair, Sunil; Nicklas, M.; Steglich, F.; Wirth, S.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schofield, A. J.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. RP Nair, S (reprint author), Max Planck Inst Chem Phys Solids, Noethnitzer Str 40, D-01187 Dresden, Germany. RI Schofield, Andy/C-5004-2009; Nair, Sunil/E-5279-2011; Nicklas, Michael/B-6344-2008 OI Schofield, Andy/0000-0002-1218-8560; Nicklas, Michael/0000-0001-6272-2162 FU Alexander von Humboldt foundation; EC [CoMePhS 517039]; U. S. Department of Energy/Office of Science; DFG Research Unit 960; MPI PKS FX The authors thank A. Gladun for useful discussions. S. N. is supported by the Alexander von Humboldt foundation. S. W. is partially supported by the EC through Project No. CoMePhS 517039. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy/Office of Science. Work at Dresden was supported by DFG Research Unit 960. A. J. S. acknowledges support of the MPI PKS, Dresden where part of this work was done. NR 39 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094501 DI 10.1103/PhysRevB.79.094501 PG 5 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200088 ER PT J AU Nandi, S Kreyssig, A Lee, Y Singh, Y Kim, JW Johnston, DC Harmon, BN Goldman, AI AF Nandi, S. Kreyssig, A. Lee, Y. Singh, Yogesh Kim, J. W. Johnston, D. C. Harmon, B. N. Goldman, A. I. TI Magnetic ordering in EuRh2As2 studied by x-ray resonant magnetic scattering SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; arsenic alloys; europium alloys; magnetic moments; magnetic structure; rhodium alloys ID EXCHANGE SCATTERING; EU; EUPD2SI2; EUCU2SI2; ENERGY AB Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to the lowest achievable temperature of 6 K, an incommensurate antiferromagnetic (ICM) structure with a temperature-dependent propagation vector tau approximate to(0 0 0.9) coexists with a commensurate antiferromagnetic (CM) structure. Angular-dependent measurements of the magnetic intensity indicate that the magnetic moments lie in the tetragonal basal plane and are ferromagnetically aligned within the a-b plane for both magnetic structures. The ICM structure is most likely a spiral-like magnetic structure with a turn angle of similar to 162 degrees (0.9 pi) between adjacent Eu planes in the c direction. In the CM structure, this angle is 180 degrees. These results are consistent with band-structure calculations which indicate a strong sensitivity of the magnetic configuration on the Eu valence. C1 [Nandi, S.; Kreyssig, A.; Lee, Y.; Singh, Yogesh; Johnston, D. C.; Harmon, B. N.; Goldman, A. I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Kim, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Nandi, S.; Kreyssig, A.; Lee, Y.; Singh, Yogesh; Johnston, D. C.; Harmon, B. N.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Nandi, S (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RI singh, yogesh/F-7160-2016 FU U.S. DOE [DE-AC0207CH11358, AC0206CH11357] FX We thank D.S. Robinson for his help during experiments. The work at the Ames Laboratory and at the MU-CAT sector was supported by the U.S. DOE under Contract No. DE-AC0207CH11358. Use of the Advanced Photon Source was supported by U.S. DOE under Contract No. DE-AC0206CH11357. NR 25 TC 12 Z9 12 U1 8 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 100407 DI 10.1103/PhysRevB.79.100407 PG 4 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600015 ER PT J AU Niazi, A Bud'ko, SL Schlagel, DL Yan, JQ Lograsso, TA Kreyssig, A Das, S Nandi, S Goldman, AI Honecker, A McCallum, RW Reehuis, M Pieper, O Lake, B Johnston, DC AF Niazi, A. Bud'ko, S. L. Schlagel, D. L. Yan, J. Q. Lograsso, T. A. Kreyssig, A. Das, S. Nandi, S. Goldman, A. I. Honecker, A. McCallum, R. W. Reehuis, M. Pieper, O. Lake, B. Johnston, D. C. TI Single-crystal growth, crystallography, magnetic susceptibility, heat capacity, and thermal expansion of the antiferromagnetic S=1 chain compound CaV2O4 SO PHYSICAL REVIEW B LA English DT Article DE annealing; antiferromagnetic materials; calcium compounds; crystal growth from melt; crystal orientation; exchange interactions (electron); Heisenberg model; magnetic anisotropy; magnetic susceptibility; magnetic transitions; specific heat; thermal expansion ID METAL-INSULATOR-TRANSITION; GAPLESS CHIRAL PHASE; ANTI-FERROMAGNET; HALDANE-GAP; V2O3; SPIN; CALCIUM; (V1-XCRX)(2)O-3; RESONANCE; SYSTEMS AB The compound CaV2O4 contains V+3 cations with spin S=1 and has an orthorhombic structure at room temperature containing zigzag chains of V atoms running along the c axis. We have grown single crystals of CaV2O4 and report crystallography, static magnetization, magnetic susceptibility chi, ac magnetic susceptibility, heat capacity C-p, and thermal expansion measurements in the temperature T range of 1.8-350 K on the single crystals and on polycrystalline samples. An orthorhombic-to-monoclinic structural distortion and a long-range antiferromagnetic (AF) transition were found at sample-dependent temperatures T-S approximate to 108-145 K and T-N approximate to 51-76 K, respectively. In two annealed single crystals, another transition was found at approximate to 200 K. In one of the crystals, this transition is mostly due to V2O3 impurity phase that grows coherently in the crystals during annealing. However, in the other crystal the origin of this transition at 200 K is unknown. The chi(T) shows a broad maximum at approximate to 300 K associated with short-range AF ordering and the anisotropy of chi above T-N is small. The anisotropic chi(T -> 0) data below T-N show that the (average) easy axis of the AF magnetic structure is the b axis. The C-p(T) data indicate strong short-range AF ordering above T-N, consistent with the chi(T) data. We fitted our chi data by a J(1)-J(2) S=1 Heisenberg chain model, where J(1)(J(2)) is the (next)-nearest-neighbor exchange interaction. We find J(1)approximate to 230 K and surprisingly, J(2)/J(1)approximate to 0 (or J(1)/J(2)approximate to 0). The interaction J(perpendicular to) between these S=1 chains leading to long-range AF ordering at T-N is estimated to be J(perpendicular to)/J(1)greater than or similar to 0.04. C1 [Niazi, A.; Schlagel, D. L.; Yan, J. Q.; Lograsso, T. A.; McCallum, R. W.] Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Bud'ko, S. L.; Kreyssig, A.; Das, S.; Nandi, S.; Goldman, A. I.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Honecker, A.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. [Reehuis, M.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. [Reehuis, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Pieper, O.; Lake, B.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany. [Pieper, O.; Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. RP Niazi, A (reprint author), Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RI Honecker, Andreas/A-7941-2008; Reehuis, Manfred/J-3383-2013; OI Honecker, Andreas/0000-0001-6383-3200; Reehuis, Manfred/0000-0002-6461-4074; Lake, Bella/0000-0003-0034-0964 FU United States Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, through the Ames Laboratory [DE-AC02-07CH11358]; Deutsche Forschungsgemeinschaft [HO 2325/4-1, UL 164/4] FX We acknowledge useful discussions with R. J. McQueeney and we thank D. Robinson for the excellent technical support of our high-energy x-ray diffraction study. Work at Ames Laboratory was supported by the United States Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The Midwest Universities Collaborative Access Team (MUCAT) sector at the APS is supported by the U.S. Department of Energy, Office of Science, through the Ames Laboratory under Contract No. DE-AC02-07CH11358. The work of A. H. was supported by the Deutsche Forschungsgemeinschaft through a Heisenberg Fellowship and under Grant No. HO 2325/4-1. M. R. acknowledges fundings from Deutsche Forschungsgemeinschaft (Grant No. UL 164/4). NR 55 TC 21 Z9 21 U1 2 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104432 DI 10.1103/PhysRevB.79.104432 PG 21 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600088 ER PT J AU Noffsinger, J Giustino, F Louie, SG Cohen, ML AF Noffsinger, Jesse Giustino, Feliciano Louie, Steven G. Cohen, Marvin L. TI Origin of superconductivity in boron-doped silicon carbide from first principles SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; boron; doping; electron-phonon interactions; silicon compounds; superconducting transition temperature; two-photon processes; type I superconductors ID WANNIER FUNCTIONS; PSEUDOPOTENTIALS; DIAMOND; SYSTEMS; ENERGY AB We investigate the origin of superconductivity in boron-doped silicon carbide using a first-principles approach. The strength of the electron-phonon coupling calculated for cubic SiC at the experimental doping level suggests that the superconductivity observed in this material is phonon mediated. Analysis of the 2H-SiC, 4H-SiC, 6H-SiC, and 3C-SiC polytypes indicates that superconductivity depends on the stacking of the Si and C layers and that the cubic polytype will exhibit the highest transition temperature. In contrast to the cases of silicon and diamond, acoustic phonons are found to play a major role in the superconductivity of silicon carbide. C1 [Noffsinger, Jesse] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Giustino, Feliciano/F-6343-2013; OI Giustino, Feliciano/0000-0001-9293-1176 FU NSF [DMR07-05941]; U.S. DOE [DE-AC02-05CH11231] FX The authors are grateful to M. CotE for fruitful discussions. This work was supported by the NSF under Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources were provided by SDSC and NPACI. Calculations were performed using modified versions of the QUANTUM-ESPRESSO (Ref. 33) and WANNIER90 packages (Ref. 34). NR 31 TC 16 Z9 16 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104511 DI 10.1103/PhysRevB.79.104511 PG 4 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600105 ER PT J AU Pan, ZH Richard, P Xu, YM Neupane, M Bishay, P Fedorov, AV Luo, H Fang, L Wen, HH Wang, Z Ding, H AF Pan, Z. -H. Richard, P. Xu, Y. -M. Neupane, M. Bishay, P. Fedorov, A. V. Luo, H. Fang, L. Wen, H. -H. Wang, Z. Ding, H. TI Evolution of Fermi surface and normal-state gap in the chemically substituted cuprates Bi2Sr2-xBixCuO6+delta SO PHYSICAL REVIEW B LA English DT Article DE bismuth compounds; doping; d-wave superconductivity; Fermi surface; high-temperature superconductors; photoelectron spectra; spectral line breadth; strontium compounds; superconducting energy gap ID BI2SR2CACU2O8+DELTA; SUPERCONDUCTORS; PSEUDOGAP AB We have performed a systematic angle-resolved photoemission study of chemically substituted cuprates Bi2Sr2-xBixCuO6+delta. We observed that the Fermi-surface area shrinks linearly with Bi-substitution content x, reflecting the electron doping nature of this chemical substitution. In addition, the spectral linewidth broadens rapidly with increasing x and becomes completely incoherent at the superconducting-insulating boundary. The d-wave-like normal-state gap observed in the lightly underdoped region gradually evolves into a large soft gap, which suppresses antinodal spectral weight linearly in both the excitation energy and temperature. Combining with the bulk resistivity data obtained on the same samples, we establish the emergence of the Coulomb gap behavior in the very underdoped regime. Our results reveal the dual roles, doping and disorder, of off-plane chemical substitutions in high-T-c cuprates and elucidate the nature of the quantum electronic states due to strong correlation and disorder. C1 [Pan, Z. -H.; Richard, P.; Xu, Y. -M.; Neupane, M.; Bishay, P.; Wang, Z.; Ding, H.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Luo, H.; Fang, L.; Wen, H. -H.] Inst Phys, Natl Lab Superconduct, Beijing 100080, Peoples R China. [Luo, H.; Fang, L.; Wen, H. -H.] Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. RP Pan, ZH (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. EM dingh@bc.edu RI Richard, Pierre/F-7652-2010; Luo, Huiqian/F-4049-2012; Fang, Lei /K-2017-2013; Xu, Yiming/B-3966-2011; OI Richard, Pierre/0000-0003-0544-4551; Ding, Hong/0000-0003-4422-9248 FU U.S. NSF [DMR-0353108, DMR-0704545]; DOE [DEFG02-99ER45747, DE-AC02-05CH11231]; NSFC,; MOST [2006CB601000, 2006CB921802]; ITSNEM FX This work was supported by grants from the U.S. NSF under Contracts No. DMR-0353108 and No. DMR-0704545 and the DOE under Contract No. DEFG02-99ER45747. This work was based on the research conducted at the Synchrotron Radiation Center supported by NSF under Contract No. DMR-0537588 and the Advanced Light Source supported by DOE under Contract No. DE-AC02-05CH11231. The work at the IOP, Beijing was supported by the NSFC, the MOST 973 project (Contracts No. 2006CB601000 and No. 2006CB921802), and the CAS project ITSNEM. NR 18 TC 14 Z9 14 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 092507 DI 10.1103/PhysRevB.79.092507 PG 4 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200029 ER PT J AU Petrova, AE Krasnorussky, VN Lograsso, TA Stishov, SM AF Petrova, Alla E. Krasnorussky, Vladimir N. Lograsso, T. A. Stishov, Sergei M. TI High-pressure study of the magnetic phase transition in MnSi SO PHYSICAL REVIEW B LA English DT Article DE critical points; electrical resistivity; high-pressure effects; magnetic susceptibility; magnetic transitions; manganese alloys; silicon alloys; solidification ID ITINERANT FERROMAGNET; HYDROSTATIC-PRESSURE; METAL AB Measurements of ac magnetic susceptibility and dc resistivity of a high-quality single-crystal MnSi were carried out at high pressure making use of helium as a pressure medium. The form of the ac magnetic susceptibility curves at the magnetic phase transition suddenly changes upon helium solidification. This implies strong sensitivity of magnetic properties of MnSi to nonhydrostatic stresses and suggests that the early claims on the existence of a tricritical point at the phase-transition line are probably a result of misinterpretation of the experimental data. At the same time resistivity behavior at the phase transition does not show such a significant influence of helium solidification. The sharp peak at the temperature derivative of resistivity, signifying the first-order nature of the phase transition in MnSi successfully survived helium crystallization and continued the same way to the highest pressure. C1 [Petrova, Alla E.; Krasnorussky, Vladimir N.; Stishov, Sergei M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. [Lograsso, T. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Petrova, AE (reprint author), Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. EM sergei@hppi.troitsk.ru NR 25 TC 11 Z9 11 U1 7 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 100401 DI 10.1103/PhysRevB.79.100401 PG 4 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600009 ER PT J AU Phelan, D Louca, D Ancona, SN Rosenkranz, S Zheng, H Mitchell, JF AF Phelan, D. Louca, Despina Ancona, S. N. Rosenkranz, S. Zheng, H. Mitchell, J. F. TI Neutron scattering study of the competing magnetic correlations in La0.85Sr0.15CoO3 SO PHYSICAL REVIEW B LA English DT Article DE ferromagnetic materials; lanthanum compounds; long-range order; magnetic structure; magnetic susceptibility; neutron diffraction; short-range order; spin glasses; strontium compounds ID PHASE-SEPARATION; LA1-XSRXCOO3 AB The nature of the competing ferromagnetic and incommensurate spin correlations in the spin-glass phase of La0.85Sr0.15CoO3 has been investigated by various neutron scattering techniques. Spin-polarized scattering indicates that the observed incommensurate peaks are dominantly magnetic in nature. Magnetic field experiments show that a field applied perpendicular to the short-range ordering wave vector destroys the incommensurate correlations and induces long-range ferromagnetic order. However, even for fields up to 7 T, short-range ferromagnetic correlations still coexist with the long-range ordered regions. C1 [Phelan, D.; Louca, Despina] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Phelan, D.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Ancona, S. N.; Rosenkranz, S.; Zheng, H.; Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Phelan, D (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RI Rosenkranz, Stephan/E-4672-2011 OI Rosenkranz, Stephan/0000-0002-5659-0383 FU U. S. Department of Energy [DE-FG02-01ER45927, DE-AC02-06CH11357]; U. S. DOC [NIST-70NANB5H1152]; NSF [DMR-9986442, DMR-0086210.] FX The authors would like to acknowledge fruitful discussions with C. Leighton and thank him for discussing his unpublished data. They would also like to thank W. Ratcliff, C. F. Majkrzak, and B. J. Kirby of the NCNR for their assistance in the neutron scattering experiments and S. McKinney, E. Fitzgerald, and D. Dender of the NCNR for their assistance operating the superconducting magnet. This work is supported by the U. S. Department of Energy under Contracts No. DE-FG02-01ER45927 and No. DE-AC02-06CH11357, and the U. S. DOC through Contract No. NIST-70NANB5H1152. The use of the neutron scattering facilities at NIST was supported in part through NSF Grants No. DMR-9986442 and No. DMR-0086210. NR 15 TC 7 Z9 7 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094420 DI 10.1103/PhysRevB.79.094420 PG 5 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200077 ER PT J AU Raekers, M Kuepper, K Bartkowski, S Prinz, M Postnikov, AV Potzger, K Zhou, S Arulraj, A Stusser, N Uecker, R Yang, WL Neumann, M AF Raekers, M. Kuepper, K. Bartkowski, S. Prinz, M. Postnikov, A. V. Potzger, K. Zhou, S. Arulraj, A. Stuesser, N. Uecker, R. Yang, W. L. Neumann, M. TI Electronic and magnetic structure of RScO3 (R=Sm,Gd,Dy) from x-ray spectroscopies and first-principles calculations SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetism; dysprosium compounds; energy gap; magnetic structure; magnetisation; neutron diffraction; samarium compounds; scandium compounds; X-ray absorption spectra; X-ray emission spectra; X-ray photoelectron spectra ID EARTH/TRANSITION METAL-OXIDES; HIGH-K DIELECTRICS; RARE-EARTH-METALS; BATIO3 THIN-FILMS; FERROELECTRICITY; PHOTOEMISSION; SPECTRA; DENSITY; STATES; 4F AB The electronic structures of SmScO3, GdScO3, and DyScO3 are investigated by means of x-ray photoelectron spectroscopy, x-ray emission spectroscopy (XES), and x-ray absorption spectroscopy (XAS). A strong hybridization between Sc 3d and O 2p is found, and a contribution of the rare-earth 5d states to this hybridization is not excluded. The band gaps of the compounds are determined by combining XES and XAS measurements. For SmScO3, GdScO3, and DyScO3 the band gaps were determined to be 5.6, 5.8, and 5.9 eV, respectively. Magnetization versus temperature measurements reveal antiferromagnetic coupling at 2.96 (SmScO3), 2.61 (GdScO3), and 3.10 K (DyScO3). For DyScO3 a Rietveld refinement of a 2 K neutron-diffraction data set gives the spin arrangement of Dy in the Pbnm structure (Shubnikov group: Pb(')n(')m(')). C1 [Raekers, M.; Bartkowski, S.; Prinz, M.; Neumann, M.] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany. [Kuepper, K.; Potzger, K.; Zhou, S.] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany. [Postnikov, A. V.] Unversite Paul Verlaine, Lab Phys Milieux Denses, F-57078 Metz, France. [Arulraj, A.; Stuesser, N.] Hahn Meitner Inst Berlin GmbH, Dept Magnetism, D-14109 Berlin, Germany. [Uecker, R.] Inst Crystal Growth, D-12489 Berlin, Germany. [Yang, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Raekers, M (reprint author), Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany. EM mraekers@uos.de; karsten.kuepper@uni-ulm.de; mneumann@uos.de RI Zhou, Shengqiang/C-1497-2009; Yang, Wanli/D-7183-2011; Kupper, Karsten/G-1397-2016 OI Zhou, Shengqiang/0000-0002-4885-799X; Yang, Wanli/0000-0003-0666-8063; FU Lawrence Berkeley National Laboratory, Berkeley, USA [DE-AC03-76SF00098]; Ph. D. program (Lower Saxony) [GRK695] FX Part of this work has been performed at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, Berkeley, USA, which is operated under Contract No. DE-AC03-76SF00098. M. R. gratefully acknowledges financial support from the GRK695: Nonlinearities of optical materials. Financial support by the Ph. D. program (Lower Saxony) is gratefully acknowledged by M. P. NR 43 TC 12 Z9 12 U1 5 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 125114 DI 10.1103/PhysRevB.79.125114 PG 9 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300033 ER PT J AU Sales, BC Sefat, AS McGuire, MA Jin, RY Mandrus, D Mozharivskyj, Y AF Sales, B. C. Sefat, A. S. McGuire, M. A. Jin, R. Y. Mandrus, D. Mozharivskyj, Y. TI Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1-x SO PHYSICAL REVIEW B LA English DT Article DE crystal growth from melt; iron compounds; magnetic susceptibility; specific heat; superconductivity; tellurium compounds ID LAYERED QUATERNARY COMPOUND; IRON AB Resistivity, magnetic susceptibility, and heat-capacity measurements are reported for single crystals of Fe1+yTexSe1-x grown via a modified Bridgeman method with 0 < y < 0.15 and x=1, 0.9, 0.75, 0. 67, 0.55, and 0.5. Although resistivity measurements show traces of superconductivity near 14 K for all x except x=1, only crystals grown with compositions near x=0.5 exhibit bulk superconductivity. The appearance of bulk superconductivity correlates with a reduction in the magnitude of the magnetic susceptibility at room temperature and smaller values of y, the concentration of Fe in the Fe(2) site. C1 [Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Jin, R. Y.; Mandrus, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mozharivskyj, Y.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. RP Sales, BC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy FX It is a pleasure to acknowledge enlightening discussions with David Singh, Mark Lumsden, Andrew Christianson, Steve Nagler, and Herb Mook as well as the technical assistance of Larry McCollum, Jason Craig, Elder Mellon, and Midge Mckinney. This research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy. Part of this research was performed by Eugene P. Wigner Fellows at ORNL. NR 23 TC 277 Z9 278 U1 6 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094521 DI 10.1103/PhysRevB.79.094521 PG 5 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200108 ER PT J AU Sefat, AS McGuire, MA Jin, R Sales, BC Mandrus, D Ronning, F Bauer, ED Mozharivskyj, Y AF Sefat, Athena S. McGuire, Michael A. Jin, Rongying Sales, Brian C. Mandrus, David Ronning, Filip Bauer, E. D. Mozharivskyj, Yurij TI Structure and anisotropic properties of BaFe2-xNixAs2 (x=0, 1, and 2) single crystals SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; barium alloys; electrical resistivity; iron alloys; magnetic anisotropy; magnetic susceptibility; magnetic transitions; nickel alloys; paramagnetic materials; solid-state phase transformations; specific heat; superconducting transition temperature ID LAYERED SUPERCONDUCTOR; TEMPERATURE; SPIN; HEAT AB The crystal structure, electrical resistivity, magnetic susceptibility, and heat capacity of single crystals of BaFe2As2, BaNi2As2, and BaFeNiAs2 are reported. BaFe2As2 data indicate the equivalence of C(T), d(chi T)/dT, and d rho/dT results in determining the antiferromagnetic transition at T-N=132(1)K. BaNi2As2 shows a structural phase transition from a high-temperature tetragonal phase to a low-temperature triclinic phase (P1 symmetry) at T-0=131 K, with superconducting critical temperature T-c=0.69 K. BaFeNiAs2 does not show any sign of superconductivity and its properties resemble BaCo2As2, a renormalized paramagnetic metal. C1 [Sefat, Athena S.; McGuire, Michael A.; Jin, Rongying; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ronning, Filip; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mozharivskyj, Yurij] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Bauer, Eric/D-7212-2011; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016; OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences; U. S. Department of Energy FX Research sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. Part of this research was performed by Eugene P. Wigner Fellows at ORNL. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy. NR 40 TC 67 Z9 67 U1 3 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094508 DI 10.1103/PhysRevB.79.094508 PG 8 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200095 ER PT J AU Singh, DJ Sefat, AS McGuire, MA Sales, BC Mandrus, D VanBebber, LH Keppens, V AF Singh, D. J. Sefat, A. S. McGuire, M. A. Sales, B. C. Mandrus, D. VanBebber, L. H. Keppens, V. TI Itinerant antiferromagnetism in BaCr2As2: Experimental characterization and electronic structure calculations SO PHYSICAL REVIEW B LA English DT Article DE antiferrimagnetism; band model of magnetism; band structure; barium compounds; chromium compounds; electrical resistivity; electronic density of states; specific heat AB We report single-crystal synthesis, specific-heat and resistivity measurements and electronic structure calculations for BaCr2As2. This material is a metal with itinerant antiferromagnetism, similar to the parent phases of Fe-based high-temperature superconductors, but differs in magnetic order. Comparison of bare band-structure density of states and the low-temperature specific heat implies a mass renormalization of similar to 2. BaCr2As2 shows stronger transition-metal-pnictogen covalency than the Fe compounds, and in this respect is more similar to BaMn2As2. This provides an explanation for the observation that Ni and Co doping is effective in the Fe-based superconductors, but Cr or Mn doping is not. C1 [Singh, D. J.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [VanBebber, L. H.; Keppens, V.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Department of Energy, Division of Materials Sciences and Engineering; ORNL LDRD program FX This work was supported by the Department of Energy, Division of Materials Sciences and Engineering and by the ORNL LDRD program. NR 22 TC 30 Z9 30 U1 9 U2 70 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094429 DI 10.1103/PhysRevB.79.094429 PG 4 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200086 ER PT J AU Singh, NK Paudyal, D Mudryk, Y Pecharsky, VK Gschneidner, KA AF Singh, Niraj K. Paudyal, Durga Mudryk, Ya. Pecharsky, V. K. Gschneidner, K. A., Jr. TI Magnetostructural transition in Ho5Ge4 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; density functional theory; germanium alloys; giant magnetoresistance; high-temperature effects; holmium alloys; magnetic structure; magnetocaloric effects; magnetostriction; paramagnetic-antiferromagnetic transitions; solid-state phase transformations ID GD-5(SI2GE2); MAGNETISM AB First-principles calculations predict that, in the antiferromagnetic state, Ho5Ge4 should adopt a unique monoclinic structure with an unusual distortion in the ac plane, making it a unique member of a broadly researched R5T4 family of compounds that are best known for their giant magnetocaloric, magnetoresistive, and magnetostrictive effects. Experiments prove that, in Ho5Ge4, the magnetic transition from the paramagnetic to the antiferromagnetic state is indeed accompanied by a structural transformation from the Sm5Ge4-type orthorhombic to the predicted monoclinic structure. Surprisingly, a magnetic field can partially reconstruct the high-temperature paramagnetic Sm5Ge4-type structure of Ho5Ge4 when applied to the magnetically ordered compound. C1 [Singh, Niraj K.; Paudyal, Durga; Mudryk, Ya.; Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vitkp@ameslab.gov FU U.S. Department of Energy [DE-AC02-07CH11358]; Iowa State University of Science and Technology FX This work was supported by the Office of Basic Energy Sciences of the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University of Science and Technology. NR 37 TC 15 Z9 15 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094115 DI 10.1103/PhysRevB.79.094115 PG 5 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200045 ER PT J AU Singh, Y Ellern, A Johnston, DC AF Singh, Yogesh Ellern, A. Johnston, D. C. TI Magnetic, transport, and thermal properties of single crystals of the layered arsenide BaMn2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; barium compounds; crystal growth; electrical resistivity; magnetic susceptibility; magnetisation; manganese compounds; narrow band gap semiconductors; specific heat AB Growth of BaMn2As2 crystals using both MnAs and Sn fluxes is reported. Room-temperature crystallography, anisotropic isothermal magnetization M versus field H and magnetic susceptibility chi versus temperature T, electrical resistivity in the ab plane rho(T), and heat capacity C(T) measurements on the crystals were carried out. The tetragonal ThCr2Si2-type structure of BaMn2As2 is confirmed. After correction for traces of ferromagnetic MnAs impurity phase using M(H) isotherms, the inferred intrinsic chi(T) data of the crystals are anisotropic with chi(ab)/chi(c)approximate to 7.5 at T=2 K. The temperature dependences of the anisotropic chi data suggest that BaMn2As2 is a collinear antiferromagnet at room temperature with the easy axis along the c axis, and with an extrapolated Neel temperature T-N similar to 500 K. The rho(T) decreases with decreasing T below 310 K but then increases below similar to 50 K, suggesting that BaMn2As2 is a small band-gap semiconductor with an activation energy of order 0.03 eV. The C(T) data from 2 to 5 K are consistent with this insulating ground state, exhibiting a low temperature Sommerfeld coefficient gamma=0.0(4) mJ/mol K-2. The Debye temperature is determined from these data to be theta(D)=246(4) K. BaMn2As2 is a potential parent compound for ThCr2Si2-type superconductors. C1 [Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Singh, Yogesh; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ellern, A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Singh, Y (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI singh, yogesh/F-7160-2016 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX We are grateful to J. Schmalian for helpful discussions. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 38 TC 64 Z9 64 U1 5 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094519 DI 10.1103/PhysRevB.79.094519 PG 6 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200106 ER PT J AU Soderlind, P Klepeis, JE AF Soederlind, Per Klepeis, John E. TI First-principles elastic properties of alpha-Pu SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; band structure; density functional theory; elastic constants; electron correlations; exchange interactions (electron); plutonium ID GENERALIZED GRADIENT APPROXIMATION; DELTA-PLUTONIUM; BRILLOUIN-ZONE; SPECIAL POINTS; METALS; MODULI AB Density-functional electronic-structure calculations have been used to investigate the ambient pressure and low temperature elastic properties of the ground-state alpha phase of plutonium metal. The electronic structure and correlation effects are modeled within a fully relativistic antiferromagnetic treatment with a generalized gradient approximation for the electron exchange and correlation functional. The 13 independent elastic constants, for the monoclinic alpha-Pu system, are calculated for the observed geometry. A comparison of the results with measured data from recent resonant ultrasound spectroscopy for a cast sample is made. C1 [Soederlind, Per; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. FU U. S. Department of Energy [DE-AC52-07NA27344] FX J. Pask is acknowledged for help with matrix manipulations. R. Rudd is thanked for helpful discussions. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 42 TC 20 Z9 22 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104110 DI 10.1103/PhysRevB.79.104110 PG 7 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600037 ER PT J AU Tanatar, MA Ni, N Martin, C Gordon, RT Kim, H Kogan, VG Samolyuk, GD Bud'ko, SL Canfield, PC Prozorov, R AF Tanatar, M. A. Ni, N. Martin, C. Gordon, R. T. Kim, H. Kogan, V. G. Samolyuk, G. D. Bud'ko, S. L. Canfield, P. C. Prozorov, R. TI Anisotropy of the iron pnictide superconductor Ba(Fe1-xCox)(2)As-2 (x=0.074, T-c=23 K) SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; barium alloys; cobalt alloys; critical currents; electrical resistivity; high-temperature superconductors; iron alloys; penetration depth (superconductivity); specific heat; superconducting critical field; superconducting transition temperature ID SINGLE-CRYSTAL Y1BA2CU3O7-X; MAGNETIC PENETRATION DEPTH; UPPER-CRITICAL-FIELD; HARD SUPERCONDUCTORS; FERMI-SURFACE; TEMPERATURE; CONDUCTIVITY; RESISTIVITY; TRANSITION; PARALLEL AB Anisotropies of electrical resistivity, upper critical field, London penetration depth, and critical currents have been measured in single crystals of the optimally doped iron pnictide superconductor Ba(Fe1-xCox)(2)As-2 (x=0.074 and T-c similar to 23 K). The normal-state resistivity anisotropy was obtained by employing both the Montgomery technique and direct measurements on samples cut along principal crystallographic directions. The ratio gamma(rho)=rho(c)/rho(a) is about 4 +/- 1 just above T-c and becomes half of that at room temperature. The anisotropy of the upper critical field, gamma(H)=H-c2,H-ab/H-c2,H-c, as determined from specific-heat measurements close to T-c is in the range of 2.1-2.6, depending on the criterion used. A comparable low anisotropy of the London penetration depth, gamma(lambda)=lambda(c)/lambda(ab), was recorded from tunnel diode resonator measurements and found to persist deep into the superconducting state. An anisotropy of comparable magnitude was also found in the critical currents, gamma(j)=j(c,ab)/j(c,c), as determined from both direct transport measurements (similar to 1.5) and from the analysis of the magnetization data (similar to 3). Overall, our results show that iron pnictide superconductors manifest anisotropies consistent with essentially three-dimensional intermetallic compounds and bear little resemblance to cuprates. C1 [Tanatar, M. A.; Ni, N.; Martin, C.; Gordon, R. T.; Kim, H.; Kogan, V. G.; Samolyuk, G. D.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Ni, N.; Gordon, R. T.; Kim, H.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA. EM tanatar@ameslab.gov; prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU Department of Energy Basic Energy Sciences [DE-AC02-07CH11358.]; Alfred P. Sloan Foundation FX We thank A. Kaminski and Y. Lee for discussions and M. Kano for inspiration. M. A. T. acknowledges continuing cross appointment with the Institute of Surface Chemistry, National Ukrainian Academy of Sciences. Work at the Ames Laboratory was supported by the Department of Energy Basic Energy Sciences under Contract No. DE-AC02-07CH11358. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 65 TC 142 Z9 142 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094507 DI 10.1103/PhysRevB.79.094507 PG 10 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200094 ER PT J AU Tseng, YC Souza-Neto, NM Haskel, D Gich, M Frontera, C Roig, A van Veenendaal, M Nogues, J AF Tseng, Yuan-Chieh Souza-Neto, Narcizo M. Haskel, Daniel Gich, Marti Frontera, Carlos Roig, Anna van Veenendaal, Michel Nogues, Josep TI Nonzero orbital moment in high coercivity epsilon-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy SO PHYSICAL REVIEW B LA English DT Article DE bond lengths; coercive force; iron compounds; magnetic anisotropy; magnetic circular dichroism; magnetic moments; magnetisation; magnetoelectric effects; nanoparticles; permanent magnets; spin-orbit interactions; sum rules ID RAY CIRCULAR-DICHROISM; MAGNETIC-PROPERTIES; NANOPARTICLES; TRANSITION; COBALT; PHASE; IRON; NANOCOMPOSITE; FIELDS AB The magnetic properties of epsilon-Fe2O3 nanoparticles are investigated by x-ray magnetic circular dichroism. Sum rules relating the orbital and spin moment in the Fe 3d band to the Fe L-2,L-3 absorption cross sections show that the Fe orbital moment (m(orb)) is considerably high, explaining the origin of the large coercivity of this material at room temperature. Moreover, at T similar to 110 K, the collapse of the coercivity (H-c) and the magnetocrystalline anisotropy coincides with a strong reduction of the spin-orbit coupling evidenced by a drastic drop of m(orb). The decrease in m(orb) originates from changes in the electron transfer between Fe and O ions accompanied by significant modifications of some of the Fe-O bond distances. Similarly, the recovery of m(orb) at lower temperatures mimics the behavior of the Fe-O bond lengths. C1 [Tseng, Yuan-Chieh; Souza-Neto, Narcizo M.; Haskel, Daniel; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Tseng, Yuan-Chieh] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60201 USA. [Gich, Marti] St Gobain Res, F-93303 Aubervilliers, France. [Frontera, Carlos; Roig, Anna] ICMAB CSIC, Bellaterra 08193, Catalunya, Spain. [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Nogues, Josep] ICREA, Bellaterra 08193, Catalunya, Spain. [Nogues, Josep] Ctr Invest Nanociencia & Nanotecnol ICN CSIC, Bellaterra 08193, Catalunya, Spain. RP Haskel, D (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM haskel@aps.anl.gov; Marti.Gich@saint-gobain.com; roig@icmab.es RI Souza-Neto, Narcizo/G-1303-2010; Frontera, Carlos/B-4910-2008; Nogues, Josep/D-7791-2012; ROIG, ANNA/E-7616-2011; Hernandez, Tonia/J-9335-2012; D20, Diffractometer/O-3123-2013; Gich, Marti/H-7179-2012 OI Souza-Neto, Narcizo/0000-0002-7474-8017; Frontera, Carlos/0000-0002-0091-4756; Nogues, Josep/0000-0003-4616-1371; ROIG, ANNA/0000-0001-6464-7573; D20, Diffractometer/0000-0002-1572-1367; Gich, Marti/0000-0001-9958-0057 FU U. S. Department of Energy, Office of Science [DE-AC-02-06CH11357]; Catalan DGR [2005GR-00401, 2005SGR-00452]; Spanish CICYT [MAT-200766302-C02, NANOBIOMED-CSD2006-00012, CONSOLIDER-CSD2007-00041] FX Work at Argonne is supported by the U. S. Department of Energy, Office of Science, under Contract No. DE-AC-02-06CH11357. The authors thank P. Gambardella and J. Fontcuberta for enlightening discussions and J. Sort for his help in the magnetization measurements. The authors are also grateful to R. Rosenberg for help with the XMCD measurements. We acknowledge the ESRF and the ILL for the provision of x- ray and neutron beam time. We also thank C. Ritter and F. Fauth for their assistance during neutron and x-ray data collection. Partial financial support from Catalan DGR (Contracts No. 2005GR-00401 and No. 2005SGR-00452) and the Spanish CICYT (Contracts No. MAT-200766302-C02, No. NANOBIOMED-CSD2006-00012, and CONSOLIDER-CSD2007-00041) research projects is also acknowledged. NR 44 TC 39 Z9 40 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094404 DI 10.1103/PhysRevB.79.094404 PG 6 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200061 ER PT J AU Tuttle, BR Pantelides, ST AF Tuttle, Blair R. Pantelides, Sokrates T. TI Vacancy-related defects and the E-delta(') center in amorphous silicon dioxide: Density functional calculations SO PHYSICAL REVIEW B LA English DT Article DE amorphous state; band structure; density functional theory; localised states; noncrystalline defects; paramagnetic resonance; silicon compounds ID TRIPLET-STATE; BURIED SIO2; INTERFACE; QUARTZ AB The microscopic identification of vacancy-related defects in silicon dioxide has been a major challenge. Particularly in amorphous silica, the role of vacancy clusters is still controversial. Experimental data have led to suggestions that the E-delta(') center is a four-vacancy cluster instead of a single vacancy. Here we report density functional calculations that explore the energetics and electronic structure of single vacancies and clusters of four vacancies in realistic models of amorphous silica. A total of 76 O vacancies and 38 four-vacancy clusters were examined, and their energy levels and hyperfine parameters were calculated. Results for single vacancies compare well to previous theory. A key result for four-vacancy clusters is that relaxations localize the unpaired electron preferentially on one Si atom, resulting in a strongly anisotropic electron-paramagnetic-resonance signal. Electrons at single vacancies have a more benign anisotropy which is more compatible with the observed isotropic signal. C1 [Tuttle, Blair R.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tuttle, Blair R.] Penn State Behrend, Dept Phys, Erie, PA 16563 USA. RP Tuttle, BR (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. FU Air Force Office of Scientific Research; MURI [FA9550-05-1-06]; U.S. Navy; NCSA supercomputers in Urbana, IL FX This work was supported in part by the Air Force Office of Scientific Research under a MURI grant (Grant No. FA9550-05-1-06) and by the U. S. Navy. Calculations were performed on the NCSA supercomputers in Urbana, IL. NR 28 TC 16 Z9 16 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 115206 DI 10.1103/PhysRevB.79.115206 PG 5 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900074 ER PT J AU Welp, U Xie, R Koshelev, AE Kwok, WK Luo, HQ Wang, ZS Mu, G Wen, HH AF Welp, U. Xie, R. Koshelev, A. E. Kwok, W. K. Luo, H. Q. Wang, Z. S. Mu, G. Wen, H. H. TI Anisotropic phase diagram and strong coupling effects in Ba1-xKxFe2As2 from specific-heat measurements SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; fluctuations in superconductors; Ginzburg-Landau theory; high-temperature superconductors; iron compounds; phase diagrams; potassium compounds; specific heat; superconducting critical field ID NODELESS SUPERCONDUCTING GAPS; MAGNETIC-FIELD; SINGLE-CRYSTAL; LAO1-XFXFEAS; TRANSITION; COMPOUND; BEHAVIOR AB We present a thermodynamic study of the phase diagram of single-crystal Ba1-xKxFe2As2 using specific-heat measurements. In zero-magnetic field a clear step in the heat capacity of Delta C/T-c=0.1 J/mol K-2 is observed at T-c approximate to 34.6 K for a sample with x=0.4. This material is characterized by extraordinarily high slopes of the upper critical field of mu(0)partial derivative H-c2(c)/partial derivative T=-6.5 T/K and mu(0)partial derivative H-c2(ab)/partial derivative T=-17.4 T/K and a surprisingly low anisotropy of Gamma similar to 2.6 near T-c. A consequence of the large field scale is the effective suppression of superconducting fluctuations. Using thermodynamic relations we determine Ginzburg-Landau parameters of kappa(c)similar to 100 and kappa(ab)similar to 260 identifying Ba1-xKxFe2As2 as extreme type II. The large value of the normalized discontinuity of the slopes of the specific heat at T-c, (T-c/Delta C)Delta(dC/dT)(Tc)similar to 6, indicates strong-coupling effects in Ba1-xKxFe2As2. C1 [Welp, U.; Xie, R.; Koshelev, A. E.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Xie, R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Luo, H. Q.; Wang, Z. S.; Mu, G.; Wen, H. H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Welp, U (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Mu, Gang/G-9407-2011; Luo, Huiqian/F-4049-2012; Koshelev, Alexei/K-3971-2013; Wang, Zhaosheng/G-5162-2016; OI Mu, Gang/0000-0001-5676-4702; Koshelev, Alexei/0000-0002-1167-5906; Xie, Ruobing/0000-0003-0266-9122 FU U. S. Department of Energy Basic Energy Science [DE-AC02-06CH11357]; Natural Science Foundation of China; Ministry of Science and Technology of China [2006CB60100, 2006CB921802, 2006CB921107]; Chinese Academy of Sciences FX This work was supported by the U. S. Department of Energy Basic Energy Science under Contract No. DE-AC02-06CH11357, by the Natural Science Foundation of China, the Ministry of Science and Technology of China (973 Projects No. 2006CB60100, No. 2006CB921802, and No. 2006CB921107) and the Chinese Academy of Sciences (Project ITSNEM). NR 47 TC 45 Z9 46 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094505 DI 10.1103/PhysRevB.79.094505 PG 5 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200092 ER PT J AU Yoon, Y Kang, MG Morimoto, T Mourokh, L Aoki, N Reno, JL Bird, JP Ochiai, Y AF Yoon, Y. Kang, M. -G. Morimoto, T. Mourokh, L. Aoki, N. Reno, J. L. Bird, J. P. Ochiai, Y. TI Detector backaction on the self-consistent bound state in quantum point contacts SO PHYSICAL REVIEW B LA English DT Article DE aluminium compounds; bound states; gallium arsenide; quantum point contacts; wave functions ID ELECTRON-SPIN; DOT AB Bound-state (BS) formation in quantum point contacts (QPCs) may offer a convenient way to localize and probe single spins. In this Rapid Communication, we investigate how such BSs are affected by monitoring them with a second QPC, which is coupled to the BS via wave-function overlap. We show that this coupling leads to a unique detector backaction, in which the BS is weakened by increasing its proximity to the detector. We also show, however, that this interaction between the QPCs can be regulated at will by using an additional gate to control their wave-function overlap. C1 [Yoon, Y.; Kang, M. -G.; Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. [Morimoto, T.] RIKEN, Adv Device Lab, Wako, Saitama 3510198, Japan. [Mourokh, L.] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA. [Aoki, N.; Bird, J. P.; Ochiai, Y.] Chiba Univ, Grad Sch Adv Integrat Sci, Inage Ku, Chiba 2638522, Japan. [Reno, J. L.] Sandia Natl Labs, CINT Sci Dept, Albuquerque, NM 87185 USA. RP Yoon, Y (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. RI Bird, Jonathan/G-4068-2010 OI Bird, Jonathan/0000-0002-6966-9007 FU DOE [DE-FG03-01ER45920]; Center for Integrated Nanotechnologies; U. S. DOE Office of Basic Energy Sciences nanoscale science research center; [DE-AC04-94AL85000] FX This work was supported by the DOE (Contract No. DE-FG03-01ER45920) and was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. DOE Office of Basic Energy Sciences nanoscale science research center. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. DOE (Contract No. DE-AC04-94AL85000). NR 27 TC 17 Z9 17 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 121304 DI 10.1103/PhysRevB.79.121304 PG 4 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300008 ER PT J AU Yu, R Trinh, KT Moreo, A Daghofer, M Riera, JA Haas, S Dagotto, E AF Yu, Rong Trinh, Kien T. Moreo, Adriana Daghofer, Maria Riera, Jose A. Haas, Stephan Dagotto, Elbio TI Magnetic and metallic state at intermediate Hubbard U coupling in multiorbital models for undoped iron pnictides SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; Fermi surface; high-temperature superconductors; Hubbard model; iron compounds; neutron diffraction; photoelectron spectra; variational techniques ID NODELESS SUPERCONDUCTING GAPS; LAYERED QUATERNARY COMPOUND; SPIN-DENSITY-WAVE; PHASE-TRANSITIONS; PHOTOEMISSION-SPECTROSCOPY; INSULATOR-TRANSITION; BAND-STRUCTURE; ANTIFERROMAGNETISM; INSTABILITY; DIAGRAM AB Multiorbital Hubbard model Hamiltonians for the undoped parent compounds of the Fe-pnictide superconductors are investigated here using mean-field techniques. For a realistic four-orbital model, our results show the existence of an intermediate Hubbard U coupling regime where the mean-field ground state has a (pi,0) antiferromagnetic order, as in neutron-scattering experiments, while remaining metallic due to the phenomenon of band overlaps. The angle-resolved photoemission intensity and Fermi surface of this magnetic and metallic state are discussed. Other models are also investigated, including a two-orbital model where not only the mean-field technique can be used but also the exact diagonalization in small clusters and the variational cluster approximation in the bulk. The combined results of the three techniques point toward the existence of an intermediate-coupling magnetic and metallic state in the two-orbital model, similar to the intermediate-coupling mean-field state of the four-orbital model. We conclude that the state discussed here is compatible with the experimentally known properties of the undoped Fe pnictides. C1 [Yu, Rong; Moreo, Adriana; Daghofer, Maria; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Yu, Rong; Moreo, Adriana; Daghofer, Maria; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Trinh, Kien T.; Haas, Stephan] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Riera, Jose A.] Univ Nacl Rosario, Consejo Nacl Invest Cient & Tecn, Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina. RP Yu, R (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Daghofer, Maria/C-5762-2008; Riera, Jose/A-1234-2008; YU, RONG/C-1506-2012; Yu, Rong/K-5854-2012; Yu, Rong/H-3355-2016 OI Daghofer, Maria/0000-0001-9434-8937; Riera, Jose/0000-0003-4546-1137; FU NSF [DMR-0706020, DMR-0804914]; Division of Materials Science and Engineering; U.S. DOE [DE-FG02-05ER46240] FX This work was mainly supported by the NSF under Grant No. DMR-0706020 and the Division of Materials Science and Engineering, U.S. DOE under contract with UT-Battelle, LLC. Computation for part of the work described in this paper was supported by the University of Southern California Center for High Performance Computing and Communications. S. H. and K. T. acknowledge financial support from the National Science Foundation under Grant No. DMR-0804914 and the Department of Energy under Grant No. DE-FG02-05ER46240. NR 83 TC 55 Z9 55 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 10 AR 104510 DI 10.1103/PhysRevB.79.104510 PG 16 WC Physics, Condensed Matter SC Physics GA 427GU UT WOS:000264768600104 ER PT J AU Zhang, LJ Singh, DJ AF Zhang, Lijun Singh, D. J. TI Density functional study of the overdoped iron chalcogenide TlFe2Se2 with ThCr2Si2 structure SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetism; density functional theory; doping profiles; Fermi surface; ground states; iron compounds; magnetic moments; magnetoelastic effects; selenium compounds; spin density waves; superconducting materials; thallium compounds ID SUPERCONDUCTIVITY AB We report density functional calculations of electronic structure and magnetic properties of ternary iron chalcogenide TlFe2Se2, which occurs in the ThCr2Si2 structure and discuss the results in relation to the iron-based superconductors. The ground state is antiferromagnetic with checkerboard order and Fe moment similar to 1.90 mu(B). There is strong magnetoelastic coupling similar to the Fe-based superconductors, reflected in a sensitivity of the Se position to magnetism. Tl is monovalent in this compound, providing heavy electron doping of 0.5 additional carriers per Fe relative to the parent compounds of the Fe-based superconductors. Other than the change in electron count, the electronic structure is rather similar to those materials. In particular, the Fermi surface is closely related to those of the Fe-based superconductors, except that the electron cylinders are larger, and the hole sections are suppressed. This removes the tendency toward a spin-density wave. C1 [Zhang, Lijun; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions with M. H. Du, A. Subedi, and D. Mandrus. Some figures were produced with the XCRYSDEN program.48 This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 47 TC 39 Z9 39 U1 5 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 094528 DI 10.1103/PhysRevB.79.094528 PG 6 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200115 ER PT J AU Zhang, XW Trimarchi, G Zunger, A AF Zhang, Xiuwen Trimarchi, Giancarlo Zunger, Alex TI Possible pitfalls in theoretical determination of ground-state crystal structures: The case of platinum nitride SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; mechanical stability; minimisation; platinum compounds ID SEMICONDUCTORS; CUN; CON; NIN AB In many theoretical studies of the properties of solids, the first and often crucial step entails the determination of the crystal structure via some form of energy minimization. Here we discuss general potential pitfalls that are often encountered in such calculations. We do so in the context of the classic zinc-blende crystal structure that underlines all octet semiconductors and was more recently invoked to explain nonoctet half-metallic magnets such as CrAs, as well as noble-metal nitrides such as PtN, PdN, and NiN. These pitfalls are related to the way in which mechanical instabilities of assumed structures are identified, discarded, and replaced. Using a more general global space-group optimization (GSGO) approach uncovers different and more complex structures that have much lower energies and do not have mechanical instabilities. C1 [Zhang, Xiuwen; Trimarchi, Giancarlo; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhang, XW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Alex_Zunger@nrel.gov RI Zunger, Alex/A-6733-2013; ZHANG, XIUWEN/K-7383-2012; Trimarchi, Giancarlo/A-8225-2010 OI Trimarchi, Giancarlo/0000-0002-0365-3221 FU U.S. Department of Energy; Office of Science; Basic Energy Sciences; Materials Sciences and Engineering Division [DE-AC3608GO28308] FX X.Z. thanks Mayeul d'Avezac for useful discussions. This work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC3608GO28308 to NREL. NR 35 TC 25 Z9 25 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 9 AR 092102 DI 10.1103/PhysRevB.79.092102 PG 4 WC Physics, Condensed Matter SC Physics GA 427GQ UT WOS:000264768200002 ER PT J AU Zhou, JF Dong, JF Wang, BN Koschny, T Kafesaki, M Soukoulis, CM AF Zhou, Jiangfeng Dong, Jianfeng Wang, Bingnan Koschny, Thomas Kafesaki, Maria Soukoulis, Costas M. TI Negative refractive index due to chirality SO PHYSICAL REVIEW B LA English DT Article DE circular dichroism; metamaterials; optical rotation; refractive index ID METAMATERIALS AB We demonstrate experimentally and numerically that metamaterials based on bilayer cross wires give giant optical activity, circular dichroism, and negative refractive index. The presented chiral design offers a much simpler geometry and more efficient way to realize negative refractive index at any frequency. We also developed a retrieval procedure for chiral materials which works successfully for circularly polarized waves. C1 [Zhou, Jiangfeng; Dong, Jianfeng; Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhou, Jiangfeng; Dong, Jianfeng; Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Dong, Jianfeng] Ningbo Univ, Inst Opt Fiber Commun & Network Technol, Ningbo 315211, Zhejiang, Peoples R China. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Inst Elect Struct & Laser, Fdn Res & Technol Hellas FORTH, Iraklion 71110, Greece. [Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Greece. RP Zhou, JF (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Kafesaki, Maria/0000-0002-9524-2576; Zhou, Jiangfeng/0000-0002-6958-3342 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; Department of Navy, Office of the Naval Research [N00014-07-1-0359]; European Community FET project PHOME [213390]; USAFOSR [FA 9550-06-1-0337]; W. C. Wong Education Foundation, Hong Kong; National Basic Research Program (973) of China [2004CB719805]; National Natural Science Foundation of China [60777037] FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the Department of Navy, Office of the Naval Research (Award No. N00014-07-1-0359), European Community FET project PHOME (Contract No. 213390), and USAFOSR under MURI Grant No. FA 9550-06-1-0337. The author J.D. gratefully acknowledges support of the W. C. Wong Education Foundation, Hong Kong, the National Basic Research Program (973) of China (Grant No. 2004CB719805), and the National Natural Science Foundation of China (Grant No. 60777037). NR 22 TC 225 Z9 230 U1 10 U2 66 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 12 AR 121104 DI 10.1103/PhysRevB.79.121104 PG 4 WC Physics, Condensed Matter SC Physics GA 427HB UT WOS:000264769300004 ER PT J AU Zhou, XW Aubry, S Jones, RE Greenstein, A Schelling, PK AF Zhou, X. W. Aubry, S. Jones, R. E. Greenstein, A. Schelling, P. K. TI Towards more accurate molecular dynamics calculation of thermal conductivity: Case study of GaN bulk crystals SO PHYSICAL REVIEW B LA English DT Article DE gallium compounds; III-V semiconductors; molecular dynamics method; Monte Carlo methods; probability; thermal conductivity; wide band gap semiconductors ID OVERGROWN GAN/SAPPHIRE 0001; GALLIUM NITRIDE; HEAT-CONDUCTION; GRAIN-BOUNDARIES; EXTENDED DEFECTS; QUANTUM-WELL; SIMULATION; TRANSPORT; NANOWIRE; NANODEVICES AB Significant differences exist among literature for thermal conductivity of various systems computed using molecular dynamics simulation. In some cases, unphysical results, for example, negative thermal conductivity, have been found. Using GaN as an example case and the direct nonequilibrium method, extensive molecular dynamics simulations and Monte Carlo analysis of the results have been carried out to quantify the uncertainty level of the molecular dynamics methods and to identify the conditions that can yield sufficiently accurate calculations of thermal conductivity. We found that the errors of the calculations are mainly due to the statistical thermal fluctuations. Extrapolating results to the limit of an infinite-size system tend to magnify the errors and occasionally lead to unphysical results. The error in bulk estimates can be reduced by performing longer time averages using properly selected systems over a range of sample lengths. If the errors in the conductivity estimates associated with each of the sample lengths are kept below a certain threshold, the likelihood of obtaining unphysical bulk values becomes insignificant. Using a Monte Carlo approach developed here, we have determined the probability distributions for the bulk thermal conductivities obtained using the direct method. We also have observed a nonlinear effect that can become a source of significant errors. For the extremely accurate results presented here, we predict a [0001] GaN thermal conductivity of 185 W/K m at 300 K, 102 W/K m at 500 K, and 74 W/K m at 800 K. Using the insights obtained in the work, we have achieved a corresponding error level (standard deviation) for the bulk (infinite sample length) GaN thermal conductivity of less than 10 W/K m, 5 W/K m, and 15 W/K m at 300 K, 500 K, and 800 K, respectively. C1 [Zhou, X. W.; Jones, R. E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Aubry, S.] Stanford Univ, Mech & Computat Grp, Dept Mech Engn, Stanford, CA 94304 USA. [Aubry, S.] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA. [Greenstein, A.] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA. [Schelling, P. K.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Schelling, P. K.] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM xzhou@sandia.gov NR 52 TC 53 Z9 53 U1 3 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2009 VL 79 IS 11 AR 115201 DI 10.1103/PhysRevB.79.115201 PG 17 WC Physics, Condensed Matter SC Physics GA 427GX UT WOS:000264768900069 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCD Callner, J Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M De Silva, C Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Elnimr, M Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Heppelmann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kopytine, M Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Molnar, L Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Raniwala, R Raniwala, S Ray, RL Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Buren, GV van Leeuwen, M Molen, AMV Vanfossen, JA Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xu, N Xu, QH Xu, Y Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderson de la Barca Callner, J. Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. De Silva, C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Elnimr, M. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Heppelmann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kopytine, M. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. LeVine, M. J. Li, C. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Molnar, L. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Buren, G. Van van Leeuwen, M. Molen, A. M. Vander Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Systematic measurements of identified particle spectra in pp, d plus Au, and Au plus Au collisions at the STAR detector SO PHYSICAL REVIEW C LA English DT Review ID HEAVY-ION COLLISIONS; QUARK-GLUON-PLASMA; NUCLEUS-NUCLEUS COLLISIONS; TIME PROJECTION CHAMBER; IMPACT PARAMETER REPRESENTATION; PROTON-ANTIPROTON COLLISIONS; TRANSVERSE-MOMENTUM SPECTRA; RESISTIVE PLATE CHAMBERS; HIGH-DENSITY QCD; AU+AU COLLISIONS AB Identified charged-particle spectra of pi(+/-), K-+/-, p, and (p) over bar at midrapidity (vertical bar y vertical bar < 0.1) measured by the dE/dx method in the STAR (solenoidal tracker at the BNL Relativistic Heavy Ion Collider) time projection chamber are reported for pp and d + Au collisions at root s(NN) = 200 GeV and for Au + Au collisions at 62.4, 130, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness, and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged-particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm(3) for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters because of the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase-transition temperature, suggesting that chemical freeze-out happens in the vicinity of hadronization and the chemical freeze-out temperature is universal despite the vastly different initial conditions in the collision systems. The extracted kinetic freeze-out temperature, while similar to the chemical freeze-out temperature in pp, d + Au, and peripheral Au + Au collisions, drops significantly with centrality in Au + Au collisions, whereas the extracted transverse radial flow velocity increases rapidly with centrality. There appears to be a prolonged period of particle elastic scatterings from chemical to kinetic freeze-out in central Au + Au collisions. The bulk properties extracted at chemical and kinetic freeze-out are observed to evolve smoothly over the measured energy range, collision systems, and collision centralities. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Buren, G. Van; Videbaek, F.; Xu, Z.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderson de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cherney, M.; Garcia-Solis, E.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA. [Bielcikova, J.; Cervantes, M. C.; Chaloupka, P.; Gorbunov, Y. N.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Nucl Res Inst AS CR, CZ-25068 Rez, Czech Republic. [Averichev, G. S.; Dong, X.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Stadnik, A.; Tokarev, M.; Vokal, S.] Joint Inst Nucl Res Dubna, Lab High Energy, Dubna, Russia. [Arkhipkin, D.; Efimov, L. G.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res Dubna, Particle Phys Lab, Dubna, Russia. [Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Dash, S.; Nandi, B. K.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Coffin, J. P.; Estienne, M.; Kuhn, C.] Inst Rech Subatom, Strasbourg, France. [Bhasin, A.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Rykov, V.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Nepali, C.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Surrow, B.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Vasiliev, A. N.] NIKHEF, Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; Vasiliev, A. N.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Molnar, L.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.; Wang, G.; Wang, Q.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, L.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Lin, X.; Pal, S. K.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Singaraju, R. N.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; De Silva, C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Lin, X.; Liu, F.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Lee, Chang-Hwan/B-3096-2015; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Witt, Richard/H-3560-2012; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Voloshin, Sergei/I-4122-2013; Takahashi, Jun/B-2946-2012; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012 OI Bhasin, Anju/0000-0002-3687-8179; van Leeuwen, Marco/0000-0002-5222-4888; Lee, Chang-Hwan/0000-0003-3221-1171; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Pandit, Yadav/0000-0003-2809-7943; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Peitzmann, Thomas/0000-0002-7116-899X NR 171 TC 382 Z9 388 U1 3 U2 63 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034909 DI 10.1103/PhysRevC.79.034909 PG 58 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100047 ER PT J AU Bertsch, GF Bertulani, CA Nazarewicz, W Schunck, N Stoitsov, MV AF Bertsch, G. F. Bertulani, C. A. Nazarewicz, W. Schunck, N. Stoitsov, M. V. TI Odd-even mass differences from self-consistent mean field theory SO PHYSICAL REVIEW C LA English DT Article ID FOCK-BOGOLYUBOV EQUATIONS; HARMONIC-OSCILLATOR BASIS; PAIRING INTERACTION; DRIP-LINE; NUCLEI; NEUTRON; MODELS; GAP; DEPENDENCE; DENSITIES AB We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare the results with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization, and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form c/A(alpha). The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects, (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel, and (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences. C1 [Bertsch, G. F.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Bertulani, C. A.] Texas A&M Univ, Dept Phys, Commerce, TX 75429 USA. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Warsaw Univ, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Schunck, N.; Stoitsov, M. V.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Bertsch, G. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Bertsch, GF (reprint author), Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. OI Schunck, Nicolas/0000-0002-9203-6849 FU US Department of Energy [DE-FC02-07ER41457, DE-FG02-00ER41132, DE-FG02-96ER40963, DE-AC05-00OR22725] FX We thank A. Bulgac, W. Friedman, and P.