FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU McManamy, T
Forester, J
AF McManamy, T.
Forester, J.
TI SNS Target Systems initial operating experience
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Spallation target systems; Reliability; Mercury target; Initial
operation
AB The SNS mercury target started operation with low beam power when commissioned on April 28, 2006. The beam power has been following a planned ramp up since then and has reached 340 kW as of February 2008. The target systems supporting neutron production include the target and mercury loop, the cryogenic and ambient moderator systems, reflector and vessel systems, bulk shielding and shutters systems, utility systems, remote handling systems and the associated instrumentation and controls. Availability for these systems has improved with time and reached 100% for the first 2000 hour neutron production run in fiscal year 2008. An overview of the operating experience and the planning to support continued power increases to 1.4 MW for these systems will be given in this paper. (C) 2008 Elsevier B.V. All rights reserved.
C1 [McManamy, T.; Forester, J.] Spallat Neutron Source ORNL, Oak Ridge, TN 37821 USA.
RP McManamy, T (reprint author), Spallat Neutron Source ORNL, POB 2008,Bldg 8600,MS-6473, Oak Ridge, TN 37821 USA.
EM mcmanamytj@ornl.gov
NR 3
TC 2
Z9 2
U1 1
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 25
EP 27
DI 10.1016/j.nima.2008.11.015
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800009
ER
PT J
AU Higemoto, W
Heffner, RH
Shimomura, K
Nishiyama, K
Miyake, Y
AF Higemoto, W.
Heffner, R. H.
Shimomura, K.
Nishiyama, K.
Miyake, Y.
TI JAEA-ASRC mu SR project at J-PARC MUSE
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE mu SR; Spectrometer; f-Electron physics
AB The Japan Atomic Energy Agency (JAEA)-Advanced Science Research Center (ASRC) is advancing a "mu SR project" at the J-PARC MLF muon science facility (MUSE). This project entails extracting part of the muon beam into a muon spectrometer constructed downstream from the Decay/Surface muon beam line. one of the main subjects of study at the ASRC mu SR project will be an examination of strongly correlated electron systems, especially f-electron systems. The intense muon beams available at MUSE will yield new insights for f-electron physics. (c) 2008 Elsevier B.V. All rights reserved.
C1 [Higemoto, W.; Heffner, R. H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Ibaraki 3191195, Japan.
[Shimomura, K.; Nishiyama, K.; Miyake, Y.] High Energy Accelerator Res Org, Muon Sci Lab, Tsukuba, Ibaraki 3050801, Japan.
[Heffner, R. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Higemoto, W (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Ibaraki 3191195, Japan.
EM higemoto.wataru@jaea.go.jp
NR 1
TC 1
Z9 1
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 182
EP 184
DI 10.1016/j.nima.2008.11.027
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800057
ER
PT J
AU Bleuel, M
Gahler, R
Lang, E
Lal, J
AF Bleuel, M.
Gahler, R.
Lang, E.
Lal, J.
TI Experimental tests with MISANS (Modulated Intensity Small Angle Neutron
Scattering) at IPNS (Intense Pulsed Neutron Source)
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutron spin echo; Small angle neutron scattering; Pulsed neutron source
ID SPIN-ECHO
AB In this paper we describe the latest tests of the MISANS spectrometer at the lPNS in Argonne, USA. At this stage the time resolution and more importantly the contrast of the modulation at the detector is very low, nevertheless it was possible to perform a MISANS-measurement and test some features typical for a pulsed neutron source. The MISANS technique has a huge potential to improve its contrast and resolution towards a high resolution spin echo spectrometer. Published by Elsevier B.V.
C1 [Bleuel, M.; Lang, E.; Lal, J.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Gahler, R.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France.
RP Bleuel, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM mbleuel@anl.gov
FU US Department of Energy, BES-Materials Science [W-31-109-ENG-38]
FX The authors gratefully acknowledge P. Boeni (E21, TUM), J. Carpenter
(IPNS, ANQ, R DeLurgio (HEP, ANL), T. Krist (BENSC, HMI), S.G.E. te
Velthuis (MSD, ANL) and R. Vitt (IPNS, ANQ for helpful commends,
technical help, borrowed polarizers and beamtime. The support of the
management and staff of the IPNS is gratefully acknowledged. This work
was funded by the US Department of Energy, BES-Materials Science, under
Contract W-31-109-ENG-38.
NR 7
TC 2
Z9 2
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 220
EP 222
DI 10.1016/j.nima.2008.11.130
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800068
ER
PT J
AU Wakimoto, S
Samara, GA
Grubbs, RK
Venturini, EL
Boatner, LA
AF Wakimoto, S.
Samara, G. A.
Grubbs, R. K.
Venturini, E. L.
Boatner, L. A.
TI Neutron scattering study of the relaxor ferroelectric K1-xLixTaO3
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Relaxor; Ferroelectric phonon mode; Polar nanoregion; Neutron scattering
ID RAMAN-SCATTERING; TRANSITION; PHASE; KTAO3
AB Neutron scattering experiments using triple axis spectrometers have been performed for the relaxor ferroelectric materials K1-xLixTaO3 (x=0.05, 0.10) in order to study the behavior of the zone-center (ZC) transverse-optic (TO) phonon mode (ferroelectric mode). A major contrast between the x=0.05 and 0.10 samples is the ferroelectric transition-observed only for the latter material at T-c=115 K on warming and as detected by dielectric measurements and neutron diffraction. The ZC TO mode for x=0.05 shows monotonic softening with decreasing temperature down to 10 K, whereas the x=0.10 sample shows a phonon component below T-c which hardens with decreasing temperature in addition to a phonon mode which behaves similarly to that of the x=0.05 sample. This suggests a phase separation of the x=0.10 sample into ferroelectric and relaxor states below T-c, possibly originating from a percolative nature of the ferroelectric state. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Wakimoto, S.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Toukai, Ibaraki 3191195, Japan.
[Samara, G. A.; Grubbs, R. K.; Venturini, E. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Boatner, L. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Wakimoto, S (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Toukai, Ibaraki 3191195, Japan.
EM wakimoto.shuichi@jaea.go.jp
RI Boatner, Lynn/I-6428-2013
OI Boatner, Lynn/0000-0002-0235-7594
FU US-Japan Cooperative Research Program; Division of Material Sciences and
Engineering; Office of Basic Energy Sciences; US Department of Energy
[DE-AC04-94AL85000, DE-AC05-00OR22725]
FX Authors thank H. Taniguchi, K. Kakurai and G. Shirane for invaluable
discussion. This work was partially supported by the US-Japan
Cooperative Research Program on Neutron Scattering. Work at Sandia
National Laboratory was supported by the Division of Material Sciences
and Engineering, Office of Basic Energy Sciences, US Department of
Energy under Contract DE-AC04-94AL85000. Research sponsored in part by
the Division of Material Sciences and Engineering, Office of Basic
Energy Sciences, US Department of Energy under Contract
DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and
operated by UT-Battelle. LLC.
NR 9
TC 2
Z9 2
U1 1
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 254
EP 256
DI 10.1016/j.nima.2008.11.041
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800078
ER
PT J
AU Neuefeind, J
Benmore, C
AF Neuefeind, Joerg
Benmore, Chris
TI Formalism for the determination of structural isotope effects with
neutrons
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Structural isotope effect; Liquid water
ID WATER
AB In general the analysis of neutron isotopic substitution experiments in terms of partial structure factors and partial pair distribution functions is based on the assumption that the structure of isotopic variants of a molecule is identical. This assumption is clearly only an approximation especially in the case of hydrogen bonding molecular liquids like liquid water and structural isotope effects have been measured with X-rays for more than 20 years. An analysis method of neutron isotope data is presented that avoids the necessity to assume structural equality and allows the determination of the isotope effect in the hydrogen-hydrogen partial structure factor of liquid water from neutron data. It is shown that a combination of X-ray and neutron scattering measurements allows in principle the determination of the isotope effects on all partial structure factors of liquid water. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Neuefeind, Joerg] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
[Benmore, Chris] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA.
RP Neuefeind, J (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA.
EM neuefeindjc@ornl.gov
RI Neuefeind, Joerg/D-9990-2015;
OI Neuefeind, Joerg/0000-0002-0563-1544; Benmore, Chris/0000-0001-7007-7749
FU Office of Basic Energy Sciences; US Department of Energy
[DE-AC05-00OR22725]; US DOE [DE-AC02-06CH11357]
FX This research was supported by Office of Basic Energy Sciences, US
Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle.
A part of the work has been performed under the US DOE Contract no.
DE-AC02-06CH11357 at Argonne National Laboratory.
NR 9
TC 3
Z9 3
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 257
EP 259
DI 10.1016/j.nima.2008.11.138
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800079
ER
PT J
AU Koetzle, TF
Piccoli, PMB
Schultz, AJ
AF Koetzle, Thomas F.
Piccoli, Paula M. B.
Schultz, Arthur J.
TI Single-crystal neutron diffraction studies of hydrogen-bonded systems:
Two recent examples from IPNS
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Crystal structure; Hydrogen bonding; Neutron diffraction; Single-crystal
diffractometers
ID X-RAY; CHARGE-DENSITY; TETRAACETYLETHANE; DIFFRACTOMETER; BENZOYLACETONE
AB Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetra acetyl ethane (TAE), a beta-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers; that are under development at the Spallation Neutron Source (SNS). (C) 2008 Published by Elsevier B.V.
C1 [Koetzle, Thomas F.; Piccoli, Paula M. B.; Schultz, Arthur J.] Argonne Natl Lab, IPNS Div, Argonne, IL 60439 USA.
RP Koetzle, TF (reprint author), Argonne Natl Lab, IPNS Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM tkoetzle@anl.gov
FU US Department of Energy; Office of Science; Basic Energy Sciences
[DE-AC02-06CH11357]
FX Work at Argonne National Laboratory was supported by the US Department
of Energy, Office of Science, Basic Energy Sciences, under contract
DE-AC02-06CH11357.
NR 17
TC 5
Z9 5
U1 1
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 260
EP 262
DI 10.1016/j.nima.2008.11.126
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800080
ER
PT J
AU Nakayama, T
AF Nakayama, Tsuneyoshi
TI THz frequency dynamics of network/guest atom systems: Liquid water,
clathrates, and network glasses
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Water; Boson peak; Network glasses; Clathrates; THz frequency; Rattling;
Thermal conductivity
ID RAMAN-SCATTERING; VITREOUS SILICA; BOSON PEAK
AB Network/guest atom systems show peculiar dynamic behaviors at THz frequency region such as the plateau of thermal conductivities and the broad band spectra called the Boson peak. These are commonly realized in network/guest atom systems such as glasses, clathrates and even for liquid water. Though the phenomena are universal, there is no consistent view to explain these on the same basis. This paper, pointing out similar behaviors for these different systems, tries to present a unified view for these peculiar dynamics. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Nakayama, Tsuneyoshi] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Nakayama, T (reprint author), Toyota Phys & Chem Res Inst, Aichi 4801192, Japan.
EM Riken-nakayama@mosk.tytlabs.co.jp
FU US DOE; Office of Science [DE-AC02-06CH11357]; Office of Basic Energy
Sciences [DE-FG02-05ER46241]
FX This work was supported by the US DOE, Office of Science, Office of
Basic Energy Sciences, under Contract DE-FG02-05ER46241 at MIT and the
US DOE, Office of Science, operated under Contract DE-AC02-06CH11357 at
ANL.
NR 33
TC 3
Z9 3
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 266
EP 268
DI 10.1016/j.nima.2008.11.077
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800082
ER
PT J
AU Fukazawa, H
Hoshikawa, A
Chakoumakos, BC
Fernandez-Baca, JA
AF Fukazawa, Hiroshi
Hoshikawa, Akinori
Chakoumakos, Bryan C.
Fernandez-Baca, Jaime A.
TI Existence of ferroelectric ice on planets-A neutron diffraction study
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutron diffraction; Crystal growth; Water ice; Planets and satellites
ID PHASE-TRANSITION
AB From neutron powder-diffraction experiments. we have studied the growth process of ferroelectric ice XI (eleven) with deuteron-ordered arrangements. We measured time-resolved neutron diffraction of 0.001-M KOD-doped D(2)O ice. We observed the growth of ice XI at 72-74 K. The mass fraction f(the ratio of mass of ice XI to that of the doped ice) linearly increased with time for about 2 days. The detransformed ice lh, obtained after warming above the transition temperature of 76 K retransformed to, ice XI at 66 K. The observed increase of f with time is in good agreement with the nucleation process of the ordering and the constant growth of the ordered domain. A large fraction of ice lh sample doped with sodium hydroxide changed to ice XI at 68 K. The results suggest that large quantities of ice on cold icy bodies in our solar system are able to transform to ice XI, which may be detectable by space telescope and planetary exploration. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Fukazawa, Hiroshi] Japan Atom Energy Agcy, Neutron Mat Res Ctr, Tokai, Ibaraki 3191195, Japan.
[Hoshikawa, Akinori] Ibaraki Univ, Off Frontier Res Ctr Appl Nucl Sci, Hitachi, Ibaraki 3168511, Japan.
[Chakoumakos, Bryan C.; Fernandez-Baca, Jaime A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
RP Fukazawa, H (reprint author), Japan Atom Energy Agcy, Neutron Mat Res Ctr, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan.
EM fukazawa.hiroshi@jaea.go.jp
RI Fernandez-Baca, Jaime/C-3984-2014; Chakoumakos, Bryan/A-5601-2016
OI Fernandez-Baca, Jaime/0000-0001-9080-5096; Chakoumakos,
Bryan/0000-0002-7870-6543
NR 11
TC 8
Z9 8
U1 0
U2 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 279
EP 281
DI 10.1016/j.nima.2008.11.044
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800086
ER
PT J
AU Jeng, U
Lin, TL
Hu, Y
Lin, JM
Huang, YS
Liang, KS
Fan, L
Thiyagarajan, P
AF Jeng, U.
Lin, T. -L.
Hu, Y.
Lin, J. -M.
Huang, Y. -S.
Liang, K. S.
Fan, L.
Thiyagarajan, P.
TI Complex structure of fullerene star ionomers and sodium dodecyl sulfate
resolved by contrast variation with SANS and SAXS
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE SANS; SAXS; Complex structure; Contrast variation; Fullerene-based
ionomers
ID SMALL-ANGLE SCATTERING
AB Small angle neutron scattering and small angle X-ray scattering (SANS and SAXS) were used to resolve the complex structure formed by fullerene-based ionomers (FC(4)S) and sodium dodecyl sulfate (SDS) in aqueous solution. With contrast variations provided by deuterated and protonated SIDS for SANS and SAXS, the structure of FC(4)S/SDS aggregates, including the complex aggregation numbers, size, and shape, was obtained. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Jeng, U.; Huang, Y. -S.; Liang, K. S.] Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan.
[Lin, T. -L.; Hu, Y.; Lin, J. -M.] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30043, Taiwan.
[Lin, J. -M.] Australian Natl Univ, Res Sch Chem, Canberra, ACT, Australia.
[Fan, L.; Thiyagarajan, P.] Argonne Natl Lab, Intense Pulse Neutron Source, Argonne, IL 60439 USA.
RP Jeng, U (reprint author), Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan.
EM usjeng@nsrrc.org.tw; tllin@mx.nthu.edu.tw
NR 7
TC 6
Z9 6
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 294
EP 296
DI 10.1016/j.nima.2008.11.048
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800091
ER
PT J
AU Wang, XL
Stoica, AD
AF Wang, X. -L.
Stoica, A. D.
TI Focusing neutron guides for VULCAN-Design aspects, estimated
performance, and detector deployment
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Neutron diffraction; Engineering diffractometers; Residual stress
analysis; Neutron optics
AB The neutron optics design and performance for VULCAN-the SNS engineering diffractometer-is presented. A gradually tapered focusing neutron guide is used to deliver desired beam divergence at sample position. Selection of instrument resolution is achieved with an interchangeable guide-collimator system in the last 3 m of the neutron guide system. The effect of focusing on instrument resolution was evaluated and the strategy for detector deployment is discussed. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Wang, X. -L.; Stoica, A. D.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
RP Wang, XL (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
EM wangxl@ornl.gov
RI Wang, Xun-Li/C-9636-2010; Stoica, Alexandru/K-3614-2013
OI Wang, Xun-Li/0000-0003-4060-8777; Stoica, Alexandru/0000-0001-5118-0134
FU UT-Battelle, LLC [DE-AC05-00OR22725]
FX Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US
Department of Energy under Contract DE-AC05-00OR22725.
NR 4
TC 8
Z9 8
U1 0
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 309
EP 312
DI 10.1016/j.nima.2008.11.050
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800095
ER
PT J
AU Mori, K
Onodera, Y
Kiyanagi, R
Richardson, JW
Itoh, K
Sugiyama, M
Kamiyama, T
Fukunaga, T
AF Mori, Kazuhiro
Onodera, Yohei
Kiyanagi, Ryoji
Richardson, James W., Jr.
Itoh, Keiji
Sugiyama, Masaaki
Kamiyama, Takashi
Fukunaga, Toshiharu
TI Structural and electrochemical properties of La0.8Sr0.2Ga1-xFexO3
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Mixed ionic-electronic conductor; Neutron diffraction; LaGaO3
ID OXIDE IONIC-CONDUCTIVITY; LAGAO3 PEROVSKITE OXIDE
AB Mixed ionic-electronic conductor of Fe doped lanthanum gallate, La0.8Sr0.2Ga1-xFexO3. has been studied by the dc four-probe method and the neutron powder diffraction. In the electrical conductivity measurement at RT, insulator-metal transition-like phenomenon was observed at around x similar to 0.35; this suggests an existence of the percolation limit for the electronic conductivity. Simultaneously, a bond length between O atoms. l(o-o), in a MO6 octahedron (M=Ga1-xFex) drastically expands over x similar to 0.4, according to the result of crystal structure refinement based on the hexagonal phase. Such a drastic expansion in the l(o-o) would induce the decrease in the oxygen ionic conductivity. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Mori, Kazuhiro; Onodera, Yohei; Itoh, Keiji; Sugiyama, Masaaki; Fukunaga, Toshiharu] Kyoto Univ, Inst Res Reactor, Kumatori, Osaka 5900494, Japan.
[Kiyanagi, Ryoji; Richardson, James W., Jr.] Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA.
[Kamiyama, Takashi] High Energy Accelerator Res Org, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan.
RP Mori, K (reprint author), Kyoto Univ, Inst Res Reactor, Kumatori, Osaka 5900494, Japan.
EM kmori@rri.kyoto-u.ac.jp
RI Onodera, Yohei/I-7495-2015
FU Kansai Research Foundation for Technology Promotion; Ministry of
Education, Culture, Sports, Science and Technology of Japan
FX We wish to acknowledge Even Maxey of ANL for the help in the neutron
scattering experiments. This work was mainly supported by the Kansai
Research Foundation for Technology Promotion. The neutron scattering
experiments at the ANL-IPNS were partially supported by the
Inter-University Research Program on Pulsed-neutron Scattering at
Oversea Facilities from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.
NR 13
TC 1
Z9 1
U1 1
U2 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 21
PY 2009
VL 600
IS 1
BP 328
EP 331
DI 10.1016/j.nima.2008.11.084
PG 4
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 416VO
UT WOS:000264033800101
ER
PT J
AU Liu, W
AF Liu, Wei
TI NOISE-SUSTAINED CONVECTIVE INSTABILITY IN A MAGNETIZED TAYLOR-COUETTE
FLOW
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; instabilities; methods: numerical; MHD
ID RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS;
MAGNETOROTATIONAL INSTABILITY; ASTROPHYSICAL FLOWS; MRI EXPERIMENT;
ALGORITHMS; ZEUS-2D; FIELDS; TESTS
AB The helical magnetorotational instability of the magnetized Taylor-Couette flow is studied numerically in a finite cylinder. A distant upstream insulating boundary is shown to stabilize the convective instability entirely while reducing the growth rate of the absolute instability. The reduction is less severe with greater height. After we model the boundary conditions properly, the wave patterns observed in the experiment turn out to be a noise-sustained convective instability. After the source of the noise resulting from unstable Ekman and Stewartson layers is switched off, a slowly decaying inertial oscillation is observed in the simulation. We reach the conclusion that the experiments completed to date have not yet reached the regime of absolute instability.
C1 [Liu, Wei] Princeton Plasma Phys Lab, Ctr Magnet Self Org Lab & Astrophys Plasma, Princeton, NJ 08543 USA.
RP Liu, W (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM wliu@lanl.gov
FU US Department of Energy; NASA [ATP03-0084-0106, APRA04-0000-0152];
National Science Foundation [AST-0205903]
FX The author would like to thank Jeremy Goodman and Hantao Ji for their
very inspiring discussion and constructive comments. The author would
also like to thank James Stone for the advice on the ZEUS code, Stephen
Jardin for the advice to implement fully insulating boundary conditions
and Frank Stefani for pointing out the distinction between the
convective instability and absolute instability in a bounded
Taylor-Couette experiment at 2007 APS-DPP annual meeting. This work was
supported by the US Department of Energy, NASA under grants
ATP03-0084-0106 and APRA04-0000-0152, the National Science Foundation
under grant AST-0205903.
NR 29
TC 9
Z9 9
U1 1
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2009
VL 692
IS 2
BP 998
EP 1003
DI 10.1088/0004-637X/692/2/998
PG 6
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 411TW
UT WOS:000263674700005
ER
PT J
AU Vikhlinin, A
Burenin, RA
Ebeling, H
Forman, WR
Hornstrup, A
Jones, C
Kravtsov, AV
Murray, SS
Nagai, D
Quintana, H
Voevodkin, A
AF Vikhlinin, A.
Burenin, R. A.
Ebeling, H.
Forman, W. R.
Hornstrup, A.
Jones, C.
Kravtsov, A. V.
Murray, S. S.
Nagai, D.
Quintana, H.
Voevodkin, A.
TI CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE catalogs; galaxies: clusters: general; surveys; X-rays: galaxies
ID RELAXED GALAXY CLUSTERS; XMM-NEWTON OBSERVATIONS; FLUX-LIMITED SAMPLE;
INTRACLUSTER MEDIUM; SCALING RELATIONS; TEMPERATURE PROFILES; MASS
FUNCTION; NEARBY CLUSTERS; HIGH-REDSHIFT; PRECISION COSMOLOGY
AB We discuss the measurements of the galaxy cluster mass functions at z approximate to 0.05 and z approximate to 0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400 deg(2) surveys. We provide a full reference for the data analysis procedures, present updated calibration of relations between the total cluster mass and its X-ray indicators (T(X), M(gas), and Y(X)) based on a subsample of low-z relaxed clusters, and present a first measurement of the evolving L(X) - M(tot) relation (with M(tot) estimated from Y(X)) obtained from a well defined statistically complete cluster sample and with appropriate corrections for the Malmquist bias applied. Finally, we present the derived cluster mass functions, estimate the systematic uncertainties in this measurement, and discuss the calculation of the likelihood function. We confidently measure the evolution in the cluster comoving number density at a fixed mass threshold, e.g., by a factor of 5.0 +/- 1.2 at M(500) = 2.5 x 10(14) h(-1) M(circle dot) between z = 0 and 0.5. This evolution reflects the growth of density perturbations, and can be used for the cosmological constraints complementing those from the distance-redshift relation.
C1 [Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Vikhlinin, A.; Burenin, R. A.; Voevodkin, A.] Space Res Inst IKI, Moscow, Russia.
[Ebeling, H.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Hornstrup, A.] Danish Natl Space Ctr, DK-2100 Copenhagen, Denmark.
[Kravtsov, A. V.] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Nagai, D.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Nagai, D.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Quintana, H.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile.
[Voevodkin, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Vikhlinin, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
NR 97
TC 354
Z9 354
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2009
VL 692
IS 2
BP 1033
EP 1059
DI 10.1088/0004-637X/692/2/1033
PG 27
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 411TW
UT WOS:000263674700008
ER
PT J
AU Vikhlinin, A
Kravtsov, AV
Burenin, RA
Ebeling, H
Forman, WR
Hornstrup, A
Jones, C
Murray, SS
Nagai, D
Quintana, H
Voevodkin, A
AF Vikhlinin, A.
Kravtsov, A. V.
Burenin, R. A.
Ebeling, H.
Forman, W. R.
Hornstrup, A.
Jones, C.
Murray, S. S.
Nagai, D.
Quintana, H.
Voevodkin, A.
TI CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER
CONSTRAINTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmological parameters; cosmology: observations; galaxies: clusters:
general; dark matter; surveys
ID MASS-TEMPERATURE RELATION; RELAXED GALAXY CLUSTERS; DARK-MATTER HALOES;
DIGITAL SKY SURVEY; X-RAY; POWER-SPECTRUM; ACCELERATING UNIVERSE;
REDSHIFT SURVEY; LEGACY SURVEY; COSMIC SHEAR
AB Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with < z > = 0.55 derived from 400 deg(2) ROSAT serendipitous survey and 49 brightest z approximate to 0.05 clusters detected in the All-Sky Survey. Evolution of the mass function between these redshifts requires Omega(A) > 0 with a similar to 5 sigma significance, and constrains the dark energy equation-of- state parameter to omega(0) = -1.14 +/- 0.21, assuming a constant w and a flat universe. Cluster information also significantly improves constraints when combined with other methods. Fitting our cluster data jointly with the latest supernovae, Wilkinson Microwave Anisotropy Probe, and baryonic acoustic oscillation measurements, we obtain omega(0) = -0.991 +/- 0.045 (stat) +/- 0.039 (sys), a factor of 1.5 reduction in statistical uncertainties, and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos Sigma m(v) < 0.33 eV at 95% CL. We also present updated measurements of Omega(M)h and sigma(8) from the low-redshift cluster mass function.
C1 [Vikhlinin, A.; Forman, W. R.; Jones, C.; Murray, S. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA.
[Kravtsov, A. V.] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Ebeling, H.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA.
[Hornstrup, A.] Technol Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark.
[Nagai, D.] Yale Univ, Dept Phys, New Haven, CT 06520 USA.
[Nagai, D.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA.
[Quintana, H.] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile.
[Voevodkin, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Vikhlinin, A (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.
OI Forman, William/0000-0002-9478-1682
NR 74
TC 588
Z9 591
U1 1
U2 14
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2009
VL 692
IS 2
BP 1060
EP 1074
DI 10.1088/0004-637X/692/2/1060
PG 15
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 411TW
UT WOS:000263674700009
ER
PT J
AU Starrfield, S
Iliadis, C
Hix, WR
Timmes, FX
Sparks, WM
AF Starrfield, S.
Iliadis, C.
Hix, W. R.
Timmes, F. X.
Sparks, W. M.
TI THE EFFECTS OF THE pep NUCLEAR REACTION AND OTHER IMPROVEMENTS IN THE
NUCLEAR REACTION RATE LIBRARY ON SIMULATIONS OF THE CLASSICAL NOVA
OUTBURST
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE accretion, accretion disks; binaries: close; novae, cataclysmic
variables
ID THERMONUCLEAR REACTION-RATES; ASTROPHYSICAL S-FACTOR; X-RAY SOURCE;
PRESOLAR GRAINS; WHITE-DWARFS; V1974 CYGNI; NUCLEOSYNTHESIS; EXPLOSIONS;
HYDROGEN; OPACITIES
AB Nova explosions occur on the white dwarf (WD) component of a cataclysmic variable binary stellar system which is accreting matter lost by its companion. When sufficient material has been accreted by the WD, a thermonuclear runaway (TNR) occurs and ejects material in what is observed as a classical nova (CN) explosion. We have continued our studies of TNRs on 1.25 M-circle dot and 1.35 M-circle dot WDs (ONeMg composition) under conditions which produce mass ejection and a rapid increase in the emitted light, by examining the effects of changes in the nuclear reaction rates on both the observable features and the nucleosynthesis during the outburst. In order to improve our calculations over previous work, we have incorporated a modern nuclear reaction network into our one-dimensional, fully implicit, hydrodynamic computer code. We find that the updates in the nuclear reaction rate libraries change the amount of ejected mass, peak luminosity, and the resulting nucleosynthesis. Because the evolutionary sequences on the 1.35 M-circle dot WD reach higher temperatures, the effects of library changes are more important for this mass. In addition, as a result of our improvements, we discovered that the pep reaction (p + e(-) + p -> d + nu) was not included in our previous studies of CN explosions (or to the best of our knowledge those of other investigators). Although the energy production from this reaction is not important in the Sun, the densities in WD envelopes can exceed 10(4) g cm(-3) and the presence of this reaction increases the energy generation during the time that the p-p chain is operating. Since it is only the p-p chain that is operating during most of the accretion phase prior to the final rise to the TNR, the effect of the increased energy generation is to reduce the evolution time to the peak of the TNR and, thereby, the accreted mass as compared to the evolutionary sequences done without this reaction included. As expected from our previous work, the reduction in accreted mass has important consequences on the characteristics of the resulting TNR and is discussed in this paper.
C1 [Starrfield, S.; Timmes, F. X.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
[Iliadis, C.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA.
[Hix, W. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA.
[Hix, W. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Sparks, W. M.] Sci Applicat Int Corp, San Diego, CA 92121 USA.
[Sparks, W. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Starrfield, S (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA.
EM sumner.starrfield@asu.edu; iliadis@unc.edu; raph@ornl.gov;
fxt44@mac.com; wms@lanl.gov
RI Hix, William/E-7896-2011
OI Hix, William/0000-0002-9481-9126
FU U. S. Department of Energy [DE-FG02-97ER41041, DE-AC05-00OR22725];
National Science Foundation [PHY-0244783, AST-0653376]
FX We thank L. Bildsten, A. Champagne, R. Gehrz, J. Krautter, H. Schatz, D.
Townsley, J. Truran, and C. E. Woodward for interesting discussions. We
are grateful to the anonymous referee whose comments improved the
presentation of this paper. S. S. thanks J. Aufdenberg and ORNL for
generous allotments of computer time. C. I. is supported in part by the
U. S. Department of Energy under Contract No. DE-FG02-97ER41041. W. R.
H. has been partly supported by the National Science Foundation under
contracts PHY-0244783 and AST-0653376. Oak Ridge National Laboratory is
managed by UT-Battelle, LLC, for the U. S. Department of Energy under
contract DE-AC05-00OR22725. S. Starrfield acknowledges partial support
from NSF and NASA grants to ASU.
NR 68
TC 34
Z9 34
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
EI 1538-4357
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 20
PY 2009
VL 692
IS 2
BP 1532
EP 1542
DI 10.1088/0004-637X/692/2/1532
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 411TW
UT WOS:000263674700043
ER
PT J
AU Aspin, C
Reipurth, B
Beck, TL
Aldering, G
Doering, RL
Hammel, HB
Lynch, DK
Meixner, M
Pecontal, E
Russell, RW
Sitko, ML
Thomas, RC
Vivian, U
AF Aspin, Colin
Reipurth, Bo
Beck, Tracy L.
Aldering, Greg
Doering, Ryan L.
Hammel, Heidi B.
Lynch, David K.
Meixner, Margaret
Pecontal, Emmanuel
Russell, Ray W.
Sitko, Michael L.
Thomas, Rollin C.
Vivian, U.
TI V1647 ORIONIS: REINVIGORATED ACCRETION AND THE RE-APPEARANCE OF MCNEIL'S
NEBULA
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE circumstellar matter; stars: formation; stars: individual (V1647 Ori)
ID T TAURI STARS; DISK ACCRETION; SPECTROGRAPH; IRAS-05436-0007; EMISSION;
OUTBURST; SPECTRA; OBJECT; IMAGER; SPEX
AB In late 2003, the young eruptive variable star V1647 Orionis optically brightened by over 5 mag, stayed bright for around 26 months, and then declined to its pre-outburst level. In 2008 August, the star was reported to have unexpectedly brightened yet again and we herein present the first detailed observations of this new outburst. Photometrically, the star is now as bright as it ever was following the 2003 eruption. Spectroscopically, a pronounced P Cygni profile is again seen in H alpha with an absorption trough extending to -700 km s(-1). In the near-infrared, the spectrum now possesses very weak CO overtone bandhead absorption in contrast to the strong bandhead emission seen soon after the 2003 event. Water vapor absorption is also much stronger than previously seen. We discuss the current outburst below and relate it to the earlier event.
C1 [Aspin, Colin; Reipurth, Bo; Vivian, U.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA.
[Beck, Tracy L.; Meixner, Margaret] Space Telescope Sci Inst, Baltimore, MD 21218 USA.
[Aldering, Greg; Thomas, Rollin C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA.
[Doering, Ryan L.] Valparaiso Univ, Dept Phys & Astron, Valparaiso, IN 46383 USA.
[Hammel, Heidi B.] Space Sci Inst, Boulder, CO 80301 USA.
[Lynch, David K.; Russell, Ray W.] Aerosp Corp, Los Angeles, CA 90009 USA.
[Pecontal, Emmanuel] Observ Lyon, F-69561 St Genis Laval, France.
[Sitko, Michael L.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA.
RP Aspin, C (reprint author), Univ Hawaii, Inst Astron, 640 N Aohoku Pl, Hilo, HI 96720 USA.
EM caa@ifa.hawaii.edu
FU AAS; NASA [NNA04CC08A]
FX This study is based on observations obtained at the Gemini Observatory,
which is operated by the Association of Universities for Research in
Astronomy, Inc., under a cooperative agreement with the NSF on behalf of
the Gemini partnership: the National Science Foundation ( United
States), the Science and Technology Facilities Council ( United
Kingdom), the National Research Council ( Canada), CONICYT ( Chile), the
Australian Research Council ( Australia), Ministerio da Ciencia e
Tecnologia ( Brazil), and SECYT ( Argentina). C.A. acknowledges the AAS
for financial support. B.R. acknowledges partial support from the NASA
Astrobiology Institute under Cooperative Agreement NNA04CC08A.
NR 30
TC 22
Z9 22
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 20
PY 2009
VL 692
IS 2
BP L67
EP L71
DI 10.1088/0004-637X/692/2/L67
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 404JZ
UT WOS:000263149100001
ER
PT J
AU Manikonda, S
Nolen, J
AF Manikonda, Shashikant
Nolen, Jerry
TI CONCEPTUAL DESIGN OF A SUPERCONDUCTING QUADRUPOLE WITH ELLIPTICAL
ACCEPTANCE AND TUNABLE HIGHER ORDER MULTIPOLES
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article; Proceedings Paper
CT 15th International Workshop on Beam Dynamics and Optimization
CY JUL 10-12, 2008
CL St Petersburg, FL
DE Differential algebra; magnet design; beam physics
AB For charged particle beams that are wider in the dispersive plane compared to the transverse plane it is cost efficient to utilize magnets that accept beams with elliptic cross section. In this paper we presents the conceptual design of a quadrupole magnet with elliptic cross section and with tunable higher order multipoles. The design consists of 18 superconducting race-track coils placed on two hollow concentric rhombic prism support structures.
To compute the magnetic. field for the proposed design a new method of calculating 2D and 3D. fields for the air core magnets based on differential algebra (DA) techniques is developed. We will present the new method and discuss its implementation of new numerical tools based on this method in the code COSY Infinity.
C1 [Manikonda, Shashikant; Nolen, Jerry] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Manikonda, S (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM manikonda@anl.gov; nolen@anl.gov
RI Manikonda, Shashikant/D-6936-2011
NR 19
TC 0
Z9 0
U1 0
U2 1
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
EI 1793-656X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD FEB 20
PY 2009
VL 24
IS 5
BP 923
EP 940
PG 18
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 419DR
UT WOS:000264199800010
ER
PT J
AU Poklonskiy, AA
Neuffer, D
AF Poklonskiy, Alexey A.
Neuffer, David
TI EVOLUTIONARY ALGORITHM FOR THE NEUTRINO FACTORY FRONT END DESIGN
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article; Proceedings Paper
CT 15th International Workshop on Beam Dynamics and Optimization
CY JUL 10-12, 2008
CL St Petersburg, FL
DE Genetic algorithm; neutrino factory; accelerator design
AB The Neutrino Factory is an important tool in the long-term neutrino physics program. Substantial effort is put internationally into designing this facility in order to achieve desired performance within the allotted budget. This accelerator is a secondary beam machine: neutrinos are produced by means of the decay of muons. Muons, in turn, are produced by the decay of pions, produced by hitting the target by a beam of accelerated protons suitable for acceleration. Due to the physics of this process, extra conditioning of the pion beam coming from the target is needed in order to effectively perform subsequent acceleration. The subsystem of the Neutrino Factory that performs this conditioning is called Front End, its main performance characteristic is the number of the produced muons.
Evolutionary Algorithms demonstrated themselves as a reliable and efficient tool for exploration, optimization and ultimately decision-making during the design process. In this work we describe the scenario for the Neutrino Factory Front End production optimization via the GATool Evolutionary Algorithm implemented in COSY Infinity and discuss the results of this optimization.
C1 [Poklonskiy, Alexey A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[Neuffer, David] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Poklonskiy, AA (reprint author), Michigan State Univ, Dept Phys & Astron, Biomed Phys Sci Bldg, E Lansing, MI 48824 USA.
EM poklonsk@msu.edu; neuffer@fnal.gov
NR 22
TC 6
Z9 6
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD FEB 20
PY 2009
VL 24
IS 5
BP 959
EP 973
PG 15
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 419DR
UT WOS:000264199800013
ER
PT J
AU Snopok, P
Berz, M
Johnstone, C
AF Snopok, Pavel
Berz, Martin
Johnstone, Carol
TI CALCULATION OF NONLINEAR TUNE SHIFT USING BEAM POSITION MEASUREMENT
RESULTS
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article; Proceedings Paper
CT 15th International Workshop on Beam Dynamics and Optimization
CY JUL 10-12, 2008
CL St Petersburg, FL
AB The calculation of the nonlinear tune shift with amplitude based on the results of measurements and the linear lattice information is discussed. The tune shift is calculated based on a set of specific measurements and some extra information which is usually available, namely that about the size and particle distribution in the beam and the linear optics effect on the particles. The method to solve this problem uses the technique of normal form transformation.
The proposed model for the nonlinear tune shift calculation is compared to both the numerical results for the nonlinear model of the Tevatron accelerator and the independent approximate formula for the tune shift by Meller et al. The proposed model shows a discrepancy of about 2%.
C1 [Snopok, Pavel] Univ Calif Riverside, Riverside, CA 92521 USA.
Michigan State Univ, E Lansing, MI 48824 USA.
Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
RP Snopok, P (reprint author), Univ Calif Riverside, Riverside, CA 92521 USA.
EM snopok@gmail.com; berz@msu.edu; cjj@fnal.gov
NR 10
TC 1
Z9 1
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD FEB 20
PY 2009
VL 24
IS 5
BP 974
EP 986
PG 13
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 419DR
UT WOS:000264199800014
ER
PT J
AU Varanasi, VG
Besmann, TM
Hyde, RL
Payzant, EA
Anderson, TJ
AF Varanasi, V. G.
Besmann, T. M.
Hyde, R. L.
Payzant, E. A.
Anderson, T. J.
TI MOCVD of YSZ coatings using beta-diketonate precursors
SO JOURNAL OF ALLOYS AND COMPOUNDS
LA English
DT Article
DE Ceramics; Coating materials; Oxide materials; Vapor deposition;
Thermodynamic modeling
ID CHEMICAL-VAPOR-DEPOSITION; YTTRIA-STABILIZED ZIRCONIA; THERMAL BARRIER
COATINGS; THIN-FILMS; DESIGN; CVD; GROWTH; CONDUCTIVITY; PERFORMANCE;
REACTORS
AB Metallorganic chemical vapor deposition (MOCVD) was investigated as a more efficient means to fabricate yttria-stabilized zirconia (YSZ) for thermal barrier coating. The MOCVD precursors were Y(tmhd)(3) and Zr(tmhd)(4) (tmhd, 2,2,6,6-tetramethyl-3,5-heptanedianato) and delivered via aerosol-assisted liquid delivery (AALD). The maximum YSZ coating rate was 14.2 +/- 13 mu m h(-1) at 827 degrees C yielding a layered coating microstructure. The growth was first-order with temperature below 827 degrees C with an apparent activation energy of 50.9 +/- 4.3 kJ mol(-1). Coating efficiency was a maximum of approximately 10% at the highest growth rate. While homogeneous nucleation remained a problem, the deposition of YSZ with only minor carbon content was achieved. Published by Elsevier B.V.
C1 [Varanasi, V. G.; Besmann, T. M.; Hyde, R. L.; Payzant, E. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Anderson, T. J.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA.
RP Besmann, TM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6063, Oak Ridge, TN 37831 USA.
EM besmanntm@ornl.gov
RI Payzant, Edward/B-5449-2009
OI Payzant, Edward/0000-0002-3447-2060
FU U.S. Department of Energy [DE-AC05-00OR22725]
FX The authors wish to thank Drjohn Vitek (Materials Science and Technology
Division, Oak Ridge National Laboratory) for supporting the ThermoCalc
software package and Dr. Hans Siefert (Department of Materials Science
and Engineering, University of Florida) for his contribution of the
computed Zr-O phase diagram. Valuable guidance was provided by Olga
Kryliouk, J.C. Mclaughlin, Nagraj Kulkarni, Weidong Zhuang, jianyun
Shen, Suresh Babu and Ronald Ott. The research was sponsored by the
Office of Fossil Energy, National Energy Technology Laboratory, U.S.
Department of Energy, under contract number DE-AC05-00OR22725 with
UT-Battelle, LLC. The XRD characterization was supported by the
assistant secretary for Energy Efficiency and Renewable Energy, Office
of FreedomCAR and Vehicle Technologies, as part of the High Temperature
Materials Laboratory User Program, Oak Ridge National Laboratory.
NR 28
TC 10
Z9 10
U1 1
U2 6
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0925-8388
J9 J ALLOY COMPD
JI J. Alloy. Compd.
PD FEB 20
PY 2009
VL 470
IS 1-2
BP 354
EP 359
DI 10.1016/j.jallcom.2008.02.103
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy &
Metallurgical Engineering
SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering
GA 415ZN
UT WOS:000263975100075
ER
PT J
AU Min, L
Jin, ZM
Caldovic, L
Morizono, H
Allewell, NM
Tuchman, M
Shi, D
AF Min, Li
Jin, Zhongmin
Caldovic, Ljubica
Morizono, Hiroki
Allewell, Norma M.
Tuchman, Mendel
Shi, Dashuang
TI Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by
L-Arginine
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID ACETYLGLUTAMATE SYNTHASE; MACROMOLECULAR STRUCTURES;
PSEUDOMONAS-AERUGINOSA; ESCHERICHIA-COLI; BIOSYNTHESIS; SYNTHETASE;
EVOLUTION; CATALYSIS; GENES; ARGA
AB N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by similar to 10 A and decreases its height by similar to 20 angstrom. AAK dimers move 5 angstrom outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by similar to 4 degrees. The NAT domains rotate similar to 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.
C1 [Min, Li; Caldovic, Ljubica; Morizono, Hiroki; Tuchman, Mendel; Shi, Dashuang] George Washington Univ, Childrens Natl Med Ctr, Med Genet Res Ctr, Washington, DC 20010 USA.
[Jin, Zhongmin] Argonne Natl Lab, Adv Photon Source, SER CAT, Argonne, IL 60439 USA.
[Allewell, Norma M.] Univ Maryland, Coll Chem & Life Sci, Dept Chem & Biochem, College Pk, MD 20742 USA.
RP Shi, D (reprint author), George Washington Univ, Childrens Natl Med Ctr, Med Genet Res Ctr, 111 Michigan Ave NW, Washington, DC 20010 USA.
EM dshi@cnmcresearch.org
OI Morizono, Hiroki/0000-0002-9678-5564; Caldovic,
Ljubica/0000-0002-9140-5585
FU National Institutes of Health [DK064913, DK067935]; United States Dept
of Energy [W-31-109-Eng-38]
FX This work was supported, in whole or in part, by National Institutes of
Health Grants DK064913 (to M. T.) and DK067935 (to D. S.). This work was
also supported by United States Dept of Energy Contract W-31-109-Eng-38.
The costs of publication of this article were defrayed in part by the
payment of page charges. This article must therefore be hereby marked "
advertisement" in accordance with 18 U.S.C. Section 1734 solely to
indicate this fact.
NR 31
TC 16
Z9 17
U1 0
U2 4
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD FEB 20
PY 2009
VL 284
IS 8
BP 4873
EP 4880
DI 10.1074/jbc.M805348200
PG 8
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 408DY
UT WOS:000263416600016
PM 19095660
ER
PT J
AU Kuprat, AP
Einstein, DR
AF Kuprat, Andrew P.
Einstein, Daniel R.
TI An anisotropic scale-invariant unstructured mesh generator suitable for
volumetric imaging data
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Computational fluid dynamics; Meshing biological structures; Delaunay
ID SURFACE
AB We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated Surface mesh, a feature size field is determined by casting rays normal to the Surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered aniscitropic Volume mesh is generated. This mesh is "scale-invariant" in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size L(min) and a maximum scale size L,,,,x. We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1. (c) 2008 Elsevier Inc. All rights reserved.
C1 [Kuprat, Andrew P.; Einstein, Daniel R.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Kuprat, AP (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN P7-58, Richland, WA 99352 USA.
EM andrew.kupart@pnl.gov
OI Kuprat, Andrew/0000-0003-4159-918X
FU NHLBI NIH HHS [R01 HL073598, R01 HL073598-01A1]
NR 31
TC 21
Z9 21
U1 0
U2 3
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD FEB 20
PY 2009
VL 228
IS 3
BP 619
EP 640
DI 10.1016/j.jcp.2008.09.030
PG 22
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 395VV
UT WOS:000262552500001
PM 19784397
ER
PT J
AU Lipnikov, K
Svyatskiy, D
Vassilevski, Y
AF Lipnikov, K.
Svyatskiy, D.
Vassilevski, Y.
TI Interpolation-free monotone finite volume method for diffusion equations
on polygonal meshes
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Diffusion equation; Monotone method; Polygonal mesh
ID DISCRETE MAXIMUM PRINCIPLE; ANISOTROPIC DIFFUSION; TETRAHEDRAL MESHES;
SCHEMES
AB We developed a new monotone finite Volume method for diffusion equations. The second-order linear methods, Such as the multipoint flux approximation, mixed finite element and mimetic finite difference methods, are not monotone on strongly anisotropic meshes or for diffusion problems with strongly anisotropic coefficients. The finite volume (FV) method with linear two-point flux approximation is monotone but not even first-order accurate in these cases. The developed monotone method is based oil a nonlinear two-point flux approximation. It does not require any interpolation scheme and thus differs from other nonlinear finite volume methods based oil a two-point flux approximation. The second-order convergence rate is verified with numerical experiments. Published by Elsevier Inc.
C1 [Lipnikov, K.; Svyatskiy, D.] Los Alamos Natl Lab, Div Theoret, Math Modeling & Anal Grp, Los Alamos, NM 87545 USA.
[Vassilevski, Y.] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia.
RP Svyatskiy, D (reprint author), Los Alamos Natl Lab, Div Theoret, Math Modeling & Anal Grp, Los Alamos, NM 87545 USA.
EM lipnikov@lanl.gov; dasvyat@lanl.gov; vasilevs@dodo.inm.ras.ru
RI Vassilevski, Yuri/A-6068-2016
NR 17
TC 51
Z9 55
U1 0
U2 5
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD FEB 20
PY 2009
VL 228
IS 3
BP 703
EP 716
DI 10.1016/j.jcp.2008.09.031
PG 14
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 395VV
UT WOS:000262552500005
ER
PT J
AU Schofield, SP
Garimella, RV
Francois, MM
Loubere, R
AF Schofield, Samuel P.
Garimella, Rao V.
Francois, Marianne M.
Loubere, Raphael
TI A second-order accurate material-order-independent interface
reconstruction technique for multi-material flow simulations
SO JOURNAL OF COMPUTATIONAL PHYSICS
LA English
DT Article
DE Volume-of-fluid; Interface reconstruction; Multi-material flow;
Material-order independence; Linear reconstruction; Centroids; Power
diagrams
ID VOLUME TRACKING; POWER DIAGRAMS; FREE-SURFACE; ALGORITHM; DYNAMICS;
MESHES
AB A new, second-order accurate, volume conservative, material-order-independent interface reconstruction method for multi-material flow simulations is presented. First, materials are located in multi-material computational cells using a piecewise linear reconstruction of the volume fraction function. These material locator points are then used as generators to reconstruct the interface with a weighted Voronoi diagram that matches the volume fractions. The interfaces are then improved by minimizing an objective function that smoothes interface normals while enforcing convexity and volume constraints for the pure material subcells. Convergence tests are shown demonstrating second-order accuracy. Static and dynamic examples are shown illustrating the superior performance of the method over existing material-order-dependent methods. (c) 2008 Elsevier Inc. All rights reserved.
C1 [Schofield, Samuel P.; Garimella, Rao V.; Francois, Marianne M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Loubere, Raphael] Univ Toulouse, CNRS, Math Inst Toulouse, Toulouse, France.
RP Schofield, SP (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM sams@lanl.gov; rao@lanl.gov; mmfran@lanl.gov; loubere@mip.ups-tlse.fr
RI Francois, Marianne/B-2423-2012;
OI Garimella, Rao/0000-0002-3812-2105; Francois,
Marianne/0000-0003-3062-6234
FU US Department of Energy at Los Alamos National Laboratory
[DE-AC52-06NA25396]; DOE Advanced Simulation and Computing (ASC) program
FX This work was performed under the auspices of the National Nuclear
Security Administration of the US Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396 and supported
by the DOE Advanced Simulation and Computing (ASC) program.
NR 37
TC 17
Z9 17
U1 0
U2 9
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9991
J9 J COMPUT PHYS
JI J. Comput. Phys.
PD FEB 20
PY 2009
VL 228
IS 3
BP 731
EP 745
DI 10.1016/j.jcp.2008.09.023
PG 15
WC Computer Science, Interdisciplinary Applications; Physics, Mathematical
SC Computer Science; Physics
GA 395VV
UT WOS:000262552500007
ER
PT J
AU Makhov, AM
Sen, A
Yu, X
Simon, MN
Griffith, JD
Egelman, EH
AF Makhov, Alexander M.
Sen, Anindito
Yu, Xiong
Simon, Martha N.
Griffith, Jack D.
Egelman, Edward H.
TI The Bipolar Filaments Formed by Herpes Simplex Virus Type 1
SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE herpes simplex virus; ICP8; electron microscopy; image analysis;
filament
ID SINGLE-STRANDED-DNA; ORIGIN-BINDING PROTEIN; HELICAL FILAMENTS; I
ORIGIN; VISUALIZATION; POLYMERASE; COMPLEX; REGION; REPLICATION;
IDENTIFICATION
AB Herpes simplexvirus type I encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is similar to 250 angstrom, with similar to 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing similar to 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions. (C) 2009 Elsevier Ltd. All rights reserved.