-H. Heenen for helpful discussions. This work was supported in part by the US Department of Energy under Contract Nos. DE-FC02-07ER41457 (UNEDF SciDAC Collaboration), DE-FG02-00ER41132 (University of Washington), DE-FG02-96ER40963 (University of Tennessee), and DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory). Computational resources were provided by the National Center for Computational Sciences at Oak Ridge and the National Energy Research Scientific Computing Facility. Computations were also carried out on the Athena cluster of the University of Washington. NR 64 TC 78 Z9 78 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034306 DI 10.1103/PhysRevC.79.034306 PG 12 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100017 ER PT J AU Chang, L Liu, YX Roberts, CD Shi, YM Sun, WM Zong, HS AF Chang, Lei Liu, Yu-xin Roberts, Craig D. Shi, Yuan-mei Sun, Wei-min Zong, Hong-shi TI Chiral susceptibility and the scalar Ward identity SO PHYSICAL REVIEW C LA English DT Article ID DYSON-SCHWINGER EQUATIONS; QUARK BOUND-STATES; QUANTUM CHROMODYNAMICS; VACUUM SUSCEPTIBILITY; SYMMETRY BREAKING; DECAY CONSTANT; MODEL; QCD; CONFINEMENT; LATTICE AB The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansatze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking. C1 [Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chang, Lei] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China. [Liu, Yu-xin] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Liu, Yu-xin] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Liu, Yu-xin] Natl Lab Heavy Ion Accelerator, Ctr Theoret Nucl Phys, Lanzhou 730000, Peoples R China. [Roberts, Craig D.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Shi, Yuan-mei; Sun, Wei-min; Zong, Hong-shi] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Sun, Wei-min; Zong, Hong-shi] Joint Ctr Particle Nucl Phys & Cosmol, Nanjing 210093, Peoples R China. RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM yxliu@pku.edu.cn; cdroberts@anl.gov OI Roberts, Craig/0000-0002-2937-1361 NR 58 TC 37 Z9 37 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 035209 DI 10.1103/PhysRevC.79.035209 PG 9 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100057 ER PT J AU Dvorak, J Bruchle, W Dullmann, CE Dvorakova, Z Eberhardt, K Eichler, R Jager, E Nagame, Y Qin, Z Schadel, M Schausten, B Schimpf, E Schuber, R Semchenkov, A Thorle, P Turler, A Wegrzecki, M Yakushev, A AF Dvorak, J. Bruechle, W. Duellmann, Ch. E. Dvorakova, Z. Eberhardt, K. Eichler, R. Jaeger, E. Nagame, Y. Qin, Z. Schaedel, M. Schausten, B. Schimpf, E. Schuber, R. Semchenkov, A. Thoerle, P. Tuerler, A. Wegrzecki, M. Yakushev, A. TI Cross section limits for the Cm-248(Mg-25,4n-5n)(268,269)Hs reactions SO PHYSICAL REVIEW C LA English DT Article ID GROUND-STATE PROPERTIES; DECAY HALF-LIVES; SUPERHEAVY NUCLEI; SPONTANEOUS-FISSION; HEAVIEST NUCLEI; ELEMENTS; MODELS; HEAVY AB We report on an attempt to produce and detect (268)Hs and (269)Hs in the nuclear fusion reaction Mg-25+Cm-248 using the gas phase chemistry apparatus COMPACT. No decay chains attributable to the decay of hassium isotopes were observed during the course of this experiment. From the nonobservation of (269)Hs we derive a cross section limit of 0.4 pb (63% confidence limit) for the reaction Cm-248(Mg-25,4n)(269)Hs at a center-of-target beam energy of 140 MeV. The evaluated cross section limit for the Cm-248(Mg-25,5n)(268)Hs reaction depends on the assumed half-life of unknown (268)Hs. Current systematics of the half-lives for even-even Hs isotopes suggests a value of 0.5 s, resulting in a cross section limit of 1.3 pb. C1 [Dvorak, J.; Dvorakova, Z.; Schuber, R.; Semchenkov, A.; Tuerler, A.; Yakushev, A.] Tech Univ Munich, D-85748 Garching, Germany. [Bruechle, W.; Duellmann, Ch. E.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E.; Semchenkov, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Eberhardt, K.; Thoerle, P.] Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany. [Eichler, R.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Nagame, Y.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Qin, Z.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Wegrzecki, M.] Inst Electr Mat Technol, PL-02668 Warsaw, Poland. RP Dvorak, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Eichler, Robert/G-5130-2011; Turler, Andreas/D-3913-2014 OI Turler, Andreas/0000-0002-4274-1056 NR 24 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 037602 DI 10.1103/PhysRevC.79.037602 PG 4 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100074 ER PT J AU Ferroni, L Koch, V AF Ferroni, L. Koch, V. TI Crossover transition in bag-like models SO PHYSICAL REVIEW C LA English DT Article ID SU(2) GAUGE-THEORY; THERMAL HADRON-PRODUCTION; QUARK-GLUON PLASMA; PHASE-TRANSITION; STATISTICAL HADRONIZATION; CRITICAL-BEHAVIOR; MASS-SPECTRUM; COLLISIONS; PERCOLATION; GAS AB We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions, at high temperature, the system consist of a finite number of infinitely extended bags, which occupy the entire space. In this situation the system behaves as an ideal gas of quarks and gluons. C1 [Ferroni, L.; Koch, V.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Ferroni, L (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU US Department of Energy [DE-AC02-05CH11231] FX The authors thank M. I. Gorenstein for a critical reading of the manuscript and for useful suggestions. This work is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 39 TC 19 Z9 19 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034905 DI 10.1103/PhysRevC.79.034905 PG 14 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100043 ER PT J AU Flambaum, VV Wiringa, RB AF Flambaum, V. V. Wiringa, R. B. TI Enhanced effect of quark mass variation in Th-229 and limits from Oklo data SO PHYSICAL REVIEW C LA English DT Article ID FINE-STRUCTURE CONSTANT; FUNDAMENTAL CONSTANTS; TIME-VARIATION; SIGMA-TERMS; TRANSITION; UNIFICATION; SENSITIVITY AB The effects of the variation of the dimensionless strong interaction parameter X-q=m(q)/Lambda(QCD) (m(q) is the quark mass, Lambda(QCD) is the QCD scale) are enhanced about 1.5x10(5) times in the 7.6 eV "nuclear clock" transition between the ground and first excited states in the Th-229 nucleus and about 1x10(8) times in the relative shift of the 0.1 eV compound resonance in Sm-150. The best terrestrial limit on the temporal variation of the fundamental constants, |delta X-q/X-q|< 4x10(-9) at 1.8 billion years ago (|X center dot(q)/X-q|< 2.2x10(-18)y(-1)), is obtained from the shift of this Sm resonance derived from the Oklo natural nuclear reactor data. The results for Th-229 and Sm-150 are obtained by extrapolation from light nuclei where the many-body calculations can be performed more accurately. The errors produced by such extrapolation may be smaller than the errors of direct calculations in heavy nuclei. The extrapolation results are compared with the "direct" estimates obtained using the Walecka model. A number of numerical relations needed for the calculations of the variation effects in nuclear physics and atomic spectroscopy have been obtained: for the nuclear binding energy delta E/E approximate to-1.45 delta m(q)/m(q), for the spin-orbit intervals delta E-so/E-so approximate to-0.22 delta m(q)/m(q), for the nuclear radius delta r/r approximate to 0.3 delta m(q)/m(q) (in units of Lambda(QCD)); for the shifts of nuclear resonances and weakly bound energy levels delta E-r approximate to 10 delta X-q/X-q MeV. C1 [Flambaum, V. V.; Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Flambaum, V. V.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Flambaum, V. V.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. RP Flambaum, VV (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Wiringa, Robert/M-4970-2015 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Australian Research Council FX V. V. F. is grateful to H. Feldmeier for useful discussions. This work is supported by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357, and by the Australian Research Council. Calculations were made at Argonne's Laboratory Computing Resource Center. NR 41 TC 35 Z9 35 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034302 DI 10.1103/PhysRevC.79.034302 PG 8 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100013 ER PT J AU Fries, RJ Muller, B Schafer, A AF Fries, Rainer J. Mueller, Berndt Schaefer, Andreas TI Decoherence and entropy production in relativistic nuclear collisions SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; QUANTUM DECOHERENCE; ELLIPTIC FLOW; HIGH-ENERGY; SMALL X; THERMALIZATION; COLLABORATION; EQUILIBRATION; SATURATION AB Short thermalization times of less than 1 fm/c for quark and gluon matter have been suggested by recent experiments at the Relativistic Heavy Ion Collider. It has been difficult to justify this rapid thermalization in first-principle calculations based on perturbation theory or the color glass condensate picture. Here, we address the related question of the decoherence of the gluon field, which is a necessary component of thermalization. We present a simplified leading-order computation of the decoherence time of a gluon ensemble subject to an incoming flux of Weizsacker-Williams gluons. We also discuss the entropy produced during the decoherence process and its relation to the entropy in the final state that has been measured experimentally. C1 [Fries, Rainer J.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77801 USA. [Fries, Rainer J.] Texas A&M Univ, Dept Phys, College Stn, TX 77801 USA. [Fries, Rainer J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Mueller, Berndt] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Schaefer, Andreas] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. RP Fries, RJ (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77801 USA. FU Alexander von Humboldt Foundation; BMBF; RIKEN/BNL; Texas A&M College of Science; DOE [DE-AC02-98CH10886] FX This work was supported by the Alexander von Humboldt Foundation, BMBF, RIKEN/BNL, the Texas A&M College of Science, and DOE Grant DE-AC02-98CH10886. NR 39 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034904 DI 10.1103/PhysRevC.79.034904 PG 7 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100042 ER PT J AU Goeke, K Guzey, V Siddikov, M AF Goeke, K. Guzey, V. Siddikov, M. TI Leading twist nuclear shadowing, nuclear generalized parton distributions, and nuclear deeply virtual Compton scattering at small x SO PHYSICAL REVIEW C LA English DT Article ID INELASTIC SCATTERING; CROSS-SECTION; HERA; ELECTROPRODUCTION; FACTORIZATION; HADRONS; MESONS; QCD AB We generalize the leading twist theory of nuclear shadowing and calculate quark and gluon generalized parton distributions (GPDs) of spinless nuclei. We predict very large nuclear shadowing for nuclear GPDs. In the limit of the purely transverse momentum transfer, our nuclear GPDs become impact-parameter-dependent nuclear parton distribution functions (PDFs). Nuclear shadowing induces nontrivial correlations between the impact parameter b and the light-cone fraction x. We make predictions for the deeply virtual Compton scattering (DVCS) amplitude and the DVCS cross section on Pb-208 at high energies. We calculate the cross section of the Bethe-Heitler (BH) process and address the issue of the extraction of the DVCS signal from the eA -> e gamma A cross section. We find that the eA -> e gamma A differential cross section is dominated by DVCS at the momentum transfer t near the minima of the nuclear form factor. We also find that nuclear shadowing leads to dramatic oscillations of the DVCS beam-spin asymmetry, A(LU), as a function of t. The position of the points where A(LU) changes sign is directly related to the magnitude of nuclear shadowing. C1 [Goeke, K.; Siddikov, M.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. [Guzey, V.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Siddikov, M.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Siddikov, M.] Univ Tecn Federico Santa Maria, Ctr Estudios Subatom, Valparaiso, Chile. [Siddikov, M.] Uzbekistan Natl Univ, Dept Theoret Phys, Tashkent 700174, Uzbekistan. RP Goeke, K (reprint author), Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. EM Klaus.Goeke@tp2.rub.de; vguzey@jlab.org; marat.siddikov@tp2.rub.de RI Siddikov, Marat/H-6629-2013; OI Siddikov, Marat/0000-0002-9290-3236; Guzey, Vadim/0000-0002-2393-8507 FU Jefferson Science Associates, LLC; US DOE [DE-AC05-06OR23177]; The US Government FX We would like to thank M. Strikman for useful discussions. This paper is authored by Jefferson Science Associates, LLC under US DOE Contract No. DE- AC05-06OR23177. The US Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes. NR 48 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 035210 DI 10.1103/PhysRevC.79.035210 PG 17 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100058 ER PT J AU Goodin, C Stone, JR Stone, NJ Ramayya, AV Daniel, AV Hamilton, JH Li, K Hwang, JK Ter-Akopian, GM Rasmussen, JO AF Goodin, C. Stone, J. R. Stone, N. J. Ramayya, A. V. Daniel, A. V. Hamilton, J. H. Li, K. Hwang, J. K. Ter-Akopian, G. M. Rasmussen, J. O. TI g factors of first 2(+) states of neutron-rich Xe, Ba, and Ce isotopes SO PHYSICAL REVIEW C LA English DT Article ID MAGNETIC-MOMENTS; ANGULAR-CORRELATIONS; SPONTANEOUS FISSION; EVEN NUCLEI; FIELD; DEFORMATIONS; SYSTEMATICS; CF-252; PROTON; BA-138 AB Using new techniques developed for measuring angular correlations with large detector arrays, the g factors of 2(+) states in Xe-140,Xe-142 are measured for the first time by the method of correlation attenuation in randomly oriented magnetic fields. g factors in Ba-146 and Ce-146,Ce-148 are measured to establish the method by comparison with previous values. The results are discussed in terms of IBM-2 and rotation-vibration models. C1 [Goodin, C.; Ramayya, A. V.; Hamilton, J. H.; Li, K.; Hwang, J. K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Stone, J. R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Stone, J. R.; Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daniel, A. V.; Ter-Akopian, G. M.] Joint Inst Nucl Res Dubna, Flerov Lab Nucl React, Dubna, Russia. [Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. [Stone, J. R.; Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Goodin, C (reprint author), Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. OI Hwang, Jae-Kwang/0000-0002-4100-3473 FU US Department of Energy [DE-FG05-88ER40407, DE-FG05-87ER40311, DE-FG02-96ER40983, DE-FG02-94ER40834]; University of Tennessee; Vanderbilt University; [W-7405-ENG48] FX The authors thank F. Iachello for his discussions. The work at Vanderbilt University and Lawrence Berkeley National Laboratory was supported by the US Department of Energy under Grant No. DE-FG05-88ER40407 and Contract No. W-7405-ENG48. The Joint Institute for Heavy Ion Research is supported by the University of Tennessee, Vanderbilt University, and the US DOE through Contract No. DE-FG05-87ER40311 with the University of Tennessee. The authors are indebted for the use of 252Cf to the office of Basic Energy Sciences, U. S. Department of Energy, through the transplutonium element production facilities at the Oak Ridge National Laboratory. Support by U. S. DOE Grant Nos. DE-FG02-96ER40983 (N.J.S.) and DE-FG02-94ER40834 (J.R.S.) is gratefully acknowledged. NR 27 TC 12 Z9 13 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034316 DI 10.1103/PhysRevC.79.034316 PG 7 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100027 ER PT J AU Jeppesen, HB Dragojevic, I Clark, RM Gregorich, KE Ali, MN Allmond, JM Beausang, CW Bleuel, DL Cromaz, M Deleplanque, MA Ellison, PA Fallon, P Garcia, MA Gates, JM Greene, JP Gros, S Lee, IY Liu, HL Macchiavelli, AO Nelson, SL Nitsche, H Pavan, JR Stavsetra, L Stephens, FS Wiedeking, M Wyss, R Xu, FR AF Jeppesen, H. B. Dragojevic, I. Clark, R. M. Gregorich, K. E. Ali, M. N. Allmond, J. M. Beausang, C. W. Bleuel, D. L. Cromaz, M. Deleplanque, M. A. Ellison, P. A. Fallon, P. Garcia, M. A. Gates, J. M. Greene, J. P. Gros, S. Lee, I. Y. Liu, H. L. Macchiavelli, A. O. Nelson, S. L. Nitsche, H. Pavan, J. R. Stavsetra, L. Stephens, F. S. Wiedeking, M. Wyss, R. Xu, F. R. TI Multi-quasiparticle states in (256)Rf SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI; STABILITY; ELEMENTS; ISOMERS; CF-250; DECAY AB Excited states in (256)Rf were populated via the Pb-208(Ti-50,2n) fusion-evaporation reaction. Delayed gamma-ray and electron decay spectroscopy was performed and three isomeric states in (256)Rf have been identified. A fourth low-energy nonyrast state was identified from the gamma-ray decay of one of the higher lying isomers. The states are interpreted as multi-quasiparticle excitations. C1 [Jeppesen, H. B.; Dragojevic, I.; Clark, R. M.; Gregorich, K. E.; Ali, M. N.; Cromaz, M.; Deleplanque, M. A.; Ellison, P. A.; Fallon, P.; Garcia, M. A.; Gates, J. M.; Gros, S.; Lee, I. Y.; Macchiavelli, A. O.; Nelson, S. L.; Nitsche, H.; Pavan, J. R.; Stavsetra, L.; Stephens, F. S.; Wiedeking, M.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Dragojevic, I.; Ali, M. N.; Ellison, P. A.; Garcia, M. A.; Gates, J. M.; Nelson, S. L.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Allmond, J. M.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Bleuel, D. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Greene, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Liu, H. L.; Xu, F. R.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Wyss, R.] Royal Inst Technol, KTH, AlbaNova Univ Ctr, S-10405 Stockholm, Sweden. RP Jeppesen, HB (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RI Ali, Mazhar/C-6473-2013; Xu, Furong/K-4178-2013 OI Ali, Mazhar/0000-0002-1129-6105; FU US Department of Energy [DE-AC02-05CH11231, DE-FG52-06NA26206, DE-FG02-05ER41379]; US Department of Energy Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank the operations staff of the 88-Inch Cyclotron. One of us (RMC) would like to express gratitude to Kurt Hillgruber for his invaluable help during the experiment. This work has been supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231 (LBNL) and under Grant Nos. DE-FG52-06NA26206 and DE-FG02-05ER41379. Part of this work was performed under the auspices of the US Department of Energy Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 14 TC 39 Z9 39 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 031303 DI 10.1103/PhysRevC.79.031303 PG 5 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100003 ER PT J AU Kahn, Y Melnitchouk, W Kulagin, SA AF Kahn, Yonatan Melnitchouk, W. Kulagin, S. A. TI New method for extracting neutron structure functions from nuclear data SO PHYSICAL REVIEW C LA English DT Article ID DEEP-INELASTIC-SCATTERING; QUARK-HADRON DUALITY; PARTON DISTRIBUTIONS; ELECTRON-SCATTERING; DEUTERON; PROTON AB We propose a new method for extracting neutron structure functions from inclusive structure functions of nuclei, which employs an iterative procedure of solving integral convolution equations. Unlike earlier approaches, the new method is applicable to both spin-averaged and spin-dependent structure functions. We test the reliability of the method on unpolarized F-2 and polarized g(1) structure functions of the deuteron in both the nucleon resonance and deep inelastic regions. The new method is able to reproduce known input functions of almost arbitrary shape to very good accuracy with only several iterations. C1 [Kahn, Yonatan] Northwestern Univ, Evanston, IL 60208 USA. [Kahn, Yonatan; Melnitchouk, W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Kulagin, S. A.] Inst Nucl Res, RU-117312 Moscow, Russia. RP Kahn, Y (reprint author), Northwestern Univ, Evanston, IL 60208 USA. NR 45 TC 34 Z9 34 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 035205 DI 10.1103/PhysRevC.79.035205 PG 11 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100053 ER PT J AU Pereira, J Hennrich, S Aprahamian, A Arndt, O Becerril, A Elliot, T Estrade, A Galaviz, D Kessler, R Kratz, KL Lorusso, G Mantica, PF Matos, M Moller, P Montes, F Pfeiffer, B Schatz, H Schertz, F Schnorrenberger, L Smith, E Stolz, A Quinn, M Walters, WB Wohr, A AF Pereira, J. Hennrich, S. Aprahamian, A. Arndt, O. Becerril, A. Elliot, T. Estrade, A. Galaviz, D. Kessler, R. Kratz, K. -L. Lorusso, G. Mantica, P. F. Matos, M. Moeller, P. Montes, F. Pfeiffer, B. Schatz, H. Schertz, F. Schnorrenberger, L. Smith, E. Stolz, A. Quinn, M. Walters, W. B. Woehr, A. TI beta-decay half-lives and beta-delayed neutron emission probabilities of nuclei in the region A less than or similar to 110, relevant for the r process SO PHYSICAL REVIEW C LA English DT Article ID PROJECTILE FRAGMENT SEPARATOR; ATOMIC MASS EVALUATION; EXTREMELY METAL-POOR; GROUND-STATE; RICH NUCLEI; STRENGTH FUNCTIONS; SHAPE COEXISTENCE; LIFE PREDICTIONS; LEVEL STRUCTURE; MO-ISOTOPES AB Measurements of beta-decay properties of A less than or similar to 110 r-process nuclei have been completed at the National Superconducting Cyclotron Laboratory at Michigan State University. beta-decay half-lives for Y-105, Zr-106,Zr-107, and Mo-111, along with beta-delayed neutron emission probabilities of Y-104, Mo-109,Mo-110 and upper limits for Y-105, Zr103-107, and Mo-108,Mo-111 have been measured for the first time. Studies on the basis of the quasi-random-phase approximation are used to analyze the ground-state deformation of these nuclei. C1 [Pereira, J.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Lorusso, G.; Mantica, P. F.; Matos, M.; Montes, F.; Schatz, H.; Stolz, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Pereira, J.; Hennrich, S.; Becerril, A.; Elliot, T.; Estrade, A.; Galaviz, D.; Kessler, R.; Lorusso, G.; Matos, M.; Montes, F.; Schatz, H.; Schertz, F.; Schnorrenberger, L.; Smith, E.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Hennrich, S.; Arndt, O.; Kessler, R.; Pfeiffer, B.; Schertz, F.] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. [Hennrich, S.; Arndt, O.; Kessler, R.; Kratz, K. -L.; Pfeiffer, B.; Schertz, F.] Virtuelles Inst Struktur Kerne & Nukl Astrophys, Mainz, Germany. [Aprahamian, A.; Quinn, M.; Woehr, A.] Univ Notre Dame, Inst Struct & Nucl Astrophys, South Bend, IN USA. [Aprahamian, A.; Quinn, M.; Woehr, A.] Univ Notre Dame, Joint Inst Nucl Astrophys, South Bend, IN USA. [Becerril, A.; Elliot, T.; Estrade, A.; Lorusso, G.; Schatz, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Kratz, K. -L.] Max Planck Inst Chem, Otto Hahn Inst, D-55128 Mainz, Germany. [Mantica, P. F.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Moeller, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Schnorrenberger, L.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Smith, E.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Pereira, J (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. EM pereira@nscl.msu.edu RI Galaviz Redondo, Daniel/A-7325-2008; Matos, Milan/G-6947-2012 OI Galaviz Redondo, Daniel/0000-0003-2992-4496; Matos, Milan/0000-0003-1722-9509 NR 96 TC 55 Z9 55 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 035806 DI 10.1103/PhysRevC.79.035806 PG 18 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100067 ER PT J AU Podolyak, Z Steer, SJ Pietri, S Xu, FR Liu, HL Regan, PH Rudolph, D Garnsworthy, AB Hoischen, R Gorska, M Gerl, J Wollersheim, HJ Kurtukian-Nieto, T Benzoni, G Shizuma, T Becker, F Bednarczyk, P Caceres, L Doornenbal, P Geissel, H Grebosz, J Kelic, A Kojouharov, I Kurz, N Montes, F Prokopowicz, W Saito, T Schaffner, H Tashenov, S Heinz, A Pfutzner, M Jungclaus, A Balabanski, DL Brandau, C Bruce, AM Catford, WN Cullen, IJ Dombradi, Z Estevez, E Gelletly, W Ilie, G Jolie, J Jones, GA Kmiecik, M Kondev, FG Krucken, R Lalkovski, S Liu, Z Maj, A Myalski, S Schwertel, S Walker, PM Werner-Malento, E Wieland, O AF Podolyak, Zs. Steer, S. J. Pietri, S. Xu, F. R. Liu, H. L. Regan, P. H. Rudolph, D. Garnsworthy, A. B. Hoischen, R. Gorska, M. Gerl, J. Wollersheim, H. J. Kurtukian-Nieto, T. Benzoni, G. Shizuma, T. Becker, F. Bednarczyk, P. Caceres, L. Doornenbal, P. Geissel, H. Grebosz, J. Kelic, A. Kojouharov, I. Kurz, N. Montes, F. Prokopowicz, W. Saito, T. Schaffner, H. Tashenov, S. Heinz, A. Pfutzner, M. Jungclaus, A. Balabanski, D. L. Brandau, C. Bruce, A. M. Catford, W. N. Cullen, I. J. Dombradi, Zs. Estevez, E. Gelletly, W. Ilie, G. Jolie, J. Jones, G. A. Kmiecik, M. Kondev, F. G. Kruecken, R. Lalkovski, S. Liu, Z. Maj, A. Myalski, S. Schwertel, S. Walker, P. M. Werner-Malento, E. Wieland, O. TI Weakly deformed oblate structures in Os-198(76)122 SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; ISOMER SPECTROSCOPY; OS; FRAGMENTATION; TRANSITION; ISOTOPES; STATES AB Gamma rays de-exciting isomeric states in the neutron-rich nucleus Os-198(76)122 have been observed following relativistic projectile fragmentation of a 1 GeV per nucleon Pb-208 beam. The ground-state band has properties compatible with oblate deformation. The evolution of the structure of Os isotopes characterized by sudden prolate-oblate shape change is discussed and contrasted with the smooth change known in the Pt chain. C1 [Podolyak, Zs.; Steer, S. J.; Pietri, S.; Regan, P. H.; Garnsworthy, A. B.; Shizuma, T.; Brandau, C.; Catford, W. N.; Cullen, I. J.; Gelletly, W.; Jones, G. A.; Liu, Z.; Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Xu, F. R.; Liu, H. L.] Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China. [Rudolph, D.; Hoischen, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Garnsworthy, A. B.; Heinz, A.] Yale Univ, WNSL, New Haven, CT 06520 USA. [Hoischen, R.; Gorska, M.; Gerl, J.; Wollersheim, H. J.; Becker, F.; Bednarczyk, P.; Caceres, L.; Doornenbal, P.; Geissel, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tashenov, S.; Werner-Malento, E.] GSI Darmstadt, D-64291 Darmstadt, Germany. [Kurtukian-Nieto, T.; Estevez, E.] Univ Santiago Compostela, E-15706 Santiago De Compostela, Spain. [Benzoni, G.; Wieland, O.] Univ Milan, INFN, I-20133 Milan, Italy. [Bednarczyk, P.; Grebosz, J.; Prokopowicz, W.; Kmiecik, M.; Maj, A.; Myalski, S.] Henry Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Caceres, L.; Jungclaus, A.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Pfutzner, M.] Warsaw Univ, IEP, PL-00681 Warsaw, Poland. [Balabanski, D. L.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria. [Dombradi, Zs.] ATOMKI, Inst Nucl Res, H-4001 Debrecen, Hungary. [Ilie, G.; Jolie, J.] Univ Cologne, IKP, D-50937 Cologne, Germany. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Kruecken, R.; Schwertel, S.] Tech Univ Munich, Phys Dept E12, Garching, Germany. [Werner-Malento, E.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Bruce, A. M.; Lalkovski, S.] Univ Brighton, Sch Engn, Brighton BN2 4GJ, E Sussex, England. [Shizuma, T.] Japan Atom Energy Agcy, Kizu, Kyoto 6190215, Japan. RP Podolyak, Z (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. EM Z.Podolyak@surrey.ac.uk RI Rudolph, Dirk/D-4259-2009; Gerl, Juergen/A-3255-2011; Wieland, Oliver/G-1784-2011; Dombradi, Zsolt/B-3743-2012; Xu, Furong/K-4178-2013; Heinz, Andreas/E-3191-2014; Kurtukian-Nieto, Teresa/J-1707-2014; Bruce, Alison/K-7663-2016; Kruecken, Reiner/A-1640-2013 OI benzoni, giovanna/0000-0002-7938-0338; Rudolph, Dirk/0000-0003-1199-3055; Kurtukian-Nieto, Teresa/0000-0002-0028-0220; Bruce, Alison/0000-0003-2871-0517; Kruecken, Reiner/0000-0002-2755-8042 FU STFC/EPSRC (UK); AWE plc. (UK); EU [506065]; Swedish Research Council; Polish Ministry of Science and Higher Education [1 P03B 030 30, N N202 309135]; Bulgarian Science Fund; US DOE [DE-FG02-91ER-40609]; Spanish Ministerio de Educacion y Ciencia; German BMBF; Hungarian Science Foundation; Italian INFN FX The excellent work of the GSI accelerator staff is acknowledged. This work is supported by the STFC/EPSRC (UK) and AWE plc. (UK), the EU Access to Large Scale Facilities Programme (EURONS, EU Contract No. 506065), the Swedish Research Council, the Polish Ministry of Science and Higher Education (Grant Nos. 1 P03B 030 30 and N N202 309135), the Bulgarian Science Fund, the US DOE (Grant No. DE-FG02-91ER-40609), the Spanish Ministerio de Educacion y Ciencia, the German BMBF, the Hungarian Science Foundation, and the Italian INFN. NR 28 TC 22 Z9 22 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 031305 DI 10.1103/PhysRevC.79.031305 PG 4 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100005 ER PT J AU Roger, T Savajols, H Tanihata, I Mittig, W Alcorta, M Bandyopadhyay, D Bieri, R Buchmann, L Caamano, M Davids, B Galinski, N Gallant, A Howell, D Kanungo, R Mills, W Mythili, S Notani, M Openshaw, R Padilla-Rodal, E Roussel-Chomaz, P Ruprecht, G Savard, G Sheffer, G Shotter, AC Trinczek, M Walden, P AF Roger, T. Savajols, H. Tanihata, I. Mittig, W. Alcorta, M. Bandyopadhyay, D. Bieri, R. Buchmann, L. Caamano, M. Davids, B. Galinski, N. Gallant, A. Howell, D. Kanungo, R. Mills, W. Mythili, S. Notani, M. Openshaw, R. Padilla-Rodal, E. Roussel-Chomaz, P. Ruprecht, G. Savard, G. Sheffer, G. Shotter, A. C. Trinczek, M. Walden, P. TI Mass of Li-11 from the H-1(Li-11,Li-9)H-3 reaction SO PHYSICAL REVIEW C LA English DT Article AB The mass of Li-11 has been determined from Q-value measurements of the H-1(Li-11,Li-9)H-3 reaction. The experiment was performed at TRIUMF laboratory with the GANIL active target MAYA. Energy-energy and angle-angle kinematics reconstruction give a Q value of 8.119(22) MeV for the reaction. The derived Li-11 two-neutron separation energy is S-2n=363(22) keV. C1 [Roger, T.; Savajols, H.; Mittig, W.; Caamano, M.; Roussel-Chomaz, P.] GANIL, F-14076 Caen 05, France. [Tanihata, I.; Alcorta, M.; Bandyopadhyay, D.; Bieri, R.; Buchmann, L.; Davids, B.; Galinski, N.; Howell, D.; Mills, W.; Mythili, S.; Openshaw, R.; Padilla-Rodal, E.; Ruprecht, G.; Sheffer, G.; Shotter, A. C.; Trinczek, M.; Walden, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Gallant, A.; Kanungo, R.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Notani, M.; Savard, G.] ANL, Argonne, IL 60439 USA. RP Roger, T (reprint author), GANIL, Blvd Henri Becquerel,Boite Postale 55027, F-14076 Caen 05, France. RI Alcorta, Martin/G-7107-2011; caamano, manuel/A-1832-2013 OI Alcorta, Martin/0000-0002-6217-5004; caamano, manuel/0000-0002-5045-003X NR 11 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 031603 DI 10.1103/PhysRevC.79.031603 PG 4 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100008 ER PT J AU Schenke, B Strickland, M Dumitru, A Nara, Y Greiner, C AF Schenke, Bjoern Strickland, Michael Dumitru, Adrian Nara, Yasushi Greiner, Carsten TI Transverse momentum diffusion and collisional jet energy loss in non-Abelian plasmas SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; CLASSICAL TRANSPORT-THEORY; QUARK-GLUON PLASMA; HARD THERMAL LOOPS; NUCLEAR COLLISIONS; QCD PLASMA; BOLTZMANN-EQUATION; CASCADE MODELS; ELLIPTIC FLOW; CAUSALITY AB We consider momentum broadening and energy loss of high-momentum partons in a hot non-Abelian plasma due to collisions. We solve the coupled system of Wong-Yang-Mills equations on a lattice in real time, including binary hard elastic collisions among the partons. The collision kernel is constructed such that the total collisional energy loss and momentum broadening are lattice-spacing independent. We find that the transport coefficient q corresponding to transverse momentum broadening receives sizable contributions from a power-law tail in the p(perpendicular to) distribution of high-momentum partons. We establish the scaling of q and of dE/dx with density, temperature, and energy in the weak-coupling regime. We also estimate the nuclear modification factor R-AA due to elastic energy loss of a jet in a classical Yang-Mills field. C1 [Schenke, Bjoern] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Schenke, Bjoern; Strickland, Michael; Greiner, Carsten] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Strickland, Michael] Gettysburg Coll, Gettysburg, PA 17325 USA. [Dumitru, Adrian] CUNY Grad Sch & Univ Ctr, New York, NY 10016 USA. [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Nara, Yasushi] Akita Int Univ, Akita 0101211, Japan. RP Schenke, B (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. RI Strickland, Michael/A-4149-2013 OI Strickland, Michael/0000-0003-0489-4278 FU DFG [GR 1536/6-1]; McGill University; Natural Sciences and Engineering Research Council of Canada; Japan MEXT [20540276]; Yukawa Institute FX We thank Oliver Fochler, Charles Gale, Sangyong Jeon, Berndt Muller, and Zhe Xu for helpful discussions and comments. A. D. thanks J.Jalilian-Marian and D. Kharzeev for emphasizing the importance of energy loss in a classical Yang-Mills field. The numerical simulations were performed at the Center for Scientific Computing (CSC) of Goethe University, Frankfurt am Main. M. S. and B. S. were in part supported by DFG Grant GR 1536/6-1. B.S. gratefully acknowledges a Richard H. Tomlinson grant by McGill University as well as support from the Natural Sciences and Engineering Research Council of Canada. Y.N. is supported by Japan MEXT Grant No. 20540276. M. S. and Y.N. acknowledge support from the Yukawa Institute for Theoretical Physics during the "Entropy Production Before QGP" workshop. NR 75 TC 13 Z9 13 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034903 DI 10.1103/PhysRevC.79.034903 PG 10 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100041 ER PT J AU Shyam, R Mosel, U AF Shyam, R. Mosel, U. TI Dilepton production in nucleon-nucleon collisions reexamined SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; CHIRAL-SYMMETRY; PP-COLLISIONS; ENERGIES; MATTER; MODEL; BREMSSTRAHLUNG; RADIATION; PHOTON; HOT AB We present a fully relativistic and gauge-invariant framework for calculating the cross sections of dilepton production in nucleon-nucleon (NN) collisions that is based on the meson-exchange approximation for the NN-scattering amplitudes. Predictions of our model are compared with those of other covariant models that have been used earlier to describe this reaction. Our results are also compared with those of the semiclassical models that are employed to get the input elementary cross sections in the transport model calculations of the dilepton production in nucleus-nucleus collisions. It is found that cross sections obtained within the semiclassical and quantum mechanical models differ noticeably from each other. C1 [Shyam, R.] Saha Inst Nucl Phys, Kolkata 700064, India. [Shyam, R.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Mosel, U.] Univ Giessen, Inst Theoret Phys, D-35392 Giessen, Germany. RP Shyam, R (reprint author), Saha Inst Nucl Phys, Kolkata 700064, India. RI Mosel, Ulrich/E-2565-2012; OI Mosel, Ulrich/0000-0002-1826-0797 FU United States Department of Energy [DE-AC05-06OR23176] FX We are grateful to Dr. G.Lykasov and Ingo Frohlich for a careful reading of the manuscript and helpful comments. R. S. thanks A. W. Thomas for his very kind hospitality at the Theory Center of the Thomas Jefferson National Accelerator Facility where a part of this work was done. The Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-06OR23176. NR 42 TC 12 Z9 12 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 035203 DI 10.1103/PhysRevC.79.035203 PG 5 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100051 ER PT J AU Soltz, RA Newby, RJ Klay, JL Heffner, M Beaulieu, L Lefort, T Kwiatkowski, K Viola, VE AF Soltz, R. A. Newby, R. J. Klay, J. L. Heffner, M. Beaulieu, L. Lefort, T. Kwiatkowski, K. Viola, V. E. TI Centrality dependence of the thermal excitation-energy deposition in 8-15 GeV/c hadron-Au reactions SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI; COLLISIONS; PROTONS; MULTIFRAGMENTATION AB The excitation energy per residue nucleon (E*/A) and fast and thermal light particle multiplicities are studied as a function of centrality defined as the number of grey tracks emitted N-grey and by the mean number of primary hadron-nucleon scatterings () and the mean impact parameter (< b >) extracted from it. The value of E*/A and the multiplicities show an increase with centrality for all systems, 14.6 GeV p-Au and 8.0 GeV pi-Au and (p) over bar -Au collisions, and the excitation energy per residue nucleon exhibits a uniform dependence on N-grey. C1 [Soltz, R. A.; Newby, R. J.; Klay, J. L.; Heffner, M.] Lawrence Livermore Natl Lab, Div N, Livermore, CA 94550 USA. [Beaulieu, L.; Lefort, T.; Kwiatkowski, K.; Viola, V. E.] Indiana Univ, Dept Chem, Bloomington, IN 47304 USA. [Beaulieu, L.; Lefort, T.; Kwiatkowski, K.; Viola, V. E.] Indiana Univ, IUCF, Bloomington, IN 47304 USA. RP Soltz, RA (reprint author), Lawrence Livermore Natl Lab, Div N, 7000 E Ave, Livermore, CA 94550 USA. EM soltz@llnl.gov RI Beaulieu, Luc/A-6803-2009; OI Beaulieu, Luc/0000-0003-0429-6366; Newby, Robert/0000-0003-3571-1067 FU US Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344.] FX The experiments on which this work was based were performed by the AGS E900 Collaboration. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 24 TC 5 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034607 DI 10.1103/PhysRevC.79.034607 PG 4 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100038 ER PT J AU Stefanescu, I Walters, WB Janssens, RVF Hoteling, N Broda, R Carpenter, MP Fornal, B Hecht, AA Krolas, W Lauritsen, T Pawlat, T Seweryniak, D Stone, JR Wang, X Wohr, A Wrzesinski, J Zhu, S AF Stefanescu, I. Walters, W. B. Janssens, R. V. F. Hoteling, N. Broda, R. Carpenter, M. P. Fornal, B. Hecht, A. A. Krolas, W. Lauritsen, T. Pawlat, T. Seweryniak, D. Stone, J. R. Wang, X. Woehr, A. Wrzesinski, J. Zhu, S. TI Levels above the 19/2(-) isomer in Cu-71: Persistence of the N=40 neutron shell gap SO PHYSICAL REVIEW C LA English DT Article ID SUBSHELL CLOSURE; NI-68; DECAY; ISOTOPES; NUCLEUS AB Two prompt gamma rays of energies 2020 and 554 keV were observed in coincidence with delayed transitions depopulating the 19/2(-) isomer in the Z=29, N=42 Cu-71 nucleus. The newly identified transitions are proposed to deexcite the 4776- and 5330-keV levels above the 19/2(-) isomer. Based on the comparison with the low-lying positive-parity states observed in the Z=42, N=50 Mo-92 nucleus, spin and parity 23/2(-) are proposed for the 4776-keV level in Cu-71. The high-energy, 2020-keV transition is interpreted as arising from the breaking of the N=40 neutron core. Shell-model calculations with a Ni-56 core reproduce the (23/2(-))->(19/2(-)) gap well, suggesting that the 23/2(-) state is dominated by pi p(3/2)nu((fp)(10)(g(9/2))(4)) configurations. The present result constitutes further evidence supporting the view that the N=40 subshell closure persists in Cu-71, herewith challenging recent suggestions that the coupling of two or more proton or neutron quasiparticles induces a large polarization of the Ni-68 core. C1 [Stefanescu, I.; Walters, W. B.; Hoteling, N.; Hecht, A. A.; Stone, J. R.; Woehr, A.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Stefanescu, I.; Janssens, R. V. F.; Hoteling, N.; Carpenter, M. P.; Hecht, A. A.; Lauritsen, T.; Seweryniak, D.; Wang, X.; Woehr, A.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanescu, I.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Broda, R.; Fornal, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Wang, X.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Stone, J. R.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Stefanescu, I (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy [DEFG0294ER40834, DE- AC02- O6CH11357]; Polish Scientific Grant [2PO3B- 074- 18] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contracts DEFG0294ER40834 and DE- AC02- O6CH11357 and by Polish Scientific Grant 2PO3B- 074- 18. NR 27 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2009 VL 79 IS 3 AR 034319 DI 10.1103/PhysRevC.79.034319 PG 6 WC Physics, Nuclear SC Physics GA 427FV UT WOS:000264766100030 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for new physics in the mu mu+e/mu + is not an element of T channel with a low-pT lepton threshold at the Collider Detector at Fermilab SO PHYSICAL REVIEW D LA English DT Article ID FERMILAB TEVATRON COLLIDER; SUPERGAUGE TRANSFORMATIONS; PBARP COLLIDERS; SUPERSYMMETRY; NEUTRALINOS; CHARGINOS; GAUGINOS AB A search for new physics using three-lepton (trilepton) data collected with the CDF II detector and corresponding to an integrated luminosity of 976 pb(-1) is presented. The standard model predicts a low rate of trilepton events, which makes some supersymmetric processes, such as chargino-neutralino production, measurable in this channel. The mu mu + l signature is investigated, where l is an electron or a muon, with the additional requirement of large missing transverse energy. In this analysis, the lepton transverse momenta with respect to the beam direction (p(T)) are as low as 5 GeV/c, a selection that improves the sensitivity to particles that are light as well as to ones that result in leptonically decaying tau leptons. At the same time, this low-p(T) selection presents additional challenges due to the non-negligible heavy-quark background at low lepton momenta. This background is measured with an innovative technique using experimental data. Several dimuon and trilepton control regions are investigated, and good agreement between experimental results and standard-model predictions is observed. In the signal region, we observe one three-muon event and expect 0.4 +/- 0.1 mu mu + l events from standard-model processes. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Plager, C.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Anastassov, A.; Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bussey, P.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Penzo, A.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Harper, S.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Moscow Theoret & Expt Phys Inst, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sfyrla, A.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Loreti, M.; Morello, M. J.; Punzi, G.; Scribano, A.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Ciocci, M. A.; Latino, G.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Dionisi, C.; Iori, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Ivanov, Andrew/A-7982-2013; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014 OI Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Torre, Stefano/0000-0002-7565-0118; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science, and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak Ramp; D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staff of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science, and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation, and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R & D Agency; and the Academy of Finland. NR 38 TC 9 Z9 9 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 052004 DI 10.1103/PhysRevD.79.052004 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400011 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of cross sections for b jet production in events with a Z boson in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC CALORIMETER; CDF; DETECTOR; COLLIDER; UPGRADE AB A measurement of the b jet production cross section is presented for events containing a Z boson produced in p (p) over bar collisions at root s = 1.96 TeV, using data corresponding to an integrated luminosity of 2 fb(-1) collected by the CDF II detector at the Tevatron. Z bosons are selected in the electron and muon decay modes. Jets are considered with transverse energy E-T > 20 GeV and pseudorapidity vertical bar eta vertical bar < 1.5 and are identified as b jets using a secondary vertex algorithm. The ratio of the integrated Z + b jet cross section to the inclusive Z production cross section is measured to be 3.32 +/- 0.53(stat) +/- 0.42(syst) x 10(-3). This ratio is also measured differentially in jet E-T, jet eta, Z-boson transverse momentum, number of jets, and number of b jets. The predictions from leading-order Monte Carlo generators and next-to-leading-order QCD calculations are found to be consistent with the measurements within experimental and theoretical uncertainties. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bussey, P.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Anastassov, A.; Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Rusu, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Anastassov, A.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Husemann, U.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Squillacioti, P.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Loreti, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015 OI Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministeriumfur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RDAgency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. We are thankful to J. Campbell, F. Maltoni, M. Mangano, M. Seymour, T. Sjostrand and J. Thaler for the many interesting and helpful discussions regarding the theoretical predictions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministeriumfur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R & DAgency; and the Academy of Finland. NR 49 TC 23 Z9 23 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 052008 DI 10.1103/PhysRevD.79.052008 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400015 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vaezquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the t(t)over-bar production cross section in 2 fb(-1) of p(p)over-bar collisions at root s = 1.96 TeV using lepton plus jets events with soft muon b tagging SO PHYSICAL REVIEW D LA English DT Article ID PARTON DISTRIBUTIONS AB We present a measurement of the t (t) over bar production cross section in p (p) over bar collisions at root s = 1.96 TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with t (t) over bar decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF run II data sample corresponding to 2 fb(-1) of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of 79.5 +/- 5.3 events, we measure a production cross section of 9.1 +/- 1.6 pb. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Oakes, L.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lister, A.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lister, A.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Goshaw, A. T.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, K.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vaezquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Liss, T. M.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Renz, M.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, LPNHE, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Azzurri, P.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Squillacioti, P.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Cavaliere, V.; Ciocci, M. A.; Scribano, A.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giagu, S.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giagu, S.; Giordani, M.; Pauletta, G.; Rossi, M.; Santi, L.; Totaro, P.] Univ Trieste, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014 OI Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829 FU U.S. Department of Energy and the National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and the Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 29 TC 13 Z9 13 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 052007 DI 10.1103/PhysRevD.79.052007 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400014 ER PT J AU Abbasi, R Ackermann, M Adams, J Ahlers, M Ahrens, J Andeen, K Auffenberg, J Bai, X Baker, M Baret, B Barwick, SW Bay, R Alba, JLB Beattie, K Becka, T Becker, JK Becker, KH Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Braun, J Breder, D Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cowen, DF D'Agostino, MV Danninger, M Davour, A Day, CT Depaepe, O De Clercq, C Demirors, L Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hardtke, R Hasegawa, Y Heise, J Helbing, K Hellwig, M Herquet, P Hickford, S Hill, GC Hodges, J Hoffman, KD Hoshina, K Hubert, D Huelsnitz, W Hughey, B Hulss, JP Hulth, PO Hultqvist, K Hundertmark, S Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kawai, H Kelley, JL Kiryluk, J Kislat, F Klein, SR Klepser, S Kohnen, G Kolanoski, H Kopke, L Kowalski, M Kowarik, T Krasberg, M Kuehn, K Kuwabara, T Labare, M Laihem, K Landsman, H Lauer, R Leich, H Leier, D Lewis, C Lucke, A Lundberg, J Lunemann, J Madsen, J Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Meli, A Merck, M Messarius, T Meszaros, P Miyamoto, H Mohr, A Montaruli, T Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Pretz, J Price, PB Przybylski, GT Rawlins, K Razzaque, S Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Robbins, WJ Rodriguez, J Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Satalecka, K Schlenstedt, S Schmidt, T Schneider, D Schultz, O Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Smith, AJ Song, C Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Swillens, Q Taboada, I Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Tluczykont, M Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Viscomi, V Vogt, C Voigt, B Walck, C Waldenmaier, T Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebusch, CH Wiedemann, C Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Ackermann, M. Adams, J. Ahlers, M. Ahrens, J. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Baret, B. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Becka, T. Becker, J. K. Becker, K. -H. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Braun, J. Breder, D. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davour, A. Day, C. T. Depaepe, O. De Clercq, C. Demiroers, L. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hardtke, R. Hasegawa, Y. Heise, J. Helbing, K. Hellwig, M. Herquet, P. Hickford, S. Hill, G. C. Hodges, J. Hoffman, K. D. Hoshina, K. Hubert, D. Huelsnitz, W. Hughey, B. Huelss, J.-P. Hulth, P. O. Hultqvist, K. Hundertmark, S. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kawai, H. Kelley, J. L. Kiryluk, J. Kislat, F. Klein, S. R. Klepser, S. Kohnen, G. Kolanoski, H. Koepke, L. Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Lauer, R. Leich, H. Leier, D. Lewis, C. Lucke, A. Lundberg, J. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Meli, A. Merck, M. Messarius, T. Meszaros, P. Miyamoto, H. Mohr, A. Montaruli, T. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Pretz, J. Price, P. B. Przybylski, G. T. Rawlins, K. Razzaque, S. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Robbins, W. J. Rodriguez, J. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Satalecka, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schultz, O. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Smith, A. J. Song, C. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. Sullivan, G. W. Swillens, Q. Taboada, I. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Tluczykont, M. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Viscomi, V. Vogt, C. Voigt, B. Walck, C. Waldenmaier, T. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebusch, C. H. Wiedemann, C. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. TI Search for point sources of high energy neutrinos with final data from AMANDA-II SO PHYSICAL REVIEW D LA English DT Article ID COSMIC-RAYS; TELESCOPES; SELECTION; DETECTOR; OBJECTS; LIMITS AB We present a search for point sources of high energy neutrinos using 3.8 yr of data recorded by AMANDA-II during 2000-2006. After reconstructing muon tracks and applying selection criteria designed to optimally retain neutrino-induced events originating in the northern sky, we arrive at a sample of 6595 candidate events, predominantly from atmospheric neutrinos with primary energy 100 GeV to 8 TeV. Our search of this sample reveals no indications of a neutrino point source. We place the most stringent limits to date on E-2 neutrino fluxes from points in the northern sky, with an average upper limit of E-2 Phi(nu mu)+nu(tau)<= 5.2x10(-11) TeV cm(-2) s(-1) on the sum of nu(mu) and nu(tau) fluxes, assumed equal, over the energy range from 1.9 TeV to 2.5 PeV. C1 [Abbasi, R.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hodges, J.; Hoshina, K.; Hughey, B.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Lewis, C.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodriguez, J.; Schneider, D.; Song, C.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Euler, S.; Vogt, C.; Wiebusch, C. H.; Wissing, H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Baret, B.; Depaepe, O.; De Clercq, C.; Hubert, D.; Rizzo, A.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Kawai, H.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Danninger, M.; Gross, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Pretz, J.; Redl, P.; Roth, P.; Schmidt, T.; Smith, A. J.; Straszheim, T.; Turcan, D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Becker, J. K.; Dreyer, J.; Leier, D.; Meli, A.; Messarius, T.; Muenich, K.; Rhode, W.; Wiedemann, C.] Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. [Descamps, F.; de Vries-Uiterweerd, G.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schultz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahrens, J.; Becka, T.; Gozzini, R.; Griesel, T.; Hellwig, M.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Hardtke, R.; Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Burgess, T.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.; Razzaque, S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Meszaros, P.; Razzaque, S.; Robbins, W. J.; Rutledge, D.; Toale, P. A.; Viscomi, V.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Davour, A.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Div High Energy Phys, S-75121 Uppsala, Sweden. [Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Univ Utrecht, Dept Phys & Astron, SRON, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Alba, J. L. Bazo; Berdermann, J.; Bernardini, E.; Bolmont, J.; Boeser, S.; Franke, R.; Kislat, F.; Klepser, S.; Lauer, R.; Leich, H.; Nahnhauer, R.; Pieloth, D.; Satalecka, K.; Schlenstedt, S.; Spiering, C.; Sulanke, K. -H.; Tarasova, O.; Tluczykont, M.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Pohl, A. C.] Kalmar Univ, Sch Pure & Appl Nat Sci, S-39182 Kalmar, Sweden. RP Braun, J (reprint author), Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. EM jbraun@icecube.wisc.edu RI Song, Chihwa/A-3455-2008; Hundertmark, Stephan/A-6592-2010; Vogt, Christian/E-2028-2012; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Hubert, Daan/0000-0002-4365-865X; Ter-Antonyan, Samvel/0000-0002-5788-1369; Perez de los Heros, Carlos/0000-0002-2084-5866; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X FU U. S. National Science Foundation-Office of Polar Programs; U. S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; U. S. Department of Energy and National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Swedish Research Council; Swedish Polar Research Secretariat; Knut and Alice Wallenberg Foundation (Sweden); German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Scientific Research (FNRS- FWO); Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); Netherlands Organisation for Scientific Research (NWO); SNF (Switzerland) FX We acknowledge the support from the following agencies: U. S. National Science Foundation-Office of Polar Programs, U. S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, U. S. Department of Energy and National Energy Research Scientific Computing Center, Louisiana Optical Network Initiative (LONI) grid computing resources, Swedish Research Council, Swedish Polar Research Secretariat, Knut and Alice Wallenberg Foundation (Sweden), German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), (Germany), Fund for Scientific Research (FNRS- FWO), Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo), and the Netherlands Organisation for Scientific Research (NWO); M. Ribordy acknowledges the support of the SNF (Switzerland); A. Kappes and A. Groa acknowledge support by the EU Marie Curie OIF Program; M. Stamatikos is supported by NPP at NASA-GSFC administered by ORAU. NR 36 TC 49 Z9 51 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 6 AR 062001 DI 10.1103/PhysRevD.79.062001 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EL UT WOS:000264762500005 ER PT J AU Atre, A Carena, M Han, T Santiago, J AF Atre, Anupama Carena, Marcela Han, Tao Santiago, Jose TI Heavy quarks above the top at the Tevatron SO PHYSICAL REVIEW D LA English DT Article ID FLAVOR VIOLATION AB Recent developments in models with warped extra dimensions have opened new possibilities for vectorlike quark studies at hadron colliders. These new vectorlike quarks can mix sizably with light standard model quarks without violating low energy constraints. We perform a model-independent analysis to determine the Tevatron reach in the search for new quarks. We find that the Tevatron has great potential to observe such quarks via their electroweak single production due to their mixing with valence quarks. With 4(8) fb(-1) integrated luminosity, one may reach a 5 sigma statistical significance for a heavy quark of mass 580(630) GeV if the heavy quark-Standard Model quark mixing parameter is order one. C1 [Atre, Anupama; Carena, Marcela] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Atre, Anupama; Carena, Marcela; Han, Tao; Santiago, Jose] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93107 USA. [Carena, Marcela] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Han, Tao] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Santiago, Jose] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Carena, Marcela] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Atre, A (reprint author), Fermilab Natl Accelerator Lab, MS106,POB 500, Batavia, IL 60510 USA. EM avatre@fnal.gov; carena@fnal.gov; than@hep.wisc.edu; xsantiago@itp.phys.etzh.ch RI Santiago, Jose/D-9109-2016; OI Santiago, Jose/0000-0003-3585-5626; Han, Tao/0000-0002-5543-0716 NR 33 TC 41 Z9 41 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 054018 DI 10.1103/PhysRevD.79.054018 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400047 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Anders, C Langenbruch, C Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Anders, C. Langenbruch, C. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBaR Collaboration TI Measurement of the B+ -> omega l(+) v and B+ -> eta l(+) v branching fractions SO PHYSICAL REVIEW D LA English DT Article AB We present a study of the charmless semileptonic B-meson decays B+ -> omega l(+) v and B+ -> eta l(+) v. The analysis is based on 3.83 x 10(8) B (B) over bar B pairs recorded at the Gamma(4S) resonance with the BABAR detector. The omega mesons are reconstructed in the channel omega -> pi(+)pi(-)pi(0) and the eta mesons in the channels eta -> pi(+)pi(-)pi(0) and eta -> gamma gamma. We measure the branching fractions B(B+ -> omega l(+) v) = (1.14 +/- 0.16(stat) +/- 0.08(syst)) x 10(-4) and B(B+ -> eta l(+) v) = (0.31 +/- 0.06(stat) +/- 0.08(syst)) x 10(-4). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Koch, H.; Schroeder, T.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Koch, H.; Schroeder, T.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Anders, C.; Langenbruch, C.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Sigamani, M.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Manoni, E.; Angelini, C.; Carpinelli, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Dallas, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982 FU DOE; NSF (USA); NSERC (Canada); IHEP (China); CEA (France) [CNRS-IN2P3]; BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MIST (Russia); PPARC (United Kingdom); CONACyT (Mexico); A. P. Sloan Foundation; Research Corporation; Alexander von Humboldt Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation. NR 20 TC 7 Z9 7 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 052011 DI 10.1103/PhysRevD.79.052011 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400018 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Gilman, JD Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Rodriguez, DM Thomas, EW Tomassini, EW Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PDA Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Gilman, J. D. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Rodriguez, D. M. Thomas, E. W. Tomassini, E. W. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Observation of B meson decays to omega K* and improved measurements for omega rho and omega f(0) SO PHYSICAL REVIEW D LA English DT Article ID POLARIZATION AB We present measurements of B meson decays to the final states omega K*, omega rho, and omega f(0), where K* indicates a spin 0, 1, or 2 strange meson. The data sample corresponds to 465 x 10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II e(+)e(-) collider at SLAC. B meson decays involving vector-scalar, vector-vector, and vector-tensor final states are analyzed; the latter two shed new light on the polarization of these final states. We measure the branching fractions for nine of these decays; five are observed for the first time. For most decays we also measure the charge asymmetry and, where relevant, the longitudinal polarization f(L). C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Gilman, J. D.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Rodriguez, D. M.; Thomas, E. W.; Tomassini, E. W.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.; Bingham, I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. RP Aubert, B (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 44 TC 16 Z9 16 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 052005 DI 10.1103/PhysRevD.79.052005 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400012 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Biassoni, P Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA Babar Collaboration TI Measurement of time dependent CP asymmetry parameters in B-0 meson decays to omega KS0, eta ' K-0, and pi(KS0)-K-0 SO PHYSICAL REVIEW D LA English DT Article ID B DECAYS AB We present measurements of the time-dependent CP-violation parameters S and C in the decays B-0 -> omega K-S(0), B-0 -> eta'K-0, reconstructed as eta'K-S(0) and eta'K-L(0), and B-0 -> pi K-0(S)0. The data sample corresponds to the full BABAR dataset of 467 x 10(6) B (B) over bar pairs produced at the PEP-II asymmetric-energy e(+)e(-) collider at the Stanford Linear Accelerator Center. The results are S-omega KS0 = 0.55(-0.29)(+0.26) +/- 0.02, C-omega KS0 = 0.52(-0.20)(+0.22) +/- 0.03, S-eta'K0 = 0.57 +/- 0.08 +/- 0.02, C-eta'K0 = 0.08 +/- 0.06 +/- 0.02, S-pi 0KS0 = 0.55 +/- 0.20 +/- 0.03, and C-pi 0KS0 = 0.13 +/- 0.13 +/- 0.03, where the first errors are statistical and the second systematic. These results are consistent with our previous measurements and the world average of sin2 beta measured in B-0 -> J / psi K-S(0). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kernund Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 FU BABAR; U.S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 37 TC 25 Z9 25 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 052003 DI 10.1103/PhysRevD.79.052003 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400010 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA Babar Collaboration TI Evidence for B+ -> (K)over-bar*K-0*(+) SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; POLARIZATION; ASYMMETRIES; JETS AB We present measurements of the branching fraction and fraction of longitudinal polarization for the decay B+ -> (K) over bar*K-0*(+) with a sample of (467 +/- 5) x 10(6) B (B) over bar B pairs collected with the BABAR detector at the PEP- II asymmetric- energy e(+)e(-) collider at the SLAC National Accelerator Laboratory. We obtain the branching fraction B(B+ -> (K) over bar*K-0*(+)) = (1.2 +/- 0.5 +/- 0.1) x 10(-6) with a significance of 3.7 standard deviations including systematic uncertainties. We measure the fraction of longitudinal polarization f(L) = 0.75(-0.26)(+0.16) +/- 0.03. The first error quoted is statistical and the second is systematic. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fac Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Gradl, W.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015 OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633 FU US Department of Energy and National Science Foundation; Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 32 TC 6 Z9 6 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 051102 DI 10.1103/PhysRevD.79.051102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400002 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Search for the decay B+ -> Ks(0)Ks(0)pi(+) SO PHYSICAL REVIEW D LA English DT Article AB We search for charmless decays of charged B mesons to the three-body final state (KSKS0)-K-0 pi(+). Using a data sample of 423.7 fb(-1) collected at the Gamma(4S) resonance with the BABAR detector, corresponding to (465.1 +/- 5.1) x 10(6) (B) over bar B pairs, we find no significant signal and determine a 90% confidence level upper limit on the branching fraction of 5.1 x 10(-7). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Sordini, V.; Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012 OI Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163 NR 32 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 051101 DI 10.1103/PhysRevD.79.051101 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400001 ER PT J AU Bailey, JA Bernard, C DeTar, C Di Pierro, M El-Khadra, AX Evans, RT Freeland, ED Gamiz, E Gottlieb, S Heller, UM Hetrick, JE Kronfeld, AS Laiho, J Levkova, L Mackenzie, PB Okamoto, M Simone, JN Sugar, R Toussaint, D Van de Water, RS AF Bailey, Jon A. Bernard, C. DeTar, C. Di Pierro, M. El-Khadra, A. X. Evans, R. T. Freeland, E. D. Gamiz, E. Gottlieb, Steven Heller, U. M. Hetrick, J. E. Kronfeld, A. S. Laiho, J. Levkova, L. Mackenzie, P. B. Okamoto, M. Simone, J. N. Sugar, R. Toussaint, D. Van de Water, R. S. CA Fermilab Lattice & MILC TI B ->pi l nu semileptonic form factor from three-flavor lattice QCD: A model-independent determination of |V-ub| SO PHYSICAL REVIEW D LA English DT Article ID GAUGE-THEORIES; QUANTUM CHROMODYNAMICS; STAGGERED FERMIONS; PARTICLE PHYSICS; MESON DECAYS; SUM-RULES; HEAVY; ENERGY; SCALE AB We calculate the form factor f(+)(q(2)) for B-meson semileptonic decay in unquenched lattice QCD with 2+1 flavors of light sea quarks. We use Asqtad-improved staggered light quarks and a Fermilab bottom quark on gauge configurations generated by the MILC Collaboration. We simulate with several light-quark masses and at two lattice spacings, and extrapolate to the physical quark mass and continuum limit using heavy-light meson staggered chiral perturbation theory. We then fit the lattice result for f(+)(q(2)) simultaneously with that measured by the BABAR experiment using a parameterization of the form-factor shape in q(2), which relies only on analyticity and unitarity in order to determine the Cabibbo-Kobayashi-Maskawa matrix element |V-ub|. This approach reduces the total uncertainty in |V-ub| by combining the lattice and experimental information in an optimal, model-independent manner. We find a value of |V-ub|x10(3)=3.38 +/- 0.36. C1 [Bailey, Jon A.; Kronfeld, A. S.; Mackenzie, P. B.; Okamoto, M.; Simone, J. N.; Van de Water, R. S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bernard, C.; Laiho, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [DeTar, C.; Levkova, L.