C1 [Makhov, Alexander M.; Griffith, Jack D.] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27517 USA.
[Makhov, Alexander M.; Griffith, Jack D.] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC 27517 USA.
[Sen, Anindito; Yu, Xiong; Egelman, Edward H.] Univ Virginia, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA.
[Simon, Martha N.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Griffith, JD (reprint author), Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27517 USA.
EM jdg@med.unc.edu
RI Egelman, Edward/A-2488-2009;
OI Egelman, Edward/0000-0003-4844-5212
FU E.H.E [GM035269, CA19014]; Resource for Biocomputing, Visualization, and
Informatics at the University of California, San Francisco; National
Institutes of Health [P41 RR-01.081]
FX This work was supported by grants to E.H.E. (GM035269) and to J.D.G.
(CA19014). Molecular graphics images were produced using the UCSF
Chimera package from the Resource for Biocomputing, Visualization, and
Informatics at the University of California, San Francisco (supported by
National Institutes of Health Grant P41 RR-01.081).
NR 39
TC 15
Z9 15
U1 2
U2 5
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD FEB 20
PY 2009
VL 386
IS 2
BP 273
EP 279
DI 10.1016/j.jmb.2008.12.059
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 413PA
UT WOS:000263803800001
PM 19138689
ER
PT J
AU Bradley, DK
Eggert, JH
Smith, RF
Prisbrey, ST
Hicks, DG
Braun, DG
Biener, J
Hamza, AV
Rudd, RE
Collins, GW
AF Bradley, D. K.
Eggert, J. H.
Smith, R. F.
Prisbrey, S. T.
Hicks, D. G.
Braun, D. G.
Biener, J.
Hamza, A. V.
Rudd, R. E.
Collins, G. W.
TI Diamond at 800 GPa
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ISENTROPIC COMPRESSION; SHOCK COMPRESSION; THERMAL-EXPANSION; GIANT
PLANETS; PHASE-DIAGRAM; X-RAY; CARBON; TEMPERATURES; PRESSURES;
INTERIORS
AB A new compression technique, which enables the study of solids into the TPa regime, is described and used to ramp (or quasi-isentropically) compress diamond to a peak pressure of 1400 GPa. Diamond stress versus density data are reported to 800 GPa and suggest that the diamond phase is stable and has significant material strength up to at least this stress level. Data presented here are the highest ramp compression pressures by more than a factor of 5 and the highest-pressure solid equation-of-state data ever reported.
C1 [Bradley, D. K.; Eggert, J. H.; Smith, R. F.; Prisbrey, S. T.; Hicks, D. G.; Braun, D. G.; Biener, J.; Hamza, A. V.; Rudd, R. E.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Bradley, DK (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.
RI Collins, Gilbert/G-1009-2011; Hicks, Damien/B-5042-2015
OI Hicks, Damien/0000-0001-8322-9983
FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344.]
FX We acknowledge the outstanding work of C. Wild and E. Woerner of the
Fraunhofer Institute for Applied Solid-State Physics, Freiburg, Germany.
This work performed under the auspices of the U. S. Department of Energy
by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344.
NR 42
TC 92
Z9 99
U1 0
U2 25
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 20
PY 2009
VL 102
IS 7
AR 075503
DI 10.1103/PhysRevLett.102.075503
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 410SV
UT WOS:000263599500039
PM 19257686
ER
PT J
AU Im, KS
Cheong, SK
Liu, X
Wang, J
Lai, MC
Tate, MW
Ercan, A
Renzi, MJ
Schuette, DR
Gruner, SM
AF Im, Kyoung-Su
Cheong, Seong-Kyun
Liu, X.
Wang, Jin
Lai, Ming-Chia
Tate, Mark W.
Ercan, Alper
Renzi, Matthew J.
Schuette, Daniel R.
Gruner, Sol M.
TI Interaction between Supersonic Disintegrating Liquid Jets and Their
Shock Waves
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FUEL SPRAYS; X-RAY; INJECTION; SPEEDS
AB We used ultrafast x radiography and developed a novel multiphase numerical simulation to reveal the origin and the unique dynamics of the liquid-jet-generated shock waves and their interactions with the jets. Liquid-jet-generated shock waves are transiently correlated to the structural evolution of the disintegrating jets. The multiphase simulation revealed that the aerodynamic interaction between the liquid jet and the shock waves results in an intriguing ambient gas distribution in the vicinity of the shock front, as validated by the ultrafast x-radiography measurements. The excellent agreement between the data and the simulation suggests the combined experimental and computational approach should find broader applications in predicting and understanding dynamics of highly transient multiphase flows.
C1 [Im, Kyoung-Su; Cheong, Seong-Kyun; Liu, X.; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Lai, Ming-Chia] Wayne State Univ, Detroit, MI 48202 USA.
[Tate, Mark W.; Ercan, Alper; Renzi, Matthew J.; Schuette, Daniel R.; Gruner, Sol M.] Cornell Univ, Ithaca, NY 14853 USA.
RP Im, KS (reprint author), Livermore Software Technol Corp, Livermore, CA 94551 USA.
EM ksim@lstc.com; wangj@aps.anl.gov
RI Gruner, Sol/G-2924-2010
OI Gruner, Sol/0000-0002-1171-4426
FU U. S. Department of Energy; Office of Science; Office of Basic Energy
Science [DE-AC02-06CH11357, DE-FG-0297ER1485, DE-FG-0297ER62443]; U. S.
National Science Foundation [DMR-0225180]; NIH Institute of General
Medical Sciences
FX We acknowledge the participation of H. Utku, C. F. Powell, A. Woll, D.
Smilgies, and E. Fontes and the discussion with O. Vaslyev. Beam line
support at D-1 at CHESS and Sector 1-BM at the APS is gratefully
acknowledged. Work at and use of the APS and CHESS are supported by U.
S. Department of Energy, Office of Science, Office of Basic Energy
Science, under Contract No. DE-AC02-06CH11357 (APS) and by Grants No.
DE-FG-0297ER1485 and No. DE-FG-0297ER62443. CHESS is supported by U. S.
National Science Foundation under Grant No. DMR-0225180 and the NIH
Institute of General Medical Sciences. This work is also partially
supported by the U. S. Department of Energy, Office of Vehicle
Technologies Program.
NR 31
TC 13
Z9 13
U1 0
U2 10
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 20
PY 2009
VL 102
IS 7
AR 074501
DI 10.1103/PhysRevLett.102.074501
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 410SV
UT WOS:000263599500028
PM 19257675
ER
PT J
AU Paduan, A
Al-Hassanieh, KA
Sengupta, P
Jaime, M
AF Paduan-Filho, A.
Al-Hassanieh, K. A.
Sengupta, P.
Jaime, M.
TI Critical Properties at the Field-Induced Bose-Einstein Condensation in
NiCl2-4SC(NH2)(2)
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SPIN SYSTEMS; TLCUCL3; MAGNONS
AB We report new magnetization measurements on the spin-gap compound NiCl2-4SC(NH2)(2) at the low-field boundary of the magnetic field-induced ordering. The critical density of the magnetization is analyzed in terms of a Bose-Einstein condensation of bosonic quasiparticles. The analysis of the magnetization at the transition leads to the conclusion for the preservation of the U(1) symmetry, as required for Bose-Einstein condensation. The experimental data are well described by quantum Monte Carlo simulations.
C1 [Paduan-Filho, A.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
[Al-Hassanieh, K. A.; Sengupta, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Sengupta, P.; Jaime, M.] Los Alamos Natl Lab, MPA NHMFL, Los Alamos, NM 87545 USA.
RP Paduan, A (reprint author), Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RI PaduanFilho, Armando/H-2443-2011; Jaime, Marcelo/F-3791-2015
OI Jaime, Marcelo/0000-0001-5360-5220
FU CNPq; FAPESP; U.S. DOE [W-7405-ENG-36.]; U.S. National Science
Foundation; U.S. Department of Energy; state of Florida
FX We thank V. S. Zapf and C. D. Batista for helpful comments. This work
was supported in part by the Brazilian agencies CNPq and FAPESP. Work at
LANL is supported by the U.S. DOE under Contract No. W-7405-ENG-36. Work
at NHMFL is supported by the U.S. National Science Foundation, the U.S.
Department of Energy, and the state of Florida.
NR 33
TC 13
Z9 13
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 20
PY 2009
VL 102
IS 7
AR 077204
DI 10.1103/PhysRevLett.102.077204
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 410SV
UT WOS:000263599500064
PM 19257711
ER
PT J
AU Park, CH
Giustino, F
Spataru, CD
Cohen, ML
Louie, SG
AF Park, Cheol-Hwan
Giustino, Feliciano
Spataru, Catalin D.
Cohen, Marvin L.
Louie, Steven G.
TI First-Principles Study of Electron Linewidths in Graphene
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MASSLESS DIRAC FERMIONS; EPITAXIAL GRAPHENE; SUSPENDED GRAPHENE; CARBON
NANOTUBES; ENERGY; BANDGAP; GAS
AB We present first-principles calculations of the linewidths of low-energy quasiparticles in n-doped graphene arising from both the electron-electron and the electron-phonon interactions. The contribution to the electron linewidth arising from the electron-electron interactions varies significantly with wave vector at fixed energy; in contrast, the electron-phonon contribution is virtually wave vector independent. These two contributions are comparable in magnitude at a binding energy of similar to 0.2 eV, corresponding to the optical phonon energy. The calculated linewidths, with both electron-electron and electron-phonon interactions included, explain to a large extent the linewidths seen in recent photoemission experiments.
C1 [Park, Cheol-Hwan; Giustino, Feliciano; Cohen, Marvin L.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Park, Cheol-Hwan; Giustino, Feliciano; Cohen, Marvin L.; Louie, Steven G.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Spataru, Catalin D.] Sandia Natl Labs, Livermore, CA 94551 USA.
[Giustino, Feliciano] Univ Oxford, Dept Mat, Oxford OX1 3PH, England.
RP Park, CH (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
EM sglouie@berkeley.edu
RI Park, Cheol-Hwan/A-1543-2009; Giustino, Feliciano/F-6343-2013;
OI Park, Cheol-Hwan/0000-0003-1584-6896; Giustino,
Feliciano/0000-0001-9293-1176
NR 56
TC 47
Z9 47
U1 0
U2 24
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 20
PY 2009
VL 102
IS 7
AR 076803
DI 10.1103/PhysRevLett.102.076803
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 410SV
UT WOS:000263599500058
PM 19257705
ER
PT J
AU Spahr, EJ
Wen, L
Stavola, M
Boatner, LA
Feldman, LC
Tolk, NH
Lupke, G
AF Spahr, E. J.
Wen, L.
Stavola, M.
Boatner, L. A.
Feldman, L. C.
Tolk, N. H.
Lupke, G.
TI Proton Tunneling: A Decay Channel of the O-H Stretch Mode in KTaO3
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TEMPERATURE; HYDROGEN; CONDUCTION; MECHANISM; PRESSURE; SRTIO3; BANDS;
STM
AB The vibrational lifetimes of the O-H and O-D stretch modes in the perovskite oxide KTaO3 are measured by pump-probe infrared spectroscopy. Both stretch modes are exceptionally long lived and exhibit a large "reverse" isotope effect, due to a phonon-assisted proton-tunneling process, which involves the O-Ta-O bending motion. The excited-state tunneling rate is found to be 7 orders of magnitude larger than from the ground state in the proton conducting oxide, BaCeO3 [Phys. Rev. B 60, R3713 (1999)].
C1 [Spahr, E. J.; Lupke, G.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
[Wen, L.; Stavola, M.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA.
[Boatner, L. A.] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37830 USA.
[Feldman, L. C.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
[Feldman, L. C.; Tolk, N. H.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.
RP Spahr, EJ (reprint author), Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA.
RI Boatner, Lynn/I-6428-2013
OI Boatner, Lynn/0000-0002-0235-7594
FU National Science Foundation and the Department of Energy
FX We thank the National Science Foundation and the Department of Energy
for their financial support.
NR 26
TC 5
Z9 5
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 20
PY 2009
VL 102
IS 7
AR 075506
DI 10.1103/PhysRevLett.102.075506
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 410SV
UT WOS:000263599500042
PM 19257689
ER
PT J
AU Weigand, M
Van Waeyenberge, B
Vansteenkiste, A
Curcic, M
Sackmann, V
Stoll, H
Tyliszczak, T
Kaznatcheev, K
Bertwistle, D
Woltersdorf, G
Back, CH
Schutz, G
AF Weigand, Markus
Van Waeyenberge, Bartel
Vansteenkiste, Arne
Curcic, Michael
Sackmann, Vitalij
Stoll, Hermann
Tyliszczak, Tolek
Kaznatcheev, Konstantine
Bertwistle, Drew
Woltersdorf, Georg
Back, Christian H.
Schuetz, Gisela
TI Vortex Core Switching by Coherent Excitation with Single In-Plane
Magnetic Field Pulses
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB The response of magnetic vortex cores to subnanosecond in-plane magnetic field pulses was studied by time-resolved x-ray microscopy. Vortex core reversal was observed and the switching events were located in space and time. This revealed a mechanism of coherent excitation by the leading and trailing edges of the pulse, lowering the field amplitude required for switching. The mechanism was confirmed by micromagnetic simulations and can be understood in terms of gyration around the vortex equilibrium positions, displaced by the applied field.
C1 [Weigand, Markus; Van Waeyenberge, Bartel; Curcic, Michael; Sackmann, Vitalij; Stoll, Hermann; Schuetz, Gisela] Max Planck Inst Met Res, D-70569 Stuttgart, Germany.
[Van Waeyenberge, Bartel; Vansteenkiste, Arne] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium.
[Tyliszczak, Tolek] LBNL, Adv Light Source, Berkeley, CA 94720 USA.
[Kaznatcheev, Konstantine; Bertwistle, Drew] Canadian Light Source, Saskatoon, SK S7N 0X4, Canada.
[Woltersdorf, Georg; Back, Christian H.] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany.
RP Weigand, M (reprint author), Max Planck Inst Met Res, D-70569 Stuttgart, Germany.
EM mweigand@mf.mpg.de; Bartel.VanWaeyenberge@UGent.be; stoll@mf.mpg.de
RI Back, Christian/A-8969-2012; Woltersdorf, Georg/C-7431-2014
OI Back, Christian/0000-0003-3840-0993; Woltersdorf,
Georg/0000-0001-9299-8880
NR 16
TC 67
Z9 68
U1 0
U2 9
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 20
PY 2009
VL 102
IS 7
AR 077201
DI 10.1103/PhysRevLett.102.077201
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 410SV
UT WOS:000263599500061
PM 19257708
ER
PT J
AU Park, S
Lee, DH
Xu, J
Kim, B
Hong, SW
Jeong, U
Xu, T
Russell, TP
AF Park, Soojin
Lee, Dong Hyun
Xu, Ji
Kim, Bokyung
Hong, Sung Woo
Jeong, Unyong
Xu, Ting
Russell, Thomas P.
TI Macroscopic 10-Terabit-per-Square- Inch Arrays from Block Copolymers
with Lateral Order
SO SCIENCE
LA English
DT Article
ID THIN-FILMS; BOTTOM-UP; LITHOGRAPHY; GRAPHOEPITAXY; TEMPLATES; SURFACES;
ROUTE
AB Generating laterally ordered, ultradense, macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries. We used faceted surfaces of commercially available sapphire wafers to guide the self- assembly of block copolymer microdomains into oriented arrays with quasi- long- range crystalline order over arbitrarily large wafer surfaces. Ordered arrays of cylindrical microdomains 3 nanometers in diameter, with areal densities in excess of 10 terabits per square inch, were produced. The sawtoothed substrate topography provides directional guidance to the self- assembly of the block copolymer, which is tolerant of surface defects, such as dislocations. The lateral ordering and lattice orientation of the single- grain arrays of microdomains are maintained over the entire surface. The approach described is parallel, applicable to different substrates and block copolymers, and opens a versatile route toward ultrahigh- density systems.
C1 [Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Dept Chem, Berkeley, CA 94720 USA.
[Xu, Ting] Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
[Park, Soojin; Lee, Dong Hyun; Xu, Ji; Kim, Bokyung; Hong, Sung Woo; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA.
[Jeong, Unyong] Yonsei Univ, Dept Mat Sci & Engn, Seoul 120749, South Korea.
RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Dept Chem, Berkeley, CA 94720 USA.
EM tingxu@berkeley.edu; russell@mail.pse.umass.edu
RI Park, Soojin/E-5899-2010
FU U.S. Department of Energy (DOE) [DE-FG-0296ER45612, DE-FG-0296ER42126,
DE-AC02-05CH11231]; NSF-supported Materials Research Science and
Engineering Center [DMR-0820506]; Nanoscale Science and Engineering
Center [DMI-0531171]; University of Massachusetts, Amherst; DOE; Office
of Science; Office of Basic Energy Sciences [DE-AC02-05CH11231]; Korea
Science and Engineering Foundation [R11-2007-05002004-0]
FX This work was supported by the U.S. Department of Energy (DOE) under
contracts DE-FG-0296ER45612 (to T.P.R., S.P., and S.H.),
DE-FG-0296ER42126 (T.P.R.), and DE-AC02-05CH11231 (T.X.); by the
NSF-supported Materials Research Science and Engineering Center
[DMR-0820506 (J.X. and B.K.); and by the Nanoscale Science and
Engineering Center (DMI-0531171 (D.L.)] at the University of
Massachusetts, Amherst. Use of the Advanced Light Source, Berkeley
National Laboratory, was supported by the DOE, Office of Science, Office
of Basic Energy Sciences under contract DE-AC02-05CH11231. U.J.
acknowledges the support of the Korea Science and Engineering Foundation
through grant R11-2007-05002004-0. The authors are also most indebted to
the insightful comments of one referee whose persistence substantially
enhanced our arguments.
NR 26
TC 485
Z9 486
U1 17
U2 209
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 20
PY 2009
VL 323
IS 5917
BP 1030
EP 1033
DI 10.1126/science.1168108
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 409AK
UT WOS:000263478400033
PM 19229031
ER
PT J
AU Wang, Y
Carlton, VEH
Karlin-Neumann, G
Sapolsky, R
Zhang, L
Moorhead, M
Wang, ZGC
Richardson, AL
Warren, R
Walther, A
Bondy, M
Sahin, A
Krahe, R
Tuna, M
Thompson, PA
Spellman, PT
Gray, JW
Mills, GB
Faham, M
AF Wang, Yuker
Carlton, Victoria E. H.
Karlin-Neumann, George
Sapolsky, Ronald
Zhang, Li
Moorhead, Martin
Wang, Zhigang C.
Richardson, Andrea L.
Warren, Robert
Walther, Axel
Bondy, Melissa
Sahin, Aysegul
Krahe, Ralf
Tuna, Musaffe
Thompson, Patricia A.
Spellman, Paul T.
Gray, Joe W.
Mills, Gordon B.
Faham, Malek
TI High quality copy number and genotype data from FFPE samples using
Molecular Inversion Probe (MIP) microarrays
SO BMC MEDICAL GENOMICS
LA English
DT Article
ID GENOME-WIDE; IDENTIFICATION ERRORS; COLORECTAL-CANCER; TUMOR-TISSUE;
ARRAYS; HETEROZYGOSITY; CARCINOMA; ASSAY; GENE
AB Background: A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small (similar to 40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue.
Results: Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE.
Conclusion: MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.
C1 [Wang, Yuker; Carlton, Victoria E. H.; Karlin-Neumann, George; Sapolsky, Ronald; Moorhead, Martin; Faham, Malek] Affymetrix Inc, Santa Clara, CA 95051 USA.
[Zhang, Li; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Mills, Gordon B.] Univ Texas Houston, MD Anderson Canc Ctr, Houston, TX 77030 USA.
[Wang, Zhigang C.; Richardson, Andrea L.] DF BWH Canc Ctr, Boston, MA USA.
[Warren, Robert] Univ Calif San Francisco, San Francisco, CA 94143 USA.
[Walther, Axel] London Res Inst, Canc Res UK, London, England.
[Thompson, Patricia A.] Arizona Canc Ctr, Tucson, AZ USA.
[Spellman, Paul T.; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Faham, M (reprint author), Affymetrix Inc, Santa Clara, CA 95051 USA.
EM yuker_wang@affymetrix.com; victoria_carlton@affymetrix.com;
george_karlin-neumann@affymetrix.com; ron_sapolsky@affymetrix.com;
lzhangli@mdanderson.org; martin_moorhead@affymetrix.com;
zhigang_wang@dfci.harvard.edu; andrea_richardson@dfci.harvard.edu;
warrenr@surgery.ucsf.edu; axel.walther@cancer.org.uk;
mbondy@mdanderson.org; asahin@mdanderson.org; rkrahe@mdanderson.org;
mtuna@mdanderson.org; pthompson@azcc.arizona.edu; ptspellman@lbl.gov;
jwgray@lbl.gov; gmills@mdanderson.org; malek_faham@affymetrix.com
FU NIH-NCI [P01 CA34936]; U. S. Department of Energy [DE-AC02-05CH11231];
USAMRMC [BC 061995]; National Institutes of Health; National Cancer
Institute [P50 CA 58207, P50 CA 83639, P30 CA 82103, U54 CA 112970, U24
CA 126477, P01 CA 64602, NHGRI U24 CA 126551]; SmithKline Beecham
Corporation; [P50 CA116199]; [R01 CA89608]
FX RK and MT were supported in part by grants from the NIH-NCI (P01
CA34936). MB, and GBM were supported by P50 CA116199, R01 CA89608. This
work was supported in part by the Director, Office of Science, Office of
Basic Energy Sciences, of the U. S. Department of Energy under Contract
No. DE-AC02-05CH11231, by the USAMRMC BC 061995, and by the National
Institutes of Health, National Cancer Institute grants P50 CA 58207, the
P50 CA 83639, the P30 CA 82103, the U54 CA 112970, the U24 CA 126477 and
the P01 CA 64602, the NHGRI U24 CA 126551 and by the SmithKline Beecham
Corporation grant to JWG.
NR 30
TC 55
Z9 56
U1 0
U2 5
PU BIOMED CENTRAL LTD
PI LONDON
PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND
SN 1755-8794
J9 BMC MED GENOMICS
JI BMC Med. Genomics
PD FEB 19
PY 2009
VL 2
AR 8
DI 10.1186/1755-8794-2-8
PG 13
WC Genetics & Heredity
SC Genetics & Heredity
GA 532JS
UT WOS:000272744600001
PM 19228381
ER
PT J
AU Wang, WG
Liu, XH
AF Wang, Weiguo
Liu, Xiaohong
TI Evaluating deep updraft formulation in NCAR CAM3 with high-resolution
WRF simulations during ARM TWP-ICE
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID CLOUD-RESOLVING MODEL; CUMULUS PARAMETERIZATION; CONVECTIVE CLOUDS;
ENTRAINMENT RATE; SENSITIVITY; ENSEMBLE; CLIMATE
AB The updraft formulation used in NCAR CAM3 deep convection parameterization assumes that the mass flux for a single updraft increases exponentially with height to its top and detrainment is confined only to a thin layer at the updraft top. These assumptions are evaluated against three-dimensional high-resolution simulations from the Weather Research and Forecast (WRF) model during the monsoon period of the DOE Atmospheric Radiation Measurement ( ARM) Program Tropical Warm Pool-International Cloud Experiment ( TWP-ICE). Analyses of the WRF-generated updrafts suggest that the mass flux for a single updraft increases with height below the top of the conditionally unstable layer and decreases above. Detrainment may dominate above the conditionally unstable layer rather than only over a thin layer at the updraft top. It is argued that the assumed updraft mass flux profile in CAM3 might be unrealistic in many cases because the updraft acceleration is affected by other drag processes in addition to entrainment. Our analyses suggest that the CAM3-parameterized convection could be too active and, as a result, excess moisture and heat could be transported to the upper troposphere by the parameterized convection. Future improvement is envisioned. Citation: Wang, W., and X. Liu ( 2009), Evaluating deep updraft formulation in NCAR CAM3 with high-resolution WRF simulations during ARM TWP- ICE, Geophys. Res. Lett., 36, L04701, doi: 10.1029/2008GL036692.
C1 [Wang, Weiguo; Liu, Xiaohong] PNNL, Richland, WA 99352 USA.
RP Wang, WG (reprint author), PNNL, POB 999, Richland, WA 99352 USA.
EM wang_wg@yahoo.com
RI Wang, Weiguo/B-4948-2009; Liu, Xiaohong/E-9304-2011
OI Liu, Xiaohong/0000-0002-3994-5955
FU Department of Energy ( DOE); Climate and Environmental Science Division
Atmospheric Radiation Measurement program; Pacific Northwest National
Laboratory; Battelle Memorial Institute [AC06-76RLO1830]
FX The authors acknowledge the support from the Department of Energy ( DOE)
Climate and Environmental Science Division Atmospheric Radiation
Measurement program. The Pacific Northwest National Laboratory is
operated for the DOE by Battelle Memorial Institute under contract
DE-AC06-76RLO1830.
NR 19
TC 10
Z9 10
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 19
PY 2009
VL 36
AR L04701
DI 10.1029/2008GL036692
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 410XJ
UT WOS:000263611300004
ER
PT J
AU Sukumar, N
Pask, JE
AF Sukumar, N.
Pask, J. E.
TI Classical and enriched finite element formulations for Bloch-periodic
boundary conditions
SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
LA English
DT Article
DE floquet waves; quantum mechanics; periodic boundary conditions;
constraint equations; higher-order finite elements; partition of unity;
enrichment
ID ELECTRONIC-STRUCTURE CALCULATIONS; ELECTROMAGNETIC-WAVES;
BAND-STRUCTURE; PARTITION
AB In this paper, classical and enriched finite element (FE) formulations to impose Bloch-periodic boundary conditions are proposed. Bloch-periodic boundary conditions arise in the description of wave-like phenomena in periodic media. We consider the quantum-mechanical problem in a crystalline solid and derive the weak formulation and matrix equations for the Schrodinger and Poisson equations in a parallelepiped unit cell under Bloch-periodic and periodic boundary conditions, respectively. For such second-order problems, these conditions consist of value- and derivative-periodic parts. The value-periodic part is enforced as an essential boundary condition by construction of a value-periodic basis, whereas the derivative-periodic part is enforced as a natural boundary condition in the weak formulation. We show that the resulting matrix equations can be obtained by suitably specifying the connectivity of element matrices in the assembly of the global matrices or by modifying the Neumann matrices via row and column operations. The implementation and accuracy of the new formulation is demonstrated via numerical examples for the three-dimensional Poisson and Schrodinger equations using classical and enriched (partition-of-unity) higher-order FEs. Copyright (C) 2008 John Wiley & Sons, Ltd.
C1 [Sukumar, N.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA.
[Pask, J. E.] Lawrence Livermore Natl Lab, Condensed Matter & High Pressure Phys Div, Livermore, CA 94550 USA.
RP Sukumar, N (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, 1 Shields Ave, Davis, CA 95616 USA.
EM nsukumar@ucdavis.edu
RI Sukumar, N/B-1660-2008
FU U.S. Department of Energy [DE-AC52-07NA27344]
FX This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 25
TC 36
Z9 36
U1 2
U2 12
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0029-5981
J9 INT J NUMER METH ENG
JI Int. J. Numer. Methods Eng.
PD FEB 19
PY 2009
VL 77
IS 8
BP 1121
EP 1138
DI 10.1002/nme.2457
PG 18
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
SC Engineering; Mathematics
GA 407RU
UT WOS:000263382800004
ER
PT J
AU Kopacz, M
Jacob, DJ
Henze, DK
Heald, CL
Streets, DG
Zhang, Q
AF Kopacz, Monika
Jacob, Daniel J.
Henze, Daven K.
Heald, Colette L.
Streets, David G.
Zhang, Qiang
TI Comparison of adjoint and analytical Bayesian inversion methods for
constraining Asian sources of carbon monoxide using satellite (MOPITT)
measurements of CO columns
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID VARIATIONAL DATA ASSIMILATION; BIOMASS BURNING EMISSIONS; ATMOSPHERIC
CO2; AIRCRAFT OBSERVATIONS; TRANSPORT; MODEL; VARIABILITY; INVENTORY;
SCHEMES; PACIFIC
AB We apply the adjoint of an atmospheric chemical transport model (GEOS-Chem CTM) to constrain Asian sources of carbon monoxide (CO) with 2 degrees x 2.5 degrees spatial resolution using Measurement of Pollution in the Troposphere (MOPITT) satellite observations of CO columns in February-April 2001. Results are compared to the more common analytical method for solving the same Bayesian inverse problem and applied to the same data set. The analytical method is more exact but because of computational limitations it can only constrain emissions over coarse regions. We find that the correction factors to the a priori CO emission inventory from the adjoint inversion are generally consistent with those of the analytical inversion when averaged over the large regions of the latter. The adjoint solution reveals fine-scale variability (cities, political boundaries) that the analytical inversion cannot resolve, for example, in the Indian subcontinent or between Korea and Japan, and some of that variability is of opposite sign which points to large aggregation errors in the analytical solution. Upward correction factors to Chinese emissions from the prior inventory are largest in central and eastern China, consistent with a recent bottom-up revision of that inventory, although the revised inventory also sees the need for upward corrections in southern China where the adjoint and analytical inversions call for downward correction. Correction factors for biomass burning emissions derived from the adjoint and analytical inversions are consistent with a recent bottom-up inventory on the basis of MODIS satellite fire data.
C1 [Kopacz, Monika; Jacob, Daniel J.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA.
[Henze, Daven K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA.
[Heald, Colette L.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
[Streets, David G.; Zhang, Qiang] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA.
RP Kopacz, M (reprint author), Harvard Univ, Div Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA.
EM mak@io.as.harvard.edu
RI Heald, Colette/A-6813-2011; Henze, Daven/A-1920-2012; Zhang,
Qiang/D-9034-2012; Chem, GEOS/C-5595-2014;
OI Streets, David/0000-0002-0223-1350
FU NASA Atmospheric Chemistry Modeling and Analysis Program; Jet Propulsion
Laboratory of the California Institute of Technology; NASA Headquarters
under the Earth System Science Fellowship [NGT5 06-ESSF06-45]
FX This work was supported by the NASA Atmospheric Chemistry Modeling and
Analysis Program, by the Jet Propulsion Laboratory of the California
Institute of Technology under contract with NASA, and by NASA
Headquarters under the Earth System Science Fellowship grant NGT5
06-ESSF06-45 to Monika Kopacz. The authors would also like to thank
Dylan Jones, Parvadha Suntharalingam, Ronald Errico, and Christopher
Holmes for useful insight and discussions.
NR 47
TC 77
Z9 79
U1 1
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 19
PY 2009
VL 114
AR D04305
DI 10.1029/2007JD009264
PG 10
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 410XT
UT WOS:000263612300001
ER
PT J
AU Kostko, O
Ahmed, M
Metz, RB
AF Kostko, Oleg
Ahmed, Musahid
Metz, Ricardo B.
TI Vacuum-Ultraviolet Photoionization Measurement and ab Initio Calculation
of the Ionization Energy of Gas-Phase SiO2
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID SILICON-OXIDE CLUSTERS; CROSS-SECTIONS; SINOM CLUSTERS; MOLECULES;
SYSTEM; LASER; THERMOCHEMISTRY; SPECTROSCOPY; CHEMISTRY; SPECTRUM
AB In this work we report on the detection and vacuum-ultraviolet (VUV) photoionization of gas-phase SiO2 generated in situ via laser ablation of silicon in a CO2 molecular beam. The resulting species are investigated by single-photon ionization with tunable VUV synchrotron radiation and mass analyzed using reflectron mass spectrometry. Photoionization efficiency (PIE) curves are recorded for SiO and SiO2, and ionization energy estimates are revealed from such measurements. A state-to-state ionization energy of 12.60 +/- 0.05 eV is recorded by fitting two prominent peaks in the PIE curve for the following process: (1)Sigma O-Si-O -> (IIg)-I-2 [O-Si-O](+). Electronic structure calculations aid in the interpretation of the photoionization process and allow for identification of the symmetric stretch of (IIg)-I-2 [O-Si-O](+), which is observed in the PIE spectrum to be 0.11 eV (890 cm(-1)) above the ground state of the cation and agrees with the 892 cm(-1) symmetric stretch frequency calculated at the CCSD(T)/aug-cc-pVTZ level.
C1 [Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
[Metz, Ricardo B.] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA.
RP Ahmed, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM MAhmed@lbl.gov
RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Metz,
Ricardo/E-8856-2010; Kostko, Oleg/A-3693-2010;
OI Kostko, Oleg/0000-0003-2068-4991; Metz, Ricardo/0000-0003-1933-058X
FU Office of Energy Research; Office of Basic Energy Sciences; U.S.
Department of Energy [DE-AC02-05CH11231]; National Science Foundation
[CHE-0608446]
FX This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, and Chemical Sciences Division of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231. R.B.M.
acknowledges financial support from the National Science Foundation
under Award CHE-0608446.
NR 53
TC 11
Z9 11
U1 0
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 19
PY 2009
VL 113
IS 7
BP 1225
EP 1230
DI 10.1021/jp8091495
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 406AU
UT WOS:000263268200007
PM 19170561
ER
PT J
AU Root, S
Gupta, YM
AF Root, S.
Gupta, Y. M.
TI Chemical Changes in Liquid Benzene Multiply Shock Compressed to 25 GPa
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID TRANSIENT HIGH-PRESSURE; EQUATION-OF-STATE; RAMAN-SPECTROSCOPY;
HEAT-CAPACITY; SMALL-VOLUME; X-RAY; HYDROCARBONS; NITROMETHANE;
DIMERIZATION; POLYBUTENE
AB Shock wave experiments utilizing stepwise-loading, with peak stresses ranging between 4 and 25 GPa, were performed to examine the dynamic high pressure response of liquid benzene at thermodynamic conditions not attainable in single shock experiments. Time-resolved Raman spectroscopy was used to monitor the molecular and chemical changes on sub-mu s time scales. Up to 20 GPa, the Raman modes showed pressure-induced shifting and broadening but no indication of a chemical change. At 24.5 GPa, however, the Raman modes become indistinguishable from an increasing background within 40 ns after the sample attained peak pressure, indicating a chemical change. A thermodynamically consistent equation of state (EOS) was developed to calculate the relevant thermodynamic variables in multiply shock compressed liquid benzene. Idealized molecular configurations were used in combination with the thermodynamic quantities in the shocked state to calculate the intermolecular separation between benzene molecules and to ascertain the likelihood of pi-orbital overlap. These idealized calculations show that sufficient energy and pi-orbital overlap exist in multiply shock compressed liquid benzene to permit intermolecular bonding at 24.5 GPa. Analysis of the Raman spectra, using the thermodynamic and intermolecular separation calculations, suggests that benzene undergoes polymerization through cycloaddition reactions. The rapid rate of polymerization is attributed to the benzene remaining in a liquid state on the sub-mu s experimental time scale. The results from the present work demonstrate the importance of time, pressure, temperature, and phase in chemical changes associated with pi-bonded molecules.
C1 Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA.
Washington State Univ, Dept Phys, Pullman, WA 99164 USA.
RP Root, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM sroot@sandia.gov
FU DOE/NNSA [DE-FG03-97SF21388]; ONR/MURI [N00014-01-1-0802]
FX The authors thank Drs. A. E. Clark, Z. A. Dreger, and C.S. Yoo for many
insightful discussions. Drs. J. N. Johnson and J. M. Winey are thanked
for their assistance with the development of the benzene equation of
state. Kent Perkins and Kurt Zimmerman are thanked for their technical
assistance in performing the shock wave experiments. This work was
supported by DOE/NNSA Grant DE-FG03-97SF21388 and the ONR/MURI Grant
N00014-01-1-0802.
NR 53
TC 21
Z9 23
U1 1
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 19
PY 2009
VL 113
IS 7
BP 1268
EP 1277
DI 10.1021/jp809099w
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 406AU
UT WOS:000263268200014
PM 19170559
ER
PT J
AU Ismail, H
Abel, PR
Green, WH
Fahr, A
Jusinski, LE
Knepp, AM
Zador, J
Meloni, G
Selby, TM
Osborn, DL
Taatjes, CA
AF Ismail, Huzeifa
Abel, Paul R.
Green, William H.
Fahr, Askar
Jusinski, Leonard E.
Knepp, Adam M.
Zador, Judit
Meloni, Giovanni
Selby, Talitha M.
Osborn, David L.
Taatjes, Craig A.
TI Temperature-Dependent Kinetics of the Vinyl Radical (C2H3) Self-Reaction
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHOTOIONIZATION CROSS-SECTIONS; RING-DOWN SPECTROSCOPY; EXCITED IODINE
ATOMS; LASER-ABSORPTION-MEASUREMENTS; 193 NM PHOTOLYSIS; PROPARGYL
RADICALS; MASS-SPECTROMETRY; QUANTUM YIELDS; RATE CONSTANTS; ALKYLPEROXY
RADICALS
AB The rate coefficient for the self-reaction of vinyl radicals has been measured by two independent methods. The rate constant as a function of temperature at 20 Torr has been determined by a laser-photolysis/laser absorption technique. Vinyl iodide is photolyzed at 266 nm , and both the vinyl radical and the iodine atom photolysis products are monitored by laser absorption. The vinyl radical concentration is derived from the initial iodine atom concentration, which is determined by using the known absorption cross section of the iodine atomic transition to relate the observed absorption to concentration. The measured rate constant for the self-reaction at room temperature is approximately a factor of 2 lower than literature recommendations. The reaction displays a slightly negative temperature dependence, which can be represented by a negative activation energy, (E-a/R) = -400 K. The laser absorption results are supported by independent experiments at 298 K and 4 Torr using time-resolved synchrotron-photoionization mass-spectrometric detection of the products of divinyl ketone and methyl vinyl ketone photolysis. The photoionization mass spectrometry experiments additionally show that methyl + propargyl are formed in the vinyl radical self-reaction, with an estimated branching fraction of 0.5 at 298 K and 4 Torr.
C1 [Abel, Paul R.; Green, William H.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
[Ismail, Huzeifa] MIT, Dept Chem, Cambridge, MA 02139 USA.
[Fahr, Askar] Howard Univ, Dept Chem, Washington, DC 20059 USA.
[Jusinski, Leonard E.; Knepp, Adam M.; Zador, Judit; Meloni, Giovanni; Selby, Talitha M.; Osborn, David L.; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
RP Green, WH (reprint author), MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
EM whgreen@mit.edu; cataatj@sandia.gov
RI Zador, Judit/A-7613-2008; Green, William/C-9684-2012
OI Zador, Judit/0000-0002-9123-8238; Green, William/0000-0003-2603-9694
NR 56
TC 14
Z9 14
U1 0
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 19
PY 2009
VL 113
IS 7
BP 1278
EP 1286
DI 10.1021/jp8096132
PG 9
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 406AU
UT WOS:000263268200015
PM 19146471
ER
PT J
AU Tarasevich, BJ
Lea, S
Bernt, W
Engelhard, M
Shaw, WJ
AF Tarasevich, Barbara J.
Lea, Scott
Bernt, William
Engelhard, Mark
Shaw, Wendy J.
TI Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID ATOMIC-FORCE MICROSCOPY; DYNAMIC LIGHT-SCATTERING; X-RAY-SCATTERING;
IN-VITRO; ENAMEL MATRIX; HYDROXYAPATITE CRYSTALS; OCTACALCIUM PHOSPHATE;
INTERACTION REGIMES; PROTEIN ADSORPTION; SOLID-SURFACES
AB The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials.,Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called "nanospheres", spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COON and CH(3) end group functionality and single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, X-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH(3) surfaces, and small oligomer adsorption was promoted onto the COON and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. Although the small structures may be present in solution even though they are not detected by DLS, we also propose that amelogenin may adsorb by the "shedding" or disassembling of substructures from the nanospheres onto the substrates. This work suggests that amelogenin may have a range of possible quaternary structures that interact with surfaces.
C1 [Tarasevich, Barbara J.; Lea, Scott; Engelhard, Mark; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Bernt, William] Particle Characterizat Labs, Novato, CA 94945 USA.
RP Tarasevich, BJ (reprint author), Pacific NW Natl Lab, 908 Battelle Blvd, Richland, WA 99352 USA.
EM bjtarasevich@pnl.gov
RI Engelhard, Mark/F-1317-2010;
OI Lea, Alan/0000-0002-4232-1553; Engelhard, Mark/0000-0002-5543-0812
FU NIH-NIDCR [DE-015347]
FX This work was supported by NIH-NIDCR Grant DE-015347. This research was
performed at Pacific Northwest National Laboratory, operated by Battelle
for the US-DOE. A portion of the research was performed in the EMSL, a
national scientific user facility sponsored by the DOE-OBER at PNNL.
NR 52
TC 24
Z9 25
U1 1
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD FEB 19
PY 2009
VL 113
IS 7
BP 1833
EP 1842
DI 10.1021/jp804548x
PG 10
WC Chemistry, Physical
SC Chemistry
GA 406MK
UT WOS:000263299400005
PM 19199690
ER
PT J
AU Leu, BM
Ching, TH
Zhao, JY
Sturhahn, W
Alp, EE
Sage, JT
AF Leu, Bogdan M.
Ching, Tom H.
Zhao, Jiyong
Sturhahn, Wolfgang
Alp, E. Ercan
Sage, J. Timothy
TI Vibrational Dynamics of Iron in Cytochrome c
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID RESONANCE RAMAN-SPECTROSCOPY; X-RAY-SCATTERING; FERRICYTOCHROME-C;
HEME-PROTEINS; YEAST ISO-1-CYTOCHROME-C; SYNCHROTRON-RADIATION;
CONFORMATION CHANGE; LIGAND-EXCHANGE; OXIDATION-STATE; MYOGLOBIN
AB Nuclear resonance vibrational spectroscopy (NRVS) and Raman spectroscopy on (54)Fe- and (57)Fe-enriched cytochrome c (cyt c) identify multiple bands involving vibrations of the heme Fe. Comparison with predictions from Fe isotope shifts reveals that 70% of the NRVS signal in the 300-450 cm(-1) frequency range corresponds to vibrations resolved in Soret-enhanced Raman spectra. This frequency range dominates the "stiffness", an effective force constant determined by the Fe vibrational density of states (VDOS), which measures the strength of nearest-neighbor interactions with Fe. The stiffness of the low-spin Fe environment in both oxidation states of cyt c significantly exceeds that for the high-spin Fe in deoxymyoglobin, where the 200-300 cm(-1) frequency range dominates the VDOS. This situation is reflected in the shorter Fe-ligand bond lengths in the former with respect to the latter. The longer Fe-S(Met80) in oxidized cyt c. with respect to reduced cyt c leads to a decrease in the stiffness of the iron environment upon oxidation. Comparison with NRVS measurements allows us to assess assignments for vibrational modes resolved in this region of the heme Raman spectrum. We consider the possibility that the 372 cm(-1) band in reduced cyt c involves the Fe-S(Met80) bond.
C1 [Leu, Bogdan M.; Ching, Tom H.; Sage, J. Timothy] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
[Leu, Bogdan M.; Ching, Tom H.; Sage, J. Timothy] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA.
[Leu, Bogdan M.; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Sage, JT (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
EM jtsage@neu.edu
RI Leu, Bogdan/J-9952-2015
OI Leu, Bogdan/0000-0003-2020-0686
FU U.S. Department of Energy; Basic Energy Sciences; Office of Science
[DE-AC02-06CH11357]
FX We thank Prof. Abel Schejter for useful discussions and acknowledge
generous support of this research by the National Science Foundation
(PHY-0545787). Use of the Advanced Photon Source was supported by the
U.S. Department of Energy, Basic Energy Sciences, Office of Science,
under Contract DE-AC02-06CH11357.
NR 92
TC 19
Z9 19
U1 1
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD FEB 19
PY 2009
VL 113
IS 7
BP 2193
EP 2200
DI 10.1021/jp806574t
PG 8
WC Chemistry, Physical
SC Chemistry
GA 406MK
UT WOS:000263299400048
PM 19173569
ER
PT J
AU McMahon, JA
Wang, YM
Sherry, LJ
Van Duyne, RP
Marks, LD
Gray, SK
Schatz, GC
AF McMahon, Jeffrey M.
Wang, Yingmin
Sherry, Leif J.
Van Duyne, Richard P.
Marks, Laurence D.
Gray, Stephen K.
Schatz, George C.
TI Correlating the Structure, Optical Spectra, and Electrodynamics of
Single Silver Nanocubes
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SURFACE-PLASMON RESONANCE; NANOSPHERE LITHOGRAPHY; NANOPARTICLE OPTICS;
GOLD NANOPARTICLES; ENHANCED RAMAN; SPECTROSCOPY; ARRAYS; DEPENDENCE;
SUBSTRATE; WIDTH
AB The plasmonic properties of noble metal nanoparticles have potential uses in a wide variety of technologies, particularly sensing devices, based on their optical response. To better understand how nanoparticles can be incorporated in such devices, the detailed relationship between the optical response and structural properties of single natioparticles is needed. Here we demonstrate that correlated localized surface plasmon resonance (LSPR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements can be used to obtain the optical response and detailed structural information for a single nanoparticle, using a silver (Ag) nanocube as the example. By carefully incorporating the HRTEM structural details into finite-difference time-domain (FDTD) electrodynamics calculations, excellent agreement with the LSPR measurements is obtained. The FDTD calculations show strong sensitivity between the nanocube optical response and the face-to-face width, corner and side rounding, and substrate of each cube, so careful determination of these parameters (I nm resolution) is needed if theory and experiment are to match. In addition, the comparison of theory and experiment enables us to study the relative merits of the Johnson and Christy and Lynch and Hunter Ag dielectric data for describing perfect crystalline nanoparticles.
C1 [McMahon, Jeffrey M.; Sherry, Leif J.; Van Duyne, Richard P.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[McMahon, Jeffrey M.; Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Wang, Yingmin; Marks, Laurence D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
RP Schatz, GC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM schatz@chem.northwestern.edu
RI Marks, Laurence/B-7527-2009
FU NSF [EEC-0118025, CHE-0414554, BES-0507036, DMR-0520513]; AFOSR
[FA9550-08-1-0221, FA9550-07-1-0526]; DTRA JSTO [FA9550-06-1-0558]; U.S.
Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357];
Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the NSF (EEC-0118025, CHE-0414554,
BES-0507036), AFOSR/DARPA Project BAA07-61 (FA9550-08-1-0221), AFOSR
DURIP (FA9550-07-1-0526), DTRA JSTO (FA9550-06-1-0558), and the NSF
MRSEC (DMR-0520513) at the Materials Research Center of Northwestern
University. S.K.G. was supported by the U.S. Department of Energy,
Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences under contract DE-AC02-06CH11357. This
research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the
U.S. Department of Energy Contract DE-AC02-05CH11231. We thank G. P.
Wiederrecht and M. A. Pelton for helpful discussions.
NR 40
TC 113
Z9 115
U1 14
U2 131
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 19
PY 2009
VL 113
IS 7
BP 2731
EP 2735
DI 10.1021/jp8098736
PG 5
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 406MM
UT WOS:000263299600013
ER
PT J
AU Kilos, B
Bell, AT
Iglesia, E
AF Kilos, Beata
Bell, Alexis T.
Iglesia, Enrique
TI Mechanism and Site Requirements for Ethanol Oxidation on Vanadium Oxide
Domains
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SELECTIVE OXIDATION; CATALYTIC-OXIDATION; METHANOL OXIDATION;
DEHYDROGENATION; PROPANE; SUPPORTS; SPECTROSCOPY; ACETALDEHYDE; ALUMINA;
RAMAN
AB The mechanism and structural requirements for ethanol oxidation to acetaldehyde were examined on VO(x) domains supported on gamma-Al(2)O(3) at surface densities of 1.7-11.8 VO(x)/nm(2). Raman and UV-visible spectra showed that VO(x) species evolve from monovanadate to polyvanadate structures with increasing surface density with only traces of crystalline V(2)O(5). Oxidative dehydrogenation (ODH) of ethanol to acetaldehyde occurs at low temperatures (473-523 K) with high primary selectivities of CH(3)CHO (similar to 80%) on a catalyst with one theoretical polyvanadate monolayer. ODH turnover rates (per V-atom) increased with increasing VO(x) surface density for surface densities up to 7.2 V/nm(2), indicating that polyvanadate domain surfaces are more reactive than monovanadate structures. Similar trends were evident for alkane ODH reactions that also involve kinetically relevant H-abstraction steps within reduction-oxidation catalytic sequences. Turnover rates ultimately decreased at higher surface densities because of the incipient formation of three-dimensional structures. VO(x) domains of intermediate size therefore provide a compromise between site reactivity and accessibility during ethanol ODH. The effects of O(2) and C(2)H(5)OH pressures on ethanol ODH rates and the kinetic isotope effects for C(2)H(5)OD and C(2)D(5)OD confirmed the kinetic relevance of H-abstraction from ethoxide species formed in quasiequilibrated ethanol dissociation steps; taken together with in situ infrared spectra, these data also show that ethoxide species are present at near saturation coverages on fully oxidized VO(x) domains that undergo reduction-oxidation cycles during each ethanol oxidation turnover.
C1 [Bell, Alexis T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA.
RP Bell, AT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
EM bell@berkeley.edu; iglesia@berkeley.edu
RI Iglesia, Enrique/D-9551-2017;
OI Iglesia, Enrique/0000-0003-4109-1001; Bell, Alexis/0000-0002-5738-4645
FU Office of Basic Energy Sciences, Chemical Sciences Division of the US
Department of Energy [DE-AC03-76SF00098]
FX This work was supported by the Director, Office of Basic Energy
Sciences, Chemical Sciences Division of the US Department of Energy
under Contract DE-AC03-76SF00098.
NR 48
TC 49
Z9 49
U1 5
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 19
PY 2009
VL 113
IS 7
BP 2830
EP 2836
DI 10.1021/jp8078056
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 406MM
UT WOS:000263299600026
ER
PT J
AU Hu, JZ
Kwak, JH
Wang, Y
Peden, CHF
Zheng, H
Ma, D
Bao, X
AF Hu, Jian Zhi
Kwak, Ja Hun
Wang, Yong
Peden, Charles H. F.
Zheng, Heng
Ma, Ding
Bao, Xinhe
TI Studies of the Active Sites for Methane Dehydroaromatization Using
Ultrahigh-Field Solid-State Mo-95 NMR Spectroscopy
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID BRONSTED ACID SITES; ANGLE-SPINNING NMR; MAS NMR; HYDRODESULFURIZATION
CATALYSTS; DEHYDRO-AROMATIZATION; ZEOLITE CATALYSTS; MO; NAPHTHALENE;
QUADRUPOLE; CONVERSION
AB In this contribution, we show that the spin-lattice relaxation time, T-1, corresponding to zeolite exchanged molybdenum species in Mo/HZSM-5 catalysts is about 2 orders of magnitude shorter than the corresponding T, for small MoO3 crystallites. Such a difference is utilized to differentiate the exchanged Mo species from MoO3 agglomerates in Mo/H7-SM-5 catalysts and to readily estimate their relative fractions present in catalysts with varying Mo loading. A good linear correlation between the amount of zeolite exchanged species and the aromatics formation rate during catalytic methane dehydroaromatization is obtained. This result significantly strengthens our prior conclusion that the exchanged Mo species are the active centers for this reaction on Mo/HZSM-5 catalysts (J. Am. Chem. Soc. 2008, 130, 3722-3723). Of more general interest for Mo-exchanged zeolites, the results may provide useful data for analyzing the binding of exchanged Mo species in zeolite cages. In particular, the NMR data suggest a possible saturation loading for the exchanged Mo species at a Mo/Al ratio of approximately 0.5 for the ZSM-5 zeolite used in this study (Si/Al = 25). Furthermore, for polycrystalline MoO3 powder samples, the parameters related to the electric field gradient (EFG) tensor, the chemical shift anisotropy (CSA), and the three Euler angles required to align the CSA principal axis system with the quadrupolar principal axis system are determined by analyzing both the magic angle spinning (MAS) and. static Mo-95 spectra. The new results obtained from this study on MoO3 powders should help to clarify some of the contradictions in prior literature reports of studies of Mo-containing solids by Mo-95 NMR.
C1 [Hu, Jian Zhi; Kwak, Ja Hun; Wang, Yong; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
[Zheng, Heng; Bao, Xinhe] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China.
[Zheng, Heng] SW Res & Design Inst Chem Ind Chengdu, Chengdu, Peoples R China.
RP Hu, JZ (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MS K8-98, Richland, WA 99352 USA.
EM Jianzhi.Hu@pnl.gov; Chuck.Peden@pnl.gov
RI Hu, Jian Zhi/F-7126-2012; Wang, Yong/C-2344-2013; Kwak, Ja
Hun/J-4894-2014; li, haobo/P-5373-2014
OI li, haobo/0000-0002-9215-3754
FU U.S. Department of Energy (DOE); Office of Basic Energy Sciences;
Division of Chemical Sciences; Environmental Molecular Sciences
Laboratory; Ministry of Science and Technology of China
FX This research was supported by the U.S. Department of Energy (DOE),
Office of Basic Energy Sciences, Division of Chemical Sciences. All of
the NMR experiments were performed in the Environmental Molecular
Sciences Laboratory, a national scientific user facility sponsored by
the DOE Office of Biological and Environmental Research and located at
the Pacific Northwest National Laboratory, U.S.A. The authors from DICP
thank the National Natural Science Foundation of China and the Ministry
of Science and Technology of China for financial support. The authors
thank Dr. Paul Ellis for his valuable suggestions in interpreting the
line shape and relaxation data for the exchanged Mo species, as well as
reviewing the draft manuscript. The authors are also grateful to Dr.
Andrew S. Lipton and Dr. Vijayakumar Murugesan for their kind assistance
in setting up the simulation software. Mr. Jesse A. Sears is
acknowledged for his assistance with the NMR probe setup.
NR 30
TC 16
Z9 16
U1 2
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 19
PY 2009
VL 113
IS 7
BP 2936
EP 2942
DI 10.1021/jp8107914
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 406MM
UT WOS:000263299600040
ER
PT J
AU Scott, FL
Stec, B
Pop, C
Dobaczewska, MK
Lee, JJ
Monosov, E
Robinson, H
Salvesen, GS
Schwarzenbacher, R
Riedl, SJ
AF Scott, Fiona L.
Stec, Boguslaw
Pop, Cristina
Dobaczewska, Malgorzata K.
Lee, JeongEun J.
Monosov, Edward
Robinson, Howard
Salvesen, Guy S.
Schwarzenbacher, Robert
Riedl, Stefan J.
TI The Fas-FADD death domain complex structure unravels signalling by
receptor clustering
SO NATURE
LA English
DT Article
ID CELL-DEATH; MUTATIONAL ANALYSIS; APOPTOSIS; CD95; ARCHITECTURE;
INFLAMMATION; INTERFACES; SPOTS
AB The death inducing signalling complex ( DISC) formed by Fas receptor, FADD( Fas- associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis(1-3). The Fas - FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation(4,5). Thus, characterizing the mechanistic basis for the Fas - FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas - FADD death domain complex and report the 2.7 angstrom crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas - Fas bridge. The result is a regulatory Fas - FADD complex bridge governed by weak protein - protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.
C1 [Scott, Fiona L.; Stec, Boguslaw; Pop, Cristina; Dobaczewska, Malgorzata K.; Lee, JeongEun J.; Monosov, Edward; Salvesen, Guy S.; Riedl, Stefan J.] Burnham Inst, Program Apoptosis & Cell Death Res, La Jolla, CA 92037 USA.
[Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Schwarzenbacher, Robert] Salzburg Univ, Dept Mol Biol, A-5020 Salzburg, Austria.
RP Riedl, SJ (reprint author), Burnham Inst, Program Apoptosis & Cell Death Res, La Jolla, CA 92037 USA.
EM robert.schwarzenbacher@sbg.ac.at; sriedl@burnham.org
FU cancer center grant [P30 CA030199]; Biological and Environmental
Research DOE; National Center for Research Resources NIH; LLS
scholarship; [R01AA017238]; [PO1CA69381]; [MCEXT-033534]
FX We thank S. Snipas for protein sequencing and technical assistance, J.
Reed for providing Fas cDNA and A. Bobkov for the AUC. This work was
supported by a P30 CA030199 cancer center grant and R01AA017238 to
S.J.R.; PO1CA69381 to G. S. S.; and MCEXT-033534 to R. S. Data measured
at beamline X29 of the National Synchrotron Light Source were also
supported by Biological and Environmental Research DOE, and National
Center for Research Resources NIH. Earlier stages of the work were
supported by a LLS scholarship to S.J.R. S.J.R. is currently a V
Foundation scholar.
NR 30
TC 90
Z9 94
U1 2
U2 17
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 19
PY 2009
VL 457
IS 7232
BP 1019
EP 1022
DI 10.1038/nature07606
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 408HF
UT WOS:000263425400044
ER
PT J
AU Jovanovic-Talisman, T
Tetenbaum-Novatt, J
McKenney, AS
Zilman, A
Peters, R
Rout, MP
Chait, BT
AF Jovanovic-Talisman, Tijana
Tetenbaum-Novatt, Jaclyn
McKenney, Anna Sophia
Zilman, Anton
Peters, Reiner
Rout, Michael P.
Chait, Brian T.
TI Artificial nanopores that mimic the transport selectivity of the nuclear
pore complex
SO NATURE
LA English
DT Article
ID NUCLEOCYTOPLASMIC TRANSPORT; IMPORTIN-BETA; NUCLEOPORINS; PERMEABILITY;
ARCHITECTURE; MECHANISM; MEMBRANES; REVEALS; REGIONS; SITES
AB Nuclear pore complexes ( NPCs) act as effective and robust gateways between the nucleus and the cytoplasm, selecting for the passage of particular macromolecules across the nuclear envelope. NPCs comprise an elaborate scaffold that defines a similar to 30 nm diameter passageway connecting the nucleus and the cytoplasm. This scaffold anchors proteins termed 'phenylalanine- glycine' ( FG)- nucleoporins, the natively disordered domains of which line the passageway and extend into its lumen(1). Passive diffusion through this lined passageway is hindered in a size- dependent manner. However, transport factors and their cargo- bound complexes overcome this restriction by transient binding to the FG-nucleoporins(2-10). To test whether a simple passageway and a lining of transport- factor- binding FG- nucleoporins are sufficient for selective transport, we designed a functionalized membrane that incorporates just these two elements. Here we demonstrate that this membrane functions as a nanoselective filter, efficiently passing transport factors and transport- factor - cargo complexes that specifically bind FG- nucleoporins, while significantly inhibiting the passage of proteins that do not. This inhibition is greatly enhanced when transport factor is present. Determinants of selectivity include the passageway diameter, the length of the nanopore region coated with FG- nucleoporins, the binding strength to FG-nucleoporins, and the antagonistic effect of transport factors on the passage of proteins that do not specifically bind FG- nucleoporins. We show that this artificial system faithfully reproduces key features of trafficking through the NPC, including transport-factor-mediated cargo import.
C1 [Jovanovic-Talisman, Tijana; Chait, Brian T.] Rockefeller Univ, Lab Mass Spect & Gaseous Ion Chem, New York, NY 10065 USA.
[Tetenbaum-Novatt, Jaclyn; McKenney, Anna Sophia; Rout, Michael P.] Rockefeller Univ, Lab Cellular & Struct Biol, New York, NY 10065 USA.
[Zilman, Anton] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Zilman, Anton] Los Alamos Natl Lab, Div Theoret, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Peters, Reiner] Univ Munster, Inst Med Phys & Biophys, D-48149 Munster, Germany.
[Peters, Reiner] Univ Munster, Ctr Nanotechnol CeNTech, D-48149 Munster, Germany.
RP Chait, BT (reprint author), Rockefeller Univ, Lab Mass Spect & Gaseous Ion Chem, 1230 York Ave, New York, NY 10065 USA.
EM chait@rockefeller.edu
RI Peters, Reiner/E-7352-2011; Novatt, Jaclyn/H-3459-2013;
OI Novatt, Jaclyn/0000-0002-3906-3469; Jovanovic-Talisman,
Tijana/0000-0003-1928-4763
FU NIH; DoE
FX We thank E. Coutavas, S. Darst, G. Belfort and C. Martin for suggestions
and comments, G. Blobel for use of his confocal microscope, D. Phillips
for use of his sputtering device, P. Nahirney and A. Labissiere for
electron microscopy work, J. M. Crawford for amino acid analysis, D.
Gadsby and A. Gulyas Kovacs for providing Xenopus oocytes, J. Aitchison
for Kap95-GST and Kap121-GST plasmids, K. Zerf and M. Kahms for
providing RanGDP, K. Zerf for NTF2-YFP cloning assistance, R. Mironska
for help in preparing measuring chambers, and other members of the
Peters, Rout and Chait laboratories for their assistance. We gratefully
acknowledge support from the NIH and DoE. J.T.-N. is a HHMI pre-doctoral
fellow.
NR 29
TC 138
Z9 139
U1 7
U2 65
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 19
PY 2009
VL 457
IS 7232
BP 1023
EP 1027
DI 10.1038/nature07600
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 408HF
UT WOS:000263425400045
PM 19098896
ER
PT J
AU Zilman, A
AF Zilman, Anton
TI Effects of Multiple Occupancy and Interparticle Interactions on
Selective Transport through Narrow Channels: Theory versus Experiment
SO BIOPHYSICAL JOURNAL
LA English
DT Article
ID NUCLEAR-PORE COMPLEXES; FACILITATED MEMBRANE-TRANSPORT; SITE CARRIER
MEMBRANES; NANOTUBE MEMBRANES; ESCHERICHIA-COLI; ION CHANNELS;
MECHANISM; TRANSLOCATION; PARTICLES; DIFFUSION
AB Many biological and artificial transport channels function without direct input of metabolic energy during a transport event and without structural rearrangements involving transitions from a closed to an open state. Nevertheless, such channels are able to maintain efficient and selective transport. It has been proposed that attractive interactions between the transported molecules and the channel can increase the transport efficiency and that the selectivity of such channels can be based on the strength of the interaction of the specifically transported molecules with the channel. Herein, we study the transport through narrow channels in a framework of a general kinetic theory, which naturally incorporates multiparticle occupancy of the channel and non-single-file transport. We study how the transport efficiency and the probability of translocation through the channel are affected by interparticle interactions in the confined space inside the channel, and establish conditions for selective transport. We compare the predictions of the model with the available experimental data and find good semiquantitative agreement. Finally, we discuss applications of the theory to the design of artificial nanomolecular sieves.
C1 [Zilman, Anton] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
[Zilman, Anton] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA.
RP Zilman, A (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA.
EM zilmana@lanl.gov
FU U.S. Department of Energy [DE-AC52-06NA25396]
FX This research was performed under the auspices of the U.S. Department of
Energy under contract No. DE-AC52-06NA25396.
NR 66
TC 28
Z9 28
U1 1
U2 11
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0006-3495
J9 BIOPHYS J
JI Biophys. J.
PD FEB 18
PY 2009
VL 96
IS 4
BP 1235
EP 1248
DI 10.1016/j.bpj.2008.09.058
PG 14
WC Biophysics
SC Biophysics
GA 450CE
UT WOS:000266377800003
PM 19217844
ER
PT J
AU Siriwardane, RV
Stevens, RW
AF Siriwardane, Ranjani V.
Stevens, Robert W., Jr.
TI Novel Regenerable Magnesium Hydroxide Sorbents for CO2 Capture at Warm
Gas Temperatures
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID PRESSURE-SWING ADSORPTION; ZEOLITES; OPTIMIZATION; CARBON; N-2
AB A novel sorbent consisting of Mg(OH)(2) was developed for carbon dioxide (CO2) capture at 200-315 degrees C suitable for CO2 capture applications such as coal gasification systems. Thermodynamic analysis conducted with the FactSage software package indicated that the Mg(OH)(2) sorbent system is highly favorable for CO2 capture up to 400 degrees C at 30 atm. MgCO3 formed during sorption decomposes to release CO2 at temperatures as low as 375 degrees C up to 20 atm. MgO rehydroxylation to form Mg(OH)(2) is possible at temperatures up to 300 degrees C at 20 atm. The experimental data show that the sorbent is regenerable at 375 degrees C at high pressure and that steam does not affect the sorbent performance. A multicycle test conducted in a high-pressure fixed-bed flow reactor at 200 degrees C with 28% CO2 showed stable reactivity during the cyclic tests. The capture capacity also increased with increasing pressure. The sorbent is unique because it exhibits a high CO2 capture capacity of more than 3 mol/kg at 200 degrees C and also is regenerable at a low temperature of 375 degrees C and high pressure. High-pressure regeneration is advantageous because the CO2 compression costs required for sequestration can be reduced.
C1 [Siriwardane, Ranjani V.; Stevens, Robert W., Jr.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA.
[Stevens, Robert W., Jr.] Parsons, South Pk, PA 15129 USA.
RP Siriwardane, RV (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA.
EM ranjani.siriwardane@netl.doe.gov
OI Stevens, Robert/0000-0002-0864-6768
NR 18
TC 44
Z9 46
U1 3
U2 30
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD FEB 18
PY 2009
VL 48
IS 4
BP 2135
EP 2141
DI 10.1021/ie8011598
PG 7
WC Engineering, Chemical
SC Engineering
GA 406BB
UT WOS:000263268900054
ER
PT J
AU Anisimov, VI
Korotin, DM
Korotin, MA
Kozhevnikov, AV
Kunes, J
Shorikov, AO
Skornyakov, SL
Streltsov, SV
AF Anisimov, V. I.
Korotin, Dm M.
Korotin, M. A.
Kozhevnikov, A. V.
Kunes, J.
Shorikov, A. O.
Skornyakov, S. L.
Streltsov, S. V.
TI Coulomb repulsion and correlation strength in LaFeAsO from density
functional and dynamical mean-field theories
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID 2-BAND HUBBARD-MODEL; WANNIER-FUNCTIONS; ELECTRONIC-STRUCTURE; SYSTEMS;
PARAMETERS; BAND; SUPERCONDUCTIVITY; IMPURITIES; SPECTRA; METALS
AB The LDA + DMFT (local density approximation combined with dynamical mean-field theory) computation scheme has been used to calculate spectral properties of LaFeAsO-the parent compound of the new high-T(c) iron oxypnictides. The average Coulomb repulsion (U) over bar and Hund's exchange J parameters for iron 3d electrons were calculated using the first-principles constrained density functional theory scheme in the Wannier functions formalism. Resulting values strongly depend on the number of states taken into account in the calculations: when the full set of O-2p, As-4p and Fe-3d orbitals and the corresponding bands are included, the interaction parameters (U) over bar = 3-4 eV and J = 0.8 eV are obtained. In contrast, when the basis set is restricted to the Fe-3d orbitals and bands only, the calculation gives much smaller values of (U) over bar = 0.5-0.6 eV, J = 0.5 eV. Nevertheless, DMFT calculations with both parameter sets and the corresponding basis sets result in a weakly correlated electronic structure that is in agreement with the experimental x-ray and photoemission spectra.
C1 [Anisimov, V. I.; Korotin, Dm M.; Korotin, M. A.; Kozhevnikov, A. V.; Shorikov, A. O.; Skornyakov, S. L.; Streltsov, S. V.] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620041, Russia.
[Kozhevnikov, A. V.] Oak Ridge Natl Lab, Joint Inst Computat Sci, Oak Ridge, TN 37831 USA.
[Kunes, J.] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, D-86135 Augsburg, Germany.
[Kunes, J.] ASCR, Inst Phys, Prague 16253 6, Czech Republic.
RP Anisimov, VI (reprint author), Russian Acad Sci, Inst Met Phys, GSP 170, Ekaterinburg 620041, Russia.
RI Kunes, Jan/B-4484-2008; Streltsov, Sergey/A-6674-2012; Korotin,
Dmitry/I-6833-2013; Korotin, Michael/J-3252-2013; Shorikov,
Alexey/J-3551-2013; Anisimov, Vladimir/K-1235-2013; Skornyakov,
Sergey/K-8132-2013; Streltsov, Sergey/A-8293-2016
OI Kunes, Jan/0000-0001-9682-7640; Streltsov, Sergey/0000-0002-2823-1754;
Korotin, Dmitry/0000-0002-4070-2045; Korotin,
Michael/0000-0002-9603-8374; Shorikov, Alexey/0000-0001-7607-6130;
Anisimov, Vladimir/0000-0002-1087-1956; Skornyakov,
Sergey/0000-0001-8024-0917;
FU Russian Foundation for Basic Research [RFFI-07-02-00041]; Civil Research
and Development Foundation together with the Russian Ministry of Science
and Education through program [Y4-P-05-15]; Russian President Grant for
Young Scientists [MK-1184.2007.2]; President of Russian Federation Fund
of Support for Scientific Schools [1941.2008.2]; Dynasty Foundation; SFB
484 of the Deutsche Forschungsgemeinschaft
FX The authors acknowledge K Held for helpful discussion. Support by the
Russian Foundation for Basic Research under grant no. RFFI-07-02-00041,
Civil Research and Development Foundation together with the Russian
Ministry of Science and Education through program Y4-P-05-15, Russian
President Grant for Young Scientists MK-1184.2007.2, President of
Russian Federation Fund of Support for Scientific Schools grant
1941.2008.2 and Dynasty Foundation is gratefully acknowledged. JK
acknowledges the support of SFB 484 of the Deutsche
Forschungsgemeinschaft.
NR 42
TC 83
Z9 87
U1 0
U2 15
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD FEB 18
PY 2009
VL 21
IS 7
AR 075602
DI 10.1088/0953-8984/21/7/075602
PG 7
WC Physics, Condensed Matter
SC Physics
GA 400VK
UT WOS:000262897300018
PM 21817332
ER
PT J
AU Koshkakaryan, G
Klivansky, LM
Cao, D
Snauko, M
Teat, SJ
Struppe, JO
Liu, Y
AF Koshkakaryan, Gayane
Klivansky, Liana M.
Cao, Dennis
Snauko, Marian
Teat, Simon J.
Struppe, Jochem O.
Liu, Yi
TI Alternative Donor-Acceptor Stacks from Crown Ethers and Naphthalene
Diimide Derivatives: Rapid, Selective Formation from Solution and Solid
State Grinding
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID TEMPLATE-DIRECTED SYNTHESIS; IONIC PHASE-TRANSITION; CHARGE-TRANSFER;
RECEPTOR; DUPLEXES; COMPLEX; ORDER
AB The atypical 1:2 complexation between an etectron-rich crown ether host and electron-deficient naphthalene diimide-based guests led to the formation of alternative donor-acceptor (ADA) stacks. The ADA stacks can be expediently obtained in high yield as polycrystalline aggregates from solution. More remarkably, the high degree of organization has also been realized in a simple solid-to-solid mechanical grinding process. The solid-state structures have been verified by solid-state NMR spectroscopy, single crystal, and powder X-ray diffraction analysis. The current findings not only provide convenient ways of obtaining novel donor-acceptor stacks involving a macrocyclic host but also represent an important step in transferring electroactive host-guest systems from solution to the solid state.
C1 [Koshkakaryan, Gayane; Klivansky, Liana M.; Cao, Dennis; Snauko, Marian; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM yliu@lbl.gov
RI Liu, yi/A-3384-2008; Cao, Dennis/C-2240-2013
OI Liu, yi/0000-0002-3954-6102; Cao, Dennis/0000-0002-0315-1619
FU Office of Science, Office of Basic Energy Sciences; U.S. Department of
Energy [DE-AC02-05 CH11231]
FX This work was supported by the Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05
CH11231.
NR 31
TC 68
Z9 68
U1 0
U2 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 18
PY 2009
VL 131
IS 6
BP 2078
EP +
DI 10.1021/ja809088v
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 427PW
UT WOS:000264792200021
PM 19161257
ER
PT J
AU Takahashi, T
Takei, K
Ho, JC
Chueh, YL
Fan, ZY
Javey, A
AF Takahashi, Toshitake
Takei, Kuniharu
Ho, Johnny C.
Chueh, Yu-Lun
Fan, Zhiyong
Javey, Ali
TI Monolayer Resist for Patterned Contact Printing of Aligned Nanowire
Arrays
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID INTEGRATION; FILMS
AB Large-area, patterned printing of nanowires by using fluorinated self-assembled monolayers as the resist layer is demonstrated. By projecting a light pattern on the surface of the monolayer resist in an oxygen-rich environment, sticky and nonsticky regions on the surface are directly defined in a single-step process which then enables the highly specific and patterned transfer of the nanowires by the contact printing process, without the need for a subsequent lift-off step. This work demonstrates a simple route toward scalable, patterned printing of nanowires on substrates by utilizing light-tunable, nanoscale chemical interactions and demonstrates the versatility of molecular monolayers for use as a resist layer.
C1 [Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
EM ajavey@eecs.berkeley.edu
RI Fan, Zhiyong/C-4970-2012; Ho, Johnny/K-5275-2012; Javey,
Ali/B-4818-2013; Chueh, Yu-Lun/E-2053-2013;
OI Ho, Johnny/0000-0003-3000-8794; Chueh, Yu-Lun/0000-0002-0155-9987; Fan,
Zhiyong/0000-0002-5397-0129
FU MARCO/MSD; Intel Corporation; BSAC; NSF
FX This work was funded by MARCO/MSD, Intel Corporation, BSAC, and NSF.
J.C.H. acknowledges an Intel Graduate Fellowship.
NR 14
TC 36
Z9 36
U1 3
U2 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 18
PY 2009
VL 131
IS 6
BP 2102
EP +
DI 10.1021/ja8099954
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 427PW
UT WOS:000264792200033
PM 19173560
ER
PT J
AU Gargas, DJ
Toimil-Molares, ME
Yang, PD
AF Gargas, Daniel J.
Toimil-Molares, Maria Eugenia
Yang, Peidong
TI Imaging Single ZnO Vertical Nanowire Laser Cavities Using UV-laser
Scanning Confocal Microscopy
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID LASING DYNAMICS; INTEGRATION
AB We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing >10 mu m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoetectronics and nanophotonics.
C1 [Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.
RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM p_yang@berkeley.edu
RI Toimil-Molares, Maria Eugenia/B-3199-2010; Toimil-Molares, Maria
Eugenia/C-5946-2015
FU U.S. Department of Energy [DE-AC02-05CH11231]; Max-Kade Foundation
FX This work was supported by the Director, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231. The authors
thank Steve Hoagland for assistance with instrument development, Taleb
Mokari for assistance with electron microscopy, and Erik Garnett for
discussions on synthesis. M.E.T.M thanks the Max-Kade Foundation for
financial support through a fellowship.
NR 21
TC 67
Z9 68
U1 5
U2 57
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 18
PY 2009
VL 131
IS 6
BP 2125
EP +
DI 10.1021/ja8092339
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 427PW
UT WOS:000264792200041
PM 19175311
ER
PT J
AU Huang, QJ
Lilley, CM
Divan, R
AF Huang, Qiaojian
Lilley, Carmen M.
Divan, Ralu
TI An in situ investigation of electromigration in Cu nanowires
SO NANOTECHNOLOGY
LA English
DT Article
ID THIN-FILMS; INTERCONNECTS; FAILURE; MICROSCOPY; DIFFUSION; GOLD; LINE
AB Electromigration in copper (Cu) nanowires deposited by electron beam evaporation has been investigated using both resistance measurement and the in situ scanning electron microscopy technique. During electromigration, voids formed at the cathode end while hillocks ( or extrusions) grew close to the anode end. The failure lifetimes were measured for various applied current densities and the mean temperature in the wire was estimated. Electromigration activation energies of 1.06 eV and 0.94 eV were found for the wire widths of 90 nm and 141 nm, respectively. These results suggest that the mass transport of Cu during electromigration mainly occurs along the wire surfaces. Further investigations of the Auger electron spectrum show that both Cu atoms and the surface contaminants of carbon and oxygen migrate from cathode to anode under the electrical stressing.
C1 [Huang, Qiaojian; Lilley, Carmen M.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA.
[Divan, Ralu] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Huang, QJ (reprint author), Univ Illinois, Dept Mech & Ind Engn, 3055 Engn Res Facil,842 W Taylor St, Chicago, IL 60607 USA.
EM clilley@uic.edu
RI Huang, Qiaojian/A-4951-2010
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX Use of the Center for Nanoscale Materials at Argonne National Laboratory
was supported by the US Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract No DE-AC02-06CH11357. The metal
film deposition was carried out with the Nanotechnology Core Facilities
at the University of Illinois at Chicago. We would appreciate Dr
Matthias Bode for his help on the experiments and insightful discussions
on this paper. We also thank Dr Brandon Fisher and Dr Hongjun Zeng for
their technical support and helpful suggestions.
NR 24
TC 30
Z9 30
U1 0
U2 28
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
EI 1361-6528
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 18
PY 2009
VL 20
IS 7
AR 075706
DI 10.1088/0957-4484/20/7/075706
PG 6
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 399FP
UT WOS:000262786100030
PM 19417434
ER
PT J
AU Wang, ZG
Gao, F
Li, JB
Zu, XT
Weber, WJ
AF Wang, Zhiguo
Gao, Fei
Li, Jingbo
Zu, Xiaotao
Weber, William J.
TI Controlling electronic structures by irradiation in single-walled SiC
nanotubes: a first-principles molecular dynamics study
SO NANOTECHNOLOGY
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; SILICON-CARBIDE NANOTUBES; FORMATION
ENERGIES; CARBON NANOTUBES; BORON-NITRIDE; NANOWIRES; COMPOSITES;
DEFECTS; FUSION
AB Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.
C1 [Wang, Zhiguo; Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
[Wang, Zhiguo; Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China.
[Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China.
EM zgwang@uestc.edu.cn
RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang,
Zhiguo/B-7132-2009
OI Weber, William/0000-0002-9017-7365;
FU National Natural Science Foundation of China [10704014]; Young
Scientists Foundation of UESTC [JX0731]; Division of Materials Sciences
and Engineering, Office of Basic Energy Sciences, US Department of
Energy [DE-AC05-76RL01830]; Chinese Academy of Sciences
FX ZW was financially supported by the National Natural Science Foundation
of China (10704014) and the Young Scientists Foundation of UESTC
(JX0731). Two authors (FG and WJW) were supported by the Division of
Materials Sciences and Engineering, Office of Basic Energy Sciences, US
Department of Energy under contract DE-AC05-76RL01830. JL gratefully
acknowledges financial support from the 'One-Hundred Talents Plan' of
the Chinese Academy of Sciences.
NR 31
TC 20
Z9 20
U1 0
U2 12
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
EI 1361-6528
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 18
PY 2009
VL 20
IS 7
AR 075708
DI 10.1088/0957-4484/20/7/075708
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 399FP
UT WOS:000262786100032
PM 19417436
ER
PT J
AU Klopper, W
Ruscic, B
Tew, DP
Bischoff, FA
Wolfsegger, S
AF Klopper, Wim
Ruscic, Branko
Tew, David P.
Bischoff, Florian A.
Wolfsegger, Sandra
TI Atomization energies from coupled-cluster calculations augmented with
explicitly-correlated perturbation theory
SO CHEMICAL PHYSICS
LA English
DT Review
DE Thermochemistry; Atomization energy; Coupled-cluster theory;
Explicitly-correlated theory
ID ACTIVE THERMOCHEMICAL TABLES; SET MODEL CHEMISTRY; ELECTRONIC-STRUCTURE
THEORY; AB-INITIO THERMOCHEMISTRY; AUXILIARY BASIS-SETS; GAUSSIAN-BASIS
SETS; ZETA BASIS-SETS; CORRELATION CUSP; VIBRATIONAL FREQUENCIES;
MOLECULAR CALCULATIONS
AB The atomization energies of the 105 molecules in the test set of Bakowies [D. Bakowies, J. Chem. Phys. 127 (2007) 0841051 have been computed with an estimated standard deviation (from the values compiled in the Active Thermochemical Tables) of +/- 0.1 kJ/mol per valence electron in the molecule. Equilibrium geometries and harmonic vibrational frequencies were calculated at the all-electron CCSD(T)/cc-pCVTZ level, that is, at the level of coupled-cluster theory with singles, doubles and non-iterative triples in a correlation-consistent polarized core-valence triple-zeta basis. Single-point energy calculations were performed at the all-electron CCSD(T) level in a correlation-consistent polarized core-valence quadruple-zeta basis (cc-pCVQZ), and several corrections were added: (i) a correction for the basis-set truncation error, obtained from second-order perturbation theory using Slater-type geminals (MP2-F12 theory), (ii) a correction for the effect of anharmonicity on the zero-point vibrational energy, (iii) a relativistic correction, (iv) a correction for the difference between the full CCSDT model (coupled-cluster theory with singles, doubles and triples) and the CCSD(T) approximation, and (v) a correction for connected quadruple excitations obtained from CCSDT(Q) calculations. The correction for the basis-set truncation error was obtained from MP2-F12 calculations by scaling the MP2 basis-set truncation error by an empirically optimized "interference factor" of f(int) = 0.78. The reference values from the Active Thermochemical Tables for 73 molecules in the test set, the equilibrium geometries, the harmonic vibrational frequencies, and all of the energy corrections represent valuable data for performance assessments of additivity schemes that will be developed in the future, in which the basis-set truncation error will be calculated at the level of coupled-cluster theory using Slater-type geminals (CC-F12 theory). Such a scheme will be free of empirical corrections and scaling factors. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Klopper, Wim; Tew, David P.; Bischoff, Florian A.; Wolfsegger, Sandra] Univ Karlsruhe TH, Inst Phys Chem, Lehrstuhl Theoret Chem, D-76128 Karlsruhe, Germany.
[Ruscic, Branko] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Klopper, W (reprint author), Univ Karlsruhe TH, Inst Phys Chem, Lehrstuhl Theoret Chem, D-76128 Karlsruhe, Germany.
EM klopper@chem-bio.uni-karlsruhe.de
RI Tew, David/E-1458-2011; Ruscic, Branko/A-8716-2008; Klopper,
Wim/I-3163-2014
OI Tew, David/0000-0002-3220-4177; Ruscic, Branko/0000-0002-4372-6990;
Klopper, Wim/0000-0002-5219-9328
FU DFG [KL 721/2-2, TE 644/1-1]; Fonds der Chemischen Industrie; U.S.
Department of Energy, Division of Chemical Sciences, Geosciences, and
Biosciences of the Office of Basic Energy Sciences [DE-AC02-06CH11357];
IUPAC [2003-024-1-100]
FX W.K. gratefully acknowledges support by the DFG through Grant No. KL
721/2-2 and additional financial support by the Fonds der Chemischen
Industrie. D.P.T. gratefully acknowledges support by the DFG through
Grant No. TE 644/1-1. F.A.B. gratefully acknowledges support by the
Fonds der Chemischen Industrie through a Chemiefonds stipend. The work
at Argonne National Laboratory was performed under the auspices of the
U.S. Department of Energy, Division of Chemical Sciences, Geosciences,
and Biosciences of the Office of Basic Energy Sciences, under Contract
No. DE-AC02-06CH11357. Portions of the research presented in this paper
were conducted within the framework of the Task Group of the
International Union of Pure and Applied Chemistry, "Selected Free
Radicals and Critical Intermediates: Thermodynamic Properties from
Theory and Experiment" (IUPAC Project 2003-024-1-100).
NR 104
TC 56
Z9 56
U1 0
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD FEB 17
PY 2009
VL 356
IS 1-3
BP 14
EP 24
DI 10.1016/j.chemphys.2008.11.013
PG 11
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 416HX
UT WOS:000263997700004
ER
PT J
AU Xue, KH
Chen, SP
Wang, LX
Wei, RB
Xu, SM
Cui, L
Mao, BW
Tian, ZQ
Zen, CH
Sun, SG
Wu, LJ
Zhu, YM
AF Xue, Kuan-Hong
Chen, Shao-Peng
Wang, Lin-Xia
Wei, Ri-Bing
Xu, Shi-Min
Cui, Li
Mao, Bin-Wei
Tian, Zhong-Qun
Zen, Chun-Hua
Sun, Shi-Gang
Wu, Li-Jun
Zhu, Yi-Mei
TI Fabrication and characterization of oriented carbon atom wires assembled
on gold
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID RAMAN-SCATTERING; LINEAR CARBON; MONOLAYERS; CARBYNE; SPECTROSCOPY;
ALKANETHIOLS; POLYYNES; SURFACES; ADSORPTION; ALLOTROPE
AB Carbon atom wires (CAWs) are of the sp-hybridized allotrope of carbon. To augment the extraordinary features based on sp-hybridization, we developed an approach to make CAWs be self-assembled and orderly organized on Au substrate. The self-assembling process was investigated in situ by using scanning tunneling microscopy (STM) and electrochemical quartz crystal microbalance (EQCM). The properties of the assembled film were characterized by voltammetry, Raman spectroscopy, electron energy loss spectroscopy ( EELS), and the contact angle measurements. Experimental results indicated that the assembled CAW film was of the good structural integrity and well organized, with the sp-hybridized features enhanced. (C) 2008 Elsevier B. V. All rights reserved.
C1 [Xue, Kuan-Hong; Chen, Shao-Peng; Wang, Lin-Xia; Wei, Ri-Bing] Nanjing Normal Univ, Dept Chem, Nanjing 210097, Peoples R China.
[Xu, Shi-Min; Cui, Li; Mao, Bin-Wei; Tian, Zhong-Qun; Zen, Chun-Hua; Sun, Shi-Gang] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China.
[Xu, Shi-Min; Cui, Li; Mao, Bin-Wei; Tian, Zhong-Qun; Zen, Chun-Hua; Sun, Shi-Gang] Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China.
[Wu, Li-Jun; Zhu, Yi-Mei] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Xue, KH (reprint author), Nanjing Normal Univ, Dept Chem, 122 NingHai Rd, Nanjing 210097, Peoples R China.
EM khxue@njnu.edu.cn
RI Tian, ZQ/G-3411-2010; SKL, PCOSS/D-4395-2013; Sun, S.G./G-3408-2010;
Cui, Li/A-7798-2016
OI Tian, ZQ/0000-0002-9775-8189;
FU National Natural Science Foundation of China [20473039]; State Key
Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University,
China) [200405]; U. S. Department of Energy, Office of Basic Energy
Science [DE-AC02-98CH10886]
FX This work was supported by National Natural Science Foundation of China
( No. 20473039) and State Key Laboratory of Physical Chemistry of Solid
Surfaces (Xiamen University, China) ( No. 200405). Work at Brookhaven
National Laboratory was supported by the U. S. Department of Energy,
Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. We
thank Siber Hegner China ( A Division of Siber Hegner Ltd.) for the
contact angle measurements.
NR 33
TC 1
Z9 2
U1 1
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 17
PY 2009
VL 469
IS 4-6
BP 284
EP 288
DI 10.1016/j.cplett.2008.12.075
PG 5
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 403DB
UT WOS:000263061400011
ER
PT J
AU Mu, W
Kerr, LL
Leyarovska, N
AF Mu, Wei
Kerr, Lei L.
Leyarovska, Nadia
TI Extended X-ray absorption fine structure study of p-type nitrogen doped
ZnO
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID THIN-FILMS; GROWTH; TEMPERATURE; DEPOSITION; MECHANISM; NANORODS
AB p-Type nitrogen doped ZnO was studied by using extended X-ray absorption. ne structure (EXAFS) at the Zn K edge. The p-type ZnO was fabricated on glass substrates by a low cost catalyst-free thermal evaporation process. The EXAFS measurement showed that the bonding length of Zn-O and Zn-Zn was increased after converting to p-type due to the incorporation of nitrogen atoms. The EXAFS analysis indicated that N atoms might exist as diatom form of N-N in ZnO film. (C) 2009 Published by Elsevier B. V.
C1 [Kerr, Lei L.] Miami Univ, Dept Paper Sci & Engn, Oxford, OH 45056 USA.
Argonne Natl Lab, Argonne, IL 60439 USA.
RP Kerr, LL (reprint author), Miami Univ, Dept Paper Sci & Engn, Oxford, OH 45056 USA.
EM kerrll@muohio.edu
RI Mu, Wei/D-7862-2017
OI Mu, Wei/0000-0001-7565-084X
FU DOE BES [DE-FG02-07ER46389]; U. S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX The authors would like to thank the funding support from DOE BES Grant
DE-FG02-07ER46389 administrated by Dr. Refik Kortan. The authors also
feel grateful for Dr. David Look and Mr. Tim Cooper at Wright State
University for Hall Effect measurements. Use of the Advanced Photon
Source was supported by the U. S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357.
NR 35
TC 4
Z9 5
U1 0
U2 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 17
PY 2009
VL 469
IS 4-6
BP 318
EP 320
DI 10.1016/j.cplett.2009.01.011
PG 3
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 403DB
UT WOS:000263061400018
ER
PT J
AU Fiore, AM
Dentener, FJ
Wild, O
Cuvelier, C
Schultz, MG
Hess, P
Textor, C
Schulz, M
Doherty, RM
Horowitz, LW
MacKenzie, IA
Sanderson, MG
Shindell, DT
Stevenson, DS
Szopa, S
Van Dingenen, R
Zeng, G
Atherton, C
Bergmann, D
Bey, I
Carmichael, G
Collins, WJ
Duncan, BN
Faluvegi, G
Folberth, G
Gauss, M
Gong, S
Hauglustaine, D
Holloway, T
Isaksen, ISA
Jacob, DJ
Jonson, JE
Kaminski, JW
Keating, TJ
Lupu, A
Marmer, E
Montanaro, V
Park, RJ
Pitari, G
Pringle, KJ
Pyle, JA
Schroeder, S
Vivanco, MG
Wind, P
Wojcik, G
Wu, S
Zuber, A
AF Fiore, A. M.
Dentener, F. J.
Wild, O.
Cuvelier, C.
Schultz, M. G.
Hess, P.
Textor, C.
Schulz, M.
Doherty, R. M.
Horowitz, L. W.
MacKenzie, I. A.
Sanderson, M. G.
Shindell, D. T.
Stevenson, D. S.
Szopa, S.
Van Dingenen, R.
Zeng, G.
Atherton, C.
Bergmann, D.
Bey, I.
Carmichael, G.
Collins, W. J.
Duncan, B. N.
Faluvegi, G.
Folberth, G.
Gauss, M.
Gong, S.
Hauglustaine, D.
Holloway, T.
Isaksen, I. S. A.
Jacob, D. J.
Jonson, J. E.
Kaminski, J. W.
Keating, T. J.
Lupu, A.
Marmer, E.
Montanaro, V.
Park, R. J.
Pitari, G.
Pringle, K. J.
Pyle, J. A.
Schroeder, S.
Vivanco, M. G.
Wind, P.
Wojcik, G.
Wu, S.
Zuber, A.
TI Multimodel estimates of intercontinental source-receptor relationships
for ozone pollution
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Review
ID EASTERN UNITED-STATES; REGIONAL AIR-QUALITY; MICS-ASIA-II; TROPOSPHERIC
OZONE; SURFACE OZONE; CARBON-MONOXIDE; NORTH-AMERICA; MACE-HEAD;
BACKGROUND OZONE; TRANSATLANTIC TRANSPORT
AB Understanding the surface O-3 response over a "receptor" region to emission changes over a foreign "source" region is key to evaluating the potential gains from an international approach to abate ozone (O-3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O-3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O-3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O-3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by > 10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O-3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale "import sensitivity" as the ratio of the O-3 response to the 20% reductions in foreign versus "domestic" (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O-3 response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O-3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O-3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O-3 above 60 ppb to emission reductions in a foreign region(< 10-20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O-3 of about 0.1 ppb a(-1), at the low end of the 0.1-0.5 ppb a(-1) derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O-3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source
C1 [Fiore, A. M.; Horowitz, L. W.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA.
[Dentener, F. J.; Cuvelier, C.; Van Dingenen, R.; Marmer, E.] Commiss European Communities, Inst Environm & Sustainabil, DG Joint Res Ctr, I-21020 Ispra, Italy.
[Wild, O.] Univ Lancaster, Dept Environm Sci, Lancester Environm Ctr, Lancaster LA1 4YQ, England.
[Schultz, M. G.; Schroeder, S.] Forschungszentrum Julich, ICG 2, D-52425 Julich, Germany.
[Hess, P.] Cornell Univ, Ithaca, NY 14853 USA.
[Textor, C.] Univ Paris 06, GMES France Atmosphere, Serv Aeron, INSU,CNRS, F-75252 Paris, France.
[Textor, C.; Schulz, M.; Szopa, S.; Hauglustaine, D.] CNRS, UVSQ, IPSL, CEA,Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France.
[Doherty, R. M.; MacKenzie, I. A.; Stevenson, D. S.] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3JN, Midlothian, Scotland.
[Sanderson, M. G.; Collins, W. J.; Pringle, K. J.] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England.
[Shindell, D. T.; Faluvegi, G.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
[Zeng, G.; Pyle, J. A.] Univ Cambridge, Dept Chem, Natl Ctr Atmospher Sci, Cambridge CB2 1EW, England.
[Atherton, C.; Bergmann, D.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA.
[Bey, I.; Folberth, G.] Ecole Polytech Fed Lausanne, Lab Modelisat Chim Atmospher, CH-1015 Lausanne, Switzerland.
[Carmichael, G.] Univ Iowa, Coll Engn, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA.
[Duncan, B. N.] NASA, Goddard Space Flight Ctr, UMBC Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA.
[Gauss, M.; Isaksen, I. S. A.] Univ Oslo, Dept Geosci, N-0315 Oslo, Norway.
[Gong, S.] Environm Canada, Air Qual Res Div, Sci & Technol Branch, Toronto, ON, Canada.
[Hauglustaine, D.] European Sci Fdn, Life Earth & Environm Sci, F-67080 Strasbourg, France.
[Holloway, T.] Univ Wisconsin, Ctr Sustainabil & Global Environm, Nelson Inst Environm Studies, Madison, WI 53726 USA.
[Park, R. J.] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea.
[Jonson, J. E.; Wind, P.] Norwegian Meteorol Inst, Oslo, Norway.
[Kaminski, J. W.; Lupu, A.] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada.
[Keating, T. J.] US EPA, Off Air & Radiat, Washington, DC 20460 USA.
[Montanaro, V.; Pitari, G.] Univ Aquila, Dept Phys, I-67100 Laquila, Italy.
[Vivanco, M. G.] CIEMAT, Atmospher Pollut Unit, E-28040 Madrid, Spain.
[Wojcik, G.] Northrop Grumman Corp, Atmospher Effects Grp, Chantilly, VA 20151 USA.
[Zuber, A.] Commiss European Communities, Environm Directorate Gen, B-1049 Brussels, Belgium.
[Jacob, D. J.; Park, R. J.; Wu, S.] Harvard Univ, Atmospher Chem Modeling Grp, Cambridge, MA 02138 USA.
RP Fiore, AM (reprint author), NOAA, Geophys Fluid Dynam Lab, 201 Forrestal Rd, Princeton, NJ 08542 USA.
EM Arlene.Fiore@noaa.gov; frank.dentener@jrc.it; O.Wild@lancaster.ac.uk;
kees.cuvelier@jrc.it; m.schultz@fz-juelich.de; hess@ucar.edu;
christiane.textor@aero.jussieu.fr; michael.schulz@isce.ipsl.fr;
ruth.doherty@ed.ac.uk; Larry.Horowitz@noaa.gov;
iamack@staffmail.ed.ac.uk; Michael.sanderson@metoffice.gov.uk;
dshindell@giss.nasa.gov; dstevens@staffmail.ed.ac.uk;
sophie.szopa@Isce.ipsl.fr; rita.van-dingenen@jrc.it;
Cynthia.Atherton@moore.org; dbergmann@llnl.gov; isabelle.bey@epfl.ch;
gcarmich@engineering.uiowa.edu; bill.collins@metoffice.gov.uk;
Bryan.N.Duncan@nasa.gov; greg.faluvegi@gmail.com;
gerd.folberth@metoffice.gov.uk; Michael.gauss@geo.uio.no;
Sunling.Gong@ec.gc.ca; dhauglustaine@esf.org; taholloway@wisc.edu;
ivar.isaksen@geofysikk.uio.no; djacob@fas.harvard.edu;
jan.eiof.jonson@met.no; jacek@yorku.ca; Keating.Terry@epamail.epa.gov;
alexlupu@yorku.ca; elina.marmer@jrc.it;
veronica.montanaro@aquila.infn.it; rjpark@snu.ac.kr;
gianni.pitari@aquila.infn.it; pringle@mpch-mainz.mpg.de;
John.Pyle@atm.ch.cam.ac.uk; s.schroeder@fz-juelich.de;
m.garcia@ciemat.es; peter.wind@met.no; gary.wojcik@ngc.com;
slwu@mtu.edu; Andre.ZUBER@ec.europa.eu
RI Horowitz, Larry/D-8048-2014; Vivanco, Marta/L-9816-2014; Park,
Rokjin/I-5055-2012; Hess, Peter/M-3145-2015; Schulz,
Michael/A-6930-2011; Pitari, Giovanni/O-7458-2016; Wild,
Oliver/A-4909-2009; Pringle, Kirsty /A-4697-2013; Collins,
William/A-5895-2010; Folberth, Gerd/F-7376-2010; Pfister,
Gabriele/A-9349-2008; mackenzie, ian/E-9320-2013; Szopa,
Sophie/F-8984-2010; Lupu, Alexandru/D-3689-2009; Bergmann,
Daniel/F-9801-2011; Stevenson, David/C-8089-2012; Shindell,
Drew/D-4636-2012; Duncan, Bryan/A-5962-2011; Schultz, Martin/I-9512-2012
OI Horowitz, Larry/0000-0002-5886-3314; Vivanco, Marta/0000-0002-5828-1859;
Park, Rokjin/0000-0001-8922-0234; Hess, Peter/0000-0003-2439-3796;
Schulz, Michael/0000-0003-4493-4158; Pitari,
Giovanni/0000-0001-7051-9578; Folberth, Gerd/0000-0002-1075-440X; Wild,
Oliver/0000-0002-6227-7035; Collins, William/0000-0002-7419-0850; Szopa,
Sophie/0000-0002-8641-1737; Lupu, Alexandru/0000-0002-4520-5523;
Bergmann, Daniel/0000-0003-4357-6301; Stevenson,
David/0000-0002-4745-5673; Schultz, Martin/0000-0003-3455-774X
FU U.S. DOE Atmospheric Science Program (Office of Science, BER) at LLNL
[DE-AC52-07NA27344]; NERC [NE/D012538/1]; NASA; UK Defra [AQ902]; DECC
[GA01101]; MoD [CBC/2B/0417_Annex C5]; Canadian Foundation for Climate
and Atmospheric Sciences; Ontario Ministry of the Environment; Canadian
Foundation for Innovation; Ontario Innovation Trust; Spanish Ministry of
the Environment; Korea Meteorological Administration Research and
Development Program [CATER 2007-3205]
FX We are grateful to D. Jaffe and D. Reidmiller (University of
Washington), and to A. Gnanadesikan and R. Stouffer (GFDL) and three
anonymous reviewers for insightful comments on previous versions of the
manuscript. C. A. and D. B. were supported primarily by the U.S. DOE
Atmospheric Science Program (Office of Science, BER) at LLNL under
contract DE-AC52-07NA27344. R. M. D., I. A. M., and D. S. S. acknowledge
funding from NERC (NE/D012538/1); B.N.D. from NASA MAP; M. G. S.,
K.J.P., and W.J.C. from the UK Defra under contract AQ902 and the Joint
DECC and MoD Programme, (DECC) GA01101 (MoD) CBC/2B/0417_Annex C5; A. L.
and J. W. K. from the Canadian Foundation for Climate and Atmospheric
Sciences, the Ontario Ministry of the Environment, the Canadian
Foundation for Innovation and the Ontario Innovation Trust; and M. G. V.
from the Spanish Ministry of the Environment. R. J. P. was partly
supported by the Korea Meteorological Administration Research and
Development Program under grant CATER 2007-3205.
NR 103
TC 183
Z9 187
U1 51
U2 174
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 17
PY 2009
VL 114
AR D04301
DI 10.1029/2008JD010816
PG 21
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 410XQ
UT WOS:000263612000001
ER
PT J
AU Hunt, SW
Wang, XP
Richmond, MG
AF Hunt, Sean W.
Wang, Xiaoping
Richmond, Michael G.