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Di Pierro, M.] Depaul Univ, Sch Comp Sci Telecom & Info Syst, Chicago, IL 60604 USA. [El-Khadra, A. X.; Evans, R. T.; Gamiz, E.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Freeland, E. D.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL USA. [Gottlieb, Steven] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Heller, U. M.] Amer Phys Soc, Ridge, NY USA. [Hetrick, J. E.] Univ Pacific, Dept Phys, Stockton, CA 95211 USA. [Sugar, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Toussaint, D.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Bailey, JA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM ruthv@bnl.gov RI Gamiz, Elvira/E-8009-2016 OI Gamiz, Elvira/0000-0001-5125-2687 NR 98 TC 80 Z9 80 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 054507 DI 10.1103/PhysRevD.79.054507 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400055 ER PT J AU Bousso, R Freivogel, B Yang, IS AF Bousso, Raphael Freivogel, Ben Yang, I-Sheng TI Properties of the scale factor measure SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL CONSTANT; ETERNAL INFLATION; UNIVERSE; SUPERNOVAE; LAMBDA AB We show that in expanding regions, the scale factor measure can be reformulated as a local measure: Observations are weighted by integrating their physical density along a geodesic that starts in the longest-lived metastable vacuum. This explains why some of its properties are similar to those of the causal-diamond measure. In particular, both measures are free of Boltzmann brains, subject to nearly the same conditions on vacuum stability. However, the scale factor measure assigns a much smaller probability to the observed value of the cosmological constant. The probability decreases further, similar to the inverse sixth power of the primordial density contrast, if the latter is allowed to vary. C1 [Bousso, Raphael] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM bousso@lbl.gov; freivogel@berkeley.edu; jingking@berkeley.edu FU Berkeley Center for Theoretical Physics; CAREER grant [0349351]; National Science Foundation; U. S. Department of Energy [DE-AC0205CH11231] FX We thank A. Guth and A. Vilenkin for discussions. This work was supported by the Berkeley Center for Theoretical Physics, by a CAREER grant (No. 0349351) of the National Science Foundation, and by the U. S. Department of Energy under Contract No. DE-AC0205CH11231. NR 55 TC 53 Z9 53 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 6 AR 063513 DI 10.1103/PhysRevD.79.063513 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EL UT WOS:000264762500029 ER PT J AU Bousso, R Leichenauer, S AF Bousso, Raphael Leichenauer, Stefan TI Star formation in the multiverse SO PHYSICAL REVIEW D LA English DT Article ID HISTORY AB We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known. C1 [Bousso, Raphael] Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Dept Phys, Ctr Theoret Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; CAREER [0349351]; National Science Foundation; FQXi [RFP2-08-06]; U. S. Department of Energy [DE-AC02-05CH11231] FX We thank K. Nagamine for providing us with a compilation of data points for the observed star formation rate. We are grateful to C. McKee, J. Niemeyer, and E. Quataert for discussions. We also thank J. Carlson for collaboration at the early stages of this project. This work was supported by the Berkeley Center for Theoretical Physics, by a CAREER grant (Award No. 0349351) of the National Science Foundation, by FQXi Grant No. RFP2-08-06, and by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 18 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 6 AR 063506 DI 10.1103/PhysRevD.79.063506 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EL UT WOS:000264762500022 ER PT J AU Craig, NJ Green, D AF Craig, Nathaniel J. Green, Daniel TI Sequestering the gravitino: Neutralino dark matter in gauge mediation SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRY-BREAKING; STANDARD MODEL; RELIC DENSITY; PROGRAM; MICROMEGAS AB In conventional models of gauge-mediated supersymmetry breaking, the lightest supersymmetric particle is invariably the gravitino. However, if the supersymmetry-breaking sector is strongly coupled, conformal sequestering may raise the mass of the gravitino relative to the remaining soft supersymmetry-breaking masses. In this paper, we demonstrate that such conformal dynamics in gauge-mediated theories may give rise to satisfactory neutralino dark matter while simultaneously solving the flavor and mu/B mu problems. C1 [Craig, Nathaniel J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Green, Daniel] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Green, Daniel] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Craig, NJ (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM ncraig@stanford.edu; drgreen@stanford.edu FU NSERC; Mellam Family Foundation; DOE [DE-AC03-76SF00515]; NSF [PHY-9870115]; NDSEG; Stanford Institute for Theoretical Physics FX We would like to thank Xiao Liu for collaboration at various stages of this project. We would also like to thank Savas Dimopoulos, Michael Dine, Shamit Kachru, Hyung Do Kim, Michael Peskin, Eva Silverstein, and especially David Poland for helpful discussions. N. J. C would like to acknowledge the hospitality of the Rudolph Peierls Center for Theoretical Physics at Oxford University, where part of this work was completed. D. G. is supported in part by NSERC, the Mellam Family Foundation, the DOE under Contract No. DE-AC03-76SF00515 and the NSF under Contract No. PHY-9870115. N.J.C. is supported in part by the NDSEG, the NSF under Contract No. PHY-9870115, and the Stanford Institute for Theoretical Physics. NR 44 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 6 AR 065030 DI 10.1103/PhysRevD.79.065030 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EL UT WOS:000264762500113 ER PT J AU de Putter, R Zahn, O Linder, EV AF de Putter, Roland Zahn, Oliver Linder, Eric V. TI CMB lensing constraints on neutrinos and dark energy SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE BACKGROUND ANISOTROPIES; COSMOLOGICAL PARAMETERS; POWER SPECTRUM; POLARIZATION; CLUSTERS AB Signatures of lensing of the cosmic microwave background radiation by gravitational potentials along the line of sight carry with them information on the matter distribution, neutrino masses, and dark energy properties. We examine the constraints that Planck, PolarBear, and CMBpol future data, including from the B-mode polarization or the lensing potential, will be able to place on these quantities. We simultaneously fit for neutrino mass and dark energy equation of state including time variation and early dark energy density, and compare the use of polarization power spectra with an optimal quadratic estimator of the lensing. Results are given as a function of systematics level from residual foreground contamination. A realistic CMBpol experiment can effectively constrain the sum of neutrino masses to within 0.05 eV and the fraction of early dark energy to 0.002. We also present a surprisingly simple prescription for calculating dark energy equation of state constraints in combination with supernova distances from JDEM. C1 [de Putter, Roland] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94704 USA. Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94704 USA. RP de Putter, R (reprint author), Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94704 USA. FU Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Berkeley Center for Cosmological Physics FX We thank Georg Robbers for tireless advice on CMBeasy, and also thank Wayne Hu and Sudeep Das for useful exchanges. This work was supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. O.Z. acknowledges funding by the Berkeley Center for Cosmological Physics. NR 56 TC 40 Z9 40 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 6 AR 065033 DI 10.1103/PhysRevD.79.065033 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EL UT WOS:000264762500116 ER PT J AU Dumitru, A Guo, Y Mocsy, A Strickland, M AF Dumitru, Adrian Guo, Yun Mocsy, Agnes Strickland, Michael TI Quarkonium states in an anisotropic QCD plasma SO PHYSICAL REVIEW D LA English DT Article ID BOUND-STATES; CHARMONIUM; QUARKS; MATTER; MODEL AB We consider quarkonium in a hot quantum chromodynamics (QCD) plasma which, due to expansion and nonzero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is nonzero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schrodinger equation for this potential. We find that quarkonium binding is stronger at nonvanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. C1 [Dumitru, Adrian] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA. [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN, BNL, Res Ctr, Upton, NY 11973 USA. [Dumitru, Adrian] CUNY, Grad Sch, New York, NY 10036 USA. [Guo, Yun] Goethe Univ Frankfurt, Helmholtz Res Sch, D-60438 Frankfurt, Germany. [Guo, Yun] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Mocsy, Agnes] Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 USA. [Strickland, Michael] Gettysburg Coll, Dept Phys, Gettysburg, PA 17325 USA. [Dumitru, Adrian] CUNY, Univ Ctr, New York, NY 10036 USA. RP Dumitru, A (reprint author), CUNY, Baruch Coll, Dept Nat Sci, 17 Lexington Ave, New York, NY 10010 USA. RI Strickland, Michael/A-4149-2013 OI Strickland, Michael/0000-0003-0489-4278 FU Helmholtz foundation; Otto Stern School at Frankfurt university FX We thank D. Kharzeev and P. Petreczky for reading the manuscript prior to publication and for useful comments. Y. G. thanks the Helmholtz foundation and the Otto Stern School at Frankfurt university for their support and the center for scientific computing (CSC) for computational resources. NR 53 TC 46 Z9 46 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 054019 DI 10.1103/PhysRevD.79.054019 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400048 ER PT J AU Gardner, S AF Gardner, Susan TI Shedding light on dark matter: A Faraday rotation experiment to limit a dark magnetic moment SO PHYSICAL REVIEW D LA English DT Review ID LARGE-SCALE STRUCTURE; ULTRA-COLD NEUTRONS; STABLE PARTICLES; SPIRAL GALAXIES; SOLAR-SYSTEM; COSMOLOGICAL PARAMETERS; ANNIHILATION EMISSION; BETA ASYMMETRY; SEA-WATER; HYDROGEN AB A Faraday rotation experiment can set limits on the magnetic moment of a electrically-neutral, dark-matter particle, and the limits increase in stringency as the candidate-particle mass decreases. Consequently, if we assume the dark-matter particle to be a thermal relic, our most stringent constraints emerge at the keV mass scale. We discuss how such an experiment could be realized and determine the limits on the magnetic moment as a function of mass which follow given demonstrated experimental capacities. C1 [Gardner, Susan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys & Theoret Phys, Batavia, IL 60510 USA. [Gardner, Susan] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. RP Gardner, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys & Theoret Phys, POB 500, Batavia, IL 60510 USA. NR 160 TC 28 Z9 28 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 055007 DI 10.1103/PhysRevD.79.055007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400062 ER PT J AU Kang, ZB Qiu, JW Vogelsang, W AF Kang, Zhong-Bo Qiu, Jian-Wei Vogelsang, Werner TI Low-mass lepton pair production at large transverse momentum SO PHYSICAL REVIEW D LA English DT Article ID VIRTUAL PHOTON STRUCTURE; HEAVY-ION COLLISIONS; TO-LEADING ORDER; PARTON DISTRIBUTIONS; FRAGMENTATION FUNCTIONS; JET PRODUCTION; QCD; DILEPTON; QUARK; REAL AB We study the transverse momentum distribution of low-mass lepton pairs produced in hadronic scattering, using the perturbative QCD factorization approach. We argue that the distribution at large transverse momentum, Q(T)> Q, with the pair's invariant mass Q as low as Q similar to Lambda(QCD), can be systematically factorized into universal parton-to-lepton pair fragmentation functions, parton distributions, and perturbatively calculable partonic hard parts evaluated at a short-distance scale similar to O(1/Q(T)). We introduce a model for the input lepton pair fragmentation functions at a scale mu(0)similar to 1 GeV, which are then evolved perturbatively to scales relevant at the Relativistic Heavy Ion Collider. Using the evolved fragmentation functions, we calculate the transverse momentum distributions in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at the Relativistic Heavy Ion Collider. We also discuss the sensitivity of the transverse momentum distribution of low-mass lepton pairs to the gluon distribution. C1 [Kang, Zhong-Bo; Qiu, Jian-Wei] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kang, ZB (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM kangzb@iastate.edu; jwq@iastate.edu; vogelsan@quark.phy.bnl.gov RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DEFG0287ER40371, DE-AC0298CH10886] FX We thank Y. Akiba for many useful discussions on hadronic production of low-mass lepton pairs, and for his careful reading and valuable comments on our manuscript. We are grateful to E. L. Berger for discussions on DrellYan production of low- mass lepton pairs and to M. Strikman and R. Venugopalan for discussions on nuclear parton distributions. This work was supported in part by the U.S. Department of Energy under Grant No. DEFG0287ER40371 (J.Q.) and Contract No. DE-AC0298CH10886 (W. V.). J.Q. thanks the Institute of High Energy Physics, Chinese Academy of Science, for its hospitality during the writing of this work. NR 70 TC 20 Z9 21 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 054007 DI 10.1103/PhysRevD.79.054007 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400036 ER PT J AU Linder, EV AF Linder, Eric V. TI Extending the gravitational growth framework SO PHYSICAL REVIEW D LA English DT Article ID DARK ENERGY; REDSHIFT DISTORTIONS; ACCELERATION; UNIVERSE; GRAVITY AB The gravitational growth index formalism provides a model independent way to look for deviations from general relativity by testing dark energy physics distinct from its effects on the cosmic expansion history. Here we extend the approach to incorporate an early time parameter g(star) in addition to the growth index in describing the growth of large-scale structure. We illustrate its utility for models with modified gravity at high redshift, early acceleration, or early dark energy. Future data will have the capability to constrain the dark energy equation of state, the growth index gamma, and g(star) simultaneously, with no degradation in the equation of state determination. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Linder, EV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 47 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 6 AR 063519 DI 10.1103/PhysRevD.79.063519 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EL UT WOS:000264762500035 ER PT J AU Padmanabhan, N White, M Cohn, JD AF Padmanabhan, Nikhil White, Martin Cohn, J. D. TI Reconstructing baryon oscillations: A Lagrangian theory perspective SO PHYSICAL REVIEW D LA English DT Article ID GRAVITATIONAL-INSTABILITY; ACOUSTIC SCALE; DARK ENERGY AB Recently Eisenstein and collaborators introduced a method to "reconstruct" the linear power spectrum from a nonlinearly evolved galaxy distribution in order to improve precision in measurements of baryon acoustic oscillations. We reformulate this method within the Lagrangian picture of structure formation, to better understand what such a method does, and what the resulting power spectra are. We show that reconstruction does not reproduce the linear density field, at second order. We however show that it does reduce the damping of the oscillations due to nonlinear structure formation, explaining the improvements seen in simulations. Our results suggest that the reconstructed power spectrum is potentially better modeled as the sum of three different power spectra, each dominating over different wavelength ranges and with different nonlinear damping terms. Finally, we also show that reconstruction reduces the mode-coupling term in the power spectrum, explaining why miscalibrations of the acoustic scale are reduced when one considers the reconstructed power spectrum. C1 [Padmanabhan, Nikhil] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Cohn, J. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. RP Padmanabhan, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM NPadmanabhan@lbl.gov; mwhite@berkeley.edu; jcohn@berkeley.edu RI Padmanabhan, Nikhil/A-2094-2012; White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU NASA [HST-HF-01200.01]; LBNL; NASA; Department of Energy; Director, Office of Science, of the U. S. Department of Energy [DE-AC02-05CH11231] FX We thank David Spergel and Will Percival for conversations on reconstruction. N. P. is supported by NASA HST-HF-01200.01 and LBNL. M. W. is supported by NASA and the Department of Energy. J. C. is supported by the Department of Energy. This work was supported by the Director, Office of Science, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 18 TC 49 Z9 49 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 6 AR 063523 DI 10.1103/PhysRevD.79.063523 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EL UT WOS:000264762500039 ER PT J AU Shepherd, W Tait, TMP Zaharijas, G AF Shepherd, William Tait, Tim M. P. Zaharijas, Gabrijela TI Bound states of weakly interacting dark matter SO PHYSICAL REVIEW D LA English DT Article ID INELASTIC PHOTOPRODUCTION; QCD; ANNIHILATION; EMISSION AB We explore the possibility that weakly interacting dark matter can form bound states-WIMPonium. Such states are expected in a wide class of models of particle dark matter, including some limits of the minimal supersymmetric standard model. We examine the conditions under which we expect bound states to occur and use analogues of nonrelativistic QCD applied to heavy quarkonia to provide estimates for their properties, including couplings to the standard model. We further find that it may be possible to produce WIMPonium at the LHC and explore the properties of the WIMP that can be inferred from measurements of the WIMPonium states. C1 [Shepherd, William; Tait, Tim M. P.] Northwestern Univ, Evanston, IL 60208 USA. [Tait, Tim M. P.; Zaharijas, Gabrijela] Argonne Natl Lab, Argonne, IL 60439 USA. [Tait, Tim M. P.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Zaharijas, Gabrijela] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. RP Shepherd, W (reprint author), Northwestern Univ, 2145 Sheridan Rd, Evanston, IL 60208 USA. OI Shepherd, William/0000-0002-3506-8895; Zaharijas, Gabrijela/0000-0001-8484-7791 FU Department of Energy [DE-AC02-06CH11357]; National Science Foundation [PHY05-51164] FX The authors are pleased to acknowledge conversations with E. Berger, D. Hooper, I. Low, A. Pierce, M. Schmitt, T. Rizzo, X. Tormo, and especially G. Bodwin. Research at Argonne National Laboratory is supported in part by the Department of Energy under Contract No. DE-AC02-06CH11357. T. Tait is grateful to the SLAC theory group for his many visits and to the KITP for providing an excellent environment in which some of this work was accomplished. That portion of the research was supported in part by the National Science Foundation under Grant No. PHY05-51164. NR 40 TC 50 Z9 50 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 055022 DI 10.1103/PhysRevD.79.055022 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400077 ER PT J AU Umeda, T Ejiri, S Aoki, S Hatsuda, T Kanaya, K Maezawa, Y Ohno, H AF Umeda, T. Ejiri, S. Aoki, S. Hatsuda, T. Kanaya, K. Maezawa, Y. Ohno, H. CA WHOT QCD Collaboration TI Fixed scale approach to equation of state in lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID WILSON GAUGE ACTION; THERMODYNAMICS AB A new approach to study the equation of state in finite-temperature QCD is proposed on the lattice. Unlike the conventional method in which the temporal lattice size N(t) is fixed, the temperature T is varied by changing N(t) at the fixed lattice scale. The pressure of the hot QCD plasma is calculated by the integration of the trace anomaly with respect to T at the fixed lattice scale. This "T-integral method'' is tested in quenched QCD on isotropic and anisotropic lattices and is shown to give reliable results, especially at intermediate and low temperatures. C1 [Umeda, T.; Aoki, S.; Kanaya, K.; Ohno, H.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Ejiri, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Aoki, S.] Brookhaven Natl Lab, Res Ctr, RIKEN, BNL, Upton, NY 11973 USA. [Hatsuda, T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Maezawa, Y.] RIKEN, Nishina Accelerator Res Ctr, Enyo Radiat Lab, Wako, Saitama 3510198, Japan. RP Umeda, T (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. RI Hatsuda, Tetsuo/C-2901-2013 FU Japanese Ministry of Education, Culture, Sports, Science and Technology [17340066, 18540253, 19549001, 20340047]; U.S. Department of Energy [DE-AC02-98CH10886] FX U. thanks H. Matsufuru for helpful discussions and for r0/as data on the anisotropic lattice. The simulations have been performed on supercomputers at RCNP, Osaka University and YITP, Kyoto University. This work is in part supported by Grants-in-Aid of the Japanese Ministry of Education, Culture, Sports, Science and Technology (No. 17340066, No. 18540253, No. 19549001, and No. 20340047). S. E. is supported by the U.S. Department of Energy (No. DE-AC02-98CH10886). NR 17 TC 45 Z9 45 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 051501 DI 10.1103/PhysRevD.79.051501 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400005 ER PT J AU Walker-Loud, A Lin, HW Richards, DG Edwards, RG Engelhardt, M Fleming, GT Hagler, P Musch, B Lin, MF Meyer, H Negele, JW Pochinsky, AV Procura, M Syritsyn, S Morningstar, CJ Orginos, K Renner, DB Schroers, W AF Walker-Loud, A. Lin, H. -W. Richards, D. G. Edwards, R. G. Engelhardt, M. Fleming, G. T. Haegler, Ph. Musch, B. Lin, M. F. Meyer, H. Negele, J. W. Pochinsky, A. V. Procura, M. Syritsyn, S. Morningstar, C. J. Orginos, K. Renner, D. B. Schroers, W. TI Light hadron spectroscopy using domain wall valence quarks on an asqtad sea SO PHYSICAL REVIEW D LA English DT Review ID CHIRAL PERTURBATION-THEORY; DYNAMICAL LATTICE QCD; BARYON MASSES; FINITE-VOLUME; SIGMA-TERMS; FERMIONS; NUCLEON; EXTRAPOLATIONS; EXPANSION; BREAKING AB We calculate the light hadron spectrum in full QCD using two plus one flavor asqtad sea quarks and domain wall valence quarks. Meson and baryon masses are calculated on a lattice of spatial size L approximate to 2.5 fm, and a lattice spacing of a approximate to 0.124 fm, for pion masses as light as m(pi)approximate to 300 MeV, and compared with the results by the MILC Collaboration with asqtad valence quarks at the same lattice spacing. Two- and three-flavor chiral extrapolations of the baryon masses are performed using both continuum and mixed action heavy baryon chiral perturbation theory. Both the three-flavor and two-flavor functional forms describe our lattice results, although the low-energy constants from the next-to-leading order SU(3) fits are inconsistent with their phenomenological values. Next-to-next-to-leading order SU(2) continuum formulae provide a good fit to the data and yield an extrapolated nucleon mass consistent with experiment, but the convergence pattern indicates that even our lightest pion mass may be at the upper end of the chiral regime. Surprisingly, our nucleon masses are essentially linear in m(pi) over our full range of pion masses, and we show this feature is common to all recent dynamical calculations of the nucleon mass. The origin of this linearity is not presently understood, and lighter pion masses and increased control of systematic errors will be needed to resolve this puzzling behavior. C1 [Walker-Loud, A.] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Lin, H. -W.; Richards, D. G.; Edwards, R. G.; Orginos, K.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Engelhardt, M.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Fleming, G. T.] Yale Univ, Sloane Phys Lab, New Haven, CT 06520 USA. [Haegler, Ph.; Musch, B.] Tech Univ Munich, Dept Phys, Inst Theoret Phys T39, D-85747 Garching, Germany. [Lin, M. F.; Meyer, H.; Negele, J. W.; Pochinsky, A. V.; Procura, M.; Syritsyn, S.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Morningstar, C. J.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Orginos, K.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Renner, D. B.] DESY, Theory Grp, D-15738 Zeuthen, Germany. [Schroers, W.] Natl Taiwan Univ, Dept Phys, Ctr Theoret Sci, Taipei 10617, Taiwan. RP Walker-Loud, A (reprint author), Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. RI Fleming, George/L-6614-2013; Morningstar, Colin/N-6925-2014; Walker, Lynn/I-2562-2016 OI Fleming, George/0000-0002-4987-7167; Morningstar, Colin/0000-0002-0607-9923; Walker, Lynn/0000-0002-7478-9759 NR 118 TC 101 Z9 102 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2009 VL 79 IS 5 AR 054502 DI 10.1103/PhysRevD.79.054502 PG 37 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 427EK UT WOS:000264762400050 ER PT J AU Dallon, JC Newren, E Hansen, MDH AF Dallon, J. C. Newren, Elijah Hansen, Marc D. H. TI Using a mathematical model of cadherin-based adhesion to understand the function of the actin cytoskeleton SO PHYSICAL REVIEW E LA English DT Article DE adhesion; biomembranes; cellular biophysics; suspensions ID CELL-CELL ADHESION; ATOMIC-FORCE MICROSCOPY; DICTYOSTELIUM-DISCOIDEUM SLUG; EPITHELIAL-CELLS; CONTACT FORMATION; OPTICAL TWEEZERS; ALPHA-CATENIN; BLOOD-FLOW; DYNAMICS; SURFACE AB The actin cytoskeleton plays a role in cell-cell adhesion but its specific function is not clear. Actin might anchor cadherins or drive membrane protrusions in order to facilitate cell-cell adhesion. Using a mathematical model of the forces involved in cadherin-based adhesion, we investigate its possible functions. The immersed boundary method is used to model the cell membrane and cortex with cadherin binding forces added as linear springs. The simulations indicate that cells in suspension can develop normal cell-cell contacts without actin-based cadherin anchoring or membrane protrusions. The cadherins can be fixed in the membrane or free to move, and the end results are similar. For adherent cells, simulations suggest that the actin cytoskeleton must play an active role for the cells to establish cell-cell contact regions similar to those observed in vitro. C1 [Dallon, J. C.] Brigham Young Univ, Dept Math, Provo, UT 84602 USA. [Newren, Elijah] Sandia Natl Labs, Dept 1541, Albuquerque, NM 87185 USA. RP Dallon, JC (reprint author), Brigham Young Univ, Dept Math, TMCB 312, Provo, UT 84602 USA. NR 39 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 031918 DI 10.1103/PhysRevE.79.031918 PN 1 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GH UT WOS:000264767300106 PM 19391982 ER PT J AU Del-Castillo-Negrete, D AF del-Castillo-Negrete, D. TI Truncation effects in superdiffusive front propagation with Levy flights SO PHYSICAL REVIEW E LA English DT Article DE Gaussian distribution; nonlinear dynamical systems; reaction-diffusion systems ID FRACTIONAL REACTION-DIFFUSION; STOCHASTIC-PROCESS; ULTRASLOW CONVERGENCE; ANOMALOUS DIFFUSION; PATTERN-FORMATION; EQUATIONS; SYSTEMS; TURBULENCE; DYNAMICS; MODEL AB A numerical and analytical study of the role of exponentially truncated Levy flights in the superdiffusive propagation of fronts in reaction-diffusion systems is presented. The study is based on a variation of the Fisher-Kolmogorov equation where the diffusion operator is replaced by a lambda-truncated fractional derivative of order alpha, where 1/lambda is the characteristic truncation length scale. For lambda=0 there is no truncation, and fronts exhibit exponential acceleration and algebraically decaying tails. It is shown that for lambda not equal 0 this phenomenology prevails in the intermediate asymptotic regime (chi t)(1/alpha)< x < 1/lambda where chi is the diffusion constant. Outside the intermediate asymptotic regime, i.e., for x>1/lambda, the tail of the front exhibits the tempered decay phi similar to e(-lambda x)/x((1+alpha)), the acceleration is transient, and the front velocity v(L) approaches the terminal speed v(*)=(gamma-lambda(alpha)chi)/lambda as t ->infinity, where it is assumed that gamma>lambda(alpha)chi with gamma denoting the growth rate of the reaction kinetics. However, the convergence of this process is algebraic, v(L)similar to v(*)-alpha/(lambda t), which is very slow compared to the exponential convergence observed in the diffusive (Gaussian) case. An overtruncated regime in which the characteristic truncation length scale is shorter than the length scale of the decay of the initial condition, 1/nu, is also identified. In this extreme regime, fronts exhibit exponential tails, phi similar to e(-nu x), and move at the constant velocity v=(gamma-lambda(alpha)chi)/nu. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Del-Castillo-Negrete, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI del-Castillo-Negrete, Diego/0000-0001-7183-801X FU Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX This work has been supported by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 34 TC 28 Z9 28 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 031120 DI 10.1103/PhysRevE.79.031120 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GH UT WOS:000264767300039 PM 19391915 ER PT J AU Matthaeus, WH Oughton, S Zhou, Y AF Matthaeus, W. H. Oughton, S. Zhou, Y. TI Anisotropic magnetohydrodynamic spectral transfer in the diffusion approximation SO PHYSICAL REVIEW E LA English DT Article DE diffusion; magnetohydrodynamics; turbulence ID MEAN MAGNETIC-FIELD; MHD TURBULENCE; ALFVENIC TURBULENCE; REDUCED MAGNETOHYDRODYNAMICS; HYDROMAGNETIC TURBULENCE; PARTICLE-ACCELERATION; SPACE PLASMAS; SOLAR-WIND; FLUCTUATIONS; SIMULATIONS AB A theoretical model of spectral transfer for anisotropic magnetohydrodynamic (MHD) turbulence is introduced, approximating energy transport in wave vector (k) space as a nonlinear diffusion process, extending previous isotropic k-space diffusion theories for hydrodynamics and MHD. This formal closure at the spectral equation level may be useful in space and astrophysical applications. C1 [Matthaeus, W. H.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Oughton, S.] Univ Waikato, Dept Math, Hamilton, New Zealand. [Zhou, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Matthaeus, WH (reprint author), Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. RI Oughton, Sean/A-3380-2012 OI Oughton, Sean/0000-0002-2814-7288 FU NASA [NNG06GD47G, NNG06GE65G, NNX08AI47G]; NSF [ATM 0539995] FX This research supported in part by NASA Grants No. NNG06GD47G, No. NNG06GE65G, and No. NNX08AI47G (Heliophysics Theory) and by Grant No. NSF-ATM 0539995. NR 48 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 035401 DI 10.1103/PhysRevE.79.035401 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GI UT WOS:000264767400007 PM 19392010 ER PT J AU Nilson, RH Griffiths, SK AF Nilson, Robert H. Griffiths, Stewart K. TI Optimizing transient transport in materials having two scales of porosity SO PHYSICAL REVIEW E LA English DT Article DE electromigration; flow through porous media; Knudsen flow; nanoporous materials; porosity ID FLOW; GAS AB Porous materials having multiple scales of porosity afford the opportunity to combine the high surface area and functionality of nanopores with the superior charge/discharge characteristics of wider transport channels. However, the relative volume fractions assigned to nanopores and transport channels must be thoughtfully balanced because the introduction of transport channels reduces the volume available for nanopore functionality. In the present paper, the optimal balance between nanopore capacity and system response time is achieved by adjusting the aperture and spacing of a family of transport channels that provide access to adjacent nanopores during recharge/discharge cycles of materials intended for storage of gas or electric charge. A diffusive transport model is used to describe alternative processes of viscous gas flow, Knudsen gas flow, and ion diffusion or electromigration. The coupled transport equations for the nanopores and transport channels are linearized and solved analytically for a periodic variation in external gas pressure, ion concentration, or electric potential using a separation-of-variables approach in the complex domain. Optimization of these solutions yields closed-form expressions for channel apertures and spacing that provide maximum discharge of gas or electric charge for a fixed system volume and a desired discharge time. C1 [Nilson, Robert H.; Griffiths, Stewart K.] Sandia Natl Labs, Phys & Engn Sci Ctr, Livermore, CA 94550 USA. RP Nilson, RH (reprint author), Sandia Natl Labs, Phys & Engn Sci Ctr, POB 969, Livermore, CA 94550 USA. FU Engineering Sciences Research Foundation; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors appreciate support from the Engineering Sciences Research Foundation at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 5 Z9 5 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 036304 DI 10.1103/PhysRevE.79.036304 PN 2 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GI UT WOS:000264767400043 PM 19392046 ER PT J AU Quan, HT Cucchietti, FM AF Quan, H. T. Cucchietti, F. M. TI Quantum fidelity and thermal phase transitions SO PHYSICAL REVIEW E LA English DT Article DE critical points; phase diagrams; phase transformations; quantum theory ID BODY APPROXIMATION METHODS; INFINITELY COORDINATED SYSTEMS; SOLVABLE MODEL; RADIATION-FIELD; SPIN CHAINS; ENTANGLEMENT; CRITICALITY; VALIDITY; MECHANICS AB We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two types of second-order thermal phase transitions (based on the type of nonanaliticity of free energy), and we find that usual fidelity criteria for identifying critical points is more applicable to the case of lambda transitions (divergent second derivatives of free energy). Our study also reveals that for fixed perturbations, the sensitivity of fidelity at high temperatures (where thermal fluctuations wash out information about the transition) is reduced. From the connection to thermodynamical quantities we propose slight variations to the usual fidelity approach that allow us to overcome these limitations. In all cases we find that fidelity remains a good precriterion for testing thermal phase transitions, and we use it to analyze the nonzero temperature phase diagram of the Lipkin-Meshkov-Glick model. C1 [Quan, H. T.; Cucchietti, F. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Quan, HT (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Cucchietti, Fernando/C-7765-2016; Quan, Haitao/G-8521-2012 OI Cucchietti, Fernando/0000-0002-9027-1263; Quan, Haitao/0000-0002-4130-2924 FU U. S. Department of Energy through the LANL/LDRD Program FX We thank Cristian Batista, Rishi Sharma, and Michael Zwolak for stimulating discussions, and one of the referees for very valuable suggestions. We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work. NR 98 TC 28 Z9 28 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 031101 DI 10.1103/PhysRevE.79.031101 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GH UT WOS:000264767300020 PM 19391896 ER PT J AU Rassuchine, J d'Humieres, E Baton, SD Guillou, P Koenig, M Chahid, M Perez, F Fuchs, J Audebert, P Kodama, R Nakatsutsumi, M Ozaki, N Batani, D Morace, A Redaelli, R Gremillet, L Rousseaux, C Dorchies, F Fourment, C Santos, JJ Adams, J Korgan, G Malekos, S Hansen, SB Shepherd, R Flippo, K Gaillard, S Sentoku, Y Cowan, TE AF Rassuchine, J. d'Humieres, E. Baton, S. D. Guillou, P. Koenig, M. Chahid, M. Perez, F. Fuchs, J. Audebert, P. Kodama, R. Nakatsutsumi, M. Ozaki, N. Batani, D. Morace, A. Redaelli, R. Gremillet, L. Rousseaux, C. Dorchies, F. Fourment, C. Santos, J. J. Adams, J. Korgan, G. Malekos, S. Hansen, S. B. Shepherd, R. Flippo, K. Gaillard, S. Sentoku, Y. Cowan, T. E. TI Enhanced hot-electron localization and heating in high-contrast ultraintense laser irradiation of microcone targets SO PHYSICAL REVIEW E LA English DT Article DE plasma heating by laser; plasma production by laser; plasma simulation; plasma temperature ID DENSITY PLASMA; PULSES; TRANSPORT; IGNITION; ALUMINUM AB We report experiments demonstrating enhanced coupling efficiencies of high-contrast laser irradiation to nanofabricated conical targets. Peak temperatures near 200 eV are observed with modest laser energy (10 J), revealing similar hot-electron localization and material heating to reduced mass targets (RMTs), despite having a significantly larger mass. Collisional particle-in-cell simulations attribute the enhancement to self-generated resistive (similar to 10 MG) magnetic fields forming within the curvature of the cone wall, which confine energetic electrons to heat a reduced volume at the tip. This represents a different electron confinement mechanism (magnetic, as opposed to electrostatic sheath confinement in RMTs) controllable by target shape. C1 [Rassuchine, J.; d'Humieres, E.; Gaillard, S.; Sentoku, Y.; Cowan, T. E.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Baton, S. D.; Guillou, P.; Koenig, M.; Chahid, M.; Perez, F.; Fuchs, J.; Audebert, P.] UPMC, CEA, Ecole Polytech, Lab Utilisat Laser Intenses,CNRS, F-91128 Palaiseau, France. [Kodama, R.] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3300012, Japan. [Kodama, R.; Nakatsutsumi, M.; Ozaki, N.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Batani, D.; Morace, A.; Redaelli, R.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Gremillet, L.; Rousseaux, C.] CEA, F-91680 Bruyeres Le Chatel, France. [d'Humieres, E.; Dorchies, F.; Fourment, C.; Santos, J. J.] Univ Bordeaux 1, CELIA, F-33405 Talence, France. [Adams, J.; Korgan, G.; Malekos, S.] NanoLabz, Reno, NV 89511 USA. [Flippo, K.; Gaillard, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hansen, S. B.; Shepherd, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cowan, T. E.] Forschungszentrum Dresden Rossendorf, D-01300 Dresden, Germany. RP Rassuchine, J (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. RI Fuchs, Julien/D-3450-2016; Flippo, Kirk/C-6872-2009; Cowan, Thomas/A-8713-2011; Sentoku, Yasuhiko/P-5419-2014; Kodama, Ryosuke/G-2627-2016; Koenig, Michel/A-2167-2012; Morace, Alessio/C-1048-2016 OI Fuchs, Julien/0000-0001-9765-0787; Flippo, Kirk/0000-0002-4752-5141; Cowan, Thomas/0000-0002-5845-000X; Morace, Alessio/0000-0001-8795-834X FU EU [LULIACCESSHPRI-1999-CT 00052, RII3- CT-2003-506350]; Region Ile-de-France [E1127]; University of Nevada; DOE/NNSA; OFES [DE-FC52-01NV14050, DEFG02-05ER54837, DE-FC02-04ER54789] FX This work was supported by the EU TMR laser Facility Access Program within the LASERLAB activities (Grants No. LULIACCESSHPRI-1999-CT 00052 and No. RII3- CT-2003-506350), by Grant No. E1127 from Region Ile-de-France, by University of Nevada, Reno under DOE/NNSA and OFES Grants No. DE-FC52-01NV14050, No. DEFG02-05ER54837, and No. DE-FC02-04ER54789. The authors thank C. Back (General Atomics) for RMTs. NR 30 TC 17 Z9 17 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 036408 DI 10.1103/PhysRevE.79.036408 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GI UT WOS:000264767400062 PM 19392065 ER PT J AU Stehr, V Muller, P Mertens, FG Bishop, A AF Stehr, V. Mueller, P. Mertens, F. G. Bishop, A. TI Soliton ratchets in sine-Gordon systems with additive inhomogeneities SO PHYSICAL REVIEW E LA English DT Article DE sine-Gordon equation; solitons ID AC FORCES; BROWNIAN MOTORS; DYNAMICS; KINKS AB We investigate the ratchet dynamics of solitons of a sine-Gordon system with additive inhomogeneities. We show by means of a collective coordinate approach that the soliton moves like a particle in an effective potential which is a result of the inhomogeneities. Different degrees of freedom of the soliton are used as collective coordinates in order to study their influence on the motion of the soliton. The collective coordinates considered are the soliton position, its width and offset, and the height of the spikes that appear on the soliton. The results of the theory are compared with numerical simulations of the full system. C1 [Stehr, V.; Mueller, P.; Mertens, F. G.] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. [Bishop, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bishop, A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Stehr, V (reprint author), Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. EM Vera.Stehr@Uni-Bayreuth.de NR 29 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 036601 DI 10.1103/PhysRevE.79.036601 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GI UT WOS:000264767400064 PM 19392067 ER PT J AU Swaminathan, S Ziebert, F Karpeev, D Aranson, IS AF Swaminathan, Sumanth Ziebert, Falko Karpeev, Dmitry Aranson, Igor S. TI Motor-mediated alignment of microtubules in semidilute mixtures SO PHYSICAL REVIEW E LA English DT Article DE cellular biophysics; fluctuations; molecular biophysics; proteins ID SELF-ORGANIZATION; MOLECULAR MOTORS AB We propose and study a model of molecular motor-induced ordering in a cytoskeletal filament solution for the semidilute case. Motors attach to a pair of filaments and walk along the pair bringing them into closer alignment. In the semidilute regime multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered phase with a nonzero mean orientation. The motors, on the one hand, cause closer filament alignment, and, on the other hand, induce fluctuations that are dependent on the relative orientation of the filaments to which the motors are attached. We develop a spatially homogenous, mean-field theory that explicitly accounts for a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. This model considers each filament to be in motor contact with all other filaments in the solution. We show that the transition to the oriented state changes from second order to first order when the force-dependent detachment becomes important. C1 [Swaminathan, Sumanth] Northwestern Univ, Evanston, IL 60202 USA. [Swaminathan, Sumanth; Karpeev, Dmitry] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Ziebert, Falko] ESPCI, CNRS, UMR 7083, Lab Phys Chem Theor, F-75231 Paris, France. [Ziebert, Falko; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Swaminathan, S (reprint author), Northwestern Univ, 2145 Sheridan Rd, Evanston, IL 60202 USA. RI Aranson, Igor/I-4060-2013 FU U. S. DOE [DE-AC02-06CH11357]; German Science Foundation (DFG) FX We thank the late Dr. Sasha Golovin and Dr. Vladimir Volpert for useful discussions throughout the period of this study. This work was supported by the U. S. DOE Grant No. DE-AC02-06CH11357. F. Z. acknowledges funding by the German Science Foundation (DFG). NR 37 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 036207 DI 10.1103/PhysRevE.79.036207 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GI UT WOS:000264767400032 PM 19392035 ER PT J AU Xu, ZJ Meakin, P Tartakovsky, AM AF Xu, Zhijie Meakin, Paul Tartakovsky, Alexandre M. TI Diffuse-interface model for smoothed particle hydrodynamics SO PHYSICAL REVIEW E LA English DT Article DE crystal microstructure; deformation; free energy; hydrodynamics; interface structure; surface tension; two-phase flow ID NONUNIFORM SYSTEM; FREE ENERGY; VAPOR CONDENSATION; FLUID; NUCLEATION; MECHANICS; FLOWS; VAN AB Diffuse-interface theory provides a foundation for the modeling and simulation of microstructure evolution in a very wide range of materials, and for the tracking and capturing of dynamic interfaces between different materials on larger scales. Smoothed particle hydrodynamics (SPH) is also widely used to simulate fluids and solids that are subjected to large deformations and have complex dynamic boundaries and/or interfaces, but no explicit interface tracking or capturing is required, even when topological changes such as fragmentation and coalescence occur, because of its Lagrangian particle nature. Here we developed a SPH model for single-component two-phase fluids that is based on diffuse-interface theory. In the model, the interface has a finite thickness and a surface tension that depend on the coefficient k of the gradient contribution to the Helmholtz free energy functional and the density-dependent homogeneous free energy. In this model, there is no need to locate the surface (or interface) or to compute the curvature at and near the interface. One- and two-dimensional SPH simulations were used to validate the model. C1 [Xu, Zhijie; Meakin, Paul] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. [Meakin, Paul] Univ Oslo, N-0316 Oslo, Norway. [Meakin, Paul] Inst Energy Technol, Multiphase Flow Assurance Innovat Ctr, N-2027 Kjeller, Norway. [Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Computat & Informat Sci Directorate, Computat Math Tech Grp, Richland, WA 99352 USA. RP Xu, ZJ (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. EM zhijie.xu@inl.gov RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 FU U. S. Department of Energy [DE-AC07-05ID14517, DE-AC06-76RL01830] FX This work was supported by the U. S. Department of Energy, Office of Science Scientific Discovery through the Advanced Computing Program. The Idaho National Laboratory is operated for the U. S. Department of Energy by the Battelle Energy Alliance under Contract No. DE-AC07-05ID14517 and the Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle under Contract No. DE-AC06-76RL01830. NR 33 TC 19 Z9 20 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2009 VL 79 IS 3 AR 036702 DI 10.1103/PhysRevE.79.036702 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 427GI UT WOS:000264767400073 PM 19392076 ER PT J AU Andonian, G Cook, A Dunning, M Hemsing, E Marcus, G Murokh, A Reiche, S Schiller, D Rosenzweig, JB Babzien, M Kusche, K Yakimenko, V AF Andonian, G. Cook, A. Dunning, M. Hemsing, E. Marcus, G. Murokh, A. Reiche, S. Schiller, D. Rosenzweig, J. B. Babzien, M. Kusche, K. Yakimenko, V. TI Observation of coherent terahertz edge radiation from compressed electron beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID TRANSITION RADIATION; PHASE-SPACE AB Coherent radiation emitted from a compressed electron bunch as it traverses the sharp edge regions of a magnetic chicane has been investigated at the Brookhaven National Laboratory Accelerator Test Facility. Electron beam measurements using coherent transition radiation interferometry indicate a 100 fs rms bunch accompanied by distinct distortions in energy spectrum due to strong self-fields. These self-fields are manifested in emitted high power THz radiation, which displays signatures of the phenomenon known as coherent edge radiation. Radiation characterization studies undertaken include spectral analysis, far-field intensity distribution, polarization, and dependence on the electron bunch length. The observed aspects of the beam and radiation allow detailed comparisons with start-to-end simulations. C1 [Andonian, G.; Cook, A.; Dunning, M.; Hemsing, E.; Marcus, G.; Murokh, A.; Reiche, S.; Schiller, D.; Rosenzweig, J. B.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Babzien, M.; Kusche, K.; Yakimenko, V.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. RP Andonian, G (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RI Cook, Alan/D-2557-2013 FU Department of Energy [DE-FG-98ER45693]; Office of Naval Research [N000140210911] FX This work was performed under partial support of Department of Energy Contract No. DE-FG-98ER45693, and Office of Naval Research Contract No. N000140210911. NR 27 TC 9 Z9 9 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 030701 DI 10.1103/PhysRevSTAB.12.030701 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100003 ER PT J AU Blackmore, V Doucas, G Perry, C Ottewell, B Kimmitt, MF Woods, M Molloy, S Arnold, R AF Blackmore, V. Doucas, G. Perry, C. Ottewell, B. Kimmitt, M. F. Woods, M. Molloy, S. Arnold, R. TI First measurements of the longitudinal bunch profile of a 28.5 GeV beam using coherent Smith-Purcell radiation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID CHARGED-PARTICLE BUNCH; RELATIVISTIC ELECTRONS; DICHROIC FILTERS; MOVING PARALLEL; REGIME AB Coherent Smith-Purcell (SP) radiation originating from three different gratings has been measured at End Station A, SLAC, and has been used to reconstruct the time profile of the electron bunches. The beam energy during these experiments was 28.5 GeV (gamma congruent to 55 773) and the number of electrons in the bunch was 0.9-1.4 X 10(10). The spectral distribution of the radiated energy was measured by means of an array of 11 pyroelectric detectors. Typical values of the FWHM of the bunch length are about 2.5 ps, but sharper peaks with FWHM less than 2.0 ps have also been observed. The longitudinal profile also varies with accelerator conditions and can best be approximated by a superposition of 3-4 Gaussian curves. Some typical profiles are presented, together with a discussion of the limitations and strengths of coherent SP radiation as a diagnostic tool. It is concluded that SP radiation offers excellent prospects in this respect, not only in the picosecond range, but potentially in the femtosecond range as well. C1 [Blackmore, V.; Doucas, G.; Perry, C.; Ottewell, B.] Univ Oxford, Dept Phys, John Adams Inst, Oxford, England. [Kimmitt, M. F.] Univ Essex, Phys Ctr, Colchester CO4 3SQ, Essex, England. [Woods, M.; Molloy, S.; Arnold, R.] Stanford Univ, SLAC, Stanford, CA 94305 USA. RP Doucas, G (reprint author), Univ Oxford, Dept Phys, John Adams Inst, Denys Wilkinson Bldg, Oxford, England. FU U.S. Department of Energy [DEAC02-76SF00515]; STFC (formerly PPARC); John Adams Institute FX The authors are grateful to Peter Huggard ( Rutherford Appleton Laboratory) for his invaluable guidance and advice in all the detector calibration work. We are also grateful to Michael Johnston and his group at the Clarendon Laboratory for their assistance with the THz-TDS measurements. Thanks are due to Mike Tacon and the Oxford mechanical workshop for their skill and efficiency in the manufacture of quite complicated mechanical components of the system. We thank the SLAC experimental facilities and accelerator operations groups. This work is supported in part by U.S. Department of Energy Contract No. DEAC02-76SF00515. Finally, the financial support of STFC (formerly PPARC) under the LC-ABD Collaboration and of the John Adams Institute is gratefully acknowledged. NR 48 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 032803 DI 10.1103/PhysRevSTAB.12.032803 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100015 ER PT J AU Kim, HJ Sen, T Abreu, NP Fischer, W AF Kim, Hyung J. Sen, Tanaji Abreu, Natalia P. Fischer, Wolfram TI Simulations of beam-beam and beam-wire interactions in RHIC SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current-carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, we report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008. C1 [Kim, Hyung J.; Sen, Tanaji] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Abreu, Natalia P.; Fischer, Wolfram] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kim, HJ (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM hjkim@fnal.gov FU U.S. Department of Energy FX We thank Y. Luo and R. Calaga for help with the RHIC lattice. V. Boocha, B. Erdelyi, and V. Ranjbar made significant contributions to the development of the code. Some of the parallel computations were performed at the NERSC facility at LBL. This work was supported by the U.S.-LARP collaboration which is funded by the U.S. Department of Energy. NR 28 TC 6 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 031001 DI 10.1103/PhysRevSTAB.12.031001 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100008 ER PT J AU Kim, KJ Shvyd'ko, YV AF Kim, Kwang-Je Shvyd'ko, Yuri V. TI Tunable optical cavity for an x-ray free-electron-laser oscillator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ENERGY RESOLUTION; SPECTROSCOPY; SCATTERING; SYNCHROTRON AB An x-ray free-electron laser oscillator proposed recently for hard x rays [K. Kim, Y. Shvyd'ko, and S. Reiche, Phys. Rev. Lett. 100, 244802 ( 2008)] can be made tunable by using an x-ray cavity composed of four crystals, instead of two. The tunability of x-ray energy will significantly enhance the usefulness of an x-ray free-electron laser oscillator. We present a detailed analysis of the four-crystal optical cavity and choice of crystals for several applications: inelastic x-ray scattering, nuclear resonant scattering, bulk-sensitive hard x-ray photoemission spectroscopy, other high-energy-resolution (less than or similar to 1 meV) spectroscopic probes, and for imaging with hard x rays at near-atomic resolution (similar or equal to 1 nm). C1 [Kim, Kwang-Je; Shvyd'ko, Yuri V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, KJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 31 TC 27 Z9 27 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 030703 DI 10.1103/PhysRevSTAB.12.030703 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100005 ER PT J AU Martin, JP Savage, ME Pointon, TD Gilmore, MA AF Martin, J. P. Savage, M. E. Pointon, T. D. Gilmore, M. A. TI Tailoring of electron flow current in magnetically insulated transmission lines SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID IN-CELL SIMULATIONS; FIELD-EMISSION; POWER-FLOW; IMPEDANCE; DIODES; INDUCTION; PLASMA; ACCELERATION; STABILITY; SYSTEMS AB It is desirable to optimize (minimizing both the inductance and electron flow) the magnetically insulated vacuum sections of low impedance pulsed-power drivers. The goal of low inductance is understandable from basic efficiency arguments. The goal of low electron flow results from two observations: (1) flowing electrons generally do not deliver energy to (or even reach) most loads, and thus constitute a loss mechanism; (2) energetic electrons deposited in a small area can cause anode damage and anode plasma formation. Low inductance and low electron flow are competing goals; an optimized system requires a balance of the two. While magnetically insulated systems are generally forgiving, there are times when optimization is crucial. For example, in large pulsed-power drivers used to energize high energy density physics loads, the electron flow as a fraction of total current is small, but that flow often reaches the anode in relatively small regions. If the anode temperature becomes high enough to desorb gas, the resulting plasma initiates a gap closure process that can impact system performance. Magnetic-pressure driven (z pinches and material equation of state) loads behave like a fixed inductor for much of the drive pulse. It is clear that neither fixed gap nor constant-impedance transmission lines are optimal for driving inductive loads. This work shows a technique for developing the optimal impedance profile for the magnetically insulated section of a high-current driver. Particle-in-cell calculations are used to validate the impedance profiles developed in a radial disk magnetically insulated transmission line geometry. The input parameters are the spacing and location of the minimum gap, the effective load inductance, and the desired electron flow profile. The radial electron flow profiles from these simulations are in good agreement with theoretical predictions when driven at relatively high voltage (i.e., V >= 2 MV). C1 [Martin, J. P.; Gilmore, M. A.] Univ New Mexico, Albuquerque, NM 87131 USA. [Savage, M. E.; Pointon, T. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Martin, J. P.] Natl Nucl Secur Adm Kansas City Plant, Kansas City, MO 64141 USA. RP Martin, JP (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA. FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to express their appreciation to Dr. Clifford W. Mendel for enlightening discussions regarding this work. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 59 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 030401 DI 10.1103/PhysRevSTAB.12.030401 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100001 ER PT J AU Palmer, RB Fernow, RC Gallardo, JC Stratakis, D Li, DR AF Palmer, R. B. Fernow, R. C. Gallardo, Juan C. Stratakis, Diktys Li, Derun TI rf breakdown with external magnetic fields in 201 and 805 MHz cavities SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Neutrino factory and muon collider cooling lattices require both high gradient rf cavities and strong focusing solenoids. Experiments have shown that there may be serious problems operating rf in the required magnetic fields. Experimental observations using vacuum rf cavities in magnetic fields are discussed, current published models of breakdown with and without magnetic fields are briefly summarized, and some of their predictions compared with observations. A new theory of magnetic field dependent breakdown is presented. It is proposed that electrons emitted by field emission on asperities on one side of a cavity are focused by the magnetic field to the other side where they induce mechanical fatigue leading to cavity surface damage in small spots. Metal is then electrostatically drawn from the molten spots, becomes vaporized and ionized by field emission from the remaining damage, and causes breakdown. The theory is fitted to existing 805 MHz data and predictions are made for performance at 201 MHz. The model predicts breakdown gradients significantly below those specified for either the International Scoping Study neutrino factory or a muon collider. Possible solutions to these problems are discussed, including designs for magnetically insulated rf in which the cavity walls are designed to be parallel to chosen magnetic field contour lines and consequently damage from field emission is expected to be suppressed. An experimental program that could study these problems and their possible solution is outlined. We also mention the use of high pressure gas as an alternative possible solution. C1 [Palmer, R. B.; Fernow, R. C.; Gallardo, Juan C.; Stratakis, Diktys] Brookhaven Natl Lab, Upton, NY 11973 USA. [Li, Derun] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Palmer, RB (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. OI Gallardo, Juan C/0000-0002-5191-3067 FU U.S. Department of Energy [AC02-98CH10886, DE-AC02-76CH03000] FX We would like to thank J. Norem, A. Moretti, and A. Bross for many discussions and sharing their experimental data. This work has been supported by U.S. Department of Energy under Contracts No. AC02-98CH10886 and No. DE-AC02-76CH03000. NR 36 TC 25 Z9 25 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 031002 DI 10.1103/PhysRevSTAB.12.031002 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100009 ER PT J AU Sannibale, F Stupakov, GV Zolotorev, MS Filippetto, D Jagerhofer, L AF Sannibale, F. Stupakov, G. V. Zolotorev, M. S. Filippetto, D. Jaegerhofer, L. TI Absolute bunch length measurements by incoherent radiation fluctuation analysis SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented. C1 [Sannibale, F.; Zolotorev, M. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stupakov, G. V.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Filippetto, D.] INFN LNF, Rome, Italy. [Jaegerhofer, L.] Vienna Univ Technol, A-1040 Vienna, Austria. RP Sannibale, F (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM FSannibale@LBL.gov NR 10 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 032801 DI 10.1103/PhysRevSTAB.12.032801 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100013 ER PT J AU Sharma, AK Tsang, T Rao, T AF Sharma, A. K. Tsang, T. Rao, T. TI Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID BIREFRINGENT FILTER; ULTRASHORT PULSES; DESIGN; SYSTEM; BEAM; GENERATION; PHOTOINJECTORS; STACKING; CRYSTALS; SHAPER AB We report the results of theoretical and experimental studies on passive spatiotemporal shaping of cw mode-locked picosecond laser pulses for driving the photocathode of a high-brightness, high-current energy recovery linear accelerator. The temporal pulse shape is modified using birefringent crystals, while a refractive optical system is used to generate a flattop spatial beam profile. An optical transport system is designed and implemented to deliver the flattop pulse onto a photocathode sited 9 m away from the shapers. The alignment tolerances on the beam shaper and the temporal pulse stacker have been studied both theoretically and experimentally. The experimental results agree well with theoretical simulations. C1 [Sharma, A. K.; Tsang, T.; Rao, T.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Sharma, AK (reprint author), Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. EM asharma@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX We acknowledge the technical support of John Walsh and William Smith. This work was supported by U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 34 TC 24 Z9 27 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 033501 DI 10.1103/PhysRevSTAB.12.033501 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100016 ER PT J AU Stygar, WA Fowler, WE LeChien, KR Long, FW Mazarakis, MG McKee, GR McKenney, JL Porter, JL Savage, ME Stoltzfus, BS Van De Valde, DM Woodworth, JR AF Stygar, W. A. Fowler, W. E. LeChien, K. R. Long, F. W. Mazarakis, M. G. McKee, G. R. McKenney, J. L. Porter, J. L. Savage, M. E. Stoltzfus, B. S. Van De Valde, D. M. Woodworth, J. R. TI Shaping the output pulse of a linear-transformer-driver module SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ARRAY Z-PINCHES; ISENTROPIC COMPRESSION; LTD; CONFIGURATION; RADIOGRAPHY; SYSTEM; POWER AB We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in [Phys. Rev. ST Accel. Beams 10, 030401 (2007)] provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission- line impedance transformers [Phys. Rev. ST Accel. Beams 11, 030401 (2008)]. C1 [Stygar, W. A.; Fowler, W. E.; LeChien, K. R.; Long, F. W.; Mazarakis, M. G.; McKee, G. R.; McKenney, J. L.; Porter, J. L.; Savage, M. E.; Stoltzfus, B. S.; Woodworth, J. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Van De Valde, D. M.] EG&G, Albuquerque, NM 87107 USA. RP Stygar, WA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 60 TC 27 Z9 27 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2009 VL 12 IS 3 AR 030402 DI 10.1103/PhysRevSTAB.12.030402 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QJ UT WOS:000266697100002 ER PT J AU Antao, SM Hassan, I Mulder, WH Lee, PL Toby, BH AF Antao, Sytle M. Hassan, Ishmael Mulder, Willem H. Lee, Peter L. Toby, Brian H. TI In situ study of the R(3)over-barc -> R(3)over-barm orientational disorder in calcite SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Calcite; CaCO(3); Orientational disorder transition; High-temperature studies; Rietveld refinement; Synchrotron X-ray diffraction ID STRUCTURAL PHASE-TRANSITION; SODIUM-NITRATE; NEUTRON-DIFFRACTION; POWDER DIFFRACTION; CRYSTAL STRUCTURE; X-RAY; NANO3; ARAGONITE; CACO3; MAGNESITE AB The temperature dependences of the crystal structure and intensities of the (113) and (211) reflections in calcite, CaCO(3), were studied using Rietveld structure refinements based on synchrotron powder X-ray diffraction data. Calcite transforms from R (3) over barc to R (3) over barm at about T(c) = 1,240 K. A CO(3) group occupies, statistically, two positions with equal frequency in the disordered R (3) over barm phase, but with unequal frequency in the partially ordered R (3) over barc phase. One position for the CO(3) group is rotated by 180 degrees with respect to the other. The unequal occupancy of the two orientations in the partially ordered R (3) over barc phase is obtained directly from the occupancy factor, x, for the O1 site and gives rise to the order parameter, S = 2x - 1. The a cell parameter shows a negative thermal expansion at low T, followed by a plateau region at higher T, then a steeper contraction towards T(c), where the CO(3) groups disorder in a rapid process. Using a modified Bragg-Williams model, fits were obtained for the order parameter S, and for the intensities of the (113) and (211) reflections. C1 [Antao, Sytle M.; Lee, Peter L.; Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hassan, Ishmael; Mulder, Willem H.] Univ W Indies, Dept Chem, Kingston 7, Jamaica. RP Antao, SM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM antao@ucalgary.ca RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE- AC0206CH11357] FX We thank the anonymous reviewers for useful comments. XRD data were collected at the X-ray Operations and Research beamlines 1-BM and 11-BM, Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE- AC0206CH11357. NR 33 TC 21 Z9 21 U1 4 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD MAR PY 2009 VL 36 IS 3 BP 159 EP 169 DI 10.1007/s00269-008-0266-y PG 11 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 413YC UT WOS:000263830100005 ER PT J AU Crease, RP AF Crease, Robert P. TI The National Synchrotron Light Source, Part II:The Bakeout SO PHYSICS IN PERSPECTIVE LA English DT Article DE Martin Blume; Samuel Krinsky; Arie van Steenbergen; Brookhaven National Laboratory; National Synchrotron Light Source; synchrotron radiation; accelerators ID ISABELLE SAGA; NSLS AB This is the second part of a two-part article about the National Synchrotron Light Source (NSLS), the first facility designed and built specifically for producing and exploiting synchrotron radiation. The NSLS,a $24-million project conceived about 1970 and officially proposed in 1976, had its groundbreaking in 1978. Its construction was a key episode in Brookhaven's history, in the transition of synchrotron radiation from a novelty to a commodity, and in the transition of synchrotron-radiation scientists from parasitic to autonomous researchers. In this part I cover the construction of the NSLS.The story of its construction illustrates many of the tensions and risks involved in building a large scientific facility in a highly politicized environment: risking a facility's quality by underfunding it versus asking for more funding and risking not getting it; focusing on meeting time and budget promises that risk compromising machine performance versus focusing on performance and risking cancellation; and the pros and cons of a pragmatic versus an analytic approach to commissioning. C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 28 TC 10 Z9 10 U1 1 U2 4 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 1422-6944 J9 PHYS PERSPECT JI Phys. Perspect. PD MAR PY 2009 VL 11 IS 1 BP 15 EP 45 DI 10.1007/s00016-007-0358-y PG 31 WC History & Philosophy Of Science SC History & Philosophy of Science GA 420ZU UT WOS:000264328500003 ER PT J AU Zeng, LY Najjar, F Balachandar, S Fischer, P AF Zeng, Lanying Najjar, Fady Balachandar, S. Fischer, Paul TI Forces on a finite-sized particle located close to a wall in a linear shear flow SO PHYSICS OF FLUIDS LA English DT Article DE computational fluid dynamics; confined flow; drag; hydrodynamics; shear flow; two-phase flow; wakes ID MACROSCOPIC RIGID SPHERES; SLOW VISCOUS MOTION; LOW-REYNOLDS-NUMBER; LATERAL MIGRATION; POISEUILLE FLOW; LIFT FORCES; PLANE WALL; VORTICAL STRUCTURES; SPHERICAL BUBBLE; TRANSVERSE FORCE AB To understand and better model the hydrodynamic force acting on a finite-sized particle moving in a wall-bounded linear shear flow, here we consider the two limiting cases of (a) a rigid stationary spherical particle in a linear wall-bounded shear flow and (b) a rigid spherical particle in rectilinear motion parallel to a wall in a quiescent ambient flow. In the present computations, the particle Reynolds number ranges from 2 to 250 at separation distances to the wall from nearly sitting on the wall to far away from the wall. First we characterize the structure of the wake for a stationary particle in a linear shear flow and compare with those for a particle moving parallel to a wall in a quiescent ambient [see L. Zeng, S. Balachandar, and P. Fischer, J. Fluid Mech. 536, 1 (2005)]. For both these cases we present drag and lift results and obtain composite drag and lift correlations that are valid for a wide range of Re and distance from the wall. These correlations have been developed to be consistent with all available low Reynolds number theories and approach the appropriate uniform flow results at large distance from the wall. Particular attention is paid to the case of particle in contact with the wall and the computational results are compared with those from experiments. C1 [Zeng, Lanying] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA. [Najjar, Fady] Univ Illinois, Ctr Simulat Adv Rockets, Urbana, IL 61801 USA. [Balachandar, S.] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Fischer, Paul] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Zeng, LY (reprint author), Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61801 USA. RI Balachandar, Sivaramakrishnan/E-7358-2011 FU U. S. Department of Energy [B523819] FX This research was supported by the ASCI Center for the Simulation of Advanced Rockets at the University of Illinois at Urbana-Champaign through the U. S. Department of Energy (Subcontract No. B523819). The National Center for Supercomputing Applications (UIUC) is also acknowledged for the use of their computational facilities. We thank Dr. Hyungoo Lee for help with curve fits in Eqs. (28) and (29). NR 41 TC 37 Z9 38 U1 5 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2009 VL 21 IS 3 AR 033302 DI 10.1063/1.3082232 PG 18 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 427LZ UT WOS:000264782100019 ER PT J AU Brambrink, E Wei, HG Barbrel, B Audebert, P Benuzzi-Mounaix, A Boehly, T Endo, T Gregory, C Kimura, T Kodama, R Ozaki, N Park, HS le Gloahec, MR Koenig, M AF Brambrink, E. Wei, H. G. Barbrel, B. Audebert, P. Benuzzi-Mounaix, A. Boehly, T. Endo, T. Gregory, C. Kimura, T. Kodama, R. Ozaki, N. Park, H. -S. le Gloahec, M. Rabec Koenig, M. TI X-ray source studies for radiography of dense matter SO PHYSICS OF PLASMAS LA English DT Article DE plasma diagnostics; plasma X-ray sources; tungsten; wires ID LASER; FACILITY AB Studies of short-pulse laser-generated hard x-ray (18-60 keV) sources, suitable for radiographs of large samples of dense matter, are presented. The spatial and dynamic resolutions for different target types and laser parameters have been investigated. A high quality radiograph with good spatial resolution in two dimensions was demonstrated by irradiating freestanding thin W wires. The influence of the geometry for the quality of the radiograph, which is crucial for the design of experiments probing laser-compressed matter, is reported. C1 [Brambrink, E.; Wei, H. G.; Barbrel, B.; Audebert, P.; Benuzzi-Mounaix, A.; Gregory, C.; le Gloahec, M. Rabec; Koenig, M.] Univ Paris 06, Ecole Polytech, CEA,Unite Mixte 7605, CNRS,LULI, F-91128 Palaiseau, France. [Wei, H. G.] Shandong Univ, Jinan 250100, Peoples R China. [Wei, H. G.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Barbrel, B.] CEA, DAM, Dept Phsy Theor & Appl, F-91127 Bruyeres Le Chatel, France. [Boehly, T.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Endo, T.; Kimura, T.; Kodama, R.; Ozaki, N.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Park, H. -S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Brambrink, E (reprint author), Univ Paris 06, Ecole Polytech, CEA,Unite Mixte 7605, CNRS,LULI, F-91128 Palaiseau, France. EM erik.brambrink@polytechnique.edu RI Koenig, Michel/A-2167-2012; Kodama, Ryosuke/G-2627-2016 FU ANR project SECHEL; JSPS; Ministry of Education, Culture, Sports, Science and Technology of Japan; region Ile-deFrance FX We thank the crew of the 100 TW LULI laser system for their ongoing help during the experiment. This work was supported by the ANR project SECHEL, the Core-to-Core program from the JSPS, and the Global COE Program, "Center for Electronic Devices Innovation," from the Ministry of Education, Culture, Sports, Science and Technology of Japan. C. G. was supported by grants from the region Ile-deFrance. NR 17 TC 17 Z9 19 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2009 VL 16 IS 3 AR 033101 DI 10.1063/1.3076207 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 427LW UT WOS:000264781800039 ER PT J AU Cohen, BI Williams, EA Berger, RL Pesme, D Riconda, C AF Cohen, B. I. Williams, E. A. Berger, R. L. Pesme, D. Riconda, C. TI Stimulated Brillouin backscattering and ion acoustic wave secondary instability SO PHYSICS OF PLASMAS LA English DT Article DE backscatter; plasma instability; plasma ion acoustic waves; plasma light propagation; stimulated Brillouin scattering ID FREQUENCY-SHIFT; SCATTERING; PLASMA; SATURATION AB A study of the secondary instability of a finite-amplitude ion acoustic wave (IAW) affecting the saturation of stimulated Brillouin backscattering (SBS) of laser light in a plasma is presented. The secondary instability of the SBS IAW provides a nonlinear dissipation mechanism for the SBS IAW and can reduce the SBS reflectivity. To better understand the physics of the secondary instability and SBS, particle-in-cell kinetic simulations, analysis of dispersion relations, and integration of coupled mode equations have been undertaken and compared. Among the effects examined are the influences on the secondary instability of the frequency of the primary IAW, the second-harmonic IAW, and ion trapping in the primary SBS IAW which affects Landau damping and the IAW frequency. C1 [Cohen, B. I.; Williams, E. A.; Berger, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Pesme, D.] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France. [Riconda, C.] Univ Paris 06, CNRS, CEA, Ecole Polytech,PAPD LULI, F-94200 Ivry, France. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. FU Department of Energy/NNSA; Lawrence Livermore National Laboratory (LLNL) [DE-AC5207NA27344]; Laboratory Directed Research and Development Program [08-ERD-031]; French Agence Nationale de la Recherche [ANR-07-BLAN-0004] FX This work was performed under the auspices of the Department of Energy/NNSA by the Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC5207NA27344. This work was partially funded by the Laboratory Directed Research and Development Program at LLNL under project Tracking Code 08-ERD-031. Two of the authors (D.P. and C.R.) would like to acknowledge the support of the French Agence Nationale de la Recherche, Project No. ANR-07-BLAN-0004 "CORPARIN." We thank L. Divol, A. Bruce Langdon, and D. Strozzi for their many helpful discussions, assistance, interest, and encouragement. We thank L. Suter, D. Hinkel, and J. Hittinger for their interest in and their support for this research. We also thank L. LoDestro for suggesting doing the BZOHAR simulation with the second harmonic of the SBS IAW suppressed. We especially thank the referee for his (or her) labor in carefully reading the manuscript and making numerous suggestions that improved the paper. NR 22 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2009 VL 16 IS 3 AR 032701 DI 10.1063/1.3086860 PG 18 WC Physics, Fluids & Plasmas SC Physics GA 427LW UT WOS:000264781800032 ER PT J AU Deline, CA Bengtson, RD Breizman, BN Tushentsov, MR Jones, JE Chavers, DG Dobson, CC Schuettpelz, BM AF Deline, Christopher A. Bengtson, Roger D. Breizman, Boris N. Tushentsov, Mikhail R. Jones, Jonathan E. Chavers, D. Greg Dobson, Chris C. Schuettpelz, Branwen M. TI Plume detachment from a magnetic nozzle SO PHYSICS OF PLASMAS LA English DT Article DE aerospace propulsion; nozzles; plasma applications; plasma magnetohydrodynamics; plasma probes ID TRIPLE PROBE; PLASMA DETACHMENT; LAYER; SYSTEM; FIELDS AB High-powered electric propulsion thrusters utilizing a magnetized plasma require that plasma exhaust detach from the applied magnetic field in order to produce thrust. This paper presents experimental results demonstrating that a sufficiently energetic and flowing plasma can indeed detach from a magnetic nozzle. Microwave interferometer and probe measurements provide plume density, electron temperature, and ion flux measurements in the nozzle region. Measurements of ion flux show a low-beta plasma plume which follows applied magnetic field lines until the plasma kinetic pressure reaches the magnetic pressure and a high-beta plume expanding ballistically afterward. Several magnetic configurations were tested including a reversed field nozzle configuration. Despite the dramatic change in magnetic field profile, the reversed field configuration yielded little measurable change in plume trajectory, demonstrating the plume is detached. Numerical simulations yield density profiles in agreement with the experimental results. C1 [Deline, Christopher A.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bengtson, Roger D.; Breizman, Boris N.; Tushentsov, Mikhail R.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Jones, Jonathan E.; Chavers, D. Greg; Dobson, Chris C.] George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Schuettpelz, Branwen M.] Univ Alabama, Huntsville, AL 35899 USA. RP Deline, CA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM cdeline@umich.edu RI Deline, Christopher/K-5998-2013 OI Deline, Christopher/0000-0002-9867-8930 FU NASA [NNJ05HB77C] FX This work was supported in part by a NASA Graduate Student Researchers Program fellowship and financial support of the Ad Astra Rocket Co. to C. A. Deline. Dissertation and technical support was provided to Deline by his thesis advisor, B. Gilchrist, at the University of Michigan. The work at The University of Texas at Austin, University of Alabama at Huntsville and Marshall Space Flight Center was supported by NASA under Contract No. NNJ05HB77C. Special thanks go to A. Arefiev and J. Meyer at the University of Texas for technical and analytical support. The authors would also like to thank M. LaPointe for numerous helpful comments. NR 28 TC 15 Z9 15 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2009 VL 16 IS 3 AR 033502 DI 10.1063/1.3080206 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 427LW UT WOS:000264781800053 ER PT J AU Hahm, TS Diamond, PH Gurcan, OD Rewoldt, G AF Hahm, T. S. Diamond, P. H. Gurcan, O. D. Rewoldt, G. TI Response to "Comment on 'Turbulent equipartition theory of toroidal momentum pinch' " [Phys. Plasmas 16, 034703 (2009)] SO PHYSICS OF PLASMAS LA English DT Editorial Material DE pinch effect; plasma toroidal confinement; plasma turbulence AB This response demonstrates that the comment by Peeters contains an incorrect and misleading interpretation of our paper [T. S. Hahm , Phys. Plasmas 15, 055902 (2008)] regarding the density gradient dependence of momentum pinch and the turbulent equipartition theory. C1 [Hahm, T. S.; Rewoldt, G.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Diamond, P. H.; Gurcan, O. D.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Hahm, TS (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Gurcan, Ozgur/A-1362-2013 OI Gurcan, Ozgur/0000-0002-2278-1544 NR 8 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2009 VL 16 IS 3 AR 034704 DI 10.1063/1.3096714 PG 3 WC Physics, Fluids & Plasmas SC Physics GA 427LW UT WOS:000264781800072 ER PT J AU Miles, AR AF Miles, Aaron R. TI Nonlinear Rayleigh-Taylor instabilities in fast Z pinches SO PHYSICS OF PLASMAS LA English DT Article DE drag; explosions; plasma nonlinear processes; plasma shock waves; plasma simulation; plasma turbulence; Rayleigh-Taylor instability; Z pinch ID BUBBLE MERGER MODEL; ACCELERATION; DEPENDENCE; DRIVEN AB A simplified analytic model is presented to describe the implosion of a plasma column by an azimuthal magnetic field of sufficient magnitude to drive a strong shock wave into the plasma. This model is employed together with buoyancy-drag-based models of nonlinear single-mode and turbulent multimode Rayleigh-Taylor growth to investigate the mixing process in such fast Z pinches. These models give predictions that characterize limitations the instability can impose on the implosion in terms of maximum convergence ratios attainable for an axially coherent pinch. Both the implosion and instability models are validated with results from high-resolution numerical simulations. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Miles, AR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U. S. Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX In preparing this manuscript, I greatly benefited from discussions with and input from Jim Hammer, Omar Hurricane, and Mark Adams. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 20 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2009 VL 16 IS 3 AR 032702 DI 10.1063/1.3088020 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 427LW UT WOS:000264781800033 ER PT J AU Runge, J Logan, BG AF Runge, J. Logan, B. G. TI Nonuniformity for rotated beam illumination in directly driven heavy-ion fusion SO PHYSICS OF PLASMAS LA English DT Article DE ion beam effects; plasma inertial confinement; Rayleigh-Taylor instability ID INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR INSTABILITY; PELLET AB A key issue in heavy-ion beam inertial confinement fusion is target interaction, especially implosion symmetry. In this paper the two-dimensional beam irradiation nonuniformity on the surface of a spherical target is studied. This is a first step to studies of three-dimensional dynamical effects on target implosion. So far nonrotated beams have been studied. Because normal incidence may increase Rayleigh-Taylor instabilities, it has been suggested to rotate beams (to increase average uniformity) and hit the target tangentially. The level of beam irradiation uniformity, beam spill and normal incidence is calculated in this paper. In MATHEMATICA the rotated beams are modeled as an annular integrated Gaussian beam. To simplify the chamber geometry, the illumination scheme is not a 4 pi system, but the beams are arranged on few polar rings around the target. The position of the beam spot rings is efficiently optimized using the analytical model. The number of rings and beams, rotation radii and widths are studied to optimize uniformity and spilled intensity. The results demonstrate that for a 60-beam system on four rings peak-to-valley nonuniformities of under 0.5% are possible. C1 [Runge, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Virtual Natl Lab Heavy Ion Fus, Berkeley, CA USA. RP Runge, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jakobrunge@gmail.com OI Runge, Jakob/0000-0002-0629-1772 FU U. S. DOE [DE-AC02-05CH11231]; Fulbright Commission; German Academic Foundation FX The authors would like to thank the Heavy Ion Fusion research group at Berkeley, especially John Barnard and Alex Friedman, for many fruitful discussions. This research was carried out while the corresponding author was a visitor at Lawrence Berkeley National Laboratory, where he was hosted by the LBNL Fusion Energy program, which operates under the auspices of the U. S. DOE under Contract No. DE-AC02-05CH11231. This author would like to acknowledge the Fulbright Commission and German Academic Foundation (Studienstiftung des deutschen Volkes) for financial and idealistic support. Special thanks to Alex Castro and Alexander Radebach. NR 15 TC 10 Z9 10 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2009 VL 16 IS 3 AR 033109 DI 10.1063/1.3095561 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 427LW UT WOS:000264781800047 ER PT J AU Yu, Z Qin, H AF Yu, Zhi Qin, Hong TI Gyrocenter-gauge kinetic algorithm for high frequency waves in magnetized plasmas SO PHYSICS OF PLASMAS LA English DT Article DE Monte Carlo methods; plasma Bernstein waves; plasma kinetic theory; plasma simulation ID GYROKINETIC THEORY; TOKAMAK PLASMAS; BERNSTEIN WAVES; CURRENT DRIVE; PROPAGATION; SIMULATION; REGIMES; ICRF AB A kinetic simulation algorithm for high-frequency electromagnetic waves has been developed based on the gyrocenter-gauge kinetic theory. The magnetized plasma system is simulated in the gyrocenter coordinate system. The gyrocenter distribution function F is sampled on the gyrocenter, parallel velocity, and magnetic moment coordinates. The gyrocenter-gauge function S is sampled on the Kruskal rings and shares the first five coordinates with F. The moment integral of pullback transformation is directly calculated using the Monte Carlo method and an explicit difference scheme for Maxwell's equations in terms of potentials is adopted. The new algorithm has been successfully applied to the simulation studies of high frequency extraordinary wave, electron Bernstein wave, and the mode conversion process between the extraordinary wave and the electron Bernstein wave in inhomogeneous plasmas. C1 [Yu, Zhi] Univ Sci & Technol China, Dept Modern Phys, Hefei 230027, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Yu, Z (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230027, Peoples R China. RI 于, 治/A-5377-2010 OI 于, 治/0000-0003-0000-8750 FU Chinese Scholarship Council; Visiting Scholar Program at Princeton Plasma Physics Laboratory; U. S. Department of Energy FX This research was supported by the Chinese Scholarship Council, the Visiting Scholar Program at Princeton Plasma Physics Laboratory, and the U. S. Department of Energy. Zhi Yu is grateful to Professor Changxun Yu and Professor Wandong Liu for their continuous support and to Dr. Janardhan Manickam for his support and hospitality during Zhi Yu's visit to Princeton Plasma Physics Laboratory. NR 33 TC 11 Z9 11 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2009 VL 16 IS 3 AR 032507 DI 10.1063/1.3097266 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 427LW UT WOS:000264781800031 ER PT J AU Iocco, F Mangano, G Miele, G Pisanti, O Serpico, PD AF Iocco, Fabio Mangano, Gianpiero Miele, Gennaro Pisanti, Ofelia Serpico, Pasquale D. TI Primordial nucleosynthesis: From precision cosmology to fundamental physics SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review DE Primordial nucleosynthesis; Early universe; Physics beyond the standard model ID BIG-BANG NUCLEOSYNTHESIS; FINE-STRUCTURE CONSTANT; HYDROGEN ABUNDANCE RATIO; HADRON PHASE-TRANSITION; LARGE EXTRA DIMENSIONS; SCALAR-TENSOR THEORIES; POOR HALO STARS; TEMPERATURE RADIATIVE-CORRECTIONS; WAVE-FUNCTION RENORMALIZATION; MONTE-CARLO CALCULATIONS AB We present an up-to-date review of Big Bang Nucleosynthesis (BBN). We discuss the main improvements which have been achieved in the past two decades on the overall theoretical framework, summarize the impact of new experimental results on nuclear reaction rates, and critically re-examine the astrophysical determinations of light nuclei abundances. We report then on how BBN can be used as a powerful test of new physics, constraining a wide range of ideas and theoretical models of fundamental interactions beyond the standard model of strong and electroweak forces and Einstein's general relativity. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia] Univ Naples Federico II, Dip Sci Fis, I-80126 Naples, Italy. [Mangano, Gianpiero; Miele, Gennaro; Pisanti, Ofelia] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Iocco, Fabio] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy. [Miele, Gennaro] Univ Valencia, CSIC, Inst Fis Corpuscular, Ed Inst Invest, E-46071 Valencia, Spain. [Serpico, Pasquale D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Miele, G (reprint author), Univ Naples Federico II, Dip Sci Fis, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy. EM miele@na.infn.it RI Miele, Gennaro/F-3628-2010; OI Miele, Gennaro/0000-0002-2028-0578; Mangano, Gianpiero/0000-0002-6901-4633 FU MIUR [PRIN-2006]; Generalitat Valenciana [AINV/2007/080]; Spanish MICINN [SAB2006-0171, FPA2005-01269]; INFN; PRIN; US Department of Energy; NASA [NAG5-10842]; United States Department of Energy [DE-AC02-07CH11359] FX We would like to thank C. Abia, A.D. Dolgov, J. Lesgourgues, S. Pastor and G.G. Raffelt for valuable comments and suggestions, and G.L Fogli for having particularly encouraged this work. We also thank M. Kamimura, and especially K. jedamzik, for suggestions and clarifying remarks which much improved the manuscript, and K. jedamzik for providing also the updated version of some Figures. F. locco is supported by MIUR through grant PRIN-2006, and acknowledges hospitality at Fermilab during some stage of this work. G. Miele acknowledges supports by Generalitat Valenciana (Grant No. AINV/2007/080) and by the Spanish MICINN (grants SAB2006-0171 and FPA2005-01269). G. Mangano, G. Miele, and O. Pisanti acknowledge supports by INFN - I.S. FA51 and by PRIN 2006 "Fisica Astroparticellare: Neutrini ed Universo Primordiale" of Italian MIUR. P.D. Serpico is supported by the US Department of Energy and by NASA grant NAG5-10842. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 557 TC 220 Z9 221 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD MAR PY 2009 VL 472 IS 1-6 BP 1 EP 76 DI 10.1016/j.physrep.2009.02.002 PG 76 WC Physics, Multidisciplinary SC Physics GA 440VF UT WOS:000265727100001 ER PT J AU Leemans, W Esarey, E AF Leemans, Wirn Esarey, Eric TI Laser-driven plasma-wave electron accelerators SO PHYSICS TODAY LA English DT Article ID WAKEFIELD ACCELERATOR; BEAMS; INJECTION; PULSES C1 [Leemans, Wirn] Univ Calif Berkeley, Lawrence Berkeley Lab, LOASIS Program, Berkeley, CA 94720 USA. RP Leemans, W (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, LOASIS Program, Berkeley, CA 94720 USA. NR 17 TC 111 Z9 114 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAR PY 2009 VL 62 IS 3 BP 44 EP 49 AR PII S-0031-9228-0903-030-0 PG 6 WC Physics, Multidisciplinary SC Physics GA 414LR UT WOS:000263865700018 ER PT J AU Crease, RP AF Crease, Robert P. TI Sites for new eyes SO PHYSICS WORLD LA English DT Article C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAR PY 2009 VL 22 IS 3 BP 46 EP 50 PG 5 WC Physics, Multidisciplinary SC Physics GA 421PV UT WOS:000264371700032 ER PT J AU Manu Surkova, S Spirov, AV Gursky, VV Janssens, H Kim, AR Radulescu, O Vanario-Alonso, CE Sharp, DH Samsonova, M Reinitz, J AF Manu Surkova, Svetlana Spirov, Alexander V. Gursky, Vitaly V. Janssens, Hilde Kim, Ah-Ram Radulescu, Ovidiu Vanario-Alonso, Carlos E. Sharp, David H. Samsonova, Maria Reinitz, John TI Canalization of Gene Expression in the Drosophila Blastoderm by Gap Gene Cross Regulation SO PLOS BIOLOGY LA English DT Article ID BICOID MORPHOGEN GRADIENT; POSITIONAL INFORMATION; SEGMENTATION GENES; MORPHOLOGICAL EVOLUTION; ACQUIRED CHARACTERS; ORTHODENTICLE GENE; PATTERN-FORMATION; FINGER PROTEIN; EMBRYO; HUNCHBACK AB Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Kruppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal:pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic phenomenon of canalization can be understood at a quantitative and predictive level by the application of a precise dynamical model. C1 [Manu; Spirov, Alexander V.; Kim, Ah-Ram; Vanario-Alonso, Carlos E.; Reinitz, John] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Manu; Spirov, Alexander V.; Kim, Ah-Ram; Vanario-Alonso, Carlos E.; Reinitz, John] SUNY Stony Brook, Ctr Dev Genet, Stony Brook, NY 11794 USA. [Surkova, Svetlana; Samsonova, Maria] St Petersburg State Polytech Univ, Dept Computat Biol, Ctr Adv Studies, St Petersburg, Russia. [Gursky, Vitaly V.] Russian Acad Sci, Dept Theoret, AF Ioffe Physicotech Inst, St Petersburg 196140, Russia. [Janssens, Hilde] CRG, Res Unit Syst Biol, EMBL, Barcelona, Spain. [Radulescu, Ovidiu] Univ Rennes 1, Inst Math Res Rennes, Rennes, France. [Sharp, David H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Reinitz, J (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM reinitz@odd.bio.sunysb.edu RI Spirov, Alexander/G-4806-2010; Gursky, Vitaly/A-9187-2014; OI Spirov, Alexander/0000-0002-0509-6203; Radulescu, Ovidiu/0000-0001-6453-5707 FU US National Institutes of Health (NIH) [GM072022]; US NIH; National Science Foundation [RBO-1286, RUB11578]; US Civilian Research and Development Foundation [02.467.11.1005]; Federal Agency for Science and Innovation of the Russian Federation [047.011.2004.013]; Organisatie voor Wetenschappelijk Onderzoek; Russian Foundation for Basic Research (RFBR) [08-01-00315a, 08-04-00712a] FX This work was supported by grant RR07801 from the US National Institutes of Health (NIH), GM072022 jointly from the US NIH and National Science Foundation, awards RBO-1286 and RUB11578 from the US Civilian Research and Development Foundation Grant Assistance Program, contract 02.467.11.1005 from the Federal Agency for Science and Innovation of the Russian Federation, project 047.011.2004.013 of the Organisatie voor Wetenschappelijk Onderzoek and the Russian Foundation for Basic Research (RFBR), and grants 08-01-00315a and 08-04-00712a of the RFBR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 56 Z9 57 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD MAR PY 2009 VL 7 IS 3 BP 591 EP 603 AR e1000049 DI 10.1371/journal.pbio.1000049 PG 13 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 436KI UT WOS:000265412600016 PM 19750121 ER PT J AU Alexandrov, BS Gelev, V Yoo, SW Bishop, AR Rasmussen, KO Usheva, A AF Alexandrov, Boian S. Gelev, Vladimir Yoo, Sang Wook Bishop, Alan R. Rasmussen, Kim O. Usheva, Anny TI Toward a Detailed Description of the Thermally Induced Dynamics of the Core Promoter SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID RNA-POLYMERASE-II; TRANSCRIPTION INITIATION; DNA DENATURATION; ELEMENT; BINDING; MODEL; SITE; BOND AB Establishing the general and promoter-specific mechanistic features of gene transcription initiation requires improved understanding of the sequence-dependent structural/dynamic features of promoter DNA. Experimental data suggest that a spontaneous dsDNA strand separation at the transcriptional start site is likely to be a requirement for transcription initiation in several promoters. Here, we use Langevin molecular dynamic simulations based on the Peyrard-Bishop-Dauxois nonlinear model of DNA (PBD LMD) to analyze the strand separation (bubble) dynamics of 80-bp-long promoter DNA sequences. We derive three dynamic criteria, bubble probability, bubble lifetime, and average strand separation, to characterize bubble formation at the transcriptional start sites of eight mammalian gene promoters. We observe that the most stable dsDNA openings do not necessarily coincide with the most probable openings and the highest average strand displacement, underscoring the advantages of proper molecular dynamic simulations. The dynamic profiles of the tested mammalian promoters differ significantly in overall profile and bubble probability, but the transcriptional start site is often distinguished by large (longer than 10 bp) and long-lived transient openings in the double helix. In support of these results are our experimental transcription data demonstrating that an artificial bubble-containing DNA template is transcribed bidirectionally by human RNA polymerase alone in the absence of any other transcription factors. C1 [Alexandrov, Boian S.; Bishop, Alan R.; Rasmussen, Kim O.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gelev, Vladimir; Yoo, Sang Wook; Usheva, Anny] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Gelev, Vladimir; Yoo, Sang Wook; Usheva, Anny] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Boston, MA 02215 USA. RP Alexandrov, BS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM ausheva@bidmc.harvard.edu RI Rasmussen, Kim/B-5464-2009; Alexandrov, Boian/D-2488-2010 OI Rasmussen, Kim/0000-0002-4029-4723; Alexandrov, Boian/0000-0001-8636-4603 FU National Institutes of Health [RO1 GM071482]; US Department of Energy at Los Alamos National Laboratory FX This work was supported by the National Institutes of Health (RO1 GM071482 to AU) and the US Department of Energy at Los Alamos National Laboratory. NR 28 TC 23 Z9 23 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAR PY 2009 VL 5 IS 3 AR e1000313 DI 10.1371/journal.pcbi.1000313 PG 10 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 447TF UT WOS:000266214000018 PM 19282962 ER PT J AU Manu Surkova, S Spirov, AV Gursky, VV Janssens, H Kim, AR Radulescu, O Vanario-Alonso, CE Sharp, DH Samsonova, M Reinitz, J AF Manu Surkova, Svetlana Spirov, Alexander V. Gursky, Vitaly V. Janssens, Hilde Kim, Ah-Ram Radulescu, Ovidiu Vanario-Alonso, Carlos E. Sharp, David H. Samsonova, Maria Reinitz, John TI Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID POSITIONAL INFORMATION; ESCHERICHIA-COLI; BICOID MORPHOGEN; MORPHOLOGICAL EVOLUTION; ACQUIRED CHARACTERS; SEGMENTATION GENE; FINGER PROTEIN; BODY PATTERN; SINGLE-CELL; POLE REGION AB The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized. C1 [Manu; Spirov, Alexander V.; Kim, Ah-Ram; Vanario-Alonso, Carlos E.; Reinitz, John] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Manu; Spirov, Alexander V.; Kim, Ah-Ram; Vanario-Alonso, Carlos E.; Reinitz, John] SUNY Stony Brook, Ctr Dev Genet, Stony Brook, NY 11794 USA. [Surkova, Svetlana; Samsonova, Maria] St Petersburg State Polytech Univ, Ctr Adv Studies, Dept Computat Biol, St Petersburg, Russia. [Gursky, Vitaly V.] Russian Acad Sci, Dept Theoret, AF Ioffe Phys Tech Inst, St Petersburg 196140, Russia. [Janssens, Hilde] CRG Ctr Regulacio Genom, EMBL CRG Res Unit Syst Biol, Barcelona, Spain. [Radulescu, Ovidiu] Univ Rennes, Inst Math Res Rennes, Rennes, France. [Sharp, David H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Manu (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM reinitz@odd.bio.sunysb.edu RI Spirov, Alexander/G-4806-2010; Gursky, Vitaly/A-9187-2014; OI Spirov, Alexander/0000-0002-0509-6203; Radulescu, Ovidiu/0000-0001-6453-5707 FU US NIH [RR07801, GM072022]; NSF; CRDF GAP Awards [RBO-1286, RUB1-1578]; FASI [02.467.11.1005]; NWO-RBFR [047.011.2004.013]; RBFR [08-01-00315a, 08-04-00712a] FX This work was supported by grant RR07801 from the US NIH, GM072022 jointly from the US NIH and NSF, CRDF GAP Awards RBO-1286 and RUB1-1578, contract 02.467.11.1005 from the FASI of the RF, project 047.011.2004.013 of the NWO-RBFR, and grants 08-01-00315a and 08-04-00712a of the RBFR. NR 88 TC 43 Z9 44 U1 0 U2 14 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAR PY 2009 VL 5 IS 3 AR e1000303 DI 10.1371/journal.pcbi.1000303 PG 15 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 447TF UT WOS:000266214000008 PM 19282965 ER PT J AU Peng, JC Karpen, GH AF Peng, Jamy C. Karpen, Gary H. TI Heterochromatic Genome Stability Requires Regulators of Histone H3 K9 Methylation SO PLOS GENETICS LA English DT Article ID DROSOPHILA-MELANOGASTER HETEROCHROMATIN; EMBRYONIC AXIS SPECIFICATION; DOUBLE-STRAND BREAKS; DNA-DAMAGE RESPONSE; SYNAPTONEMAL COMPLEX; MITOTIC CHECKPOINT; REPAIR; ENCODES; PROTEIN; RECOMBINATION AB Heterochromatin contains many repetitive DNA elements and few protein-encoding genes, yet it is essential for chromosome organization and inheritance. Here, we show that Drosophila that lack the Su(var)3-9 H3K9 methyltransferase display significantly elevated frequencies of spontaneous DNA damage in heterochromatin, in both somatic and germ-line cells. Accumulated DNA damage in these mutants correlates with chromosomal defects, such as translocations and loss of heterozygosity. DNA repair and mitotic checkpoints are also activated in mutant animals and are required for their viability. Similar effects of lower magnitude were observed in animals that lack the RNA interference pathway component Dcr2. These results suggest that the H3K9 methylation and RNAi pathways ensure heterochromatin stability. C1 [Peng, Jamy C.; Karpen, Gary H.] Lawrence Berkeley Natl Lab, Dept Genome & Computat Biol, Berkeley, CA USA. [Peng, Jamy C.; Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Peng, JC (reprint author), Stanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USA. EM karpen@fruitfly.org FU NIGMS NIH HHS [R01 GM061169, R01 GM061169-04] NR 71 TC 76 Z9 76 U1 1 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD MAR PY 2009 VL 5 IS 3 AR e1000435 DI 10.1371/journal.pgen.1000435 PG 14 WC Genetics & Heredity SC Genetics & Heredity GA 449GZ UT WOS:000266320100041 PM 19325889 ER PT J AU Maxwell, RS Chinn, SC Alviso, CT Harvey, CA Giuliani, JR Wilson, TS Cohenour, R AF Maxwell, Robert S. Chinn, Sarah C. Alviso, Cynthia T. Harvey, Chris A. Giuliani, Jason R. Wilson, Thomas S. Cohenour, Rebecca TI Quantification of radiation induced crosslinking in a commercial, toughened silicone rubber, TR55 by H-1 MQ-NMR SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Radiation; NMR; Silicones; Crosslinking ID MULTIPLE-QUANTUM NMR; MOLECULAR-WEIGHT DISTRIBUTION; THERMAL-DEGRADATION; GAMMA-IRRADIATION; CHAIN DYNAMICS; PERMANENT SET; POLYSILOXANE; ELASTOMER; DENSITY; ORDER AB Radiation induced degradation in a commercial, filled silicone composite has been studied by SPME/GC-MS, DMA, DSC, swelling, and multiple quantum NMR. Analysis of volatile and semi-volatile species indicates degradation via decomposition of the peroxide curing catalyst and radiation induced backbiting reactions. DMA, swelling, and spin-echo NMR analysis indicate an increase in crosslink density of near 100% upon exposure to a cumulative dose of 250 kGray. Analysis of the sol fraction via Charlesby-Pinner analysis indicates a ratio of chain scission to crosslinking yields of 0.38, consistent with the dominance of the crosslinking observed by DMA, swelling and spin-echo NMR and the chain scissioning reactions observed by MS analysis. Multiple quantum NMR has revealed a bimodal distribution of residual dipolar couplings near 1 krad/s and 5 krad/s in an approximately 90:10 ratio, consistent with bulk network chains and chains associated with the filler surface. Upon exposure to radiation, the mean < Q(d)> for both domains and the width of both domains increased. The MQ-NMR analysis provided increased insight into the effects of ionizing radiation on the network structure of silicone polymers. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Maxwell, Robert S.; Chinn, Sarah C.; Alviso, Cynthia T.; Harvey, Chris A.; Wilson, Thomas S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Cohenour, Rebecca] Kansas City Plant, Honeywell Fed Mfg & Technol, Kansas City, MO 64141 USA. [Giuliani, Jason R.] Sierra Coll, Rocklin, CA 95677 USA. RP Maxwell, RS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM maxwell7@llnl.gov RI Chinn, Sarah/E-1195-2011 FU LLNL Laboratory Directed Research and Development (LDRD) [005-SI-06] FX We thank the following for generous help in the course of this work: Erica Gjersing, Julie Herberg, Kay Saalwachter, and Ticora Jones. Portions of this work were performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Financial support from the LLNL Laboratory Directed Research and Development (LDRD) program (005-SI-06) is acknowledged. NR 44 TC 13 Z9 13 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD MAR PY 2009 VL 94 IS 3 BP 456 EP 464 DI 10.1016/j.polymdegradstab.2008.10.028 PG 9 WC Polymer Science SC Polymer Science GA 416MP UT WOS:000264010500023 ER PT J AU Cadwallader, LC AF Cadwallader, L. C. TI Analysis of Fire Calls to an Industrial Complex Over a 12-Year Period SO PROCESS SAFETY PROGRESS LA English DT Article DE fire; alarm; false alarm; detection; suppression AB This article gives an analysis of fire calls from over a decade of operations at a process facility complex operated by the Idaho National Laboratory. These data include valid alarms, unwanted or false alarms. ambulance calls, and hazardous material cleanup calls. Of special interest are false alarms, which are not only a nuisance to facility productivity but also are detrimental to public and facility safety. Of the fire calls listed here, over half were from false alarms. The results given are compared with National Fire Protection Association data. The data presented can serve as exemplar data for future facilities and can be compared with other operating facilities' experiences. (C) 2009 American Institute of Chemical Engineers Process Saf Prog 28: 15-23, 2009 C1 Idaho Natl Lab, Thermal Sci & Safety Anal Dept, Idaho Falls, ID 83415 USA. RP Cadwallader, LC (reprint author), Idaho Natl Lab, Thermal Sci & Safety Anal Dept, POB 1625, Idaho Falls, ID 83415 USA. EM lee.cadwallader@inl.gov RI Cadwallader, Lee/F-6933-2014 NR 9 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1066-8527 J9 PROCESS SAF PROG JI Process Saf. Prog. PD MAR PY 2009 VL 28 IS 1 BP 15 EP 23 DI 10.1002/prs.10302 PG 9 WC Engineering, Chemical SC Engineering GA 411OY UT WOS:000263660100004 ER PT J AU Streeper, C Whitworth, J Tompkins, JA AF Streeper, Charles Whitworth, Julia Tompkins, J. Andrew TI Lack of international consensus on the disposition and storage of disused sealed sources SO PROGRESS IN NUCLEAR ENERGY LA English DT Article AB A lower-activity analogue of the trans-national problem of spent fuel management and disposal is the global problem of radioactive sealed source [source: The IAEA definition of a sealed source is "Radioactive material that is permanently sealed in a capsule or closely bonded and in a solid form." Taken from glossary of Nuclear Waste Data Management found at http://www-ewmdb.iaea.org/showhelp. asp?Topic=8-1-1.] disposal. Sources are found in almost every country in the world because of their beneficial medical and commercial or industrial applications. Some of the isotopes used have short half-lives-iridium-192 (Ir-192), 73.8 days-while others have very long half-lives-americium-241 (Am-241), 432 years or plutonium-239 (Pu-239), 24,130 years. It is critically important, particularly for longer-lived isotopes, to find final disposition pathways. Lack of a permanent disposition pathway such as recycling or irretrievable disposal creates numerous problems, including the potential loss of regulatory control, which increases the risk of inadvertent or deliberate misuse of the material. The misuse of radioactive materials has the potential for substantial public health and economic damage. Disused sources also pose an inherent risk to the end-users from a liability, safety, and public health perspectives. This paper examines various disposition pathways employed by several key source manufacturing or possessing nation-states for disused sources. Examples of source disposition pathways include long-term storage, deep geological disposal, borehole disposal and shallow land burial. The Off-Site Source Recovery Project (OSRP), part of the office of Global Threat Reduction Initiative (GTRI), acts as an intermediary in the recovery and ultimate disposition of US origin sealed radiological materials. Several concepts that could help mitigate the challenge of a lack of long-term disposition options for sources are available, but these tools have not yet been applied by most nation-states. For example, regional consolidation and repatriation of sources to the country of manufacture would ease or eliminate the need for in situ disposal or storage in a number of developing nation-states. Published by Elsevier Ltd. C1 [Streeper, Charles; Whitworth, Julia] Los Alamos Natl Lab, Off Site Source Recovery Project, Los Alamos, NM 87545 USA. RP Streeper, C (reprint author), Los Alamos Natl Lab, Off Site Source Recovery Project, Mail Stop J552, Los Alamos, NM 87545 USA. EM streeper@lanl.gov NR 40 TC 3 Z9 3 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAR PY 2009 VL 51 IS 2 BP 258 EP 267 DI 10.1016/j.pnucene.2008.07.003 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 411FJ UT WOS:000263634000008 ER PT J AU Talamo, A AF Talamo, Alberto TI A novel concept of QUADRISO particles - Part III: Applications to the plutonium-thorium fuel cycle SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Thorium; MCB; QUADRISO; GT-MHR AB In the present study, a plutonium-thorium fuel cycle is investigated including the (233)U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing (233)U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the (233)U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles. (C) 2008 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Talamo, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 FU U.S. Department of Energy [DE-AC02-06CH11357] FX Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. NR 21 TC 3 Z9 3 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAR PY 2009 VL 51 IS 2 BP 274 EP 280 DI 10.1016/j.pnucene.2008.09.005 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 411FJ UT WOS:000263634000010 ER PT J AU Ramirez, JR Perry, RT Alonso, G Palacios, JC AF Ramirez, Jose R. Perry, R. T. Alonso, Gustavo Palacios, Javier C. TI Recycling scheme and fuel cycle costs for twin BWRs reactors SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE BWR; Plutonium recycle; Fuel cycle costs AB To access possible economic advantages of reprocessing and recycling the spent fuel from nuclear power reactors against a once through policy, a proposed scenario for twin BWRs was established. Calculations for the amount of fuel that the plants will use and generate during 40 years of operation under each scenario were made. An evaluation of costs for each option applying current prices for uranium and services were then carried out. Finally a comparison between the options was made, and it was found that the recycling option is more expensive than the once through cycle by about 4%. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Perry, R. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ramirez, Jose R.; Perry, R. T.; Alonso, Gustavo; Palacios, Javier C.] Inst Nacl Invest Nucl, La Marquesa Ocoyoacac 52750, Mexico. [Ramirez, Jose R.] Univ Autonoma Estado Mexico, Fac Ciencias, Toluca, Mexico. RP Perry, RT (reprint author), Los Alamos Natl Lab, POB 1663,MS K483, Los Alamos, NM 87545 USA. EM jrrs@nuclear.inin.mx; rtperry@lanl.gov NR 8 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAR PY 2009 VL 51 IS 2 BP 303 EP 306 DI 10.1016/j.pnucene.2008.08.003 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 411FJ UT WOS:000263634000014 ER PT J AU Secco, P D'Agostini, E Marzari, R Licciulli, M Di Niro, R D'Angelo, S Bradbury, ARM Dianzani, U Santoro, C Sblattero, D AF Secco, Paola D'Agostini, Elena Marzari, Roberto Licciulli, Marta Di Niro, Roberto D'Angelo, Sara Bradbury, Andrew R. M. Dianzani, Umberto Santoro, Claudio Sblattero, Daniele TI Antibody library selection by the beta-lactamase protein fragment complementation assay SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE beta-lactamase; PCA; phage display; scFv ID GREEN FLUORESCENT PROTEIN; IN-VIVO; PHAGE DISPLAY; LIVING CELLS; MONOCLONAL-ANTIBODY; ESCHERICHIA-COLI; 2-HYBRID SYSTEM; SPOT SYNTHESIS; RECEPTOR; STRATEGIES AB Protein fragment complementation assay (PCA) is based on the interaction between two protein partners (e.g. target antigen and antibody), which are genetically fused to the two halves of a dissected marker protein. Binding of the two partners reassembles the marker protein and hence reconstitutes its activity. In this work we have developed the first application of beta-lactamase-based PCA for the isolation of single chain Fv fragments (scFvs) binding to the human receptor RON from a naive library. Specific scFvs with the ability to immunoprecipitate could be isolated after a single round of PCA selection from an scFv repertoire previously pre-selected by phage display. Furthermore, the PCA was used to successfully map the epitopes recognized by the selected scFvs by screening them against a small library of random RON fragments. C1 [Secco, Paola; D'Agostini, Elena; D'Angelo, Sara; Dianzani, Umberto; Santoro, Claudio; Sblattero, Daniele] Univ Piemonte Orientale, Dept Med Sci, I-28100 Novara, Italy. [Secco, Paola; D'Agostini, Elena; D'Angelo, Sara; Dianzani, Umberto; Santoro, Claudio; Sblattero, Daniele] Univ Piemonte Orientale, IRCAD, I-28100 Novara, Italy. [Marzari, Roberto; Licciulli, Marta; Di Niro, Roberto] Univ Trieste, Dept Biol, I-34127 Trieste, Italy. [Bradbury, Andrew R. M.] Los Alamos Natl Lab, Div B, Los Alamos, NM 87545 USA. RP Sblattero, D (reprint author), Univ Piemonte Orientale, Dept Med Sci, Via Solaroli 17, I-28100 Novara, Italy. EM daniele.sblattero@med.unipmn.it RI santoro, claudio/G-6819-2012; Dianzani, Umberto/K-1952-2016; OI Bradbury, Andrew/0000-0002-5567-8172 FU Compagnia San Paolo (Torino); U. D. and EC Marie Curie Research Training Network [MRTN-CT-2006-036032] FX This work was supported with grant from Compagnia San Paolo (Torino) to C. S. Ricerca Sanitaria Applicata-CIPE Project to U. D. and EC Marie Curie Research Training Network, contract n. MRTN-CT-2006-036032 to RM. NR 71 TC 9 Z9 10 U1 3 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD MAR PY 2009 VL 22 IS 3 BP 149 EP 158 DI 10.1093/protein/gzn053 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 410VE UT WOS:000263605600005 PM 18829449 ER PT J AU Gabbard, J Velappan, N Di Niro, R Schmidt, J Jones, C Tompkins, S Bradbury, A AF Gabbard, J. Velappan, N. Di Niro, R. Schmidt, J. Jones, C. A. Tompkins, S. M. Bradbury, A. R. M. TI A humanized anti-M2 scFv shows protective in vitro activity against influenza SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article ID VIRUS M2 PROTEIN; A VIRUS; MONOCLONAL-ANTIBODY; MATRIX PROTEIN-2; ADAMANTANE RESISTANCE; AVIAN INFLUENZA; NONNEUTRALIZING ANTIBODIES; BOTULINUM NEUROTOXIN; EXTRACELLULAR DOMAIN; MOLECULAR EVOLUTION AB M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza. C1 [Gabbard, J.; Jones, C. A.; Tompkins, S. M.] Univ Georgia, Dept Infect Dis, Coll Vet Med, Influenza Pathogenesis & Immunol Res Ctr,Anim Hlt, Athens, GA 30602 USA. [Velappan, N.; Schmidt, J.; Bradbury, A. R. M.] Los Alamos Natl Lab, Div B, Los Alamos, NM 87545 USA. [Di Niro, R.] Univ Oslo, Rikshosp, Inst Immunol, Ctr Immune Regulat, N-0027 Oslo, Norway. RP Tompkins, S (reprint author), Univ Georgia, Dept Infect Dis, Coll Vet Med, Influenza Pathogenesis & Immunol Res Ctr,Anim Hlt, 111 Carlton St,Bldg 1077, Athens, GA 30602 USA. EM smt@uga.edu; amb@lanl.gov RI Tompkins, Stephen/A-3317-2008; OI Tompkins, Stephen/0000-0002-1523-5588; Schmidt, Jurgen/0000-0002-8192-9940; Velappan, Nileena/0000-0002-4488-9126; Bradbury, Andrew/0000-0002-5567-8172 FU LANL Lab directed research funds (LDRD-DR) FX A. R. M. B. is grateful to LANL Lab directed research funds (LDRD-DR). NR 69 TC 13 Z9 13 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD MAR PY 2009 VL 22 IS 3 BP 189 EP 198 DI 10.1093/protein/gzn070 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 410VE UT WOS:000263605600009 PM 19054791 ER PT J AU Bernhards, RC Jing, X Vogelaar, NJ Robinson, H Schubot, FD AF Bernhards, Robert C. Jing, Xing Vogelaar, Nancy J. Robinson, Howard Schubot, Florian D. TI Structural evidence suggests that antiactivator ExsD from Pseudomonas aeruginosa is a DNA binding protein SO PROTEIN SCIENCE LA English DT Article DE ExsD; type III secretion; activator; transcription; regulation ID III SECRETION SYSTEM; EXOENZYME-S; YERSINIA-ENTEROCOLITICA; TRANSREGULATORY LOCUS; NOSOCOMIAL INFECTIONS; ESCHERICHIA-COLI; REGULATOR; GENE; TRANSCRIPTION; STABILITY AB The opportunistic pathogen P. aeruginosa utilizes a type III secretion system (T3SS) to support acute infections in predisposed individuals. In this bacterium, expression of all T3SS-related genes is dependent on the AraC-type transcriptional activator ExsA. Before host contact, the T3SS is inactive and ExsA is repressed by the antiactivator protein ExsD. The repression, thought to occur through direct interactions between the two proteins, is relieved upon opening of the type III secretion (T3S) channel when secretion chaperone ExsC sequesters ExsD. We have solved the crystal structure of Delta 20ExsD, a protease-resistant fragment of ExsD that lacks only the 20 amino terminal residues of the wild-type protein at 2.6 angstrom. Surprisingly the structure revealed similarities between ExsD and the DNA binding domain of transcriptional repressor KorB. A model of an ExsD-DNA complex constructed on the basis of this homology produced a realistic complex that is supported by the prevalence of conserved residues in the putative DNA binding site and the results of differential scanning fluorimetry studies. Our findings challenge the currently held model that ExsD solely acts through interactions with ExsA and raise new questions with respect to the underlying mechanism of ExsA regulation. C1 [Bernhards, Robert C.; Jing, Xing; Vogelaar, Nancy J.; Schubot, Florian D.] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24060 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Schubot, FD (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Sci, Washington St,Life Sci 1,Room 125, Blacksburg, VA 24060 USA. EM fschubot@vt.edu FU Virginia Polytechnic Institute; State University; DOE/DER; NIH/NCRR FX Grant sponsor: Virginia Polytechnic Institute and State University.; Funding for data collected at beamline x 29 NSLS is provided by DOE/DER and NIH/NCRR. NR 53 TC 6 Z9 6 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2009 VL 18 IS 3 BP 503 EP 513 DI 10.1002/pro.48 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 429SZ UT WOS:000264941700003 PM 19235906 ER PT J AU Mercier, KA Cort, JR Kennedy, MA Lockert, EE Ni, SS Shortridge, MD Powers, R AF Mercier, Kelly A. Cort, John R. Kennedy, Michael A. Lockert, Erin E. Ni, Shuisong Shortridge, Matthew D. Powers, Robert TI Structure and function of Pseudomonas aeruginosa protein PA1324 (21-170) SO PROTEIN SCIENCE LA English DT Article DE Pseudomonas aeruginosa PA1324; NMR; functional genomics; NMR high-throughput screens; protein-ligand binding; protein-ligand co-structures; structural biology; structural genomics; chemical proteomics; protein structure initiative; hypothetical proteins; FAST-NMR; Northeast Structural Genomics Consortium ID POLYSACCHARIDE INTERCELLULAR ADHESIN; CARBOHYDRATE-BINDING MODULES; TONB-DEPENDENT TRANSPORT; STAPHYLOCOCCUS-EPIDERMIDIS; BIOFILM FORMATION; ESCHERICHIA-COLI; ANTIMICROBIAL RESISTANCE; NMR-SPECTROSCOPY; TARGET SELECTION; IRON LIMITATION AB Pseudomonas aeruginosa is the prototypical biofilm-forming gram-negative opportunistic human pathogen. P. aeruginosa is causatively associated with nosocomial infections and with cystic fibrosis. Antibiotic resistance in some strains adds to the inherent difficulties that result from biofilm formation when treating P. aeruginosa infections. Transcriptional profiling studies suggest widespread changes in the proteome during quorum sensing and biofilm development. Many of the proteins found to be upregulated during these processes are poorly characterized from a functional standpoint. Here, we report the solution NMR structure of PA1324, a protein of unknown function identified in these studies, and provide a putative biological functional assignment based on the observed prealbumin-like fold and FAST-NMR ligand screening studies. PA1324 is postulated to be involved in the binding and transport of sugars or polysaccharides associated with the peptidoglycan matrix during biofilm formation. C1 [Cort, John R.; Lockert, Erin E.] Pacific NW Natl Lab, Div Biol Sci, NE Struct Genom Consortium, Richland, WA 99354 USA. [Cort, John R.; Lockert, Erin E.] Washington State Univ Tri Cities, Richland, WA 99354 USA. [Mercier, Kelly A.; Shortridge, Matthew D.; Powers, Robert] Univ Nebraska, Dept Chem, Lincoln, NE USA. [Kennedy, Michael A.; Ni, Shuisong] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. [Kennedy, Michael A.; Ni, Shuisong] Miami Univ, NE Struct Genom Consortium, Oxford, OH 45056 USA. RP Cort, JR (reprint author), Pacific NW Natl Lab, Div Biol Sci, NE Struct Genom Consortium, POB 999,MSIN K8-98, Richland, WA 99354 USA. EM john.cort@pnl.gov; rpowers3@uni.edu FU Department of Energy's Office of Biological and Environmental Research FX A portion of the research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Montelione laboratory and other members of the NESG Consortium for shared NMR technologies. NR 96 TC 10 Z9 11 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2009 VL 18 IS 3 BP 606 EP 618 DI 10.1002/pro.62 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 429SZ UT WOS:000264941700012 PM 19241370 ER PT J AU Ji, Y Vanska, E Van Heiningen, A AF Ji, Y. Vanska, E. Van Heiningen, A. TI Rate determining step and kinetics of oxygen delignification SO PULP & PAPER-CANADA LA English DT Article CT International Pulp Bleaching Conference CY JUN 25, 2008 CL Quebec City, CANADA DE OXYGEN DELIGNIFICATION KINETICS; RATE DETERMINING STEP; CELLULOSE DEGRADATION KINETICS ID KRAFT PULPS; HEXENURONIC ACID; KAPPA NUMBER; LIGNIN; CSTR AB A differentially operated, continuous stirred tank reactor (CSTR) was used to study the kinetics of oxygen delignification. The delignification kinetics and reaction rate were determined at different temperatures, oxygen pressures and caustic concentrations on softwood kraft Pulps. The kinetics are first order in residual lignin content (HexA corrected). The kinetics of phenolic delignification can be described by assuming that the decomposition of the hydroperoxide anion at carbon 3 of the aromatic ring is the rate determining step. The cellulose degradation. kinetics were described by two contributions: one due to radicals produced by phenolic delignification, and the other due to alkaline hydrolysis. C1 [Ji, Y.] Natl Renewable Energy Lab, Golden, CO USA. [Vanska, E.] Helsinki Univ Technol, FIN-02150 Espoo, Finland. [Van Heiningen, A.] Univ Maine, Orono, ME USA. RP Ji, Y (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 24 TC 7 Z9 7 U1 0 U2 7 PU SOUTHAM BUSINESS COMMUNICATION INC PI DON MILLS PA 1450 DON MILLS RD, DON MILLS, ONTARIO M3B 2X7, CANADA SN 0316-4004 J9 PULP PAP-CANADA JI Pulp Pap.-Can. PD MAR PY 2009 VL 110 IS 3 BP 29 EP 35 PG 7 WC Materials Science, Paper & Wood SC Materials Science GA 430VF UT WOS:000265016900007 ER PT J AU Taylor, SR Anderson, DN AF Taylor, Steven R. Anderson, Dale N. TI Rediscovering Signal Complexity as a Teleseismic Discriminant SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE Complexity; teleseismic; discriminant ID SEISMIC EVENT; ARRAY DATA; EARTHQUAKES; EXPLOSIONS; IDENTIFICATION; SEISMOGRAMS AB We re-examine the utility of teleseismic seismic complexity discriminants in a multivariate setting using United Kingdom array data. We measure a complexity discriminant taken on array beams by simply taking the logarithm of the ratio of the P-wave coda signal to that of the first arriving direct P wave (beta(CF)). The single station complexity discriminant shows marginal performance with shallow earthquakes having more complex signatures than those from explosions or deep earthquakes. Inclusion of secondary phases in the coda window can also degrade performance. However, performance improves markedly when two-station complexity discriminants are formed showing false alarm rates similar to those observed for network m(b) - M(s). This suggests that multistation complexity discriminants may ameliorate some of the problems associated with m(b) - M(s) discrimination at lower magnitudes. Additionally, when complexity discriminants are combined with m(b) - M(s) there is a tendency for explosions, shallow earthquakes and deep earthquakes to form three distinct populations. Thus, complexity discriminants may follow a logic that is similar to m(b) - M(s) in terms of the separation of shallow earthquakes from nuclear explosions, although the underlying physics of the two discriminants is significantly different. C1 [Taylor, Steven R.] Rocky Mt Geophys, Los Alamos, NM 87544 USA. [Anderson, Dale N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Anderson, Dale N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Taylor, SR (reprint author), Rocky Mt Geophys, 167 Piedra Loop, Los Alamos, NM 87544 USA. EM srt-rmg@comcast.net FU U. S. Department of Energy by Pacific Northwest National Laboratory [DE-AC05-RLO1830] FX We gratefully acknowledge the advice and assistance provided by John Young, David Bowers and Neil Selby of the Blacknest Seismological Centre for the release of the important UK array historic dataset. We also thank Jeff Stevens for kindly providing the tables contained in STEVENS and MURPHY (2001). The insightful comments of two anonymous reviewers are also appreciated. This work was completed under the auspices of the U. S. Department of Energy by Pacific Northwest National Laboratory under contract DE-AC05-RLO1830. NR 17 TC 0 Z9 0 U1 0 U2 4 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0033-4553 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD MAR PY 2009 VL 166 IS 3 BP 325 EP 337 DI 10.1007/s00024-008-0449-y PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 428XF UT WOS:000264884700001 ER PT J AU Hastings, MB Harrow, AW AF Hastings, M. B. Harrow, A. W. TI CLASSICAL AND QUANTUM TENSOR PRODUCT EXPANDERS SO QUANTUM INFORMATION & COMPUTATION LA English DT Article DE Quantum computing; Unitary transform; Wavelet ID DISTRIBUTING POINTS; HECKE OPERATORS; STATES; ENTANGLEMENT AB We introduce the concept of quantum tensor product expanders. These generalize the concept of quantum expanders, which are quantum maps that are efficient randomizers and use only a small number of Kraus operators. Quantum tensor product expanders act on several copies of a given system, where the Kraus operators are tensor products of the Kraus operator on a single system. We begin with the classical case, and show that a classical two-copy expander can be used to produce a quantum expander. We then discuss the quantum case and give applications to the Solovay-Kitaev problem. We give probabilistic constructions in both classical and quantum cases, giving tight bounds on the expectation value of the largest nontrivial eigenvalue in the quantum case. C1 [Hastings, M. B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hastings, M. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Harrow, A. W.] Univ Bristol, Dept Comp Sci, Bristol, Avon, England. RP Hastings, MB (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. FU National Science Foundation [PHY05-51164]; U. S. DOE [DE-AC52-06NA25396]; European Commission [FP-022194]; EC [IST-2005-15848]; U.K. EPSRC; Army Research Office [W9111NF-05-1-0294] FX AWH thanks Richard Low for catching an error in the proof of Theorem 4, as well as useful discussions about Lemma 1. MBH thanks the KITP for hospitality while some of this research was completed. MBH was supported in part by the National Science Foundation under Grant No. PHY05-51164 and supported by U. S. DOE Contract No. DE-AC52-06NA25396. AWH was supported by the European Commission under a Marie Curie Fellowship (ASTQIT, FP-022194), the integrated EC project "QAP" (contract no. IST-2005-15848), the U.K. EPSRC, project "QIP IRC" and the Army Research Office under grant W9111NF-05-1-0294. NR 31 TC 5 Z9 5 U1 1 U2 3 PU RINTON PRESS, INC PI PARAMUS PA 565 EDMUND TERRACE, PARAMUS, NJ 07652 USA SN 1533-7146 J9 QUANTUM INF COMPUT JI Quantum Inform. Comput. PD MAR PY 2009 VL 9 IS 3-4 BP 336 EP 360 PG 25 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA 429RI UT WOS:000264937400009 ER PT J AU Helton, JC Sallaberry, CJ AF Helton, Jon C. Sallaberry, Cedric J. TI Conceptual basis for the definition and calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Review DE Aleatory uncertainty; Epistemic uncertainty; Expected dose; Performance assessment; Radioactive waste disposal; Uncertainty analysis; Yucca Mountain; 10 CFR Parts 2,19,20, etc.; 40 CFR Part 197 ID ISOLATION PILOT-PLANT; NUCLEAR-WASTE; RISK ASSESSMENTS; SENSITIVITY-ANALYSIS; UNCERTAINTY ANALYSIS; EXPERT JUDGMENT; PROBABILISTIC SAFETY; COMPLEX-SYSTEMS; DISPOSAL; LIMITATIONS AB A deep geologic repository for high-level radioactive waste is under development by the US Department of Energy (DOE) at YUCCA Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the US Environmental Protection Agency has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the US Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20. etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This paper is the first part of a two-part presentation and describes how general and typically nonquantitative statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are imprecisely known but assumed to have constant values in the calculation of expected, dose to the RMEI). The second part of this presentation is contained in the following paper, "Computational Implementation of Sampling-Based Approaches to the Calculation of Expected Dose in Performance Assessments for the Proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada," and both describes and illustrates sampling-based procedures for the estimation of expected dose and the determination of the uncertainty in estimates for expected dose. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Sallaberry, Cedric J.] Sandia Natl Labs, Dept 6784, Albuquerque, NM 87185 USA. [Helton, Jon C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1544, MS 0776, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov FU [DE-AC04-94AL85000] FX Work performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's (DOE's) National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Review at SNL provided by T.G. Trucano and R.P. Rechard. Editorial support provided by F. Puffer and J. Ripple of Tech Reps, a division of Ktech Corporation. This presentation is an independent product of the authors and does not necessarily reflect views held by either SNL or the DOE. NR 124 TC 26 Z9 26 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD MAR PY 2009 VL 94 IS 3 BP 677 EP 698 DI 10.1016/j.ress.2008.06.011 PG 22 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 402OX UT WOS:000263024100001 ER PT J AU Helton, JC Sallaberry, CJ AF Helton, Jon C. Sallaberry, Cedric J. TI Computational implementation of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Aleatory uncertainty; Epistemic uncertainty; Expected dose; Performance assessment; Radioactive waste disposal; Uncertainty analysis; Yucca Mountain; 10 CFR Parts 2,19,20, etc.; 40 CFR Part 197 ID PROBABILISTIC RISK ASSESSMENT; SENSITIVITY ANALYSIS TECHNIQUES; COMPUTER-MODELS; DEPENDABLE SYSTEMS; INPUT VARIABLES; FLUID-DYNAMICS; POWER-STATION; UNCERTAINTY; NUREG-1150; VALIDATION AB A deep geologic repository for high-level radioactive waste is under development by the US Department of Energy (DOE) at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the US Environmental Protection has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository. and the US Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19. 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This paper is the second part of a two-part presentation on the determination of expected dose to the RMEI in the context of 40 CFR Part 197 and 10 CFR Parts 2. 19, 20, etc. The first part of this presentation is contained in the preceding paper, "Conceptual Basis for the Definition and Calculation of Expected Dose in Performance Assessments for the Proposed High-Level Radioactive Waste Repository at Yucca and describes how general and typically nonquantitative statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e.. lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI). The present paper describes and illustrates sampling-based procedures for the estimation of expected dose and the determination of the uncertainty in estimates for expected dose. (C) 2008 Published by Elsevier Ltd. C1 [Sallaberry, Cedric J.] Sandia Natl Labs, Dept 6784, Albuquerque, NM 87185 USA. [Helton, Jon C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1544, MS 0776, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov FU US Department of Energy's (DOE's) National Nuclear Security Administration [DE-AC04-94AL85000] FX Work performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's (DOE's) National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Review at SNL provided by T.G. Trucano and R.P. Rechard. Editorial support provided by F. Puffer and J. Ripple of Tech Reps, a division of Ktech Corporation. This presentation is an independent product of the authors and does not necessarily reflect views held by either SNL or the DOE. NR 68 TC 11 Z9 11 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD MAR PY 2009 VL 94 IS 3 BP 699 EP 721 DI 10.1016/j.ress.2008.06.018 PG 23 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 402OX UT WOS:000263024100002 ER PT J AU Groth, M Ellis, RM Brooks, NH Fenstermacher, ME Lasnier, CJ Meyer, WH Moeller, JM AF Groth, M. Ellis, R. M. Brooks, N. H. Fenstermacher, M. E. Lasnier, C. J. Meyer, W. H. Moeller, J. M. TI Measurements of spatial line emission profiles in the main scrape-off layer of the DIII-D tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE plasma diagnostics; plasma simulation; plasma toroidal confinement; Tokamak devices ID JET MKIIGB DIVERTOR; TV SYSTEM; IMPURITY; CAMERAS AB A video camera system is described as that measures the spatial distribution of visible line emission emitted from the main scrape-off layer (SOL) of plasmas in the DIII-D tokamak. A wide-angle lens installed on an equatorial port and an in-vessel mirror, which intercepts part of the lens' view, provide simultaneous tangential views of the SOL on the low-field and high-field sides of the plasma's equatorial plane. Tomographic reconstruction techniques are used to calculate the two-dimensional (2D) poloidal profiles from the raw data, and one-dimensional (1D) poloidal profiles simulating chordal views of other optical diagnostics from the 2D profiles. The 2D profiles can be compared with SOL plasma simulations; the 1D profiles with measurements from spectroscopic diagnostics. Sample results are presented, which elucidate carbon transport in plasmas with toroidally uniform injection of methane and argon transport in disruption mitigation experiments with massive gas jet injection. C1 [Groth, M.; Ellis, R. M.; Fenstermacher, M. E.; Lasnier, C. J.; Meyer, W. H.; Moeller, J. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Brooks, N. H.] Gen Atom Co, San Diego, CA 92186 USA. RP Groth, M (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RI Groth, Mathias/G-2227-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-ENG-48, DE-AC52-07NA27344, DE-FC02-04ER54698] FX This work performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Grant Nos. W-7405-ENG-48 and DE-AC52-07NA27344 and U.S. DOE Contract No. DE-FC02-04ER54698. The authors would like to acknowledge the contributions from S. L. Allen, D. Behne, B. K. Haeger, E. M. Hollmann, T. D. Jernigan, J. A. Kulchar, A. G. McLean, R. L. Lee, P. M. Morgan, and P. L. Taylor. NR 22 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2009 VL 80 IS 3 AR 033505 DI 10.1063/1.3103575 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 427JW UT WOS:000264776600020 PM 19334920 ER PT J AU Kunz, M Tamura, N Chen, K MacDowell, AA Celestre, RS Church, MM Fakra, S Domning, EE Glossinger, JM Kirschman, JL Morrison, GY Plate, DW Smith, BV Warwick, T Yashchuk, VV Padmore, HA Ustundag, E AF Kunz, Martin Tamura, Nobumichi Chen, Kai MacDowell, Alastair A. Celestre, Richard S. Church, Matthew M. Fakra, Sirine Domning, Edward E. Glossinger, James M. Kirschman, Jonathan L. Morrison, Gregory Y. Plate, Dave W. Smith, Brian V. Warwick, Tony Yashchuk, Valeriy V. Padmore, Howard A. Ustundag, Ersan TI A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE superconducting magnets; X-ray diffraction; X-ray diffractometers; X-ray fluorescence analysis; X-ray optics ID ELECTROMIGRATION; DIFFRACTION; SPECIATION; SOILS AB A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of similar to 5x10(9) photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 mu m are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (similar to 0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10(-5) strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si-drift detector serves as a high-energy-resolution (similar to 150 eV full width at half maximum) fluorescence detector. Fluorescence scans can be collected in continuous scan mode with up to 300 pixels/s scan speed. A charge coupled device area detector is utilized as diffraction detector. Diffraction can be performed in reflecting or transmitting geometry. Diffraction data are processed using XMAS, an in-house written software package for Laue and monochromatic microdiffraction analysis. C1 [Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chen, Kai] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Ustundag, Ersan] Iowa State Univ, Hoover Ames, IA 50011 USA. RP Kunz, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mkunz@lbl.gov RI Ustundag, Ersan/C-1258-2009; MacDowell, Alastair/K-4211-2012; Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Ustundag, Ersan/0000-0002-0812-7028; Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU U. S. Department of Energy [DE-AC02-05CH11231]; University of California, Berkeley, California; NSF [0416243] FX The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and University of California, Berkeley, California. The move of the microdiffraction program from ALS beamline 7.3.3 onto the ALS superbend source 12.3.2 was enabled through the NSF Grant No. 0416243. NR 28 TC 82 Z9 82 U1 1 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2009 VL 80 IS 3 AR 035108 DI 10.1063/1.3096295 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 427JW UT WOS:000264776600053 PM 19334953 ER PT J AU Nurnberg, F Schollmeier, M Brambrink, E Blazevic, A Carroll, DC Flippo, K Gautier, DC Geissel, M Harres, K Hegelich, BM Lundh, O Markey, K McKenna, P Neely, D Schreiber, J Roth, M AF Nuernberg, F. Schollmeier, M. Brambrink, E. Blazevic, A. Carroll, D. C. Flippo, K. Gautier, D. C. Geissel, M. Harres, K. Hegelich, B. M. Lundh, O. Markey, K. McKenna, P. Neely, D. Schreiber, J. Roth, M. TI Radiochromic film imaging spectroscopy of laser-accelerated proton beams SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE plasma accelerators; proton beams; proton detection ID ION-BEAMS; INTENSITY LASER; SOLID TARGETS; PLASMA; DRIVEN; GENERATION; DOSIMETRY; INCREASE; PULSES AB This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications. C1 [Nuernberg, F.; Schollmeier, M.; Harres, K.; Roth, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Brambrink, E.] Ecole Polytech, Lab Utilisat Lasers Intenses, F-91128 Palaiseau, France. [Blazevic, A.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Carroll, D. C.; McKenna, P.] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland. [Flippo, K.; Gautier, D. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Geissel, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lundh, O.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Markey, K.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Neely, D.] Rutherford Appleton Lab, STFC, Didcot OX11 0QX, Oxon, England. [Schreiber, J.] Univ Munich, Fak Phys, D-85748 Garching, Germany. RP Nurnberg, F (reprint author), Tech Univ Darmstadt, Inst Kernphys, Schlossgartenstr 9, D-64289 Darmstadt, Germany. EM f.nuernberg@gsi.de RI McKenna, Paul/B-9764-2009; Flippo, Kirk/C-6872-2009; Schollmeier, Marius/H-1056-2012; Hegelich, Bjorn/J-2689-2013 OI McKenna, Paul/0000-0001-8061-7091; Flippo, Kirk/0000-0002-4752-5141; Schollmeier, Marius/0000-0002-0683-022X; FU TRIDENT; LULI; VULCAN; PHELIX; Max-Planck-Institut; Helmholtz Association; Laserlab Europe [RII3-CT-2003-506350]; EU [1999-0052]; EPSRC (U.K.) [EP/E048668/1]; Ile-de-france [E1127] FX We gratefully acknowledge the excellent support of the TRIDENT, LULI, VULCAN, and PHELIX laser and experiment teams. We thank IMVT Forschungszentrum Karlsruhe, LFM Bremen, target laboratory TU Darmstadt, and the Material Science Department at GSI Darmstadt for parts of the target preparation. We also acknowledge the Max-Planck-Institut fur Kernphysik Heidelberg for its support during the RCF calibration. This work was performed within the Virtual Institute VI-VH 144 (VIPBUL), funded by the Helmholtz Association, and also supported by Laserlab Europe (Grant No. RII3-CT-2003-506350), the EU program HPRI CT (Grant No. 1999-0052), the EPSRC (U.K.) (Grant No. EP/E048668/1), and the grant from region Ile-de-france (Grant No. E1127). NR 49 TC 83 Z9 83 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2009 VL 80 IS 3 AR 033301 DI 10.1063/1.3086424 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 427JW UT WOS:000264776600014 PM 19334914 ER PT J AU Rudinger, K Lu, ZT Mueller, P AF Rudinger, Kenneth Lu, Zheng-Tian Mueller, Peter TI The role of carrier gases in the production of metastable argon atoms in a rf discharge SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE argon; helium; high-frequency discharges; ionisation potential; krypton; metastable states; neon AB We investigate the role of carrier gases in the production of metastable argon atoms in a rf-driven discharge. The effects of different carrier gases (krypton, xenon, neon, and helium), carrier gas pressures, and rf discharge powers are examined. A xenon carrier gas provides the greatest metastable population of argon, yielding an optimal fractional metastable population of argon (Ar(*)/Ar) of 2x10(-4) at 0.2 mTorr of xenon gas. The optimal krypton configuration yields 60% of the xenon-supported population at 1.5 times higher pressure. Neon and helium perform considerably worse probably due to their higher ionization potentials. C1 [Rudinger, Kenneth; Lu, Zheng-Tian; Mueller, Peter] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Rudinger, Kenneth; Lu, Zheng-Tian] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Rudinger, Kenneth; Lu, Zheng-Tian] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Rudinger, K (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM rudinger@anl.gov RI Mueller, Peter/E-4408-2011 OI Mueller, Peter/0000-0002-8544-8191 FU U. S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We thank Kevin Bailey and Thomas O'Connor for technical support and additional group members Cunfeng Cheng, Yun Ding, Brent Graner, Wolfgang Korsch, Ibrahim Sulai, William Trimble, and Reika Yokochi for helpful discussions and general support. This work was supported by the U. S. Department of Energy, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357. NR 5 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2009 VL 80 IS 3 AR 036105 DI 10.1063/1.3105722 PG 2 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 427JW UT WOS:000264776600060 PM 19334960 ER PT J AU Senesac, LR Yi, D Greve, A Hales, JH Davis, ZJ Nicholson, DM Boisen, A Thundat, T AF Senesac, Larry R. Yi, Dechang Greve, Anders Hales, Jan H. Davis, Zachary J. Nicholson, Don M. Boisen, Anja Thundat, Thomas TI Micro-differential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE explosives; gas sensors; microsensors; thermal analysis ID VAPOR MIXTURES; MICROCANTILEVER; TRINITROTOLUENE; MICROSENSOR; ARRAYS AB Although micromechanical sensors enable chemical vapor sensing with unprecedented sensitivity using variations in mass and stress, obtaining chemical selectivity using the micromechanical response still remains as a crucial challenge. Chemoselectivity in vapor detection using immobilized selective layers that rely on weak chemical interactions provides only partial selectivity. Here we show that the very low thermal mass of micromechanical sensors can be used to produce unique responses that can be used for achieving chemical selectivity without losing sensitivity or reversibility. We demonstrate that this method is capable of differentiating explosive vapors from nonexplosives and is additionally capable of differentiating individual explosive vapors such as trinitrotoluene, pentaerythritol tetranitrate, and cyclotrimethylenetrinitromine. This method, based on a microfabricated bridge with a programmable heating rate, produces unique and reproducible thermal response patterns within 50 ms that are characteristic to classes of adsorbed explosive molecules. We demonstrate that this micro-differential thermal analysis technique can selectively detect explosives, providing a method for fast direct detection with a limit of detection of 600x10(-12) g. C1 [Senesac, Larry R.; Yi, Dechang; Nicholson, Don M.; Thundat, Thomas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Senesac, Larry R.; Thundat, Thomas] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Greve, Anders; Hales, Jan H.; Davis, Zachary J.; Boisen, Anja] Tech Univ Denmark, MIC, DK-2800 Lyngby, Denmark. RP Thundat, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Boisen, Anja/F-9442-2011 OI Boisen, Anja/0000-0002-9918-6567 FU U. S. Department of Homeland Security; Office of Naval Research; U. S. Department of Energy [DE-AC05-00OR22725] FX We thank Dr. Richard Lareau and Dr. Eric Houser for discussions on explosive detection. This research was supported in part by U. S. Department of Homeland Security and the Office of Naval Research. ORNL is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 20 TC 22 Z9 22 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2009 VL 80 IS 3 AR 035102 DI 10.1063/1.3090881 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 427JW UT WOS:000264776600047 PM 19334947 ER PT J AU Shaddix, CR Williams, TC AF Shaddix, Christopher R. Williams, Timothy C. TI Evaluation of the irising effect of a slow-gating intensified charge-coupled device on laser-induced incandescence measurements of soot SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE CCD image sensors; charge-coupled devices; combustion; laser beam effects; measurement by laser beam; nanoparticles; particle size; Rayleigh scattering; soot ID DIFFUSION FLAMES AB Intensified charge-coupled devices (ICCDs) are used extensively in many scientific and engineering environments to image weak or temporally short optical events. To optimize the quantum efficiency of light collection, many of these devices are chosen to have characteristic intensifier gate times that are relatively slow, on the order of tens of nanoseconds. For many measurements associated with nanosecond laser sources, such as scattering-based diagnostics and most laser-induced fluorescence applications, the signals rise and decay sufficiently fast during and after the laser pulse that the intensifier gate may be set to close after the cessation of the signal and still effectively reject interferences associated with longer time scales. However, the relatively long time scale and complex temporal response of laser-induced incandescence (LII) of nanometer-sized particles (such as soot) offer a difficult challenge to the use of slow-gating ICCDs for quantitative measurements. In this paper, ultraviolet Rayleigh scattering imaging is used to quantify the irising effect of a slow-gating scientific ICCD camera, and an analysis is conducted of LII image data collected with this camera as a function of intensifier gate width. The results demonstrate that relatively prompt LII detection, generally desirable to minimize the influences of particle size and local gas pressure and temperature on measurements of the soot volume fraction, is strongly influenced by the irising effect of slow-gating ICCDs. C1 [Shaddix, Christopher R.; Williams, Timothy C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Shaddix, CR (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 East Ave, Livermore, CA 94550 USA. FU Laboratory Directed Research and Development; U.S. DOE [DE-AC04-94-AL85000] FX This work was supported by a Laboratory Directed Research and Development project at Sandia National Laboratories. Bob Harmon of Sandia assisted in laboratory measurements. Sandia is operated by the Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE under Contract No. DE-AC04-94-AL85000. NR 18 TC 2 Z9 2 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2009 VL 80 IS 3 AR 033702 DI 10.1063/1.3089224 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 427JW UT WOS:000264776600022 PM 19334922 ER PT J AU Tronin, A Strzalka, J Krishnan, V Kuzmenko, I Fry, HC Therien, M Blasie, JK AF Tronin, Andrey Strzalka, Joseph Krishnan, Venkata Kuzmenko, Ivan Fry, H. Christopher Therien, Michael Blasie, J. Kent TI Portable UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers at air-water interfaces. SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE chemical sensors; dichroism; dyes; fibre optic sensors; Langmuir-Blodgett films; monolayers; portable instruments; spectrochemical analysis; spectroscopic light sources; ultraviolet spectrometers; visible spectrometers; X-ray scattering ID 4-HELIX BUNDLE PEPTIDES; INTERNAL-REFLECTION FLUORESCENCE; DESIGNED EXTENDED CHROMOPHORES; OPTICAL BIOMOLECULAR MATERIALS; ORIENTATION DISTRIBUTION; IN-SITU; POLARIZED EPIFLUORESCENCE; MOLECULAR-ORIENTATION; SURFACE-CHEMISTRY; LINEAR DICHROISM AB An UV-visible spectrometer for measuring absorbance and dichroism of Langmuir monolayers under in situ conditions is described. The spectrometer utilizes a stand-alone multipass sensor, which is placed in a Langmuir trough and coupled with light source and spectrometer head via fiber optics. Implementation of the multipass scheme in the absorbance sensor makes it possible to obtain reliable quantitative spectroscopic data of the Langmuir monolayers with absorbance as low as 1 mOD. Such high sensitivity makes the developed sensor very useful for UV-visible spectral studies of a wide variety of chromophores. The new technique was applied to several model systems: fatty acid monolayers containing amphiphilic dyes DiI or BODIPY and also a monolayer of a synthetic amphiphilic porphyrin-binding peptide BBC16. Implementation of UV-visible absorbance spectroscopy measurements in situ together with x-ray scattering technique was used to confirm the bound state of the chromophore, and determine the exact position of the latter in the peptide matrix. Fiber optics design of the spectrometer provides portability and compatibility with other experimental techniques making it possible to study samples with a geometry unsuitable for conventional spectroscopic measurements and located in experimental environments with spatial limitations, such as synchrotron x-ray scattering stations. C1 [Tronin, Andrey; Strzalka, Joseph; Krishnan, Venkata; Fry, H. Christopher; Blasie, J. Kent] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Strzalka, Joseph; Kuzmenko, Ivan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Therien, Michael] Duke Univ, Dept Chem, Durham, NC 27708 USA. RP Tronin, A (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. EM tronin@sas.upenn.edu RI Krishnan, Venkata/H-4584-2011 OI Krishnan, Venkata/0000-0002-4453-0914 FU Office of Basic Energy Sciences, Department of Energy (DOE) [DE-FG02-04ER46156]; National Science Foundation-Materials Research Science and Engineering Center (NSF-MRSEC) [DMR05-20020]; National Science Foundation-Nanoscale Science and Engineering (NSF-NSEC) [DMR-0425780]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by grants from the Office of Basic Energy Sciences, Department of Energy (DOE) program (Grant No. DE-FG02-04ER46156), National Science Foundation-Materials Research Science and Engineering Center (NSF-MRSEC) program (Grant No. DMR05-20020), and National Science Foundation-Nanoscale Science and Engineering (NSF-NSEC) program (Grant No. DMR-0425780). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 27 TC 5 Z9 5 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2009 VL 80 IS 3 AR 033102 DI 10.1063/1.3089807 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 427JW UT WOS:000264776600002 PM 19334902 ER PT J AU Warren, CD Paulauskas, FL Baker, FS Eberle, CC Naskar, A AF Warren, C. D. Paulauskas, F. L. Baker, F. S. Eberle, C. C. Naskar, A. TI Development of Commodity Grade, Lower Cost Carbon Fiber-Commercial Applications SO SAMPE JOURNAL LA English DT Article AB In pursuit of the goal to produce ultra-lightweight fuel efficient vehicles, there has been great excitement during the last few years about the potential for using carbon fiber reinforced composites in high volume applications. Currently, the greatest hill-die that inhibits wider implementation of carbon fiber composites in transportation is the high cost of the fiber when compared to other candidate materials. As part of the United States Department of Energy FreedomCAR initiative, significant research is being conducted to develop lower cost, high volume technologies for producing carbon fiber This paper will highlight the ongoing research in this area. Through Department of Energy (DOE) sponsorship, Oak Ridge National Laboratoty (ORNL) and its partners have been working with the Automotive Composites Consortium (A CC) to develop technologies that would enable the production of carbon fiber at 11.00-15.40 dollars per kilogram (5-7 dollars per pound). Achievement of this cost goal, would allow the introduction of carbon fiber based composites into a greater number of applications for future vehicles. The goal of lower cost carbon fiber has necessitated the development of both alternative precursors and more efficient production methods. Alternative precursors under investigation include textile grade polyacrylonitrile (PAN) fibers and fibers from lignin-based feedstocks. Previously as part of the research program, Hexcel Corporation developed the science necessary to allow textile grade PAN to be used as a precursor rather than typical carbon fiber grade precursors. Efforts are also underway to develop carbon fiber precursors from lignin-based feedstocks. ORNL and its partners are working on this effort with domestic pulp and paper producers and with current and future ethanol fuel producers. In terms of alternative production methods, ORNL has developed a microwave-based carbonization unit that can process pre-oxidized fiber at over 200 inches per minute. ORNL has also developed a new method of high speed oxidation and a new method for precursor stabilization. Additionally novel methods of activating carbon fiber surfaces are under development which allow atomic oxygen concentrations as high as 25-30% to be achieved rather than the more typical 4-8% achieved by the standard industrial ozone treatment. C1 [Warren, C. D.; Paulauskas, F. L.; Baker, F. S.; Eberle, C. C.; Naskar, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Warren, CD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM warrencd@omi.gov FU U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-AC05-00OR22725] FX This research was sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Automotive Lightweighting Materials Program, lead by Drs. Joseph Carpenter and Rogelio Sullivan under contract DE-AC05-00OR22725 UT-Battelle, LLC. NR 14 TC 17 Z9 17 U1 6 U2 56 PU SAMPE PUBLISHERS PI COVINA PA 1161 PARKVIEW DRIVE, COVINA, CA 91722 USA SN 0091-1062 J9 SAMPE J JI Sampe J. PD MAR-APR PY 2009 VL 45 IS 2 BP 24 EP 36 PG 13 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 409TK UT WOS:000263528500004 ER PT J AU Zhu, J Sabharwal, T Guo, LH Kalyanasundaram, A Wang, GD AF Zhu, Jie Sabharwal, Tanya Guo, Lianhong Kalyanasundaram, Aruna Wang, Guodong TI Gloss Phenomena and Image Analysis of Atomic Force Microscopy in Molecular and Cell Biology SO SCANNING LA English DT Article DE atomic force microscopy; gloss phenomena; image analysis; molecular and cell biology ID DNA-MOLECULES; RESOLUTION IMAGES; SURFACE; TIP; AFM; CANTILEVERS; MORPHOLOGY; STABILITY; SUBSTRATE; LIQUID AB Proper sample preparation, scan setup, data collection and image analysis are key factors in Successful atomic force microscopy (AFM), which can avoid gloss phenomena effectively from unreasonable Manipulations or instrumental defaults. Fresh cleaved mica and newly treated glass cover were checked first as the substrates for all of the sample preparation for AFM. Then, crystals contamination from buffer was studied separately or combined with several biologic samples, and the influence of scanner, scan mode and cantilever to data collection was also discussed intensively using molecular and Cellular samples. At last, images treatment and analysis with off-line software had been focused on standard and biologic samples, and artificial glosses were highly considered for their high probability. SCANNING 31: 49-58, 2009. (C) 2009 Wiley Periodicals, Inc. C1 [Zhu, Jie; Sabharwal, Tanya; Kalyanasundaram, Aruna] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Zhu, Jie; Wang, Guodong] NW A&F Univ, Coll Sci, Cardiac Biophys & Bioengn Lab, Yangling, Shaanxi, Peoples R China. [Zhu, Jie] Argonne Natl Lab, Biophys Collaborat Access Team, Argonne, IL 60439 USA. [Guo, Lianhong] IIT, Dept Appl Math, Chicago, IL 60616 USA. RP Zhu, J (reprint author), IIT, Dept Biol Chem & Phys Sci, 3101 S Dearborn St, Chicago, IL 60616 USA. EM medfbi@gmail.com FU Talent Foundation of Northwest AF University [01140501]; Foundation of China Scholarship Council [2007103068]; National Institute of Health [RR-08630] FX Talent Foundation of Northwest A&F University: Contract/grant number: 01140501; Contract/grant sponsor Foundation of China Scholarship Council; Contract/grant number: 2007103068; Contract/grant sponsor National Institute of Health Grant; Contract/grant number: RR-08630. NR 58 TC 4 Z9 5 U1 0 U2 5 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2009 VL 31 IS 2 BP 49 EP 58 DI 10.1002/sca.20133 PG 10 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 438HA UT WOS:000265545300001 PM 19191267 ER PT J AU Schmitt, A Zink, M Parlapani, E Treutlein, J Schulze, T Rietschel, M Falkai, P Henn, FA AF Schmitt, Andrea Zink, M. Parlapani, E. Treutlein, J. Schulze, T. Rietschel, M. Falkai, P. Henn, F. A. TI THE RELATIONSHIP BETWEEN GENE EXPRESSION OF NMDA RECEPTOR SUBUNITS AND A NEUREGULIN-1 SNP IN THE CEREBELLUM OF SCHIZOPHRENIA PATIENTS SO SCHIZOPHRENIA BULLETIN LA English DT Meeting Abstract CT 12th International Congress on Schizophrenia Research CY MAR 28-APR 01, 2009 CL San Diego, CA C1 [Schmitt, Andrea; Parlapani, E.; Falkai, P.] Univ Goettingen, Dept Psychiat, Gottingen, Germany. [Schmitt, Andrea; Zink, M.; Treutlein, J.; Schulze, T.; Rietschel, M.; Henn, F. A.] Univ Heidelberg, Cent Inst Mental Hlth, D-6800 Mannheim, Germany. [Henn, F. A.] Brookhaven Natl Lab, New York, NY USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0586-7614 J9 SCHIZOPHRENIA BULL JI Schizophr. Bull. PD MAR PY 2009 VL 35 BP 228 EP 228 PG 1 WC Psychiatry SC Psychiatry GA 415VP UT WOS:000263964700656 ER PT J AU Li, L Ungar, T Wang, YD Fan, GJ Yang, YL Jia, N Ren, Y Tichy, G Lendvai, J Choo, H Liaw, PK AF Li, L. Ungar, T. Wang, Y. D. Fan, G. J. Yang, Y. L. Jia, N. Ren, Y. Tichy, G. Lendvai, J. Choo, H. Liaw, P. K. TI Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni-Fe alloy SO SCRIPTA MATERIALIA LA English DT Article DE Nanocrystalline; Cold rolling; Ni-Fe alloy; X-ray diffraction ID MOLECULAR-DYNAMICS SIMULATION; THIN-FILMS; DEFORMATION; METALS; MICROSTRUCTURE; REFINEMENT; STRENGTH; NICKEL AB Microstructures in nanocrystalline Ni-Fe alloys during cold rolling are quantitatively investigated by synchrotron high-energy X-ray diffraction. It is found that rolling leads to an obvious reduction in the densities of both dislocations and twins and an increase in crystallite size. A huge dislocation flux flows through the grains during rolling, even though only a small fraction remains in the specimen after rolling. A mechanically induced relaxation of the initial high-excited state of materials is revealed. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Li, L.; Fan, G. J.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ungar, T.; Tichy, G.; Lendvai, J.] Eotvos Lorand Univ, Dept Mat Phys, H-1518 Budapest, Pob, Hungary. [Wang, Y. D.; Yang, Y. L.; Jia, N.] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, 427B Dougherty Engn Hall, Knoxville, TN 37996 USA. EM pliaw@utk.edu RI wang, yandong/G-9404-2013; Choo, Hahn/A-5494-2009; Lendvai, Janos/J-4445-2013 OI Choo, Hahn/0000-0002-8006-8907; FU US Department of Energy; Office of Science; Office of Basic Energy Science [DE-AC02-06CH11357]; National Science Foundation (NSF); Internatiorial Materials Institutes (IMI) [DMR-0231320]; Hungarian National Science Foundation [67692, 71594]; National Natural Science Foundation of China [50725102] FX The authors are grateful to A.O. Kovacs for his kind assistance in carrying Out DSC and TEM measurements. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. The present work is supported by the National Science Foundation (NSF)-Internatiorial Materials Institutes (IMI) Prograrn (DMR-0231320). T.U. and Y.D.W. are grateful C to the Hungarian National Science Foundation (#67692, #71594) and National Natural Science Foundation of China (Grant No. 50725102) for Supporting the work, respectively. NR 30 TC 30 Z9 30 U1 0 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2009 VL 60 IS 5 BP 317 EP 320 DI 10.1016/j.scriptamat.2008.10.031 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 395WD UT WOS:000262553300013 ER PT J AU Xing, Q Lograsso, TA AF Xing, Q. Lograsso, T. A. TI Phase identification of quenched Fe-25at.% Ga SO SCRIPTA MATERIALIA LA English DT Article DE Iron; Gallium; Transmission electron microscopy (TEM); Magnetostriction ID ANTIPHASE DOMAIN BOUNDARIES; FE-GA; ALLOYS; MAGNETOSTRICTION; SYSTEM AB This work presents detailed information of phase identification of a single-crystalline Fe 25at.%,. Ga quenched from 1000 degrees C by transmission electron microscopy. The alloy was round to contain A2, B2 and D0(3), phases. Technical difficulties of the phase identification and their solutions are discussed. The discussion can also be applied to other alloys with similar assemblages of phases. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Xing, Q.; Lograsso, T. A.] Ames Lab, Ames, IA 50011 USA. RP Xing, Q (reprint author), Ames Lab, Ames, IA 50011 USA. EM qfxingtem@gmail.com FU US Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences; Iowa State University [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences. The research was performed at Ames Laboratory. Ames Laboratory is operated for the US DOE by Iowa State University Under Contract No. DE-AC02-07CH11358. NR 16 TC 14 Z9 15 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2009 VL 60 IS 6 BP 373 EP 376 DI 10.1016/j.scriptamat.2008.11.007 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 407XR UT WOS:000263398100005 ER PT J AU Bhusal, L Ptak, AJ France, R Mascarenhas, A AF Bhusal, L. Ptak, A. J. France, R. Mascarenhas, A. TI Contactless electroreflectance studies of ultra-dilute GaAs1-xBix alloys SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID INVERSION-ASYMMETRY; QUANTUM-WELLS; CONDUCTION-BAND; SPIN PRECESSION; ENERGY-BAND; LAYERS; HETEROSTRUCTURES; ANTILOCALIZATION; SEMICONDUCTORS; EPITAXY AB In this work we report a large effect due to relativistic corrections in the electronic structure of very dilute GaAs1-xBix (x < 0.0025) thick epitaxial layers. The variation of the spin-orbit split-off band for x as small as 0.0001 is reported. Very thick (2-3 mu m) epilayers were grown by molecular-beam epitaxy to isolate the transitions between the conduction band and the spin-orbit split-off band from the epilayer and the substrate, using contactless electroreflectance. Thick epitaxial quality samples with precise control of the spin-orbit splitting are interesting for applications in spin-based electronics. C1 [Bhusal, L.; Ptak, A. J.; France, R.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bhusal, L (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Lekhnath_Bhusal@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the U.S. Department of Energy Grant No. DE-AC36-08GO28308 NR 24 TC 3 Z9 3 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 EI 1361-6641 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD MAR PY 2009 VL 24 IS 3 AR 035018 DI 10.1088/0268-1242/24/3/035018 PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 411UO UT WOS:000263676900019 ER PT J AU Ding, B Wang, MR Yu, JY Sun, G AF Ding, Bin Wang, Moran Yu, Jianyong Sun, Gang TI Gas Sensors Based on Electrospun Nanofibers SO SENSORS LA English DT Review DE Gas sensors; electrospinning; nanofibers; acoustic wave; resistive; photoelectric; optical ID OXIDES-SENSING CHARACTERISTICS; QUARTZ-CRYSTAL MICROBALANCE; THIN-FILM; CHEMICAL SENSORS; FIBER MATS; POLYMER; COMPOSITE; FABRICATION; POLYANILINE; SNO2 AB Nanofibers fabricated via electrospinning have specific surface approximately one to two orders of the magnitude larger than flat films, making them excellent candidates for potential applications in sensors. This review is an attempt to give an overview on gas sensors using electrospun nanofibers comprising polyelectrolytes, conducting polymer composites, and semiconductors based on various sensing techniques such as acoustic wave, resistive, photoelectric, and optical techniques. The results of sensing experiments indicate that the nanofiber-based sensors showed much higher sensitivity and quicker responses to target gases, compared with sensors based on flat films. C1 [Ding, Bin] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China. [Ding, Bin; Yu, Jianyong; Sun, Gang] Donghua Univ, Modern Textile Inst, Nanomat Res Ctr, Shanghai 200051, Peoples R China. [Wang, Moran] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sun, Gang] Univ Calif Davis, Davis, CA 95616 USA. RP Ding, B (reprint author), Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China. EM binding@dhu.edu.cn; mwang@lanl.gov; yujy@dhu.edu.cn; gysun@ucdavis.edu RI Wang, Moran/A-1150-2010 FU National Natural Science Foundation of China [50803009]; Programme of Introducing Talents of Discipline to Universities [111-2-04, B07024] FX This work was partly supported by the National Natural Science Foundation of China under Grant No. 50803009. Partial support from the Programme of Introducing Talents of Discipline to Universities (No. 111-2-04 and B07024) was appreciated. NR 71 TC 170 Z9 172 U1 19 U2 175 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD MAR PY 2009 VL 9 IS 3 BP 1609 EP 1624 DI 10.3390/s90301609 PG 16 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 424NF UT WOS:000264572700023 PM 22573976 ER PT J AU Datta, K Kamil, S Williams, S Oliker, L Shalf, J Yelick, K AF Datta, Kaushik Kamil, Shoaib Williams, Samuel Oliker, Leonid Shalf, John Yelick, Katherine TI Optimization and Performance Modeling of Stencil Computations on Modern Microprocessors SO SIAM REVIEW LA English DT Article DE stencil computations; cache blocking; time skewing; cache-oblivious algorithms; performance modeling; performance evaluation; Intel Itanium2; AMD Opteron; IBM Power5; STI Cell AB Stencil-based kernels constitute the core of many important scientific applications on block-structured grids. Unfortunately, these codes achieve a low fraction of peak performance, clue primarily to the disparity between processor and main memory speeds. In this paper, we explore the impact of trends in memory subsystems on a variety of stencil optimization techniques and develop performance models to analytically guide Our optimizations. Our work targets cache reuse methodologies across single and multiple stencil sweeps, examining cache-aware, algorithms as well as cache-oblivious techniques on the Intel Itanium2, AMD Opteron, and IBM Power5. Additionally, we consider stencil computations on the heterogeneous multicore design of the Cell processor, a machine with an explicitly managed memory hierarchy. Overall our work represents one of the most extensive analyses of stencil optimizations and performance modeling to date. Results demonstrate that recent trends in memory system organization have reduced the efficacy of traditional cache-blocking optimizations, We also show that a cache-aware implementation is significantly faster than a cache-oblivious approach, while the explicitly managed memory OD Cell enables the highest overall efficiency: Cell attains 88% of algorithmic peak while the best competing cache-based processor achieves only 54% of algorithmic peak performance. C1 [Datta, Kaushik; Kamil, Shoaib; Williams, Samuel; Yelick, Katherine] Univ Calif Berkeley, Dept Comp Sci, Berkeley, CA 94720 USA. [Kamil, Shoaib; Williams, Samuel; Oliker, Leonid; Shalf, John; Yelick, Katherine] Univ Calif Berkeley, Lawrence Berkeley Lab, NERSC, CRD, Berkeley, CA 94720 USA. RP Datta, K (reprint author), Univ Calif Berkeley, Dept Comp Sci, Berkeley, CA 94720 USA. EM kdatta@cs.berkeley.edu; SAKamil@lbl.gov; SWWilliams@lbl.gov; loliker@lbl.gov; JShalf@lbl.gov; KAYelick@lbl.gov FU Office of Advanced Scientific Computing Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX The work of these authors was supported by the Office of Advanced Scientific Computing Research in the Department of Energy Office of Science under contract DE-AC02-05CH11231. NR 22 TC 55 Z9 55 U1 0 U2 8 PU SIAM PUBLICATIONS PI PHILADELPHIA PA 3600 UNIV CITY SCIENCE CENTER, PHILADELPHIA, PA 19104-2688 USA SN 0036-1445 J9 SIAM REV JI SIAM Rev. PD MAR PY 2009 VL 51 IS 1 BP 129 EP 159 DI 10.1137/070693199 PG 31 WC Mathematics, Applied SC Mathematics GA 412DY UT WOS:000263705000004 ER PT J AU Austin, EE Castro, HF Sides, KE Schadt, CW Classen, AT AF Austin, Emily E. Castro, Hector F. Sides, Katherine E. Schadt, Christopher W. Classen, Aimee T. TI Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Bacterial community structure; Climate change; 16S rRNA genes; Elevated carbon dioxide; Enzyme activity; Free Air CO2 Enrichment (FACE); Potential nitrogen mineralization ID ATMOSPHERIC CARBON-DIOXIDE; EXTRACELLULAR ENZYME-ACTIVITY; ROTATION POPLAR PLANTATION; 16S RIBOSOMAL-RNA; ELEVATED CO2; PINE FOREST; DECIDUOUS FOREST; N-FERTILIZATION; ENRICHMENT FACE; FINE ROOTS AB Increased vegetative growth and soil carbon (C) storage under elevated carbon dioxide concentration ([CO2])) has been demonstrated in a number of experiments. However, the ability of ecosystems, either above- or belowground, to maintain increased C storage relies on the response of soil processes, such as those that control nitrogen (N) mineralization, to climatic change. These soil processes are mediated by microbial communities whose activity and structure may also respond to increasing atmospheric [CO2]. We took advantage of a long-term (ca 10 y) CO2 enrichment experiment in a sweetgum plantation located in the southeastern United States to test the hypothesis that observed increases in root production in elevated relative to ambient CO2 plots would alter microbial community structure, increase microbial activity, and increase soil nutrient cycling. We found that elevated [CO2] had no detectable effect on microbial community structure using 16S rRNA gene clone libraries, on microbial activity measured with extracellular enzyme activity, or on potential soil N mineralization and nitrification rates. These results support findings at other forested Free Air [CO2] Enrichment (FACE) sites. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Austin, Emily E.; Classen, Aimee T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Austin, Emily E.; Castro, Hector F.; Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Sides, Katherine E.; Classen, Aimee T.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Austin, EE (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, 569 Dabney Hall,Circle Dr, Knoxville, TN 37996 USA. EM eaustin4@utk.edu RI Classen, Aimee/C-4035-2008; Schadt, Christopher/B-7143-2008; OI Classen, Aimee/0000-0002-6741-3470; Schadt, Christopher/0000-0001-8759-2448; Whitacre, Katherine/0000-0002-7573-6448 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research Program FX We thank C. Engel, E. Felker-Quinn, S. Kortbein, and J. Ledford for assisting with field and laboratory work. C. Iversen and L. Souza for assistance with statistics. R. Norby for site support and helpful comments on this manuscript. The Ecosystem Ecology Lab group at ORNL and LIT gave insightful comments on earlier manuscript versions. This research was funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 58 TC 44 Z9 47 U1 2 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD MAR PY 2009 VL 41 IS 3 BP 514 EP 520 DI 10.1016/j.soilbio.2008.12.010 PG 7 WC Soil Science SC Agriculture GA 420GR UT WOS:000264277600009 ER PT J AU Wietsma, TW Oostrom, M Covert, MA Queen, TE Fayer, MJ AF Wietsma, T. W. Oostrom, M. Covert, M. A. Queen, T. E. Fayer, M. J. TI An Automated Tool for Three Types of Saturated Hydraulic Conductivity Laboratory Measurements SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID FALLING HEAD PERMEAMETER AB Acquisition of porous media saturated hydraulic conductivity data in the laboratory is usually time consuming and costly because of the manual labor associated with the currently available techniques. Lately, there has been increased interest in automating hydraulic conductivity laboratory techniques to reduce analysis time and improve data consistency. A new apparatus was developed that is able to measure hydraulic conductivity values with the constant-flux, constant-head, and falling-head methods in a fully automated fashion. The apparatus can be used for both packed columns and undisturbed field cores. The column design is such that water is forced to flow in a nominally one-dimensional manner through the porous medium. An analysis is initiated with a "smart search," yielding art estimate of the saturated hydraulic conductivity. The operator can use this estimated value to obtain conductivity values using one, two, or all three methods. Besides installing and removing the columns, no manual efforts are required. Hydraulic conductivity data for standard laboratory sands showed that application of the three methods resulted in similar results, indicating that external flow resistance was small. A comparison with literature data for the same sands, obtained with a constant-flux method, showed differences < 9%. C1 [Wietsma, T. W.; Oostrom, M.; Covert, M. A.; Queen, T. E.; Fayer, M. J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Oostrom, M (reprint author), Pacific NW Natl Lab, POB 999,MS K9-33, Richland, WA 99354 USA. EM mart.oostrom@pnl.gov FU Environmental Molecular Sciences Laboratory (EMSL) [DE-AC06-76RLO 1830] FX This apparatus was developed with support from the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated by the Battelle Memorial Institute for the Dep. of Energy (DOE) under Contract DE-AC06-76RLO 1830. Scientists interested in conducting experiments in EMSUs Subsurface Flow and Transport Laboratory are encouraged to contact M. Oostrom (mart.oostrom@pnl.gov). NR 8 TC 10 Z9 10 U1 1 U2 6 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2009 VL 73 IS 2 BP 466 EP 470 DI 10.2136/sssaj2008.0154 PG 5 WC Soil Science SC Agriculture GA 417PT UT WOS:000264089300016 ER PT J AU Varga, T Mitchell, JF Yamaura, K Mandrus, DG Wang, J AF Varga, Tamas Mitchell, John F. Yamaura, Kazunari Mandrus, David G. Wang, Jun TI A Ca substitution study of NaV2O4: High-pressure synthesis of the Na1-xCaxV2O4 solid solution SO SOLID STATE SCIENCES LA English DT Article DE High-pressure synthesis; Inorganic oxides; Magnetic properties; Conductivity; Phase transitions; 1D system; "Post-spinel" structure ID MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; PHASE; NAV6O11 AB Ambient pressure CaV2O4 and high-pressure NaV2O4 crystallize in the CaFe2O4 structure type containing double chains of edge-sharing VO6 octahedra. Recent measurements on NaV2O4 reveal low-dimensional metallicity and evidence of half-metallic ferromagnetism. In contrast, CaV2O4 is an antiferromagnetic insulator. To explore the evolution of these ground-state behaviors, we have prepared a series of Ca-doped NaV2O4 compounds with the formula Na1-xCaxV2O4 (x = 0-1) using high-pressure synthesis. Samples at the Na end (x = 0-0.07) show a broad antiferromagnetic transition in the 120-160 K range in accordance with earlier reports. Transport measurements show an insulator-metal transition at x similar to 0.2. Samples with higher Ca concentrations (x = 0.4-0.7) exhibit a metal-insulator transition around 150 K. The results for the Na1-xCaxV2O4 solid solution is discussed in comparison to existing studies at the Ca- and Na-rich ends. Published by Elsevier Masson SAS. C1 [Varga, Tamas; Mitchell, John F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Yamaura, Kazunari; Mandrus, David G.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. [Wang, Jun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Varga, T (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tvarga@anl.gov RI Mandrus, David/H-3090-2014 FU U.S. DOE Office of Science, Basic Energy Sciences [DE-AC02-06CH11357]; JSPS [18655080]; Murata Science Foundation; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX The work at Argonne National Laboratory, including the use of the Advanced Photon Source, was supported by the U.S. DOE Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The 11 BM project was supported by the U.S. DOE Office of Science, Basic Energy Sciences, as part of DOE-BES LAB-03 instrument construction program. The work in part was supported by the Grants-in-Aid for Scientific Research from JSPS (18655080), the Murata Science Foundation, and Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 23 TC 3 Z9 3 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD MAR PY 2009 VL 11 IS 3 BP 694 EP 699 DI 10.1016/j.solidstatesciences.2008.09.011 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 425NQ UT WOS:000264644800015 ER PT J AU Judzis, A Bland, RG Curry, DA Black, AD Robertson, HA Meiners, MJ Grant, TC AF Judzis, Arnis Bland, Ronald G. Curry, David A. Black, Alan D. Robertson, Homer A. Meiners, Matthew J. Grant, Timothy C. TI Optimization of Deep-Drilling Performance-Benchmark Testing Drives ROP Improvements for Bits and Drilling Fluids SO SPE DRILLING & COMPLETION LA English DT Article CT 2007 SPE/IADC Drilling Conference and Exhibition CY FEB 20-22, 2007 CL Amsterdam, NETHERLANDS SP Soc Petr Engineers, IADC ID PORE PRESSURE; RATES AB A critical Cost ill future deep-oil and -gas recovery is the cost to drill a well. This cost is dominated by the rate of penetration (ROP) that becomes increasingly important with increasing depth. Improving the technology of drilling and increasing the ROP was the object of full-scale laboratory testing conducted under a joint industry and Department of Energy (DOE) program titled "Improving Deep Drilling Performance" (Black and Judzis 2003). Simulations of deep-well drilling in the Arbuckle play and the Tuscaloosa trend were accomplished during 16 full-scale, high-pressure tests using four different 6-in. drill bits, three types of rock, and five different drilling fluids. This paper describes what is believed to be the first set of full-scale laboratory drilling tests yet performed at bottom-hole pressures in excess of 10,000 psi. Accomplishments of the testing and analysis include the following: Laboratory data was compared with field data to confirm that the simulated laboratory conditions provided similar results to what Would be expected in the field. ROP reductions were significant When "mudding up" at high bottomhole pressures. Polycrystalline-diamond-compact (PDC) bits provided substantially higher ROP performance than impregnated or roller-cone bits in the environment of this study. The relationship between ROP and confined-rock strength is not a simple function of bottomhole pressure alone. The mechanical specific energy (MSE) when drilling at high bottomhole pressure is often substantially higher than the rock's compressive strength, even when the bit is drilling efficiently. Fluid invasion of intact rock and of rock broken Up by the bit's cutting structure seems to play a major role ill controlling ROP at these high bottomhole pressures. Drilling-fluid compositions and properties that promote invasion without provoking formation damage, and bit-design features that facilitate the removal of rock debris from the hole bottom hold promise for improving drilling efficiency in hard rock drilled at high bottomhole pressures. C1 [Bland, Ronald G.] Baker Hughes, Houston, TX USA. [Grant, Timothy C.] US DOE, Washington, DC 20585 USA. NR 15 TC 3 Z9 3 U1 2 U2 5 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1064-6671 J9 SPE DRILL COMPLETION JI SPE Drill. Complet. PD MAR PY 2009 VL 24 IS 1 BP 25 EP 39 PG 15 WC Engineering, Petroleum SC Engineering GA 469MU UT WOS:000267904300003 ER PT J AU Kips, R Pidduck, AJ Houlton, MR Leenaers, A Mace, JD Marie, O Pointurier, F Stefaniak, EA Taylor, PDP Van den Berghe, S Van Espen, P Van Grieken, R Wellum, R AF Kips, R. Pidduck, A. J. Houlton, M. R. Leenaers, A. Mace, J. D. Marie, O. Pointurier, F. Stefaniak, E. A. Taylor, P. D. P. Van den Berghe, S. Van Espen, P. Van Grieken, R. Wellum, R. TI Determination of fluorine in uranium oxyfluoride particles as an indicator of particle age SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Safeguard; Uranium oxyfluoride particle; SEM-EDX; SIMS; Micro-Raman spectrometry ID ATMOSPHERIC HYDROLYSIS; HEXAFLUORIDE AB As swipe samples front enrichment activities typically contain titanium particles with a detectable amount of fluorine. the question was raised whether the analysis of fluorine in particles could complement the information on the uranium isotope ratios. For this, uranium oxyfluoride Particles were prepared from the controlled hydrolysis of uranium hexafluoride (UF(6)). The relative amount of fluorine was characterized by scanning electron microscopy combined with energy-dispersive X-ray spectrometry (SEM-EDX), as well as ion-microprobe secondary ion mass spectrometry (IM-SIMS). Of particular interest was the assessment of the reduction Of the amount Of fluorine over time, and after exposure to UV-light and high temperatures. Micro-Raman spectrometry (MRS) was applied to look for differences in molecular structure between these various sample types. Both SEM-EDX and IM-SIMS showed a general reduction of the fluorine-to-uranium ratio after 1-2 years of storage. The exposure to UV-light and high temperatures was found to have accelerated the loss of fluorine. A distinct peak at 865 cm(-1) Raman shift was detected for the majority of particles analyzed by MRS. For the particles that were heat-treated, the Raman spectra were similar to the spectrum of U(3)O(8). Although Often large variations were observed between particles from the same sample, the three particle measurement techniques (IM-SIMS. SEM-EDX and MRS) showed some consistent trends, They therefore appear promising in terms of the ability to place bounds on particle age, as well as shedding light on the complex processes involved in UO(2)F(2) particle ageing. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kips, R.; Taylor, P. D. P.; Wellum, R.] Commiss European Communities, Inst Reference Mat & Measurements, Gen Directorate Joint Res Ctr, B-2440 Geel, Belgium. [Kips, R.; Stefaniak, E. A.; Van Espen, P.; Van Grieken, R.] Univ Antwerp, Dept Chem, B-2610 Antwerp, Belgium. [Pidduck, A. J.; Houlton, M. R.; Mace, J. D.] QinetiQ, Malvern Technol Ctr, Malvern WR14 3PS, Worcs, England. [Leenaers, A.; Van den Berghe, S.] Nucl Mat Inst, SCK CEN, B-2400 Mol, Belgium. Ctr DAM Ile France, Dept Analyse Surveillance Environm, Commissariat Energie Atom, F-91297 Arpajon, France. RP Kips, R (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM kips1@llnl.gov; ajpidduck@taz.qinetiq.com; mrhoulton@qintiq.com; aleenaer@sckcen.be; jdmace@qinetiq.com; olivier.marie@cea.fr; fabien.pointurier@cea.fr; elzbieta.stefaniak@ua.ac.be; philip.taylor@ec.europa.eu; svdbergh@sckcen.be; piet.vanespen@ua.ac.be; rene.vangrieken@ua.ac.be; r.wellum@gmail.com OI Van den Berghe, Sven/0000-0002-2537-4645 FU UK Technical Support Programme to IAEA Safeguards FX The authors Would like to thank R. Corremans and J.-R Huysmans for their help with the design of the aerosol deposition chamber and J. Truyens for his technical assistance. Special thanks to M. Moens and W. Dorrine for assisting in the SEM-EDX and SIMS measurements at Antwerp University. SIMS work was funded by the UK Technical Support Programme to IAEA Safeguards. NR 19 TC 14 Z9 14 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD MAR PY 2009 VL 64 IS 3 BP 199 EP 207 DI 10.1016/j.sab.2008.12.001 PG 9 WC Spectroscopy SC Spectroscopy GA 441FV UT WOS:000265755600002 ER PT J AU Zeng, XY Anitescu, M Pereira, C Regalbuto, M AF Zeng, Xiaoyan Anitescu, Mihai Pereira, Candido Regalbuto, Monica TI A Framework for Chemical Plant Safety Assessment under Uncertainty SO STUDIES IN INFORMATICS AND CONTROL LA English DT Article DE Safety Assessment; Uncertainty; Chemical Process; Stream Methane Reforming; Active Thermochemical Tables; Monte Carlo Methods ID ACTIVE THERMOCHEMICAL TABLES; METHANE-STEAM REACTION; BOUNDED NOISE; IDENTIFICATION; KINETICS AB We construct a framework for assessing the risk that the uncertainty in the plant feed and physical parameters may mask the loss of a reaction product. To model the plant, we use a nonlinear, quasi-steady-state model with stochastic input and parameters. We compute the probability that more than a certain product amount is diverted, given the statistics of the uncertainty in the plant feed, in the values of the chemical parameters, and in the output measurement. The uncertainty in the physical parameters is based on the one provided by the recently developed concept of thermochemical tables. We use Monte Carlo methods to compute the probabilities, based on a Cauchy-theorem-like approach to avoid making anything but the safest asymptotic assumptions, as well as to avoid the excessive noise in the region of low-probability events. C1 [Zeng, Xiaoyan; Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Pereira, Candido; Regalbuto, Monica] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zeng, XY (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave,Bldg 221, Argonne, IL 60439 USA. EM anitescu@mcs.anl.gov FU Department of Energy [DE-AC02-06CH11357] FX We are grateful to Dr. Branko Ruscic for providing access to and expertise in ATcT software. We are grateful to Dr. Manuela Serban for help with the SMR reaction setup. We are grateful to Prof Dan Negrut for comments on our manuscript. This work was supported by the Department of Energy through contract DE-AC02-06CH11357. NR 31 TC 1 Z9 1 U1 0 U2 2 PU NATL INST R&D INFORMATICS-ICI PI BUCHAREST PA PUBL DEPT, 8-10 AVERESCU BLVD, SECTOR 1, BUCHAREST, 011455, ROMANIA SN 1220-1766 J9 STUD INFORM CONTROL JI Stud. Inform. Control PD MAR PY 2009 VL 18 IS 1 BP 7 EP 20 PG 14 WC Automation & Control Systems; Operations Research & Management Science SC Automation & Control Systems; Operations Research & Management Science GA 484FP UT WOS:000269029600002 ER PT J AU Hamdan, NM Hussain, Z AF Hamdan, N. M. Hussain, Z. TI Hole doping in high temperature superconductors using the XANES technique SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Superconductivity and Magnetism CY AUG 25-29, 2008 CL Side, TURKEY ID X-RAY-ABSORPTION; TL-BASED SUPERCONDUCTORS; CRITICAL-CURRENT DENSITY; NEAR-EDGE STRUCTURE; PHASE-FORMATION; ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; GAMMA-IRRADIATION; OXYGEN-CONTENT; SPECTROSCOPY AB Superconducting and physical properties of F-doped HgPb-1223 and Ce-doped Tl-1223 systems were considerably improved through adjusting the hole content of the two systems. In this study, we have used the x-ray absorption near-edge structure (XANES) technique to investigate the electronic structure of the two systems by probing the unoccupied electronic states. For the F-doped Hg-1223 system, the O K-edge, Ca L(2,3) and Cu L(2,3)-edge structures were thoroughly investigated. The pre-edge features of O K-edge spectra, as a function of doping, reveal important information about the projected local density of unoccupied states on the O sites in the region close to the absorption edge, which is a measure of O 2p hole concentration in the valence band. In the originally under-doped Hg-1223, the results indicate that the number of O 2p holes in the CuO(2) planes increases as fluorine was introduced up to an optimal value, after which it decreases. Furthermore, the Cu L(2,3) absorption edge provides useful information about the valence state of Cu which is also related to the hole density in the CuO(2) planes and confirms the same previous conclusion. The Ca L(2,3)-edge shows the presence crystal field splitting in HgPb1223/F(x) which is similar to CaF(2) and CaO in addition to the spin-orbit splitting of the Ca 2p core level electrons. These results ensure that fluorine goes into the structure of HgPb-1223/F(x) and it occupies the vacant interstitial oxygen site in the Hg-O plane, as was expected. In Ce-substituted Tl-1223, similar measurements were performed for samples with different Ce content. The pre-edge feature of the O K-edge spectra shows clearly the drastic decrease of the hole content in CuO(2) planes of this originally over-doped system with increasing Ce content. This result is also confirmed from the chemical state of Ce in the structure as obtained from the Ce M(4,5)-edge spectra. C1 [Hamdan, N. M.] Amer Univ Sharjah, Dept Phys, Sharjah 26666, U Arab Emirates. [Hussain, Z.] LBNL, Adv Light Source, Berkeley, CA 94720 USA. RP Hamdan, NM (reprint author), Amer Univ Sharjah, Dept Phys, Sharjah 26666, U Arab Emirates. EM nhamdan@aus.edu NR 50 TC 4 Z9 4 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2009 VL 22 IS 3 AR 034007 DI 10.1088/0953-2048/22/3/034007 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 410GC UT WOS:000263564500008 ER PT J AU Prozorov, R Vannette, MD Gordon, RT Martin, C Bud'ko, SL Canfield, PC AF Prozorov, R. Vannette, M. D. Gordon, R. T. Martin, C. Bud'ko, S. L. Canfield, P. C. TI Coexistence of long-range magnetic order and superconductivity from Campbell penetration depth measurements SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT International Conference on Superconductivity and Magnetism CY AUG 25-29, 2008 CL Side, TURKEY ID HIGH-TEMPERATURE SUPERCONDUCTORS; FLUX-LINE-LATTICE; II SUPERCONDUCTORS; SINGLE-CRYSTALS; STATE; FERROMAGNETISM; ERRH4B4; DESTRUCTION; VORTICES; ERNI2B2C AB Application of a tunnel-diode resonator (TDR) technique for studies of the vortex response in magnetic superconductors is described. Operating at very small excitation fields and a sufficiently high frequency, the TDR was used to probe the small-amplitude linear AC response in several types of single crystals where long-range magnetic order coexists with bulk superconductivity. Full local-moment ferromagnetism destroys superconductivity and can coexist with it only in a narrow temperature range (similar to 0.3 K). In contrast, weak ferromagnetic as well as antiferromagnetic orders can coexist with bulk superconductivity and may even lead to an enhancement of vortex pinning. By analyzing the Campbell penetration depth we find a sharp increase of the true critical current in the vicinity of the magnetic phase transitions. We conclude that critical magnetic fluctuations are responsible for this enhancement. C1 [Prozorov, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; NR 51 TC 2 Z9 2 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2009 VL 22 IS 3 AR 034008 DI 10.1088/0953-2048/22/3/034008 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 410GC UT WOS:000263564500009 ER PT J AU Groenewold, GS Gresham, GL Avci, R Deliorman, M AF Groenewold, Gary S. Gresham, Gary L. Avci, Recep Deliorman, Muhammedin TI Characterization of bidentate phosphoryl compounds on soil particulates using SIMS SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE secondary ion mass spectrometry; organophosphorus; surface contaminant; particle ID ION MASS-SPECTROMETRY; DESORPTION ELECTROSPRAY-IONIZATION; TRIBUTYL-PHOSPHATE; STATIC SIMS; HYDROLYSIS PRODUCTS; AMBIENT CONDITIONS; SURFACE-ANALYSIS; ACID MONOLAYERS; S-SIMS; MOLECULES AB The presence of organic compounds as surface contaminants on particles can provide valuable data about the particles environment, but identification can be analytically challenging. This is true particularly for compounds that have the potential for strong surface binding, such as compounds capable of multidentate attachment. Direct analysis using time-of-flight secondary ion mass spectrometry was evaluated for characterization of soil particles contaminated with low concentrations of two bidentate organophosphoryl compounds, diphenyl-N,N-di-n-butylcarbamoylmethylphosphine oxide and tetraphenylmethylene diphosphine dioxide. Molecular ions were formed by cationization with H(+) and alkali elements Na(+) and K(+) that are indigenous to the particle surface chemistry. Spectra generated from a contaminated calcareous soil were dominated by K(+)-containing ions, whereas spectra from a sandy loam had more abundant Na(+)-species. Cation-bound dimers were also formed which favored incorporation of K(+), and a unique aluminosilicate-phosphoryl conjugate cation was also formed when the diphosphoryl ligand was present on the surface. The phosphoryl ligands also underwent fragmentation reactions, the course of which varied depending on the cation that was bound. Minimum detectable surface concentrations were evaluated and were in the 0.04-0.2 monolayer range, depending on the compound and soil particle matrix they was bound to. The ion signature was detected on soil particle surfaces for time periods exceeding six months, suggesting that the characterization approach could be used for environmental exposure history at times well beyond initial exposure. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Groenewold, Gary S.; Gresham, Gary L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Avci, Recep; Deliorman, Muhammedin] Montana State Univ, Dept Phys, Imaging & Chem Anal Lab, Bozeman, MT 59717 USA. RP Groenewold, GS (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM gary.groenewold@inl.gov FU U.S. Department of Energy [DE-AC07-05ID14517] FX Laboratory directed research and development funding from the U.S. Department of Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517 with Battelle Energy Alliance LLC is gratefully acknowledged, as is instrument time that was provided by the Image and Chemical Analysis Laboratory, Montana State University. NR 47 TC 2 Z9 2 U1 1 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAR PY 2009 VL 41 IS 3 BP 244 EP 250 DI 10.1002/sia.3015 PG 7 WC Chemistry, Physical SC Chemistry GA 412UT UT WOS:000263750400015 ER PT J AU Chambers, SA Ohsawa, T Wang, CM Lyubinetsky, I Jaffe, JE AF Chambers, S. A. Ohsawa, T. Wang, C. M. Lyubinetsky, I. Jaffe, J. E. TI Band offsets at the epitaxial anatase TiO2/n-SrTiO3(001) interface SO SURFACE SCIENCE LA English DT Article DE Molecular beam epitaxy; Single crystal epitaxy; Heterojunctions; Semiconducting films; Semiconductor-semiconductor interfaces ID RAY PHOTOEMISSION-SPECTROSCOPY; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; TIO2 THIN-FILMS; WAVE BASIS-SET; PHOTOELECTRON-SPECTROSCOPY; SRTIO3/SI(001) HETEROJUNCTIONS; PRECISE DETERMINATION; ELECTRONIC-STRUCTURE; LASER-ABLATION AB We have used high-energy resolution X-ray photoelectron spectroscopy to measure valence band offsets at the epitaxial anatase TiO2(0 0 1)/n-SrTiO3(0 0 1) heterojunction prepared by molecular beam epitaxy. The valence band offsets range between -0.06 +/- 0.05 and +0.16 +/- 0.05eV for anatase thicknesses between 1 and 8 monolayers and three different methods of substrate surface preparation, with no systematic dependence on film thickness. The conduction band offset (CBO) varies over a comparable range by virtue of the fact that anatase and SrTiO3 exhibit the same bandgap (similar to 3.2 eV). In contrast, density functional theory predicts the VBO to be +0.55 eV. The lack of agreement between theory and experiment suggests that either some unknown factor in the interface structure or composition excluded from the modeling is influencing the band offset, or that density functional theory cannot accurately calculate band offsets in these oxide materials. The small experimental band offsets have important implications for the use of this interface for fundamental investigations of surface photocatalysis. Neither electrons nor holes are likely to become trapped in the substrate and thus be unable to participate in surface photocatalytic processes. (c) 2009 Elsevier B.V. All rights reserved. C1 [Chambers, S. A.; Ohsawa, T.; Jaffe, J. E.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Chambers, S. A.; Wang, C. M.; Lyubinetsky, I.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,MS K8-87, Richland, WA 99352 USA. EM sa.chambers@pnl.gov RI Ohsawa, Takeo/A-5373-2010 FU US Department of Energy, Office of Science, Division of Chemical Sciences FX This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This work was supported by the US Department of Energy, Office of Science, Division of Chemical Sciences. The authors are indebted to Tim Droubay for technical assistance and helpful discussions, NR 73 TC 24 Z9 24 U1 3 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2009 VL 603 IS 5 BP 771 EP 780 DI 10.1016/j.susc.2009.01.023 PG 10 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 423PG UT WOS:000264507600006 ER PT J AU King, BV Veryovkin, IV Moore, JF Calaway, WF Pellin, MJ AF King, B. V. Veryovkin, I. V. Moore, J. F. Calaway, W. F. Pellin, M. J. TI Formation of neutral clusters during sputtering of gold SO SURFACE SCIENCE LA English DT Article DE Atom emission; Ion bombardment; Sputtering; Gold; Laser methods ID METAL-CLUSTERS; INTERNAL ENERGY; SILVER CLUSTERS; INDIUM CLUSTERS; DECAY PATHWAYS; IONS; FRAGMENTATION; DISTRIBUTIONS; IONIZATION; IMPACT AB Polycrystalline Au was bombarded with 15 keV Ar(+), and the resulting secondary neutral cluster yield distribution was measured by laser postionisation mass spectrometry. Neutral Au. clusters containing up to 20 atoms were observed. The yield of Au. clusters, Y(n), was found to follow a power in n, Y(n) proportional to n(-3.4) but the yield of individual clusters depended on whether n was even or odd. This odd-even yield variation was caused by fragmentation of the cluster photoions. Simulation of photoion trajectories within the TOF spectrometer shows that the fragmentation dominantly occurs before the photoions enter the reflectron part of the spectrometer. (c) 2009 Elsevier B.V. All rights reserved. C1 [King, B. V.] Univ Newcastle, Callaghan, NSW 2308, Australia. [King, B. V.; Veryovkin, I. V.; Moore, J. F.; Calaway, W. F.; Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Moore, J. F.] MassThink LLC, Naperville, IL 60565 USA. RP King, BV (reprint author), Univ Newcastle, Univ Dr, Callaghan, NSW 2308, Australia. EM bruce.king@newcastle.edu.au RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 FU UChicago Argonne [DE-AC-02-06CH11357]; LLC; US Department of Energy; Australian Access to Major Research Facilities Program FX The authors wish to thank Dr. W. Calaway for his input to this paper, This work was supported under Contract No. DE-AC-02-06CH11357 between UChicago Argonne, LLC and the US Department of Energy, and by the Australian Access to Major Research Facilities Program. NR 43 TC 9 Z9 9 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2009 VL 603 IS 5 BP 819 EP 825 DI 10.1016/j.susc.2009.01.027 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 423PG UT WOS:000264507600013 ER PT J AU Chung, JY Aksoy, F Grass, ME Kondoh, H Ross, P Liu, Z Mun, BS AF Chung, Jen-Yang Aksoy, Funda Grass, Michael E. Kondoh, Hiroshi Ross, Phil, Jr. Liu, Zhi Mun, Bongjin Simon TI In-situ study of the catalytic oxidation of CO on a Pt(110) surface using ambient pressure X-ray photoelectron spectroscopy SO SURFACE SCIENCE LA English DT Article DE CO oxidation; Pt(110); Ambient pressure X-ray photoemission spectroscopy ID ULTRAHIGH-VACUUM; ADSORBED CO; LEVEL; SPECTRA; SCIENCE; GAP AB CO and O(2). co-adsorption and the catalytic oxidation of CO on a Pt(1 1 0) surface under various pressures of CO and O(2) (up to 250 mTorr) are studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and mass spectrometry. There is no surface oxide formation on Pt under our reaction conditions. CO oxidation in this pressure (<500 mTorr), O(2) to CO ratio (<10), and temperature (150 degrees C) regime is consistent with the Langmuir-Hinshelwood reaction mechanism. Our findings provide in-situ surface chemical composition data of the catalytic oxidation of CO on Pt(1 1 0) at total pressures below 1 Torr. (c) 2009 Elsevier B.V. All rights reserved. C1 [Chung, Jen-Yang; Aksoy, Funda; Grass, Michael E.; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kondoh, Hiroshi] Keio Univ, Dept Chem, Yokohama, Kanagawa 223, Japan. [Ross, Phil, Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mun, Bongjin Simon] Hanyang Univ, Dept Appl Phys, Ansan 426791, South Korea. RP Liu, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM zliu2@ibl.gov; bsmun@lbl.gov RI Mun, Bongjin /G-1701-2013; Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU US Department of Energy [DE-AC02-05CH11231]; Korea Research Foundation [KRF-2008-331-C00080] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-331-C00080). We would like to thank Prof. Miquel Salmeron for invaluable discussions and insights. NR 23 TC 17 Z9 19 U1 5 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2009 VL 603 IS 5 BP L35 EP L38 DI 10.1016/j.susc.2009.01.016 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 423PG UT WOS:000264507600001 ER PT J AU Xu, P Han, XJ Wang, C Zhang, B Wang, HL AF Xu, P. Han, X. J. Wang, C. Zhang, B. Wang, H-L. TI Morphology and physico-electrochemical properties of poly(aniline-co-pyrrole) SO SYNTHETIC METALS LA English DT Article DE Polyaniline; Polypyrrole; Copolymer; Morphology; Cyclic voltammetry ID POLYPYRROLE COMPOSITE COATINGS; POLYANILINE NANOFIBERS; INTERFACIAL POLYMERIZATION; FACILE SYNTHESIS; NANOCOMPOSITES; NANOPARTICLES; TEMPLATELESS; DEPOSITION; POLYMERS AB Copolymers of aniline (An) and pyrrole (Py), poly(aniline-co-pyrrole), have been prepared by a conventional chemical oxidative polymerization from monomer Mixtures of various compositions, with ammonium persulfate (APS) as the oxidant and hydrochloric acid as the dopant, and the morphologies and physico-electrochemical properties of the poly(aniline-co-pyrrole) have been investigated. Poly(aniline-co-pyrrole) prepared with more polyaniline (PANI) or polypyrrole (PPy) component have similar morphologies, structures, thermal and electrochemical performances, and the relative dosage (molar ratio) of An and Py monomers during the polymerization is crucial to the properties of the resulting poly(aniline-co-pyrrole). More monomer applied in the polymerization of An and Py mixtures would result in products with similar properties to the individual homopolymer of that monomer, while poly(aniline-co-pyrrole) prepared from equimolar An and Py monomer displays unique properties. The conductivity is a non-linear function of chemical composition, and this chemical heterogeneity might lead to the broad DSC curves and various morphologies of the poly(aniline-co-pyrrole) copolymers. (C) 2008 Elsevier B.V. All rights reserved. C1 [Xu, P.; Han, X. J.; Wang, C.; Zhang, B.] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. [Wang, H-L.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Han, XJ (reprint author), Harbin Inst Technol, Dept Chem, 92 W Dazhi St, Harbin 150001, Peoples R China. EM hanxj63@yahoo.com.cn; hwang@lanl.gov RI Xu, Ping/I-1910-2013 OI Xu, Ping/0000-0002-1516-4986 FU NSF of China [20676024, 20776032]; Innovative Foundation of Heilongjiang Academy of Sciences [HKXY-CX-07001-03]; National Nanotechnology Enterprise Development Center (NNEDC) FX This work is supported by the NSF of China (Nos. 20676024 and 20776032) and Innovative Foundation of Heilongjiang Academy of Sciences (HKXY-CX-07001-03) HLW acknowledges financial support from the National Nanotechnology Enterprise Development Center (NNEDC). NR 33 TC 17 Z9 19 U1 0 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0379-6779 J9 SYNTHETIC MET JI Synth. Met. PD MAR PY 2009 VL 159 IS 5-6 BP 430 EP 434 DI 10.1016/j.synthmet.2008.10.016 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter; Polymer Science SC Materials Science; Physics; Polymer Science GA 442BJ UT WOS:000265814500015 ER PT J AU Bischofs, IB Klein, F Lehnert, D Bastmeyer, M Schwarz, US AF Bischofs, I. B. Klein, F. Lehnert, D. Bastmeyer, M. Schwarz, U. S. TI Rational Control of Cell and Tissue Model Shape SO TISSUE ENGINEERING PART A LA English DT Meeting Abstract CT 3rd Congress on Regenerative Biology and Medicine/3rd Congress of the German-Society-for-Stem-Cell-Research CY OCT 09-11, 2008 CL Stuttgart, GERMANY SP German Soc Stem Cell Res C1 [Klein, F.; Lehnert, D.; Bastmeyer, M.; Schwarz, U. S.] Univ Karlsruhe, Inst Zool, Karlsruhe, Germany. [Bischofs, I. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RI Bastmeyer, Martin/H-9342-2013; Schwarz, Ulrich/K-4111-2014 OI Schwarz, Ulrich/0000-0003-1483-640X NR 0 TC 0 Z9 0 U1 0 U2 1 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1937-3341 J9 TISSUE ENG PT A JI Tissue Eng. Part A PD MAR PY 2009 VL 15 IS 3 BP 680 EP 680 PG 1 WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell Biology SC Cell Biology; Biotechnology & Applied Microbiology GA 415DG UT WOS:000263913900036 ER PT J AU Xing, Q Lograsso, TA AF Xing, Q. Lograsso, T. A. TI A rapid method to correct objective lens astigmatism in a TEM SO ULTRAMICROSCOPY LA English DT Article DE Transmission electron microscopy; Astigmatism; Caustic curve ID ABERRATIONS AB This work describes a rapid method to correct the two-fold astigmatism of transmission electron microscope (TEM) objective lens employing caustic curve when no objective aperture is inserted. The method makes use of rounding the caustic curve via the objective lens stigmators after the condenser lens astigmatism has been corrected. It has many advantages over other methods, it is fast, straightforward, and does not need holes or an amorphous material. (C) 2008 Elsevier B.V. All rights reserved. C1 [Xing, Q.; Lograsso, T. A.] Ames Lab, Ames, IA 50011 USA. RP Xing, Q (reprint author), Ames Lab, Ames, IA 50011 USA. EM qfxingtem@gmail.com FU Iowa State University [DE-AC02-07CH11358] FX The research was performed at Ames Laboratory. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. M. J. Kramer is acknowledged for valuable comments. NR 7 TC 2 Z9 2 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2009 VL 109 IS 4 BP 287 EP 290 DI 10.1016/j.ultramic.2008.11.014 PG 4 WC Microscopy SC Microscopy GA 435LM UT WOS:000265345400001 PM 19150754 ER PT J AU Danev, R Glaeser, RM Nagayama, K AF Danev, Radostin Glaeser, Robert M. Nagayama, Kuniaki TI Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy SO ULTRAMICROSCOPY LA English DT Article DE Phase contrast; Electron microscopy; Carbon film; Phase plate ID ONE CONDUCTING LAYER; CCD CAMERAS; 300 KV; CONTRAST; SCATTERING; OBJECTS; IMAGES; ICE AB A number of practical issues must be addressed when using thin carbon films as quarter-wave plates for Zernike phase-contrast electron microscopy. We describe, for example, how we meet the more stringent requirements that must be satisfied for beam alignment in this imaging mode. In addition we address the concern that one might have regarding the loss of some of the scattered electrons as they pass through such a phase plate. We show that two easily measured parameters, (1) the low-resolution image contrast produced in cryo-EM images of tobacco mosaic virus particles and (2) the fall-off of the envelope function at high resolution, can be used to quantitatively compare the data quality for Zernike phase-contrast images and for defocused bright-field images. We describe how we prepare carbon-film phase plates that are initially free of charging or other effects that degrade image quality. We emphasize, however, that even though the buildup of hydrocarbon contamination can be avoided by heating the phase plates during use, their performance nevertheless deteriorates over the time scale of days to weeks, thus requiring their frequent replacement in order to maintain optimal performance. (C) 2008 Elsevier B.V. All rights reserved. C1 [Danev, Radostin; Nagayama, Kuniaki] Natl Inst Nat Sci, Okazaki Inst Integrat Biosci, Okazaki, Aichi 4448787, Japan. [Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Danev, R (reprint author), Natl Inst Nat Sci, Okazaki Inst Integrat Biosci, 5-1 Higashiyama, Okazaki, Aichi 4448787, Japan. EM rado@nips.ac.jp FU CREST (Core Research for Evolutional Science and Technology); Japan Science and Technology Agency; NIH [GM083039] FX We wish to thank several individuals for providing the sample materials for which representative results are shown in this paper: Liposomes With adsorbed DNA were provided by Dr. Vasiliy Kuvichkin; Desulfovibrio vulgaris Hildenborough dissimilatory sulfite reductase (Dsr) complex was provided by Dr. Ming Dong; Helicobacter pyroli VacA toxin was provided by Dr. Akihiro Fujikawa; and tobacco mosaic virus (TMV) was provided by Professor Andy Jackson and Dr. Bong-Gyoon Han. The phase plates were prepared by Hiroshi Okawara. We thank Dr. Tsukasa Hirayama for providing use of the electron microscope at the Japan Fine Ceramics Center, Nagoya, and Dr. Kazuo Yamamoto for helping to make electron holography measurements of the inner potential of representative phase plates. We also thank Dr. Hideki Shigematsu for numerous discussions about his experience with the use of Zernike phase-contrast electron microscopy. This work was supported in part by CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency, and by NIH grant GM083039. NR 29 TC 66 Z9 67 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAR PY 2009 VL 109 IS 4 BP 312 EP 325 DI 10.1016/j.ultramic.2008.12.006 PG 14 WC Microscopy SC Microscopy GA 435LM UT WOS:000265345400005 PM 19157711 ER PT J AU Rai, R Palmer, TA Elmer, JW Debroy, T AF Rai, R. Palmer, T. A. Elmer, J. W. Debroy, T. TI Heat Transfer and Fluid Flow during Electron Beam Welding of 304L Stainless Steel Alloy SO WELDING JOURNAL LA English DT Article DE Electron Beam Welding; Keyhole; Heat Transfer; Fluid Flow; Stainless Steel; Weld Process Simulation; Three-Dimensional; Phenomenological Model ID TRANSFER MODEL; TEMPERATURE-FIELD; DEEP PENETRATION; COMPLEX JOINTS; PHASE-CHANGE; PART II; LASER; KEYHOLE; METAL; SIMULATION AB A numerical model for three-dimensional heat transfer and fluid flow in keyhole mode electron beam welding was developed and applied to 304L stainless steel welds made at different power density distributions achieved by varying the focal spot radius at a fixed input power. The model first calculates keyhole geometry based on energy balance on keyhole walls and then solves the three-dimensional temperature field and fluid velocities in the workpiece. Since the energy balance and, consequently, the keyhole penetration are affected by the keyhole wall temperatures, the variation of the keyhole wall temperature with depth has been considered. A modified turbulence model based on Prandtl's mixing length hypothesis was used to calculate the spatially variable effective values of thermal conductivity and viscosity to account for enhanced heat and mass transfer due to turbulence in the weld pool. Unlike models available in literature, the model proposed in this work considers the physical processes like variations of keyhole wall temperatures with depth and the resulting influence on calculation of keyhole depth and fluid velocities along the keyhole wall, and three-dimensional heat and mass transport. Thus, the model can be applied to materials with a range of thermophysical properties. The model was used to study the fluid flow patterns in the weld pool and their effects on the calculated weld geometry. The calculated weld dimensions agreed reasonably well with the measured values. Peclet number calculation showed that convective heat transfer was very significant. The influence of convection was illustrated by comparing the Calculated weld pool geometries in the presence and absence of convection. The vapor pressures and wall temperatures in the keyhole, increased with increase in the peak power density. C1 [Rai, R.; Palmer, T. A.; Debroy, T.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Elmer, J. W.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Rai, R (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RI DebRoy, Tarasankar/A-2106-2010 NR 48 TC 18 Z9 18 U1 2 U2 20 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD MAR PY 2009 VL 88 IS 3 BP 54S EP 61S PG 8 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 494IB UT WOS:000269804000009 ER PT J AU Simpson, ML Cox, CD Allen, MS McCollum, JM Dar, RD Karig, DK Cooke, JF AF Simpson, Michael L. Cox, Chris D. Allen, Michael S. McCollum, James M. Dar, Roy D. Karig, David K. Cooke, John F. TI Noise in biological circuits SO WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY LA English DT Review ID CHEMICALLY REACTING SYSTEMS; STOCHASTIC GENE-EXPRESSION; SINGLE-CELL; TRANSCRIPTIONAL REGULATION; SIMULATION; NETWORKS; INDIVIDUALITY; CONSEQUENCES; VARIABILITY; DEPENDENCE AB Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and review many of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology. (C) 2009 John Wiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2009 1 214-225 C1 [Simpson, Michael L.; Karig, David K.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Simpson, Michael L.; Cox, Chris D.; Dar, Roy D.; Cooke, John F.] Univ Tennessee, Knoxville, TN USA. [Allen, Michael S.] Univ N Texas, Denton, TX 76203 USA. [McCollum, James M.] Virginia Commonwealth Univ, Richmond, VA 23284 USA. RP Simpson, ML (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM SimpsonML1@ornl.gov RI Simpson, Michael/A-8410-2011; Karig, David/G-5703-2011; Cox, Chris/A-9451-2013 OI Simpson, Michael/0000-0002-3933-3457; Karig, David/0000-0002-9508-6411; Cox, Chris/0000-0001-9818-5477 NR 66 TC 25 Z9 26 U1 0 U2 11 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1939-5116 J9 WIRES NANOMED NANOBI JI Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. PD MAR-APR PY 2009 VL 1 IS 2 BP 214 EP 225 DI 10.1002/wnan.022 PG 12 WC Nanoscience & Nanotechnology; Medicine, Research & Experimental SC Science & Technology - Other Topics; Research & Experimental Medicine GA 585PR UT WOS:000276839400007 PM 20049792 ER PT J AU Lin, SSY Kim, DH Ha, SY AF Lin, Sean S. -Y. Kim, Do Heui Ha, Su Y. TI Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Ethanol steam reforming; Hydrogen production; Metallic cobalt; CeO(2) promoter; In situ X-ray diffractometry (XRD); In situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) ID HYDROGEN-PRODUCTION; ALLOTROPIC TRANSFORMATION; PRODUCE HYDROGEN; BIO-ETHANOL; TEMPERATURE; FUEL AB The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 degrees C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400-500 degrees C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO(2) promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600 degrees C. Moreover. during the pre-reduction process, CeO(2) promoter prevents sintering during the transformation Of Co(3)O(4) to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO(2) promoter on 10% Ce-Co (hcp) to give a lower CO selectivity and a higher H(2) yield as compared with the unpromoted hcp Co. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lin, Sean S. -Y.; Ha, Su Y.] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Kim, Do Heui] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Ha, SY (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, POB 642710, Pullman, WA 99164 USA. EM suha@wsu.edu RI Lin, Sean/F-3988-2010; Kim, Do Heui/I-3727-2015 FU O.H. Reaugh Laboratory for Oil and Gas Processing Research at Washington State University FX This work was funded by and carried on in the O.H. Reaugh Laboratory for Oil and Gas Processing Research at Washington State University. NR 26 TC 62 Z9 62 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD FEB 28 PY 2009 VL 355 IS 1-2 BP 69 EP 77 DI 10.1016/j.apcata.2008.11.032 PG 9 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 413AU UT WOS:000263766100008 ER PT J AU Wang, Y Gaffney, AM AF Wang, Yong Gaffney, Anne M. TI Catalysis and Chemistry for the Synthesis of Fuels, Chemicals and Petrochemicals Preface SO CATALYSIS TODAY LA English DT Editorial Material C1 [Gaffney, Anne M.] Lummus Technol, Technol Dev Ctr, Bloomfield, NJ 07003 USA. [Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Gaffney, AM (reprint author), Lummus Technol, Technol Dev Ctr, 1515 Broad St, Bloomfield, NJ 07003 USA. EM yongwang@pnl.gov; agaffney@CBI.com RI Wang, Yong/C-2344-2013 NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD FEB 28 PY 2009 VL 140 IS 3-4 BP 117 EP 117 DI 10.1016/j.cattod.2008.11.004 PG 1 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 408PV UT WOS:000263448000001 ER PT J AU Liu, W Hu, JL Wang, Y AF Liu, Wei Hu, Jianli Wang, Yong TI Fischer-Tropsch synthesis on ceramic monolith-structured catalysts SO CATALYSIS TODAY LA English DT Article DE Fischer-Tropsch synthesis; Monolith; Catalyst; Reactor; Multiphase; Hydrodynamics ID REACTORS; DESIGN AB This paper reports recent research results about the impact of different catalyst bed configurations on Fischer-Tropsch (FT) synthesis product distributions. A powdered CoRe/gamma-alumina catalyst with a particle size ranging from 60 to 100 mesh was prepared and tested in a packed bed reactor. The same catalyst was ball milled and coated on a ceramic monolith support structure of channel size about I mm. The monolith catalyst module was tested in two different ways, as a whole piece and as well-defined channels. Steady-state reaction conversion was measured at various temperatures under a constant H(2)/CO feed ratio of 2 and a reactor pressure of 25 bar. Detailed product analysis was performed. Significant formation of wax was evident with the packed particle bed and with the monolith catalyst that was improperly packed. By contrast, wax formation was not detected in the liquid product by confining the reactions inside the monolith channel. This study presents an important finding about the structured catalyst/reactor system, in that the product distribution highly depends on how the structured reactor is set up. Even if a catalyst is tested under identical reaction conditions (T, P, H(2)/CO ratio), hydrodynamics (or flow conditions) inside a structured channel may have a significant impact on the product distribution. (c) 2008 Elsevier B.V. All rights reserved. C1 [Liu, Wei; Hu, Jianli; Wang, Yong] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Liu, W (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM wei.liu@pnl.gov; yongwang@pnl.gov RI Wang, Yong/C-2344-2013 FU PNNL Energy Conversion Initiative FX The authors would like to thank their colleagues at Pacific Northwest National Laboratory (PNNL), Dr. David King, Ms. Shari Li, Mr. Wayne Wilcox, and Mr. Allan Cooper for invaluable technical discussions and assistance. This work is supported by the PNNL Energy Conversion Initiative. The monolith support sample was provided by Corning Incorporated. NR 12 TC 23 Z9 24 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD FEB 28 PY 2009 VL 140 IS 3-4 BP 142 EP 148 DI 10.1016/j.cattod.2008.10.015 PG 7 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 408PV UT WOS:000263448000005 ER PT J AU Cao, CS Hu, JL Li, SR Wilcox, W Wang, Y AF Cao, Chunshe Hu, Jianli Li, Shari Wilcox, Wayne Wang, Yong TI Intensified Fischer-Tropsch synthesis process with microchannel catalytic reactors SO CATALYSIS TODAY LA English DT Article DE Gas to liquid; Fischer-Tropsch synthesis; Cobalt-Rhenium catalyst; Alumina support; Microchannel reactor; Particle size; Temperature profiles ID TECHNOLOGY; KINETICS; FUELS AB A microchannel catalytic reactor with improved heat and mass transport has been used for Fischer-Tropsch synthesis. It was demonstrated that this microchannel reactor based process can be carried out at gas hourly space velocity (GHSV) as high as 60,000 h(-1) to achieve greater than 60% of single-pass CO conversion while maintaining relatively low methane selectivity (<10%) and high chain growth probability (>0.9). In this study, performance data were obtained over a wide range of pressure (1035 atm) and hydrogen-to-carbon monoxide ratio (1 -2.5). The catalytic materials were characterized using BET, scanning electron microcopy (SEM), transmission electron microcopy (TEM), and H(2) chemisorption. A three-dimensional pseudo-homogeneous model was used to simulate temperature profiles in the exothermic reaction system in order to optimize the reactor design. Intraparticle nonisothermal characteristics are also analyzed for the FT synthesis catalyst. (c) 2008 Elsevier B.V. All rights reserved. C1 [Cao, Chunshe; Hu, Jianli; Li, Shari; Wilcox, Wayne; Wang, Yong] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 902 Battelle Blvd, Richland, WA 99354 USA. EM yongwang@pnl.gov RI Wang, Yong/C-2344-2013 FU US DOE EERE; US Department of Energy's Office of Biological and Environmental Research FX The authors gratefully acknowledge the support of US DOE EERE, Office of the Biomass Program. This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory in Richland, WA. We also would like to thank Dr. Chongmin Wang for his help on TEM. NR 34 TC 39 Z9 42 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD FEB 28 PY 2009 VL 140 IS 3-4 BP 149 EP 156 DI 10.1016/j.cattod.2008.10.016 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 408PV UT WOS:000263448000006 ER PT J AU Kowalski, K Fan, PD AF Kowalski, Karol Fan, Peng-Dong TI Generating functionals based formulation of the method of moments of coupled cluster equations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE bonds (chemical); carbon; coupled cluster calculations; Hilbert spaces; hydrogen neutral molecules; method of moments; nitrogen; wave functions ID NONITERATIVE ENERGY CORRECTIONS; BODY PERTURBATION THEORIES; CONFIGURATION-INTERACTION; QUANTUM-CHEMISTRY; DOUBLES METHOD; BASIS SETS; MOLECULAR APPLICATIONS; ELECTRON CORRELATION; SIZE-EXTENSIVITY; SINGLE-REFERENCE AB New theoretical framework for the method of moments of coupled cluster equations (MMCC) [K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000)] that, in a natural way, assures the connected form of the resulting MMCC corrections is discussed. In order to maintain the validity of the proposed expansion in the presence of strong quasidegeneracy effects, the regularization of the correlated part (gamma) of the overlap between the exact and approximate coupled cluster wave functions is required. It is shown that related approximations accounting for the effect of triples require a rudimentary form of the gamma-regularization (based on the regularization of cluster amplitudes) in order to provide results of completely renormalized CCSD(T) or better quality in situations when a single bond is broken (the HF molecule). For strongly correlated systems (C(2)) more efficient regularization schemes are required especially for stretched internuclear distances. Discussed type of the regularization procedure can also prevent the unphysical propagation of strong correlation effects through the products of cluster operators toward highly excited sectors of the Hilbert space. C1 [Kowalski, Karol; Fan, Peng-Dong] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov FU Battelle Memorial Institute [DE-AC06-76RLO-1830] FX This work has been performed using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory. The Pacific Northwest Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. NR 76 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2009 VL 130 IS 8 AR 084112 DI 10.1063/1.3076138 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 413PE UT WOS:000263804200017 PM 19256602 ER PT J AU Parkhill, JA Lawier, K Head-Gordon, M AF Parkhill, John A. Lawier, Keith Head-Gordon, Martin TI The perfect quadruples model for electron correlation in a valence active space SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE bonds (chemical); coupled cluster calculations; density functional theory; dissociation energies; electron correlations; hydrogen; nitrogen; organic compounds; SCF calculations; Schrodinger equation; strongly correlated electron systems; water ID COUPLED-CLUSTER THEORY; MATRIX RENORMALIZATION-GROUP; PLESSET PERTURBATION-THEORY; SINGLE-REFERENCE FORMALISM; SIZE-CONSISTENT; WAVE-FUNCTION; CONFIGURATION-INTERACTION; QUANTUM-CHEMISTRY; LOCAL TREATMENT; DOUBLES MODEL AB A local approximation to the Schrodinger equation in a valence active space is suggested based on coupled cluster (CC) theory. Working in a pairing active space with one virtual orbital per occupied orbital, this perfect quadruples (PQ) model is defined such that electrons are strongly correlated up to "four-at-a-time" in up to two different (occupied-virtual) electron pairs. This is a truncation of the CC theory with up to quadruple substitutions (CCSDTQ) in the active space, such that the retained amplitudes in PQ are proportional to the fourth root of the number of CCSDTQ amplitudes. Despite the apparently drastic nature of the PQ truncation, in the cases examined this model is a very accurate approximation to complete active space self-consistent field. Examples include deformations of square H-4, dissociation of two single bonds (water), a double bond (ethene), and a triple bond (nitrogen). The computational scaling of the model (fourth order with molecule size) is less than integral transformation, so relatively large systems can be addressed with improved accuracy relative to earlier methods such as perfect and imperfect pairing, which are truncations of CCSD in an active space. C1 [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM john.parkhill@berkeley.edu; klawler@berkeley.edu; mhg@bastille.cchem.berkerley.edu FU Department of Energy through Scientific Discovery through Advanced Computing (SciDAC) FX This work was supported by the Department of Energy through a grant under the program for Scientific Discovery through Advanced Computing (SciDAC). The authors would like to acknowledge the reviewers for their rigorous attention. NR 77 TC 41 Z9 41 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2009 VL 130 IS 8 AR 084101 DI 10.1063/1.3086027 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 413PE UT WOS:000263804200006 PM 19256591 ER PT J AU Small, DW Head-Gordon, M AF Small, David W. Head-Gordon, Martin TI Tractable spin-pure methods for bond breaking: Local many-electron spin-vector sets and an approximate valence bond model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE bonds (chemical); coupled cluster calculations; HF calculations; potential energy surfaces; SCF calculations; VB calculations ID PLESSET PERTURBATION-THEORY; DETERMINANT WAVE-FUNCTIONS; COUPLED-CLUSTER THEORY; SPACE SCF METHOD; TRANSITION-STATES; WAVEFUNCTIONS; CONTAMINATION; REARRANGEMENT; PROJECTION; CHEMISTRY AB For a given number of electrons, total spin, and matching spin z-component, we construct a set that spans the many-electron spin subspace associated with these spin values. Each vector in the set is tensorially related to spin-pure vectors of six electrons or less. We show that in the limit of separated atoms coupled to any allowed overall spin, the corresponding spin vector has a simple form relative to the introduced sets. From this, we set up a model that is computationally simple, spin pure, size consistent, and able to properly treat molecules as they dissociate into atoms or fragments. C1 [Small, David W.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Small, DW (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dsmall@berkeley.edu NR 48 TC 28 Z9 28 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2009 VL 130 IS 8 AR 084103 DI 10.1063/1.3069296 PG 19 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 413PE UT WOS:000263804200008 PM 19256593 ER PT J AU Wong, CY Curutchet, C Tretiak, S Scholes, GD AF Wong, Cathy Y. Curutchet, Carles Tretiak, Sergei Scholes, Gregory D. TI Ideal dipole approximation fails to predict electronic coupling and energy transfer between semiconducting single-wall carbon nanotubes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE carbon nanotubes; density functional theory; electronic structure; elemental semiconductors ID EXCITATION TRANSFER; FORSTER THEORY; MOLECULES; FLUORESCENCE; SYSTEMS; PHOTOPHYSICS; DEPENDENCE; PIGMENTS; CENTERS; MODEL AB The electronic coupling values and approximate energy transfer rates between semiconductor single-wall carbon nanotubes are calculated using two different approximations, the point dipole approximation and the distributed transition monopole approximation, and the results are compared. It is shown that the point dipole approximation fails dramatically at tube separations typically found in nanotube bundles (similar to 12-16 A) and that the disagreement persists at large tube separations (>100 A, over ten nanotube diameters). When used in Forster resonance energy transfer theory, the coupling between two point transition dipoles is found to overestimate energy transfer rates. It is concluded that the point dipole approximation is inappropriate for use with elongated systems such as carbon nanotubes and that methods which can account for the shape of the particle are more suitable. C1 [Wong, Cathy Y.; Curutchet, Carles; Scholes, Gregory D.] Univ Toronto, Dept Chem, Ctr Quantum Informat & Quantum Control, Inst Opt Sci, Toronto, ON M5S 3H6, Canada. [Tretiak, Sergei] Los Alamos Natl Lab, Div Theoret, CNLS, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. RP Wong, CY (reprint author), Univ Toronto, Dept Chem, Ctr Quantum Informat & Quantum Control, Inst Opt Sci, 80 St George St, Toronto, ON M5S 3H6, Canada. EM gscholes@chem.utoronto.ca RI Curutchet, Carles/C-5204-2008; Tretiak, Sergei/B-5556-2009 OI Curutchet, Carles/0000-0002-0070-1208; Tretiak, Sergei/0000-0001-5547-3647 FU Natural Sciences and Engineering Research Council of Canada; E.W.R. Steacie Memorial Fellowship; U.S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) FX The Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged for support of this research. G.D.S. acknowledges the support of E.W.R. Steacie Memorial Fellowship. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract No. DE-AC52-06NA25396. We acknowledge the support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). NR 41 TC 36 Z9 36 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2009 VL 130 IS 8 AR 081104 DI 10.1063/1.3088846 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 413PE UT WOS:000263804200004 PM 19256589 ER PT J AU Tu, WC Li, XL Chen, Y Reeves, GD Temerin, M AF Tu, Weichao Li, Xinlin Chen, Yue Reeves, G. D. Temerin, M. TI Storm-dependent radiation belt electron dynamics SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID WHISTLER-MODE CHORUS; ION-CYCLOTRON WAVES; MAGNETIC STORM; RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; INNER MAGNETOSPHERE; EMIC WAVES; ACCELERATION; DIFFUSION; SCATTERING AB Using recently published electron phase space densities (PSD) as a function of L* (L* is approximately the radial distance in Earth radii at the equator) and time, energization and loss in the Earth's outer electron radiation belt were studied quantitatively and numerically using a radial diffusion model that included finite electron lifetimes and an internal source parameterized as a function of geomagnetic indices. We used PSD data at fixed values of the first and second adiabatic invariants, corresponding to electrons mirroring near the Earth's equator with an energy of similar to 2.7 MeV at L* = 4. Model results for the second half of 2002 reproduced the average variations of the radiation belt electron PSD between L* = 2.5 and L* = 6 but with overprediction and underprediction at different times, implying that the same set of parameters cannot be applied to all storms. A detailed analysis of four individual storms showed that while electrons in three storms could be well simulated by energization from either radial diffusion only or internal heating only, incorporating both yielded the best results. For the other storm, an additional source of electrons was required to account for the enhanced PSD. The model results indicated that each storm is best simulated when a combination of radial diffusion and internal heating is used. Different storms required different magnitudes of radial diffusion and internal heating, and the relative contributions of these two acceleration mechanisms varied from storm to storm. A comparison of the results from different runs for the four storms and an analysis of the radial diffusion coefficients further suggest that internal heating contributes more to the enhancement of 2.7 MeV electrons at L* = 4 than radial diffusion. C1 [Tu, Weichao; Li, Xinlin] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Chen, Yue; Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tu, WC (reprint author), Univ Colorado, Atmospher & Space Phys Lab, 1234 Innovat Dr, Boulder, CO 80303 USA. EM weichao.tu@colorado.edu RI Tu, Weichao/B-6507-2011; Reeves, Geoffrey/E-8101-2011 OI Tu, Weichao/0000-0003-4547-3269; Reeves, Geoffrey/0000-0002-7985-8098 FU National Science Foundation FX This work was mainly supported by National Science Foundation grants. NR 51 TC 43 Z9 45 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB 28 PY 2009 VL 114 AR A02217 DI 10.1029/2008JA013480 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 412QB UT WOS:000263738200002 ER PT J AU Nozawa, T Katoh, Y Snead, LL AF Nozawa, T. Katoh, Y. Snead, L. L. TI The effect of neutron irradiation on the fiber/matrix interphase of silicon carbide composites SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CERAMIC-MATRIX COMPOSITES; FIBER PULL-OUT; COATED FUEL PARTICLE; SIC/SIC COMPOSITES; MECHANICAL-PROPERTIES; PYROLYTIC CARBONS; SHEAR PROPERTIES; REINFORCED COMPOSITES; CALCULATING STRESSES; MATHEMATICAL MODEL AB Given the good stability of mechanical properties of silicon carbide (SiC) under neutron irradiation, the ultimate irradiation tolerance of SiC composite materials may be limited by the fiber/matrix interphase, which is critically important to the performance of these composites. This study investigates the irradiation stability of pyrolytic carbon (PyC) monolayer and PyC/SiC multilayer interphases by tensile and single fiber push-out test techniques. Neutron irradiation was performed to doses of 0.7-7.7 dpa at temperatures from 380 to 1080 degrees C. Both interfacial debond shear strength and interfacial friction stress apparently decrease by irradiation, although this is not so dramatic when T-irr < 1000 degrees C. In contrast, the interfacial shear stresses are most affected by the higher temperature irradiation (> 1000 degrees C). Noteworthy, these irradiation effects depend on the type of interphase material, i.e.. for the pyrolytic carbon or multilayer SiC variants studied. In the range of irradiation temperature and dose, the degradation in interfacial shear properties. while measurable, is not of a magnitude to degrade the mechanical performance of the composites. This was observed for both interphase types studied. In particular, the proportional limit tensile stress decreases slightly by irradiation while the tensile fracture Strength undergoes very minor change. (C) 2008 Elsevier B.V. All rights reserved. C1 [Nozawa, T.; Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Nozawa, T (reprint author), Japan Atom Energy Agcy, Fusion Res & Dev Directorate, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. EM nozawa.takashi67@jaea.go.jp OI Katoh, Yutai/0000-0001-9494-5862 FU Office of Fusion Energy Sciences; US Department of Energy [DE-AC05-00OR22725]; LLC; US Department of Energy Office of Nuclear Energy, Science and Technology; Nuclear Energy Research Initiative (NERI) [NEAF355 (AF3510)]; 'JUPITER-II' US-Department of Energy/Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) FX The authors would like to thank Dr R.J. Shinavski for fabricating materials, and Dr J.T. Busby, Ms A.M. Williams and Ms P.S. for post-irradiation experiments. The special thanks are extended to Dr T.S. Byun for reviewing the manuscript. Additionally, the authors would like acknowledge the use of the High Flux Isotope Reactor user facility. This research was sponsored by the Office of Fusion Energy Sciences, US Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC and by the US Department of Energy Office of Nuclear Energy, Science and Technology, a Nuclear Energy Research Initiative (NERI) Project, under Contract NEAF355 (AF3510) with Oak Ridge National Laboratory (operated by UT-Battelle, LLC). This study was also a part of 'JUPITER-II' US-Department of Energy/Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) collaboration for fusion material system research. NR 56 TC 23 Z9 23 U1 0 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 28 PY 2009 VL 384 IS 3 BP 195 EP 211 DI 10.1016/j.jnucmat.2008.11.015 PG 17 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 416DX UT WOS:000263986700001 ER PT J AU Kim, JW Lee, K Kim, JS Byun, TS AF Kim, Jin Weon Lee, Kyoungsoo Kim, Jong Sung Byun, Thak Sang TI Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AUSTENITIC STAINLESS-STEELS; PLASTIC INSTABILITY AB The distributions of mechanical and microstructural properties were investigated for the dissimilar metal weld joints between SA508 Gr.1a ferritic steel and 17316 austenitic stainless steel with Alloy 82/182 filler metal using small-size tensile specimens. The material properties varied significantly in different zones while those were relatively uniform within each material. In particular, significant gradient of the mechanical properties were observed near the both heat-affected zones (HAZs) of F316 SS and SA508 Gr.1a. Thus, the yield stress (YS) was under-matched with respect to the both HAZs, although, the YS of the weld metal was over-matched with respect to both base metals. The minimum ductility occurred in the HAZ of SA508 Gr.1a at both test temperatures. The plastic instability stress also varied considerably across the weld joints, with minimum values occurring in the SA508 Gr.1a base metal at RT and in the HAZ of F316 SS at 320 degrees C. The transmission electron micrographs showed that the strengthening in the HAZ of F316 SS was attributed to the strain hardening, induced by a strain mismatch between the weldment and the base metal, which was evidenced by high dislocation density in the HAZ of F3116 SS. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kim, Jin Weon] Chosun Univ, Dept Nucl Engn, Kwangju 501759, South Korea. [Lee, Kyoungsoo] Korea Elect Power Res Inst, Nucl Power Lab, Taejon 305380, South Korea. [Kim, Jong Sung] Sunchon Natl Univ, Dept Mech Engn, Sunchon 540742, Jeonnam, South Korea. [Byun, Thak Sang] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kim, JW (reprint author), Chosun Univ, Dept Nucl Engn, 375 Seosuk Dong, Kwangju 501759, South Korea. EM jwkim@chosun.ac.kr NR 22 TC 52 Z9 56 U1 3 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 28 PY 2009 VL 384 IS 3 BP 212 EP 221 DI 10.1016/j.jnucmat.2008.11.019 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 416DX UT WOS:000263986700002 ER PT J AU Jeffries, JR Blobaum, KJM Wall, MA Schwartz, AJ AF Jeffries, J. R. Blobaum, K. J. M. Wall, M. A. Schwartz, A. J. TI Reproducible phase transformation in a single Pu-1.9 at.% Ga specimen SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LOW-TEMPERATURE; GALLIUM ALLOYS; STABILITY; PLUTONIUM; KINETICS AB The partial martensitic delta -> alpha' transformation in Pu-Ga alloys is sensitive to lattice strains, defects, and dislocations as well as a near-ambient-temperature conditioning treatment. Because the delta -> alpha' transformation and reversion inherently induce strains, plastic deformation, and defects, remnants of a previous transformation of a Pu-1.9 at.% Ga alloy can inhibit the phase transformation upon subsequent cooling. On the other hand, a conditioning treatment with isothermal holds as short as 6 h at room temperature can dramatically increase the volumetric amount. of transformation. These two factors can prohibit systematic study of the delta -> alpha' transformation unless experiments can be performed on multiple identical samples or a single sample can be treated such that these effects are eliminated. The latter approach requires an understanding of the conditions necessary to remove the effects of previous transformation as well as conditioning as they relate to the inhibition or promotion of the delta -> alpha' transformation. Herein, we identify and report a thermal procedure, specifically an anneal at 375 degrees C for 30 min or more, sufficient to remove the effects of conditioning and previous transformation in order to reliably return a sample to an initial state, from which reproducible amounts of delta -> alpha' transformation can be achieved with consecutive cycling. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jeffries, J. R.; Blobaum, K. J. M.; Wall, M. A.; Schwartz, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Jeffries, JR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-350, Livermore, CA 94550 USA. EM jeffries4@llnl.gov FU U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [07-ERD-047] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 07-ERD-047. NR 16 TC 9 Z9 9 U1 2 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 28 PY 2009 VL 384 IS 3 BP 222 EP 225 DI 10.1016/j.jnucmat.2008.11.021 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 416DX UT WOS:000263986700003 ER PT J AU Edwards, DJ Garner, FA Bruemmer, SM Efsing, P AF Edwards, D. J. Garner, F. A. Bruemmer, S. M. Efsing, Pal TI Nano-cavities observed in a 316SS PWR flux thimble tube irradiated to 33 and 70 dpa SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FISSION-FUSION CORRELATIONS; LOW DISPLACEMENT RATES; STAINLESS-STEEL; BN-350 REACTOR; TEMPERATURE; HYDROGEN; CREEP AB The radiation-induced microstructure of a cold-worked 316SS flux thimble tube from an operating pressurized water reactor (PWR) was examined. Two irradiated conditions, 33 dpa at 290 degrees C and 70 dpa at 315 degrees C were examined by transmission electron microscopy. The original dislocation network had completely disappeared and was replaced by fine dispersions of Frank loops and small nano-cavities at high densities. The latter appear to be bubbles containing high levels of helium and hydrogen. An enhanced distribution of these nano-cavities was found at grain boundaries and may play a role in the increased susceptibility of the irradiated 316SS to intergranular failure of specimens from this tube during postirradiation slow strain rate testing in PWR water conditions. (C) 2008 Elsevier B.V. All rights reserved. C1 [Edwards, D. J.; Garner, F. A.; Bruemmer, S. M.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Efsing, Pal] Vattenfall AB Ringhals, SE-43022 Varobacka, Sweden. RP Garner, FA (reprint author), Pacific NW Natl Lab, MS P8-15,POB 999, Richland, WA 99354 USA. EM frank.garner@pnl.gov FU Office of Nuclear Energy, Science and Technology, US Department of Energy [DE-AC06-76RLO 1830] FX This research was supported by the Office of Nuclear Energy, Science and Technology, US Department of Energy, under Contract DE-AC06-76RLO 1830. Additional support was provided by Vatten-fall AB Ringhals and by the Cooperative IASCC research project through EPRI. Pacific Northwest National Laboratory is operated for the US DOE by Battelle Memorial Institute. NR 25 TC 28 Z9 28 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 28 PY 2009 VL 384 IS 3 BP 249 EP 255 DI 10.1016/j.jnucmat.2008.11.025 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 416DX UT WOS:000263986700008 ER PT J AU Ichinomiya, T Uberuaga, BP Sickafus, KE Nishiura, Y Itakura, M Chen, Y Kaneta, Y Kinoshita, M AF Ichinomiya, Takashi Uberuaga, Blas P. Sickafus, Kurt E. Nishiura, Yasumasa Itakura, Mitsuhiro Chen, Ying Kaneta, Yasunori Kinoshita, Motoyasu TI Temperature accelerated dynamics study of migration process of oxygen defects in UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HIGH BURNUP; ELECTRON-MICROSCOPY; CLUSTERS; CEO2 AB We studied the migration dynamics of oxygen point defects in UO2 which is the primary ceramic fuel for light-water reactors. Temperature accelerated dynamics simulations are performed for several initial conditions. Though the migration of the single interstitial is much slower than that of the vacancy, clustered interstitial shows faster migration than those. This observation gives us important insight: on the formation mechanism of high-burnup restructuring, including planar defects and grain sub-division (the rim structure), found in UO2. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ichinomiya, Takashi; Nishiura, Yasumasa] Hokkaido Univ, Res Inst Elect Sci, Kita Ku, Sapporo, Hokkaido 0600812, Japan. [Uberuaga, Blas P.; Sickafus, Kurt E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Itakura, Mitsuhiro; Kinoshita, Motoyasu] Japan Atom Energy Agcy, Ibaraki 3191195, Japan. [Chen, Ying; Kaneta, Yasunori; Kinoshita, Motoyasu] Univ Tokyo, Dept Quantum Engn & Syst Sci, Tokyo 1138656, Japan. [Kinoshita, Motoyasu] Cent Res Inst Elect Power Ind, Tokyo 2018511, Japan. RP Ichinomiya, T (reprint author), Kyoto Univ, Dept Math, Kyoto 606, Japan. EM miya@math.kyoto-u.ac.jp OI Ichinomiya, Takashi/0000-0002-9173-4514 FU Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan; Office of Science, Office of Basic Energy Sciences; National Nuclear Security Administration of the US DOE [DE-AC52-06NA25396] FX We acknowledge A.F. Voter for his help in the development of the simulation code. We would also like to acknowledge Los Alamos National Laboratory for supporting the collaboration, providing working infra-structure including communication and computational environment.; This work is financially supported by the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan, based on the screening and counseling by the Atomic Energy Commission. Work at LANL was funded by the Office of Science, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396. NR 29 TC 28 Z9 28 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 28 PY 2009 VL 384 IS 3 BP 315 EP 321 DI 10.1016/j.jnucmat.2008.12.040 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 416DX UT WOS:000263986700017 ER PT J AU Fan, JW Ovtchinnikov, M Comstock, JM McFarlane, SA Khain, A AF Fan, Jiwen Ovtchinnikov, Mikhail Comstock, Jennifer M. McFarlane, Sally A. Khain, Alexander TI Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SMALL CUMULIFORM CLOUDS; PART II; EXPLICIT MICROPHYSICS; CLIMATE MODELS; SPECTRAL MICROPHYSICS; PRODUCTION MECHANISMS; CONVECTIVE CLOUDS; 3D MODEL; SIMULATION; NUCLEATION AB The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a three-dimensional cloud-resolving model, the System for Atmospheric Modeling (SAM), coupled with an explicit bin microphysics scheme and a radar simulator. By implementing an aerosol-dependent and a temperature- and supersaturation-dependent ice nucleation scheme and treating IN size distribution prognostically, the link between ice crystal and aerosol properties is established to study aerosol indirect effects. Two possible ice enhancement mechanisms, activation of droplet evaporation residues by condensation followed by freezing and droplet evaporation freezing by contact freezing inside out, are scrutinized by extensive comparisons with the in situ and remote sensing measurements. Simulations with either mechanism agree well with the in situ and remote sensing measurements of ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give similar cloud properties, although ice nucleation occurs at very different rates and locations. Ice nucleation from activation of evaporation nuclei occurs mostly near cloud top areas, while ice nucleation from the drop freezing during evaporation has no significant location preference. Both ice enhancement mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. Ice nuclei (IN) recycling from ice sublimation contributes significantly to maintaining concentrations of IN and ice particles in this case, implying an important role to maintain the observed long-term existence of mixed-phase clouds. Cloud can be very sensitive to IN initially but become much less sensitive as cloud evolves to a steady mixed-phase condition. C1 [Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Khain, Alexander] Hebrew Univ Jerusalem, Dept Atmospher Sci, IL-91904 Jerusalem, Israel. RP Fan, JW (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jiwen.fan@pnl.gov RI McFarlane, Sally/C-3944-2008; Fan, Jiwen/E-9138-2011 FU Pacific Northwest National Laboratory (PNNL); Office of Science of DOE [DE-AC02-05CH11231]; Binational U. S. - Israel Science Foundation (BSF) [2006437] FX This study was supported by the Pacific Northwest National Laboratory (PNNL) Directed Research and Development (LDRD) program as part of the Aerosol Climate Initiative. The authors are grateful to Matthew Shupe at NOAA ESRL for the radar data and useful discussions. The authors thank John Haynes and Roger March-and for providing their radar simulator code and precalculated Mie tables. Thanks to the MPACE team and U. S. Department of Energy (DOE) ARM Program Climate Research Facility for the data set. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of DOE under contract DE-AC02-05CH11231. Compute sources from EMSL, a national scientific user facility sponsored by DOE's office of BER located at PNNL, were also used. A. Khain was supported by the Binational U. S. - Israel Science Foundation (BSF), grant 2006437. NR 73 TC 47 Z9 47 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2009 VL 114 AR D04205 DI 10.1029/2008JD010782 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 412OC UT WOS:000263733100002 ER PT J AU Maceira, M Ammon, CJ AF Maceira, Monica Ammon, Charles J. TI Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID TIEN-SHAN; RECEIVER FUNCTIONS; TARIM BASIN; GEOPHYSICAL-DATA; NORTHWEST CHINA; TOMOGRAPHY; TECTONICS; DENSITY; EVOLUTION; WESTERN AB We implement and apply a method to the jointly inverted of surface wave group velocities and gravity anomalies observations. Surface wave dispersion measurements are sensitive to seismic shear wave velocities, and the gravity measurements supply constraints on rock density variations. Our goal is to obtain a self-consistent three-dimensional shear velocity-density model with increased resolution of shallow geologic structures. We apply the method to investigate the structure of the crust and upper mantle beneath two large central Asian sedimentary basins: the Tarim and Junggar. The basins have thick sediment sections that produce substantial regional gravity variations (up to several hundred milligals). We used gravity observations extracted from the global gravity model derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. We combine the gravity anomalies with high-resolution surface wave slowness tomographic maps that provide group velocity dispersion values in the period range between 8 and 100 s for a grid of locations across central Asia. To integrate these data, we use a relationship between seismic velocity and density constructed through the combination of two empirical relations. One determined by Nafe and Drake, most appropriate for sedimentary rocks, and a linear Birch's law, more applicable to denser rocks (the basement). An iterative, damped least squares inversion including smoothing is used to jointly model both data sets, using shear velocity variations as the primary model parameters. Results show high upper mantle shear velocities beneath the Tarim basin and suggest differences in lower crust and upper mantle shear velocities between the eastern and western Tarim. C1 [Maceira, Monica] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ammon, Charles J.] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. RP Maceira, M (reprint author), Los Alamos Natl Lab, EES 11,MS D443, Los Alamos, NM 87545 USA. EM mmaceira@lanl.gov; cammon@geosc.psu.edu OI Maceira, Monica/0000-0003-1248-2185 FU U.S. Department of Energy by Los Alamos National Laboratory [W-7405-ENG-36] FX Special thanks to C. D. Batista for his valuable help and insight in this study. Thanks to the Generic Mapping Tool (GMT) developers [Wessel and Smith, 1995]. Thanks to L. Brown, two anonymous reviewers, and the Editor for their constructive comments and suggestions that help to greatly improve this manuscript. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under contract W-7405-ENG-36. NR 64 TC 32 Z9 32 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB 27 PY 2009 VL 114 AR B02314 DI 10.1029/2007JB005157 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 412PT UT WOS:000263737400001 ER PT J AU Vaiana, AC Sanbonmatsu, KY AF Vaiana, Andrea C. Sanbonmatsu, Kevin Y. TI Stochastic Gating and Drug-Ribosome Interactions SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE RNA; ribosome molecular dynamics simulation; antibiotics; induced-fit ID EXCHANGE MOLECULAR-DYNAMICS; PARTICLE MESH EWALD; TRANSFER-RNA; A-SITE; CRYSTAL-STRUCTURE; ENERGY LANDSCAPE; ESCHERICHIA-COLI; EXPLICIT SOLVENT; MESSENGER-RNA; DECODING SITE AB Gentamicin is a potent antibiotic that is used in combination therapy for inhalation anthrax disease. The drug is also often used in therapy for. methicillin-resistant Staphylococcus aureus. Gentamicin works by flipping a conformational switch on the ribosome, disrupting the reading head (i.e., 16S ribosomal decoding bases 1492-1493) used for decoding messenger RNA. We use explicit solvent all-atom molecular simulation to study the thermodynamics of the ribosomal decoding site and its interaction with gentamicin. The replica exchange molecular dynamics simulations used an aggregate sampling of 15 mu s when summed over all replicas, allowing us to explicitly calculate the free-energy landscape, including a rigorous treatment of enthalpic and entropic effects. Here, we show that the decoding bases flip on a timescale faster than that of gentamicin binding, supporting a stochastic gating mechanism for antibiotic binding, rather than an induced-fit model where the bases only flip in the presence of a ligand. The study also allows us to explore the nonspecific binding landscape near the binding site and reveals that, rather than a two-state bound/unbound scenario, drug dissociation entails shuttling between many metastable local minima in the free-energy landscape. Special care is dedicated to validation of the obtained results, both by direct comparison to experiment and by estimation of simulation convergence. Published by Elsevier Ltd. C1 [Vaiana, Andrea C.; Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop K710,T-10, Los Alamos, NM 87545 USA. EM kys@lanl.gov FU NIGMS NIH HHS [R01-GM072686, R01 GM072686] NR 56 TC 44 Z9 44 U1 1 U2 7 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 27 PY 2009 VL 386 IS 3 BP 648 EP 661 DI 10.1016/j.jmb.2008.12.035 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 416DA UT WOS:000263984200006 PM 19146858 ER PT J AU Khare, A Rasmussen, KO Samuelsen, MR Saxena, A AF Khare, Avinash Rasmussen, Kim O. Samuelsen, Mogens R. Saxena, Avadh TI Staggered and short-period solutions of the saturable discrete nonlinear Schrodinger equation SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID WAVE-GUIDE ARRAYS AB We point out that the nonlinear Schrodinger lattice with a saturable nonlinearity also admits staggered periodic aswell as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered as well as the short-period solutions are stable in most cases. We also show that the effective Peierls-Nabarro barrier for the pulse-like soliton solutions is zero. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Rasmussen, Kim O.; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rasmussen, Kim O.; Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Samuelsen, Mogens R.] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark. RP Khare, A (reprint author), Inst Phys, Bhubaneswar 751005, Orissa, India. RI Rasmussen, Kim/B-5464-2009; Samuelsen, Mogens/A-2633-2012 OI Rasmussen, Kim/0000-0002-4029-4723; NR 10 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD FEB 27 PY 2009 VL 42 IS 8 AR 085002 DI 10.1088/1751-8113/42/8/085002 PG 6 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 402QX UT WOS:000263029300006 ER PT J AU Lutman, AA Penco, G Craievich, P Wu, JH AF Lutman, Alberto A. Penco, Giuseppe Craievich, Paolo Wu, Juhao TI Impact of an initial energy chirp and an initial energy curvature on a seeded free electron laser: free electron laser properties SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID PULSE AB In a free electron laser (FEL), the electron bunch energy profile at the undulator entrance can have temporal structures. In this paper, we derive analytical expressions for the FEL in the undulator, in the case of the electron bunch having both energy chirp and energy curvature. The FEL properties are studied analytically by convoluting a Gaussian seed laser with the FEL Green's function obtained by solving the coupled Vlasov-Maxwell equations. In particular, for different ratios of the temporal duration of the seed laser and that of the Green's function, interesting behavior is revealed. C1 [Lutman, Alberto A.] Univ Trieste, DEEI, I-34127 Trieste, Italy. [Penco, Giuseppe; Craievich, Paolo] Sincrotrone Trieste, I-34012 Trieste, Italy. [Wu, Juhao] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Lutman, AA (reprint author), Univ Trieste, DEEI, I-34127 Trieste, Italy. EM alberto.lutman@elettra.trieste.it; jhwu@slac.stanford.edu OI Penco, Giuseppe/0000-0002-4900-6513 NR 10 TC 8 Z9 8 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD FEB 27 PY 2009 VL 42 IS 8 AR 085405 DI 10.1088/1751-8113/42/8/085405 PG 13 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 402QX UT WOS:000263029300025 ER PT J AU Blanchette, M Green, RE MacArthur, S Brooks, AN Brenner, SE Eisen, MB Rio, DC AF Blanchette, Marco Green, Richard E. MacArthur, Stewart Brooks, Angela N. Brenner, Steven E. Eisen, Michael B. Rio, Donald C. TI Genome-wide Analysis of Alternative Pre-mRNA Splicing and RNA-Binding Specificities of the Drosophila hnRNP A/B Family Members SO MOLECULAR CELL LA English DT Article ID IN-VIVO; GENE-EXPRESSION; PROTEINS; SITES; A1; TRANSCRIPTION; SELECTION; OVEREXPRESSION; MODULATION; MUTATIONS AB Heterogeneous nuclear ribonucleoproteins (hnRNPs) have been traditionally seen as proteins packaging RNA nonspecifically into ribonucleoprotein particles (RNPs), but evidence suggests specific cellular functions on discrete target pre-mRNAs. Here we report genome-wide analysis of alternative splicing patterns regulated by four Drosophila homologs of the mammalian hnRNP A/B family (hrp36, hrp38, hrp40, and hrp48). Analysis of the global RNA-binding distributions of each protein revealed both small and extensively bound regions on target transcripts. A significant subset of RNAs were bound and regulated by more than one hnRNP protein, revealing a combinatorial network of interactions. In vitro RNA-binding site selection experiments (SELEX) identified distinct binding motif specificities for each protein, which were overrepresented in their respective regulated and bound transcripts. These results indicate that individual heterogeneous ribonucleoproteins have specific affinities for overlapping, but distinct, populations of target pre-mRNAs controlling their patterns of RNA processing. C1 [Blanchette, Marco; Green, Richard E.; Brooks, Angela N.; Brenner, Steven E.; Eisen, Michael B.; Rio, Donald C.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Blanchette, Marco; Brenner, Steven E.; Rio, Donald C.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Green, Richard E.; Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [MacArthur, Stewart; Eisen, Michael B.] Ernest Orlando Lawrence Berkeley Natl Lab, Dept Genome Sci, Div Life Sci, Berkeley, CA 94720 USA. RP Blanchette, M (reprint author), Stowers Inst Med Res, Kansas City, MO 64110 USA. EM mab@stowers-institute.org; don_rio@berkeley.edu RI Brooks, Angela/B-6173-2011; Brenner, Steven/A-8729-2008; OI Brenner, Steven/0000-0001-7559-6185; Eisen, Michael/0000-0002-7528-738X FU National Institutes of Health (NIH) [ROlGM61987, R01 GM071655, U01 HGO04271]; National Science Foundation (NSF) FX We are grateful to A. Mushegian, B. Chabot, K. Hansen, and M. Levine for critical comments and suggestions on the manuscript. Many thanks to M. Adams for the production and purification of recombinant hrp48. Special thanks to R. Tjian, M. Biggin, and G. Rubin for providing us early access to Drosophila whole genome tiling arrays. We would also like to thank Agilent Technologies for granting us access to their clean room scanning facility. This work was supported by a National Institutes of Health (NIH) grant (ROlGM61987). M.B. was the recipient of a Human Frontier Science Program long-term fellowship. A.N.B. is supported by a National Science Foundation (NSF) Graduate Research Fellowship. S.E.B. and A.N.B. are also supported by NIH grants R01 GM071655 and U01 HGO04271. NR 53 TC 49 Z9 50 U1 3 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD FEB 27 PY 2009 VL 33 IS 4 BP 438 EP 449 DI 10.1016/j.molcel.2009.01.022 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 413RS UT WOS:000263810800006 PM 19250905 ER PT J AU Graser, S Maier, TA Hirschfeld, PJ Scalapino, DJ AF Graser, S. Maier, T. A. Hirschfeld, P. J. Scalapino, D. J. TI Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides SO NEW JOURNAL OF PHYSICS LA English DT Article ID LAYERED SUPERCONDUCTOR LAO0.9F0.1-DELTA-FEAS; DENSITY-WAVE INSTABILITY; SYMMETRY; SYSTEMS; GAPS AB Weak-coupling approaches to the pairing problem in the iron pnictide superconductors have predicted a wide variety of superconducting ground states. We argue here that this is due both to the inadequacy of certain approximations to the effective low-energy band structure, and to the natural near degeneracy of different pairing channels in superconductors with many distinct Fermi surface sheets. In particular, we review attempts to construct two-orbital effective band models, the argument for their fundamental inconsistency with the symmetry of these materials, and compare the dynamical susceptibilities of two-and five-orbital tight-binding models. We then present results for the magnetic properties, pairing interactions and pairing instabilities within a five-orbital tight-binding random phase approximation model. We discuss the robustness of these results for different dopings, interaction strengths and variations in band structures. Within the parameter space explored, an anisotropic, sign-changing s-wave (A(1g)) state and a d(x2-y2) (B(1g)) state are nearly degenerate, due to the near nesting of Fermi surface sheets. C1 [Graser, S.; Hirschfeld, P. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Maier, T. A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Maier, T. A.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. [Scalapino, D. J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Graser, S (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. EM graser@phys.ufl.edu RI Hirschfeld, Peter /A-6402-2010; Maier, Thomas/F-6759-2012 OI Maier, Thomas/0000-0002-1424-9996 NR 55 TC 468 Z9 469 U1 10 U2 49 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 27 PY 2009 VL 11 AR 025016 DI 10.1088/1367-2630/11/2/025016 PG 34 WC Physics, Multidisciplinary SC Physics GA 412SJ UT WOS:000263744200015 ER PT J AU Lv, B Gooch, M Lorenz, B Chen, F Guloy, AM Chu, CW AF Lv, B. Gooch, M. Lorenz, B. Chen, F. Guloy, A. M. Chu, C. W. TI The superconductor KxSr1-xFe(2)As(2): normal state and superconducting properties SO NEW JOURNAL OF PHYSICS LA English DT Article ID PHASE-DIAGRAM; 43 K; COMPOUND; LIFEAS; EARTH; METAL AB The normal state and superconducting properties are investigated in the phase diagram of KxSr1-xFe2As2 for 0 <= x <= 1. The ground state upper critical field, H-c2(0), is extrapolated from magnetic field- dependent resistivity measurements. H-c2(0) scales with the critical temperature, T-c, of the superconducting transition. In the normal state, the Seebeck coefficient is shown to experience a dramatic change near a critical substitution of x similar or equal to 0.3. This is associated with the formation of a spin density wave state above the superconducting transition temperature. The results provide strong evidence for the reconstruction of the Fermi surface with the onset of magnetic order. C1 [Gooch, M.; Lorenz, B.; Chen, F.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Gooch, M.; Lorenz, B.; Chen, F.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Lv, B.; Guloy, A. M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Lorenz, B (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. EM blorenz@uh.edu RI Lv, Bing/E-3485-2010 FU T L L Temple Foundation; J J and R Moores Endowment; State of Texas through TCSUH; USAF Office of Scientific Research; LBNL through USDOE; NSF [CHE-0616805]; R A Welch Foundation FX This work was supported in part by the T L L Temple Foundation, the J J and R Moores Endowment, the State of Texas through TCSUH, the USAF Office of Scientific Research, and at LBNL through USDOE. AMG and BLv acknowledge the support from the NSF (CHE-0616805) and the R A Welch Foundation. NR 31 TC 23 Z9 23 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 27 PY 2009 VL 11 AR 025013 DI 10.1088/1367-2630/11/2/025013 PG 12 WC Physics, Multidisciplinary SC Physics GA 412SJ UT WOS:000263744200012 ER PT J AU McGuire, MA Hermann, RP Sefat, AS Sales, BC Jin, RY Mandrus, D Grandjean, F Long, GJ AF McGuire, Michael A. Hermann, Raphael P. Sefat, Athena S. Sales, Brian C. Jin, Rongying Mandrus, David Grandjean, Fernande Long, Gary J. TI Influence of the rare-earth element on the effects of the structural and magnetic phase transitions in CeFeAsO, PrFeAsO and NdFeAsO SO NEW JOURNAL OF PHYSICS LA English DT Article ID LAYERED QUATERNARY COMPOUND; SUPERCONDUCTIVITY; MOSSBAUER; METAL; SYSTEMS AB We present results of transport and magnetic properties and heat capacity measurements on polycrystalline CeFeAsO, PrFeAsO and NdFeAsO. These materials undergo structural phase transitions, spin density wave-like magnetic ordering of small moments on iron and antiferromagnetic ordering of rare-earth moments. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, Hall coefficient and magnetoresistance are reported. The magnetic behavior of the materials have been investigated using Mossbauer spectroscopy and magnetization measurements. Transport and magnetic properties are affected strongly by the structural and magnetic transitions, suggesting significant changes in the band structure and/or carrier mobilities occur, and phonon-phonon scattering is reduced upon transformation to the low-temperature structure. Results are compared with recent reports for LaFeAsO, and systematic variations in properties as the identity of Ln is changed are observed and discussed. As Ln progresses across the rare-earth series from La to Nd, an increase in the hole contributions to the Seebeck coefficient and increases in magnetoresistance and the Hall coefficient are observed in the low-temperature phase. Analysis of hyperfine fields at the iron nuclei determined from Mossbauer spectra indicates that the moment on Fe in the orthorhombic phase is nearly independent of the identity of Ln, in apparent contrast to reports of powder neutron diffraction refinements. C1 [McGuire, Michael A.; Sefat, Athena S.; Sales, Brian C.; Jin, Rongying; Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Hermann, Raphael P.] Forschungszentrum Julich GmbH, Inst Festkorperforsch, D-52425 Julich, Germany. [Hermann, Raphael P.; Grandjean, Fernande] Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium. [Long, Gary J.] Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. RP McGuire, MA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM McGuireMA@ORNL.gov RI McGuire, Michael/B-5453-2009; Hermann, Raphael/F-6257-2013; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Hermann, Raphael/0000-0002-6138-5624; Sefat, Athena/0000-0002-5596-3504 FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; US DOE [DE-AC05-00OR22725]; Fonds National de la Recherche Scientifique, Belgium [9.456595, 1.5.064.05] FX We are grateful to M T Sougrati for help with acquisition of the Mossbauer spectra. Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences. Part of this research performed by Eugene P Wigner Fellows at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US DOE under Contract DE-AC05-00OR22725. Work in Liege is supported by the Fonds National de la Recherche Scientifique, Belgium, through Grant Nos 9.456595 and 1.5.064.05. NR 45 TC 77 Z9 78 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 27 PY 2009 VL 11 AR 025011 DI 10.1088/1367-2630/11/2/025011 PG 16 WC Physics, Multidisciplinary SC Physics GA 412SJ UT WOS:000263744200010 ER PT J AU Filleter, T McChesney, JL Bostwick, A Rotenberg, E Emtsev, KV Seyller, T Horn, K Bennewitz, R AF Filleter, T. McChesney, J. L. Bostwick, A. Rotenberg, E. Emtsev, K. V. Seyller, Th. Horn, K. Bennewitz, R. TI Friction and Dissipation in Epitaxial Graphene Films SO PHYSICAL REVIEW LETTERS LA English DT Article AB We have studied friction and dissipation in single and bilayer graphene films grown epitaxially on SiC. The friction on SiC is greatly reduced by a single layer of graphene and reduced by another factor of 2 on bilayer graphene. The friction contrast between single and bilayer graphene arises from a dramatic difference in electron-phonon coupling, which we discovered by means of angle-resolved photoemission spectroscopy. Bilayer graphene as a lubricant outperforms even graphite due to reduced adhesion. C1 [Filleter, T.; Bennewitz, R.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [McChesney, J. L.; Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Seyller, Th.; Horn, K.] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, D-91058 Erlangen, Germany. [Horn, K.] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. [Bennewitz, R.] Leibniz Inst New Mat, INM, D-66123 Saarbrucken, Germany. RP Filleter, T (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. EM roland.bennewitz@inm-gmbh.de RI Filleter, Tobin/A-2666-2011; Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013; Bennewitz, Roland/P-9657-2016 OI Filleter, Tobin/0000-0003-2609-4773; Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; McChesney, Jessica/0000-0003-0470-2088; Bennewitz, Roland/0000-0002-5464-8190 NR 23 TC 201 Z9 204 U1 21 U2 186 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 27 PY 2009 VL 102 IS 8 AR 086102 DI 10.1103/PhysRevLett.102.086102 PG 4 WC Physics, Multidisciplinary SC Physics GA 413TU UT WOS:000263816200036 PM 19257757 ER PT J AU Granger, G Eisenstein, JP Reno, JL AF Granger, G. Eisenstein, J. P. Reno, J. L. TI Observation of Chiral Heat Transport in the Quantum Hall Regime SO PHYSICAL REVIEW LETTERS LA English DT Article ID EDGE STATES; EXCITATIONS AB Heat transport in the quantum Hall regime is investigated using micron-scale heaters and thermometers positioned along the edge of a millimeter-scale two dimensional electron system (2DES). The heaters rely on localized current injection into the 2DES, while the thermometers are based on the thermoelectric effect. In the nu=1 integer quantized Hall state, a thermoelectric signal appears at an edge thermometer only when it is "downstream," in the sense of electronic edge transport, from the heater. When the distance between the heater and the thermometer is increased, the thermoelectric signal is reduced, showing that the electrons cool as they propagate along the edge. C1 [Granger, G.; Eisenstein, J. P.] CALTECH, Pasadena, CA 91125 USA. [Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Granger, G (reprint author), CALTECH, Pasadena, CA 91125 USA. FU DOE [DE-FG0399ER45766]; Microsoft Project Q FX We thank G. Fiete, M. P. A. Fisher, S. M. Girvin, C. L. Kane, A. Kitaev, A. H. MacDonald, G. Refael, and A. Stern for discussions, and B. Chickering, V. Cvicek, and D. Nichols for technical help. This work was supported via Microsoft Project Q and DOE Grant No. DE-FG0399ER45766. NR 15 TC 52 Z9 52 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 27 PY 2009 VL 102 IS 8 AR 086803 DI 10.1103/PhysRevLett.102.086803 PG 4 WC Physics, Multidisciplinary SC Physics GA 413TU UT WOS:000263816200047 PM 19257768 ER PT J AU Le, A Egedal, J Daughton, W Fox, W Katz, N AF Le, A. Egedal, J. Daughton, W. Fox, W. Katz, N. TI Equations of State for Collisionless Guide-Field Reconnection SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC RECONNECTION AB Direct in situ observation of magnetic reconnection in the Earth's magnetotail as well as kinetic numerical studies have recently shown that the electron pressure in a collisionless reconnection region is strongly anisotropic. This anisotropy is mainly caused by the trapping of electrons in parallel electric fields. We present new equations of state for the parallel and perpendicular pressures for magnetized electrons. This model-derived here and tested against a kinetic simulation-allows a fluid description in a collisionless regime where parallel electric fields and the dynamics of both passing and trapped electrons are essential. C1 [Le, A.; Egedal, J.; Fox, W.; Katz, N.] MIT, Cambridge, MA 02139 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Le, A (reprint author), MIT, Cambridge, MA 02139 USA. RI Daughton, William/L-9661-2013 FU DOE [DE-FG02-06ER54878]; DOE/NSF [DE-FG02-03ER54712] FX We thank M. Porkolab and J. F. Drake for valuable discussions and support. This work was funded in part by DOE Grant No. DE-FG02-06ER54878 and DOE/NSF Grant No. DE-FG02-03ER54712. NR 11 TC 43 Z9 43 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 27 PY 2009 VL 102 IS 8 AR 085001 DI 10.1103/PhysRevLett.102.085001 PG 4 WC Physics, Multidisciplinary SC Physics GA 413TU UT WOS:000263816200024 PM 19257745 ER PT J AU Sagert, I Fischer, T Hempel, M Pagliara, G Schaffner-Bielich, J Mezzacappa, A Thielemann, FK Liebendorfer, M AF Sagert, I. Fischer, T. Hempel, M. Pagliara, G. Schaffner-Bielich, J. Mezzacappa, A. Thielemann, F.-K. Liebendoerfer, M. TI Signals of the QCD Phase Transition in Core-Collapse Supernovae SO PHYSICAL REVIEW LETTERS LA English DT Article ID EQUATION-OF-STATE; NEUTRON-STARS; QUARK MATTER; COMPACT STARS; EXPLOSIONS; MECHANISM; EVOLUTION; SN1987A AB We explore the implications of the QCD phase transition during the postbounce evolution of core-collapse supernovae. Using the MIT bag model for the description of quark matter, we model phase transitions that occur during the early postbounce evolution. This stage of the evolution can be simulated with general relativistic three-flavor Boltzmann neutrino transport. The phase transition produces a second shock wave that triggers a delayed supernova explosion. If such a phase transition happens in a future galactic supernova, its existence and properties should become observable as a second peak in the neutrino signal that is accompanied by significant changes in the energy of the emitted neutrinos. This second neutrino burst is dominated by the emission of antineutrinos because the electron degeneracy is reduced when the second shock passes through the previously neutronized matter. C1 [Sagert, I.; Hempel, M.] Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Pagliara, G.; Schaffner-Bielich, J.] Univ Heidelberg, Inst Theoret Phys, D-69120 Heidelberg, Germany. [Fischer, T.; Thielemann, F.-K.; Liebendoerfer, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Mezzacappa, A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Sagert, I (reprint author), Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. RI Pagliara, Giuseppe/F-7650-2012; Mezzacappa, Anthony/B-3163-2017; OI Mezzacappa, Anthony/0000-0001-9816-9741; Hempel, Matthias/0000-0003-4676-4121; PAGLIARA, Giuseppe/0000-0003-3250-1398 FU Swiss National Science Foundation [PP002-106627/1, PP200020-105328/1]; Helmholtz Research School for Quark Matter Studies; Italian National Institute for Nuclear Physics; ExtreMe Matter Institute (EMMI); Frankfurt Institute for Advanced Studies; German Research Foundation (DFG); Oak Ridge National Laboratory; UT-Battelle; U. S. Department of Energy [DE-AC05-00OR22725] FX This work has been supported by the Swiss National Science Foundation under the Grants No. PP002-106627/1 and No. PP200020-105328/1, the Helmholtz Research School for Quark Matter Studies, the Italian National Institute for Nuclear Physics, the ExtreMe Matter Institute (EMMI), the Frankfurt Institute for Advanced Studies, the German Research Foundation (DFG) within the framework of the excellence initiative through the Heidelberg Graduate School of Fundamental Physics, and by the ESF CompStar program. A. M. is supported at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.We would like to thank D. Blaschke, A. Drago, G. Martinez-Pinedo, and S. C. Whitehouse for stimulating discussions. NR 32 TC 122 Z9 125 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 27 PY 2009 VL 102 IS 8 AR 081101 DI 10.1103/PhysRevLett.102.081101 PG 4 WC Physics, Multidisciplinary SC Physics GA 413TU UT WOS:000263816200008 PM 19257729 ER PT J AU Ward, TZ Zhang, XG Yin, LF Zhang, XQ Liu, M Snijders, PC Jesse, S Plummer, EW Cheng, ZH Dagotto, E Shen, J AF Ward, T. Z. Zhang, X. G. Yin, L. F. Zhang, X. Q. Liu, Ming Snijders, P. C. Jesse, S. Plummer, E. W. Cheng, Z. H. Dagotto, E. Shen, J. TI Time-Resolved Electronic Phase Transitions in Manganites SO PHYSICAL REVIEW LETTERS LA English DT Article ID METAL-INSULATOR-TRANSITION; 1/F NOISE; SEPARATION AB The dynamics of first-order electronic phase transitions in complex transition metal oxides are not well understood but are crucial in understanding the emergent phenomena of electronic phase separation. We show that a manganite system reduced to the scale of its inherent electronic charge-ordered insulating and ferromagnetic metal phase domains allows for the direct observation of single electronic phase domain fluctuations within a critical regime of temperature and magnetic field at the metal-insulator transition. C1 [Ward, T. Z.; Yin, L. F.; Snijders, P. C.; Jesse, S.; Dagotto, E.; Shen, J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. [Ward, T. Z.; Plummer, E. W.; Dagotto, E.; Shen, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, X. G.; Jesse, S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37830 USA. [Zhang, X. Q.; Cheng, Z. H.] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Liu, Ming] Chinese Acad Sci, Inst Microelect, Beijing 100080, Peoples R China. [Zhang, X. Q.; Cheng, Z. H.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RP Shen, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. EM shenj@ornl.gov RI Liu, Ming/A-4456-2010; Jesse, Stephen/D-3975-2016; Ward, Thomas/I-6636-2016 OI Jesse, Stephen/0000-0002-1168-8483; Ward, Thomas/0000-0002-1027-9186 FU Division of Materials Science and Engineering; U. S. DOE [DE-AC05-00OR22725]; NSF [DMR-0706020] FX This effort was supported in part by the Division of Materials Science and Engineering, U. S. DOE, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, and by NSF Grant No. DMR-0706020. NR 22 TC 34 Z9 36 U1 2 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 27 PY 2009 VL 102 IS 8 AR 087201 DI 10.1103/PhysRevLett.102.087201 PG 4 WC Physics, Multidisciplinary SC Physics GA 413TU UT WOS:000263816200060 PM 19257781 ER PT J AU Xiao, D Shi, JR Clougherty, DP Niu, Q AF Xiao, Di Shi, Junren Clougherty, Dennis P. Niu, Qian TI Polarization and Adiabatic Pumping in Inhomogeneous Crystals SO PHYSICAL REVIEW LETTERS LA English DT Article ID WAVE-PACKET DYNAMICS; BERRY-PHASE; MACROSCOPIC POLARIZATION; DIELECTRICS; ELECTRONS; SOLIDS AB We develop a general theory of electric polarization in crystals with inhomogeneous order. We show that the inhomogeneity-induced polarization can be classified into two parts: a perturbative contribution stemming from a correction to the basis functions and a topological contribution described in terms of the Chern-Simons form of the Berry gauge fields. The latter is determined up to an uncertainty quantum, which is the second Chern number in appropriate units. Our theory provides an exhaustive link between microscopic models and the macroscopic polarization. C1 [Xiao, Di; Niu, Qian] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Xiao, Di] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Shi, Junren] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Clougherty, Dennis P.] Univ Vermont, Dept Phys, Burlington, VT 05405 USA. [Shi, Junren] Chinese Acad Sci, ICOS, Beijing 100080, Peoples R China. RP Xiao, D (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. EM xiaod@ornl.gov RI Shi, Junren/D-5156-2009; Xiao, Di/B-1830-2008; Clougherty, Dennis/A-4519-2008; Niu, Qian/G-9908-2013 OI Xiao, Di/0000-0003-0165-6848; Clougherty, Dennis/0000-0002-7299-4898; NR 30 TC 18 Z9 19 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 27 PY 2009 VL 102 IS 8 AR 087602 DI 10.1103/PhysRevLett.102.087602 PG 4 WC Physics, Multidisciplinary SC Physics GA 413TU UT WOS:000263816200066 PM 19257787 ER PT J AU Liu, J Ghanim, M Xue, L Brown, CD Iossifov, I Angeletti, C Hua, SJ Negre, N Ludwig, M Stricker, T Al-Ahmadie, HA Tretiakova, M Camp, RL Perera-Alberto, M Rimm, DL Xu, T Rzhetsky, A White, KP AF Liu, Jiang Ghanim, Murad Xue, Lei Brown, Christopher D. Iossifov, Ivan Angeletti, Cesar Hua, Sujun Negre, Nicolas Ludwig, Michael Stricker, Thomas Al-Ahmadie, Hikmat A. Tretiakova, Maria Camp, Robert L. Perera-Alberto, Montse Rimm, David L. Xu, Tian Rzhetsky, Andrey White, Kevin P. TI Analysis of Drosophila Segmentation Network Identifies a JNK Pathway Factor Overexpressed in Kidney Cancer SO SCIENCE LA English DT Article ID CARBONIC-ANHYDRASE-IX; RENAL-CELL CARCINOMA; DIFFERENTIAL-DIAGNOSIS; UBIQUITIN LIGASE; GENE-EXPRESSION; MELANOGASTER; PROTEINS; MARKERS; SYSTEM; MAP AB We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun kinase phosphatase Puckered, thereby inducing tumor necrosis factor (TNF)/Eiger-dependent apoptosis. In humans, we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinomas (RCCs), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions. C1 [Liu, Jiang; Ghanim, Murad; Brown, Christopher D.; Iossifov, Ivan; Hua, Sujun; Negre, Nicolas; Ludwig, Michael; Stricker, Thomas; Rzhetsky, Andrey; White, Kevin P.] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. [Liu, Jiang; Ghanim, Murad; Brown, Christopher D.; Iossifov, Ivan; Hua, Sujun; Negre, Nicolas; Ludwig, Michael; Stricker, Thomas; Rzhetsky, Andrey; White, Kevin P.] Argonne Natl Lab, Chicago, IL 60637 USA. [Liu, Jiang; Ghanim, Murad; Brown, Christopher D.; Hua, Sujun; Negre, Nicolas; Ludwig, Michael; Stricker, Thomas; White, Kevin P.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA. [Xue, Lei; Xu, Tian] Yale Univ, Sch Med, Dept Genet, Howard Hughes Med Inst, New Haven, CT 06519 USA. [Iossifov, Ivan; Rzhetsky, Andrey] Univ Chicago, Dept Med, Chicago, IL 60637 USA. [Angeletti, Cesar; Camp, Robert L.; Rimm, David L.] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06520 USA. [Ludwig, Michael; White, Kevin P.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Stricker, Thomas; Al-Ahmadie, Hikmat A.; Tretiakova, Maria] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA. [Perera-Alberto, Montse] Univ La Laguna, Dept Anat, E-38320 Tenerife, Spain. RP White, KP (reprint author), Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. EM kpwhite@uchicago.edu RI rzhetsky, andrey/B-6118-2012; OI Rzhetsky, Andrey/0000-0001-6959-7405; Negre, Nicolas/0000-0001-9727-3416; Brown, Christopher/0000-0002-3785-5008 FU Vaadia-BARD Postdoctoral Fellowship Award; United States Israel Binational Agricultural Research and Development Fund; Lilly [Life Science Research Fellowship]; W. M. Keck Foundation; Arnold and Mabel Beckman Foundation; Searle Funds at The Chicago Community Trust from the Chicago Biomedical Consortium; [FI-315-2001] FX We thank J. Jiang, M. Van Lohuizen, C. Chung, D. McEwen for providing expression vectors. Microarray data described in this paper have been deposited in the NCBI Gene Expression Omnibus (GEO) under accession code GSE14086 (expression data) and GSE14289 (ChIP data). M.G. was supported by Vaadia-BARD Postdoctoral Fellowship Award No. FI-315-2001 from BARD, The United States Israel Binational Agricultural Research and Development Fund. C.D.B was supported by a Lilly Life Science Research Fellowship. This work was supported by grants from the W. M. Keck Foundation, the Arnold and Mabel Beckman Foundation, and the Searle Funds at The Chicago Community Trust from the Chicago Biomedical Consortium to K.P.W. NR 29 TC 63 Z9 65 U1 4 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 27 PY 2009 VL 323 IS 5918 BP 1218 EP 1222 DI 10.1126/science.1157669 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 411XT UT WOS:000263687600040 PM 19164706 ER PT J AU Steirer, KX Berry, JJ Reese, MO van Hest, MFAM Miedaner, A Liberatore, MW Collins, RT Ginley, DS AF Steirer, K. Xerxes Berry, Joseph J. Reese, Matthew O. van Hest, Maikel F. A. M. Miedaner, Alex Liberatore, Matthew W. Collins, R. T. Ginley, David S. TI Ultrasonically sprayed and inkjet printed thin film electrodes for organic solar cells SO THIN SOLID FILMS LA English DT Article DE Inkjet printing; PEDOT:PSS; Organic solar cells; Ultrasonic spray deposition; Large-scale processing ID PHOTOVOLTAIC CELLS; ULTRADILUTE SOLUTION; POLYMER; DEPOSITION; RESOLUTION; FUTURE; BLENDS; DIODES AB Thin film pi-conjugated poly(3,4ethylenedioxythiophene): poly(styrenesulphonate) (PEDOT:PSS) as a hole transport layer on indium tin oxide is a key element in some of the most efficient organic photovoltaic and light emitting devices to date. Films are typically deposited by spincoating, which is not readily scalable. In this paper we investigate the critical parameters for both inkjet and ultrasonic spray deposition of PEDOT:PSS thin films on commercial indium tin oxide as a potentially scalable approach to contact formation. Inkjet parameters investigated include drop spacing and substrate temperature. Ultrasonic spray coating parameters investigated include substrate temperature and solution flow rate. We also show that the ink viscosity has a Newtonian character, making it well suited for inkjet printing. Films were characterized via optical profilometry, sheet resistance and atomic force microscopy. Optimized inkjet printed and ultrasonic sprayed PEDOT:PSS films were then compared to spincast layers in a prototypical bulk heterojunction photovoltaic device employing a poly(3-hexylthiophene) and [6,6]-PCBM (6,6-phenylC61-butric acid-methyl ester) blend as the absorber. Practically all three approaches produced devices of comparable efficiency. Efficiencies were 3.6%, 3.5% and 3.3% for spin, spray and inkjet depositions respectively. Published by Elsevier B.V. C1 [Steirer, K. Xerxes; Berry, Joseph J.; Reese, Matthew O.; van Hest, Maikel F. A. M.; Miedaner, Alex; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Steirer, K. Xerxes; Liberatore, Matthew W.; Collins, R. T.] Colorado Sch Mines, Golden, CO 80401 USA. RP Steirer, KX (reprint author), Natl Renewable Energy Lab, C 5200,MS 3211,1617 Cole Blvd, Golden, CO 80401 USA. EM ksteirer@mines.edu RI Collins, Reuben/O-2545-2014; Liberatore, Matthew/B-6828-2008 OI Collins, Reuben/0000-0001-7910-3819; FU U.S. Department of Energy [DE-AC36-99GO10337]; National Renewable Energy Laboratory FX Thank you to Carry Allen and Tracy Berman for your help with AFM studies. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory. NR 29 TC 61 Z9 68 U1 3 U2 50 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 27 PY 2009 VL 517 IS 8 BP 2781 EP 2786 DI 10.1016/j.tsf.2008.10.124 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 415IK UT WOS:000263927300040 ER PT J AU Miller, WH AF Miller, William H. TI Electronically Nonadiabatic Dynamics via Semiclassical Initial Value Methods SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ADIABATIC COLLISION PROCESSES; COMPLEX MOLECULAR-SYSTEMS; TRANSITION-STATE THEORY; THERMAL RATE CONSTANTS; VALUE REPRESENTATION; QUANTUM DYNAMICS; SCATTERING-THEORY; CONDENSED-PHASE; CLASSICAL-MODELS; MAPPING APPROACH AB In the late 1970s Meyer and Miller (MM) [J. Chem. Phys. 1979, 70, 3214.] presented a classical Hamiltonian corresponding to a finite set of electronic states of a molecular system (i.e., the various potential energy surfaces and their couplings), so that classical trajectory simulations could be carried out by treating the nuclear and electronic degrees of freedom (DOF) in an equivalent dynamical framework (i.e., by classical mechanics), thereby describing nonadiabatic dynamics in a more unified manner. Much later Stock and Thoss (ST) [Phys. Rev. Lett. 1997, 78, 578.] showed that the MM model is actually not a "model", but rather a "representation" of the nuclear-electronic system; i.e., were the MMST nuclear-electronic Hamiltonian taken as a Hamiltonian operator and used in the Schrodinger equation, the exact (quantum) nuclear-electronic dynamics would be obtained. In recent years various initial value representations (IVRs) of semiclassical (SC) theory have been used with the MMST Hamiltonian to describe electronically nonadiabatic processes. Of special interest is the fact that, though the classical trajectories generated by the MMST Hamiltonian (and which are the "input" for an SC-IVR treatment) are "Ehrenfest trajectories", when they are used within the SC-IVR framework, the nuclear motion emerges from regions of nonadiabaticity on one potential energy surface (PES) or another, and not on an average PES as in the traditional Ehrenfest model. Examples are presented to illustrate and (hopefully) illuminate this behavior. C1 [Miller, William H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Miller, William H.] Univ Calif Berkeley, KS Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Miller, William H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Miller, WH (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CHE-0809073]; Office of Naval Research [N00014-07-1-0586, N00014-05-1-0457] FX I thank Prof. Eitan Geva for hosting my sabbatical at the University of Michigan for the fall semester, 2008, during which time this paper was written. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the National Science Foundation Grant No. CHE-0809073, and by the Office of Naval Research Grant Nos. N00014-07-1-0586 and N00014-05-1-0457. NR 74 TC 83 Z9 83 U1 3 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 26 PY 2009 VL 113 IS 8 BP 1405 EP 1415 DI 10.1021/jp809907p PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 409TV UT WOS:000263529600001 PM 19170628 ER PT J AU Dreger, ZA Balasubramaniam, E Gupta, YM Joly, AG AF Dreger, Z. A. Balasubramaniam, E. Gupta, Y. M. Joly, A. G. TI High-Pressure Effects on the Electronic Structure of Anthracene Single Crystals: Role of Nonhydrostaticity SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID R-LINE SHIFTS; AROMATIC CRYSTALS; X-RAY; FLUORESCENCE; SPECTRA; PHENANTHRENE; EXCITON; STATE; DIMER; TIME AB Optical spectroscopy methods were used to examine the effect of nonhydrostaticity on the electronic structure of anthracene single crystals compressed statically to 9 GPa. Two pressure-transmitting media, nitrogen (hydrostatic) and water (nonhydrostatic above similar to 5.5 GPa), were utilized. It was found that nonhydrostatic compression generates several new features both in the absorption and fluorescence spectra: (i) formation of new absorption and fluorescence bands, (ii) deviations in pressure shift of fluorescence peaks, (iii) extensive broadening of vibrational peaks, and (iv) irreversible changes in the spectra shape upon pressure unloading. Furthermore, the time-resolved fluorescence decay curves measured at the wavelength corresponding to the new fluorescence band show clear initial increase. These new features are accompanied by inhomogeneous color changes and macroscopic lines on the (001) plane of the crystal. All of the changes are discussed and correlated with microscopic transformations in the crystal. It is demonstrated that nonhydrostatic compression in anthracene crystal introduces inelastic changes in the form of dislocations along [110] and [1 (1) over bar0] directions. These dislocations lead to the development of dimeric structures and, consequently, to various changes in the electronic response of the compressed anthracene crystal. C1 [Dreger, Z. A.; Balasubramaniam, E.; Gupta, Y. M.] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. [Joly, A. G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dreger, ZA (reprint author), Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. EM dreger@wsu.edu FU ONR MURI [N00014-01-1-0802, N00014-06-1-0459]; DOE [DEFG0397SF21388] FX This work was supported by ONR MURI Grants N00014-01-1-0802 and N00014-06-1-0459 and DOE Grant DEFG0397SF21388. The TCSP measurements were performed in the Environmental Molecular Sciences Laboratory, a National Scientific User Facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 37 TC 12 Z9 12 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 26 PY 2009 VL 113 IS 8 BP 1489 EP 1496 DI 10.1021/jp808247k PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 409TV UT WOS:000263529600013 PM 19161289 ER PT J AU Liu, Y Laskin, A AF Liu, Yong Laskin, Alexander TI Hygroscopic Properties of CH3SO3Na, CH3SO3NH4, (CH3SO3)(2)Mg, and (CH3SO3)(2)Ca Particles Studied by micro-FTIR Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ION SOLVENT INTERACTIONS; HETEROGENEOUS REACTION; ATMOSPHERIC IMPORTANCE; PHASE-TRANSITIONS; AQUEOUS-SOLUTIONS; SULFATE AEROSOLS; GASEOUS HNO3; NITRIC-ACID; WIDE-RANGE; CHEMISTRY AB The hygroscopic behavior of CH3SO3Na, CH3SO3NH4, (CH3SO3)(2)Mg, and (CH3SO3)(2)Ca particles as a function of relative humidity (RH) has been studied using microscopic Fourier transform infrared (micro-FTIR) spectroscopy. The approach used exposure of substrate-deposited, similar to 1 mu m dry-size particles to humidified nitrogen followed by micro-FTIR spectroscopy over a selected sample area. The results show that CH3SO3Na particles undergo characteristic phase transitions at deliquescence relative humidity (DRH) of 71% and efflorescence relative humidity (ERH) of similar to 40%. In contrast, CH3SO3NH4, (CH3SO3)(2)Mg, and (CH3SO3)(2)Ca particles do not undergo phase transitions and exhibit continuous, reversible uptake and evaporation of water under the influence of changing RH. The extent of water uptake is quantified and presented as water-to-solute ratios (WSR) in particles as a function of RH. The WSR values are determined from the C1 [Liu, Yong; Laskin, Alexander] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Laskin, A (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Alexander.Laskin@pnl.gov RI liu, yong/F-6736-2012; Laskin, Alexander/I-2574-2012 OI Laskin, Alexander/0000-0002-7836-8417 FU National Aeronautics and Space Administration [NNG06GE89G]; Department of Energy's Office of Biological and Environmental Research (DOE OBER); U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830] FX The work was supported by the Radiation Science program at the National Aeronautics and Space Administration (Grant No. NNG06GE89G) and the Atmospheric Science Program of the Department of Energy's Office of Biological and Environmental Research (DOE OBER). The research was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research (DOE OBER) and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract no. DE-AC05-76RL01830. NR 37 TC 21 Z9 21 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 26 PY 2009 VL 113 IS 8 BP 1531 EP 1538 DI 10.1021/jp8079149 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 409TV UT WOS:000263529600019 PM 19199683 ER PT J AU Deng, YQ Roux, B AF Deng, Yuqing Roux, Benoit TI Computations of Standard Binding Free Energies with Molecular Dynamics Simulations SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Review ID MONTE-CARLO-SIMULATION; HIV-1 REVERSE-TRANSCRIPTASE; HYDRATION FREE-ENERGIES; SIDE-CHAIN ANALOGS; ATOM FORCE-FIELD; LIGAND-BINDING; T4 LYSOZYME; COMPUTER-SIMULATIONS; WATER-MOLECULES; PROTEIN-BINDING AB An increasing number of studies have reported computations of the standard (absolute) binding free energy of small ligands to proteins using molecular dynamics (MD) simulations and explicit solvent molecules that are in good agreement with experiments. This encouraging progress suggests that physics-based approaches hold the promise of making important contributions to the process of drug discovery and optimization in the near future. Two types of approaches are principally used to compute binding free energies with MD simulations. The most widely known is the alchemical double decoupling method, in which the interaction of the ligand with its surroundings are progressively switched off. It is also possible to use a potential of mean force (PMF) method, in which the ligand is physically separated from the protein receptor. For both of these computational approaches, restraining potentials may be activated and released during the simulation for sampling efficiently the changes in translational, rotational, and conformational freedom of the ligand and protein upon binding. Because such restraining potentials add bias to the simulations, it is important that their effects be rigorously removed to yield a binding free energy that is properly unbiased with respect to the standard state. A review of recent results is presented, and differences in computational methods are discussed. Examples of computations with T4-lysozyme mutants, FKBP12, SH2 domain, and cytochrome P450 are discussed and compared. Remaining difficulties and challenges are highlighted. C1 [Deng, Yuqing; Roux, Benoit] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Gordon Ctr Integrat Sci, Chicago, IL 60637 USA. RP Roux, B (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU National Science Foundation [MCB-0630140]; U.S. Department of Energy (DOE); Office of Basic Energy Sciences [DE-AC02-06CH11357]; Laboratory-Directed Research and Development (LDRD) [2006-264-R2] FX We would like to thank Hideaki Fujitani, Vijay Pande, Michael Shirts, David Mobley, Ken Dill, Devleena Shivakumar, Hyung-Jun Woo, and Jiayao Wang for their help. This work was supported by the National Science Foundation through Grant MCB-0630140. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract no. DE-AC02-06CH11357, and by Grant no. 2006-264-R2 from the Laboratory-Directed Research and Development (LDRD) program at Argonne National Laboratory. NR 130 TC 255 Z9 256 U1 10 U2 126 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 26 PY 2009 VL 113 IS 8 BP 2234 EP 2246 DI 10.1021/jp807701h PG 13 WC Chemistry, Physical SC Chemistry GA 409TU UT WOS:000263529500004 PM 19146384 ER PT J AU Xiao, YS Retterer, ST Thomas, DK Tao, JY He, L AF Xiao, Yongsheng Retterer, Scott T. Thomas, Darrell K. Tao, Jia-Yuan He, Lin TI Impacts of Surface Morphology on Ion Desorption and Ionization in Desorption Ionization on Porous Silicon (DIOS) Mass Spectrometry SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ASSISTED-LASER-DESORPTION/IONIZATION; INTERNAL ENERGY-TRANSFER; THERMAL-CONDUCTIVITY; MATRIX; PEPTIDES; PROTEINS; MALDI; FRAGMENTATION; PARAMETERS; MOLECULES AB Ordered silicon nanocavity arrays were prepared with e-beam lithography to yield systematically varied pore features and porosity (4-92%). These substrates were used to investigate the effects of substrate morphology on desorption ionization on porous silicon-mass spectrometry (DIOS-MS). Five benzylpyridinium salts, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and angiotensin III were used as the model molecules in the study. For substrates of the same pore depth, MS results suggested that the pore size and the interpore spacing had little impact on the laser irradiation threshold required for ionization. Instead, the laser threshold was found to be highly dependent on the overall porosity for all substrates investigated-the higher the porosity the lower the threshold. Moreover, the substrates with deeper pores but of similar porosity showed significantly reduced laser thresholds. This close relationship between laser threshold and substrate morphology was attributed to the thermal confinement property of porous structures. Benzylpyridinium salts were used to study molecular fragmentation tendency during desorption and ionization (D/I). The results suggested the presence of two competing D/I processes: direct laser desorption ionization (LDI) dominated for the substrates of low porosities where analytes desorbed directly from hot silicon surfaces; for highly porous substrates, the retained solvent molecules behaved as the "pseudo" matrix-assisted laser desorption/ionization (pseudo-MALDI) matrix that facilitated analyte desorption and ionization in a MALDI mode. C1 [Xiao, Yongsheng; He, Lin] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. [Retterer, Scott T.; Thomas, Darrell K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Tao, Jia-Yuan] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. RP He, L (reprint author), N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. EM lin_he@ncsu.edu RI Retterer, Scott/A-5256-2011 OI Retterer, Scott/0000-0001-8534-1979 NR 39 TC 34 Z9 34 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 26 PY 2009 VL 113 IS 8 BP 3076 EP 3083 DI 10.1021/jp808844f PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 409TS UT WOS:000263529300008 ER PT J AU Zhang, TR Zhang, Q Ge, JP Goebl, J Sun, MW Yan, YS Liu, YS Chang, CL Guo, JH Yin, YD AF Zhang, Tierui Zhang, Qiao Ge, Jianping Goebl, James Sun, Minwei Yan, Yushan Liu, Yi-Sheng Chang, Chinglin Guo, Jinghua Yin, Yadong TI A Self-Templated Route to Hollow Silica Microspheres SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; OPTICAL-PROPERTIES; SHELL STRUCTURE; SPHERES; NANOPARTICLES; FABRICATION; PARTICLES; FUNCTIONALIZATION; NANOSTRUCTURES; ENCAPSULATION AB A simple, mild, and effective self-templated approach has been developed to directly convert solid SiO(2) microspheres into hollow structures. The reaction involves initial partial dissolution of silica cores in a NaBH(4) solution and subsequent shell formation due to the redeposition of the silicate species back onto the colloid surfaces. The increasing concentration of NaBO(2) as the result of the slow decomposition of NaBH(4) in water is found to be responsible for the regrowth of the silica shell. This method allows the production of hollow silica spheres with sizes ranging from similar to 70 nanometers to several micrometers, largely determined by the size of the starting silica colloids. The solid-to-hollow transformation mechanism is investigated in detail by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectrometry, X-ray absorption spectroscopy (XAS), N(2) adsorption-desorption, and X-ray diffraction (XRD). We also study the reaction conditions that allow control over the wall thickness, surface morphology, and shell porosity. C1 [Zhang, Tierui; Zhang, Qiao; Ge, Jianping; Goebl, James; Yin, Yadong] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Sun, Minwei; Yan, Yushan] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Liu, Yi-Sheng; Chang, Chinglin] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. [Liu, Yi-Sheng; Guo, Jinghua] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yin, YD (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM yadong.yin@ucr.edu RI Yin, Yadong/D-5987-2011; Zhang, Tierui/D-1633-2011; Zhang, Qiao/C-2251-2008; Sun, Minwei/A-8048-2010; Ge, Jianping /B-4681-2012; OI Yin, Yadong/0000-0003-0218-3042; Zhang, Tierui/0000-0002-7948-9413; Zhang, Qiao/0000-0001-9682-3295; Chang, Ching-Lin/0000-0001-8547-371X FU University of California, Riverside; Chinese-American Faculty Association of Southern Californi; Petroleum Research Fund; American Chemical Society; U.S. Department of Energy [DE-AC02-05CH11231] FX Y.Y. thanks the University of California, Riverside for start-up funds and the Chinese-American Faculty Association of Southern California for the Robert T. Poe Faculty Development Grant. Acknowledgment is also made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. We thank Dr. Bozhilov and Mr. McDaniel at the Central Facility for Advanced Microscopy and Microanalysis at UCR for assistance with TEM analysis. The Advanced Light Source is supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 54 TC 112 Z9 116 U1 33 U2 230 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 26 PY 2009 VL 113 IS 8 BP 3168 EP 3175 DI 10.1021/jp810360a PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 409TS UT WOS:000263529300022 ER PT J AU Majzoub, EH Ronnebro, E AF Majzoub, E. H. Roennebro, E. TI Crystal Structures of Calcium Borohydride: Theory and Experiment SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AUGMENTED-WAVE METHOD; MAGNESIUM BOROHYDRIDE; HYDROGEN STORAGE; MG(BH4)(2); CA(BH4)(2); PHASE; AMORPHIZATION; DIFFRACTION; METALS AB Calcium borohydride, containing almost 12 wt % of hydrogen, is one of the most promising and actively studied mater ials for hydrogen storage. However, experimental diffraction spectra indicate more than one crystal structure depending on the synthesis technique and temperature. Two structures, the ground-state in symmetry Fddd, or F2dd and one elevated temperature polymorph in symmetry P4(2)/m, are presumed known. We identify three low energy crystal structure candidates for Ca(BH(4))(2) predicted by the methods of prototype electrostatic ground states (PEGS) and structure database searching. Two of the PEGS predicted crystal structures, C2/c, and P (4) over bar, appear to be observed in X-ray diffraction experiments and correspond to the ground-state and one of the metastable phases observed up to the decomposition temperature of approximately 330 degrees C. Database structure searching produces a low energy candidate in symmetry Pbca which produces diffraction peaks in agreement with a second elevated temperature polymorph denoted gamma, recently reported in synchrotron diffraction experiments. First-principles calculations including lattice dynamical contributions to the free energy predict that C2/c is a competitive ground-state structure that is isoenergetic with the previously reported Fddd at T = 0 K but possessing larger entropy and lower total free energy at all temperatures. These results indicate that the crystal structure of Ca(BH(4))(2), as a function of temperature, starts from this (alpha phase) in symmetry C2/c, F2dd, or Fddd, followed by a transition to symmetry P (4) over bar (beta phase) at elevated temperatures. Rietveld refinements of powder X-ray diffraction data confirm the reported beta phase structure has the predicted symmetry P (4) over bar, and that this symmetry has slightly lower Rietveld residuals than in symmetry P4(2)/m. Although the structure in symmetry Pbca is calculated to be dynamically stable, the free energy indicates it should not be observed experimentally. C1 [Majzoub, E. H.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Majzoub, E. H.] Univ Missouri, Ctr Nanosci, St Louis, MO 63121 USA. [Roennebro, E.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Majzoub, EH (reprint author), Univ Missouri, Dept Phys & Astron, 503J Benton Hall,1 Univ Blvd, St Louis, MO 63121 USA. FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, in the Hydrogen, Fuel Cells & Infrastructure Technologies Progr [DE-AC04-94AL8500] FX This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, in the Hydrogen, Fuel Cells & Infrastructure Technologies Program under Contract No. DE-AC04-94AL8500. We thank Mutlu Ulutagay-Kartin and Vitalie Stavila for valuable help with sample preparation and professor Vidvuds Ozolins for many useful discussions and the frozen phonon code used in this work. NR 37 TC 43 Z9 43 U1 4 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 26 PY 2009 VL 113 IS 8 BP 3352 EP 3358 DI 10.1021/jp8064322 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 409TS UT WOS:000263529300046 ER PT J AU Guedj, F Sebrie, C Rivals, I Ledru, A Paly, E Bizot, JC Smith, D Rubin, E Gillet, B Arbones, M Delabar, JM AF Guedj, Faycal Sebrie, Catherine Rivals, Isabelle Ledru, Aurelie Paly, Evelyne Bizot, Jean C. Smith, Desmond Rubin, Edward Gillet, Brigitte Arbones, Mariona Delabar, Jean M. TI Green Tea Polyphenols Rescue of Brain Defects Induced by Overexpression of DYRK1A SO PLOS ONE LA English DT Article AB Individuals with partial HSA21 trisomies and mice with partial MMU16 trisomies containing an extra copy of the DYRK1A gene present various alterations in brain morphogenesis. They present also learning impairments modeling those encountered in Down syndrome. Previous MRI and histological analyses of a transgenic mice generated using a human YAC construct that contains five genes including DYRK1A reveal that DYRK1A is involved, during development, in the control of brain volume and cell density of specific brain regions. Gene dosage correction induces a rescue of the brain volume alterations. DYRK1A is also involved in the control of synaptic plasticity and memory consolidation. Increased gene dosage results in brain morphogenesis defects, low BDNF levels and mnemonic deficits in these mice. Epigallocatechin gallate ( EGCG) - a member of a natural polyphenols family, found in great amount in green tea leaves - is a specific and safe DYRK1A inhibitor. We maintained control and transgenic mice overexpressing DYRK1A on two different polyphenol-based diets, from gestation to adulthood. The major features of the transgenic phenotype were rescued in these mice. C1 [Guedj, Faycal; Ledru, Aurelie; Paly, Evelyne; Delabar, Jean M.] Univ Paris 07, Paris, France. [Guedj, Faycal; Ledru, Aurelie; Paly, Evelyne; Delabar, Jean M.] CNRS, Paris, France. [Sebrie, Catherine; Gillet, Brigitte] ICSN, CNRS, Lab RMN Biol, Gif Sur Yvette, France. [Rivals, Isabelle] ESPCI, Equipe Stat Appliquee, Paris, France. [Bizot, Jean C.] Parc Technol Source, Key Obs SA, Orleans, France. [Smith, Desmond; Rubin, Edward] Univ Calif Los Angeles, Sch Med, Dept Mol & Med Pharmacol, Los Angeles, CA 90024 USA. LBNL, Dept Genome Sci, Berkeley, CA USA. [Arbones, Mariona] UPF, Ctr Genom Regulat, Barcelona, Spain. RP Guedj, F (reprint author), Univ Paris 07, Paris, France. EM delabar@univ-paris-diderot.fr RI Arbones, Maria/D-4668-2016 OI Arbones, Maria/0000-0002-6035-0235 FU EU [FP5, FP6] FX This work was supported by EU grants: T21 targets(FP5) and AnEUploidy (FP6). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 78 Z9 81 U1 0 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 26 PY 2009 VL 4 IS 2 AR e4606 DI 10.1371/journal.pone.0004606 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437KX UT WOS:000265487500011 PM 19242551 ER PT J AU Karpinets, TV Pelletier, DA Pan, CL Uberbacher, EC Melnichenko, GV Hettich, RL Samatova, NF AF Karpinets, Tatiana V. Pelletier, Dale A. Pan, Chongle Uberbacher, Edward C. Melnichenko, Galina V. Hettich, Robert L. Samatova, Nagiza F. TI Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris SO PLOS ONE LA English DT Article AB Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO(2) and H(2). Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO(2) and H(2), and N(2) and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N(2)-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions. C1 [Karpinets, Tatiana V.] Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37831 USA. [Karpinets, Tatiana V.; Pan, Chongle; Samatova, Nagiza F.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Pelletier, Dale A.; Uberbacher, Edward C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Pan, Chongle; Hettich, Robert L.] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN USA. [Karpinets, Tatiana V.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Melnichenko, Galina V.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Samatova, Nagiza F.] N Carolina State Univ, Dept Comp Sci, Raleigh, NC USA. RP Karpinets, TV (reprint author), Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37831 USA. EM karpinetstv@ornl.gov RI Pelletier, Dale/F-4154-2011; Hettich, Robert/N-1458-2016 OI Hettich, Robert/0000-0001-7708-786X FU U.S. Department of Energy (Office of Advanced Scientific Computing Research, Office of Science); Office of Biological and Environmental Research, U.S. Department of Energy; BioEnergy Science Center (BESC); UT-Battelle, LLC [DE-AC05-00OR22725] FX This research has been supported by the "Exploratory Data Intensive Computing for Complex Biological Systems" project from U.S. Department of Energy (Office of Advanced Scientific Computing Research, Office of Science). Research also sponsored by the Office of Biological and Environmental Research, U.S. Department of Energy, through the ORNL Genomics:GTL Center for Molecular and Cellular Systems (CMCS). This research was sponsored in part by the BioEnergy Science Center (BESC). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy. Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory (ORNL) is managed and operated under contract No. DE-AC05-00OR22725 by UT-Battelle, LLC. The work of Nagiza Samatova was partially supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. NR 50 TC 5 Z9 5 U1 0 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 26 PY 2009 VL 4 IS 2 AR e4615 DI 10.1371/journal.pone.0004615 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437KX UT WOS:000265487500017 PM 19242537 ER PT J AU Li, XL Barker, AB Baker, DN Tu, WC Sarris, TE Selesnick, RS Friedel, R Shen, C AF Li, Xinlin Barker, A. B. Baker, D. N. Tu, W. C. Sarris, T. E. Selesnick, R. S. Friedel, R. Shen, C. TI Modeling the deep penetration of outer belt electrons during the "Halloween" magnetic storm in 2003 SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID SOLAR-WIND VELOCITY; DAWN-DUSK ASYMMETRY; RADIATION BELT; RELATIVISTIC ELECTRONS; EARTHS MAGNETOSPHERE; GEOMAGNETIC STORMS; ULF POWER; ACCELERATION; DIFFUSION; ENERGIZATION AB Radiation belt electrons are a natural hazard to satellites and humans in space, and they can be quickly enhanced and redistributed in the magnetosphere. Specification and advanced warning of such a reconfiguration of the electron distribution will be valuable to spacecraft designers, operators, and astronauts. Here we report our modeling results and discuss a feasible forecast procedure on such an extreme event. During the geomagnetic storm of October/November 2003, the intensity peak of the outer radiation belt electron moved from its nominal position of L approximate to 4 to L approximate to 2.5 in a day. This event was correlated with extremely high solar wind speeds and enhanced ULF wave power through out the inner magnetosphere, both are known to be associated with enhanced radial transport of radiation belt electrons. A radial diffusion model is developed, using the measurements of relativistic electrons at geosynchronous orbit as the source population and making the radial diffusion coefficient a function of solar wind parameters and L. We found that the deep penetration of 4.5 MeV electrons down to L approximate to 2.5 measured by Polar High Energy Space Telescope can be modeled by the fast inward radial transport mechanism. The practical significance of this model is that the inputs are solely from measurements of current solar wind and energetic electrons at geosynchronous orbit. Thus the model can be operated in real time to forecast the multiple MeV electron fluxes inside geosynchronous orbit and down to L approximate to 2.5 in such an extreme storm event. C1 [Li, Xinlin; Barker, A. B.; Baker, D. N.; Tu, W. C.; Sarris, T. E.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. [Shen, C.] Chinese Acad Sci, Key Lab Space Weather, Beijing 100080, Peoples R China. [Li, Xinlin] Chinese Acad Sci, Lab Space Weather, Beijing 100080, Peoples R China. [Selesnick, R. S.] Aerosp Corp, Los Angeles, CA 90009 USA. [Friedel, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Li, XL (reprint author), Univ Colorado, Lab Atmospher & Space Phys, 1234 Innovat Dr, Boulder, CO 80303 USA. EM lix@lasp.colorado.edu RI Tu, Weichao/B-6507-2011; Friedel, Reiner/D-1410-2012 OI Tu, Weichao/0000-0003-4547-3269; Friedel, Reiner/0000-0002-5228-0281 FU NSF [ATM-0120950, ATM-0519207]; National Natural Science Foundation of China [40621003, 40728005] FX This work was supported by NSF grants (Center for Integrated Space Weather Modeling ATM-0120950 and ATM-0519207) and also by grants from National Natural Science Foundation of China 40621003 and 40728005. NR 64 TC 21 Z9 21 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD FEB 26 PY 2009 VL 7 AR S02004 DI 10.1029/2008SW000418 PG 10 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 412QT UT WOS:000263740000001 ER PT J AU Masci, AM Arighi, CN Diehl, AD Lieberman, AE Mungall, C Scheuermann, RH Smith, B Cowell, LG AF Masci, Anna Maria Arighi, Cecilia N. Diehl, Alexander D. Lieberman, Anne E. Mungall, Chris Scheuermann, Richard H. Smith, Barry Cowell, Lindsay G. TI An improved ontological representation of dendritic cells as a paradigm for all cell types SO BMC BIOINFORMATICS LA English DT Article ID BIOMEDICAL ONTOLOGIES; GENE ONTOLOGY; SUBSETS; INTEGRATION; EXPRESSION; DATABASE; PATHWAY; DISEASE; FLOW AB Background: Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL), designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL's utility for computation and for cross-species data integration. Results: To enhance the CL's utility for computational analyses, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. We avoid multiple uses of is_a by linking DC-CL terms to terms in other ontologies via additional, formally defined relations such as has_function. Conclusion: This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. Accordingly, we propose our method as a general strategy for the ontological representation of cells. DC-CL is available from http://www.obofoundry.org. C1 [Masci, Anna Maria; Lieberman, Anne E.; Cowell, Lindsay G.] Duke Univ, Med Ctr, Dept Biostatist & Bioinformat, Durham, NC 27706 USA. [Masci, Anna Maria] Univ Naples Federico 2, Dept Cellular & Mol Biol & Pathol, Naples, Italy. [Masci, Anna Maria] IRCCS San Raffaele Pisana, Dept Med Sci & Rehabil, Lab Immunobiol Cardiovasc Dis, Rome, Italy. [Arighi, Cecilia N.] Georgetown Univ, Med Ctr, Washington, DC 20007 USA. [Diehl, Alexander D.] Jackson Lab, Bar Harbor, ME 04609 USA. [Mungall, Chris] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Scheuermann, Richard H.] Univ Texas SW Med Ctr Dallas, Div Biomed Informat, Dept Pathol, Dallas, TX 75390 USA. [Smith, Barry] SUNY Coll Buffalo, Dept Philosophy, Buffalo, NY 14222 USA. [Smith, Barry] SUNY Coll Buffalo, Ctr Excellence Bioinformat & Life Sci, Buffalo, NY 14222 USA. RP Cowell, LG (reprint author), Duke Univ, Med Ctr, Dept Biostatist & Bioinformat, Durham, NC 27706 USA. EM annamaria.masci@duke.edu; cna5@georgetown.edu; adiehl@informatics.jax.org; ael7@duke.edu; cjm@berkeleybop.org; richard.scheuermann@utsouthwestern.edu; phismith@buffalo.edu; lgcowell@duke.edu RI Diehl, Alexander/G-9883-2016; Smith, Barry/A-9525-2011; OI Diehl, Alexander/0000-0001-9990-8331; Smith, Barry/0000-0003-1384-116X; Masci, Anna Maria/0000-0003-1940-6740; Arighi, Cecilia/0000-0002-0803-4817; Scheuermann, Richard/0000-0003-1355-892X FU Burroughs-Wellcome Fund; NIAID [R01 AI077706, R01 AI068804, N01 AI40076]; NIH [1 R01 GM080646-01, HG004028-01, 1 U 54 HG004028]; NHGRI [HG002273] FX LGC's contributions were supported by a Career Award from the Burroughs-Wellcome Fund, NIAID grant R01 AI077706, and NIAID grant R01 AI068804. AMM's contributions were supported by NIAID grant AI50019. CNA's contributions were supported by NIH grant 1 R01 GM080646-01. ADD's contributions were supported by NHGRI grant HG002273. CJM's contributions were supported by NHGRI grant HG002273 and NIH grant HG004028-01. RHS's contributions were supported by the NIAID through the Bioinformatics Integration Support Contract (N01 AI40076). BS's contributions were funded in part through the NIH Roadmap for Medical Research grant to the National Center for Biomedical Ontology (1 U 54 HG004028). We would like to thank Luigi Racioppi and Bali Pulendran for helpful discussion of flow cytometry and dendritic cell biology. We would like to thank Melissa Haendel and Ceri Van Syke for helpful discussion of how to improve the Cell Ontology. NR 36 TC 16 Z9 18 U1 1 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD FEB 25 PY 2009 VL 10 AR 70 DI 10.1186/1471-2105-10-70 PG 19 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 427FZ UT WOS:000264766500001 PM 19243617 ER PT J AU Li, MZ Han, Y Thiel, PA Evans, JW AF Li, Maozhi Han, Yong Thiel, P. A. Evans, J. W. TI Formation of complex wedding-cake morphologies during homoepitaxial film growth of Ag on Ag(111): atomistic, step-dynamics, and continuum modeling SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID INTERLAYER MASS-TRANSPORT; BY-LAYER GROWTH; ISLAND NUCLEATION; SELF-DIFFUSION; METAL-SURFACES; EPITAXY; MOUNDS; SHAPE AB An atomistic lattice-gas model is developed which successfully describes all key features of the complex mounded morphologies which develop during deposition of Ag films on Ag(111) surfaces. We focus on this homoepitaxial thin film growth process below 200 K. The unstable multilayer growth mode derives from the presence of a large Ehrlich-Schwoebel step-edge barrier, for which we characterize both the step-orientation dependence and the magnitude. Step-dynamics modeling is applied to further characterize and elucidate the evolution of the vertical profiles of these wedding-cake-like mounds. Suitable coarse-graining of these step-dynamics equations leads to instructive continuum formulations for mound evolution. C1 [Li, Maozhi] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Han, Yong] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50010 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50010 USA. RP Li, MZ (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Han, Yong/F-5701-2012 OI Han, Yong/0000-0001-5404-0911 FU NSF [10704088, CHE-0809472]; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX ML was supported by NSF of China (10704088). YH, PAT, and JWE were supported by NSF Grant CHE-0809472, and their work was performed at Ames Laboratory which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 48 TC 6 Z9 6 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 25 PY 2009 VL 21 IS 8 AR 084216 DI 10.1088/0953-8984/21/8/084216 PG 12 WC Physics, Condensed Matter SC Physics GA 400VL UT WOS:000262897400017 PM 21817368 ER PT J AU Nandipati, G Shim, Y Amar, JG Karim, A Kara, A Rahman, TS Trushin, O AF Nandipati, Giridhar Shim, Yunsic Amar, Jacques G. Karim, Altaf Kara, Abdelkader Rahman, Talat S. Trushin, Oleg TI Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CLUSTER COALESCENCE; DIFFUSION; SURFACES; GROWTH; DYNAMICS; MODEL; AG AB The results of parallel kinetic Monte Carlo (KMC) simulations of the room-temperature coarsening of Ag(111) islands carried out using a very large database obtained via self-learning KMC simulations are presented. Our results indicate that, while cluster diffusion and coalescence play an important role for small clusters and at very early times, at late time the coarsening proceeds via Ostwald ripening, i.e. large clusters grow while small clusters evaporate. In addition, an asymptotic analysis of our results for the average island size S(t) as a function of time t leads to a coarsening exponent n = 1/3 (where S(t) similar to t(2n)), in good agreement with theoretical predictions. However, by comparing with simulations without concerted (multi-atom) moves, we also find that the inclusion of such moves significantly increases the average island size. Somewhat surprisingly we also find that, while the average island size increases during coarsening, the scaled island- size distribution does not change significantly. Our simulations were carried out both as a test of, and as an application of, a variety of different algorithms for parallel kinetic Monte Carlo including the recently developed optimistic synchronous relaxation (OSR) algorithm as well as the semi-rigorous synchronous sublattice (SL) algorithm. A variation of the OSR algorithm corresponding to optimistic synchronous relaxation with pseudo-rollback (OSRPR) is also proposed along with a method for improving the parallel efficiency and reducing the number of boundary events via dynamic boundary allocation (DBA). A variety of other methods for enhancing the efficiency of our simulations are also discussed. We note that, because of the relatively high temperature of our simulations, as well as the large range of energy barriers (ranging from 0.05 to 0.8 eV), developing an efficient algorithm for parallel KMC and/or SLKMC simulations is particularly challenging. However, by using DBA to minimize the number of boundary events, we have achieved significantly improved parallel efficiencies for the OSRPR and SL algorithms. Finally, we note that, among the three parallel algorithms which we have tested here, the semi-rigorous SL algorithm with DBA led to the highest parallel efficiencies. As a result, we have obtained reasonable parallel efficiencies in our simulations of room-temperature Ag(111) island coarsening for a small number of processors (e. g. N(p) = 2 and 4). Since the SL algorithm scales with system size for fixed processor size, we expect that comparable and/or even larger parallel efficiencies should be possible for parallel KMC and/or SLKMC simulations of larger systems with larger numbers of processors. C1 [Nandipati, Giridhar; Shim, Yunsic; Amar, Jacques G.] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Karim, Altaf] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kara, Abdelkader; Rahman, Talat S.] Univ Cent Florida, Dept Phys & Astron, Orlando, FL 32816 USA. [Trushin, Oleg] Russian Acad Sci, Inst Microelect & Informat, Yaroslavl 150007, Russia. RP Nandipati, G (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. EM jamar@physics.utoledo.edu RI nandipati, giridhar/C-6232-2012 OI nandipati, giridhar/0000-0001-8217-9849 FU NSF [CCF-0428826, DMR-0606307]; Ohio Supercomputer Center [PJS0245] FX This work was supported by the NSF through grants CCF-0428826 and DMR-0606307. We would also like to acknowledge grants of computer time from the Ohio Supercomputer Center (grant no. PJS0245). NR 35 TC 19 Z9 19 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 25 PY 2009 VL 21 IS 8 AR 084214 DI 10.1088/0953-8984/21/8/084214 PG 12 WC Physics, Condensed Matter SC Physics GA 400VL UT WOS:000262897400015 PM 21817366 ER PT J AU Picu, RC Li, RG Xu, ZJ AF Picu, R. C. Li, Renge Xu, Zhijie TI Strain rate sensitivity of thermally activated dislocation motion across fields of obstacles of different kind SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Strain rate sensitivity; Dislocation dynamics; Stress superposition ID COPPER SINGLE CRYSTALS; COMPUTER-SIMULATION; POINT OBSTACLES; RANDOM ARRAY; STRESS EQUIVALENCE; GLIDE; KINETICS; SUPERPOSITION; PARTICLES; MOVEMENT AB The thermally activated motion of dislocations across fields of randomly distributed obstacles of two types is studied. The two types have either the same strength and different dependence of the activation energy on the applied force, or different strength but same activation behavior. The objective is to determine how the two sub-populations of obstacles contribute to defining the strain rate sensitivity and the flow stress. Above a threshold stress, dislocation motion undergoes a transition from smooth ("unzipping") to jerky, i.e. obstacles are bypassed in a correlated manner at high stresses. In the jerky regime, the strain rate sensitivity parameter depends exclusively on the ratio of the applied stress to the mechanical threshold stress of the respective array, the dynamics exhibiting near-critical behavior. This regime appears to be essential for the deformation of real crystals. When obstacles are bypassed in the unzipping mode, the strain rate sensitivity is controlled by the strong obstacles. These results have implications for the finite temperature superposition of contributions of the two types of obstacles to the overall flow stress. (C) 2008 Elsevier B.V. All rights reserved. C1 [Picu, R. C.; Li, Renge] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Xu, Zhijie] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP Picu, RC (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. EM picuc@rpi.edu RI Xu, Zhijie/A-1627-2009 OI Xu, Zhijie/0000-0003-0459-4531 FU NSF [CMS-0502891] FX This work was supported by the NSF through grant No. CMS-0502891. One of the authors (RCP) thanks Dr. Edgar Rauch for useful discussions. NR 37 TC 14 Z9 14 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD FEB 25 PY 2009 VL 502 IS 1-2 BP 164 EP 171 DI 10.1016/j.msea.2008.10.046 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 413SJ UT WOS:000263812500026 ER PT J AU Jesse, S Kalinin, SV AF Jesse, Stephen Kalinin, Sergei V. TI Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy SO NANOTECHNOLOGY LA English DT Article AB An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed. C1 [Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Jesse, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sjesse@ornl.gov; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483 FU Center for Nanoscale Materials Sciences; Office of Basic Energy Sciences, US Department of Energy FX The research is supported by the Center for Nanoscale Materials Sciences (SJ, SVK) at the Oak Ridge National Laboratory, Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy. The BESPMis available as a part of user program at the CNMS (www.cnms.ornl.gov). NR 10 TC 45 Z9 45 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 25 PY 2009 VL 20 IS 8 AR 085714 DI 10.1088/0957-4484/20/8/085714 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 403GM UT WOS:000263071100039 PM 19417475 ER PT J AU Robinson, JT Rastelli, A Schmidt, O Dubon, OD AF Robinson, Jeremy T. Rastelli, Armando Schmidt, Oliver Dubon, Oscar D. TI Global faceting behavior of strained Ge islands on Si SO NANOTECHNOLOGY LA English DT Article ID MOLECULAR-BEAM EPITAXY; INAS QUANTUM DOTS; 001 SURFACE; SI(001); GROWTH; TRANSITION; PYRAMIDS; SHAPE; NANOCRYSTALS; EQUILIBRIUM AB The evolution of crystallographic facets of strained heteroepitaxial Ge islands on Si is investigated. Islands growing on Si(001), (111), (110) and (113) are bound by an equilibrium set of facets that includes only shared stable surfaces between bulk Si and Ge -{105}, {113}, {15 3 23} and {111}. The formation of a stereographic map from these indices facilitates the prediction of Ge faceted-island shapes on any Si substrate at different stages of growth. The analysis presented here can be applied to other heteroepitaxial islanding systems where a finite set of shared equilibrium facets exists for the bulk starting materials. C1 [Robinson, Jeremy T.] USN, Res Lab, Washington, DC 20375 USA. [Rastelli, Armando; Schmidt, Oliver] IFW Dresden, Inst Integrat Nanosci, D-01069 Dresden, Germany. [Dubon, Oscar D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Dubon, Oscar D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Robinson, JT (reprint author), USN, Res Lab, Washington, DC 20375 USA. RI Robinson, Jeremy/F-2748-2010; Rastelli, Armando/E-6955-2012 OI Rastelli, Armando/0000-0002-1343-4962 FU NSF [DMR-0349257] FX We thank H von Kanel for fruitful discussions. ODD acknowledges support from the NSF under contract no. DMR-0349257. NR 42 TC 23 Z9 23 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 25 PY 2009 VL 20 IS 8 AR 085708 DI 10.1088/0957-4484/20/8/085708 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 403GM UT WOS:000263071100033 PM 19417469 ER PT J AU Zhou, ZX Eres, G Jin, RY Subedi, A Mandrus, D Kim, EH AF Zhou, Zhixian Eres, Gyula Jin, Rongying Subedi, Alaska Mandrus, David Kim, Eugene H. TI The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors SO NANOTECHNOLOGY LA English DT Article ID CONTACTS; DEFECTS AB Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth. C1 [Zhou, Zhixian] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. [Eres, Gyula; Jin, Rongying; Subedi, Alaska; Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kim, Eugene H.