TI Synthesis, reactivity investigation, and X-ray diffraction structures of
new platinum(II) compounds containing redox-active diphosphine ligands
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE Platinum(II) compounds; Diphosphine ligand; Redox chemistry; Crystal
structure
ID DIIMINE DITHIOLATE COMPLEXES; BOND-CLEAVAGE REACTIVITY;
4,5-BIS(DIPHENYLPHOSPHINO)-4-CYCLOPENTEN-1,3-DIONE BPCD; EXCITED-STATE;
PHOTOPHYSICAL PROPERTIES; CRYSTAL-STRUCTURES;
2,3-BIS(DIPHENYLPHOSPHINO)MALEIC ANHYDRIDE; CONFORMATIONAL PREFERENCES;
ORGANOMETALLIC COMPLEXES; PHOSPHINE COMPLEXES
AB Substitution of the 1,5-cyclooctadiene (cod) ligand in PtCl(2)(cod) (1) by the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) yields PtCl(2)(bpcd) (2), Knoevenagel condensation of 2 with 9-anthracenecarboxaldehyde leads to the functionalization of the bpcd ligand and formation of the corresponding2-(9-anthracenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (abpcd) substituted compound PtCl(2)(abpcd) (3), which is also obtained from the direct reaction of 1 with the abpcd ligand in near quantitative yield. The reaction of 3 with disodium maleonitriledithiolate (Na(2)Mnt) affords the chelating dithiolate compound Pt(mnt)(abpcd) (4). Compounds 2-4 have been fully characterized in solution by IR and NMR spectroscopies ((1)H and (31)P), and their molecular structures established by X-ray crystallography. The electrochemical properties of 2-4 have examined by cyclic voltammetry, and the nature of the HOMO and LUMO levels in these systems has been established by MO calculations at the extended Huckel level, the results of which are discussed with respect to electrochemical data and related diphosphine derivatives. (c) 2008 Elsevier B.V. All rights reserved.
C1 [Hunt, Sean W.; Wang, Xiaoping; Richmond, Michael G.] Univ N Texas, Dept Chem, Denton, TX 76203 USA.
RP Wang, XP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
EM wangx@ornl.gov; cobalt@unt.edu
RI Wang, Xiaoping/E-8050-2012
OI Wang, Xiaoping/0000-0001-7143-8112
FU Robert A. Welch Foundation [B-1093]
FX Financial support from the Robert A. Welch Foundation (Grant B-1093) is
appreciated, and we extend thanks to Prof. Guido F. Verbeck for the use
of his mass spectrometer and Ms. Nicole Ledbetter for recording the ESI
mass spectra for the compounds 2-4.
NR 77
TC 4
Z9 4
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD FEB 17
PY 2009
VL 919
IS 1-3
BP 34
EP 40
DI 10.1016/j.molstruc.2008.08.018
PG 7
WC Chemistry, Physical
SC Chemistry
GA 411AC
UT WOS:000263618500006
ER
PT J
AU Messina, P
Fradin, F
AF Messina, Paolo
Fradin, Frank
TI Imaging Single Spin Probes Embedded in a Conductive Diamagnetic Layer
SO LANGMUIR
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; SELF-ASSEMBLED MONOLAYER;
POLYCHLOROTRIPHENYLMETHYL RADICALS; AU(111); MOLECULES; RESONANCE;
HYPERFINE; SURFACE; MATRIX; NMR
AB The detection of spin noise by means of scanning tunneling microscopy (STM) has recently been substantially improved by the work presented by Komeda and Manassen (Komeda, T.; Manassen, Y. Appl. Phys. Lett. 2008, 92, 212506). The application of this technique to molecular paramagnets; requires the positioning and anchoring of paramagnetic molecules at surfaces. It also requires the possibility of tunneling high current densities into the STM -molecule-substrate tunneling junction. In this letter, we exploit the self-assembly of 1,10-phenantroline on the Au(111) surface to form a diamagnetic matrix that hosts individual molecules and dimers of diphenyl-2-picryl-hydrazyl (DPPH). STM measurements are used to characterize the molecular layer. Electron spin resonance (ESR) measurements elucidate the role of thermal annealing in the preservation of the paramagnetic nature of the DPPH molecules.
C1 [Messina, Paolo; Fradin, Frank] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Messina, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM pmessina@anl.gov
FU US DOE-BES [AC02-06CH 11357]
FX This work was supported by the US DOE-BES under contract no.
DE-AC02-06CH 11357.
NR 50
TC 4
Z9 4
U1 0
U2 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD FEB 17
PY 2009
VL 25
IS 4
BP 1885
EP 1892
DI 10.1021/la8039863
PG 8
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 407OG
UT WOS:000263373600002
PM 19199732
ER
PT J
AU Khan, EH
Langford, SC
Dickinson, JT
Boatner, LA
Hess, WP
AF Khan, E. H.
Langford, S. C.
Dickinson, J. T.
Boatner, Lynn A.
Hess, Wayne P.
TI Photoinduced Formation of Zinc Nanoparticles by UV Laser Irradiation of
ZnO
SO LANGMUIR
LA English
DT Article
ID OPTICAL PROPERTIES; OXIDE; REFLECTANCE; ABSORPTION; CRYSTALS; COLLOIDS;
SYSTEMS; CAF2
AB Simple exposure of single-crystal ZnO to 193 nm excimer laser radiation at room temperature results in unexpected coloration. The gray to nearly black colored material, seen principally in the irradiated laser spot, is superficial. We present unambiguous evidence that this coloration is due to high densities of metallic Zn nanoparticles growing on the exposed surface of the crystal. Higher fluence laser exposure generates accumulated surface metal just outside of the irradiated spot. We suggest that the near surface bulk is photodecomposing; thermally driven diffusion leads to surface Zn metal aggregation.
C1 [Khan, E. H.; Langford, S. C.; Dickinson, J. T.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA.
[Hess, Wayne P.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Boatner, Lynn A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, ORNL Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA.
RP Dickinson, JT (reprint author), Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA.
EM jtd@wsu.edu
RI Boatner, Lynn/I-6428-2013
OI Boatner, Lynn/0000-0002-0235-7594
FU U.S. Department of Energy (USDOE) [DE-FG0204ER-15618]; USDOE
[AC05-00OR22725]
FX This work was supported by the U.S. Department of Energy (USDOE) under
grant no. DE-FG0204ER-15618 and by the DOE Office of Science, Chemical
Sciences Division. Work at Oak Ridge National Laboratory (ORNL) was
supported by the Division of Materials Sciences and Engineering, Office
of Basic Energy Sciences, USDOE and by the NNSA Office of
Nonproliferation Research (NA-22), USDOE. ORNL is operated by
UT-Battelle, LLC for the USDOE under contract no. DE-AC05-00OR22725. We
thank Chongmin Wang and Ponnusamy Nachimuthu, Environmental and
Molecular Science Laboratory (EMSQ, for their assistance with the
transmission electron microscopy and x-ray diffraction work. EMSL is a
national scientific user facility sponsored by the DOE's Office of
Biological and Environmental Research located at Pacific Northwest
National Laboratory.
NR 33
TC 22
Z9 22
U1 0
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD FEB 17
PY 2009
VL 25
IS 4
BP 1930
EP 1933
DI 10.1021/la804143u
PG 4
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 407OG
UT WOS:000263373600013
PM 19199714
ER
PT J
AU Radlinski, AP
Busbridge, TL
Gray, EM
Blach, TP
Cheng, G
Melnichenko, YB
Cookson, DJ
Mastaterz, M
Esterle, J
AF Radlinski, Andrzej P.
Busbridge, Tara L.
Gray, Evan MacA.
Blach, Tomasz P.
Cheng, Gang
Melnichenko, Yuri B.
Cookson, David J.
Mastaterz, Maria
Esterle, Joan
TI Dynamic Micromapping of CO2 Sorption in Coal
SO LANGMUIR
LA English
DT Article
ID ANGLE NEUTRON-SCATTERING; CARBON-DIOXIDE; ADSORPTION; SILICA;
MICROSTRUCTURE; SEQUESTRATION; PRESSURES; POROSITY; ZEOLITE; METHANE
AB We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics Of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2, We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details Of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 x 10(-7) cm(2)/min to more than 10(-4) cm(2)/min, depending on the CO2 pressure and location on the sample.
C1 [Radlinski, Andrzej P.] Geosci Australia, Symonston, ACT 2609, Australia.
[Radlinski, Andrzej P.] Cooperat Res Ctr Greenhouse Gas Technol, Canberra, ACT 2601, Australia.
[Radlinski, Andrzej P.; Busbridge, Tara L.; Gray, Evan MacA.; Blach, Tomasz P.] Griffith Univ, Nanoscale Sci & Technol Ctr, Brisbane, Qld 4111, Australia.
[Cheng, Gang; Melnichenko, Yuri B.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Cookson, David J.] Australian Synchrotron, Clayton, Vic 3168, Australia.
[Cookson, David J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia.
[Mastaterz, Maria] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA.
[Esterle, Joan] GeoGas Syst Pty Ltd, Wollongong, NSW 2500, Australia.
RP Radlinski, AP (reprint author), Geosci Australia, Symonston, ACT 2609, Australia.
EM andrzej.radlinski@gmail.com; melnichenkoy@ornl.gov
RI Esterle, Joan /F-7340-2013; Griffith University, QMNC/I-5498-2013; Gray,
Evan/E-1683-2013
OI Gray, Evan/0000-0002-3521-5007
FU Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory (ORNL) [DE-AC05-00OR22725]; National Institute of
Standards and Technology; U.S. Department of Commerce; U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences,
[DE-AC02-06CH11357]
FX Thanks are given to Robert Langford, Richard Sakurovs, and Tony Watson
for discussions and technical contributions at various stages of this
project. This research was sponsored in part by the Laboratory Directed
Research and Development Program of Oak Ridge National Laboratory
(ORNL), managed by UT-Battelle, LLC, for the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725. We acknowledge the support of the
National Institute of Standards and Technology, U.S. Department of
Commerce, in providing the neutron research facilities used in this
work. The X-ray work, including use of the ChemMatCARS sector, was
supported by the Australian Synchrotron Research Program, which is
funded by the Commonwealth of Australia under the Major National
Research Facilities Program. Use of the Advanced Photon Source was
supported by the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
NR 25
TC 22
Z9 23
U1 4
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD FEB 17
PY 2009
VL 25
IS 4
BP 2385
EP 2389
DI 10.1021/la801925k
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 407OG
UT WOS:000263373600072
PM 19159193
ER
PT J
AU de Jonge, N
Peckys, DB
Kremers, GJ
Piston, DW
AF de Jonge, N.
Peckys, D. B.
Kremers, G. J.
Piston, D. W.
TI Electron microscopy of whole cells in liquid with nanometer resolution
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE cellular imaging; molecular labels
ID FIELD OPTICAL NANOSCOPY; IN-SITU; STEM; SPECIMENS; DYNAMICS; GROWTH;
PHASE; NM
AB Single gold-tagged epidermal growth factor (EGF) molecules bound to cellular EGF receptors of fixed fibroblast cells were imaged in liquid with a scanning transmission electron microscope (STEM). The cells were placed in buffer solution in a microfluidic device with electron transparent windows inside the vacuum of the electron microscope. A spatial resolution of 4 nm and a pixel dwell time of 20 mu s were obtained. The liquid layer was sufficiently thick to contain the cells with a thickness of 7 +/- 1 mu m. The experimental findings are consistent with a theoretical calculation. Liquid STEM is a unique approach for imaging single molecules in whole cells with significantly improved resolution and imaging speed over existing methods.
C1 [de Jonge, N.; Kremers, G. J.; Piston, D. W.] Vanderbilt Univ, Med Ctr, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA.
[de Jonge, N.; Peckys, D. B.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Peckys, D. B.] Univ Tennessee, Knoxville, TN 37996 USA.
RP de Jonge, N (reprint author), Vanderbilt Univ, Med Ctr, Dept Mol Physiol & Biophys, 221 Kirkland Hall, Nashville, TN 37232 USA.
EM niels.de.jonge@vanderbilt.edu
RI de Jonge, Niels/B-5677-2008; Peckys, Diana/B-4642-2015
FU Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory; U. S. Department of Energy [DE-AC05-00OR22725];
Shared Research Equipment ( SHARE); Vanderbilt University Medical
Center; National Institutes of Health [R01-RR018470, P20-GM072048]
FX We thank D. C. Joy and S. J. Pennycook for discussions and J. Bentley,
W. Bigelow, C. Chisholm, M. Cole, R. Dona, M. J. Dukes, C. J. Easley, W.
S. Head, P. S. Herrell, T. E. McKnight, K. L. More, E. A. Ring, and G.
M. Veith for discussions and help with the experiments. We thank
Hummingbird Scientific for providing the fluid holder and Protochips
Inc. for providing the silicon chips. This work was supported by the
Laboratory Directed Research and Development Program of Oak Ridge
National Laboratory, managed by UT-Battelle, LLC for the U. S.
Department of Energy under Contract DE-AC05-00OR22725; Shared Research
Equipment ( SHARE); Vanderbilt University Medical Center; and National
Institutes of Health Grants R01-RR018470 ( to P. Mazur for D. B. P.) and
P20-GM072048 ( to D. W. P.).
NR 35
TC 197
Z9 198
U1 14
U2 115
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 17
PY 2009
VL 106
IS 7
BP 2159
EP 2164
DI 10.1073/pnas.0809567106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 409OQ
UT WOS:000263516100017
PM 19164524
ER
PT J
AU Arenholz, E
van der Laan, G
Yang, F
Kemik, N
Biegalski, MD
Christen, HM
Takamura, Y
AF Arenholz, E.
van der Laan, G.
Yang, F.
Kemik, N.
Biegalski, M. D.
Christen, H. M.
Takamura, Y.
TI Magnetic structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 superlattices
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE antiferromagnetic materials; Curie temperature; frustration; lanthanum
compounds; magnetic circular dichroism; magnetic moments; magnetic
multilayers; magnetic structure; magnetisation; strontium compounds;
superlattices
ID X-RAY DICHROISM; ANISOTROPY
AB Using x-ray magnetic dichroism, we characterize the magnetic order in La0.7Sr0.3MnO3(LSMO)/La0.7Sr0.3FeO3(LSFO) superlattices with six unit cell thick sublayers. The LSMO layers exhibit a reduced Curie temperature compared to the bulk while antiferromagnetic order in the LSFO layers persists up to the bulk Neel temperature. Moreover, we find that aligning the LSMO magnetization by a magnetic field within the (001) surface plane leads to a reorientation of the Fe moments as well maintaining a perpendicular orientation of Fe and Mn moments. This perpendicular alignment is due to the frustrated exchange coupling at the LSMO/LSFO interface.
C1 [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England.
[Yang, F.; Kemik, N.; Takamura, Y.] UC Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Biegalski, M. D.; Christen, H. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.
RP Arenholz, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
EM earenholz@lbl.gov
RI Christen, Hans/H-6551-2013; van der Laan, Gerrit/Q-1662-2015
OI Christen, Hans/0000-0001-8187-7469; van der Laan,
Gerrit/0000-0001-6852-2495
FU U. S. Department of Energy [DE-AC02-05CH11231]
FX The Advanced Light Source is supported by the Director, Office of
Science, Office of Basic Energy Sciences of the U. S. Department of
Energy under Contract No. DE-AC02-05CH11231.
NR 17
TC 19
Z9 19
U1 2
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 16
PY 2009
VL 94
IS 7
AR 072503
DI 10.1063/1.3085765
PG 3
WC Physics, Applied
SC Physics
GA 410SS
UT WOS:000263599200045
ER
PT J
AU Hawkridge, ME
Liliental-Weber, Z
Kim, HJ
Choi, S
Yoo, D
Ryou, JH
Dupuis, RD
AF Hawkridge, M. E.
Liliental-Weber, Z.
Kim, Hee Jin
Choi, Suk
Yoo, Dongwon
Ryou, Jae-Hyun
Dupuis, Russell D.
TI The structural quality of AlxGa1-xN epitaxial layers grown by digitally
alloyed modulated precursor epitaxy determined by transmission electron
microscopy
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE aluminium compounds; gallium compounds; III-V semiconductors; MOCVD;
semiconductor epitaxial layers; semiconductor growth; transmission
electron microscopy; vapour phase epitaxial growth; wide band gap
semiconductors
ID NITRIDE; DEVICES
AB AlxGa1-xN layers of varying composition (0.5 < x(Al)< 1.0) grown in the digitally alloyed modulated precursor epitaxial regime employing AlN and GaN binary sublayers by metal organic chemical vapor deposition on AlN templates were characterized by transmission electron microscopy techniques. Fine lamellae were observed in bright field images that indicate a possible variation in composition due to the modulated nature of growth. In higher Ga content samples (x(Al)< 0.75), a compositional inhomogeneity associated with thicker island regions was observed, which is determined to be due to large Ga-rich areas formed at the base of the layer. Possible causes for the separation of Ga-rich material are discussed in the context of the growth regime used.
C1 [Hawkridge, M. E.; Liliental-Weber, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA.
[Kim, Hee Jin; Choi, Suk; Yoo, Dongwon; Ryou, Jae-Hyun; Dupuis, Russell D.] Georgia Inst Technol, Ctr Compound Semiconduct, Atlanta, GA 30332 USA.
[Kim, Hee Jin; Choi, Suk; Yoo, Dongwon; Ryou, Jae-Hyun; Dupuis, Russell D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA.
RP Hawkridge, ME (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd MS62R0209-213, Berkeley, CA 94720 USA.
EM mehawkridge@lbl.gov
RI Liliental-Weber, Zuzanna/H-8006-2012
FU Georgia Institute of Technology through the U. S. Department of Energy
[R7776S2, FA8718-07-C-0002, DE-AC02-05CH11231]
FX This work was supported by the Georgia Institute of Technology under
Contract No. R7776S2 (under the DARPA DUVAP Program Contract No.
FA8718-07-C-0002) through the U. S. Department of Energy under Contract
No. DE-AC02-05CH11231 and was performed at the National Center for
Electron Microscopy, Lawrence Berkeley National Laboratory.
NR 9
TC 4
Z9 4
U1 1
U2 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 16
PY 2009
VL 94
IS 7
AR 071905
DI 10.1063/1.3086280
PG 3
WC Physics, Applied
SC Physics
GA 410SS
UT WOS:000263599200025
ER
PT J
AU Liang, LY
Li, YL
Chen, LQ
Hu, SY
Lu, GH
AF Liang, Linyun
Li, Y. L.
Chen, Long-Qing
Hu, S. Y.
Lu, Guang-Hong
TI A thermodynamic free energy function for potassium niobate
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE dielectric polarisation; electric domains; ferroelectric thin films;
ferroelectric transitions; free energy; lattice constants; permittivity;
potassium compounds
ID OPTICAL-PROPERTIES; PIEZOELECTRIC PROPERTIES; ORTHORHOMBIC KNBO3;
SINGLE-CRYSTALS; POLARIZATION; TEMPERATURE; TRANSITION; PRESSURE;
BOUNDARY; SYSTEM
AB A thermodynamic free energy function in the form of an eighth-order polynomial has been developed for bulk potassium niobate (KNbO3), based on the Landau-Ginsburg-Devonshire phenomenological theory. The obtained free energy function successfully models the ferroelectric single domain (intrinsic) properties of KNbO3, including the three sequential phase transition temperatures as well as polarizations, dielectric constants, and lattice constants along the whole ferroelectric temperature range. It is applicable to explaining and predicting the extrinsic contributions such as hydrostatic pressure on the bulks properties and substrate constraints on the thin films properties.
C1 [Liang, Linyun; Lu, Guang-Hong] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China.
[Li, Y. L.; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Hu, S. Y.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Lu, GH (reprint author), Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100191, Peoples R China.
EM lgh@buaa.edu.cn
RI Chen, LongQing/I-7536-2012;
OI Chen, LongQing/0000-0003-3359-3781; HU, Shenyang/0000-0002-7187-3082
NR 25
TC 12
Z9 12
U1 1
U2 19
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 16
PY 2009
VL 94
IS 7
AR 072904
DI 10.1063/1.3081418
PG 3
WC Physics, Applied
SC Physics
GA 410SS
UT WOS:000263599200056
ER
PT J
AU Wang, YJ
Zhang, JZ
Xu, HW
Lin, ZJ
Daemen, LL
Zhao, YS
Wang, LP
AF Wang, Yuejian
Zhang, Jianzhong
Xu, Hongwu
Lin, Zhijun
Daemen, Luke L.
Zhao, Yusheng
Wang, Liping
TI Thermal equation of state of copper studied by high P-T synchrotron
x-ray diffraction
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE copper; crystal structure; equations of state; high-pressure effects;
high-temperature effects; thermoelasticity; X-ray diffraction
ID STRUCTURAL-PROPERTIES; COMPRESSIBILITY; TEMPERATURE; CU
AB The unit-cell volume of copper (Cu) has been measured by synchrotron x-ray at pressures and temperatures of up to 8.1 GPa and 1100 K. From pressure-volume-temperature (P-V-T) measurements, thermoelastic parameters of Cu were derived based on a modified high-T Birch-Murnaghan equation of state and a thermal pressure approach. The ambient bulk modulus derived from this work is comparable to previously reported value, whereas all other thermoelastic parameters of Cu have never been determined before. These results extend our knowledge of the fundamental thermophysical properties on Cu.
C1 [Wang, Yuejian; Zhang, Jianzhong; Xu, Hongwu; Lin, Zhijun; Daemen, Luke L.; Zhao, Yusheng] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87545 USA.
[Wang, Liping] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA.
RP Wang, YJ (reprint author), Los Alamos Natl Lab, LANSCE Div, POB 1663, Los Alamos, NM 87545 USA.
EM wang_yuejian@hotmail.com; yzhao@lanl.gov
RI Lujan Center, LANL/G-4896-2012; Lin, Zhijun/A-5543-2010;
OI Xu, Hongwu/0000-0002-0793-6923; Zhang, Jianzhong/0000-0001-5508-1782
FU Los Alamos National Laboratory [DEAC52-06NA25396]; Consortium for
Materials Properties Research in Earth Sciences (COMPRES) [EAR 01-35554]
FX This research was supported by Los Alamos National Laboratory, which is
operated by Los Alamos National Security LLC under DOE Contract No.
DEAC52-06NA25396. The experimental work was carried out at beam line
X17B2 of the National Synchrotron Light Source, Brookhaven National
Laboratory, which is supported by the Consortium for Materials
Properties Research in Earth Sciences (COMPRES) under NSF cooperative
agreement (Contract No. EAR 01-35554).
NR 21
TC 13
Z9 13
U1 0
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 16
PY 2009
VL 94
IS 7
AR 071904
DI 10.1063/1.3085997
PG 3
WC Physics, Applied
SC Physics
GA 410SS
UT WOS:000263599200024
ER
PT J
AU Worsley, MA
Kucheyev, SO
Satcher, JH
Hamza, AV
Baumann, TF
AF Worsley, Marcus A.
Kucheyev, Sergei O.
Satcher, Joe H., Jr.
Hamza, Alex V.
Baumann, Theodore F.
TI Mechanically robust and electrically conductive carbon nanotube foams
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE carbon nanotubes; elasticity; electrical conductivity; foams;
nanofabrication; nanoparticles; nanoporous materials
ID ORGANIC AEROGELS; FILMS; TRANSPARENT; COMPRESSION
AB We describe the fabrication of ultralow-density carbon nanotube (CNT) foams that simultaneously exhibit high electrical conductivities and robust mechanical properties. Our approach utilizes carbon nanoparticles as a binder to crosslink randomly oriented bundles of single-walled CNTs. The resulting CNT foams are the stiffest low-density nanoporous solids reported and exhibit elastic behavior up to strains as large as similar to 80%. The use of the carbon binder also allows bulk electrical conductivity to be maintained at low densities.
C1 [Worsley, Marcus A.; Kucheyev, Sergei O.; Satcher, Joe H., Jr.; Hamza, Alex V.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA.
EM baumann2@llnl.gov
RI Worsley, Marcus/G-2382-2014
OI Worsley, Marcus/0000-0002-8012-7727
FU U. S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable
Energy
FX Work was performed under the auspices of the U. S. Department of Energy
by Lawrence Livermore National Laboratory under Contract No.
DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and
Renewable Energy.
NR 27
TC 103
Z9 103
U1 12
U2 106
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 16
PY 2009
VL 94
IS 7
AR 073115
DI 10.1063/1.3086293
PG 3
WC Physics, Applied
SC Physics
GA 410SS
UT WOS:000263599200071
ER
PT J
AU Hocking, RK
George, SD
Gross, Z
Walker, FA
Hodgson, KO
Hedman, B
Solomon, EI
AF Hocking, Rosalie K.
George, Serena DeBeer
Gross, Zeev
Walker, F. Ann
Hodgson, Keith O.
Hedman, Britt
Solomon, Edward I.
TI Fe L- and K-edge XAS of Low-Spin Ferric Corrole: Bonding and Reactivity
Relative to Low-Spin Ferric Porphyrin
SO INORGANIC CHEMISTRY
LA English
DT Article
ID X-RAY-ABSORPTION; ELECTRON-PARAMAGNETIC-RES; GROUND-STATE;
CORRELATION-ENERGY; COPPER SITE; COMPLEXES; DENSITY; IRON; SPECTROSCOPY;
MODEL
AB Corrole is a tetrapyrrolic macrocycle that has one carbon atom less than a porphyrin. The ring contraction reduces the symmetry from D-4h to C-2v, changes the electronic structure of the heterocycle, and leads to a smaller central cavity with three protons rather than the two of a porphyrin. The differences between ferric corroles and porphyrins lead to a number of differences in reactivity including increased axial ligand lability and a tendency to form 5-coordinate complexes. The electronic structure origin of these differences has been difficult to study experimentally as the dominant porphyrin/corrole pi -> pi* transitions obscure the electronic transitions of the metal. Recently, we have developed a methodology that allows for the interpretation of the multiplet structure of Fe L-edges in terms of differential orbital covalency (i.e., the differences in mixing of the metal d orbitals with the ligand valence orbitals) using a valence bond configuration interaction model. Herein, we apply this methodology, combined with a ligand field analysis of the Fe K pre-edge to a low-spin ferric corrole, and compare it to a low-spin ferric porphyrin. The experimental results combined with DFT calculations show that the contracted corrole is both a stronger sigma donor and a very anisotropic pi donor. These differences decrease the bonding interactions with axial ligands and contribute to the increased axial ligand lability and reactivity of ferric corroles relative to ferric porphyrins.
C1 [George, Serena DeBeer; Hodgson, Keith O.; Hedman, Britt] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA.
[Hocking, Rosalie K.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA.
[Hocking, Rosalie K.] Monash Univ, Monash Ctr Synchrotron Sci, Clayton, Vic 3800, Australia.
[Hocking, Rosalie K.] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia.
[Gross, Zeev] Technion Israel Inst Technol, Schulich Fac Chem, IL-32000 Haifa, Israel.
[Walker, F. Ann] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA.
RP George, SD (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA.
EM debeer@stanford.edu; hod-son@slac.stanford.edu;
hedman@slac.stanford.edu; edward.solomon@stanford.edu
RI DeBeer, Serena/G-6718-2012; Hocking, Rosalie/F-5763-2013; Walker,
Frances/O-4395-2016
OI Hocking, Rosalie/0000-0002-2213-8786;
FU NIH [GM-40392, RR-01209, DK-31038]; NSF [CHE-0446304]; DOE Office of
Basic Energy Sciences; Biomedical Technology Program
FX This work was supported by grants from the NIH GM-40392 and NSF
CHE-0446304 to E.I.S., NIH RR-01209 to K.O.H., NIH DK-31038 to F.A.W,
and the ISF to Z.G. This work was performed at SSRL, which is funded by
the DOE Office of Basic Energy Sciences. The SSRL Structural Molecular
Biology Program is supported by the NIH National Center for Research
Resources, Biomedical Technology Program and by the DOE Office of
Biological and Environmental Research.
NR 73
TC 44
Z9 44
U1 4
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 16
PY 2009
VL 48
IS 4
BP 1678
EP 1688
DI 10.1021/ic802248t
PG 11
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 405LU
UT WOS:000263227100051
PM 19149467
ER
PT J
AU Gao, H
McMahon, JM
Lee, MH
Henzie, J
Gray, SK
Schatz, GC
Odom, TW
AF Gao, H.
McMahon, J. M.
Lee, M. H.
Henzie, J.
Gray, S. K.
Schatz, G. C.
Odom, T. W.
TI Rayleigh anomaly-surface plasmon polariton resonances in palladium and
gold subwavelength hole arrays
SO OPTICS EXPRESS
LA English
DT Article
ID EXTRAORDINARY OPTICAL-TRANSMISSION; THIN METAL-FILMS; LIGHT
TRANSMISSION; NANOHOLE ARRAYS; GENERATION; CONSTANTS; SENSORS
AB Surface plasmon polaritons (SPPs) and Rayleigh anomalies (RAs) are two characteristic phenomena exhibited by periodic grating structures made of plasmonic materials. For Au subwavelength hole arrays, SPPs and RAs from opposite sides of the film can interact under certain conditions to produce highly intense, narrow spectral features called RA-SPP resonances. This paper reports how RA-SPP effects can be achieved in subwavelength hole arrays of Pd, a weak plasmonic material. Well-defined resonances are observed in measured and simulated optical transmission spectra with RA-SPP peaks as narrow as 45 nm (FWHM). Dispersion diagrams compiled from angle-resolved spectra show that RA-SPP resonances in Pd hole arrays shift in wavelength but do not decrease significantly in amplitude as the excitation angle is increased, in contrast with RA-SPP peaks in Au hole arrays. The apparent generality of the RA-SPP effect enables a novel route to optimize resonances in non-traditional plasmonic media. (C) 2009 Optical Society of America
C1 [Gao, H.; Odom, T. W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[McMahon, J. M.; Lee, M. H.; Henzie, J.; Schatz, G. C.; Odom, T. W.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[McMahon, J. M.; Gray, S. K.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
[McMahon, J. M.; Gray, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
RP Odom, TW (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM todom@northwestern.edu
RI Gao, Hanwei/B-3634-2010; Lee, Min Hyung/H-6777-2012; Henzie,
Joel/B-9564-2013; Henzie, Joel/E-2332-2015;
OI Henzie, Joel/0000-0002-9190-2645; Henzie, Joel/0000-0002-9190-2645;
Odom, Teri/0000-0002-8490-292X
FU National Science Foundation (NSF) [DMR-0705741]; NSF-NSEC [EEC-0647560];
NSF-MRSEC [DMR-0520513]; DOE BES [DE-AC02-06CH11357]
FX This work was supported by the National Science Foundation (NSF) under
DMR-0705741, the NSF-NSEC (EEC-0647560), the NSF-MRSEC (DMR-0520513),
and the DOE BES (DE-AC02-06CH11357). This work made use of the NSERC
computation facilities, supported by DOE, and the NUANCE Center
facilities, supported by NSF-MRSEC, NSF-NSEC and the Keck Foundation.
NR 19
TC 81
Z9 82
U1 2
U2 47
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD FEB 16
PY 2009
VL 17
IS 4
BP 2334
EP 2340
DI 10.1364/OE.17.002334
PG 7
WC Optics
SC Optics
GA 408JY
UT WOS:000263432500027
PM 19219136
ER
PT J
AU Do, BT
Phillips, MC
Miller, PA
Kimmel, MW
Britsch, J
Cho, SH
AF Do, Binh T.
Phillips, Mark C.
Miller, Paul A.
Kimmel, Mark W.
Britsch, Justin
Cho, Seong-Ho
TI Properties of optical breakdown in BK7 glass induced by an
extended-cavity femtosecond laser oscillator
SO OPTICS EXPRESS
LA English
DT Article
ID WAVE-GUIDES; FUSED-SILICA; PULSES; FABRICATION; GRATINGS; WRITTEN; SIO2;
FILAMENTATION; IONIZATION
AB Using an extended-cavity femtosecond oscillator, we investigated optical breakdown in BK7 glass caused by the accumulated action of many laser pulses. By using a pump-probe experiment and collecting the transmitted pump along with the reflected pump and the broadband light generated by the optical breakdown, we measured the build-up time to optical breakdown as a function of the pulse energy, and we also observed the instability of the plasma due to the effect of defocusing and shielding created by the electron gas. The spectrum of the broadband light emitted by the optical breakdown and the origin of the material modification in BK7 glass was studied. We developed a simple model of electromagnetic wave propagation in plasma that is consistent with the observed behavior of the reflection, absorption, and transmission of the laser light. (C) 2009 Optical Society of America
C1 [Do, Binh T.; Phillips, Mark C.; Miller, Paul A.; Kimmel, Mark W.; Britsch, Justin] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Cho, Seong-Ho] MIT, Elect Res Lab, Cambridge, MA 02139 USA.
RP Do, BT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM bdo@ball.com
FU Sandia Corporation; A Lockheed Martin Company; U.S. Department of Energy
[DE-AC04-94AL85000]
FX Sandia is a multiprogram laboratories operated by Sandia Corporation, A
Lockheed Martin Company, for the U.S. Department of Energy under
Contract No. DE-AC04-94AL85000. The authors would like to thank Mr.
Alfredo Valenzuela of Newport Corporation for the help in building the
long-cavity femtosecond laser.
NR 29
TC 3
Z9 3
U1 1
U2 7
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD FEB 16
PY 2009
VL 17
IS 4
BP 2739
EP 2755
DI 10.1364/OE.17.002739
PG 17
WC Optics
SC Optics
GA 408JY
UT WOS:000263432500069
PM 19219179
ER
PT J
AU Chekanov, S
Derrick, M
Magill, S
Musgrave, B
Nicholass, D
Repond, J
Yoshida, R
Mattingly, MCK
Antonioli, R
Bari, G
Bellagamba, L
Boscherini, D
Bruni, A
Bruni, G
Cindolo, F
Corradi, M
Iacobucci, G
Margotti, A
Nania, R
Polini, A
Antonelli, S
Basile, M
Bindi, M
Cifarelli, L
Contin, A
De Pasquale, S
Sartorelli, G
Zichichi, A
Bartsch, D
Brock, I
Hartmann, H
Hilger, E
Jakob, HP
Jungst, M
Nuncio-Quiroz, AE
Paul, E
Samson, U
Schonberg, V
Shehzadi, R
Wlasenko, M
Brook, NH
Heath, GP
Morris, JD
Capua, M
Fazio, S
Mastroberardino, A
Schioppa, M
Susinno, G
Tassi, E
Kim, JY
Ibrahim, ZA
Kamaluddin, B
Abdullah, WATW
Ning, Y
Ren, Z
Sciulli, F
Chwastowski, J
Eskreys, A
Figiel, J
Galas, A
Gil, M
Olkiewicz, K
Stopa, P
Zawiejski, L
Adamczyk, L
Bold, T
Grabowska-Bold, I
Kisielewska, D
Lukasik, J
Przybycien, M
Suszycki, L
Kotanski, A
Slominski, W
Behrens, U
Blohm, C
Bonato, A
Borras, K
Ciesielski, R
Coppola, N
Fang, S
Fourletova, J
Geiser, A
Gottlicher, R
Grebenyuk, J
Gregor, I
Haas, T
Hain, W
Huttmann, A
Januschek, F
Kahle, B
Katkov, II
Klein, U
Kotz, U
Kowalski, H
Lobodzinska, E
Lohr, B
Mankel, R
Melzer-Pellmann, IA
Miglioranzi, S
Montanari, A
Namsoo, T
Notz, D
Parenti, A
Rinaldi, L
Roloff, P
Rubinsky, I
Santamarta, R
Schneekloth, U
Spiridonov, A
Szuba, D
Szuba, J
Theedt, T
Wolf, G
Wrona, K
Molina, AGY
Youngman, C
Zeuner, W
Drugakov, V
Lohmann, W
Schlenstedt, S
Barbagli, G
Gallo, E
Pelfer, PG
Bamberger, A
Dobur, D
Karstens, F
Vlasov, NN
Bussey, PJ
Doyle, AT
Dunne, W
Forrest, M
Rosin, M
Saxon, DH
Skillicorn, IO
Gialas, I
Papageorgiu, K
Holm, U
Klanner, R
Lohrmann, E
Schleper, P
Schorner-Sadenius, T
Sztuk, J
Stadie, H
Turcato, M
Foudas, C
Fry, C
Long, KR
Tapper, AD
Matsumoto, T
Nagano, K
Tokushuku, K
Yamada, S
Yamazaki, Y
Barakbaev, AN
Boos, EG
Pokrovskiy, NS
Zhautykov, BO
Aushev, V
Bachynska, O
Borodin, M
Kadenko, I
Kozulia, A
Libov, V
Lisovyi, M
Lontkovskyi, D
Makarenko, I
Sorokin, I
Verbytskyi, A
Volynets, O
Son, D
de Favereau, J
Piotrzkowski, K
Barreiro, F
Glasman, C
Jimenez, M
Labarga, L
del Peso, J
Ron, E
Soares, M
Terron, J
Zambrana, M
Corriveau, F
Liu, C
Schwartz, J
Walsh, R
Zhou, C
Tsurugai, T
Antonov, A
Dolgoshein, BA
Gladkov, D
Sosnovtsev, V
Stifutkin, A
Suchkov, S
Dementiev, RK
Ermolov, PF
Gladilin, LK
Golubkov, YA
Khein, LA
Korzhavina, IA
Kuzmin, VA
Levchenko, BB
Lukina, OY
Proskuryakov, AS
Shcheglova, LM
Zotkin, DS
Abt, I
Caldwell, A
Kollar, D
Reisert, B
Schmidke, WB
Grigorescu, G
Keramidas, A
Koffeman, E
Kooijman, P
Pellegrino, A
Tiecke, H
Vazquez, M
Wiggers, L
Brummer, N
Bylsma, B
Durkin, LS
Lee, A
Ling, TY
Allfrey, PD
Bell, MA
Cooper-Sarkar, AM
Devenish, RCE
Ferrando, J
Foster, B
Korcsak-Gorzo, K
Oliver, K
Robertson, A
Uribe-Estrada, C
Walczak, R
Bertolin, A
Dal Corso, F
Dusini, S
Longhin, A
Stanco, L
Bellan, P
Brugnera, R
Carlin, R
Garfagnini, A
Limentani, S
Oh, BY
Raval, A
Ukleja, J
Whitmore, JJ
Iga, Y
D'Agostini, G
Marini, G
Nigro, A
Cole, JE
Hart, JC
Abramowicz, H
Ingbir, R
Kananov, S
Levy, A
Stern, A
Kuze, M
Maeda, J
Hori, R
Kagawa, S
Okazaki, N
Shimizu, S
Tawara, T
Hamatsu, R
Kaji, H
Kitamural, S
Ota, O
Ri, YD
Costa, M
Ferrero, MI
Monaco, V
Sacchi, R
Solano, A
Arneodo, M
Ruspa, M
Fourletov, S
Martin, JF
Stewart, TP
Boutle, SK
Butterworth, JM
Gwenlan, C
Jones, TW
Loizides, JH
Wing, M
Brzozowska, B
Ciborowski, J
Grzelak, G
Kulinski, R
Luzniak, P
Malka, J
Nowak, RJ
Pawlak, JM
Tymieniecka, T
Ukleja, A
Zarnecki, AF
Adamus, M
Plucinski, R
Eisenberg, Y
Hochman, D
Karshon, U
Brownson, E
Danielson, T
Everett, A
Kcira, D
Reeder, DD
Ryan, P
Savin, AA
Smith, WH
Wolfe, H
Bhadra, S
Catterall, CD
Cui, Y
Hartner, G
Menary, S
Noor, U
Standage, J
Whyte, J
AF Chekanov, S.
Derrick, M.
Magill, S.
Musgrave, B.
Nicholass, D.
Repond, J.
Yoshida, R.
Mattingly, M. C. K.
Antonioli, R.
Bari, G.
Bellagamba, L.
Boscherini, D.
Bruni, A.
Bruni, G.
Cindolo, F.
Corradi, M.
Iacobucci, G.
Margotti, A.
Nania, R.
Polini, A.
Antonelli, S.
Basile, M.
Bindi, M.
Cifarelli, L.
Contin, A.
De Pasquale, S.
Sartorelli, G.
Zichichi, A.
Bartsch, D.
Brock, I.
Hartmann, H.
Hilger, E.
Jakob, H. -P.
Juengst, M.
Nuncio-Quiroz, A. E.
Paul, E.
Samson, U.
Schoenberg, V.
Shehzadi, R.
Wlasenko, M.
Brook, N. H.
Heath, G. P.
Morris, J. D.
Capua, M.
Fazio, S.
Mastroberardino, A.
Schioppa, M.
Susinno, G.
Tassi, E.
Kim, J. Y.
Ibrahim, Z. A.
Kamaluddin, B.
Abdullah, W. A. T. Wan
Ning, Y.
Ren, Z.
Sciulli, F.
Chwastowski, J.
Eskreys, A.
Figiel, J.
Galas, A.
Gil, M.
Olkiewicz, K.
Stopa, P.
Zawiejski, L.
Adamczyk, L.
Bold, T.
Grabowska-Bold, I.
Kisielewska, D.
Lukasik, J.
Przybycien, M.
Suszycki, L.
Kotanski, A.
Slominski, W.
Behrens, U.
Blohm, C.
Bonato, A.
Borras, K.
Ciesielski, R.
Coppola, N.
Fang, S.
Fourletova, J.
Geiser, A.
Goettlicher, R.
Grebenyuk, J.
Gregor, I.
Haas, T.
Hain, W.
Huettmann, A.
Januschek, F.
Kahle, B.
Katkov, I. I.
Klein, U.
Koetz, U.
Kowalski, H.
Lobodzinska, E.
Loehr, B.
Mankel, R.
Melzer-Pellmann, I. -A.
Miglioranzi, S.
Montanari, A.
Namsoo, T.
Notz, D.
Parenti, A.
Rinaldi, L.
Roloff, P.
Rubinsky, I.
Santamarta, R.
Schneekloth, U.
Spiridonov, A.
Szuba, D.
Szuba, J.
Theedt, T.
Wolf, G.
Wrona, K.
Molina, A. G. Yaguees
Youngman, C.
Zeuner, W.
Drugakov, V.
Lohmann, W.
Schlenstedt, S.
Barbagli, G.
Gallo, E.
Pelfer, P. G.
Bamberger, A.
Dobur, D.
Karstens, F.
Vlasov, N. N.
Bussey, P. J.
Doyle, A. T.
Dunne, W.
Forrest, M.
Rosin, M.
Saxon, D. H.
Skillicorn, I. O.
Gialas, I.
Papageorgiu, K.
Holm, U.
Klanner, R.
Lohrmann, E.
Schleper, P.
Schoerner-Sadenius, T.
Sztuk, J.
Stadie, H.
Turcato, M.
Foudas, C.
Fry, C.
Long, K. R.
Tapper, A. D.
Matsumoto, T.
Nagano, K.
Tokushuku, K.
Yamada, S.
Yamazaki, Y.
Barakbaev, A. N.
Boos, E. G.
Pokrovskiy, N. S.
Zhautykov, B. O.
Aushev, V.
Bachynska, O.
Borodin, M.
Kadenko, I.
Kozulia, A.
Libov, V.
Lisovyi, M.
Lontkovskyi, D.
Makarenko, I.
Sorokin, Iu.
Verbytskyi, A.
Volynets, O.
Son, D.
de Favereau, J.
Piotrzkowski, K.
Barreiro, F.
Glasman, C.
Jimenez, M.
Labarga, L.
del Peso, J.
Ron, E.
Soares, M.
Terron, J.
Zambrana, M.
Corriveau, F.
Liu, C.
Schwartz, J.
Walsh, R.
Zhou, C.
Tsurugai, T.
Antonov, A.
Dolgoshein, B. A.
Gladkov, D.
Sosnovtsev, V.
Stifutkin, A.
Suchkov, S.
Dementiev, R. K.
Ermolov, P. F.
Gladilin, L. K.
Golubkov, Yu. A.
Khein, L. A.
Korzhavina, I. A.
Kuzmin, V. A.
Levchenko, B. B.
Lukina, O. Yu.
Proskuryakov, A. S.
Shcheglova, L. M.
Zotkin, D. S.
Abt, I.
Caldwell, A.
Kollar, D.
Reisert, B.
Schmidke, W. B.
Grigorescu, G.
Keramidas, A.
Koffeman, E.
Kooijman, P.
Pellegrino, A.
Tiecke, H.
Vazquez, M.
Wiggers, L.
Bruemmer, N.
Bylsma, B.
Durkin, L. S.
Lee, A.
Ling, T. Y.
Allfrey, P. D.
Bell, M. A.
Cooper-Sarkar, A. M.
Devenish, R. C. E.
Ferrando, J.
Foster, B.
Korcsak-Gorzo, K.
Oliver, K.
Robertson, A.
Uribe-Estrada, C.
Walczak, R.
Bertolin, A.
Dal Corso, F.
Dusini, S.
Longhin, A.
Stanco, L.
Bellan, P.
Brugnera, R.
Carlin, R.
Garfagnini, A.
Limentani, S.
Oh, B. Y.
Raval, A.
Ukleja, J.
Whitmore, J. J.
Iga, Y.
D'Agostini, G.
Marini, G.
Nigro, A.
Cole, J. E.
Hart, J. C.
Abramowicz, H.
Ingbir, R.
Kananov, S.
Levy, A.
Stern, A.
Kuze, M.
Maeda, J.
Hori, R.
Kagawa, S.
Okazaki, N.
Shimizu, S.
Tawara, T.
Hamatsu, R.
Kaji, H.
Kitamural, S.
Ota, O.
Ri, Y. D.
Costa, M.
Ferrero, M. I.
Monaco, V.
Sacchi, R.
Solano, A.
Arneodo, M.
Ruspa, M.
Fourletov, S.
Martin, J. F.
Stewart, T. P.
Boutle, S. K.
Butterworth, J. M.
Gwenlan, C.
Jones, T. W.
Loizides, J. H.
Wing, M.
Brzozowska, B.
Ciborowski, J.
Grzelak, G.
Kulinski, R.
Luzniak, P.
Malka, J.
Nowak, R. J.
Pawlak, J. M.
Tymieniecka, T.
Ukleja, A.
Zarnecki, A. F.
Adamus, M.
Plucinski, R.
Eisenberg, Y.
Hochman, D.
Karshon, U.
Brownson, E.
Danielson, T.
Everett, A.
Kcira, D.
Reeder, D. D.
Ryan, P.
Savin, A. A.
Smith, W. H.
Wolfe, H.
Bhadra, S.
Catterall, C. D.
Cui, Y.
Hartner, G.
Menary, S.
Noor, U.
Standage, J.
Whyte, J.
CA ZEUS Collaboration
TI Search for events with an isolated lepton and missing transverse
momentum and a measurement of W production at HERA
SO PHYSICS LETTERS B
LA English
DT Article
ID DEEP-INELASTIC SCATTERING; CENTRAL TRACKING DETECTOR; ZEUS BARREL
CALORIMETER; MONTE-CARLO GENERATOR; HIGH-ENERGY LEPTON; EP COLLISIONS;
DESIGN; CONSTRUCTION; PERFORMANCE; PHYSICS
AB A search for events with an isolated high-energy lepton and large missing transverse momentum has been performed with the ZEUS detector at HERA using a total integrated luminosity of 504 pb(-1). The results agree well with Standard Model predictions. The cross section for production of single W bosons in electron-proton collisions with unpolarised electrons is measured to be 0.89(-0.22)(+0.25)(stat.) +/- 0.10(syst.) pb. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Behrens, U.; Blohm, C.; Bonato, A.; Borras, K.; Ciesielski, R.; Coppola, N.; Fang, S.; Fourletova, J.; Geiser, A.; Goettlicher, R.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Rinaldi, L.; Roloff, P.; Rubinsky, I.; Santamarta, R.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Wolf, G.; Wrona, K.; Molina, A. G. Yaguees; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany.
[Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA.
[Antonioli, R.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy.
[Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy.
[Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Brook, N. H.; Heath, G. P.; Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
[Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy.
[Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy.
[Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea.
[Ibrahim, Z. A.; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia.
[Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA.
[Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Gil, M.; Olkiewicz, K.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland.
[Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Szuba, J.] Univ Sci & Technol, AGH, Fac Phys & Appl Comp Sci, Krakow, Poland.
[Kotanski, A.; Slominski, W.] Jagiellonian Univ, Dept Phys, Krakow, Poland.
[Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany.
[Barbagli, G.; Gallo, E.; Pelfer, P. G.] Ist Nazl Fis Nucl, I-50125 Florence, Italy.
[Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Szuba, D.] INP, Krakow, Poland.
[Pelfer, P. G.] Univ Florence, Florence, Italy.
[Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany.
[Bussey, P. J.; Doyle, A. T.; Dunne, W.; Forrest, M.; Rosin, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland.
[Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Mitilini, Greece.
[Holm, U.; Klanner, R.; Lohrmann, E.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Wing, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany.
[Foudas, C.; Fry, C.; Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England.
[Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan.
[Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan.
[Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Natl Acad Sci Ukraine, Inst Nucl Res, Kiev, Ukraine.
[Aushev, V.; Bachynska, O.; Borodin, M.; Kadenko, I.; Kozulia, A.; Libov, V.; Lisovyi, M.; Lontkovskyi, D.; Makarenko, I.; Sorokin, Iu.; Verbytskyi, A.; Volynets, O.] Kiev Natl Univ, Kiev, Ukraine.
[Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea.
[de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium.
[Barreiro, F.; Glasman, C.; Jimenez, M.; Labarga, L.; del Peso, J.; Ron, E.; Soares, M.; Terron, J.; Zambrana, M.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain.
[Corriveau, F.; Liu, C.; Schwartz, J.; Walsh, R.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada.
[Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan.
[Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia.
[Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.; Abramowicz, H.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands.
[Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands.
[Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA.
[Allfrey, P. D.; Bell, M. A.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Korcsak-Gorzo, K.; Oliver, K.; Robertson, A.; Uribe-Estrada, C.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England.
[Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy.
[Bellan, P.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy.
[Oh, B. Y.; Raval, A.; Ukleja, J.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan.
[Cole, J. E.; Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England.
[Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel.
[Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan.
[Hori, R.; Kagawa, S.; Okazaki, N.; Shimizu, S.; Tawara, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan.
[Hamatsu, R.; Kaji, H.; Kitamural, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan.
[Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy.
[Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy.
[Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy.
[Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada.
[Boutle, S. K.; Butterworth, J. M.; Gwenlan, C.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England.
[Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, R.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Ukleja, A.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland.
[Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland.
[Adamus, M.; Plucinski, R.] Inst Nucl Studies, PL-00681 Warsaw, Poland.
[Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel.
[Brownson, E.; Danielson, T.; Everett, A.; Kcira, D.; Reeder, D. D.; Ryan, P.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Bhadra, S.; Catterall, C. D.; Cui, Y.; Hartner, G.; Menary, S.; Noor, U.; Standage, J.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada.
RP Haas, T (reprint author), Deutsch Elektronen Synchrotron DESY, Hamburg, Germany.
EM tobias.haas@desy.de
RI Tassi, Enrico/K-3958-2015; De Pasquale, Salvatore/B-9165-2008; dusini,
stefano/J-3686-2012; Capua, Marcella/A-8549-2015; Doyle,
Anthony/C-5889-2009; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Fazio,
Salvatore /G-5156-2010; Wiggers, Leo/B-5218-2015; WAN ABDULLAH, WAN
AHMAD TAJUDDIN/B-5439-2010; Ferrando, James/A-9192-2012; Gladilin,
Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov,
Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina,
Irina/D-6848-2012
OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini,
stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525;
Arneodo, Michele/0000-0002-7790-7132; Longhin,
Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Doyle,
Anthony/0000-0001-6322-6195; Wiggers, Leo/0000-0003-1060-0520; Ferrando,
James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636;
NR 31
TC 8
Z9 8
U1 0
U2 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 16
PY 2009
VL 672
IS 2
BP 106
EP 115
DI 10.1016/j.physletb.2009.01.014
PG 10
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 412WG
UT WOS:000263754300005
ER
PT J
AU Barger, V
Keung, WY
Marfatia, D
Shaughnessy, G
AF Barger, V.
Keung, W. -Y.
Marfatia, D.
Shaughnessy, G.
TI PAMELA and dark matter
SO PHYSICS LETTERS B
LA English
DT Article
ID PROPAGATION; POSITRONS; ELECTRONS; MODEL
AB Assuming that the positron excess in PAMELA satellite data is a consequence of annihilations of cold dark matter, we consider from a model-independent perspective if the data show a preference for the spin of dark matter, and find that they do not. We then perform a general analysis of annihilations into two-body states to determine what weighted combination of channels best describes the data. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Marfatia, D.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
[Barger, V.; Shaughnessy, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.
[Keung, W. -Y.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA.
[Shaughnessy, G.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
[Shaughnessy, G.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA.
RP Marfatia, D (reprint author), Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA.
EM marfatia@ku.edu
OI Keung, Wai-Yee/0000-0001-6761-9594
FU DOE [DE-FG02-04ER41308, DE-FG02-95ER40896, DE-FG02-84ER40173,
DE-AC02-06CH11357]; NSF [PHY-0544278]; Wisconsin Alumni Research
Foundation
FX This research was supported by DOE Grant Nos. DE-FG02-04ER41308,
DE-FG02-95ER40896, DE-FG02-84ER40173 and DE-AC02-06CH11357, by NSF Grant
No. PHY-0544278, and by the Wisconsin Alumni Research Foundation.
NR 25
TC 109
Z9 111
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
EI 1873-2445
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 16
PY 2009
VL 672
IS 2
BP 141
EP 146
DI 10.1016/j.physletb.2009.01.016
PG 6
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 412WG
UT WOS:000263754300011
ER
PT J
AU Murphy, ST
Uberuaga, BP
Ball, JB
Cleave, AR
Sickafus, KE
Smith, R
Grimes, RW
AF Murphy, S. T.
Uberuaga, B. P.
Ball, J. B.
Cleave, A. R.
Sickafus, K. E.
Smith, R.
Grimes, R. W.
TI Cation diffusion in magnesium aluminate spinel
SO SOLID STATE IONICS
LA English
DT Article
DE Spinel; Cation diffusion; Point defects; Computer simulation
ID MGAL2O4 SPINEL; RADIATION-DAMAGE; DEFECT ENERGIES; DISORDER; KINETICS;
IRRADIATION; PARAMETER; CRYSTALS; OXIDE; MG
AB The mechanisms by which Mg(2+) and Al(3+) ions are transported through the MgAl(2)O(4) spinel lattice are investigated using atomic scale computer simulation. Both vacancy and interstitial cation processes are considered. Stable vacancies can be generated on either the magnesium or aluminium sublattices but the Mg(2+) and Al(3+) cation interstitials are most stable when located in split form with another Mg(2+) ion about a vacant Mg(2+) site. The pathways for diffusion of defects both via vacancy and interstitial mechanisms are analysed in detail with calculation of the energy barriers and the associated exponential prefactors. The results show that vacancies can be exchanged between the two sublattices resulting in the formation of antisite defects (though these processes have a high activation energy); that the Mg(2+) ions are more mobile than the Al(3+) ions and that the preferred mechanism for Al(3+) ion diffusion is via a vacancy mechanism on the magnesium sublattice. Although the calculated values of the prefactors can differ in size by an order of magnitude, in this system it is the relative size of the energy barriers that dominate the diffusion rates. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Murphy, S. T.; Ball, J. B.; Cleave, A. R.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England.
[Uberuaga, B. P.; Sickafus, K. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Smith, R.] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
RP Grimes, RW (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England.
EM r.grimes@imperial.ac.uk
RI Murphy, Samuel/E-9574-2011; Smith, Roger/C-2550-2013
FU United States Department of Energy, Office of Basic Energy Sciences;
National Nuclear Security Administration of the U.S. Department of
Energy [DE-AC52-06NA25396]
FX We thank A. F. Voter for use of the CLSMAN modeling program to calculate
the Vineyard terms. This work was carried out as part of the UKERC
materials programme and the United States Department of Energy, Office
of Basic Energy Sciences. Computational resources were provided by the
Imperial College High Performance Computing Service
(http://www.imperial.ac.uk/ict/services/teachingandresearchservices/high
performancecomputing). Los Alamos National Laboratory, an affirmative
action/equal opportunity employer, is operated by Los Alamos National
Security, LLC, for the National Nuclear Security Administration of the
U.S. Department of Energy under contract DE-AC52-06NA25396.
NR 36
TC 19
Z9 19
U1 1
U2 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2738
J9 SOLID STATE IONICS
JI Solid State Ion.
PD FEB 16
PY 2009
VL 180
IS 1
BP 1
EP 8
DI 10.1016/j.ssi.2008.10.013
PG 8
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 424AT
UT WOS:000264538600001
ER
PT J
AU Smith, JR
Chen, A
Gostovic, D
Hickey, D
Kundinger, D
Duncan, KL
DeHoff, RT
Jones, KS
Wachsman, ED
AF Smith, J. R.
Chen, A.
Gostovic, D.
Hickey, D.
Kundinger, D.
Duncan, K. L.
DeHoff, R. T.
Jones, K. S.
Wachsman, E. D.
TI Evaluation of the relationship between cathode microstructure and
electrochemical behavior for SOFCs
SO SOLID STATE IONICS
LA English
DT Article
DE Electrochemistry; Microstructure; FIB; Impedance spectroscopy; SOFC
ID OXIDE FUEL-CELLS; YTTRIA-STABILIZED ZIRCONIA; SR-DOPED LAMNO3;
CONDUCTING OXYGEN ELECTRODES; IMPEDANCE SPECTROSCOPY;
CATHODE/ELECTROLYTE INTERFACE; AC-IMPEDANCE; REDUCTION; KINETICS;
POLARIZATION
AB The need for high efficiency and low emissions power sources has created significant interest in fuel cells. Solid oxide fuel cells (SOFCs) are desirable for their fuel versatility. Because high-temperature sintering is required for SOFCs, bulk and interfacial microstructural changes may occur in the cathode during fabrication. These changes influence device performance by affecting the various steps of the cathodic reaction and an increased understanding of this relationship may lead to more efficient SOFCs. Symmetric cells with various microstructures were formed using anneals at temperatures ranging from 1150 to 1325 degrees C for 1 h. Dual beam SEM/FIB (focused ion beam) was used to perform 3-D analysis of the microstructure. Microstructural features of emphasis include the triple phase boundary length (L(TPB)) and pore surface area. The results were compared with an AC impedance spectroscopy study focusing on charge transfer resistance and oxygen adsorption, A direct relationship between microstructural parameters from an actual cathode and the polarization resistance of the significant elementary steps of the cathodic reaction is established directly from experiment. It is found that both the charge transfer polarization resistance and the adsorption polarization resistance display a power law relationship with L(TPB) and pore surface area, respectively. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Smith, J. R.; Chen, A.; Gostovic, D.; Hickey, D.; Kundinger, D.; Duncan, K. L.; DeHoff, R. T.; Jones, K. S.; Wachsman, E. D.] Univ Florida, UF DOE High Temp Electrochem Ctr, Gainesville, FL 32611 USA.
RP Wachsman, ED (reprint author), Univ Florida, UF DOE High Temp Electrochem Ctr, Gainesville, FL 32611 USA.
EM ewach@mse.ufl.edu
OI Duncan, Keith/0000-0002-7190-3675
FU United States Department of Energy [DE-FC26-02NT41562]; DOE High
Temperature Electrochemistry Center [DE-AC05-76RL01830]
FX The authors would like to thank the United States Department of Energy
for funding under project number DE-FC26-02NT41562 and the DOE High
Temperature Electrochemistry Center, DE-AC05-76RL01830, and Nextech for
supplying cathode inks for use in this work.
NR 39
TC 75
Z9 78
U1 3
U2 50
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-2738
J9 SOLID STATE IONICS
JI Solid State Ion.
PD FEB 16
PY 2009
VL 180
IS 1
BP 90
EP 98
DI 10.1016/j.ssi.2008.10.017
PG 9
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 424AT
UT WOS:000264538600015
ER
PT J
AU Schwantes, JM
Douglas, M
Bonde, SE
Briggs, JD
Farmer, OT
Greenwood, LR
Lepel, EA
Orton, CR
Wacker, JF
Luksic, AT
AF Schwantes, Jon M.
Douglas, Matthew
Bonde, Steven E.
Briggs, James D.
Farmer, Orville T.
Greenwood, Lawrence R.
Lepel, Elwood A.
Orton, Christopher R.
Wacker, John F.
Luksic, Andrzej T.
TI Nuclear Archeology in a Bottle: Evidence of Pre-Trinity US Weapons
Activities from a Waste Burial Site
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID URANIUM; ELEMENTS; ISOTOPES
AB During World War II, the Hanford Site in Washington became the location for U.S. plutonium production. In 2004, a battle containing a sample of plutonium was recovered from a Hanford waste trench. Here, state-of-the-art instrumental analyses, reactor model simulations, and investigative science techniques were used to provide insights as to the origin of this unknown sample, a process collectively termed as nuclear archeology. Isotopic age dating conducted on the sample in 2007 indicated the sample was separated from the spent fuel 61.6 +/- 4.5 years earlier. The isotope (22)Na, a detectable product of a secondary nuclear reaction, proved useful as a powerful tool for nuclear forensic analysis as (1) an easily detectable signifier of the presence of a emitting actinides, (2) an indicator of sample splitting, and (3) a measure of the time since sample splitting. Analytical results of minor actinide isotopes and reactor model simulations confirmed the material originated from the X-10 reactor in Oak Ridge, TN. Corroborated by historical documents, we concluded this sample was part of the first batch of Pu separated at T-Plant, Hanford, the world's first industrial-scale reprocessing facility, on December 9, 1944. This sample represents the oldest known collection of man-made (239)Pu in the world.
C1 [Schwantes, Jon M.; Douglas, Matthew; Bonde, Steven E.; Briggs, James D.; Farmer, Orville T.; Greenwood, Lawrence R.; Lepel, Elwood A.; Orton, Christopher R.; Wacker, John F.; Luksic, Andrzej T.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Schwantes, JM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM jon.schwantes@pnl.gov
RI Schwantes, Jon/A-7318-2009; Mavoa, Suzanne/B-5372-2010; Greenwood,
Lawrence/H-9539-2016;
OI Greenwood, Lawrence/0000-0001-6563-0650; Douglas,
Matthew/0000-0001-9708-1780
NR 36
TC 15
Z9 15
U1 1
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 15
PY 2009
VL 81
IS 4
BP 1297
EP 1306
DI 10.1021/ac802286a
PG 10
WC Chemistry, Analytical
SC Chemistry
GA 406TY
UT WOS:000263319000001
PM 19152306
ER
PT J
AU Chan, JW
Lieu, DK
Huser, T
Li, RA
AF Chan, James W.
Lieu, Deborah K.
Huser, Thomas
Li, Ronald A.
TI Label-Free Separation of Human Embryonic Stem Cells and Their Cardiac
Derivatives Using Raman Spectroscopy
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID SINGLE LIVING CELLS; IN-VIVO DETECTION; CARDIOMYOCYTES; DIFFERENTIATION;
TISSUE; DISCRIMINATION; IDENTIFICATION; CHROMOSOMES; INTEGRATION;
MICROSCOPY
AB Self-renewable, pluripotent human embryonic stem cells (hESCs) can be differentiated into cardiomyocytes (CMs), providing an unlimited source of cells for transplantation therapies. However, unlike certain cell lineages such as hematopoietic cells, CMs lack specific surface markers for convenient identification, physical separation, and enrichment Identification by immunostaining of cardiac-specific proteins such as troponin requires permeabilization, which renders the cells unviable and nonrecoverable. Ectopic expression of a reporter protein under the transcriptional control of a heart-specific promoter for identifying hESC-derived CMs (hESC-CMs) is useful for research but complicates potential clinical applications. The practical detection and removal of undifferentiated hESCs in a graft, which may lead to tumors, is also critical. Here, we demonstrate a nondestructive, label-free optical method based on Raman scattering to interrogate the intrinsic biochemical signatures of individual hESCs and their cardiac derivatives, allowing cells to be identified and classified. By combination of the Raman spectroscopic data with multivariate statistical analysis, our results indicate that hESCs, human fetal left ventricular CMs, and hESC-CMs can be identified by their intrinsic biochemical characteristics with an accuracy of 96%, 98%, and 66%, respectively. The present study lays the groundwork for developing a systematic and automated method for the noninvasive and label-free sorting of (i) high-quality hESCs for expansion and (ii) ex vivo CMs (derived from embryonic or adult stem cells) for cell-based heart therapies.
C1 [Chan, James W.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Appl Phys & Biophys Div, Livermore, CA 94550 USA.
[Li, Ronald A.] Shriners Hosp Children N Amer, Inst Pediat Regenerat Med, Sacramento, CA 95817 USA.
[Huser, Thomas] Univ Calif Davis, Dept Internal Med, Davis, CA 95616 USA.
[Lieu, Deborah K.; Li, Ronald A.] Univ Calif Davis, Dept Cell Biol & Human Anat, Davis, CA 95616 USA.
[Lieu, Deborah K.; Li, Ronald A.] Univ Calif Davis, Stem Cell Program, Davis, CA 95616 USA.
[Chan, James W.; Lieu, Deborah K.; Huser, Thomas] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Davis, CA 95616 USA.
RP Chan, JW (reprint author), Lawrence Livermore Natl Lab, Phys Sci Directorate, Appl Phys & Biophys Div, Livermore, CA 94550 USA.
EM chan19@llnl.gov; ronli@ucdavis.edu
RI Li, Ronald/E-9833-2010; Huser, Thomas/H-1195-2012; Chan,
James/J-3829-2014
OI Huser, Thomas/0000-0003-2348-7416;
FU NHLBI NIH HHS [R01 HL072857, R01 HL072857-04, R01 HL72857]
NR 38
TC 108
Z9 111
U1 3
U2 45
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 15
PY 2009
VL 81
IS 4
BP 1324
EP 1331
DI 10.1021/ac801665m
PG 8
WC Chemistry, Analytical
SC Chemistry
GA 406TY
UT WOS:000263319000004
PM 19152312
ER
PT J
AU Chowdhury, MH
Ray, K
Gray, SK
Pond, J
Lakowicz, JR
AF Chowdhury, Mustafa H.
Ray, Krishanu
Gray, Stephen K.
Pond, James
Lakowicz, Joseph R.
TI Aluminum Nanoparticles as Substrates for Metal-Enhanced Fluorescence in
the Ultraviolet for the Label-Free Detection of Biomolecules
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID SINGLE-MOLECULE FLUORESCENCE; PLASMON-COUPLED EMISSION; PROTEIN
MICROARRAYS; RAMAN-SCATTERING; SURFACE; FILMS; DECAY; SPECTROSCOPY;
PARTICLES; ELECTROPHORESIS
AB We use finite-difference time-domain calculations to show that aluminum nanoparticles are efficient substrates for metal-enhanced fluorescence (MEF) in the ultraviolet (UV) for the label-free detection of biomolecules. The radiated power enhancement of the fluorophores in proximity to aluminum nanoparticles is strongly dependent on the nanoparticle size, fluorophore-nanoparticle spacing, and fluorophore orientation. Additionally, the enhancement is dramatically increased when the fluorophore is between two aluminum nanoparticles of a dimer. Finally, we present experimental evidence that functionalized forms of amino acids tryptophan and tyrosine exhibit MEF when spm-coated onto aluminum nanostructures.
C1 [Chowdhury, Mustafa H.; Ray, Krishanu; Lakowicz, Joseph R.] Univ Maryland, Sch Med, Ctr Med Biotechnol, Ctr Fluorescence Spect, Baltimore, MD 21201 USA.
[Pond, James] Lumer Solut Inc, Vancouver, BC V6B 2Y5, Canada.
[Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Lakowicz, JR (reprint author), Univ Maryland, Sch Med, Ctr Med Biotechnol, Ctr Fluorescence Spect, 725 W Lombard St, Baltimore, MD 21201 USA.
EM lakowicz@cfs.umbi.umd.edu
FU NHGRI NIH HHS [HG002655, R01 HG002655, R01 HG002655-05]; NIBIB NIH HHS
[EB006521, R01 EB006521, R01 EB006521-02]
NR 46
TC 110
Z9 112
U1 3
U2 91
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 15
PY 2009
VL 81
IS 4
BP 1397
EP 1403
DI 10.1021/ac802118s
PG 7
WC Chemistry, Analytical
SC Chemistry
GA 406TY
UT WOS:000263319000014
PM 19159327
ER
PT J
AU Smith, JS
Laskin, A
Laskin, J
AF Smith, Jeffrey S.
Laskin, Alexander
Laskin, Julia
TI Molecular Characterization of Biomass Burning Aerosols Using
High-Resolution Mass Spectrometry
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID SECONDARY ORGANIC AEROSOL; ELECTROSPRAY-IONIZATION;
CHEMICAL-COMPOSITION; FULVIC-ACIDS; ATMOSPHERIC PARTICLES; EMISSION
FACTORS; WOOD SMOKE; PART 1; COMBUSTION; TRACERS
AB Chemical characterization of atmospheric aerosols presents a serious analytical challenge because of the complexity of particulate matter analyte composed of a large number of compounds with a wide range of molecular structures, physico-chemical properties, and reactivity. In this study the chemical composition of the organic constituents of biomass burning aerosol (BBA) samples is characterized by high-resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurement combined with Kendrick analysis allows assignment of the elemental composition for hundreds of compounds in the range of m/z values of 50-1000. ESI/MS spectra of different BBA samples contain a variety of distinct, sample specific, characteristic peaks that can be used as unique markers for different types of biofuels. Our results indicate that a significant number of high-MW organic compounds in BBA samples are highly oxidized polar species that can be efficiently detected using ESI/MS but are difficult to observe using conventional gas-chromatography/mass spectrometry analysis of aerosol samples. More than 70% of the identified species have not been reported in the literature. Detected organic compounds show a clear increase in the degree of saturation as the molecular weight of the analyte molecules increases. The increase is particularly pronounced for the samples containing a large number of the CH2-based homologous series.
C1 [Smith, Jeffrey S.; Laskin, Julia] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Laskin, Alexander] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA.
EM julia.laskin@pnl.gov
RI Laskin, Alexander/I-2574-2012; Laskin, Julia/H-9974-2012
OI Laskin, Alexander/0000-0002-7836-8417; Laskin, Julia/0000-0002-4533-9644
FU U.S. Department of Energy's Office of Biological and Environmental
Research; Pacific Northwest National Laboratory (PNNL).; Chemical
Sciences Division, Office of Basic Energy Sciences of the U.S. DOE;
Atmospheric Science Program, Office of Biological and Environmental
Research of the U.S. DOE; DOE Science Undergraduate Laboratory
Internship (SULI) program at Pacific Northwest National Laboratory
(PNNL)
FX The research described in this manuscript was performed at the W. R.
Wiley Environmental Molecular Sciences Laboratory (EMSL), a national
scientific user facility sponsored by the U.S. Department of Energy's
Office of Biological and Environmental Research and located at Pacific
Northwest National Laboratory (PNNL). PNNL is operated by Battelle for
the U.S. Department of Energy. J.L. acknowledges support from the
Chemical Sciences Division, Office of Basic Energy Sciences of the U.S.
DOE. A.L. acknowledges support from the Atmospheric Science Program,
Office of Biological and Environmental Research of the U.S. DOE. J.S.S.
acknowledges support from the DOE Science Undergraduate Laboratory
Internship (SULI) program at Pacific Northwest National Laboratory
(PNNL). The authors gratefully acknowledge Drs. William C. Maim, Wei-Min
Hao, Jeffery L. Collett, Jr., and Sonia Kreidenweiss for organizing the
FLAME project and the staff at the USDA/USFS Fire Sciences Laboratory
for technical help. Additionally, the authors acknowledge Dr. Odeta
Qafoku for sharing the results of ICP/MS analysis of BBA sample and the
support of Dr. Yuri Desyaterik at the sampling site, and helpful
discussions with Drs. Sergey Nizkorodov and Mary Gilles.
NR 54
TC 34
Z9 34
U1 0
U2 42
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
EI 1520-6882
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 15
PY 2009
VL 81
IS 4
BP 1512
EP 1521
DI 10.1021/ac8020664
PG 10
WC Chemistry, Analytical
SC Chemistry
GA 406TY
UT WOS:000263319000030
PM 19115879
ER
PT J
AU Ronai, Z
Wittt, H
Rickards, O
Destro-Bisol, G
Bradbury, ARM
Sahin-Toth, M
AF Ronai, Zsolt
Wittt, Heiko
Rickards, Olga
Destro-Bisol, Giovanni
Bradbury, Andrew R. M.
Sahin-Toth, Miklos
TI A common African polymorphism abolishes tyrosine sulfation of human
anionic trypsinogen (PRSS2)
SO BIOCHEMICAL JOURNAL
LA English
DT Article
DE sulfation motif; trypsinogen autoactivation; trypsinogen mutation;
tyrosine sulfation; tyrosylprotein sulfotransferase (TPST)
ID HUMAN CATIONIC TRYPSINOGEN; HIGH-AFFINITY BINDING; TYROSYLPROTEIN
SULFOTRANSFERASE; O-SULFATION; CHRONIC-PANCREATITIS; MOLECULAR-CLONING;
FACTOR-VIII; EXPRESSION; PROTEINS; HYPOTHYROIDISM
AB Human pancreatic trypsinogens undergo post-translational sulfation on Tyr(154), catalysed by the Golgi-resident enzyme tyrosylprotein sulfotransferase 2. Sequence alignments suggest that the sulfation of Tyr(154) is facilitated by a unique sequence context which is characteristically found in primate trypsinogens. In the search for genetic variants that might alter this sulfation motif, we identified a single nucleotide polymorphism (c.457G > C) in the PRSS2 (serine protease 2, human anionic trypsinogen) gene, which changed Asp(153) to a histidine residue (p.D153H). The p.D153H variant is common in subjects of African origin, with a minor allele frequency of 9.2%, whereas it is absent in subjects of European descent. We demonstrate that Asp(151) is the main determinant of tyrosine sulfation in anionic trypsinogen, as both the natural p.D153H variation and the p.D153N mutation result in a complete loss of trypsinogen sulfation. In contrast, mutation of Asp(156) and Glu(157) only slightly decrease tyrosine sulfation, whereas mutation of Gly(151) and Pro(155) has no effect. With respect to the biological relevance of the p.D153H variant, we found that tyrosine sulfation had no significant effect on the activation of anionic trypsinogen or the catalytic activity and inhibitor sensitivity of anionic trypsin. Taken together with previous studies, the observations of the present study suggest that the primary role of trypsinogen sulfation in humans is to stimulate autoactivation of PRSS1 (serine protease 1, human cationic trypsinogen), whereas the sulfation of anionic trypsinogen is unimportant for normal digestive physiology. As a result, the p.D153H polymorphism which eliminates this modification could become widespread in a healthy population.
C1 [Ronai, Zsolt; Sahin-Toth, Miklos] Boston Univ, Goldman Sch Dent Med, Dept Mol & Cell Biol, Boston, MA 02118 USA.
[Ronai, Zsolt] Charite Univ Med Berlin, Dept Gastroenterol & Hepatol, D-13353 Berlin, Germany.
[Wittt, Heiko] Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy.
[Destro-Bisol, Giovanni] Ist Italiano Antropol, I-00185 Rome, Italy.
[Destro-Bisol, Giovanni] Univ Roma La Sapienza, Dept Human & Anim Biol, I-00185 Rome, Italy.
[Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
RP Sahin-Toth, M (reprint author), Boston Univ, Goldman Sch Dent Med, Dept Mol & Cell Biol, Boston, MA 02118 USA.
EM miklos@bu.edu
RI Rickards, Olga/L-7878-2015;
OI Rickards, Olga/0000-0003-2880-7466; Sahin-Toth,
Miklos/0000-0003-4513-9922; Ronai, Zsolt/0000-0002-0909-7932; Destro
Bisol, Giovanni/0000-0002-4232-9715; Bradbury,
Andrew/0000-0002-5567-8172
FU National Institutes of Health [AA014544, DK0580881]; Deutsche
Forschungsgemeinschaft [02036/2-21]
FX This work was supported by the National Institutes of Health [grant
numbers AA014544, DK0580881 (to M.S.-T.); and the Deutsche
Forschungsgemeinschaft [grant number 02036/2-21 (to H. W.)
NR 33
TC 6
Z9 7
U1 1
U2 1
PU PORTLAND PRESS LTD
PI LONDON
PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND
SN 0264-6021
J9 BIOCHEM J
JI Biochem. J.
PD FEB 15
PY 2009
VL 418
BP 155
EP 161
DI 10.1042/BJ20081848
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 407BF
UT WOS:000263337900015
PM 18986305
ER
PT J
AU Hightower, A
Koel, B
Felter, T
AF Hightower, Adrian
Koel, Bruce
Felter, Thomas
TI A study of iodine adlayers on polycrystalline gold electrodes by in situ
electrochemical Rutherford backscattering (ECRBS)
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE Polycrystalline gold electrode; Iodine adsorption; In situ RBS; Ion
scattering; Gold; Etching
ID SCANNING-TUNNELING-MICROSCOPY; LIQUID-SOLID INTERFACE;
X-RAY-DIFFRACTION; CRYSTALLOGRAPHIC ORIENTATION; ION BACKSCATTERING;
MODIFIED AU(111); THIN-FILMS; ADSORPTION; SURFACE; STM
AB Iodine adsorption on a polycrystalline gold electrode was studied by in situ electrochemical Rutherford backscattering (ECRBS) using an ultrahigh vacuum (UHV)-electrochemical cell comprising of a thin-film silicon nitride window. The depth resolution of RBS allowed for measurement of nuclide concentration of the diffuse double-layer, electrode surface and near-surface regions. ECRBS measurements on the gold electrode, initially exposed to -500 mV vs. a platinum pseudo-reference electrode, in a potassium iodide solution, showed an increase in the 2.07 MeV iodine peak indicative of iodine adsorption. The surface concentration of the iodine adlayer was directly measured by ECRBS to be 1.3 +/- 0.3 nmol/cm(2). ECRBS measurements on a gold electrode exposed to 1.5 V vs. a platinum pseudo-reference electrode, in a potassium iodide solution display a decrease in the 2.16 MeV gold peak and a shift to lower energies. Scanning electron microscopy images of electrodes studied by ECRBS displayed roughened surfaces consistent with gold dissolution. This work demonstrates the potential for in situ ECRBS using thin-film silicon nitride windows to become a powerful tool for the investigation of a wide range of electrochemical processes in areas such as corrosion, electrodeposition and electrocatalysis. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Hightower, Adrian] Occidental Coll, Dept Phys, Los Angeles, CA 90041 USA.
[Koel, Bruce] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA.
[Felter, Thomas] Sandia Natl Labs, Livermore, CA 94550 USA.
RP Hightower, A (reprint author), Occidental Coll, Dept Phys, 1600 Campus Rd, Los Angeles, CA 90041 USA.
EM hightower@oxy.edu
RI Koel, Bruce/H-3857-2013
OI Koel, Bruce/0000-0002-0032-4991
FU Merck Co., Inc; United Negro College Fund; Florian Mansfeld of the
University; Lawrence Livermore National Laboratory [W-7405-Eng-48]; U.S.
Department of Energy
FX The authors thank Merck& Co., Inc. and the United Negro College Fund for
their financial support through a postdoctoral research fellowship. The
authors express their deep appreciation to Florian Mansfeld of the
University of Southern California and the journal referees for their
guidance. Work at Lawrence Livermore National Laboratory was performed
under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No.
W-7405-Eng-48.
NR 38
TC 3
Z9 3
U1 3
U2 22
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD FEB 15
PY 2009
VL 54
IS 6
BP 1777
EP 1783
DI 10.1016/j.electacta.2008.10.027
PG 7
WC Electrochemistry
SC Electrochemistry
GA 408NN
UT WOS:000263441800019
ER
PT J
AU Hernando, J
Lud, SQ
Bruno, P
Gruen, DM
Stutzmann, M
Garrido, JA
AF Hernando, Jorge
Lud, Simon Q.
Bruno, Paola
Gruen, Dieter M.
Stutzmann, Martin
Garrido, Jose A.
TI Electrochemical impedance spectroscopy of oxidized and
hydrogen-terminated nitrogen-induced conductive ultrananocrystalline
diamond
SO ELECTROCHIMICA ACTA
LA English
DT Article
DE Diamond film; Ultrananocrystalline; Electrochemical impedance;
Oxidation; Hydrogenation
ID THIN-FILM ELECTRODES; GLASSY-CARBON; CAPACITANCE DISPERSION;
POLYCRYSTALLINE; IMMOBILIZATION; REACTIVITY; GRAPHITE; BEHAVIOR; ORIGIN
AB We have studied the electrochemical impedance spectroscopy of conductive ultrananocrystalline diamond (UNCD) modified by either oxidation or hydrogenation surface treatments. The impedance was measured in the frequency range from 0.1 Hz to 40 kHz at different DC voltages and the results fitted to an equivalent electrical circuit. Despite the complexity of the conductive UNCD surface, composed of sp(3)-bonded grains and grain boundaries with a high content of sp(2)-bonded carbon atoms, a Randles circuit with a constant phase element (CPE) for the capacitive element provided a reasonable model for both terminations. However, the parameters of the CPE were very different for each termination. Taking into account the results obtained, we propose that the interfacial impedance of oxidized UNCD is dominated by the oxidized sp(2)-bonded Carbon atoms present at the grain boundaries, and the interfacial impedance of hydrogen-terminated UNCD is governed by both the grain boundaries and the grains. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Hernando, Jorge] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain.
[Hernando, Jorge; Lud, Simon Q.; Stutzmann, Martin; Garrido, Jose A.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany.
[Bruno, Paola; Gruen, Dieter M.] Argonne Natl Lab, Div Chem & Mat Sci, Argonne, IL 60439 USA.
RP Hernando, J (reprint author), Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain.
EM jorge.hernando@uclm.es
RI bruno, paola/G-5786-2011; Garrido, Jose A./K-7491-2015; Stutzmann,
Martin/B-1480-2012; Hernando-Garcia, Jorge/E-8312-2011;
OI Garrido, Jose A./0000-0001-5621-1067; Hernando-Garcia,
Jorge/0000-0002-1651-2372; Stutzmann, Martin/0000-0002-0068-3505
FU Alexander von Humboldt Foundation; NaDiNe (Nano Diamond Network) of the
Austrian NANO for Versatile Electronics); Ayudas a la Investigacion
[UCLM TC20070088]
FX Jorge Hernando acknowledges financial support from the Alexander von
Humboldt Foundation. Part of the work was funded by NaDiNe (Nano Diamond
Network) of the Austrian NANO for Versatile Electronics) and Ayudas a la
Investigacion UCLM TC20070088.
NR 30
TC 19
Z9 19
U1 0
U2 15
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0013-4686
J9 ELECTROCHIM ACTA
JI Electrochim. Acta
PD FEB 15
PY 2009
VL 54
IS 6
BP 1909
EP 1915
DI 10.1016/j.electacta.2008.10.041
PG 7
WC Electrochemistry
SC Electrochemistry
GA 408NN
UT WOS:000263441800036
ER
PT J
AU Mills, E
AF Mills, Evan
TI Sustainable Scientists
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Editorial Material
ID EFFICIENCY
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM emills@lbl.gov
NR 32
TC 3
Z9 3
U1 0
U2 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 15
PY 2009
VL 43
IS 4
BP 979
EP 985
DI 10.1021/es801496g
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 406MC
UT WOS:000263298600006
PM 19320146
ER
PT J
AU Qafoku, NP
Dresel, PE
McKinley, JP
Liu, CX
Heald, SM
Ainsworth, CC
Phillips, JL
Fruchter, JS
AF Qafoku, Nikolla P.
Dresel, P. Evan
McKinley, James P.
Liu, Chongxuan
Heald, Steve M.
Ainsworth, Calvin C.
Phillips, Jerry L.
Fruchter, Jonathan S.
TI Pathways of Aqueous Cr(VI) Attenuation in a Slightly Alkaline Oxic
Subsurface
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID CHROMIUM(VI) REDUCTION; HEXAVALENT CHROMIUM; CHROMATE ADSORPTION; GRAVEL
AQUIFER; FERROUS IRON; TRANSPORT; REDOX; ZONE; SURFACES; SOIL
AB Column experiments combined with geochemical modeling, microscopic inspections, spectroscopic interrogations, and wet chemical extractions were used to study sediment-dependent Cr(VI) desorption, physical location, mineral association, and attenuation mechanism(s) in four freshly or naturally aged contaminated sediments exposed to concentrated Cr(VI) waste fluids. Results showed that majority of Cr(VI) mass was easily removed from the sediments (equilibrium site K(d) varied from 0 to 0.33 mL g(-1) and equilibrium site fraction was greater than 95%). Long tailings of time-dependent Cr(VI) concentrations above maximum contaminant level of 1.9 mu mol L(-1) were also observed (kinetically controlled fraction K(d) and desorption reaction half-lives varied from 0 to 45 mL g(-1), and from 76.1 to 126 h, respectively). Microscopic: and spectroscopic measurements confirmed that Cr was concentrated within fine-grained coatings in small areas mainly rich in phyllosilicates that contained both Cr(III) and Cr(VI). However, Cr(VI) reduction was neither significant nor complete. Under slightly alkaline and oxic conditions, contaminant Cr in the sediments occurred: (i) In the highly mobile pool (over 95% of total Cr); (ii) In the slow and time-dependent releasing pool, which served as long-term source of contamination; (iii) As reduced Cr(III) which most likely formed during Cr(VI) reaction with aqueous, sorbed, or structural Fe(II).
C1 [Qafoku, Nikolla P.; Dresel, P. Evan; McKinley, James P.; Liu, Chongxuan; Ainsworth, Calvin C.; Phillips, Jerry L.; Fruchter, Jonathan S.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Heald, Steve M.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Qafoku, NP (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA.
EM nik.qafoku@pnl.gov
RI Liu, Chongxuan/C-5580-2009;
OI Qafoku, Nikolla P./0000-0002-3258-5379
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]; U.S. Department of Energy (DOE)
-Environmental Management through the EM-22 Project
FX This research was supported by the U.S. Department of Energy (DOE)
-Environmental Management through the EM-22 Project. Pacific Northwest
National Laboratory is operated for the Department of Energy by Battelle
Memorial Institute. Use of the Advanced Photon Source is supported by
the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract DE-AC02-06CH11357. The manuscript benefited
enormously from the technical reviews of two anonymous reviewers and the
helpful comments and suggestions made by the Associate Editor, Dr. David
A. Dzombak.
NR 36
TC 14
Z9 15
U1 7
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 15
PY 2009
VL 43
IS 4
BP 1071
EP 1077
DI 10.1021/es802658x
PG 7
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 406MC
UT WOS:000263298600020
PM 19320160
ER
PT J
AU Jang, JH
Brantley, SL
AF Jang, Je-Hun
Brantley, Susan L.
TI Investigation of Wustite (FeO) Dissolution: Implications for Reductive
Dissolution of Ferric Oxides
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID DISSIMILATORY FE(III) REDUCTION; WATER INTERFACE; NATURAL-WATERS;
METAL-IONS; FE(II)-FE(III) ELECTRON; COORDINATION CHEMISTRY; ISOTOPE
FRACTIONATION; IRON(III) OXIDES; BIOGENIC FE(II); IRON-OXIDES
AB The pH-dependent dissolution flux of FeO (wustite, a ferrous oxide) was measured in this study; flux = k{H+}(n) (mol/m(2)/s), where k = 10(-4.95) and n = 0.64. This flux was consistent with theoretical predictions based on the rate of water exchange of hexaaquo Fe2+. Interestingly, when compared to published data, the pH-dependent dissolution flux of FeO defined an upper limit for the reductive dissolution fluxes of iron(III) (oxyhydr)oxides, including bacterial dissimilatory iron reduction (DIR). A wide range of dissolution fluxes across several orders of magnitude has been reported for iron(Ill) (oxyhydr)oxides in the literature and the fluxes were affected by various experimental variables, e.g., pH, ligands, chemical reductants, and bacteria. We concluded that (i) the reductive dissolution fluxes of iron(III) (oxyhydr)oxides, including bacterial DIR, are ultimately bracketed by the detachment rate of reduced Fe(II) from the surface and (ii) the maximum flux can be approached when the mole fraction of reduced Fe(II) at the surface is close to unity.
C1 [Jang, Je-Hun; Brantley, Susan L.] Penn State Univ, Ctr Environm Kinet Anal, Earth & Environm Syst Inst, University Pk, PA 16802 USA.
RP Jang, JH (reprint author), Sandia Natl Labs, Carlsbad Programs Grp, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA.
EM jhjang2004@gmail.com
FU National Science Foundation Grant [CHE-0431328, EAR-0311898]; NASA
Astrobiology Institute Coop. [NCC2-1057]; U.S. Department of Energy,
Office of Biological and Environmental Research (OBER)
FX We acknowledge support from National Science Foundation Grant No.
CHE-0431328 and EAR-0311898. SLB also acknowledges support from the NASA
Astrobiology Institute Coop. Agreement NCC2-1057 and from U.S.
Department of Energy, Office of Biological and Environmental Research
(OBER). We acknowledge Professor Gary L. Catchen in Department of
Mechanical and Nuclear Engineering at Pennsylvania State University
(PSU) for allohing Je-Hun Jang to use his instrumentation for Mossbauer
spectroscopy analysis. We also acknowledge two anonymous reviewers for
constructive comments. X-ray diffraction and BET analysis were performed
by Material Characterization Laboratory (MCL) at PSU. We are also
grateful to Professor David A. Dzombak at Carnegie Mellon University,
who served as Associate Editor, for his fair and timely handling of this
manuscript.
NR 49
TC 4
Z9 4
U1 2
U2 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
EI 1520-5851
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 15
PY 2009
VL 43
IS 4
BP 1086
EP 1090
DI 10.1021/es8010139
PG 5
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 406MC
UT WOS:000263298600022
PM 19320162
ER
PT J
AU Sioshansi, R
Denholm, P
AF Sioshansi, Ramteen
Denholm, Paul
TI Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and
Vehicle-to-Grid Services
SO ENVIRONMENTAL SCIENCE & TECHNOLOGY
LA English
DT Article
ID SYSTEMS
AB Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEV fleet of LIP to 15% of light-duty vehicles can actually decrease net generator NO, emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO(2), SO(2), and NO(x) emissions can be reduced even further.
C1 [Sioshansi, Ramteen; Denholm, Paul] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Sioshansi, R (reprint author), Ohio State Univ, 1971 Neil Ave, Columbus, OH 43210 USA.
EM sioshansi.1@osu.edu; paul_denholm@nrel.gov
FU U.S. Department of Energy [DE-AC36-99GO10337]
FX This work was supported by the U.S. Department of Energy under Contract
DE-AC36-99GO10337 with the National Renewable Energy Laboratory. Any
opinions and conclusions expressed in this paper are those of the
authors and do not necessarily represent those of the Department of
Energy or the National Renewable Energy Laboratory. We thank Tony Markel
and Armin Sorooshian for helpful suggestions and conversations. Tony
Grasso of the Public Utility Commission of Texas provided invaluable
assistance in gathering ERCOT market and system data.
NR 27
TC 101
Z9 102
U1 5
U2 37
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0013-936X
J9 ENVIRON SCI TECHNOL
JI Environ. Sci. Technol.
PD FEB 15
PY 2009
VL 43
IS 4
BP 1199
EP 1204
DI 10.1021/es802324j
PG 6
WC Engineering, Environmental; Environmental Sciences
SC Engineering; Environmental Sciences & Ecology
GA 406MC
UT WOS:000263298600040
PM 19320180
ER
PT J
AU Lee, JM
Martin, RR
AF Lee, Jungmin
Martin, Robert R.
TI Influence of grapevine leafroll associated viruses (GLRaV-2 and-3) on
the fruit composition of Oregon Vitis vinifera L. cv. Pinot noir:
Phenolics
SO FOOD CHEMISTRY
LA English
DT Article
DE Grape quality; Phenolics; Biotic stress
ID ANTHOCYANINS; BERRY; POLYPHENOLS; CULTIVARS; INFECTION; COMPLEX; YIELD;
WINES
AB Some of the 10 known grapevine leafroll associated viruses (GLRaVs) have negative impacts upon vine productivity and grape quality, though these negative influences are dependent on factors Such as GLRaV strain, cultivar, clone, rootstock, and vine age. This is the first study to report on GLRaV-2 and GLRaV-3 infected vines, with regard to phenolic compounds, and other fruit maturity indices, of 'Pinot noir' grapes, compared to berries from adjacent vines free of GLRaVs (same vineyards). Three different rootstock/scion combinations were included in this study. Clusters were collected for two growing seasons from commercial vineyards in the Willamette Valley of Oregon, and each vine sampled was tested for GLRaV-1, -2, -3 and Rupestris stem pitting-associated virus (RSPaV). All sampled vines were infected with RSPaV. Grapevine leafroll associated virus-infected vines tested positive for GLRaV-2 or GLRaV-3. Overall, fruit infected with GLRaV-2 and -3 had reduced percent soluble solids, decreased individual and total anthocyanins, and increased skin and pulp weight for all three 'Pinot noir' rootstock/sci on combinations examined. Vitis riparia rootstock/'Pinot noir' clone 114 scion combination appeared to be the most sensitive to GLRaV-3 infection, having significant reduction of all five anthocyanins, total phenolics, and total tannins, with an increased cluster weight and 100-berry weight. No clear trends were observed in the polyphenolics analysed. Published by Elsevier Ltd.
C1 [Lee, Jungmin] PWA, USDA ARS, Hort Crops Resl Unit, Parma, ID 83660 USA.
[Martin, Robert R.] USDA ARS, Hort Crops Res Unit, Corvallis, OR 97330 USA.
RP Lee, JM (reprint author), PWA, USDA ARS, Hort Crops Resl Unit, 29603 U 1 Lane, Parma, ID 83660 USA.
EM jungmin.lee@ars.usda.gov; bob.martin@ars.usda.gov
RI Lee, Jungmin/G-6555-2013
OI Lee, Jungmin/0000-0002-8660-9444
NR 28
TC 30
Z9 31
U1 2
U2 21
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0308-8146
J9 FOOD CHEM
JI Food Chem.
PD FEB 15
PY 2009
VL 112
IS 4
BP 889
EP 896
DI 10.1016/j.foodchem.2008.06.065
PG 8
WC Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics
SC Chemistry; Food Science & Technology; Nutrition & Dietetics
GA 358CG
UT WOS:000259893600019
ER
PT J
AU Bargar, JR
Fuller, CC
Marcus, MA
Brearley, AJ
De la Rosa, MP
Webb, SM
Caldwell, WA
AF Bargar, John R.
Fuller, Christopher C.
Marcus, Matthew A.
Brearley, Adrian J.
De la Rosa, M. Perez
Webb, Samuel M.
Caldwell, Wendel A.
TI Structural characterization of terrestrial microbial Mn oxides from
Pinal Creek, AZ
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID BIOGENIC MANGANESE OXIDES; MARINE BACILLUS SP.; X-RAY-FLUORESCENCE;
STRAIN SG-1; HEXAGONAL-BIRNESSITE; NATURAL SPECIATION;
PSEUDOMONAS-PUTIDA; MN(II) OXIDATION; HYPORHEIC ZONE; ARIZONA
AB The microbial catalysis of Mn(II) oxidation is believed to be a dominant source of abundant sorption- and redox-active Mn oxides in marine, freshwater, and subsurface aquatic environments. In spite of their importance, environmental oxides of known biogenic origin have generally not been characterized in detail from a structural perspective. Hyporheic zone Mn oxide grain coatings at Pinal Creek, Arizona, a metals-contaminated stream, have been identified as being dominantly microbial in origin and are well studied from bulk chemistry and contaminant hydrology perspectives. This site thus presents an excellent opportunity to study the structures of terrestrial microbial Mn oxides in detail. XRD and EXAFS measurements performed in this study indicate that the hydrated Pinal Creek Mn oxide grain coatings are layer-type Mn oxides with dominantly hexagonal or pseudo-hexagonal layer symmetry. XRD and TEM measurements suggest the oxides to be nanoparticulate plates with average dimensions on the order of 11 nm thick x 35 nm diameter, but with individual particles exhibiting thickness as small as a single layer and sheets as wide as 500 nm. The hydrated oxides exhibit a 10-angstrom basal-plane spacing and turbostratic disorder. EXAFS analyses Suggest the oxides contain layer Mn(IV) site vacancy defects, and layer Mn(III) is inferred to be present, as deduced from Jahn Teller distortion of the local structure. The physical geometry and structural details of the coatings suggest formation within microbial biofilms. The biogenic Mn oxides are stable with respect to transformation into thermodynamically more stable phases over a time scale of at least 5 months. The nanoparticulate layered structural motif, also observed in pure culture laboratory studies, appears to be characteristic of biogenic Mn oxides and may explain the common occurrence of this mineral habit in soils and sediments. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Bargar, John R.; De la Rosa, M. Perez; Webb, Samuel M.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA.
[Fuller, Christopher C.] US Geol Survey, Div Water Resources, Menlo Pk, CA 94025 USA.
[Marcus, Matthew A.; Caldwell, Wendel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Brearley, Adrian J.] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA.
RP Bargar, JR (reprint author), Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd,Bldg 137,MS 69, Menlo Pk, CA 94025 USA.
EM bargar@slac.stanford.edu
RI Webb, Samuel/D-4778-2009;
OI Webb, Samuel/0000-0003-1188-0464; Fuller,
Christopher/0000-0002-2354-8074
FU Department of Energy, Office of Basic Energy Sciences
[DE-AC03-76SF00515, DE-AC02-05CH11231]; NSF-CRAEMS [CHE-0089208]; US
Geological Survey Toxics Substance Hydrology Research Program; National
Institutes of Health; National Center for Research Resources, Biomedical
Technology Program; NASA; National Science Foundation through the
National Nanoscience Infrastructure Network (NNIN); state of New Mexico
FX We thank Apurva Mehta, Brian Valek, and Nobmichi Tamura for their
helpful discussions and support regarding microdiffraction measurements
and data analysis. We thank A. Condon and M. Conklin for providing
samples from sites SIQ and AK-1. Discussions with and field support from
Jud Harvey, M. Conklin and P. O'Day and their students were beneficial
throughout this study. We also thank D. Kent, Y. Arai, and three
anonymous reviewers for their many helpful comments. This work was
supported by the Department of Energy, Office of Basic Energy Sciences
(SLAC Contract DE-AC03-76SF00515), by NSF-CRAEMS Grant to Bargar
(CHE-0089208), and by the US Geological Survey Toxics Substance
Hydrology Research Program to Fuller. Portions of this research were
carried out at the Stanford Synchrotron Radiation Lightsource a national
user facility operated by Stanford University on behalf of the U.S.
Department of Energy, Office of Basic Energy Sciences. The SSRL
Structural Molecular Biology Program is supported by the Department of
Energy, Office of Biological and Environmental Research, and by the
National Institutes of Health, National Center for Research Resources,
Biomedical Technology Program. The operations of the Advanced Light
Source at the Lawrence Berkeley National Laboratory are supported by the
U.S. Department of Energy, Office of Basic Energy Sciences, under
Contract No. DE-AC02-05CH11231. Transmission electron microscopy
performed at the University of New Mexico was carried out in the
Electron Microbeam Analysis Laboratory, a facility supported by funds
from NASA, National Science Foundation through the National Nanoscience
Infrastructure Network (NNIN) and the state of New Mexico. Any use of
trade, product, or firm names in this publication is for descriptive
purposes only and does not imply endorsement by the U.S. Government.
NR 60
TC 56
Z9 60
U1 1
U2 31
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD FEB 15
PY 2009
VL 73
IS 4
BP 889
EP 910
DI 10.1016/j.gca.2008.10.036
PG 22
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 411FE
UT WOS:000263633300002
ER
PT J
AU Bose, S
Hochella, MF
Gorby, YA
Kennedy, DW
McCready, DE
Madden, AS
Lower, BH
AF Bose, Saumyaditya
Hochella, Michael F., Jr.
Gorby, Yuri A.
Kennedy, David W.
McCready, David E.
Madden, Andrew S.
Lower, Brian H.
TI Bioreduction of hematite nanoparticles by the dissimilatory iron
reducing bacterium Shewanella oneidensis MR-1
SO GEOCHIMICA ET COSMOCHIMICA ACTA
LA English
DT Article
ID EXTRACELLULAR ELECTRON-TRANSFER; CRYSTALLINE IRON(III) OXIDES; MICROBIAL
REDUCTION; FERROUS IRON; FERRIC IRON; GEOBACTER-SULFURREDUCENS;
PUTREFACIENS MR-1; AQUATIC SEDIMENTS; MINERAL FORMATION; METAL REDUCTION
AB We examined the reduction of different size hematite (alpha-Fe(2)O(3)) nanoparticles (average diameter of 11, 12, 30, 43, and 99 nm) by the dissimilatory iron reducing bacteria (DIRB), Shewanella oneidensis MR-1, to determine how S. oneidensis MR-1 may utilize these environmentally relevant solid-phase electron acceptors. The surface-area-normalized-bacterial Fe(III) reduction rate for the larger nanoparticles (99 nm) was one order of magnitude higher than the rate observed for the smallest nanoparticles (11 nm). The Fe(III) reduction rates for the 12, 30, and 43 nm nanoparticles fell between these two extremes. Whole-cell TEM images showed that the mode of Fe(2)O(3) nanoparticle attachment to bacterial cells was different for the aggregated, pseudo-hexagonal/irregular and platey 11, 12, and 99 nm nanoparticles compared to the non-aggregated 30 and 43 nm rhombohedral nanoparticles. Due to differences in aggregation, the 11, 12, and 99 nm nanoparticles exhibited less cell contact and less cell coverage than did the 30 and 43 nm nanoparticles. We hypothesize that S. oneidensis MR-1 employs both indirect and direct mechanisms of electron transfer to Fe(III)-oxide nanoparticles and that the bioreduction mechanisms employed and Fe(III) reduction rates depend on the nanoparticles' aggregation state, size, shape and exposed crystal faces. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Lower, Brian H.] Ohio State Univ, Sch Environm & Nat Resources, Columbus, OH 43210 USA.