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. RP Zhou, ZX (reprint author), Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. RI Mandrus, David/H-3090-2014; Eres, Gyula/C-4656-2017 OI Eres, Gyula/0000-0003-2690-5214 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; NSERC of Canada; SHARCNET Research Chair FX The authors gratefully acknowledge technical assistance by Pam Fleming. The work at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725, managed and operated by UT-Battelle, LLC. EHK acknowledges support from the NSERC of Canada and a SHARCNET Research Chair. NR 22 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 25 PY 2009 VL 20 IS 8 AR 085709 DI 10.1088/0957-4484/20/8/085709 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 403GM UT WOS:000263071100034 PM 19417470 ER PT J AU Bhadra, S Bhattacharyya, C Chandra, NR Mian, IS AF Bhadra, Sahely Bhattacharyya, Chiranjib Chandra, Nagasuma R. Mian, I. Saira TI A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data SO ALGORITHMS FOR MOLECULAR BIOLOGY LA English DT Article ID REGULATORY NETWORKS; BAYESIAN NETWORKS; GRAPHICAL MODELS; EXPRESSION AB Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (I(1)-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One- Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN,the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational-experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data. C1 [Bhattacharyya, Chiranjib; Chandra, Nagasuma R.] Indian Inst Sci, Bioinformat Ctr, Bangalore 560012, Karnataka, India. [Bhadra, Sahely; Bhattacharyya, Chiranjib] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India. [Mian, I. Saira] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Bhattacharyya, C (reprint author), Indian Inst Sci, Bioinformat Ctr, Bangalore 560012, Karnataka, India. EM sahely@csa.iisc.ernet.in; chiru@csa.iisc.ernet.in; nchandra@serc.iisc.ernet.in; smian@lbl.gov FU U. S. National Institute on Aging; U. S. Department of Energy (OBER); MHRD, Government of India FX ISM was supported by grants from the U. S. National Institute on Aging and U. S. Department of Energy (OBER). CB and NC are supported by a grant from MHRD, Government of India. NR 50 TC 2 Z9 2 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1748-7188 J9 ALGORITHM MOL BIOL JI Algorithms. Mol. Biol. PD FEB 24 PY 2009 VL 4 AR 5 DI 10.1186/1748-7188-4-5 PG 15 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 426RS UT WOS:000264726000001 PM 19239685 ER PT J AU Noah-Vanhoucke, J Smith, JD Geissler, PL AF Noah-Vanhoucke, Joyce Smith, Jared D. Geissler, Phillip L. TI Statistical mechanics of sum frequency generation spectroscopy for the liquid-vapor interface of dilute aqueous salt solutions SO CHEMICAL PHYSICS LETTERS LA English DT Article ID AIR/WATER INTERFACE; WATER-SURFACE; MOLECULAR-DYNAMICS; VIBRATIONAL SPECTROSCOPY; THEORETICAL-ANALYSIS; IONS; SPECTRUM; ANIONS AB We demonstrate a theoretical description of vibrational sum frequency generation (SFG) at the boundary of aqueous electrolyte solutions. This approach identifies and exploits a simple relationship between SFG lineshapes and the statistics of molecular orientation and electric field. Our computer simulations indicate that orientational averages governing SFG susceptibility do not manifest ion-specific shifts in local electricfield, but instead, ion-induced polarization of subsurface layers. Counterbalancing effects are obtained for monovalent anions and cations at the same depth. Ions held at different depths induce an imbalanced polarization, suggesting that ion-specific effects can arise from weak, long-ranged influence on solvent organization. (C) 2009 Elsevier B.V. All rights reserved. C1 [Noah-Vanhoucke, Joyce; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Smith, Jared D.; Geissler, Phillip L.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Geissler, PL (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM geissler@berkeley.edu FU Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors also thank Rich Saykally for useful discussions. NR 31 TC 8 Z9 8 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 24 PY 2009 VL 470 IS 1-3 BP 21 EP 27 DI 10.1016/j.cplett.2009.01.028 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 414UL UT WOS:000263890600004 ER PT J AU Peng, XH Wong, SS AF Peng, Xiaohui Wong, Stanislaus S. TI Controlling Nanocrystal Density and Location on Carbon Nanotube Templates SO CHEMISTRY OF MATERIALS LA English DT Article ID METAL NANOPARTICLE ASSEMBLIES; IN-SITU GROWTH; QUANTUM DOTS; GOLD NANOPARTICLES; PALLADIUM NANOPARTICLES; CDSE NANOCRYSTALS; FUNCTIONALIZATION; NANOCOMPOSITES; ATTACHMENT; SENSOR AB We have demonstrated a covalent route toward site-selective synthesis of MWNT-nanoparticle conjugates containing two different types of nanoscale species, i.e., Au nanoparticles and CdSe QDs. We have quantitatively probed the effects of varying oxidation treatments, precursor concentrations, and incubation times in order to rationally affect the spatial coverage and distribution of either Au NPs or semiconducting QDs on the MWNT sidewalls and tips. The degree of nanoparticulate coverage was found to primarily vary with the intensity of the oxidation treatment, though the hydrophobicity of the nanotube as well as the chemical and steric characteristics of the nanocrystals also played a role in determining the ultimate architecture. In general, the stronger the oxidation treatment, the denser the coating of nanoparticles and/or quantum dots on the nanotube surface. In addition, the use of larger concentrations of precursor nanocrystals along with longer incubation times was conducive to the observation of higher nanoparticle densities on our nanotube templates. Interesting charge transfer, electromagnetic enhancement, and energy-transfer behavior between CNTs and the corresponding nanoparticles/quantum dots have been observed and will likely render such conjugates as key components in a range of nanoscale devices important for photocatalytic and solar applications. C1 [Peng, Xiaohui; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Mat & Chem Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu FU U.S. Department of Energy [DE-AC02-98CH10886]; National Science Foundation [DMR-0348239] FX We acknowledge the U.S. Department of Energy (DE-AC02-98CH10886) for facility and personnel support. We also thank the National Science Foundation (CAREER Award DMR-0348239), and the Alfred P. Sloan Foundation for PI support and experimental supplies. Moreover, we are grateful to D. Wang (Boston College) as well as to F. Zhang and S. van Horn (SUNY Stony Brook) for their assistance with electron microscopy. NR 62 TC 22 Z9 22 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 24 PY 2009 VL 21 IS 4 BP 682 EP 694 DI 10.1021/cm802648m PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 408JP UT WOS:000263431600015 ER PT J AU des Roziers, EB Li, X Baker, DN Fritz, TA Friedel, R Onsager, TG Dandouras, I AF des Roziers, E. Burin Li, X. Baker, D. N. Fritz, T. A. Friedel, R. Onsager, T. G. Dandouras, I. TI Energetic plasma sheet electrons and their relationship with the solar wind: A Cluster and Geotail study SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ADVANCED COMPOSITION EXPLORER; EARTHS MAGNETOTAIL; GEOSYNCHRONOUS ORBIT; ION COMPOSITION; MAGNETIC-FIELD; BOUNDARY-LAYER; SPECTRAL CHARACTERISTICS; GEOMAGNETIC CONDITIONS; ALPHA MONITOR; DISTANT TAIL AB The statistical relationship between tens of kiloelectron volts plasma sheet electrons and the solar wind, as well as > 2 MeV geosynchronous electrons, is investigated using plasma sheet measurements from Cluster (2001-2005) and Geotail (1998-2005) and concurrent solar wind measurements from ACE. Plasma sheet selection criteria from previous studies are compared, and this study selects a new combination of criteria that are valid for both polar-orbiting and equatorial-orbiting satellites. Plasma sheet measurements are mapped to the point of minimum vertical bar B vertical bar, using the Tsyganenko T96 magnetic field model, to remove measurements taken on open field lines, which reduces the scatter in the results. Statistically, plasma sheet electron flux variations are compared to solar wind velocity, density, dynamic pressure, interplanetary magnetic field (IMF) B(z), and solar wind energetic electrons, as well as > 2 MeV electrons at geosynchronous orbit. Several new results are revealed: (1) There is a strong positive correlation between energetic plasma sheet electrons and solar wind velocity, (2) this correlation is valid throughout the plasma sheet and extends to distances of X(GSM) = -30 R(E),, (3) there is evidence of a weak negative correlation between energetic plasma sheet electrons and solar wind density, (4) energetic plasma sheet electrons are enhanced during times of southward interplanetary magnetic field (IMF), (5) there is no clear correlation between energetic plasma sheet electrons and solar wind electrons of comparable energies, and (6) there is a strong correlation between energetic electrons (> 38 keV) in the plasma sheet and > 2 MeV electrons at geosynchronous orbit measured 2 days later. C1 [des Roziers, E. Burin; Li, X.; Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Onsager, T. G.] Natl Ocean & Atmospher Adm, Space Environm Ctr, Boulder, CO 80305 USA. [Fritz, T. A.] Boston Univ, Dept Astron, CAS Astron, Boston, MA 02215 USA. [Friedel, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dandouras, I.] Univ Toulouse 3, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. RP des Roziers, EB (reprint author), Univ Colorado, Atmospher & Space Phys Lab, 1234 Innovat Dr, Boulder, CO 80303 USA. EM burindes@colorado.edu RI Friedel, Reiner/D-1410-2012; OI Friedel, Reiner/0000-0002-5228-0281; Dandouras, Iannis/0000-0002-7121-1118 FU Cluster/RAPID FX We thank N.A. Tsyganenko for providing access to his T96 magnetic field model, S. Elkington for helpful discussion, and S. Monk for assistance in programming. This study was mainly supported by Cluster/RAPID funding. NR 62 TC 12 Z9 12 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD FEB 24 PY 2009 VL 114 AR A02220 DI 10.1029/2008JA013696 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 412PY UT WOS:000263737900003 ER PT J AU Kim, DS Robertson, GP Kim, YS Guiver, MD AF Kim, Dae Sik Robertson, Gilles P. Kim, Yu Seung Guiver, Michael D. TI Copoly(arylene ether)s Containing Pendant Sulfonic Acid Groups as Proton Exchange Membranes SO MACROMOLECULES LA English DT Article ID METHANOL FUEL-CELLS; POLYMER ELECTROLYTE; POLY(ETHER KETONE)S; PEM PROPERTIES; COPOLYMERS; PERFORMANCE; NITRILE)S; SULFONATION; MONOMER; SYSTEMS AB A poly(arylene ether) (PAE) with high fluorine content and a poly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild postsulfonation exclusively oil the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC,(wet) (volume-based, wet state)) of 1.77 and 2.55 mequiv/cm(3), high proton conductivities of 135.4 and 140.1 mS/cm at 80 degrees C, and acceptable volume-based water uptake of 44.5-51.9 vol % at 80 degrees C, respectively, compared to Nation. The data points of these copolymer membranes are located in the upper left-hand corner in the tradeoff plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion. C1 [Kim, Dae Sik; Robertson, Gilles P.; Guiver, Michael D.] Natl Res Council Canada, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada. [Kim, Dae Sik; Kim, Yu Seung] Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Los Alamos, NM 87545 USA. RP Guiver, MD (reprint author), Natl Res Council Canada, Inst Chem Proc & Environm Technol, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada. EM Michael.Guiver@nrc-cnrc.gc.ca RI Guiver, Michael/I-3248-2016 OI Guiver, Michael/0000-0003-2619-6809 NR 29 TC 100 Z9 100 U1 3 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 24 PY 2009 VL 42 IS 4 BP 957 EP 963 DI 10.1021/ma802192y PG 7 WC Polymer Science SC Polymer Science GA 408IW UT WOS:000263429700013 ER PT J AU Liang, YY Feng, DQ Guo, JC Szarko, JM Ray, C Chen, LX Yu, LP AF Liang, Yongye Feng, Danqin Guo, Jianchang Szarko, Jodi M. Ray, Claire Chen, Lin X. Yu, Luping TI Regioregular Oligomer and Polymer Containing Thieno[3,4-b]thiophene Moiety for Efficient Organic Solar Cells SO MACROMOLECULES LA English DT Article ID BAND-GAP POLYMER; PHOTOVOLTAIC DEVICES; CONDUCTING POLYMER; TRANSIENT-ABSORPTION; CONJUGATED POLYMERS; ELECTRON-TRANSFER; PERFORMANCE; POLY(3-ALKYLTHIOPHENES); HETEROJUNCTIONS; MORPHOLOGY AB A regioregular conjugated oligomer (MF) and its polymer counterpart (PF) containing [3,4-b] thiophene moiety have been developed. The existence of thieno[3,4-b]thiophene extends the absorption of the molecules to longer wavelengths and increases the current density of solar cell devices using these materials. The regioregularity of the polymers from the incorporation of regioregular oligothiophene fragments also enhances hole mobility. Consequently, the polymers show higher solar energy conversion efficiencies in bulk heterejunction (BHJ) solar cells than the low molecular weight oligomers. Spectroscopic and Structural Studies reveal that composite films prepared from the polymer exhibit a larger charge carrier density and smaller domain sizes for the electron donor and acceptor than the oligomer counterpart. These results rationalize the origin for the higher solar cell efficiency. C1 [Liang, Yongye; Feng, Danqin; Guo, Jianchang; Ray, Claire; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Liang, Yongye; Feng, Danqin; Guo, Jianchang; Ray, Claire; Chen, Lin X.; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Guo, Jianchang] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Szarko, Jodi M.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Chen, LX (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM lchen@anl.gov; lupingyu@uchicago.edu RI Liang, Yongye/D-9275-2012; Liang, Yongye/D-1099-2010; OI Szarko, Jodi/0000-0002-2181-9408 FU National Science Foundation grant [DMR-703274]; University of Chicago; UC/ANL; Northwestern University; Division of Chemical Sciences, Office of Basic Energy Sciences, the U.S. Department of Energy [W-31-109-Eng-38] FX We gratefully acknowledge the financial Support of the National Science Foundation grant (DMR-703274,. L.Y.) and the NSF MRSEC program at the University of Chicago. We acknowledge the support by UC/ANL collaborative seed grant (L.Y. and L.X.C.), Northwestern University setup fund, and the Division of Chemical Sciences, Office of Basic Energy Sciences, the U.S. Department of Energy, under Contract W-31-109-Eng-38 (for L.X.C.). We thank Dr. David J. Gosztola for his help in the transient absorption facility at the Center for Nanoscale Materials of Argonne National Laboratory and Drs. Michael Sprung and Byeongdu Lee of the Advanced Photon Source for their help at the beamline setup, and useful discussions in data analysis for GIWAXS and GISAXS. The facilities of the Advanced Photon Source and the Center for Nanoscale Materials are supported by Office of Basic Energy Sciences, the U.S. Department of Energy, under Contract W-31-109-Eng-38. NR 45 TC 51 Z9 51 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 24 PY 2009 VL 42 IS 4 BP 1091 EP 1098 DI 10.1021/ma8023969 PG 8 WC Polymer Science SC Polymer Science GA 408IW UT WOS:000263429700031 ER PT J AU Park, S Kim, B Xu, J Hofmann, T Ocko, BM Russell, TP AF Park, Soojin Kim, Bokyung Xu, Ji Hofmann, Tommy Ocko, Benjamin M. Russell, Thomas P. TI Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor SO MACROMOLECULES LA English DT Article ID COPOLYMER THIN-FILMS; BLOCK-COPOLYMERS; DIBLOCK COPOLYMER; MOIRE PATTERNS; BOTTOM-UP; TOP-DOWN; NANOSTRUCTURES; POLYSTYRENE; TEMPLATES; ALIGNMENT AB The development of the morphology in asymmetric polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) thin films in tetrahydrofuran (THF) vapor, a selective solvent for majority PS block, as a function of time was investigated by scanning force microscopy (SFM) and grazing incidence small-angle X-ray scattering (GISAXS). When the PS-b-P4VP films were spin-coated from a toluene/THF mixture onto a silicon substrate, cylindrical microdomains were found to be oriented normal to the surface. By annealing under the THF solvent vapor, the distribution of the size and center-to-center distance between the cylindrical microdomains were significantly narrowed. The orientation and grain size of the cylindrical microdomains in the annealed films were characterized Using Moire analysis obtained from SFM scan. GISAXS was used to characterize the morphology of the entire film. C1 [Park, Soojin; Kim, Bokyung; Xu, Ji; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Hofmann, Tommy; Ocko, Benjamin M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Russell, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM rusell@mail.pse.umass.edu RI Park, Soojin/E-5899-2010 FU U.S. Department of Energy (DOE); NSF supported MRSEC; NSEC at the University of Massachusetts Amherst; Office of Science; Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the U.S. Department of Energy (DOE), the NSF supported MRSEC, and NSEC at the University of Massachusetts Amherst. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was Supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 through the Division of Materials Science. NR 41 TC 95 Z9 95 U1 4 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 24 PY 2009 VL 42 IS 4 BP 1278 EP 1284 DI 10.1021/ma802480s PG 7 WC Polymer Science SC Polymer Science GA 408IW UT WOS:000263429700055 ER PT J AU Yanagioka, M Toney, MF Frank, CW AF Yanagioka, Masaki Toney, Michael F. Frank, Curtis W. TI Influence of Interfacial Layer Between Nanoparticles and Polymeric Matrix on Viscoelastic Properties of Hydrogel Nanocomposites SO MACROMOLECULES LA English DT Article ID ANGLE X-RAY; QUARTZ-CRYSTAL MICROBALANCE; COLLOIDAL ARRAYS; MECHANICAL-PROPERTIES; STRESS-RELAXATION; SENSING MATERIALS; ROUGH SURFACES; IN-SITU; SCATTERING; ADSORPTION AB The viscoelastic properties of nanocomposites are influenced by both the nanoparticle distribution and the nanoparticle-polymer affinity. These two parameters are closely coupled, and evaluation of individual contributions to the mechanical properties is a critical requirement for efficient development of nanocomposites. To decouple these two effects, we utilized charge repulsion among nanoparticles so that We could essentially eliminate particle agglomeration. We then investigated how the nanoparticle-polymer affinity relates to the mechanical properties of the nanocomposite by compiling silica and polystyrene nanoparticles. The surface roughness of the particles and the molecular conformation of the interfacial layer between the polymer and the nanoparticles were characterized by synchrotron small-angle X-ray scattering and quartz crystal microbalance, respectively. On polystyrene particles, the Surface roughness was larger, and the polymer adsorbed strongly. Consequently, the mobility of the adsorbed polymer was reduced compared to that oil silica particles. This reduced mobility explains a Smaller viscoelastic loss for the polystyrene-filled nanocomposite compared to the silica-filled nanocomposite. C1 [Yanagioka, Masaki; Frank, Curtis W.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Toney, Michael F.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Frank, CW (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. EM curt.frank@stanford.edu FU Center on Polymer Interfaces and Macromolecular Assemblies (CPIMA); NSF-MRSEC program; Bridgestone Corp FX We thank Nippon Shokubai Co. Ltd. for their gift of the silica particle suspension. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. Dr. John Pople at the SSRL and Dr. Lydia-Marie Joubert at the Cell Sciences and Imaging Facility (CSIF) at Stanford University are thanked for the assistance with SAXS and SEM measurements, respectively. This work was supported by the Center on Polymer Interfaces and Macromolecular Assemblies (CPIMA), which is sponsored by the NSF-MRSEC program. M.Y. is grateful for support in the form of a fellowship from Bridgestone Corp. NR 69 TC 7 Z9 7 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 24 PY 2009 VL 42 IS 4 BP 1331 EP 1343 DI 10.1021/ma802152s PG 13 WC Polymer Science SC Polymer Science GA 408IW UT WOS:000263429700062 ER PT J AU Kuczynski, B Jagust, W Chui, HC Reed, B AF Kuczynski, B. Jagust, W. Chui, H. C. Reed, B. TI An inverse association of cardiovascular risk and frontal lobe glucose metabolism SO NEUROLOGY LA English DT Article ID WHITE-MATTER LESIONS; ALZHEIMERS-DISEASE; VASCULAR DEMENTIA; COGNITIVE IMPAIRMENT; CLINICAL-DIAGNOSIS; OLDER-ADULTS; FDG-PET; BRAIN; HYPERTENSION; ATROPHY AB Objective: To investigate associations between vascular risk profile and cerebral glucose metabolism. Methods: Subjects ranged from normal to having dementia (age > 55 years) and underwent neuropsychological testing, MRI, and FDG PET scanning (n = 58). The Framingham Cardiovascular Risk Profile (FCRP) and its individual components were used as covariates in regression analyses with each PET scan using SPM2. Results: Analyses revealed broad areas of the frontal lobe in which higher FCRP was associated with lower normalized glucose metabolism including the superior medial frontal, superior frontal and superior orbital frontal cortex and the ventrolateral prefrontal cortex. Significant associations were predominately found in the left hemisphere. Independent component analyses revealed interesting regions but further confirm the relevance of the integrative measure of coronary risk. Conclusions: Although the mechanism of this association bears further investigation, this finding provides further evidence that vascular risk factors have malignant effects on the brain, particularly in the prefrontal cortex. Neurology (R) 2009; 72: 738-743 C1 [Kuczynski, B.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Kuczynski, B.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chui, H. C.] Univ So Calif, Dept Neurol, Los Angeles, CA USA. [Reed, B.] Univ Calif Davis, Davis, CA 95616 USA. RP Kuczynski, B (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 118 Barker Hall MC 3190, Berkeley, CA 94720 USA. EM beth.kuczynski@gmail.com FU National Institute on Aging [AG12435] FX Supported by the National Institute on Aging AG12435. NR 41 TC 20 Z9 22 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0028-3878 J9 NEUROLOGY JI Neurology PD FEB 24 PY 2009 VL 72 IS 8 BP 738 EP 743 DI 10.1212/01.wnl.0000343005.35498.e5 PG 6 WC Clinical Neurology SC Neurosciences & Neurology GA 410SB UT WOS:000263597400011 PM 19237703 ER PT J AU Zeng, QS Ding, Y Mao, WL Luo, W Blomqvist, A Ahuja, R Yang, W Shu, J Sinogeikin, SV Meng, Y Brewe, DL Jiang, JZ Mao, HK AF Zeng, Qiao-Shi Ding, Yang Mao, Wendy L. Luo, Wei Blomqvist, Andreas Ahuja, Rajeev Yang, Wenge Shu, Jinfu Sinogeikin, Stas V. Meng, Yue Brewe, Dale L. Jiang, Jian-Zhong Mao, Ho-Kwang TI Substitutional alloy of Ce and Al SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE 4f electron delocalization; Ce-Al solid solution alloy; high pressure; Hume-Rothery rules; metallic glass ID HIGH-PRESSURE; METALLIC GLASSES; CRYSTAL-STRUCTURE; ROOM-TEMPERATURE; ALPHA TRANSITION; CERIUM METAL; BEHAVIOR; APPROXIMATION; POTASSIUM; CHEMISTRY AB The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce3Al intermetallic compound > 15 GPa or the Ce3Al metallic glass > 25 GPa. Synchrotron X-ray diffraction, Ce L-3-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions. C1 [Zeng, Qiao-Shi; Jiang, Jian-Zhong; Mao, Ho-Kwang] Zhejiang Univ, Dept Mat Sci & Engn, Int Ctr New Struct Mat, Hangzhou 310027, Zhejiang, Peoples R China. [Zeng, Qiao-Shi; Jiang, Jian-Zhong; Mao, Ho-Kwang] Zhejiang Univ, Dept Mat Sci & Engn, Lab New Struct Mat, Hangzhou 310027, Zhejiang, Peoples R China. [Yang, Wenge; Sinogeikin, Stas V.; Meng, Yue; Mao, Ho-Kwang] Carnegie Inst Sci, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Zeng, Qiao-Shi; Ding, Yang; Mao, Ho-Kwang] Carnegie Inst Sci, High Pressure Synerget Consortium, Argonne, IL 60439 USA. [Mao, Wendy L.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Mao, Wendy L.] SLAC Natl Accelerator Ctr, Photon Sci Dept, Menlo Pk, CA 94025 USA. [Luo, Wei; Blomqvist, Andreas; Ahuja, Rajeev] Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75121 Uppsala, Sweden. [Luo, Wei; Ahuja, Rajeev] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. [Shu, Jinfu; Mao, Ho-Kwang] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Brewe, Dale L.] Argonne Natl Lab, Adv Photon Source, Pacific NW Consortium Collaborat Access Team Xray, Argonne, IL 60439 USA. RP Jiang, JZ (reprint author), Zhejiang Univ, Dept Mat Sci & Engn, Int Ctr New Struct Mat, Hangzhou 310027, Zhejiang, Peoples R China. EM jiangjz@zju.edu.cn; hmao@gl.ciw.edu RI Mao, Wendy/D-1885-2009; Yang, Wenge/H-2740-2012; Blomqvist, Andreas/D-5345-2012; Ding, Yang/K-1995-2014 OI Blomqvist, Andreas/0000-0002-9583-9372; Ding, Yang/0000-0002-8845-4618 FU Department of Energy-Basic Energy Sciences; Department of Energy-National Nuclear Security Administration (Carnegie/Department of Energy Alliance Center); National Science Foundation; Department of Defense-Tank-Automotive and Armaments Command; W. M. Keck Foundation; Department of Energy-Basic Energy Sciences [DE-AC02-06CH11357]; U. S. Department of Energy-Basic Energy Sciences; Natural Sciences and Engineering Research Council of Canada; University of Washington; Simon Fraser University; Advanced Photon Source; Balzan Foundation; National Natural Science Foundation of China Grants [0425102, 50601021, 50701038, 60776014, 60876002, 10804096]; Zhejiang University-Helmholtz Cooperation Fund; Ministry of Education of China; Department of Science and Technology of Zhejiang Province; Zhejiang University; Swedish Research Council; Swedish National Infrastructure for Computing; Uppsala Multidisciplinary Center for Advanced Computational Science FX We thank Dr. C. L. Qin (Institute for Materials Research, Tohoku University, Sendai, Japan) for the starting material synthesis; Dr. M. J. Lipp for sharing Ce volume data; and Drs. R. E. Cohen, M. Guthrie, H. W. Sheng, and H. Z. Liu for helpful discussions. Use of the High Pressure Collaborative Access Team facility was supported by the Department of Energy-Basic Energy Sciences, Department of Energy-National Nuclear Security Administration (Carnegie/Department of Energy Alliance Center), National Science Foundation, Department of Defense-Tank-Automotive and Armaments Command, and the W. M. Keck Foundation. The Advanced Photon Source is supported by the Department of Energy-Basic Energy Sciences under Contract DE-AC02-06CH11357. Pacific Northwest Consortium Collaborative Access Team/X-ray Operations and Research facilities at the Advanced Photon Source, and research at these facilities, are supported by the U. S. Department of Energy-Basic Energy Sciences, a major facilities access grant from Natural Sciences and Engineering Research Council of Canada, University of Washington, Simon Fraser University, and the Advanced Photon Source. This work was supported by the Balzan Foundation, National Natural Science Foundation of China Grants 50425102, 50601021, 50701038, 60776014, 60876002, and 10804096, the Zhejiang University-Helmholtz Cooperation Fund, the Ministry of Education of China (Program for Changjiang Scholars, the Research Fund for the Doctoral Program of Higher Education from China Scholarship Council), the Department of Science and Technology of Zhejiang Province, and Zhejiang University. W. L., A. B., and R. A. are grateful to the Swedish Research Council for providing financial support, the Swedish National Infrastructure for Computing, and the Uppsala Multidisciplinary Center for Advanced Computational Science for providing computational resources. NR 36 TC 23 Z9 24 U1 0 U2 27 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 24 PY 2009 VL 106 IS 8 BP 2515 EP 2518 DI 10.1073/pnas.0813328106 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 411ME UT WOS:000263652900011 PM 19188608 ER PT J AU Sims, GE Jun, SR Wua, GA Kim, SH AF Sims, Gregory E. Jun, Se-Ran Wua, Guohong A. Kim, Sung-Hou TI Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE mammalian genome phylogeny; whole-genome comparison; whole-genome phylogeny; whole-intron phylogeny ID PHYLOGENETIC TREES; SEQUENCES; DISTANCE; MAMMALS; SETS AB For comparison of whole-genome (genic + nongenic) sequences, multiple sequence alignment of a few selected genes is not appropriate. One approach is to use an alignment-free method in which feature (or l-mer) frequency profiles (FFP) of whole genomes are used for comparison-a variation of a text or book comparison method, using word frequency profiles. In this approach it is critical to identify the optimal resolution range of l-mers for the given set of genomes compared. The optimum FFP method is applicable for comparing whole genomes or large genomic regions even when there are no common genes with high homology. We outline the method in 3 stages: (i) We first show how the optimal resolution range can be determined with English books which have been transformed into long character strings by removing all punctuation and spaces. (ii) Next, we test the robustness of the optimized FFP method at the nucleotide level, using a mutation model with a wide range of base substitutions and rearrangements. (iii) Finally, to illustrate the utility of the method, phylogenies are reconstructed from concatenated mammalian intronic genomes; the FFP derived intronic genome topologies for each l within the optimal range are all very similar. The topology agrees with the established mammalian phylogeny revealing that intron regions contain a similar level of phylogenic signal as do coding regions. C1 [Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA. [Sims, Gregory E.; Wua, Guohong A.; Kim, Sung-Hou] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Kim, SH (reprint author), Univ Calif Berkeley, Dept Chem, Donner Lab 351A, Berkeley, CA 94720 USA. EM shkim@cchem.berkeley.edu FU National Institutes of Health [GM62412]; Korean Ministry of Education, Science, and Technology (World Class University) [R31-2008-000-10086-0] FX We thank Yifei Wu and Brandon J. Mannion for helpful discussion and their assistance in database preparation. This work was supported by National Institutes of Health Grant GM62412 and a grant from the Korean Ministry of Education, Science, and Technology (World Class University project R31-2008-000-10086-0). NR 21 TC 135 Z9 138 U1 2 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 24 PY 2009 VL 106 IS 8 BP 2677 EP 2682 DI 10.1073/pnas.0813249106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 411ME UT WOS:000263652900039 PM 19188606 ER PT J AU Pinchuk, GE Rodionov, DA Yang, C Li, XQ Osterman, AL Dervyn, E Geydebrekht, OV Reed, SB Romine, MF Collart, FR Scott, JH Fredrickson, JK Beliaev, AS AF Pinchuk, Grigory E. Rodionov, Dmitry A. Yang, Chen Li, Xiaoqing Osterman, Andrei L. Dervyn, Etienne Geydebrekht, Oleg V. Reed, Samantha B. Romine, Margaret F. Collart, Frank R. Scott, James H. Fredrickson, Jim K. Beliaev, Alexander S. TI Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE central carbon metabolism; genome context analysis; lactate dehydrogenase ID FERRICYTOCHROME-C OXIDOREDUCTASE; ESCHERICHIA-COLI; NEISSERIA-MENINGITIDIS; DEHYDROGENASE; GENES; IDENTIFICATION; REDUCTION; SEDIMENTS; CLONING; CARBON AB The ability to use lactate as a sole source of carbon and energy is one of the key metabolic signatures of Shewanellae, a diverse group of dissimilatory metal-reducing bacteria commonly found in aquatic and sedimentary environments. Nonetheless, homology searches failed to recognize orthologs of previously described bacterial D- or L-lactate oxidizing enzymes (Escherichia coli genes dId and IIdD) in any of the 13 analyzed genomes of Shewanella spp. By using comparative genomic techniques, we identified a conserved chromosomal gene cluster in Shewanella oneidensis MR-1 (locus tag: SO_1522-SO_1518) containing lactate permease and candidate genes for both D- and L-lactate dehydrogenase enzymes. The predicted D-LDH gene (dId-II, SO_1521) is a distant homolog of FAD-dependent lactate dehydrogenase from yeast, whereas the predicted L-LDH is encoded by 3 genes with previously unknown functions (IIdEGF, SO_1520-SO_1518). Through a combination of genetic and biochemical techniques, we experimentally confirmed the predicted physiological role of these novel genes in S. oneidensis MR-1 and carried out successful functional validation studies in Escherichia coli and Bacillus subtilis. We conclusively showed that dId-II and IIdEFG encode fully functional D- and L-LDH enzymes, which catalyze the oxidation of the respective lactate stereoisomers to pyruvate. Notably, the S. oneidensis MR-1 LIdEFG enzyme is a previously uncharacterized example of a multisubunit lactate oxidase. Comparative analysis of > 400 bacterial species revealed the presence of LIdEFG and DId-II in a broad range of diverse species accentuating the potential importance of these previously unknown proteins in microbial metabolism. C1 [Pinchuk, Grigory E.; Geydebrekht, Oleg V.; Reed, Samantha B.; Romine, Margaret F.; Fredrickson, Jim K.; Beliaev, Alexander S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Osterman, Andrei L.] Burnham Inst Med Res, La Jolla, CA 92037 USA. [Rodionov, Dmitry A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia. [Yang, Chen] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China. [Osterman, Andrei L.] Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. [Dervyn, Etienne] INRA, F-78352 Jouy En Josas, France. [Collart, Frank R.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Scott, James H.] Dartmouth Coll, Dept Earth Sci, Hanover, NH 03755 USA. RP Beliaev, AS (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,MS P7-50, Richland, WA 99352 USA. EM alex.beliaev@pnl.gov RI Beliaev, Alexander/E-8798-2016; OI Beliaev, Alexander/0000-0002-6766-4632; Rodionov, Dmitry/0000-0002-0939-390X; Romine, Margaret/0000-0002-0968-7641; Collart, Frank/0000-0001-6942-4483 FU U. S. Department of Energy (DOE) Office of Biological and Environmental Research under the Genomics; DOE by Battelle Memorial Institute [DE-AC05-76RLO 1830.] FX We thank Drs. Kenneth H. Nealson, Anna Obraztsova, Matthew Marshall, and Liang Shi for insightful discussions and help with experimental design. We thank Dr. Hirotada Mori ( Nara Institute of Science and Technology, Ikoma, Nara, Japan) for kindly providing the E. coli K12 lactate dehydrogenase mutants from the genome-wide Keio collection. We also gratefully acknowledge David W. Kennedy for help with HPLC analysis. This research was supported by the U. S. Department of Energy (DOE) Office of Biological and Environmental Research under the Genomics: GTL Program via the Shewanella Federation consortium and the Microbial Genome Program (MGP). Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. NR 40 TC 61 Z9 64 U1 1 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 24 PY 2009 VL 106 IS 8 BP 2874 EP 2879 DI 10.1073/pnas.0806798106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 411ME UT WOS:000263652900073 PM 19196979 ER PT J AU Pan, ZW Budai, JD Dai, ZR Liu, WJ Paranthaman, MP Dai, S AF Pan, Zhengwei Budai, John D. Dai, Zu Rong Liu, Wenjun Paranthaman, M. Parans Dai, Sheng TI Zinc Oxide Microtowers by Vapor Phase Homoepitaxial Regrowth SO ADVANCED MATERIALS LA English DT Article ID ZNO SINGLE-CRYSTALS; THERMAL EVAPORATION; GROWTH; HETEROSTRUCTURES; NANOSTRUCTURES; NANOWIRES AB Simultaneous axial and radial epitaxies can be achieved on growing ZnO microtowers through a regrowth technique of repeating the same growth circle for several times. The as-grown ZnO microtowers display a preferential growth habit of hexagonal prism-dihexagonal pyramid. The apexes of the pyramidal towers are very sharp, with a radius of curvature as small as 2 to 50 nm. C1 [Pan, Zhengwei] Univ Georgia, Fac Engn, Athens, GA 30602 USA. [Pan, Zhengwei] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Budai, John D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dai, Zu Rong] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Pan, ZW (reprint author), Univ Georgia, Fac Engn, Athens, GA 30602 USA. EM panz@uga.edu RI Dai, Zurong/E-6732-2010; Paranthaman, Mariappan/N-3866-2015; Dai, Sheng/K-8411-2015; Budai, John/R-9276-2016; OI Paranthaman, Mariappan/0000-0003-3009-8531; Dai, Sheng/0000-0002-8046-3931; Budai, John/0000-0002-7444-1306; Pan, Zhengwei/0000-0002-3854-958X FU University of Georgia Research Foundation; US Office of Naval Research; Oak Ridge National Laboratory (ORNL); US Department of Energy (DOE) [DE-AC05-00OR22725] FX This work was supported by the University of Georgia Research Foundation, the US Office of Naval Research, and the Oak Ridge National Laboratory (ORNL). We thank the ORNL SHaRE Collaborative Research Center, the ORNL High-Temperature Research Laboratory (HTML), and the ORNL Center for Nanophase Materials Science (CNMS) for the use of their electron microscope facilities. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy (DOE) under contract No. DE-AC05-00OR22725. Use of the Advanced Photon Source was supported by the US DOE, Office of Sciences, Office of Basic Energy Sciences. We thank Jon Tischler for help with XRD software and data analysis. Supporting Information is available online from Wiley InterScience or from the author. NR 30 TC 26 Z9 26 U1 2 U2 27 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 23 PY 2009 VL 21 IS 8 BP 890 EP + DI 10.1002/adma.200802138 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 416WC UT WOS:000264035200006 ER PT J AU Liu, X Im, KS Wang, YJ Wang, J Tate, MW Ercan, A Schuette, DR Gruner, SM AF Liu, Xin Im, Kyoung-Su Wang, Yujie Wang, Jin Tate, Mark W. Ercan, Alper Schuette, Daniel R. Gruner, Sol M. TI Four dimensional visualization of highly transient fuel sprays by microsecond quantitative x-ray tomography SO APPLIED PHYSICS LETTERS LA English DT Article DE computerised tomography; flow simulation; flow visualisation; jets; nozzles; sprays; X-ray microscopy ID PIXEL ARRAY DETECTOR; TIME; DIFFRACTION; ATOMIZATION; MECHANISM AB An ultrafast x-ray microtomography technique based on synchrotron x rays and a fast-framing x-ray detector was developed to reconstruct the highly transient sprays in four dimensions with microsecond-temporal resolution in the near-nozzle region. The time-resolved quantitative fuel distribution allowed a realistic numerical fluid dynamic simulation with initial conditions based on the measurement, which demonstrates that the fuel has completed the primary breakup upon exiting the nozzle. The secondary-breakup-based simulation agrees well with the experimental fuel-volume fraction distribution, which challenges most existing simulation assumptions and results. C1 [Liu, Xin; Im, Kyoung-Su; Wang, Yujie; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Tate, Mark W.; Ercan, Alper; Schuette, Daniel R.; Gruner, Sol M.] Cornell Univ, Ithaca, NY 14853 USA. RP Liu, X (reprint author), Mayo Clin, Rochester, MN 55905 USA. EM liu.xin@mayo.edu; wangj@aps.anl.gov RI Gruner, Sol/G-2924-2010; wang, yujie/C-2582-2015 OI Gruner, Sol/0000-0002-1171-4426; FU U. S. Department of Energy [DE-AC02-06CH11357, DE-FG-0297ER14805, DE-FG-0297ER62443]; U. S. National Science Foundation (NSF); U. S. National Institute of General Medical Sciences [DMR9713424] FX The work is supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357 through an Argonne National Laboratory (ANL) LDRD grant. The authors would like to thank D. Shu, J. Liu, X. Li, C. F. Powell, and S. Cheong of ANL for their contributions. The authors would also like to thank the staff at APS 1-BM beamline and A. Woll, D. Smilgies and the staff at CHESS for their help with data collection. CHESS is funded by the U. S. National Science Foundation (NSF) and the U. S. National Institute of General Medical Sciences via NSF under Award No. DMR9713424. PAD development was funded by DOE Grant Nos. DE-FG-0297ER14805 and DE-FG-0297ER62443. NR 23 TC 9 Z9 9 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2009 VL 94 IS 8 AR 084101 DI 10.1063/1.3048563 PG 3 WC Physics, Applied SC Physics GA 413PG UT WOS:000263804400095 ER PT J AU Lu, GH Ocola, LE Chen, JH AF Lu, Ganhua Ocola, Leonidas E. Chen, Junhong TI Gas detection using low-temperature reduced graphene oxide sheets SO APPLIED PHYSICS LETTERS LA English DT Article DE adsorption; annealing; charge exchange; electric sensing devices; gas sensors; graphene; hole density; nitrogen compounds; semiconductor materials ID GRAPHITE OXIDE; LAYER GRAPHENE; FILMS; NANOPARTICLES; CONDUCTIVITY; TRANSPARENT; REDUCTION; TRANSPORT; SENSORS; VAPOR AB We demonstrate a high-performance gas sensor using partially reduced graphene oxide (GO) sheets obtained through low-temperature step annealing (300 degrees C at maximum) in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally reduced GO showed p-type semiconducting behavior in ambient conditions and were responsive to low-concentration NO(2) diluted in air at room temperature. The sensitivity is attributed to the electron transfer from the reduced GO to adsorbed NO(2), which leads to enriched hole concentration and enhanced electrical conduction in the reduced GO sheet. C1 [Lu, Ganhua; Chen, Junhong] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. [Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Lu, GH (reprint author), Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. EM jhchen@uwm.edu RI Lu, Ganhua/B-4643-2010; OI Lu, Ganhua/0000-0003-3279-8427; Ocola, Leonidas/0000-0003-4990-1064 FU NSF [CMMI-0609059, CBET-0803142]; U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was financially supported by the NSF (Grant Nos. CMMI-0609059 and CBET-0803142) and through a UWMRF catalyst grant. The authors thank R. S. Ruoff and D. A. Dikin for providing GO suspensions. The e-beam lithography was performed at the Center for Nanoscale Materials of Argonne National Laboratory (ANL) and the SEM imaging was conducted at the Electron Microscopy Center of ANL, both of which are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 31 TC 190 Z9 196 U1 21 U2 152 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2009 VL 94 IS 8 AR 083111 DI 10.1063/1.3086896 PG 3 WC Physics, Applied SC Physics GA 413PG UT WOS:000263804400071 ER PT J AU Patel, U Hua, J Yu, SH Avci, S Xiao, ZL Claus, H Schlueter, J Vlasko-Vlasov, VV Welp, U Kwok, WK AF Patel, U. Hua, J. Yu, S. H. Avci, S. Xiao, Z. L. Claus, H. Schlueter, J. Vlasko-Vlasov, V. V. Welp, U. Kwok, W. K. TI Growth and superconductivity of FeSex crystals SO APPLIED PHYSICS LETTERS LA English DT Article DE crystal growth from vapour; ferromagnetism; iron alloys; magnetic anisotropy; selenium alloys; superconducting critical field; superconducting materials; superconducting transition temperature; X-ray diffraction AB Iron selenide (FeSex) crystals with lateral dimensions up to millimeters were grown via a vapor self-transport method. The crystals consist of the dominant alpha-phase with trace amounts of beta-phase as identified by powder x-ray diffraction. With four-probe resistance measurements, we obtained a zero resistance critical temperature of 7.5 K and a superconducting onset transition temperature of up to 11.8 K in zero magnetic field as well as an anisotropy of 1.5 +/- 0.1 for the critical field. Magnetization measurements on individual crystals reveal the coexistence of superconductivity and ferromagnetism. C1 [Patel, U.; Hua, J.; Yu, S. H.; Avci, S.; Xiao, Z. L.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Claus, H.; Schlueter, J.; Vlasko-Vlasov, V. V.; Welp, U.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Xiao, ZL (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM zxiao@niu.edu RI Patel, Umeshkumar/A-8643-2013; YU, SUHONG/G-7532-2015 OI Patel, Umeshkumar/0000-0002-8259-1646; YU, SUHONG/0000-0003-2554-6520 FU U. S. Department of Energy [DE-FG02-06ER46334, DE-AC02-06CH11357] FX This work was supported by the U. S. Department of Energy under Grant Nos. DE-FG02-06ER46334 and DE-AC02-06CH11357. The compositional and morphological analyses were taken at Argonne's Electron Microscopy Center (EMC) and the Center for Nanoscale Materials (CNM), respectively. NR 18 TC 57 Z9 58 U1 4 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2009 VL 94 IS 8 AR 082508 DI 10.1063/1.3093838 PG 3 WC Physics, Applied SC Physics GA 413PG UT WOS:000263804400053 ER PT J AU Sutter, E Camino, F Sutter, P AF Sutter, Eli Camino, Fernando Sutter, Peter TI One-step synthesis of Ge-SiO2 core-shell nanowires SO APPLIED PHYSICS LETTERS LA English DT Article DE carrier mobility; elemental semiconductors; field effect transistors; germanium; nanofabrication; nanowires; oxidation; semiconductor-insulator boundaries; silicon compounds; vacuum deposition ID FIELD-EFFECT TRANSISTORS; SEMICONDUCTOR NANOWIRES; GE NANOWIRES; GROWTH; HETEROSTRUCTURES AB We report on a one-step process based on thermal evaporation at moderate temperatures that yields single-crystalline Ge nanowires (NWs) encapsulated in SiO2 shells. The dielectric shell forms around the Ge NW core during the NW growth process itself, an advantage in the assembly of NW devices such as surround-gate NW field-effect transistors (FETs). The formation of the core-shell structures proceeds via an unconventional vapor-liquid-solid process involving root growth of SiGe NWs and selective Si oxidation by background oxygen in the reactor. Electrical measurements of the p-type Ge-SiO2 FET devices show efficient gate control and hole mobilities of 20 cm(2)/V s. C1 [Sutter, Eli; Camino, Fernando; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov NR 21 TC 11 Z9 12 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2009 VL 94 IS 8 AR 083109 DI 10.1063/1.3089235 PG 3 WC Physics, Applied SC Physics GA 413PG UT WOS:000263804400069 ER PT J AU Zhu, D Xu, JR Noemaun, AN Kim, JK Schubert, EF Crawford, MH Koleske, DD AF Zhu, Di Xu, Jiuru Noemaun, Ahmed N. Kim, Jong Kyu Schubert, E. Fred Crawford, Mary H. Koleske, Daniel D. TI The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes SO APPLIED PHYSICS LETTERS LA English DT Article DE elemental semiconductors; gallium compounds; III-V semiconductors; indium compounds; light emitting diodes; numerical analysis; semiconductor doping; semiconductor quantum wells; silicon; wide band gap semiconductors ID TEMPERATURE; MODEL; GAN AB We report on a significant decrease in the diode-ideality factor of GaInN/GaN multiple quantum well light-emitting diodes (LEDs), from 5.5 to 2.4, as Si-doping is applied to an increasing number of quantum barriers (QBs). The minimum ideality factor of 2.4 is obtained when all QBs are doped. It is shown that polarization-induced triangular band profiles of the undoped QBs are the major cause of the high ideality factors in GaInN/GaN LEDs. Numerical simulations show excellent agreement with the measured ideality factor value and its dependence on QB doping. C1 [Zhu, Di; Xu, Jiuru; Noemaun, Ahmed N.; Kim, Jong Kyu; Schubert, E. Fred] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Zhu, Di; Xu, Jiuru; Noemaun, Ahmed N.; Kim, Jong Kyu; Schubert, E. Fred] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Crawford, Mary H.; Koleske, Daniel D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhu, D (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM efschubert@rpi.edu NR 15 TC 62 Z9 65 U1 4 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 23 PY 2009 VL 94 IS 8 AR 081113 DI 10.1063/1.3089687 PG 3 WC Physics, Applied SC Physics GA 413PG UT WOS:000263804400013 ER PT J AU Merighi, M Septer, AN Carroll-Portillo, A Bhatiya, A Porwollik, S McClelland, M Gunn, JS AF Merighi, Massimo Septer, Alecia N. Carroll-Portillo, Amanda Bhatiya, Aditi Porwollik, Steffen McClelland, Michael Gunn, John S. TI Genome-wide analysis of the PreA/PreB (QseB/QseC) regulon of Salmonella enterica serovar Typhimurium SO BMC MICROBIOLOGY LA English DT Article ID ENTEROHEMORRHAGIC ESCHERICHIA-COLI; OXIDATIVE STRESS RESISTANCE; NADPH QUINONE REDUCTASE; REGULATOR-C QSEBC; HELICOBACTER-PYLORI; SENSOR KINASE; NOREPINEPHRINE; COLONIZATION; SYSTEM; GENES AB Background: The Salmonella PreA/PreB two-component system (TCS) is an ortholog of the QseBC TCS of Escherichia coli. In both Salmonella and E. coli, this system has been shown to affect motility and virulence in response to quorum-sensing and hormonal signals, and to affect the transcription of the Salmonella enterica serovar Typhimurium (S. Typhimurium) pmrAB operon, which encodes an important virulence-associated TCS. Results: To determine the PreA/PreB regulon in S. Typhimurium, we performed DNA microarrays comparing the wild type strain and various preA and/or preB mutants in the presence of ectopically expressed preA (qseB). These data confirmed our previous findings of the negative effect of PreB on PreA gene regulation and identified candidate PreA-regulated genes. A proportion of the activated loci were previously identified as PmrA-activated genes (yibD, pmrAB, cptA, etc.) or were genes located in the local region around preA, including the preAB operon. The transcriptional units were defined in this local region by RT-PCR, suggesting three PreA activated operons composed of preA-preB, mdaB-ygiN, and ygiW-STM3175. Several putative virulence-related phenotypes were examined for preAB mutants, resulting in the observation of a host cell invasion and slight virulence defect of a preAB mutant. Contrary to previous reports on this TCS, we were unable to show a PreA/PreB-dependent effect of the quorum-sensing signal AI-2 or of epinephrine on S. Typhimurium with regard to bacterial motility. Conclusion: This work further characterizes this unorthadox OmpR/EnvZ class TCS and provides novel candidate regulated genes for further study. This first in-depth study of the PreA/PreB regulatory system phenotypes and regulation suggests significant comparative differences to the reported function of the orthologous QseB/QseC in E. coli. C1 [Merighi, Massimo; Septer, Alecia N.; Bhatiya, Aditi; Gunn, John S.] Ohio State Univ, Ctr Microbial Interface Biol, Columbus, OH 43210 USA. [Merighi, Massimo; Septer, Alecia N.; Bhatiya, Aditi; Gunn, John S.] Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA. [Carroll-Portillo, Amanda] Univ Texas Hlth Sci Ctr San Antonio, San Antonio, TX 78229 USA. [Porwollik, Steffen; McClelland, Michael] Sidney Kimmel Canc Ctr, La Jolla, CA 92121 USA. [Merighi, Massimo] Harvard Univ, Dept Microbiol & Mol Genet, Sch Med, Boston, MA 02115 USA. [Carroll-Portillo, Amanda] Sandia Natl Labs, Dept Biomol Mat & Interfaces, Albuquerque, NM 87185 USA. [Septer, Alecia N.] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. RP Gunn, JS (reprint author), Ohio State Univ, Ctr Microbial Interface Biol, 333 W 10th Ave, Columbus, OH 43210 USA. EM massimo_merighi@hms.harvard.edu; ansepter@gmail.com; acarrol@sandia.gov; aditi.bhatiya@osumc.edu; sporwollik@skcc.org; mmcclelland@skcc.org; gunn.43@osu.edu RI Gunn, John/E-3167-2011; OI McClelland, Michael/0000-0003-1788-9347 FU NIH [AI043521, AI034829, AI52237, AI073971] FX This work was supported by grant AI043521 from the NIH to JSG. MMc was supported, in part by NIH grants AI034829, AI52237, and AI073971. NR 22 TC 36 Z9 36 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD FEB 23 PY 2009 VL 9 AR 42 DI 10.1186/1471-2180-9-42 PG 11 WC Microbiology SC Microbiology GA 418PS UT WOS:000264161100001 PM 19236707 ER PT J AU Ahn, TK Avenson, TJ Peers, G Li, ZR Dall'Osto, L Bassi, R Niyogi, KK Fleming, GR AF Ahn, Tae Kyu Avenson, Thomas J. Peers, Graham Li, Zhirong Dall'Osto, Luca Bassi, Roberto Niyogi, Krishna K. Fleming, Graham R. TI Investigating energy partitioning during photosynthesis using an expanded quantum yield convention SO CHEMICAL PHYSICS LA English DT Article DE Quantum yield convention; Non-photochemical quenching; NPQ; Zeaxanthin cation formation ID LIGHT-HARVESTING COMPLEX; CHARGE-TRANSFER STATE; PHOTOSYSTEM-II; CHLOROPHYLL FLUORESCENCE; XANTHOPHYLL CYCLE; HIGHER-PLANTS; GREEN PLANTS; IN-VIVO; ARABIDOPSIS MUTANTS; ANTENNA COMPLEXES AB In higher plants, regulation of excess absorbed light is essential for their survival and fitness, as it enables avoidance of a build up of singlet oxygen and other reactive oxygen species. Regulation processes (known as non-photochemical quenching; NPQ) can be monitored by steady-state fluorescence on intact plant leaves. Pulse amplitude modulated (PAM) measurements of chlorophyll a fluorescence have been used for over 20 years to evaluate the amount of NPQ and photochemistry (PC). Recently, a quantum yield representation of NPQ(Phi(NPQ)), which incorporates a variable fraction of open reaction centers, was proposed by Hendrickson et al. [L. Hendrickson, R.T. Furbank, W.S. Chow, Photosynth. Res. 82 (2004) 73]. In this work we extend the quantum yield approach to describe the yields of reversible energy-dependent quenching state transitions to balance PC between photosystems II and I (Phi(qT)) and photoinhibition quenching associated with damaged reaction centers (Phi(qt)), We showed the additivity of the various quantum yield components of NPQ through experiments on wild-type and npq1 strains of Arabidopsis thaliana. The quantum yield approach enables comparison of Phi(qE) with data from a variety of techniques used to investigate the mechanism of qE. We showed that Phi(qE) for a series of A. thaliana genotypes scales linearly with the magnitude of zeaxanthin cation formation, suggesting that charge-transfer quenching is largely responsible for qE in plants. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ahn, Tae Kyu; Avenson, Thomas J.; Niyogi, Krishna K.; Fleming, Graham R.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ahn, Tae Kyu; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Avenson, Thomas J.; Peers, Graham; Li, Zhirong; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Dall'Osto, Luca; Bassi, Roberto] Univ Verona, Dept Sci & Technol, I-37134 Verona, Italy. RP Niyogi, KK (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM niyogi@nature.berkeley.edu; GRFleming@lbl.gov RI Dall'Osto, Luca/A-9384-2010; Ahn, Tae/A-5838-2013; OI bassi, roberto/0000-0002-4140-8446; Dall'Osto, Luca/0000-0001-9497-5156 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [AC02-05CH11231, DE-AC03-76SF000098]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy; Korea Research Foundation [KRF-2006-214-C00037]; Korean Government (MOEHRD); National Research Initiative Competitive Grant [2006-03279]; Italian Basic Research Foundation [RBLA0345SF]; SAMBA Trento Research Council FX We thank Dr. Yuan-Chung Cheng for helpful discussions. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC03-76SF000098 (G.R.F. and KXN) and by the Korea Research Foundation Grant (KRF-2006-214-C00037) funded by the Korean Government (MOEHRD) (T.K.A.), and the National Research Initiative Competitive Grant (2006-03279) (T.J.A.). R.B. thanks the FIRB contract RBLA0345SF from the Italian Basic Research Foundation and contract SAMBA Trento Research Council for foundational support. NR 53 TC 7 Z9 7 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 J9 CHEM PHYS JI Chem. Phys. PD FEB 23 PY 2009 VL 357 IS 1-3 SI SI BP 151 EP 158 DI 10.1016/j.chemphys.2008.12.003 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 414GL UT WOS:000263851800021 ER PT J AU Buckley, MR Choi, SY Mawatari, K Murayama, H AF Buckley, Matthew R. Choi, Seong Youl Mawatari, Kentarou Murayama, Hitoshi TI Determining spin through quantum azimuthal-angle correlations SO PHYSICS LETTERS B LA English DT Article ID DYNAMICAL SYMMETRY-BREAKING; SUPERSYMMETRIC PARTICLES; FUTURE COLLIDERS; STANDARD-MODEL; PHYSICS AB Determining the spin of new particles is critical in identifying the true theory among various extensions of the Standard Model at the next generation of colliders. Quantum interference between different helicity amplitudes was shown to be effective when the final state is fully reconstructible. However, many interesting new physics processes allow only for partial reconstruction. in this Letter, we show how the interference effect can be unambiguously extracted even in processes that have two-fold ambiguity, by considering the correlation between two decay planes in e(+)e(-) collisions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Choi, Seong Youl] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea. [Choi, Seong Youl] Chonbuk Natl Univ, RIPC, Jeonju 561756, South Korea. [Buckley, Matthew R.; Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Buckley, Matthew R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Buckley, Matthew R.; Murayama, Hitoshi] Univ Tokyo, IPMU, Chiba 2778568, Japan. [Buckley, Matthew R.] CALTECH, Pasadena, CA 91125 USA. [Mawatari, Kentarou] Korea Inst Adv Study, Sch Phys, Seoul 130722, South Korea. [Mawatari, Kentarou] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany. RP Choi, SY (reprint author), Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea. EM sychoi@chonbuk.ac.kr RI Murayama, Hitoshi/A-4286-2011; OI Buckley, Matthew/0000-0003-1109-3460 FU Korea Research Foundation, Korean Government; MOERHRD, Basic Research Promotion Fund [KRF-2007-521-CO0065]; KOSEF through CHEP at Kyungpook National University; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; US DOE [DE-AC03-76SF00098]; NSF [PHY-04-57315] FX K.M. acknowledges the hospitality of the Chonbuk National University where part of this work was carried out. The work of S.Y.C. was supported in part by the Korea Research Foundation Grant funded by the Korean Government (MOERHRD, Basic Research Promotion Fund) (KRF-2007-521-CO0065) and in part by KOSEF through CHEP at Kyungpook National University. The work of M.R.B. and H.M. was supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, in part by the US DOE under Contract DE-AC03-76SF00098, and in part by the NSF under grant PHY-04-57315. NR 24 TC 12 Z9 12 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 23 PY 2009 VL 672 IS 3 BP 275 EP 279 DI 10.1016/j.physletb.2009.01.034 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 415PZ UT WOS:000263947900014 ER PT J AU Gimon, EG Horava, P AF Gimon, Eric G. Horava, Petr TI Astrophysical violations of the Kerr bound as a possible signature of string theory SO PHYSICS LETTERS B LA English DT Article ID ROTATING BLACK-HOLES AB In 4D general relativity, the angular momentum of a black hole is limited by the Kerr bound. We suggest that in string theory, this bound can be breached and compact black-hole-like objects can spin faster. Near such "superspinars", the efficiency of energy transfer from the accreting matter to radiation can reach 100%. compared to the maximum efficiency of 42% of the extremal Kerr (or 6% of the Schwarzschild) black hole. Finding such superspinning objects as active galactic nuclei, GBHCs, or sources of gamma ray bursts, could be viewed as experimental support for string theory. (C) 2009 Published by Elsevier B.V. C1 [Gimon, Eric G.; Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Gimon, Eric G.; Horava, Petr] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gimon, Eric G.; Horava, Petr] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM horava@berkeley.edu FU NSF [PHY-0244900, PHY-0555662]; DOE [DE-AC03-76SF00098] FX We wish to thank T. Damour, C. Done, G. Horowitz, and E. Witten for useful discussions. This work was supported by NSF Grants PHY-0244900 and PHY-0555662, DOE Grant DE-AC03-76SF00098, and the Berkeley Center for Theoretical Physics. An early version of our arguments was presented by P.H. at Strings 2004 in Paris. NR 23 TC 45 Z9 45 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 23 PY 2009 VL 672 IS 3 BP 299 EP 302 DI 10.1016/j.physletb.2009.01.026 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 415PZ UT WOS:000263947900019 ER PT J AU Guo, XF Liu, DJ Evans, JW AF Guo, Xiaofang Liu, Da-Jiang Evans, J. W. TI Schloegl's second model for autocatalysis with particle diffusion: Lattice-gas realization exhibiting generic two-phase coexistence SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE catalysis; diffusion; lattice gas; nonequilibrium thermodynamics; nucleation; phase transformations; stochastic processes ID PHASE-TRANSITIONS; SURFACE-REACTION; INTERFACE PROPAGATION; REACTIVE SYSTEMS; KINETICS; RELAXATION; ADSORBATES; CATALYSIS; BEHAVIOR; COMPLEX AB We analyze a discontinuous nonequilibrium phase transition between an active (or reactive) state and a poisoned (or extinguished) state occurring in a stochastic lattice-gas realization of Schloegl's second model for autocatalysis. This realization, also known as the quadratic contact process, involves spontaneous annihilation, autocatalytic creation, and diffusion of particles on a square lattice, where creation at empty sites requires a suitable nearby pair of particles. The poisoned state exists for all annihilation rates p>0 and is an absorbing particle-free "vacuum" state. The populated active steady state exists only for p below a critical value, p(e). If p(f) denotes the critical value below which a finite population can survive, then we show that p(f)< p(e). This strict inequality contrasts a postulate of Durrett, and is a direct consequence of the occurrence of coexisting stable active and poisoned states for a finite range p(f)<= p <= p(e) (which shrinks with increasing diffusivity). This so-called generic two-phase coexistence markedly contrasts behavior in thermodynamic systems. However, one still finds metastability and nucleation phenomena similar to those in discontinuous equilibrium transitions. C1 [Guo, Xiaofang; Liu, Da-Jiang; Evans, J. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Guo, Xiaofang] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Guo, Xiaofang; Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Guo, XF (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM evans@ameslab.gov FU Division of Chemical Sciences; U.S. Department of Energy (Basic Energy Sciences); Iowa State University [DE-AC02-07CH11358] FX This work was supported by the Division of Chemical Sciences and by the SciDAC Computational Chemistry program of the U.S. Department of Energy (Basic Energy Sciences). It was performed at Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 54 TC 16 Z9 16 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2009 VL 130 IS 7 AR 074106 DI 10.1063/1.3074308 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 410ST UT WOS:000263599300007 PM 19239283 ER PT J AU Jiang, DE Du, MH Dai, S AF Jiang, De-en Du, Mao-Hua Dai, Sheng TI First principles study of the graphene/Ru(0001) interface SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; adhesion; density functional theory; graphene; interface structure; ruthenium; thermodynamics ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; EPITAXIAL GRAPHENE; METAL-SURFACES; BASIS-SET; RU(0001) AB Annealing the Ru metal that typically contains residual carbon impurities offers a facile way to grow graphene on Ru(0001) at the macroscopic scale. Two superstructures of the graphene/Ru(0001) interface with periodicities of 3.0 and 2.7 nm, respectively, were previously observed by scanning tunneling microscopy. Using first principles density functional theory, we optimized the observed superstructures and found interfacial C-Ru bonding of C atoms atop Ru atoms for both superstructures, which causes the graphene sheet to buckle and form periodic humps of similar to 1.7 A in height within the graphene sheet. The flat region of the graphene sheet, which is 2.2-2.3 A above the top Ru layer and has more C atoms occupying the atop sites, interacts more strongly with the substrate than does the hump region. We found that interfacial adhesion is much stronger for the 3.0 nm superstructure than for the 2.7 nm superstructure, suggesting that the former is the thermodynamically more stable phase. We explained the 3.0 nm superstructure's stability in terms of the interplay between C-Ru bonding and lattice matching. C1 [Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Du, Mao-Hua/B-2108-2010; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Du, Mao-Hua/0000-0001-8796-167X; Dai, Sheng/0000-0002-8046-3931 FU Office of Basic Energy Sciences; U. S. Department of Energy [DE-AC05-00OR22725, DEAC0205CH11231]; Office of Nonproliferation Research and Development [NA22]; U. S. Department of Energy FX This work was supported by the Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, and by the Office of Nonproliferation Research and Development (NA22), U. S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DEAC0205CH11231. NR 29 TC 71 Z9 71 U1 2 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2009 VL 130 IS 7 AR 074705 DI 10.1063/1.3077295 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 410ST UT WOS:000263599300031 PM 19239307 ER PT J AU Xing, XP Wang, XB Wang, LS AF Xing, Xiao-Peng Wang, Xue-Bin Wang, Lai-Sheng TI Photoelectron imaging of multiply charged anions: Effects of intramolecular Coulomb repulsion and photoelectron kinetic energies on photoelectron angular distributions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electron detachment; negative ions; organic compounds; potential energy functions; ultraviolet photoelectron spectra; visible spectra ID GAS-PHASE; NEGATIVE-IONS; PHOTODETACHMENT SPECTROSCOPY; PHOTODISSOCIATION; IONIZATION; CHEMISTRY; CLUSTERS; BARRIER; IMAGES; FIELDS AB Multiply charged anions possess strong intramolecular Coulomb repulsion (ICR), which has been shown to dictate photoelectron angular distributions (PADs) using photoelectron imaging. Here we report the effects of photoelectron kinetic energies on the PADs of multiply charged anions. Photoelectron images on a series of dicarboxylate dianions, (-)O(2)C(CH(2))(n)CO(2)(-) (D(n)(2-), n=3-11) have been measured at two photon energies, 532 and 266 nm. The first photoemission band of D(n)(2-), which is a perpendicular transition in the absence of the ICR, comes from electron detachment of an O lone pair orbital on the -CO(2)(-) end groups. Recent photoelectron imaging studies at 355 nm show that the PADs of D(n)(2-) peak in the directions parallel to the laser polarization for small n due to the ICR, which directs the outgoing electrons along the molecular axis. The current data show much stronger parallel peaking at 532 nm, but much weaker parallel peaking in the 266 nm data, relative to the 355 nm data. These observations indicate that the ICR has greater influence on the trajectories of slow photoelectrons and much reduced effects on faster photoelectrons. This study demonstrates that the PADs of multiply charged anions depend on the interplay between ICR and the outgoing photoelectron kinetic energies. C1 [Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division; National Science Foundation [CHE-0749496]; DOE's Office of Biological and Environmental Research FX We thank Professor M. A. Johnson and his group for valuable discussions and help during the construction of the imaging analyzer and Professor H. Reisler for the BASEX program used for the inverse Abel transformation. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Science Division and partly by the National Science Foundation (Grant No. CHE-0749496) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle. NR 31 TC 15 Z9 15 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2009 VL 130 IS 7 AR 074301 DI 10.1063/1.3077230 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 410ST UT WOS:000263599300012 PM 19239288 ER EF