[Bose, Saumyaditya; Hochella, Michael F., Jr.] Virginia Tech, Dept Geosci, Ctr NanoBioEarth, Blacksburg, VA 24061 USA.
[Gorby, Yuri A.] J Craig Venter Inst, La Jolla, CA 92037 USA.
[Kennedy, David W.; McCready, David E.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Madden, Andrew S.] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA.
RP Lower, BH (reprint author), Ohio State Univ, Sch Environm & Nat Resources, Columbus, OH 43210 USA.
EM lower.30@osu.edu
OI Kennedy, David/0000-0003-0763-501X
FU US Department of Energy's (DOE) Office of Biological and Environmental
Research (OBER); Battelle Memorial Institute [DE-AC05-76RL01830]; DOE
Office of Basic Energy Sciences (OBES) Geosciences Research Program;
DOE-OBES [DE-FG02-06ER15786]; Mineralogical Society of America; Virginia
Tech Graduate Students Association
FX A portion of this research was performed as part of an EMSL Scientific
Grand Challenge project at the W.R. Wiley Environmental Molecular
Sciences Laboratory, a national scientific user facility sponsored by
the US Department of Energy's (DOE) Office of Biological and
Environmental Research (OBER) and located at Pacific Northwest National
Laboratory (PNNL). PNNL is operated for the DOE by Battelle Memorial
Institute under Contract DE-AC05-76RL01830. M.F.H. and B.H.L.
acknowledge the DOE Office of Basic Energy Sciences (OBES) Geosciences
Research Program. M.F.H. recognizes DOE-OBES Grant DE-FG02-06ER15786.
S.B. gratefully acknowledges Stephen McCartney (VT) and Alice Dohnalkova
(PNNL) for help with TEM and support from the Mineralogical Society of
America and the Virginia Tech Graduate Students Association. We thank J.
Fredrickson, D. Rimstidt, and J. Zachara for their insightful comments
regarding the scope and focus of this paper. The comments and
suggestions of Johnson R. Hass, Benjamin Gilbert and two anonymous
reviewers greatly helped improve the original manuscript and are
gratefully acknowledged.
NR 85
TC 71
Z9 73
U1 10
U2 76
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0016-7037
J9 GEOCHIM COSMOCHIM AC
JI Geochim. Cosmochim. Acta
PD FEB 15
PY 2009
VL 73
IS 4
BP 962
EP 976
DI 10.1016/j.gca.2008.11.031
PG 15
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 411FE
UT WOS:000263633300006
ER
PT J
AU Armstrong, A
Thaler, G
Koleske, DD
AF Armstrong, A.
Thaler, G.
Koleske, D. D.
TI Deep level investigation of p-type GaN using a simple photocurrent
technique
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE aluminium compounds; deep levels; doping profiles; Franck-Condon
factors; gallium compounds; III-V semiconductors; interface states;
photoelectron spectra; semiconductor-metal boundaries; time resolved
spectra; valence bands; wide band gap semiconductors
ID MOLECULAR-BEAM EPITAXY; MG-DOPED GAN; SPECTROSCOPY; SCHOTTKY;
SEMICONDUCTORS; ELECTRONS; CENTERS; DIODES; GAAS
AB The deep level spectrum of p-type GaN was investigated using time-resolved photocurrent spectroscopy. The spectral dependence of the optical cross section for hole photoemission from a deep level was determined from the initial value of the photocurrent transient. Unlike other implementations of photocurrent, the present method does not require multiple excitation sources or determination of the optical emission rate. A deep level was observed at E(v)+1.84 eV, where E(v) is the valence band maximum, with a Franck-Condon shift of 0.25 eV. A bias-dependent component of the photocurrent, possibly due to metal-semiconductor interface states, complicated the steady-state response but did not affect the measured spectrum for the E(v)+1.84 eV deep level. This photocurrent method is expected to be readily extended to materials with very deep dopants, such as p-type AlGaN, for which many other deep level spectroscopy techniques are unsuited.
C1 [Armstrong, A.; Thaler, G.; Koleske, D. D.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Armstrong, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.
EM aarmstr@sandia.gov
FU Division of Materials Science and Engineering; Office of Basic Energy
Sciences; U.S. Department of Energy
FX The authors thank K. Fulmer and A. F. Fisher for device processing and
R. M. Fleming for helpful discussions. This work was supported by the
Division of Materials Science and Engineering, Office of Basic Energy
Sciences, U.S. Department of Energy. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Co., for the U. S.
Department of Energy, National Nuclear Security Administration, under
Contract No. DE-AC04-94AL85000.
NR 26
TC 7
Z9 7
U1 2
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2009
VL 105
IS 4
AR 043712
DI 10.1063/1.3081650
PG 5
WC Physics, Applied
SC Physics
GA 413OV
UT WOS:000263803300047
ER
PT J
AU Bizarri, G
Moses, WW
Singh, J
Vasil'ev, AN
Williams, RT
AF Bizarri, G.
Moses, W. W.
Singh, J.
Vasil'ev, A. N.
Williams, R. T.
TI An analytical model of nonproportional scintillator light yield in terms
of recombination rates
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE scintillation counters; time resolved spectroscopy
ID MEAN FREE PATHS; NON-PROPORTIONALITY; CHARGED PARTICLES; LUMINESCENCE;
RADIATION; CRYSTALS; ENERGY; DECAY; SEMICONDUCTORS; EXCITATION
AB Analytical expressions for the local light yield as a function of the local deposited energy (-dE/dx) and total scintillation yield integrated over the track of an electron of initial energy E are derived from radiative and/or nonradiative rates of first through third order in density of electronic excitations. The model is formulated in terms of rate constants, some of which can be determined independently from time-resolved spectroscopy and others estimated from measured light yield efficiency as a constraint assumed to apply in each kinetic order. The rates and parameters are used in the theory to calculate scintillation yield versus primary electron energy for comparison to published experimental results on four scintillators. Influence of the track radius on the yield is also discussed. Results are found to be qualitatively consistent with the observed scintillation light yield. The theory can be applied to any scintillator if the rates of the radiative and nonradiative processes are known.
C1 [Bizarri, G.; Moses, W. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Singh, J.] Charles Darwin Univ, Sch Engn & IT, Darwin, NT 0909, Australia.
[Vasil'ev, A. N.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow 119991, Russia.
[Williams, R. T.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA.
RP Bizarri, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM jai.singh@cdu.edu.au
RI Vasil'ev, Andrey/E-4350-2012
OI Vasil'ev, Andrey/0000-0002-7493-7619
FU National Nuclear Security Administration; Office of Defense Nuclear
Nonproliferation; Office of Nuclear Nonproliferation Research and
Engineering [NA-22]; U.S. Department of Energy [DE-AC03-76SF00098, NNSA
LB06-316-PD05/NN2001000]
FX This work was supported by the National Nuclear Security Administration,
Office of Defense Nuclear Nonproliferation, Office of Nuclear
Nonproliferation Research and Engineering (NA-22) of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098 and Grant No. NNSA
LB06-316-PD05/NN2001000. We gratefully acknowledge the technical
assistance from Ms Francesca Morlino in preparing the manuscript. We
would like to thank Steve Payne of Lawrence Livermore National
Laboratory for sharing his own comprehensive framework prior to
publication in terms of describing nonproportionality of scintillators.
NR 39
TC 62
Z9 62
U1 0
U2 9
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2009
VL 105
IS 4
AR 044507
DI 10.1063/1.3081651
PG 15
WC Physics, Applied
SC Physics
GA 413OV
UT WOS:000263803300086
ER
PT J
AU Swadener, JG
Picraux, ST
AF Swadener, J. G.
Picraux, S. T.
TI Strain distributions and electronic property modifications in Si/Ge
axial nanowire heterostructures
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE deformation; elemental semiconductors; energy gap; germanium; interface
states; interface structure; molecular dynamics method; nanowires;
semiconductor growth; semiconductor heterojunctions; semiconductor
quantum wires; silicon
ID LAYER HETEROSTRUCTURES; SILICON NANOSTRUCTURES; MOLECULAR-DYNAMICS;
ELASTIC-CONSTANTS; UNIAXIAL-STRESS; SOLID-SOLUTIONS; SI NANOWIRES; GE;
GERMANIUM; GROWTH
AB Molecular dynamics simulations were carried out for Si/Ge axial nanowire heterostructures using modified effective atom method (MEAM) potentials. A Si-Ge MEAM interatomic cross potential was developed based on available experimental data and was used for these studies. The atomic distortions and strain distributions near the Si/Ge interfaces are predicted for nanowires with their axes oriented along the [111] direction. The cases of 10 and 25 nm diameter Si/Ge biwires and of 25 nm diameter Si/Ge/Si axial heterostructures with the Ge disk 1 nm thick were studied. Substantial distortions in the height of the atoms adjacent to the interface were found for the biwires but not for the Ge disks. Strains as high as 3.5% were found for the Ge disk and values of 2%-2.5% were found at the Si and Ge interfacial layers in the biwires. Deformation potential theory was used to estimate the influence of the strains on the band gap, and reductions in band gap to as small as 40% of bulk values are predicted for the Ge disks. The localized regions of increased strain and resulting energy minima were also found within the Si/Ge biwire interfaces with the larger effects on the Ge side of the interface. The regions of strain maxima near and within the interfaces are anticipated to be useful for tailoring band gaps and producing quantum confinement of carriers. These results suggest that nanowire heterostructures provide greater design flexibility in band structure modification than is possible with planar layer growth.
C1 [Swadener, J. G.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Swadener, JG (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA.
EM swadener@lanl.gov
OI Swadener, John G/0000-0001-5493-3461
FU Los Alamos National Laboratory; Center for Integrated Nanotechnologies;
U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC52-06NA25396]
FX This research was funded by the Laboratory Directed Research and
Development Program at Los Alamos National Laboratory. This work was
performed, in part, at the Center for Integrated Nanotechnologies, a
U.S. Department of Energy, Office of Basic Energy Sciences user facility
(Contract No. DE-AC52-06NA25396).
NR 48
TC 23
Z9 23
U1 3
U2 28
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2009
VL 105
IS 4
AR 044310
DI 10.1063/1.3077293
PG 9
WC Physics, Applied
SC Physics
GA 413OV
UT WOS:000263803300076
ER
PT J
AU Yushkov, GY
Anders, A
AF Yushkov, Georgy Yu.
Anders, Andre
TI Physical limits for high ion charge states in pulsed discharges in
vacuum
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
DE charge exchange; discharges (electric)
ID MAGNETIC-FIELD; ARC PLASMAS; DISTRIBUTIONS; PRESSURE
AB Short-pulse high-current discharges in vacuum were investigated with the goal to maximize the ion charge state number. In a direct extension of previous work [G. Y. Yushkov and A. Anders, Appl. Phys. Lett. 92, 041502 (2008)], the role of pulse length, rate of current rise, and current amplitude was studied. For all experimental conditions, the usable (extractable) mean ion charge state could not be pushed beyond 7+. Instead, a maximum of the mean ion charge state (about 6+ to 7+ for most cathode materials) was found for a power of 2-3 MW dissipated in the discharge gap. The maximum is the result of two opposing processes that occur when the power is increased: (i) the formation of higher ion charge states and (ii) a greater production of neutrals (both metal and nonmetal), which reduces the charge state via charge exchange collisions.
C1 [Yushkov, Georgy Yu.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia.
[Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Yushkov, GY (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia.
EM aanders@lbl.gov
RI Anders, Andre/B-8580-2009; Yushkov, Georgy/O-8024-2015
OI Anders, Andre/0000-0002-5313-6505; Yushkov, Georgy/0000-0002-7615-6058
FU U. S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley
National Laboratory.
FX This work was supported by the U. S. Department of Energy, Initiatives
for Proliferation Prevention, under Contract No. DE-AC02-05CH11231 with
the Lawrence Berkeley National Laboratory.
NR 13
TC 8
Z9 9
U1 1
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-8979
EI 1089-7550
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2009
VL 105
IS 4
AR 043303
DI 10.1063/1.3079501
PG 5
WC Physics, Applied
SC Physics
GA 413OV
UT WOS:000263803300010
ER
PT J
AU Veith, GM
Lupini, AR
Rashkeev, S
Pennycook, SJ
Mullins, DR
Schwartz, V
Bridges, CA
Dudney, NJ
AF Veith, Gabriel M.
Lupini, Andrew R.
Rashkeev, Sergey
Pennycook, Stephen J.
Mullins, David R.
Schwartz, Viviane
Bridges, Craig A.
Dudney, Nancy J.
TI Thermal stability and catalytic activity of gold nanoparticles supported
on silica
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE Gold catalyst; Silica; Sputtering; Thermal stability; Tammann
temperature; Titania; Gold reference catalyst; DFT calculations;
Gold-support interaction
ID TEMPERATURE CO OXIDATION; CHEMICAL-VAPOR-DEPOSITION; MESOPOROUS SILICA;
AU/TIO2 CATALYST; METAL-CLUSTERS; AU CATALYSTS; PARTICLES; SIO2;
ADSORPTION; SURFACE
AB 2.5 nm gold nanoparticles were grown on a fumed silica support, using the physical vapor deposition technique of magnetron sputtering, that are thermally stable when annealed in an oxygen containing environment up to at least 500 degrees C. Traditional Au/TiO(2) catalysts rapidly sinter to form large 13.9 nm gold clusters under these annealing conditions. This surprising stability of Au/SiO(2) is attributed to the absence of residual impurities (ensured by the halide-free production method) and a strong bond between gold and defects at the silica surface (about 3 eV per bond) estimated from density functional theory (DFT) calculations. The Au/SiO(2) catalysts are less active for CO oxidation than the prototypical Au/TiO(2) catalysts, however they can be regenerated far more easily, allowing the activity of a catalyst to be fully recovered after deactivation. (C) 2008 Elsevier Inc. All rights reserved.
C1 [Veith, Gabriel M.; Lupini, Andrew R.; Rashkeev, Sergey; Pennycook, Stephen J.; Dudney, Nancy J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Rashkeev, Sergey] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA.
[Mullins, David R.; Schwartz, Viviane; Bridges, Craig A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Schwartz, Viviane] Oak Ridge Natl Lab, Ctr Nanophase, Div Mat Sci, Oak Ridge, TN 37831 USA.
RP Veith, GM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.
EM veithgm@ornl.gov
RI Dudney, Nancy/I-6361-2016
OI Dudney, Nancy/0000-0001-7729-6178
FU DoD High Performance Computing Modernization Program at the Maui High
Performance Computer Center (MHPCC); Naval Oceanographic Office (NAVO);
U.S. Army Engineer Research and Development Center (ERDC); Division of
Scientific User Facilities; U.S. Department of Energy; Office of
Science; Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S.
Department of Energy's Office of Basic Energy Sciences; Division of
Materials Sciences and Engineering; Division of Chemical Sciences
FX The authors thank Professor Craig Barnes and Dr. Jason Clarke
(University of Tennessee Chemistry Department) for collecting and
analyzing the 29Si-NMR data, Ben jang (University Texas,
Commerce) and Wenfu Yan (ORNL) for assistance with some catalytic
measurements as well as Steven Overbury (ORNL) and Sokrates Pantelides
(Vanderbilt) for many helpful discussions. The calculation portion of
this work is supported in part by a grant of computer time from the DoD
High Performance Computing Modernization Program at the Maui High
Performance Computer Center (MHPCC), Naval Oceanographic Office (NAVO)
and the U.S. Army Engineer Research and Development Center (ERDC). A
portion of this research (Hitachi STEM) was conducted at the Center for
Nanophase Materials Sciences, which is sponsored at Oak Ridge National
Laboratory by the Division of Scientific User Facilities, U.S.
Department of Energy. Use of the National Synchrotron Light Source,
Brookhaven National Laboratory, was supported by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-98CH10886. This research was also sponsored by the
U.S. Department of Energy's Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering (G.M.V., A.R.L., SJ.P., C.A.B.,
N.J.D.), and the Division of Chemical Sciences (D.R.M., V.S.).
NR 71
TC 86
Z9 86
U1 12
U2 79
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
J9 J CATAL
JI J. Catal.
PD FEB 15
PY 2009
VL 262
IS 1
BP 92
EP 101
DI 10.1016/j.jcat.2008.12.005
PG 10
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 418BU
UT WOS:000264123000011
ER
PT J
AU Guerrero, S
Miller, JT
Kropf, AJ
Wolf, EE
AF Guerrero, S.
Miller, J. T.
Kropf, A. J.
Wolf, E. E.
TI In situ EXAFS and FTIR studies of the promotion behavior of
Pt-Nb2O5/Al2O3 catalysts during the preferential oxidation of CO
SO JOURNAL OF CATALYSIS
LA English
DT Article
DE PROX reaction; Pt supported catalyst; Nb promoter
ID RAY-ABSORPTION-SPECTROSCOPY; METAL-SUPPORT INTERACTIONS; NIOBIUM OXIDE
CATALYSTS; CARBON-MONOXIDE; HYDROGEN SPILLOVER; ACIDIC PROPERTIES;
SURFACE; ALUMINA; PT/GAMMA-AL2O3; ADSORPTION
AB The promotional effect of Nb to Pt/Al2O3 Supported catalysts during the preferential oxidation of Co (PROX) was studied using various spectroscopic techniques. Addition of small amounts of Nb (<5%) stabilizes 40% of the loaded platinum as Pt2+, which remains oxidized even after reduction treatments. This Nb-promoted catalyst is very active and selective for the PROX reaction. On Pt/Nb2O5 and at high Nb loading for the Pt/Nb/Al2O3 catalysts, the selectivity to CO2 decreases and the selectivity for H-2 oxidation increases opposite to the selectivity observed at low Nb loadings. The increase CO2 selectivity due to Nb promotion is ascribed to the inhibition of CO at low temperature which decreases hydrogen oxidation. Operando FTIR results indicate the presence of adsorbed CO as well as carbonates, bicarbonates and formates during the PROX reaction. An IR band at 968 cm(-1) indicates the presence of Nb=O moieties at low Nb loadings. At higher Nb loadings, IR suggests the formation of three-dimensional Nb2O5 aggregates. The surface of the Nb containing catalysts is complex containing reduced and oxidized Pt which is modified by NbOx species either surrounding the Pt crystallites or decorating them. (C) 2008 Published by Elsevier Inc.
C1 [Guerrero, S.; Wolf, E. E.] Univ Notre Dame, Dept Chem Engn, Notre Dame, IN 46556 USA.
[Miller, J. T.] BP Res Ctr, Naperville, IL 60563 USA.
[Miller, J. T.; Kropf, A. J.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA.
RP Wolf, EE (reprint author), Univ Notre Dame, Dept Chem Engn, Notre Dame, IN 46556 USA.
EM ewolf@nd.edu
RI ID, MRCAT/G-7586-2011
FU Companhia Brasileira de Metalurgia e Mineracao CBMM; Bayer Postdoctoral
Fellowship in Environmental Chemistry; NSF [CTS 0138070]; US Department
of Energy; Office of Basic Energy Sciences; Office of Science
(DOE-BES-SC) [W-31-109-Eng-38]; DOE-BES-SC [DE-FG02-94ER45525,
DE-FG02-96ER45589]
FX We gratefully acknowledge partial support of this work by a grant from
Companhia Brasileira de Metalurgia e Mineracao CBMM; a Bayer
Postdoctoral Fellowship in Environmental Chemistry through the Center
for Environmental Science and Technology at the University of Notre
Dame. and NSF Grant CTS 0138070. Use of the Advanced Photon Source was
supported by the US Department of Energy, Office of Basic Energy
Sciences, Office of Science (DOE-BES-SC), under Contract No
W-31-109-Eng-38. The MRCAT is funded by the member institutions and
DOE-BES-SC under contracts DE-FG02-94ER45525 and DE-FG02-96ER45589.
NR 55
TC 23
Z9 24
U1 4
U2 53
PU ACADEMIC PRESS INC ELSEVIER SCIENCE
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0021-9517
J9 J CATAL
JI J. Catal.
PD FEB 15
PY 2009
VL 262
IS 1
BP 102
EP 110
DI 10.1016/j.jcat.2008.12.008
PG 9
WC Chemistry, Physical; Engineering, Chemical
SC Chemistry; Engineering
GA 418BU
UT WOS:000264123000012
ER
PT J
AU Antonio, MR
Chiang, MH
Seifert, S
Tiede, DM
Thiyagarajan, P
AF Antonio, Mark R.
Chiang, Ming-Hsi
Seifert, Soenke
Tiede, David M.
Thiyagarajan, Pappannan
TI In situ measurement of the Preyssler polyoxometalate morphology upon
electrochemical reduction: A redox system with Born electrostatic ion
solvation behavior
SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
LA English
DT Review
DE Bulk electrolysis; Heteropolyanions; Polyoxometalate; Preyssler anion;
Radius of gyration (R(g)); Small-angle X-ray scattering (SAXS)
ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; CRYSTAL-STRUCTURES; HETEROPOLY
BLUES; MAGNETIC-PROPERTIES; STRUCTURAL-CHARACTERIZATION;
ELECTRONIC-PROPERTIES; AQUEOUS-SOLUTION; 6-ELECTRON-REDUCED FORM;
ACETONITRILE SOLVATE
AB SAXS (small-angle X-ray scattering) and controlled-potential bulk electrolysis were combined to probe the radius of gyration (R(g)) of the molecular polyoxometalate (POM) Cluster known as the Preyssler anion, [YP(5)W(30)O(110)](n-) dissolved in an aqueous mineral acid electrolyte, as a function of its charge, n. The experimentally-determined R. for the oxidized anion (n = 12) and its 2-, 4- and 10-electron reduced forms following the course of exhaustive electrolyses with a reticulated vitreous carbon electrode polarized at -0.145, -0.255. and -0,555V vs. Ag/AgCl, respectively, is independent of reduction(and charge) under the solution conditions employed here. Within the limits of resolution and precision of our in situ measurements and analyses, +/- 0.2 angstrom, we have found that the R(g) is 5.8-6.0 angstrom, which is in agreement with R(g)s calculated from the atomic coordinates of previously reported crystallographic structures for the solid-state salts of the fully-oxidized cluster, [Y(3+)P(5)W(30)O(110)](12) (abbreviated [YPA](12)). The equivalence indicates that any modification of the P-W-O structure that may arise upon reduction of the Preyssler anion is too small to affect the R(g), Moreover, the identical, experimentally-determined R(g)s (5.9 +/- 0.1 angstrom) for the oxidized solution anions of [La(3+)PA](12), [Ca(2+)PA](13), [Sr(2+)PA](13-), and [Na(+)PA](14-) further demonstrate that the size of metal-ion-exchanged Preyssler anions, [M(n+)PA](n-15), is independent of the charge, n, on M and, hence, the overall cluster charge, n-15. This provides an ideal scenario with which to test the Born model of electrostatic ion solvation, wherein the electrochemical potential difference, Delta E(1)(0), between the first reduction couples of [M(n+)PA](11-15) anions that differ by a unit charge (for M(n) (-)Na(+), Ca(2+), Sr(2+), Y(3+), La(3+), Th(4+)) was used in a derivation of the original Born equation to calculate their Born radius, r. The result, 6.0(2) angstrom, is equivalent to the effective radius calculated for a charged ellipsoid in a dielectric medium (r(eff)infinity 5.9 angstrom), thereby providing validation of the Born model. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Antonio, Mark R.; Chiang, Ming-Hsi; Tiede, David M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Seifert, Soenke; Thiyagarajan, Pappannan] Argonne Natl Lab, Adv Photon Source Div, Argonne, IL 60439 USA.
RP Antonio, MR (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave,Bldg 200, Argonne, IL 60439 USA.
EM mantonio@anl.gov
RI Chiang, Ming-Hsi/E-2044-2015;
OI Chiang, Ming-Hsi/0000-0002-7632-9369; Antonio, Mark/0000-0002-1208-4534
FU US Department of Energy, Office of Basic Energy Science, Division of
Chemical Sciences, Biosciences and Geosciences [DE-AC02-06CH11357]
FX We thank Dr. L. Soderholm (Argonne) for assistance as well as Scott R.
Curtis Uensen Fabricating Engineers, Inc.) for the engineering drawings,
and Peter Boyd (Boyd Technology, Inc.) for SAXS cell design and
fabrication. This work benefited from the use of the 12-BM facility at
the APS and is supported by the US Department of Energy, Office of Basic
Energy Science, Division of Chemical Sciences, Biosciences and
Geosciences, under Contract No. DE-AC02-06CH11357.
NR 114
TC 8
Z9 8
U1 3
U2 27
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 1572-6657
J9 J ELECTROANAL CHEM
JI J. Electroanal. Chem.
PD FEB 15
PY 2009
VL 626
IS 1-2
BP 103
EP 110
DI 10.1016/j.jelechem.2008.11.009
PG 8
WC Chemistry, Analytical; Electrochemistry
SC Chemistry; Electrochemistry
GA 412ZU
UT WOS:000263763500015
ER
PT J
AU Hrma, P
AF Hrma, Pavel
TI Effect of heating rate on glass foaming: Transition to bulk foam
SO JOURNAL OF NON-CRYSTALLINE SOLIDS
LA English
DT Article
DE Diffusion and transport; Transport properties - liquids; Glass-melting;
Bubbles; Oxide glasses; Alummosilicates; Borosilicates;
Soda-lime-silica; Viscosity; Water in glass
ID SULFATE DECOMPOSITION; MELTS; MODEL; THICKNESS
AB Glass fining has an undesirable side effect: glass foaming. In a recent experimental study, the foam volume responded dramatically when the rate of temperature-increase varied frorn 5 to 15 degrees C/min. This observation indicates that an enhanced temperature-increase rate (a natural consequence of the increased processing rate experienced as a result of the transition to oxy-fuel firing) may exert a substantial influence on glass foaming in advanced glass-melting furnaces. This paper attributes this effect to the change of mode of foam formation as a response to an increased rate of heating. (C) 2008 Elsevier B.V. All rights reserved.
C1 Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Hrma, P (reprint author), Pacific NW Natl Lab, 350 Hill St, Richland, WA 99352 USA.
EM pavel.hrma@pnl.gov
NR 23
TC 5
Z9 6
U1 1
U2 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3093
J9 J NON-CRYST SOLIDS
JI J. Non-Cryst. Solids
PD FEB 15
PY 2009
VL 355
IS 4-5
BP 257
EP 263
DI 10.1016/j.jnoncrysol.2008.11.007
PG 7
WC Materials Science, Ceramics; Materials Science, Multidisciplinary
SC Materials Science
GA 416DW
UT WOS:000263986600005
ER
PT J
AU Shimoda, K
Hinoki, T
Katoh, Y
Kohyama, A
AF Shimoda, Kazuya
Hinoki, Tatsuya
Katoh, Yutai
Kohyama, Akira
TI Development of the tailored SiC/SiC composites by the combined
fabrication process of ICVI and NITE methods
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID CERAMIC-MATRIX COMPOSITES; MECHANICAL-PROPERTIES; NEUTRON-IRRADIATION;
FUSION APPLICATIONS; THERMAL-PROPERTIES; MICROSTRUCTURE; INTERFACE;
DESIGN; FIBER; 2D
AB In order to improve the thermo-mechanical performances of SiC/SiC composite, process improvement and modification by the combination of nano-infiltration and transient eutectic-phase (NITE) method and chemical vapor infiltration (CVI) method were studied. Multilayered PyC/SiC fiber coating and matrix infiltration within fiber-tows were prepared with isothermal/isobaric CVI (ICVI) method and full-densification of SiC matrix was examined with NITE methods using four kinds of processing options. Applied pressure was useful for nearly-full matrix densification due to the promoting infiltration driving force of SiC nano-powder intra-fiber-tows, but simultaneously caused the sever degradation of fibers and interphase with fracture, resulting in lower strength. Increase of additives amount and additional polymer were effective ways for matrix densification by SiC nano-power infiltration intra-fiber bundles without pressure. Thermal conductivity was greatly improved with the decrease of matrix porosity. The tailoring of thermo-mechanical properties might be easily controlled by the SiC matrix porosity without process-induced fibers and interphases degradations. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Shimoda, Kazuya; Hinoki, Tatsuya; Kohyama, Akira] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan.
[Katoh, Yutai] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RP Shimoda, K (reprint author), Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan.
EM k-simd@iae.kyoto-u.ac.jp
RI Shimoda, Kazuya/A-5016-2010;
OI Katoh, Yutai/0000-0001-9494-5862
FU 'JUPITER-II' US-Department of Energy/japanese Ministry of Education,
Culture, Sports, Science and Technology (MEXT)
FX This research was partly sponsored by the 'JUPITER-II' US-Department of
Energy/japanese Ministry of Education, Culture, Sports, Science and
Technology (MEXT) collaboration for fusion material system research.
NR 27
TC 8
Z9 9
U1 0
U2 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD FEB 15
PY 2009
VL 384
IS 2
BP 103
EP 108
DI 10.1016/j.jnucmat.2008.10.025
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 411QR
UT WOS:000263665300004
ER
PT J
AU Ferriss, EDA
Helean, KB
Bryan, CR
Brady, PV
Ewing, RC
AF Ferriss, E. D. A.
Helean, K. B.
Bryan, C. R.
Brady, P. V.
Ewing, R. C.
TI UO2 corrosion in an iron waste package
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID SPENT NUCLEAR-FUEL; RAY-ABSORPTION SPECTROSCOPY; GOETHITE ALPHA-FEOOH;
ZERO-VALENT IRON; X-RAY; GREEN RUST; HEMATITE ALPHA-FE2O3; SURFACE
COMPLEXATION; REDOX REACTIONS; STEEL SURFACES
AB In order to investigate the interactions between spent nuclear fuel, corroding iron waste packages, and water under conditions likely to be relevant at the proposed repository at Yucca Mountain, six small-scale waste packages were constructed. Each package differed with respect to water input, exposure to the atmosphere and temperature. Two of the packages contained 0.19 UO2. Simulated Yucca Mountain process water (YMPW) was injected into five of the packages at a rate of 200 W per day for up to 2 years, at which point the solids were characterized with X-ray powder diffraction, scanning electron microscopy, wet chemistry and electron microprobe analysis. Fe(II) is abundant in the corrosion products that form, and the dominant crystalline product in all cases according to X-ray diffraction is magnetite or the structurally similar maghemite. Minor phases included akaganeite (beta-FeOOH) and possibly also hematite (Fe2O3), lepidocrocite (gamma-FeOOH) and green rust (Fe(II)(1-x)Fe(III)(x)(OH)(2)Y-x/n). Under these conditions, UO2 is expected to alter to the uranyl silicate uranophane (Ca[(UO2)SiO3(OH)](2)center dot 5H(2)O). Neither oxidation of the UO2 nor any oxidized (uranyl) solid was observed, suggesting that conditions were sufficiently reducing to kinetically hinder U(IV) oxidation. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Ferriss, E. D. A.; Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA.
[Helean, K. B.; Bryan, C. R.; Brady, P. V.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Ferriss, EDA (reprint author), Univ Michigan, Dept Geol Sci, 2534 CC Little,1100 N Univ Ave, Ann Arbor, MI 48109 USA.
EM beliza@umich.edu
FU Office of Science and Technology and International (OST&I) of the Office
of Civilian Radioactive Waste Management [DE-FE28-04RW12254]; [NSF EAR
99-11352]
FX The authors thank an anonymous reviewer for constructive comments that
lead to a substantial improvement in the manuscript, as well as Artur
Deditius, Carl Henderson, and Eric Essene for help with the EMPA/WDS and
SEM/EDS. EDA Ferriss is thankful for fellowships from the Office of
Civilian Radioactive Waste Management and the National Science
Foundation. This work was supported by the Office of Science and
Technology and International (OST&I) of the Office of Civilian
Radioactive Waste Management (DE-FE28-04RW12254) and NSF EAR 99-11352.
The views, opinions, findings and conclusions or recommendations of the
authors expressed herein do not necessarily state or reflect those of
DOE/OCRWM/OSTI. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for US DOE's NNSA under contract
DE-AC04-94AL85000.
NR 79
TC 9
Z9 9
U1 1
U2 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD FEB 15
PY 2009
VL 384
IS 2
BP 130
EP 139
DI 10.1016/j.jnucmat.2008.11.007
PG 10
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 411QR
UT WOS:000263665300008
ER
PT J
AU Bruhn, DF
Frank, SM
Roberto, FF
Pinhero, PJ
Johnson, SG
AF Bruhn, D. F.
Frank, S. M.
Roberto, F. F.
Pinhero, P. J.
Johnson, S. G.
TI Microbial biofilm growth on irradiated, spent nuclear fuel cladding
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Article
ID CORROSION; RADIATION; BACTERIA; ALLOYS
AB A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 10(3) Gy. This study provides evidence for the formation of biofilms on spent-fuel materials. and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Frank, S. M.; Johnson, S. G.] Idaho Natl Lab, Dept Pyroproc Technol, Idaho Falls, ID 83414 USA.
[Bruhn, D. F.; Roberto, F. F.; Pinhero, P. J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA.
[Pinhero, P. J.] Univ Missouri, Dept Chem Engn, Columbia, MO 65211 USA.
RP Frank, SM (reprint author), Idaho Natl Lab, Dept Pyroproc Technol, Mat & Fuels Complex,POB 1625, Idaho Falls, ID 83414 USA.
EM steven.frank@inl.gov; pinherop@missouri.edu
RI Frank, Steven/B-9046-2017
OI Frank, Steven/0000-0001-8259-6722
FU US Department of Energy, Nuclear Energy Research and Development Program
[DE-AC07-05ID14517]
FX Special thanks to L.L. Burke for assistance in dosimetry measurements,
C.D. Morgan and M.J. Rodriquez for hot cell work, and EX Hahn for hot
cell photography. This work was supported by the US Department of
Energy, Nuclear Energy Research and Development Program, under DOE Idaho
Operations Office Contract DE-AC07-05ID14517.
NR 31
TC 4
Z9 4
U1 1
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD FEB 15
PY 2009
VL 384
IS 2
BP 140
EP 145
DI 10.1016/j.jnucmat.2008.11.008
PG 6
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 411QR
UT WOS:000263665300009
ER
PT J
AU Zhang, JS
Klasky, M
Letellier, BC
AF Zhang, Jinsuo
Klasky, Marc
Letellier, Bruce C.
TI The aluminum chemistry and corrosion in alkaline solutions
SO JOURNAL OF NUCLEAR MATERIALS
LA English
DT Review
ID ANODIC OXIDE-FILMS; PURE ALUMINUM; ELECTROCHEMICAL-BEHAVIOR; HYDROXIDE
GELS; HYDROLYTIC REACTIONS; CAUSTIC SOLUTIONS; NITRATE SOLUTIONS; BORON
ADSORPTION; BORATE COMPLEXES; ORGANIC-LIGANDS
AB Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Zhang, Jinsuo; Klasky, Marc; Letellier, Bruce C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Zhang, JS (reprint author), Los Alamos Natl Lab, MS-K 575, Los Alamos, NM 87545 USA.
EM jszhang@lanl.gov
RI Zhang, Jinsuo/H-4717-2012
OI Zhang, Jinsuo/0000-0002-3412-7769
NR 80
TC 61
Z9 63
U1 4
U2 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-3115
J9 J NUCL MATER
JI J. Nucl. Mater.
PD FEB 15
PY 2009
VL 384
IS 2
BP 175
EP 189
DI 10.1016/j.jnucmat.2008.11.009
PG 15
WC Materials Science, Multidisciplinary; Nuclear Science & Technology
SC Materials Science; Nuclear Science & Technology
GA 411QR
UT WOS:000263665300014
ER
PT J
AU Karan, NK
Balasubramanian, M
Abraham, DP
Furczon, MM
Pradhan, DK
Saavedra-Arias, J
Thomas, R
Katiyar, RS
AF Karan, N. K.
Balasubramanian, M.
Abraham, D. P.
Furczon, M. M.
Pradhan, D. K.
Saavedra-Arias, J. J.
Thomas, R.
Katiyar, R. S.
TI Structural characteristics and electrochemical performance of layered
Li[Mn0.5-xCr2xNi0.5-x]O-2 cathode materials
SO JOURNAL OF POWER SOURCES
LA English
DT Article
DE Li-ion battery; Cathode; Electrochemistry; X-ray absorption; Edge
position
ID X-RAY-ABSORPTION; LITHIUM-ION BATTERIES; LI BATTERIES; SPECTROSCOPY;
ELECTRODES; MECHANISM; BEHAVIOR; CHARGE
AB Li[Mn0.5-xCr2xNi0.5-x]O-2 (0 < 2x < 0.2) (Mn/Ni = 1) cathode materials have been synthesized by a solution method. X-ray diffraction patterns of the as-prepared materials were fitted based on a hexagonal unit cell (alpha-NaFeO2 layer structure). The extent of Li/Ni intermixing decreased, and layering of the structure increased, with increasing Cr content. Electrochemical cycling of the oxides, at 30 degrees C in the 3-4.3 V range vs. Li/Li+, showed that the first charge capacity increased with increasing Cr content. However, maximum discharge capacity (similar to 143 mAh g(-1)) was observed for 2x = 0.05. X-ray absorption near edge spectroscopic (XANES) measurements on the K-edges of transition metals were carried out on pristine and delithiated oxides to elucidate the charge compensation mechanism during electrochemical charging. The XANES data revealed simultaneous oxidation of both Ni and Cr ions, whereas manganese remains as Mn4+ throughout, and does not participate in charge compensation during oxide delithiation. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Balasubramanian, M.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA.
[Karan, N. K.; Saavedra-Arias, J. J.; Thomas, R.; Katiyar, R. S.] Univ Puerto Rico, Dept Phys, San Juan, PR 00931 USA.
[Karan, N. K.; Saavedra-Arias, J. J.; Thomas, R.; Katiyar, R. S.] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00931 USA.
[Abraham, D. P.; Furczon, M. M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Pradhan, D. K.] Indian Inst Technol, Dept Phys & Meteorol, Kharagpur 721302, W Bengal, India.
RP Balasubramanian, M (reprint author), Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM e-mail@aps.anl.gov; rkatiyar@uprrp.edu
RI Thomas, Reji/B-2669-2010
OI Thomas, Reji/0000-0003-3588-2317
FU U.S. DOE [DE-FG02-01ER45868, DE-AC02-06CH11357]; NASA-EPSCoR
[NNX08AB12A]; NSF-EPSCoR; UPR Material Characterization Center (MCC);
NSERC
FX The financial support from DOE (DE-FG02-01ER45868) and NASA-EPSCoR
(NNX08AB12A) grant is gratefully acknowledged. One of us (N.K. Karan) is
grateful to the NSF-EPSCoR for the graduate fellowship. Continual
support from UPR Material Characterization Center (MCC) is also
acknowledged. PNC/XOR is supported by the U.S. DOE, NSERC and its member
institutions. The Advanced Photon Source is supported by the U.S.DOE,
under contract DE-AC02-06CH11357. The CSE (Argonne) authors are grateful
to Tien Duong and Dave Howell at the U.S. DOE, Office of Vehicle
Technologies and to Gary Henriksen, ATD Program Manager at Argonne.
NR 29
TC 20
Z9 21
U1 2
U2 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-7753
J9 J POWER SOURCES
JI J. Power Sources
PD FEB 15
PY 2009
VL 187
IS 2
BP 586
EP 590
DI 10.1016/j.jpowsour.2008.11.061
PG 5
WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials
Science, Multidisciplinary
SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science
GA 412AF
UT WOS:000263694900040
ER
PT J
AU Zhong, J
Meng, J
Liang, XQ
Song, L
Zhao, T
Xie, SS
Ibrahim, K
Qian, HJ
Wang, J
Guo, JH
Xu, HY
Wu, ZY
AF Zhong, Jun
Meng, Jie
Liang, Xianqing
Song, Li
Zhao, Ting
Xie, Sishen
Ibrahim, Kurash
Qian, Haijie
Wang, Jiaou
Guo, Jinghua
Xu, Haiyan
Wu, Ziyu
TI XANES study of phenylalanine and glycine adsorption on single-walled
carbon nanotubes
SO MATERIALS LETTERS
LA English
DT Article
DE Nanomaterials; Fullerenes; Surfaces; X-ray techniques
ID INNER-SHELL EXCITATION; GLYCYL-GLYCINE; SPECTROSCOPY
AB We applied X-ray absorption near edge structure (XANES) spectroscopy to investigate the adsorption of amino acids (phenylalanine and glycine) onto single-walled carbon nanotubes (SWCNTs). The adsorption of amino acids has been confirmed by XANES analysis. Moreover, a clear energy shift of the C Is to pi(c=o)* peak for glycine adsorbed on SWCNTs has been identified and assigned to the interaction between the amino acid and SWCNTs. The experimental data confirm the capability of the XANES spectroscopy as a powerful tool to characterize fine structural details at the interface of complex bio-systems. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Zhong, Jun; Liang, Xianqing; Zhao, Ting; Ibrahim, Kurash; Qian, Haijie; Wang, Jiaou; Wu, Ziyu] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
[Meng, Jie; Xu, Haiyan] Chinese Acad Med Sci, Inst Basic Med, Beijing 100005, Peoples R China.
[Meng, Jie; Xu, Haiyan] Peking Union Med Coll, Beijing 100005, Peoples R China.
[Song, Li; Xie, Sishen] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China.
[Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Wu, Ziyu] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China.
[Wu, Ziyu] Chinese Acad Sci, Theoret Phys Ctr Sci Facil, Beijing 100049, Peoples R China.
RP Wu, ZY (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China.
EM xuhy@pumc.edu.cn; wuzy@mail.ihep.ac.cn
RI Song, Li/B-1950-2010
OI Song, Li/0000-0003-0585-8519
FU Outstanding Youth Fund [10125523]; Key Important Nano-Research Project
[90206032]; National Natural Science Foundation of China and the
Knowledge Innovation Prograrn of the Chinese Academy of Sciences
[KJCX2-SWN-11]; National Natural Science Foundation of China
[NSFC30270394, NSFC90306004]
FX Z. Wu acknowledges the financial support of the Outstanding Youth Fund
(10125523), the Key Important Nano-Research Project (90206032) of the
National Natural Science Foundation of China and the Knowledge
Innovation Prograrn of the Chinese Academy of Sciences (KJCX2-SWN-11).
H. Xu acknowledges the National Natural Science Foundation of China
(Grants NSFC30270394 and NSFC90306004).
NR 16
TC 10
Z9 10
U1 0
U2 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0167-577X
J9 MATER LETT
JI Mater. Lett.
PD FEB 15
PY 2009
VL 63
IS 3-4
BP 431
EP 433
DI 10.1016/j.matlet.2008.11.013
PG 3
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 396OM
UT WOS:000262601000028
ER
PT J
AU Cerreta, EK
Frank, IJ
Gray, GT
Trujillo, CP
Korzekwa, DA
Dougherty, LM
AF Cerreta, E. K.
Frank, I. J.
Gray, G. T., III
Trujillo, C. P.
Korzekwa, D. A.
Dougherty, L. M.
TI The influence of microstructure on the mechanical response of copper in
shear
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE Shear; Copper; Grain size; Cold rolling
ID GRAIN-SIZE; HIGH-STRAIN; STAINLESS-STEEL; BANDS; LOCALIZATION;
DEFORMATION; EVOLUTION; BEHAVIOR; KINETICS; STRESS
AB Shear localization is often a failure mechanism in materials subjected to high strain rate loading While. the constitutive behavior of copper has been extensively studied, the influence of cold work, Strain rate, and temperature on the microstructural development in Cu under shear loading conditions has received less systematic quantification. The purpose of this study is to quantify the mechanical response and the microstructural evolution of as-annealed and cryogenically rolled copper loaded dynamically in shear and to understand the mechanisms controlling shear deformation as well as the role of stored defects due to cryo-rolling on shear localization. It was found that localization is promoted in the cryo-rolled copper as compared to the as-annealed material and this instability is linked to stored defect structure specific to the cryo-rolled microstructure and its influence on the subsequent defect generation and storage in dynamically loaded Cu. Published by Elsevier B.V.
C1 [Cerreta, E. K.; Gray, G. T., III; Trujillo, C. P.; Korzekwa, D. A.; Dougherty, L. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Frank, I. J.] Rochester Inst Technol, Dept Mech Engn, Rochester, NY 14623 USA.
RP Cerreta, EK (reprint author), Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA.
EM ecerreta@lanl.gov
FU DoD/DOE Munitions Technology Development Program
FX The authors wish to thank M.F. Lopez for performing the quasi-static
mechanical tests. This work has been performed under the auspices of the
United States Department of Energy and was supported by the joint
DoD/DOE Munitions Technology Development Program.
NR 37
TC 15
Z9 15
U1 0
U2 9
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MAT SCI ENG A-STRUCT
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD FEB 15
PY 2009
VL 501
IS 1-2
BP 207
EP 219
DI 10.1016/j.msea.2008.10.029
PG 13
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Metallurgy & Metallurgical Engineering
SC Science & Technology - Other Topics; Materials Science; Metallurgy &
Metallurgical Engineering
GA 398KS
UT WOS:000262731600027
ER
PT J
AU Guney, DO
Koschny, T
Kafesaki, M
Soukoulis, CA
AF Gueney, Durdu Oe
Koschny, Thomas
Kafesaki, Maria
Soukoulis, Costas A.
TI Connected bulk negative index photonic metamaterials
SO OPTICS LETTERS
LA English
DT Article
AB We show the designs of bulk one- and two-dimensionally isotropic photonic negative index metamaterials working around telecom wavelengths. The designed structures are inherently connected, which makes fabrication by direct laser writing and chemical vapor deposition or other techniques possible. (C) 2009 Optical Society of America
C1 [Gueney, Durdu Oe; Koschny, Thomas; Soukoulis, Costas A.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
[Gueney, Durdu Oe; Koschny, Thomas; Soukoulis, Costas A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas A.] Univ Crete, FORTH, Dept Mat Sci & Technol, Inst Elect Struct & Laser, Iraklion 7110, Crete, Greece.
RP Guney, DO (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA.
EM dguney@ameslob.gov
RI Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008
OI Kafesaki, Maria/0000-0002-9524-2576;
FU Department of Energy (DOE) (Basic Energy Sciences) [DE-AC02-07CH11358];
United States Air Force Office of Scientific Research (USAFOSR)
[FA9550-06-1-0337]; Defense Advanced Research Agency (DARPA)
[MDA972-01-2-0016]; Office of Naval Research (ONR) [N00014-07-1-0359];
European Community Future and Emerging Technologies (FET) [213390]
FX Work at Ames Laboratory was supported by the Department of Energy (DOE)
(Basic Energy Sciences) under contract DE-AC02-07CH11358. This work was
partially supported by the United States Air Force Office of Scientific
Research (USAFOSR) under MURI grant (FA9550-06-1-0337), by Defense
Advanced Research Agency (DARPA) (contract MDA972-01-2-0016), Office of
Naval Research (ONR) (award N00014-07-1-0359), and European Community
Future and Emerging Technologies (FET) project Photonic Metamaterials
(PHOME) (contract 213390).
NR 10
TC 29
Z9 29
U1 1
U2 4
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 0146-9592
J9 OPT LETT
JI Opt. Lett.
PD FEB 15
PY 2009
VL 34
IS 4
BP 506
EP 508
PG 3
WC Optics
SC Optics
GA 420FJ
UT WOS:000264274000038
PM 19373356
ER
PT J
AU Manandhar, K
Park, KT
Ma, S
Hrbek, J
AF Manandhar, K.
Park, K. T.
Ma, S.
Hrbek, J.
TI Heteroepitaxial thin film of iron phthalocyanine on Ag(111)
SO SURFACE SCIENCE
LA English
DT Article
DE Iron phthalocyanine; Silver; Scanning tunneling microscopy; Surface
diffusion; Thin film structures
ID SCANNING-TUNNELING-MICROSCOPY; METAL PHTHALOCYANINES; COPPER
PHTHALOCYANINE; ELECTRONIC-STRUCTURE; SURFACES; C-60; AU(111); EPITAXY;
SPECTROSCOPY; STATES
AB Ordering of submonolayer iron phthalocyanine (FePc) molecules deposited on Ag(111) was investigated using scanning tunneling microscopy. The room temperature deposition of FePc alone, without any annealing, results in no ordered overlayers. However, posterior annealing the substrate to 475 K leads to the formation of a two-dimensional oblique lattice with the lattice constants of 16.2 +/- 0.3 angstrom and the angle of 78 +/- 1 degrees between them. The resulting FePc lattice is commensurate to the substrate lattice. In addition, the nearest neighbor distance in the lattice is significantly increased through a distinctive molecular orientation of the FePc molecules within the unit cell. The commensurate lattice with a large intermolecular distance is in sharp contrast to that observed from a close-packed square lattice that many other metallo-phthalocyanine molecules often self-assemble into. A possible reasoning behind this intriguing structure is discussed. (C) 2009 Elsevier B.V. All rights reserved.
C1 [Manandhar, K.; Park, K. T.] Baylor Univ, Dept Phys, Waco, TX 76798 USA.
[Ma, S.; Hrbek, J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.
RP Park, KT (reprint author), Baylor Univ, Dept Phys, 1 Bear Pl,Box 97316, Waco, TX 76798 USA.
EM kmanandh@uwyo.edu; Kenneth_Park@baylor.edu
RI Hrbek, Jan/I-1020-2013
FU US Department of Energy [DE-AC02-98CH10886]; University Research
Committee [030-153366]
FX This research was carried out at the Center for Functional
Nanomaterials, Brookhaven National Laboratory, which is supported by the
US Department of Energy, Division of material Sciences and Division of
Chemical Sciences, under contract No. DE-AC02-98CH10886. KTP is grateful
for the support from the University Research Committee (030-153366).
NR 38
TC 16
Z9 16
U1 0
U2 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
EI 1879-2758
J9 SURF SCI
JI Surf. Sci.
PD FEB 15
PY 2009
VL 603
IS 4
BP 636
EP 640
DI 10.1016/j.susc.2008.12.031
PG 5
WC Chemistry, Physical; Physics, Condensed Matter
SC Chemistry; Physics
GA 420ZF
UT WOS:000264327000010
ER
PT J
AU Hill, AA
Lipert, RJ
Fritz, JS
Porter, MD
AF Hill, April A.
Lipert, Robert J.
Fritz, James S.
Porter, Marc D.
TI A rapid, simple method for determining formaldehyde in drinking water
using colorimetric-solid phase extraction
SO TALANTA
LA English
DT Article
DE Colorimetric-solid phase extraction (C-SPE); Formaldehyde; Purpald;
Diffuse reflectance spectroscopy
ID REFLECTANCE SPECTROSCOPY; ALDEHYDES; REAGENT; DERIVATIZATION; GLYCOL;
ASSAY
AB Formaldehyde has been detected in drinking water supplies across the globe and on board NASA spacecraft. A rapid, simple, microgravity-compatible technique for measuring this contaminant in water Supplies using colorimetric-solid phase extraction (C-SPE) is described. This method involves collecting a water sample into a syringe by passage through a cartridge that contains sodium hydroxide, to adjust pH, and Purpald, which is a well-established colorimetric reagent for aldehydes. After completing the reaction in the syringe by agitating for 2 min on a shaker at 400 rpm, the 1.0-mL alkaline sample is passed through an extraction disk that retains the purple product. The amount of concentrated product is then measured on-disk using diffuse reflectance spectroscopy, and compared to a calibration plot generated from Kubelka-Munk transformations of the reflectance data at 700nm to determine the formaldehyde concentration. This method is capable of determining formaldehyde concentrations from 0.08 to 20 ppm with a total work-up time of less than 3 min using only 1-ml. samples. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Porter, Marc D.] Iowa State Univ, Inst Combinatorial Discovery, Ames Lab, USDOE, Ames, IA 50011 USA.
Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Porter, MD (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84108 USA.
EM marc.porter@utah.edu
RI Lipert, Robert/A-8571-2009
FU NASA [NAG91510]; [DE-AC02-07CH11358]
FX The authors would like to thank Jeff Rutz, Dan Gazda and John Schultz of
Wyle Laboratories, Houston, TX, USA for their insightful discussions.
This work was supported by NASA contract NAG91510. The Ames Laboratory
is operated by Iowa State University under U.S. Department of Energy
contract DE-AC02-07CH11358.
NR 27
TC 20
Z9 21
U1 2
U2 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-9140
J9 TALANTA
JI Talanta
PD FEB 15
PY 2009
VL 77
IS 4
BP 1405
EP 1408
DI 10.1016/j.talanta.2008.09.025
PG 4
WC Chemistry, Analytical
SC Chemistry
GA 398WF
UT WOS:000262761500024
PM 19084656
ER
PT J
AU Reid, VR
Stadermann, M
Bakajin, O
Synovec, RE
AF Reid, Vanessa R.
Stadermann, Michael
Bakajin, Olgica
Synovec, Robert E.
TI High-speed, temperature programmable gas chromatography utilizing a
microlfabricated chip with an improved carbon nanotube stationary phase
SO TALANTA
LA English
DT Article
DE Gas chromatography; Carbon nanotubes; Microfabricated; High-speed;
Resistively heated
ID DUAL-VALVE INJECTION; MICROFABRICATED CHANNELS; CHEMOMETRIC ANALYSIS
AB A new growth recipe for producing carbon nanotubes (CNTs) combined with a new bonding technique was implemented in a microfabricated gas chromatography (micro-GC) chip. Specifically, the micro-GC chip contained a 30-cm (length) microfabricated channel with a 50 mu m x 50 mu m square cross-section. A CNT stationary phase "mat" was grown on the bottom of the separation channel prior to the chip bonding. Injections onto the micro-CC chip were made using a previously reported high-speed diaphragm valve technique. A FID was used for detection with a high-speed electrometer board. All together, the result was a highly efficiency, temperature programmable (via low thermal mass, rapid on-chip resistive heating) micro-GC chip. In general, the newly designed micro-GC chip can be operated at significantly lower temperature and pressure than our previously reported micro-GC chip, while producing excellent chemical separations. Scanning electron microscopy (SEM) images show a relatively thin and uniform mat of nanotubes with a thickness of similar to 800 nm inside the channel. The stationary phase was further characterized using Raman spectroscopy. The uniformity of the stationary phase resulted in better separation efficiency and peak symmetry (as compared to our previous report) in the separation of a mixture of five n-alkanes (n-hexane. n-octane, n-nonane, n-decane and n-undecane). The on-chip resistive heater employing a temperature programming rate of 26 degrees C/s produced a peak capacity of eight within a 1.5-s time window. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Reid, Vanessa R.; Synovec, Robert E.] Univ Washington, Dept Chem, Seattle, WA 98195 USA.
[Stadermann, Michael; Bakajin, Olgica] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Synovec, RE (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA.
EM synovec@chem.washington.edu
RI Stadermann, Michael /A-5936-2012
OI Stadermann, Michael /0000-0001-8920-3581
FU DARPA MTO MCA program; U.S. Department of Energy; National Nuclear
Security Administration [DE-AC52-07NA27344]
FX A portion of this work was supported by DARPA MTO MCA program and
performed at Lawrence Livermore National Laboratory. Lawrence Livermore
National Laboratory is operated by Lawrence Livermore National Security,
LLC, for the U.S. Department of Energy, National Nuclear Security
Administration underContract DE-AC52-07NA27344. We thank Ulrich Bonne
for his interest in, and support of, this research project.
NR 18
TC 29
Z9 34
U1 1
U2 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-9140
J9 TALANTA
JI Talanta
PD FEB 15
PY 2009
VL 77
IS 4
BP 1420
EP 1425
DI 10.1016/j.talanta.2008.09.023
PG 6
WC Chemistry, Analytical
SC Chemistry
GA 398WF
UT WOS:000262761500027
PM 19084659
ER
PT J
AU Bencivenga, F
Cunsolo, A
Krisch, M
Monaco, G
Ruocco, G
Sette, F
AF Bencivenga, F.
Cunsolo, A.
Krisch, M.
Monaco, G.
Ruocco, G.
Sette, F.
TI High frequency dynamics in liquids and supercritical fluids: A
comparative inelastic x-ray scattering study
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE acoustic wave propagation; ammonia; liquid structure; liquid-liquid
transformations; neon; nitrogen; vibrational modes; water; X-ray
scattering
ID SUPERCOOLED WATER; STRUCTURAL RELAXATION; DENSITY-FLUCTUATIONS;
BRILLOUIN-SCATTERING; ENERGY RESOLUTION; GLASS; NITROGEN; NEON;
SPECTROSCOPY; TERPHENYL
AB The microscopic dynamics of four prototype systems (water, ammonia, nitrogen, and neon) across the critical temperature has been investigated by means of high-resolution inelastic x-ray scattering. The experimental line shape has been described using a model based on the memory function formalism. Two main relaxations, the thermal and the structural one, were observed in all the investigated systems. We found that the microscopic mechanism driving the structural relaxation clearly changes, being mainly governed by intermolecular bond rearrangements below the critical temperature and by binary collisions above it. Moreover, we observed that the relative weight of the thermal relaxation systematically increases on approaching the critical temperature, thus allowing for the observation of a transition from an adiabatic to an isothermal regime of sound propagation. Finally, we found the presence of an additional instantaneous relaxation, likely related to the coupling between collective vibrational modes and intramolecular degrees of freedom.
C1 [Bencivenga, F.] Sincrotrone Trieste, I-34012 Trieste, Italy.
[Cunsolo, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Krisch, M.; Monaco, G.; Sette, F.] European Synchrotron Radiat Facil, F-38043 Grenoble, France.
[Ruocco, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
[Ruocco, G.] Univ Roma La Sapienza, CRS SOFT INFM CNR, I-00185 Rome, Italy.
RP Bencivenga, F (reprint author), Sincrotrone Trieste, SS 14Km 163-5 Area Sci Pk, I-34012 Trieste, Italy.
EM filippo.bencivenga@elettra.trieste.it
RI Ruocco, Giancarlo/A-6245-2010; Cunsolo, Alessandro/C-7617-2013
OI Ruocco, Giancarlo/0000-0002-2762-9533;
NR 67
TC 23
Z9 24
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 14
PY 2009
VL 130
IS 6
AR 064501
DI 10.1063/1.3073039
PG 15
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 408BR
UT WOS:000263408800023
PM 19222278
ER
PT J
AU Garand, E
Yacovitch, TI
Neumark, DM
AF Garand, Etienne
Yacovitch, Tara I.
Neumark, Daniel M.
TI Slow photoelectron velocity-map imaging spectroscopy of C2N-, C4N-, and
C6N-
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE carbon compounds; electron affinity; electron detachment; excited
states; ground states; molecular configurations; molecule-photon
collisions; negative ions; photoelectron spectra; spin-orbit
interactions
ID LASER-INDUCED FLUORESCENCE; AB-INITIO; EXCITATION SPECTROSCOPY;
ASTRONOMICAL DETECTION; CLUSTER ANIONS; NEGATIVE-IONS; CNN-CLUSTERS;
CCN; SPECTRUM; TRANSFORM
AB High resolution photoelectron spectra of C2N-, C4N-, and C6N- anions are reported, obtained using slow electron velocity-map imaging. The spectra show well resolved transitions to the X (2)Pi neutral ground state of all three species and to the a (4)Sigma(-) excited state of C2N and C4N. This study yields the adiabatic electron affinity of C2N, C4N, and C6N, the spin-orbit splitting in the X (2)Pi state of each radical, and the term energy of the a (4)Sigma(-) state in C2N and C4N. Relatively little vibrational activity is observed, indicating small geometry changes upon photodetachment. This result, plus the observation of transitions to neutral quartet states, indicates that the C2nN- (n=1-3) anions all have linear (3)Sigma(-) ground states.
C1 [Garand, Etienne; Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
[Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
EM dneumark@berkeley.edu
RI Neumark, Daniel/B-9551-2009;
OI Neumark, Daniel/0000-0002-3762-9473; Garand, Etienne/0000-0001-5062-5453
FU Air Force Office of Scientific Research [F49620-03-1-0085]; National
Science and Engineering Research Council of Canada (NSERC); Fonds
Quebecois de la Recherche sur la Nature et les Technologies (FQRNT)
FX This work was supported by the Air Force Office of Scientific Research
under Grant No. F49620-03-1-0085. E.G. thanks the National Science and
Engineering Research Council of Canada (NSERC) for a post graduate
scholarship and T.I.Y. thanks the Fonds Quebecois de la Recherche sur la
Nature et les Technologies (FQRNT) for a master's scholarship.
NR 52
TC 24
Z9 24
U1 3
U2 25
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 14
PY 2009
VL 130
IS 6
AR 064304
DI 10.1063/1.3076320
PG 7
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 408BR
UT WOS:000263408800020
PM 19222275
ER
PT J
AU Hanson, DE
Martin, RL
AF Hanson, David E.
Martin, Richard L.
TI How far can a rubber molecule stretch before breaking? Ab initio study
of tensile elasticity and failure in single-molecule polyisoprene and
polybutadiene
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE ab initio calculations; elasticity; fracture; rubber; tensile strength
ID COVALENT BOND; DYNAMICS; STRENGTH; STRESS; DEFORMATION; SILOXANES;
MODULUS; POLYMER; CHAIN; MODEL
AB We present ab initio calculations of the internal C-C bond dissociation curve for single molecules of (cis-1,4) polyisoprene and polybutadiene. We define "bond rupture" as that point on the reaction coordinate where the unrestricted Kohn-Sham, or diradical, solution falls below the restricted, or closed-shell, solution. Using this definition, we find that rupture occurs at a tensile force of 6.8 nN for polyisoprene and 7.2 nN for polybutadiene. Their respective rupture strains are 45% and 42%. Our calculations show that the energy density versus extension is not sensitive to the number of isoprene units contained in the molecule, i.e., it is essentially independent of the chain length. These relatively large rupture strains have important implications for understanding the failure mechanism in rubber, and imply that purely enthalpic chain stretching must commence well before tensile failure occurs.
C1 [Hanson, David E.; Martin, Richard L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Hanson, DE (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM deh@lanl.gov
FU U.S. Department of Energy [DE-AC52-06NA25396]
FX We thank Enrique Batista for his many helpful suggestions for improving
the manuscript. This work was performed under the auspices of Los Alamos
National Laboratory, which is operated by Los Alamos National Security,
LLC, for the National Nuclear Security Administration of the U.S.
Department of Energy under Contract No. DE-AC52-06NA25396.
NR 22
TC 14
Z9 14
U1 0
U2 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 14
PY 2009
VL 130
IS 6
AR 064903
DI 10.1063/1.3071196
PG 6
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 408BR
UT WOS:000263408800039
PM 19222294
ER
PT J
AU Qian, Y
Gustafson, WI
Leung, LR
Ghan, SJ
AF Qian, Yun
Gustafson, William I., Jr.
Leung, L. Ruby
Ghan, Steven J.
TI Effects of soot-induced snow albedo change on snowpack and hydrological
cycle in western United States based on Weather Research and Forecasting
chemistry and regional climate simulations
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID GENERAL-CIRCULATION MODELS; ATMOSPHERIC AEROSOLS; NORTHERN-HEMISPHERE;
SURFACE ALBEDO; DIRTY SNOW; COVER; PARAMETERIZATION; PRECIPITATION; ICE;
IMPLEMENTATION
AB Radiative forcing induced by soot on snow is an important anthropogenic forcing affecting the global climate. In this study we simulated the deposition of soot aerosol on snow and the resulting impact on snowpack and the hydrological cycle in the western United States. A year-long simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine the soot deposition, followed by three simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the surface net solar radiation flux during late winter to early spring, increase the surface air temperature, and reduce the snow accumulation and spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow-covered regions. For a doubled snow albedo perturbation, the change to surface energy and temperature is around 50-80%; however, snowpack reduction is nonlinearly accelerated.
C1 [Qian, Yun; Gustafson, William I., Jr.; Leung, L. Ruby; Ghan, Steven J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA.
RP Qian, Y (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA.
EM yun.qian@pnl.gov
RI qian, yun/A-5056-2010; Gustafson, William/A-7732-2008; qian,
yun/E-1845-2011; Ghan, Steven/H-4301-2011
OI Gustafson, William/0000-0001-9927-1393; Ghan, Steven/0000-0001-8355-8699
FU Pacific Northwest National Laboratory (PNNL); Laboratory Directed
Research and Development (LDRD); National Aeronautic and Space
Administration Energy and Water Cycle Studies (NEWS); U. S. DOE
[DE-AC06-76RLO1830]; U. S. Department of Energy [DE-AC05-00OR22725]
FX We thank Elaine Chapman, Charlie Zender, and two anonymous reviewers for
their careful reviews and suggestions that helped to greatly improve the
analyses and discussion presented in this paper. This research is
supported by a Pacific Northwest National Laboratory (PNNL) Laboratory
Directed Research and Development (LDRD) project and the National
Aeronautic and Space Administration Energy and Water Cycle Studies
(NEWS). PNNL is operated for the U. S. DOE by Battelle Memorial
Institute under contract DE-AC06-76RLO1830. This research used resources
of the National Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of the U. S.
Department of Energy under contract DE-AC05-00OR22725.
NR 66
TC 54
Z9 57
U1 3
U2 30
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 14
PY 2009
VL 114
AR D03108
DI 10.1029/2008JD011039
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 406YB
UT WOS:000263329700005
ER
PT J
AU Stroud, JR
Lesht, BM
Schwab, DJ
Beletsky, D
Stein, ML
AF Stroud, Jonathan R.
Lesht, Barry M.
Schwab, David J.
Beletsky, Dmitry
Stein, Michael L.
TI Assimilation of satellite images into a sediment transport model of Lake
Michigan
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID TOTAL PHOSPHORUS MODEL; GREAT-LAKES; INTERANNUAL VARIABILITY;
RESUSPENSION EVENT; SUSPENDED MATTER; NORTH-SEA; CIRCULATION; SEAWIFS;
OCEAN; RETRIEVAL
AB In this paper we develop and examine several schemes for combining daily images obtained from the Sea-viewing Wide Field Spectrometer (SeaWiFS) with a two-dimensional sediment transport model of Lake Michigan. We consider two data assimilation methods, direct insertion and a kriging-based approach, and perform a forecasting study focused on a 2-month period in spring 1998 when a large storm caused substantial amounts of sediment resuspension and horizontal sediment transport in the lake. By beginning with the simplest possible forecast method and sequentially adding complexity we are able to assess the improvements offered by combining the satellite data with the numerical model. In our application, we find that data assimilation schemes that include both the data and the lake dynamics improve forecast root mean square error by 40% over purely model-based approaches and by 20% over purely data-based approaches.
C1 [Stroud, Jonathan R.] George Washington Univ, Dept Stat, Washington, DC 20052 USA.
[Beletsky, Dmitry] Univ Michigan, CILER, SNRE, Ann Arbor, MI 48105 USA.
[Lesht, Barry M.] Argonne Natl Lab, Appl Sci & Technol Directorate, Argonne, IL 60439 USA.
[Schwab, David J.] NOAA, GLERL, Ann Arbor, MI 48105 USA.
[Stein, Michael L.] Univ Chicago, Dept Stat, Chicago, IL 60637 USA.
RP Stroud, JR (reprint author), George Washington Univ, Dept Stat, 2140 Penn Ave NW, Washington, DC 20052 USA.
EM stroud@gwu.edu; bmlesht@anl.gov; david.schwab@noaa.gov;
dima.beletsky@noaa.gov; stein@galton.uchicago.edu
RI Schwab, David/B-7498-2012;
OI Lesht, Barry/0000-0003-0801-4290; Beletsky, Dmitry/0000-0003-4532-0588
FU U. S. Environmental Protection Agency (EPA) [R-82940201]
FX We thank the SeaWiFS Project and the Ocean Color Data Archive at the
Goddard Space Flight Center for the production and distribution of the
SeaWiFS data respectively. We also thank the EEGLE Project for
collection and distribution of the in situ data used here. NOAA's
Coastal Ocean Program supported work at ANL and GLERL, originally as
part of EEGLE. Subsequent funding was provided by the U. S.
Environmental Protection Agency (EPA) through Science To Achieve Results
(STAR) Cooperative Agreement R-82940201 to the University of Chicago for
the Center for Integrating Statistical and Environmental Science
(CISES). However, this research has not been subjected to the EPA's
required peer and policy review and therefore does not necessarily
reflect the views of the Agency, and no official endorsement should be
inferred. This is GLERL contribution 1491.
NR 52
TC 12
Z9 12
U1 0
U2 1
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
J9 WATER RESOUR RES
JI Water Resour. Res.
PD FEB 14
PY 2009
VL 45
AR W02419
DI 10.1029/2007WR006747
PG 16
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 406ZH
UT WOS:000263332900002
ER
PT J
AU Gurvits, L
AF Gurvits, Leonid
TI A short proof, based on mixed volumes, of Liggett's theorem on the
convolution of ultra-logconcave sequences
SO ELECTRONIC JOURNAL OF COMBINATORICS
LA English
DT Article
AB R. Pemantle conjectured, and T. M. Liggett proved in 1997, that the convolution of two ultra-logconcave is ultra-logconcave. Liggett's proof is elementary but long. We present here a short proof, based on the mixed volume of convex sets.
C1 [Gurvits, Leonid] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Gurvits, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
EM gurvits@lanl.gov
NR 6
TC 0
Z9 0
U1 0
U2 0
PU ELECTRONIC JOURNAL OF COMBINATORICS
PI NEWARK
PA C/O FELIX LAZEBNIK, RM 507, EWING HALL, UNIV DELAWARE, DEPT MATHEMATICAL
SCIENCES, NEWARK, DE 19716 USA
SN 1077-8926
J9 ELECTRON J COMB
JI Electron. J. Comb.
PD FEB 13
PY 2009
VL 16
IS 1
AR N5
PG 5
WC Mathematics, Applied; Mathematics
SC Mathematics
GA 410EC
UT WOS:000263559300002
ER
PT J
AU Andrzejewska, A
Kaczmarski, K
Guiochon, G
AF Andrzejewska, Anna
Kaczmarski, Krzysztof
Guiochon, Georges
TI Theoretical study of the accuracy of the pulse method, frontal analysis,
and frontal analysis by characteristic points for the determination of
single component adsorption isotherms
SO JOURNAL OF CHROMATOGRAPHY A
LA English
DT Article
DE ECP; FACP; Frontal analysis; Isotherm accuracy; Isotherm determination;
Isotherm modeling; Isotherm precision; Perturbation method; Pulse method
ID CHROMATOGRAPHIC BAND PROFILES; PHASE LIQUID-CHROMATOGRAPHY; HOLD-UP
TIME; PROPRANOLOL ENANTIOMERS; IMMOBILIZED CELLULASE; RETENTION
MECHANISM; PEAK SHAPES; PARAMETERS; ELUTION; MODEL
AB The adsorption isotherms of selected compounds are our main source of information on the mechanisms of adsorption processes. Thus, the selection of the methods used to determine adsorption isotherm data and to evaluate the errors made is critical. Three chromatographic methods were evaluated, frontal analysis (FA), frontal analysis by characteristic point (FACP), and the pulse or perturbation method (PM), and their accuracies were compared. Using the equilibrium-dispersive (ED) model of chromatography. breakthrough curves of single components were generated corresponding to three different adsorption isotherm models: the Langmuir, the bi-Langmuir, and the Moreau isotherms. For each breakthrough curve, the best conventional procedures of each method (FA, FACP, PM) were used to calculate the corresponding data point, using typical values of the parameters of each isotherm model, for four different values of the column efficiency (N = 500,1000, 2000, and 10,000). Then, the data points were fitted to each isotherm model and the corresponding isotherm parameters were compared to those of the initial isotherm model. When isotherm data are derived with a chromatographic method, they may suffer from two types of errors: (1) the errors made in deriving the experimental data points from the chromatographic records; (2) the errors made in selecting an incorrect isotherm model and fitting to it the experimental data. Both errors decrease significantly with increasing column efficiency with FA and FACP, but not with PM. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Andrzejewska, Anna; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
[Andrzejewska, Anna; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
[Kaczmarski, Krzysztof] Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland.
RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.
EM guiochon@utk.edu
FU National Science Foundation [CHE-06-08659]
FX This work was supported in part by grant CHE-06-08659 of the National
Science Foundation and by the cooperative agreement between the
University of Tennessee and the Oak Ridge National Laboratory.
NR 53
TC 15
Z9 16
U1 2
U2 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0021-9673
J9 J CHROMATOGR A
JI J. Chromatogr. A
PD FEB 13
PY 2009
VL 1216
IS 7
BP 1067
EP 1083
DI 10.1016/j.chroma.2008.12.021
PG 17
WC Biochemical Research Methods; Chemistry, Analytical
SC Biochemistry & Molecular Biology; Chemistry
GA 404ZW
UT WOS:000263192700004
PM 19147153
ER
PT J
AU Bick, MJ
Lamour, V
Rajashankar, KR
Gordiyenko, Y
Robinson, CV
Darst, SA
AF Bick, Matthew J.
Lamour, Valerie
Rajashankar, Kanagalaghatta R.
Gordiyenko, Yuliya
Robinson, Carol V.
Darst, Seth A.
TI How to Switch Off a Histidine Kinase: Crystal Structure of Geobacillus
stearothermophilus KinB with the inhibitor Sda
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE histidine kinase; Sda; X-ray crystallography
ID 2-COMPONENT SIGNAL-TRANSDUCTION; ESCHERICHIA-COLI OSMOSENSOR;
BACILLUS-SUBTILIS; PHOSPHATASE-ACTIVITY; CATALYTIC DOMAIN; SPORULATION;
PROTEIN; MECHANISM; ENVZ; INITIATION
AB Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-angstrom-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KilB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to which it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Bick, Matthew J.; Lamour, Valerie; Darst, Seth A.] Rockefeller Univ, New York, NY 10065 USA.
[Rajashankar, Kanagalaghatta R.] Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA.
[Gordiyenko, Yuliya; Robinson, Carol V.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England.
RP Darst, SA (reprint author), Rockefeller Univ, 1230 York Ave, New York, NY 10065 USA.
EM darst@rockefeller.edu
FU NSF EPSCoR Program [EPS-9550478]; NCRR at the National Institutes of
Health [RR-15301]; US Department of Energy, Office of Basic Energy
Sciences [W-31-109-ENG-38]; National Institutes of Health [GM081697]
FX We thank E. A. Campbell and R. Landick for helpful discussions, and A.
Marina and, W. Hendrickson for providing TM0853-encoding plasmid, as
well as structural coordinates for the TM0853 autophosphorylation model.
We thank B. Chait for, use of the mass spectrometry facilities. The Gst
Genome Sequencing Project was funded by the NSF EPSCoR Program
(Experimental Program to Stimulate Competitive Research Grant
EPS-9550478). Thus work was based, in part, on research conducted at the
NE-CAT beamlines of the APS, supported by award RR-15301 from the NCRR
at the National Institutes of Health. Use of the APS was supported by
the US Department of Energy, Office of Basic Energy Sciences, under
contract no. W-31-109-ENG-38. X-ray data were also acquired at the X4A
and X4C bean-dines of the National Synchrotron Light Source, Brookhaven
National Laboratory, which is operated by the New York Structural
Biology Center. This work was supported by National Institutes of Health
grant GM081697 to S.A.D.
NR 31
TC 42
Z9 42
U1 0
U2 3
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD FEB 13
PY 2009
VL 386
IS 1
BP 163
EP 177
DI 10.1016/j.jmb.2008.12.006
PG 15
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 410JW
UT WOS:000263574300012
PM 19101565
ER
PT J
AU Kumaran, D
Eswaramoorthy, S
Furey, W
Navaza, J
Sax, M
Swaminathan, S
AF Kumaran, Desigan
Eswaramoorthy, Subramaniam
Furey, William
Navaza, Jorge
Sax, Martin
Swaminathan, Subramanyam
TI Domain Organization in Clostridium botulinum Neurotoxin Type E Is
Unique: Its Implication in Faster Translocation
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE botulinum neurotoxin; serotype E; translocation; quaternary structure;
domain organization
ID BACTERIAL PROTEIN TOXINS; H-CC-DOMAIN; STRUCTURAL-ANALYSIS; LIGHT-CHAIN;
TETANUS NEUROTOXIN; CRYSTAL-STRUCTURE; BINDING-SITES; CRYSTALLOGRAPHY;
RECEPTORS; HEAVY
AB Clostridium botulinum produces seven antigenically distinct neurotoxins [C. botulinum neurotoxins (BoNTs) A-G] sharing a significant sequence homology. Based on sequence and functional similarity, it was believed that their three-dimensional structures will also be similar. Indeed, the crystal structures of BoNTs A and B exhibit similar fold and domain association where the translocation domain is flanked on either side by binding and catalytic domains. Here, we report the crystal structure of BoNT E holotoxin and show that the domain association is different and unique, although the individual domains are similar to those of BoNTs A and B. In BoNT E, both the binding domain and the catalytic domain are on the same side of the translocation domain, and all three have mutual interfaces. This unique association may have an effect on the rate of translocation, with the molecule strategically positioned in the vesicle for quick entry into cytosol. Botulism, the disease caused by BoNT E, sets in faster than any other serotype because of its speedy internalization and translocation, and the present structure offers a credible explanation. We propose that the translocation domain in other BoNTs follows a two-step process to attain translocation-competent conformation as in BoNT E. We also suggest that this translocation-competent conformation in BoNT E is a probable reason for its faster toxic rate compared to BoNT A. However, this needs further experimental elucidation. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Kumaran, Desigan; Eswaramoorthy, Subramaniam; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Furey, William; Sax, Martin] VA Med Ctr, Biocrystallog Lab, Pittsburgh, PA 15232 USA.
[Navaza, Jorge] Inst Biol Struct, Lab Microscopie Elect Struct, Grenoble, France.
RP Swaminathan, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM swami@bnl.gov
FU US Army [DAMD17-02-2-0011]; Department of Energy [DTRA BO742081];
Brookhaven National Laboratory [DEAC02-98CH10886]
FX This research was supported by the US Army (award no. DAMD17-02-2-0011)
and DTRA BO742081 under Department of Energy prime contract no.
DEAC02-98CH10886 with Brookhaven National Laboratory. We thank Drs.
James Schmidt and Tim Umland for helpful discussions in the early stages
of this project. We gratefully acknowledge the data collection
facilities at beam-line X25 of the National Synchrotron Light Source.
NR 45
TC 94
Z9 95
U1 0
U2 2
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD FEB 13
PY 2009
VL 386
IS 1
BP 233
EP 245
DI 10.1016/j.jmb.2008.12.027
PG 13
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 410JW
UT WOS:000263574300017
PM 19118561
ER
PT J
AU Choi, YJ
Okamoto, J
Huang, DJ
Chao, KS
Lin, HJ
Chen, CT
van Veenendaal, M
Kaplan, TA
Cheong, SW
AF Choi, Y. J.
Okamoto, J.
Huang, D. J.
Chao, K. S.
Lin, H. J.
Chen, C. T.
van Veenendaal, M.
Kaplan, T. A.
Cheong, S-W.
TI Thermally or Magnetically Induced Polarization Reversal in the
Multiferroic CoCr2O4
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FERROELECTRIC POLARIZATION; SCATTERING; COBALT
AB We report the unexpected evolution, with thermal and magnetic-field (H) variations, of the interrelation between the polarization P, magnetization M, and spiral wave vector Q in CoCr2O4, which has a ferrimagnetic conical-spiral magnetic order. For example, P suddenly jumps and changes its sign at the magnetic lock-in transition (T-L) with thermal variation, or with isothermal variation of H (without changing its direction) at T-L, which surprisingly occurs without change in spiral handedness (i.e., the sign of Q). The presence of multiple spiral sublattices may be behind this unusual behavior.
C1 [Choi, Y. J.; Cheong, S-W.] Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA.
[Okamoto, J.; Huang, D. J.; Chao, K. S.; Lin, H. J.; Chen, C. T.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan.
[Huang, D. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan.
[Chao, K. S.] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan.
[van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.
[Kaplan, T. A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA.
[van Veenendaal, M.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Choi, Y. J.; Cheong, S-W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
RP Choi, YJ (reprint author), Rutgers Ctr Emergent Mat, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA.
FU NSF [NSF-DMR-0520471]
FX We thank S. D. Mahanti for his close following of this work and for many
helpful discussions. Work at Rutgers is supported by NSF-DMR-0520471.
NR 30
TC 99
Z9 102
U1 6
U2 48
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 13
PY 2009
VL 102
IS 6
AR 067601
DI 10.1103/PhysRevLett.102.067601
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 407UJ
UT WOS:000263389500066
PM 19257633
ER
PT J
AU Fuchigami, K
Gai, Z
Ward, TZ
Yin, LF
Snijders, PC
Plummer, EW
Shen, J
AF Fuchigami, K.
Gai, Z.
Ward, T. Z.
Yin, L. F.
Snijders, P. C.
Plummer, E. W.
Shen, J.
TI Tunable Metallicity of the La5/8Ca3/8MnO3(001) Surface by an Oxygen
Overlayer
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MANGANITES; POLARON; TRANSPORT; CROSSOVER
AB We studied the surface structure of La5/8Ca3/8MnO3(001) thin films using in situ scanning tunneling microscopy (STM). Atomically resolved STM images reveal that a (root 2 X root 2)R45 degrees reconstructed surface and a (1 X 1) surface can be converted back and forth through adsorption and desorption of oxygen at the surface. The electrical properties of the surfaces are investigated by scanning tunneling spectroscopy. I - V curves clearly show that the presence of an oxygen overlayer renders the surface insulating while the (1 X 1) surface without the oxygen overlayer is metallic.
C1 [Fuchigami, K.; Gai, Z.; Ward, T. Z.; Yin, L. F.; Snijders, P. C.; Shen, J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Fuchigami, K.; Ward, T. Z.; Plummer, E. W.; Shen, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.
[Fuchigami, K.] IHI Corp, Res Lab, Yokohama, Kanagawa 2358501, Japan.
[Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA.
RP Fuchigami, K (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
RI Gai, Zheng/B-5327-2012; Ward, Thomas/I-6636-2016
OI Gai, Zheng/0000-0002-6099-4559; Ward, Thomas/0000-0002-1027-9186
FU Division of Materials Science and Engineering; U. S. DOE; UT-Battelle,
LLC [DE-AC05-00O822725]; NSF; DOE [NSF-DMR-0451163]
FX The authors would like to thank Zhong Fang for valuable discussions.
This effort was supported in part by the Division of Materials Science
and Engineering, U. S. DOE, under contract with UT-Battelle, LLC,
DE-AC05-00O822725. K. F. and E. W. P. have received support from NSF and
DOE (DMS and E) (NSF-DMR-0451163).
NR 17
TC 28
Z9 28
U1 2
U2 26
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 13
PY 2009
VL 102
IS 6
AR 066104
DI 10.1103/PhysRevLett.102.066104
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 407UJ
UT WOS:000263389500044
PM 19257611
ER
PT J
AU Norman, MR
Micklitz, T
AF Norman, M. R.
Micklitz, T.
TI How to Measure a Spinon Fermi Surface
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ORGANIC SUPERCONDUCTOR; MAGNETORESISTANCE; MULTILAYERS; INSULATOR;
PHYSICS; SPACER; LAYERS; STATE; FE/CR
AB We propose an experiment to identify the potential existence of a spinon Fermi surface by looking for oscillatory coupling between two ferromagnets via a spin liquid spacer. Three candidate spin liquids are investigated, and it is found out that in all cases long period oscillations should be present, the period of which would identify the Fermi wave vector of the spinon surface.
C1 [Norman, M. R.; Micklitz, T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Norman, MR (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RI Norman, Michael/C-3644-2013
FU U.S. DOE [DE-AC02-06CH11357]
FX Work at Argonne National Laboratory was supported by the U.S. DOE,
Office of Science, under Contract No. DE-AC02-06CH11357. This project
was inspired by a talk given by Leon Balents at the ICTP in Trieste.
NR 29
TC 11
Z9 12
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 13
PY 2009
VL 102
IS 6
AR 067204
DI 10.1103/PhysRevLett.102.067204
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 407UJ
UT WOS:000263389500062
PM 19257629
ER
PT J
AU Park, JK
Boozer, AH
Menard, JE
AF Park, Jong-kyu
Boozer, Allen H.
Menard, Jonathan E.
TI Nonambipolar Transport by Trapped Particles in Tokamaks
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TOROIDAL-MOMENTUM DISSIPATION; BANANA-DRIFT TRANSPORT; PLASMA;
CONFINEMENT; DIFFUSION; SYSTEMS; RIPPLE
AB Small nonaxisymmetric perturbations of the magnetic field can greatly change the performance of tokamaks through nonambipolar transport. A number of theories have been developed, but the predictions were not consistent with experimental observations in tokamaks. This Letter provides a resolution, with a generalized analytic treatment of the nonambipolar transport. It is shown that the discrepancy between theory and experiment can be greatly reduced by two effects: (1) the small fraction of trapped particles for which the bounce and precession rates resonate; (2) the nonaxisymmetric variation in the field strength along the perturbed magnetic field lines rather than along the unperturbed magnetic field lines. The expected sensitivity of the International Thermonuclear Experimental Reactor to nonaxisymmetries is also discussed.
C1 [Park, Jong-kyu; Menard, Jonathan E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.
[Boozer, Allen H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.
RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.
OI Menard, Jonathan/0000-0003-1292-3286
FU DOE [DE-AC02-76CH03073 (PPPL), DE-FG02-03ERS496 (CU)]
FX The authors are grateful to K. C. Shaing, H. E. Mynick, M. Becoulet, S.
A. Sabbagh, A. M. Garofalo, and Richard J. Hawryluk for useful
discussions. This work was supported by DOE Contract No.
DE-AC02-76CH03073 (PPPL), and No. DE-FG02-03ERS496 (CU).
NR 22
TC 82
Z9 82
U1 0
U2 6
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 13
PY 2009
VL 102
IS 6
AR 065002
DI 10.1103/PhysRevLett.102.065002
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 407UJ
UT WOS:000263389500028
PM 19257595
ER
PT J
AU Miracle, A
Denslow, ND
Kroll, KJ
Liu, MC
Wang, KKW
AF Miracle, Ann
Denslow, Nancy D.
Kroll, Kevin J.
Liu, Ming Cheng
Wang, Kevin K. W.
TI Spillway-Induced Salmon Head Injury Triggers the Generation of Brain
alpha II-Spectrin Breakdown Product Biomarkers Similar to Mammalian
Traumatic Brain Injury
SO PLOS ONE
LA English
DT Article
AB Recent advances in biomedical research have resulted in the development of specific biomarkers for diagnostic testing of disease condition or physiological risk. Of specific interest are alpha II-spectrin breakdown products (SBDPs), which are produced by proteolytic events in traumatic brain injury and have been used as biomarkers to predict the severity of injury in humans and other mammalian brain injury models. This study describes and demonstrates the successful use of antibody-based mammalian SBDP biomarkers to detect head injury in migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) that have been injured during passage through high-energy hydraulic environments present in spillways under different operational configurations. Mortality and injury assessment techniques currently measure only near-term direct mortality and easily observable acute injury. Injury-based biomarkers may serve as a quantitative indicator of subacute physical injury and recovery, and aid hydropower operators in evaluation of safest passage configuration and operation actions for migrating juvenile salmonids. We describe a novel application of SBDP biomarkers for head injury for migrating salmon. To our knowledge, this is the first documented cross-over use of a human molecular biomarker in a wildlife and operational risk management scenario.
C1 Pacific NW Natl Lab, Environm Sustainabil Div, Richland, WA 99352 USA.
[Denslow, Nancy D.; Kroll, Kevin J.] Univ Florida, Dept Physiol Sci, Gainesville, FL 32611 USA.
[Denslow, Nancy D.; Kroll, Kevin J.] Univ Florida, Ctr Environm & Human Toxicol, Gainesville, FL 32611 USA.
[Liu, Ming Cheng; Wang, Kevin K. W.] Banyan Biomarkers Inc, Ctr Innovative Res, Alachua, FL USA.
[Wang, Kevin K. W.] Univ Florida, McKnight Brain Inst, Ctr Neuroproteom & Biomarkers Res, Dept Psychiat, Gainesville, FL 32611 USA.
RP Miracle, A (reprint author), Pacific NW Natl Lab, Environm Sustainabil Div, Richland, WA 99352 USA.
EM ann.miracle@pnl.gov
OI Wang, Kevin/0000-0002-9343-6473
FU Pacific Northwest National Laboratory
FX This work was supported by directed funds from Pacific Northwest
National Laboratory to ALM. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the
manuscript.
NR 34
TC 3
Z9 3
U1 1
U2 1
PU PUBLIC LIBRARY SCIENCE
PI SAN FRANCISCO
PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA
SN 1932-6203
J9 PLOS ONE
JI PLoS One
PD FEB 13
PY 2009
VL 4
IS 2
AR e4491
DI 10.1371/journal.pone.0004491
PG 9
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 437JR
UT WOS:000265484300016
PM 19214235
ER
PT J
AU Hsieh, D
Xia, Y
Wray, L
Qian, D
Pal, A
Dil, JH
Osterwalder, J
Meier, F
Bihlmayer, G
Kane, CL
Hor, YS
Cava, RJ
Hasan, MZ
AF Hsieh, D.
Xia, Y.
Wray, L.
Qian, D.
Pal, A.
Dil, J. H.
Osterwalder, J.
Meier, F.
Bihlmayer, G.
Kane, C. L.
Hor, Y. S.
Cava, R. J.
Hasan, M. Z.
TI Observation of Unconventional Quantum Spin Textures in Topological
Insulators
SO SCIENCE
LA English
DT Article
ID PHASE; STATE; WELLS
AB A topologically ordered material is characterized by a rare quantum organization of electrons that evades the conventional spontaneously broken symmetry- based classification of condensed matter. Exotic spin- transport phenomena, such as the dissipationless quantum spin Hall effect, have been speculated to originate from a topological order whose identification requires a spin- sensitive measurement, which does not exist to this date in any system. Using Mott polarimetry, we probed the spin degrees of freedom and demonstrated that topological quantum numbers are completely determined from spin texture- imaging measurements. Applying this method to Sb and Bi1-xSbx, we identified the origin of its topological order and unusual chiral properties. These results taken together constitute the first observation of surface electrons collectively carrying a topological quantum Berry's phase and definite spin chirality, which are the key electronic properties component for realizing topological quantum computing bits with intrinsic spin Hall- like topological phenomena.
C1 [Hsieh, D.; Xia, Y.; Wray, L.; Pal, A.; Hasan, M. Z.] Princeton Univ, Joseph Henry Labs Phys, Dept Phys, Princeton, NJ 08544 USA.
[Xia, Y.; Hasan, M. Z.] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA.
[Wray, L.] Lawrence Berkeley Lab, Adv Light Source, Stanford, CA 94305 USA.
[Dil, J. H.; Meier, F.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland.
[Dil, J. H.; Osterwalder, J.; Meier, F.] Univ Zurich Irchel, Inst Phys, CH-8057 Zurich, Switzerland.
[Bihlmayer, G.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.
[Kane, C. L.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.
[Hor, Y. S.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA.
RP Hasan, MZ (reprint author), Princeton Univ, Joseph Henry Labs Phys, Dept Phys, Princeton, NJ 08544 USA.
EM mzhasan@princeton.edu
RI Kane, Charles/A-1035-2007; HASAN, M. Zahid/D-8237-2012; Dil,
Hugo/F-6995-2012; Bihlmayer, Gustav/G-5279-2013; Qian, Dong/O-1028-2015
OI Dil, Hugo/0000-0002-6016-6120; Bihlmayer, Gustav/0000-0002-6615-1122;
FU NSF [DMR-0605066, DMR-0819860]; Princeton University; Basic Energy
Sciences of the U. S; Department of Energy [DE-FG-02-05ER46200]; Swiss
Light Source; Paul Scherrer Institute, Villigen, Switzerland;
[Villigen, Switzerland]
FX We thank J. Teo for providing the SS band calculations of antimony (Sb);
A. Fedorov, L. Patthey, and D.- H. Lu for beamline assistance; and D.
Haldane, B. I. Halperin, N. P. Ong, D. A. Huse, F. Wilczek, P. W.
Anderson, D. C. Tsui, J. E. Moore, L. Fu, L. Balents, D.- H. Lee, S.
Sachdev, P. A. Lee, and X.- G. Wen for stimulating discussions. C. L. K.
was supported by NSF grant DMR-0605066. The spin-resolved ARPES
experiments are supported by NSF through the Center for Complex
Materials (DMR-0819860) and Princeton University; the use of synchrotron
X-ray facilities (ALS-LBNL, Berkeley, and SSRL-SLAC, Stanford) is
supported by the Basic Energy Sciences of the U. S. Department of Energy
(DE-FG-02-05ER46200) and by the Swiss Light Source, Paul Scherrer
Institute, Villigen, Switzerland.
NR 29
TC 651
Z9 654
U1 30
U2 241
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 13
PY 2009
VL 323
IS 5916
BP 919
EP 922
DI 10.1126/science.1167733
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 406KW
UT WOS:000263295400038
PM 19213915
ER
PT J
AU Schwede, T
Sali, A
Honig, B
Levitt, M
Berman, HM
Jones, D
Brenner, SE
Burley, SK
Das, R
Dokholyan, NV
Dunbrack, RL
Fidelis, K
Fiser, A
Godzik, A
Huang, YJ
Humblet, C
Jacobson, MP
Joachimiak, A
Krystek, SR
Kortemme, T
Kryshtafovych, A
Montelione, GT
Moult, J
Murray, D
Sanchez, R
Sosnick, TR
Standley, DM
Stouch, T
Vajda, S
Vasquez, M
Westbrook, JD
Wilson, IA
AF Schwede, Torsten
Sali, Andrej
Honig, Barry
Levitt, Michael
Berman, Helen M.
Jones, David
Brenner, Steven E.
Burley, Stephen K.
Das, Rhiju
Dokholyan, Nikolay V.
Dunbrack, Roland L., Jr.
Fidelis, Krzysztof
Fiser, Andras
Godzik, Adam
Huang, Yuanpeng Janet
Humblet, Christine
Jacobson, Matthew P.
Joachimiak, Andrzej
Krystek, Stanley R., Jr.
Kortemme, Tanja
Kryshtafovych, Andriy
Montelione, Gaetano T.
Moult, John
Murray, Diana
Sanchez, Roberto
Sosnick, Tobin R.
Standley, Daron M.
Stouch, Terry
Vajda, Sandor
Vasquez, Max
Westbrook, John D.
Wilson, Ian A.
TI Outcome of a Workshop on Applications of Protein Models in Biomedical
Research
SO STRUCTURE
LA English
DT Editorial Material
ID MASS-SPECTROMETRY DATA; STRUCTURAL GENOMICS; STRUCTURE PREDICTION;
COUPLED RECEPTOR; HOMOLOGY MODELS; HIGH-THROUGHPUT;
BIOCHEMICAL-CHARACTERIZATION; MACROMOLECULAR ASSEMBLIES;
SACCHAROMYCES-CEREVISIAE; 3-DIMENSIONAL STRUCTURE
AB We describe the proceedings and conclusions from the "Workshop on Applications of Protein Models in Biomedical Research" (the Workshop) that was held at the University of California, San Francisco on 11 and 12 July, 2008. Atthe Workshop, international scientists involved with structure modeling explored (i) how models are currently used in biomedical research, (ii) the requirements and challenges for different applications, and (iii) how the interaction between the computational and experimental research communities could be strengthened to advance the field.
C1 [Schwede, Torsten] Univ Basel, Biozentrum, Swiss Inst Bioinformat, CH-4056 Basel, Switzerland.
[Sali, Andrej] Univ Calif San Francisco, Calif Inst Quantitat Biosci, Dept Pharmaceut Chem, Dept Biopharmaceut Sci, San Francisco, CA 94158 USA.
[Honig, Barry] Columbia Univ, Howard Hughes Med Inst, Ctr Computat Biol & Bioinformat, Dept Biochem & Mol Biophys, New York, NY 10032 USA.
[Levitt, Michael] Stanford Univ, Sch Med, Dept Biol Struct, Stanford, CA 94305 USA.
[Berman, Helen M.; Westbrook, John D.] Rutgers State Univ, Prot Data Bank, Res Collaboratory Struct Bioinformat, Piscataway, NJ 08854 USA.
[Jones, David] UCL, Dept Comp Sci, London WC1E 6BT, England.
[Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.
[Burley, Stephen K.] SGX Pharmaceut Inc, San Diego, CA 92121 USA.
[Das, Rhiju] Univ Washington, Dept Biochem, Seattle, WA 98195 USA.
[Dokholyan, Nikolay V.] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA.
[Dunbrack, Roland L., Jr.] Fox Chase Canc Ctr, Inst Canc Res, Philadelphia, PA 19111 USA.
[Fidelis, Krzysztof] Univ Calif Davis, Genome & Biomed Sci Facil, Davis, CA 95616 USA.
[Fiser, Andras] Albert Einstein Coll Med, Bronx, NY 10461 USA.
[Godzik, Adam] Burnham Inst Med Res, Bioinformat & Syst Biol Program, La Jolla, CA 92037 USA.
[Huang, Yuanpeng Janet; Montelione, Gaetano T.] Rutgers State Univ, Ctr Adv Res Biotechnol, Dept Biochem & Mol Biol, Piscataway, NJ 08854 USA.
[Humblet, Christine] Wyeth Ayerst Res, Compuatat Chem Cheminformat Chem & Screening Sci, Monmouth Jct, NJ 08852 USA.
[Jacobson, Matthew P.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA.
[Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Midwest Ctr Struct Genom, Argonne, IL 60439 USA.
[Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA.
[Krystek, Stanley R., Jr.] Bristol Myers Squibb Co, Res & Discovery, Princeton, NJ 08543 USA.
[Kortemme, Tanja] Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA.
[Kryshtafovych, Andriy] Univ Calif Davis, Prot Struct Predict Ctr, Davis, CA 95616 USA.
[Moult, John] Univ Maryland, Maryland Biotechnol Inst, Ctr Adv Res Biotechnol, Rockville, MD 20850 USA.
[Murray, Diana] Columbia Univ, Ctr Compuatat Biol & Bioinformat, New York, NY 10032 USA.
[Sanchez, Roberto] Mt Sinai Sch Med, Dept Struct & Chem Biol, New York, NY 10029 USA.
[Sosnick, Tobin R.] Univ Chicago, Chicago, IL 60637 USA.
[Standley, Daron M.] Osaka Univ, Syst Immunol Lab, Immunol Frontier Res Ctr, Suita, Osaka 5650871, Japan.
[Vajda, Sandor] Boston Univ, Biomed Engn Struct Bioinformat Lab, Boston, MA 02215 USA.
[Westbrook, John D.] Bocarca, Palo Alto, CA 94306 USA.
[Wilson, Ian A.] Scripps Res Inst, Joint Ctr Struct Genom, La Jolla, CA 92037 USA.
RP Schwede, T (reprint author), Univ Basel, Biozentrum, Swiss Inst Bioinformat, Klingelbergstr 50-70, CH-4056 Basel, Switzerland.
EM torsten.schwede@unibas.ch; sali@salilab.org
RI Dokholyan, Nikolay/B-2238-2009; Schwede, Torsten/A-4650-2008; Standley,
Daron/D-2343-2009; Godzik, Adam/A-7279-2009; Brenner,
Steven/A-8729-2008;
OI Dunbrack, Roland/0000-0001-7674-6667; Jacobson,
Matthew/0000-0001-6262-655X; Dokholyan, Nikolay/0000-0002-8225-4025;
Schwede, Torsten/0000-0003-2715-335X; Godzik, Adam/0000-0002-2425-852X;
Brenner, Steven/0000-0001-7559-6185; Westbrook,
John/0000-0002-6686-5475; Moult, John/0000-0002-3012-2282
FU NIGMS NIH HHS [R01 GM063817, P20 GM076222, P20 GM076222-02S1, R01
GM061867, R01 GM061867-09, R01 GM064700, R01 GM064700-08, R01 GM081642,
R01 GM081642-01, R01 GM081642-02, U54 GM074942, U54 GM074942-04S2, U54
GM074958, U54 GM074958-04S2]; NLM NIH HHS [P41 LM007085]
NR 98
TC 58
Z9 61
U1 0
U2 21
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
J9 STRUCTURE
JI Structure
PD FEB 13
PY 2009
VL 17
IS 2
BP 151
EP 159
DI 10.1016/j.str.2008.12.014
PG 9
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 407SO
UT WOS:000263384800003
PM 19217386
ER
PT J
AU Xu, QP
Sudek, S
McMullan, D
Miller, MD
Geierstanger, B
Jones, DH
Krishna, SS
Spraggon, G
Bursalay, B
Abdubek, P
Acosta, C
Ambing, E
Astakhova, T
Axelrod, HL
Carlton, D
Caruthers, J
Chiu, HJ
Clayton, T
Deller, MC
Duan, L
Elias, Y
Elsliger, MA
Feuerhelm, J
Grzechnik, SK
Hale, J
Han, GW
Haugen, J
Jaroszewski, L
Jin, KK
Klock, HE
Knuth, MW
Kozbial, P
Kumar, A
Marciano, D
Morse, AT
Nigoghossian, E
Okach, L
Oommachen, S
Paulsen, J
Reyes, R
Rife, CL
Trout, CV
van den Bedem, H
Weekes, D
White, A
Wolf, G
Zubieta, C
Hodgson, KO
Wooley, J
Deacon, AM
Godzik, A
Lesley, SA
Wilson, IA
AF Xu, Qingping
Sudek, Sebastian
McMullan, Daniel
Miller, Mitchell D.
Geierstanger, Bernhard
Jones, David H.
Krishna, S. Sri
Spraggon, Glen
Bursalay, Badry
Abdubek, Polat
Acosta, Claire
Ambing, Eileen
Astakhova, Tamara
Axelrod, Herbert L.
Carlton, Dennis
Caruthers, Jonathan
Chiu, Hsiu-Ju
Clayton, Thomas
Deller, Marc C.
Duan, Lian
Elias, Ylva
Elsliger, Marc-Andre
Feuerhelm, Julie
Grzechnik, Slawomir K.
Hale, Joanna
Han, Gye Won
Haugen, Justin
Jaroszewski, Lukasz
Jin, Kevin K.
Klock, Heath E.
Knuth, Mark W.
Kozbial, Piotr
Kumar, Abhinav
Marciano, David
Morse, Andrew T.
Nigoghossian, Edward
Okach, Linda
Oommachen, Silvya
Paulsen, Jessica
Reyes, Ron
Rife, Christopher L.
Trout, Christina V.
van den Bedem, Henry
Weekes, Dana
White, Aprilfawn
Wolf, Guenter
Zubieta, Chloe
Hodgson, Keith O.
Wooley, John
Deacon, Ashley M.
Godzik, Adam
Lesley, Scott A.
Wilson, Ian A.
TI Structural Basis of Murein Peptide Specificity of a
gamma-D-Glutamyl-L-Diamino Acid Endopeptidase
SO STRUCTURE
LA English
DT Article
ID BACTERIAL CELL-WALLS; L-ALANINE AMIDASE; BACILLUS-SUBTILIS; CYSTEINE
PROTEASES; ESCHERICHIA-COLI; LISTERIA-MONOCYTOGENES; CHAP DOMAIN; GENE;
PROTEIN; IDENTIFICATION
AB The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 angstrom resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NIpC/P60 (or CHAP) cysteine peptidase domain. The NIpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.
C1 [Xu, Qingping; Miller, Mitchell D.; Axelrod, Herbert L.; Caruthers, Jonathan; Chiu, Hsiu-Ju; Jin, Kevin K.; Kumar, Abhinav; Oommachen, Silvya; Reyes, Ron; Rife, Christopher L.; van den Bedem, Henry; Wolf, Guenter; Zubieta, Chloe; Deacon, Ashley M.] Stanford Univ, SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA.
[Sudek, Sebastian; Carlton, Dennis; Clayton, Thomas; Deller, Marc C.; Elias, Ylva; Elsliger, Marc-Andre; Han, Gye Won; Marciano, David; Trout, Christina V.; Lesley, Scott A.; Wilson, Ian A.] Scripps Res Inst, La Jolla, CA 92037 USA.
[McMullan, Daniel; Geierstanger, Bernhard; Jones, David H.; Spraggon, Glen; Bursalay, Badry; Abdubek, Polat; Acosta, Claire; Ambing, Eileen; Feuerhelm, Julie; Hale, Joanna; Haugen, Justin; Klock, Heath E.; Knuth, Mark W.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; White, Aprilfawn; Lesley, Scott A.] Novartis Res Fdn, Genom Inst, San Diego, CA 92121 USA.
[Krishna, S. Sri; Astakhova, Tamara; Duan, Lian; Grzechnik, Slawomir K.; Jaroszewski, Lukasz; Morse, Andrew T.; Wooley, John; Godzik, Adam] Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA.
[Krishna, S. Sri; Jaroszewski, Lukasz; Kozbial, Piotr; Weekes, Dana; Godzik, Adam] Burnham Inst Med Res, La Jolla, CA 92037 USA.
EM wilson@scripps.edu
RI subramanian, srikrishna/D-5004-2009; Godzik, Adam/A-7279-2009;
OI subramanian, srikrishna/0000-0002-3263-1048; Godzik,
Adam/0000-0002-2425-852X; Zubieta, Chloe/0000-0003-4558-9333
FU National Institute of General Medical Sciences (NIGMS) Protein Structure
Initiative [U54 GM074898]; U.S. Department of Energy
[DE-AC03-76SF00098]; Lawrence Berkeley National Laboratory
FX The project is sponsored by the National Institute of General Medical
Sciences (NIGMS) Protein Structure Initiative (U54 GM074898). Portions
of this research were carried out at the SSRL and the Advanced Light
Source (ALS). The SSRL is a national user facility operated by Stanford
University on behalf of the U.S. Department of Energy, Office of Basic
Energy Sciences. The SSRL Structural Molecular Biology Program is
supported by the Department of Energy, Office of Biological and
Environmental Research, and by the NIH. The ALS is supported by the
Director, Office of Science, Office of Basic Energy Sciences, Materials
Sciences Division, of the U.S. Department of Energy under contract
number DE-AC03-76SF00098 at the Lawrence Berkeley National Laboratory.
Genomic DNA from Anabaena variabilis ATCC 29413 was a gift from Teresa
Thiel, University of Missouri, St. Louis. Genomic DNA from Nostoc
punctiforme PCC 73102 (ATCC 29133) was a gift from Jack Meeks,
University of California, Davis. The content is solely the
responsibility of the authors and does not necessarily represent the
official views of the NIGMS. We greatly appreciate valuable comments on
the manuscript from William N. Hunter, Division of Biological Chemistry
and Drug Discovery, College of Life Sciences, University of Dundee,
Scotland.
NR 56
TC 39
Z9 41
U1 3
U2 24
PU CELL PRESS
PI CAMBRIDGE
PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA
SN 0969-2126
J9 STRUCTURE
JI Structure
PD FEB 13
PY 2009
VL 17
IS 2
BP 303
EP 313
DI 10.1016/j.str.2008.12.008
PG 11
WC Biochemistry & Molecular Biology; Biophysics; Cell Biology
SC Biochemistry & Molecular Biology; Biophysics; Cell Biology
GA 407SO
UT WOS:000263384800018
PM 19217401
ER
PT J
AU Leung, LR
Qian, Y
AF Leung, L. Ruby
Qian, Yun
TI Atmospheric rivers induced heavy precipitation and flooding in the
western US simulated by the WRF regional climate model
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID OROGRAPHIC PRECIPITATION; PACIFIC-OCEAN; UNITED-STATES;
PARAMETERIZATION; SATELLITE; ALGORITHM; RAINFALL; MOISTURE; CALJET;
FLUXES
AB A 20-year regional climate simulated by the Weather Research and Forecasting model has been analyzed to study the influence of the atmospheric rivers and land surface conditions on heavy precipitation and flooding in the western U. S. The simulation realistically captured the mean and extreme precipitation, and the precipitation/temperature anomalies of all the atmospheric river events between 1980-1999. Contrasting the 1986 President Day and 1997 New Year Day events, differences in atmospheric stability have an influence on the spatial distribution of precipitation. Although both cases yielded similar precipitation, the 1997 case produced more runoff. Antecedent soil moisture, rainfall versus snowfall, and existing snowpack all seem to play a role, leading to a higher runoff to precipitation ratio for the 1997 case. This study underscores the importance of the atmospheric rivers and land surface conditions for predicting heavy precipitation and floods in the current and future climate of the western U.S. Citation: Leung, L. R., and Y. Qian ( 2009), Atmospheric rivers induced heavy precipitation and flooding in the western U. S. simulated by the WRF regional climate model, Geophys. Res. Lett., 36, L03820, doi: 10.1029/2008GL036445.
C1 [Leung, L. Ruby; Qian, Yun] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP Leung, LR (reprint author), Pacific NW Natl Lab, POB 999,K9-30 Batelle Blvd, Richland, WA 99352 USA.
EM ruby.leung@pnl.gov
RI qian, yun/A-5056-2010; qian, yun/E-1845-2011
FU Department of Energy Office of Science Climate Change Prediction Program
(CCPP); North American Regional Climate Change Assessment Program
(NARCCAP); National Oceanic and Atmospheric Administration Climate
Prediction Program for the Americas (CPPA)
FX This study was supported by the Department of Energy Office of Science
Climate Change Prediction Program (CCPP) as part of the multi-agency
funded North American Regional Climate Change Assessment Program
(NARCCAP), and by the National Oceanic and Atmospheric Administration
Climate Prediction Program for the Americas (CPPA). The WRF simulation
was performed using supercomputing resources from the National Center
for Atmospheric Research. Pacific Northwest National Laboratory is
operated for the U.S. Department of Energy by Battelle Memorial
Institute under contract DE-AC06-76RLO1830.
NR 22
TC 73
Z9 75
U1 4
U2 37
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
EI 1944-8007
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 12
PY 2009
VL 36
AR L03820
DI 10.1029/2008GL036445
PG 6
WC Geosciences, Multidisciplinary
SC Geology
GA 406XQ
UT WOS:000263328600004
ER
PT J
AU Xing, XP
Wang, XB
Wang, LS
AF Xing, Xiao-Peng
Wang, Xue-Bin
Wang, Lai-Sheng
TI Photoelectron Angular Distribution and Molecular Structure in Multiply
Charged Anions
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID NEGATIVE ELECTRON-BINDING; REPULSIVE COULOMB BARRIER; GAS-PHASE; IMAGING
SPECTROSCOPY; PHOTODETACHMENT; PHOTODISSOCIATION; ENERGY; IONS;
IONIZATION; CHEMISTRY
AB Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)(2)(2-) (o-, in- and p-BDC2-). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2-, followed by the in- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.
C1 [Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA.
Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA.
EM ls.wang@pnl.gov
FU U.S. Department of Energy; Office of Basic Energy Sciences; Chemical
Science Division; NSF; DOE's Office of Biological and Environmental
Research
FX We thank Prof. M. A. Johnson and his group for valuable discussions and
help during the construction of the imaging analyzer and Prof. H.
Reisler for the BASEX program used for the inverse Abel transform. This
work was supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Chemical Science Division and partly by NSF and
performed at the W. R. Wiley Environmental Molecular Sciences
Laboratory, a national scientific user facility sponsored by DOE's
Office of Biological and Environmental Research and located at Pacific
Northwest National Laboratory, which is operated for DOE by Battelle.
NR 32
TC 9
Z9 9
U1 0
U2 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 12
PY 2009
VL 113
IS 6
BP 945
EP 948
DI 10.1021/jp8073442
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 404EY
UT WOS:000263134900001
PM 19007194
ER
PT J
AU Wigginton, NS
Rosso, KM
Stack, AG
Hochella, MF
AF Wigginton, Nicholas S.
Rosso, Kevin M.
Stack, Andrew G.
Hochella, Michael F., Jr.
TI Long-Range Electron Transfer across Cytochrome-Hematite (alpha-Fe2O3)
Interfaces
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; SHEWANELLA-ONEIDENSIS MR-1;
METAL-REDUCING BACTERIUM; C-TYPE CYTOCHROMES; DECAHEME CYTOCHROMES;
ELECTROCHEMICAL STM; SPECTROSCOPY; DISTANCE; SURFACE; BINDING
AB Electrochemical scanning tunneling microscopy was used to assess the distance dependence of electron transfer facilitated by a bacterial multiheme cytochrome to a single crystal iron oxide surface. We measured tunneling current-distance (I-s) profiles across the nanoscale space between Au STM tips and the basal (001) surface of a hematite (alpha-Fe2O3) crystal and compared them to the case in which an intervening small tetraheme cytochrome (STC) from Shewanella oneidensis was covalently linked to the end of the Au tip. Tunneling profiles were collected at constant surface potentials in solutions having a range of ionic strengths. For the case without intervening cytochrome, at short tip-sample separation, the distance dependence of the tunneling current shows a quasi-linear behavior, whereas at longer distances, near-exponential decay is observed. The different regions can be understood first in terms of reduction of interfacial water and ion layers in the electrical double layer associated with the hematite surface, followed by electron tunneling through bulk water. The effective tunneling range and the transition between the two conduction mechanisms are substantially increased when STC is present in the tunneling junction, suggesting that cytochrome molecules provide enhanced tunneling pathways and stronger electronic coupling to the hematite surface. On the basis of these results, cytochrome-mediated electron transfer during bacterial metal reduction may be possible at distances farther than originally speculated. In addition, as multiheme cytochromes and other similar molecules gain attention for their promising role in fuel cells and molecular electronics, we demonstrate that the solution conditions and surface properties of the substrate must be carefully considered.
C1 [Wigginton, Nicholas S.; Hochella, Michael F., Jr.] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA.
[Rosso, Kevin M.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA.
[Rosso, Kevin M.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.
[Stack, Andrew G.] Georgia Inst Technol, Dept Earth & Atmospher Sci, Atlanta, GA 30332 USA.
RP Wigginton, NS (reprint author), Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland.
EM wigginto@vt.edu
RI Wigginton, Nicholas/F-1747-2011; Stack, Andrew/D-2580-2013
OI Wigginton, Nicholas/0000-0001-9161-6131; Stack,
Andrew/0000-0003-4355-3679
NR 50
TC 11
Z9 11
U1 0
U2 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 12
PY 2009
VL 113
IS 6
BP 2096
EP 2103
DI 10.1021/jp8057349
PG 8
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 404EW
UT WOS:000263134700010
ER
PT J
AU Yi, CW
Szanyi, J
AF Yi, Cheol-Woo
Szanyi, Janos
TI Reaction of NO2 with a Pure, Thick BaO Film: The Effect of Temperature
on the Nature of NOx Species Formed
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID STORAGE MATERIALS; NSR CATALYSTS; BARIUM OXIDE; FT-IR; ADSORPTION;
MODEL; SPECTROSCOPY; REDUCTION; FABRICATION; NIAL(110)
AB The adsorption and reaction of NO2 on a thick (>30 ML), pure BaO film deposited onto an Al2O3/NiAl(I 10) substrate were investigated in the temperature range of 300 - 660 K using temperature programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS) techniques. The adsorption of NO2 on BaO at room temperature and the subsequent decomposition of the thus formed Ba(NOx)(2) species follow the same mechanisms we have reported previously for NO2 adsorption at cryogenic temperatures. In cyclic experiments when the BaO film was exposed to NOx- at 300 K, followed by annealing to 575 K, a large amount of NOx was stored as nitrates, and no saturation was achieved even after the 10th adsorption/anneal cycle. This suggests the gradual conversion of the BaO film into barium nitrate clusters at elevated temperatures. The rate of nitrate formation increases as the sample temperature during NO2 exposure increases up to 610 K, while at even higher temperatures the amount of nitrates formed decreases. NO2 adsorption on the thick BaO film at 610 K results in the formation of strongly bound nitrates as the major NOx species.
C1 [Szanyi, Janos] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA.
[Yi, Cheol-Woo] Sungshin Womens Univ, Dept Chem, Seoul 136742, South Korea.
[Yi, Cheol-Woo] Sungshin Womens Univ, Inst Basic Sci, Seoul 136742, South Korea.
RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MSIN K8-80, Richland, WA 99352 USA.
EM janos.szanyi@pnl.gov
RI Yi, Cheol-Woo/B-3082-2010
OI Yi, Cheol-Woo/0000-0003-4549-5433
NR 29
TC 19
Z9 19
U1 2
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 12
PY 2009
VL 113
IS 6
BP 2134
EP 2140
DI 10.1021/jp806854y
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 404EW
UT WOS:000263134700015
ER
PT J
AU Bussian, DA
Malko, AV
Htoon, H
Chen, YF
Hollingsworth, JA
Klimov, VI
AF Bussian, David A.
Malko, Anton V.
Htoon, Han
Chen, Yongfen
Hollingsworth, Jennifer A.
Klimov, Victor I.
TI Quantum Optics with Nanocrystal Quantum Dots in Solution: Quantitative
Study of Clustering
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID FLUORESCENCE CORRELATION SPECTROSCOPY; CADMIUM SELENIDE NANOCRYSTALS;
SEMICONDUCTOR NANOCRYSTALS; CDSE NANOCRYSTALS; IN-VIVO; BLINKING;
INTERMITTENCY; GAIN
AB Applying a combination of traditional fluorescence correlation spectroscopy and antibunching measurements to solutions of nanocrystal quantum dots (NQDs), we can reliably establish the regime where only one dot or less is present in the detection volume. Under these conditions, it is possible to probe various photophysical properties of colloidal nanocrystals with single-dot sensitivity in their "native" solution environment. We apply this method to quantitative studies of NQD aggregation. By first measuring dilute Rhodamine 590 solutions that have no aggregation, we find that the clustering parameter, < n > (the average number of quantum emitters per diffusing cluster), can be determined with better than 5% accuracy. We then use this technique to quantify clustering of CdSe NQDs prepared either as toluene or aqueous solutions. On the basis of the correlation data, NQDs exhibit minimal aggregation (< n > is less than 1.1-1.2) in fresh as-prepared solutions for both aqueous and nonaqueous systems. On the other hand, sample aging leads to considerable increase in the degree of aggregation as indicated by increased values of < n >. For example, in a sample of biotinylated NQDs aged for 120 days the number of two-dot aggregates becomes approximately equal to that of isolated NQDs. The ability to study single dots in solutions, demonstrated here, opens interesting opportunities for both biorelated research and also for studies of fundamental photophysics of nanocrystals, especially the effects of environment on electronic structures and carrier relaxation behaviors.
C1 [Bussian, David A.; Htoon, Han; Chen, Yongfen; Hollingsworth, Jennifer A.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
[Bussian, David A.; Htoon, Han; Chen, Yongfen; Hollingsworth, Jennifer A.; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Malko, Anton V.] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA.
RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA.
EM klimov@lanl.gov
OI Klimov, Victor/0000-0003-1158-3179; Htoon, Han/0000-0003-3696-2896
FU Office of Science of the U.S. Department of Energy (DOE); Los Alamos
LDRD funds; CINT
FX We thank Peter Goodwin and Jim Werner for insightful discussions and
technical advice. This work was supported by the Office of Science of
the U.S. Department of Energy (DOE) and Los Alamos LDRD funds. Photon
correlation measurements were conducted at the DOE Center for Integrated
Nanotechnologies (CINT) jointly operated by Los Alamos and Sandia
National Laboratories as part of the CINT user program. D.A.B.
acknowledges financial support through the CINT Distinguished
Postdoctoral Fellowship Program.
NR 33
TC 7
Z9 7
U1 0
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 12
PY 2009
VL 113
IS 6
BP 2241
EP 2246
DI 10.1021/jp806219s
PG 6
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 404EW
UT WOS:000263134700030
ER
PT J
AU Visel, A
Blow, MJ
Li, ZR
Zhang, T
Akiyama, JA
Holt, A
Plajzer-Frick, I
Shoukry, M
Wright, C
Chen, F
Afzal, V
Ren, B
Rubin, EM
Pennacchio, LA
AF Visel, Axel
Blow, Matthew J.
Li, Zirong
Zhang, Tao
Akiyama, Jennifer A.
Holt, Amy
Plajzer-Frick, Ingrid
Shoukry, Malak
Wright, Crystal
Chen, Feng
Afzal, Veena
Ren, Bing
Rubin, Edward M.
Pennacchio, Len A.
TI ChIP-seq accurately predicts tissue-specific activity of enhancers
SO NATURE
LA English
DT Article
ID TRANSCRIPTION-FACTOR-BINDING; CONSERVED NONCODING SEQUENCES; EMBRYONIC
STEM-CELLS; HUMAN GENOME; REGULATORY ELEMENTS; GENE DESERTS; CHROMATIN;
IDENTIFICATION; VERTEBRATE; CONSTRAINT
AB A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant- acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non- coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer- associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue- specific enhancers in human biology and disease on a genome- wide scale.
C1 [Visel, Axel; Blow, Matthew J.; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA.
[Blow, Matthew J.; Zhang, Tao; Wright, Crystal; Chen, Feng; Rubin, Edward M.; Pennacchio, Len A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Li, Zirong; Ren, Bing] Univ Calif San Diego, Sch Med, Ludwig Inst Canc Res, La Jolla, CA 92093 USA.
RP Pennacchio, LA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, MS 84-171, Berkeley, CA 94720 USA.
EM LAPennacchio@lbl.gov
RI Visel, Axel/A-9398-2009; Blow, Matthew/G-6369-2012
OI Visel, Axel/0000-0002-4130-7784; Blow, Matthew/0000-0002-8844-9149
FU Berkeley-PGA; National Heart, Lung, & Blood Institute; National Human
Genome Research Institute; American Heart Association; Ludwig Institute
for Cancer Research
FX We wish to thank R. Hosseini and S. Phouanenavong for technical support,
and J. Rubenstein, J. Long, J. Choi and Y. Zhu for help with microarray
experiments. This work was performed under the auspices of the US
Department of Energy's Office of Science, Biological and Environmental
Research Program and by the University of California, Lawrence Berkeley
National Laboratory under contract no. DE-AC02-05CH11231, Lawrence
Livermore National Laboratory under contract no. DE-AC52-07NA27344, and
Los Alamos National Laboratory under contract no. DE-AC02-06NA25396. L.
A. P. and E. M. R. were supported by the Berkeley-PGA, under the
Programs for Genomic Applications, funded by National Heart, Lung, &
Blood Institute, and L. A. P. by the National Human Genome Research
Institute. A. V. was supported by an American Heart Association
postdoctoral fellowship. B. R. was supported by grants from the National
Human Genome Research Institute and the Ludwig Institute for Cancer
Research.
NR 53
TC 819
Z9 837
U1 10
U2 87
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 12
PY 2009
VL 457
IS 7231
BP 854
EP 858
DI 10.1038/nature07730
PG 5
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 406AF
UT WOS:000263266700039
PM 19212405
ER
PT J
AU Liu, XH
Penner, JE
Wang, MH
AF Liu, Xiaohong
Penner, Joyce E.
Wang, Minghuai
TI Influence of anthropogenic sulfate and black carbon on upper
tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global
aerosol model
SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
LA English
DT Article
ID STRATOSPHERIC WATER-VAPOR; GENERAL-CIRCULATION MODEL; CRYSTAL NUMBER
DENSITIES; IN-SITU MEASUREMENTS; CIRRUS CLOUDS; ICE-NUCLEATION;
VERSION-3 CAM3; CONTACT NUCLEATION; RELATIVE-HUMIDITY; SOOT AEROSOLS
AB The influence of anthropogenic aerosol (sulfate and soot) on upper tropospheric (UT) clouds through ice nucleation is studied using the NCAR Community Atmospheric Model Version 3 (CAM3) with a double moment ice microphysics treatment coupled to a global aerosol model (LLNL/UMich IMPACT). Present-day and preindustrial simulations are performed and compared for two scenarios. In the first scenario, the homogeneous freezing of sulfate particles dominates cirrus cloud formation in the upper troposphere (HOM). In the second scenario, both homogeneous and heterogeneous ice nucleation and their competition (HET) are allowed. In the HOM scenario, anthropogenic sulfate results in a global annual mean change of long-wave cloud forcing (LWCF) of 0.20 +/- 0.09 W m(-2) and short-wave cloud forcing (SWCF) of 0.30 +/- 0.17 W m(-2) and an increase of upper tropospheric/lower stratospheric (UT/LS) water vapor by similar to 10%. In the HET scenario, anthropogenic soot may increase global cirrus cloud cover by similar to 2% and UT/LS water vapor by 40% with a change in LWCF of 1.5 W m(-2) (with 1.35 +/- 0.15 W m(-2) from surface soot and 0.12 +/- 0.17 W m(-2) from aircraft soot) if soot acts as efficient ice nuclei (IN) with a threshold ice nucleation RHi of 120-130%. Aerosol effects are most evident (larger than natural variability) over polar regions. However, their influence is significantly reduced if soot has a threshold RHi of 140% with an LWCF change of only 0.23 W m(-2) (with 0.17 +/- 0.18 W m(-2) from surface soot and 0.06 +/- 0.16 W m(-2) from aircraft soot), and cloud forcing changes are statistically insignificant (less than the natural variability). Our results reinforce the importance of understanding ice nucleation on soot from the perspective of their global climate impact.
C1 [Liu, Xiaohong] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA.
[Penner, Joyce E.; Wang, Minghuai] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA.
RP Liu, XH (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, 3200 Q Ave,MSIN K9-24, Richland, WA 99352 USA.
EM xiaohong.liu@pnl.gov
RI Wang, Minghuai/E-5390-2011; Penner, Joyce/J-1719-2012; Liu,
Xiaohong/E-9304-2011
OI Wang, Minghuai/0000-0002-9179-228X; Liu, Xiaohong/0000-0002-3994-5955
FU National Science Foundation [ATM 0333016, NNG04GC01G]; Department of
Energy (DOE) [DE-AC06-76RLO 1830]
FX The authors acknowledge the support from the National Science Foundation
as well as the NASA IDS program under grants ATM 0333016 and NNG04GC01G,
respectively. Partial support from the Department of Energy (DOE)
Environmental Science Division Atmospheric Radiation Measurement (ARM)
program is also gratefully acknowledged. X. L. thanks Yi Wang with the
help of making some plots. The Pacific Northwest National Laboratory is
operated for the DOE by Battelle Memorial Institute under contract
DE-AC06-76RLO 1830.
NR 89
TC 48
Z9 48
U1 1
U2 10
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-897X
EI 2169-8996
J9 J GEOPHYS RES-ATMOS
JI J. Geophys. Res.-Atmos.
PD FEB 11
PY 2009
VL 114
AR D03204
DI 10.1029/2008JD010492
PG 19
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 406XX
UT WOS:000263329300004
ER
PT J
AU Chelikowsky, JR
Zayak, AT
Chan, TL
Tiago, ML
Zhou, Y
Saad, Y
AF Chelikowsky, James R.
Zayak, Alexey T.
Chan, T-L
Tiago, Murilo L.
Zhou, Yunkai
Saad, Yousef
TI Algorithms for the electronic and vibrational properties of nanocrystals
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article; Proceedings Paper
CT 2nd International Conference on Quantum Simulators and Design
CY MAY 31-JUN 03, 2008
CL Tokyo, JAPAN
SP Minist Educ, Culture, Sports, Sci & Technol
ID DENSITY-FUNCTIONAL THEORY; SEMICONDUCTOR NANOCRYSTALS; POROUS SILICON;
NANOSTRUCTURES; LUMINESCENCE; LANCZOS; GAPS
AB Solving the electronic structure problem for nanoscale systems remains a computationally challenging problem. The numerous degrees of freedom, both electronic and nuclear, make the problem impossible to solve without some effective approximations. Here we illustrate some advances in algorithm developments to solve the Kohn-Sham eigen value problem, i.e. we solve the electronic structure problem within density functional theory using pseudopotentials expressed in real space. Our algorithms are based on a nonlinear Chebyshev filtered subspace iteration method, which avoids computing explicit eigenvectors except at the first self-consistent-field iteration. Our method may be viewed as an approach to solve the original nonlinear Kohn-Sham equation by a nonlinear subspace iteration technique, without emphasizing the intermediate linearized Kohn-Sham eigenvalue problems. Replacing the standard iterative diagonalization at each self-consistent-field iteration by a Chebyshev subspace filtering step results in a significant speed-up, often an order of magnitude or more, over methods based on standard diagonalization. We illustrate this method by predicting the electronic and vibrational states for silicon nanocrystals.
C1 [Chelikowsky, James R.; Zayak, Alexey T.; Chan, T-L] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA.
[Chelikowsky, James R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA.
[Chelikowsky, James R.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA.
[Tiago, Murilo L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.
[Zhou, Yunkai] So Methodist Univ, Dept Math, Dallas, TX 75275 USA.
[Saad, Yousef] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA.
RP Chelikowsky, JR (reprint author), Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA.
EM jrc@ices.utexas.edu
RI Chan, Tzu-Liang/C-3260-2015
OI Chan, Tzu-Liang/0000-0002-9655-0917
NR 31
TC 5
Z9 5
U1 1
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD FEB 11
PY 2009
VL 21
IS 6
AR 064207
DI 10.1088/0953-8984/21/6/064207
PG 7
WC Physics, Condensed Matter
SC Physics
GA 396IF
UT WOS:000262584700008
PM 21715910
ER
PT J
AU Ogitsu, T
Gygi, F
Reed, J
Motome, Y
Schwegler, E
Galli, G
AF Ogitsu, Tadashi
Gygi, Francois
Reed, John
Motome, Yukitoshi
Schwegler, Eric
Galli, Giulia
TI Imperfect Crystal and Unusual Semiconductor: Boron, a Frustrated Element
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID BETA-RHOMBOHEDRAL BORON; QUASI-CRYSTALS; ELECTRON-GAS; SPIN ICE;
CONDUCTION; STATE; PSEUDOPOTENTIALS; TRANSITION; STABILITY; MECHANISM
AB All elements, except for helium, appear to solidify into crystalline forms at zero temperature, and it is generally assumed that the introduction of lattice defects results in an increase in internal energy. beta-Rhombohedral boron, a thermodynamically stable form of elemental boron at high temperature, is known to have a large amount of partial occupied sites, seemingly in conflict with our common knowledge. By using lattice Monte Carlo techniques combined with ab initio calculations, we find that the beta-phase is stabilized by a macroscopic amount of intrinsic defects that are responsible not only for entropic effects but also for a reduction in internal energy. These defects enable the conversion of two-center to three-center bonds and are accompanied by the presence of localized, nonconductive electronic states in the optical gap. In addition we find that the ab initio Ising model describing the partial occupancy of beta-boron has macroscopic residual entropy, suggesting that boron is a frustrated system analogous to ice and spin ice.
C1 [Ogitsu, Tadashi; Gygi, Francois; Reed, John; Schwegler, Eric; Galli, Giulia] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Gygi, Francois; Galli, Giulia] Univ Calif Davis, Davis, CA 95616 USA.
[Motome, Yukitoshi] Univ Tokyo, Tokyo, Japan.
RP Ogitsu, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM ogitsu@llnl.gov
RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016
OI Schwegler, Eric/0000-0003-3635-7418
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; DOE/Scidac [DE-FG02-06ER46262]
FX We thank Livermore Computing for providing us with a significant amount
of dedicated computer time as well as with visualization support. We
thank Dr. Jonathan Yates (Corpus Christi College, U.K.) and Professor
Ivo Souza (UC Berkeley) for stimulating discussions on Maximally
Localized Wannier Function analysis. T.O. also thanks Professor Roderich
Moessner (MPI Dresden) for invaluable advice on the physics of
frustration. Part of this work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. Support from DOE/Scidac Grant
DE-FG02-06ER46262 is gratefully acknowledged.
NR 53
TC 62
Z9 62
U1 5
U2 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 11
PY 2009
VL 131
IS 5
BP 1903
EP 1909
DI 10.1021/ja807622w
PG 7
WC Chemistry, Multidisciplinary
SC Chemistry
GA 427PV
UT WOS:000264792100057
PM 19191703
ER
PT J
AU Francis, MJ
Lewis, GF
Linder, EV
AF Francis, Matthew J.
Lewis, Geraint F.
Linder, Eric V.
TI Halo mass functions in early dark energy cosmologies
SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
LA English
DT Article
DE methods: numerical; large-scale structure of Universe
ID CLUSTERS; MODELS; MATTER; CONSTRAINTS; STATISTICS; SUPERNOVAE
AB We examine the linear density contrast at collapse time, delta(c), for large-scale structure in dynamical dark energy cosmologies, including models with early dark energy. Contrary to previous results, we find that as long as dark energy is homogeneous on small scales, delta(c) is insensitive to dark energy properties for parameter values fitting current data, including the case of early dark energy. This is significant since using the correct delta(c) is crucial for accurate Press-Schechter prediction of the halo mass function. Previous results have found an apparent failing of the extended Press-Schechter approach (Sheth-Tormen) for early dark energy. Our calculations demonstrate that with the correct delta(c), the accuracy of this approach is restored. We discuss the significance of this result for the halo mass function and examine what dark energy physics would be needed to cause significant change in delta(c), and the observational signatures this would leave.
C1 [Francis, Matthew J.; Lewis, Geraint F.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
[Linder, Eric V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Francis, MJ (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia.
EM mfrancis@physics.usyd.edu.au
RI Lewis, Geraint/F-9069-2015
OI Lewis, Geraint/0000-0003-3081-9319
FU ARC [DP0665574]; Director, Office of Science, Office of High Energy
Physics, of the US Department of Energy [DE-AC02-05CH11231]
FX We thank Carlos Frenk and Ravi Sheth for useful conversations. GFL
acknowledges support from ARC Discovery Project DP0665574. This work has
been supported in part by the Director, Office of Science, Office of
High Energy Physics, of the US Department of Energy under contract
number DE-AC02-05CH11231.
NR 30
TC 19
Z9 19
U1 0
U2 0
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0035-8711
J9 MON NOT R ASTRON SOC
JI Mon. Not. Roy. Astron. Soc.
PD FEB 11
PY 2009
VL 393
IS 1
BP L31
EP L35
DI 10.1111/j.1745-3933.2008.00592.x
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 399EF
UT WOS:000262782500007
ER
PT J
AU Shukla, N
Nigra, MM
Nuhfer, T
Bartel, MA
Gellman, AJ
AF Shukla, N.
Nigra, M. M.
Nuhfer, T.
Bartel, M. A.
Gellman, A. J.
TI Tailoring the shapes of FexPt100-x nanoparticles
SO NANOTECHNOLOGY
LA English
DT Article
ID FEPT NANOPARTICLES; NANOWIRES
AB FexPt100-x nanoparticles of varying composition have been synthesized with various shapes and sizes using a high pressure synthesis method which allows control of synthesis conditions, in particular the reaction temperature. Tailoring the shapes and sizes of FexPt1-x nanoparticles allows one to control a variety of properties that are relevant to the many potential applications of metallic nanoparticles. Shape and composition can be used to control catalytic activity and to achieve high packing density in self-assembled films. Variation of both nanoparticle size and shape has been achieved by using various different solvents. The solvents used in the nanoparticle synthesis can influence the product because they can play a role as surfactants. Using solvents of various types it has been possible to synthesize FexPt100-x nanoparticles with a variety of shapes including spherical, rod-like, cubic, hexagonal and high aspect ratio wires. Control of nanoparticle shape opens the door to their being used in various technological applications for which spherical nanoparticles are ineffective.
C1 [Shukla, N.] Carnegie Mellon Univ, Inst Complex Engn Syst, Pittsburgh, PA 15213 USA.
[Shukla, N.; Gellman, A. J.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Nigra, M. M.; Bartel, M. A.; Gellman, A. J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA.
[Nuhfer, T.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA.
RP Shukla, N (reprint author), Carnegie Mellon Univ, Inst Complex Engn Syst, 5000 Forbes Ave, Pittsburgh, PA 15213 USA.
EM nisha@andrew.cmu.edu
RI Gellman, Andrew/M-2487-2014
OI Gellman, Andrew/0000-0001-6618-7427
NR 9
TC 7
Z9 7
U1 0
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 11
PY 2009
VL 20
IS 6
AR 065602
DI 10.1088/0957-4484/20/6/065602
PG 5
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 395AK
UT WOS:000262494200022
PM 19417390
ER
PT J
AU Osterhoff, J
Symes, DR
Edens, AD
Moore, AS
Hellewell, E
Ditmire, T
AF Osterhoff, J.
Symes, D. R.
Edens, A. D.
Moore, A. S.
Hellewell, E.
Ditmire, T.
TI Radiative shell thinning in intense laser-driven blast waves
SO NEW JOURNAL OF PHYSICS
LA English
DT Article
ID SHOCK-WAVES; ASTROPHYSICS
AB The structural evolution of blast waves launched by intense laser pulses in gases is investigated. These blast waves exhibit significant energy loss through radiation while propagating in xenon as evidenced by interferometric imaging revealing radiative precursors and deceleration parameters well below those of an energy-conserving wave. Thinning of the blast wave shell from radiative cooling is observed through comparison of shocks launched in gases of differing atomic number. Shell thinning is also measured when the gas density is altered, indicating the influence of conditions within the preshock medium. These results are compared with radiative-hydrodynamic simulations.
C1 [Osterhoff, J.; Symes, D. R.; Edens, A. D.; Ditmire, T.] Univ Texas Austin, Dept Phys, Texas Ctr High Intens Laser Sci, Austin, TX 78712 USA.
[Symes, D. R.] Rutherford Appleton Lab, Cent Laser Facil, Chilton OX11 0OX, Oxon, England.
[Edens, A. D.] Sandia Natl Labs, Inertial Confinement Fus Program, Albuquerque, NM 87059 USA.
[Moore, A. S.; Hellewell, E.] Div Plasma Phys, Awe Aldermaston RG7 4PR, England.
RP Symes, DR (reprint author), Univ Texas Austin, Dept Phys, Texas Ctr High Intens Laser Sci, Austin, TX 78712 USA.
EM dan.symes@stfc.ac.uk
FU National Nuclear Security Administration [DE-FC52-03NA00156]; Office of
Basic Energy Science at DOE; National Science Foundation [PHY-0456870];
Welch Foundation [F-1626]
FX We acknowledge the assistance of S Kneip, R Faustlin, W Grigsby and G
Dyer and useful discussions with J Lazarus, M Hohenberger, R A Smith and
R P Drake. This work was supported by the National Nuclear Security
Administration under Cooperative agreement DE-FC52-03NA00156, the Office
of Basic Energy Science at DOE, the National Science Foundation under
grant PHY-0456870, and the Welch Foundation under grant F-1626.
NR 23
TC 11
Z9 11
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 1367-2630
J9 NEW J PHYS
JI New J. Phys.
PD FEB 11
PY 2009
VL 11
AR 023022
DI 10.1088/1367-2630/11/2/023022
PG 9
WC Physics, Multidisciplinary
SC Physics
GA 412SA
UT WOS:000263743300005
ER
PT J
AU Venturini, M
AF Venturini, Marco
TI Shot-noise seeded microbunching instability: Second-order correction to
the gain function
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Microbunching instability; Space charge; FEL
ID FREE-ELECTRON LASERS; UNDULATOR
AB We determine the second-order correction to the gain function of the microbunching instability in single-pass systems of interest for the next generation of light sources. The calculation applies to the case where the instability is seeded by shot noise. We examine an analytically treatable model of beam dynamics where collective forces are active only in non-dispersive sections of the linac. We find that the second-order term can augment the linear gain significantly while affecting the spectrum of the overall gain only marginally. The weight of the second-order correction relative to the linear gain is found to scale quadratically with respect to R(56). The qualitative behavior predicted by the model is consistent with exact numerical solutions of the Vlasov equations for realistic lattices. (c) 2008 Elsevier B.V. All rights reserved.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Venturini, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM mventurini@lbl.gov
FU Department of Energy [DE-AC02-05H11231]
FX Useful comments from and discussions with Z. Huang, J. Qjang, and A.
Zholents are gratefully acknowledged. Work supported by Department of
Energy Contract no. DE-AC02-05H11231.
NR 13
TC 0
Z9 0
U1 0
U2 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 11
PY 2009
VL 599
IS 2-3
BP 140
EP 145
DI 10.1016/j.nima.2008.11.004
PG 6
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 412EM
UT WOS:000263706500003
ER
PT J
AU Morris, CL
Bowles, TJ
Gonzales, J
Hill, R
Hogan, G
Makela, M
Mortenson, R
Ramsey, J
Saunders, A
Seestrom, SJ
Sondheim, WE
Teasdale, W
Back, HO
Pattie, RW
Holley, AT
Young, AR
Broussard, LJ
Hickerson, KP
Liu, J
Mendenhall, MP
Plaster, B
Mammei, RR
Pitt, M
Vogelaar, RB
Rios, R
Martin, J
AF Morris, C. L.
Bowles, T. J.
Gonzales, J.
Hill, R.
Hogan, G.
Makela, M.
Mortenson, R.
Ramsey, J.
Saunders, A.
Seestrom, S. J.
Sondheim, W. E.
Teasdale, W.
Back, H. O.
Pattie, R. W., Jr.
Holley, A. T.
Young, A. R.
Broussard, L. J.
Hickerson, K. P.
Liu, J.
Mendenhall, M. P.
Plaster, B.
Mammei, R. R.
Pitt, M.
Vogelaar, R. B.
Rios, R.
Martin, J.
TI Multi-wire proportional chamber for ultra-cold neutron detection
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS
SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
LA English
DT Article
DE Ultra-cold neutrons; Multi-wire proportional detector
AB In this paper we describe the principles that have guided our design and the experience we have gained building multi-wire proportional chambers detectors for the ultra-cold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE). Simple robust detectors with 50 cm(2) of active area have been designed. These have been used both in ion chamber and proportional mode for the detection of UCN. (c) Published by Elsevier B.V.
C1 [Morris, C. L.; Bowles, T. J.; Gonzales, J.; Hill, R.; Hogan, G.; Makela, M.; Mortenson, R.; Ramsey, J.; Saunders, A.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.] Los Alamos Natl Lab, Div Phys, Grp P25, Los Alamos, NM 87544 USA.
[Back, H. O.; Pattie, R. W., Jr.; Holley, A. T.; Young, A. R.] N Carolina State Univ, Raleigh, NC 27695 USA.
[Broussard, L. J.] Duke Univ, Durham, NC 27708 USA.
[Hickerson, K. P.; Liu, J.; Mendenhall, M. P.; Plaster, B.] CALTECH, Pasadena, CA 91125 USA.
[Mammei, R. R.; Pitt, M.; Vogelaar, R. B.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA.
[Rios, R.] Idaho State Univ, Pocatello, ID 83209 USA.
[Martin, J.] Univ Winnipeg, Winnipeg, MB R3B 2E9, Canada.
RP Morris, CL (reprint author), Los Alamos Natl Lab, Div Phys, Grp P25, Mail Stop H846, Los Alamos, NM 87544 USA.
EM cmorris@lanl.gov
OI Broussard, Leah/0000-0001-9182-2808; Makela, Mark/0000-0003-0592-3683;
Morris, Christopher/0000-0003-2141-0255
FU US Department of Energy; National Science Foundation; Los Alamos
National Laboratory internal funding (LDRD)
FX This work has been supported in part by the US Department of Energy, by
the National Science Foundation and by Los Alamos National Laboratory
internal funding (LDRD)
NR 8
TC 14
Z9 14
U1 0
U2 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9002
J9 NUCL INSTRUM METH A
JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc.
Equip.
PD FEB 11
PY 2009
VL 599
IS 2-3
BP 248
EP 250
DI 10.1016/j.nima.2008.11.099
PG 3
WC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Nuclear; Physics, Particles & Fields
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics
GA 412EM
UT WOS:000263706500019
ER
PT J
AU Hurth, T
Isidori, G
Kamenik, JF
Mescia, F
AF Hurth, Tobias
Isidori, Gino
Kamenik, Jernej F.
Mescia, Federico
TI Constraints on new physics in MFV models: A model-independent analysis
of Delta F=1 processes
SO NUCLEAR PHYSICS B
LA English
DT Article
ID MINIMAL FLAVOR VIOLATION; UNITARITY TRIANGLE; STANDARD MODEL; B DECAYS;
LOOPS; QCD; SUPERSYMMETRY; LOGARITHMS; MATRIX; ORDER
AB We analyse the constraints on dimension-six Delta F = 1 effective operators in models respecting the MFV hypothesis, both in the one-Higgs doublet case and in the two-Higgs doublet scenario with large tan beta. The constraints are derived mainly from the b -> s inclusive observables measured at the B factories. The implications of these bounds in view of improved measurements in exclusive and inclusive observables in b -> sl(+)l(-) and s -> dv (v) over bar transitions are discussed. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Isidori, Gino; Kamenik, Jernej F.; Mescia, Federico] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Hurth, Tobias] CERN, Div Theory, Dept Phys, CH-1211 Geneva, Switzerland.
[Hurth, Tobias] Stanford Univ, SLAC, Stanford, CA 94309 USA.
[Isidori, Gino] Scuola Normale Super Pisa, I-56126 Pisa, Italy.
[Isidori, Gino] Ist Nazl Fis Nucl, I-56126 Pisa, Italy.
[Kamenik, Jernej F.] Jozef Stefan Inst, Ljubljana 1001, Slovenia.
RP Isidori, G (reprint author), Ist Nazl Fis Nucl, Lab Nazl Frascati, Via E Fermi 40, I-00044 Frascati, Italy.
EM isidori@lnf.infn.it
RI Mescia, Federico/B-9036-2014
OI Mescia, Federico/0000-0003-3582-2162
FU EU [MTRN-CT-2006-035482]
FX We thank J. Charles, S. Descotes-Genon and U. Haisch for interesting
discussions, and D. Guadagnoli for his comments on the manuscript. This
work is supported by the EU under contract MTRN-CT-2006-035482
FLaviaNet.
NR 79
TC 68
Z9 68
U1 0
U2 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0550-3213
EI 1873-1562
J9 NUCL PHYS B
JI Nucl. Phys. B
PD FEB 11
PY 2009
VL 808
IS 1-2
BP 326
EP 346
DI 10.1016/j.nuclphysb.2008.09.040
PG 21
WC Physics, Particles & Fields
SC Physics
GA 382SG
UT WOS:000261625100015
ER
PT J
AU Lukic, Z
Reed, D
Habib, S
Heitmann, K
AF Lukic, Zarija
Reed, Darren
Habib, Salman
Heitmann, Katrin
TI THE STRUCTURE OF HALOS: IMPLICATIONS FOR GROUP AND CLUSTER COSMOLOGY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE large-scale structure of universe; methods: N-body simulations
ID DARK-MATTER HALOES; LARGE-SCALE STRUCTURE; X-RAY MORPHOLOGIES; MASS
FUNCTION; DENSITY PROFILES; GALAXY CLUSTERS; INNER STRUCTURE; EVOLUTION;
SUBSTRUCTURE; UNIVERSALITY
AB The dark matter halo mass function is a key repository of cosmological information over a wide range of mass scales, from individual galaxies to galaxy clusters. N-body simulations have established that the friends-of-friends (FOF) mass function has a universal form to a surprising level of accuracy (less than or similar to 10%). The high-mass tail of the mass function is exponentially sensitive to the amplitude of the initial density perturbations, the mean matter density parameter, Omega(m), and to the dark energy controlled late-time evolution of the density field. Observed group and cluster masses, however, are usually stated in terms of a spherical overdensity (SO) mass which does not map simply to the FOF mass. Additionally, the widely used halo models of structure formation-and halo occupancy distribution descriptions of galaxies within halos-are often constructed exploiting the universal form of the FOF mass function. This again raises the question of whether FOF halos can be simply related to the notion of a spherical overdensity mass. By employing results from Monte Carlo realizations of ideal Navarro-Frenk-White (NFW) halos and N-body simulations, we study the relationship between the two definitions of halo mass. We find that the vast majority of halos (80%-85%) in the mass-range 10(12.5)-10(15.5) h(-1) M(circle dot) indeed allow for an accurate mapping between the two definitions (similar to 5%), but only if the halo concentrations are known. Nonisolated halos fall into two broad classes: those with complex substructure that are poor fits to NFW profiles and those "bridged" by the (isodensity- based) FOF algorithm. A closer investigation of the bridged halos reveals that the fraction of these halos and their satellite mass distribution is cosmology dependent. We provide a preliminary discussion of the theoretical and observational ramifications of these results.
C1 [Lukic, Zarija] Univ Illinois, Dept Astron, Urbana, IL 61801 USA.
[Lukic, Zarija; Reed, Darren; Habib, Salman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Reed, Darren; Heitmann, Katrin] Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA.
RP Lukic, Z (reprint author), Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.
NR 53
TC 59
Z9 59
U1 0
U2 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2009
VL 692
IS 1
BP 217
EP 228
DI 10.1088/0004-637X/692/1/217
PG 12
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 410CG
UT WOS:000263553000021
ER
PT J
AU Estrada, J
Sefusatti, E
Frieman, JA
AF Estrada, Juan
Sefusatti, Emiliano
Frieman, Joshua A.
TI THE CORRELATION FUNCTION OF OPTICALLY SELECTED GALAXY CLUSTERS IN THE
SLOAN DIGITAL SKY SURVEY
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE cosmology: observations; galaxies: clusters: individual (MaxBCG);
large-scale structure of universe
ID LUMINOUS RED GALAXIES; BARYONIC ACOUSTIC-OSCILLATIONS; LARGE-SCALE
STRUCTURE; PROBING DARK ENERGY; POWER SPECTRUM; HIERARCHICAL-MODELS;
SELF-CALIBRATION; REDSHIFT SURVEYS; MATTER HALOES; VOID NETWORK
AB We measure the two-point spatial correlation function for clusters selected from the photometric MaxBCG galaxy cluster catalog for the Sloan Digital Sky Survey (SDSS). We evaluate the correlation function for several cluster samples using different cuts in cluster richness. Fitting the results to power laws, xi cc(r) = (r/R(0))(-gamma), the estimated correlation length R(0) as a function of richness is broadly consistent with previous cluster observations and with expectations from N-body simulations. We study how the linear bias parameter scales with richness and compare our results to theoretical predictions. Since these measurements extend to very large scales, we also compare them to models that include the baryon acoustic oscillation feature and that account for the smoothing effects induced by errors in the cluster photometric redshift estimates. For the largest cluster sample, corresponding to a richness threshold of N(200) >= 10, we find only weak evidence, of about 1.4 sigma-1.7 sigma significance, for the baryonic acoustic oscillation signature in the cluster correlation function.
C1 [Estrada, Juan; Sefusatti, Emiliano; Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
[Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.
[Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.
RP Estrada, J (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA.
EM estrada@fnal.gov
OI Sefusatti, Emiliano/0000-0003-0473-1567
FU Alfred P. Sloan Foundation; Participating Institutions; National Science
Foundation; U.S. Department of Energy; National Aeronautics and Space
Administration; Japanese Monbukagakusho; Max Planck Society; Higher
Education Funding Council for England
FX Funding for the creation and distribution of the SDSS and SDSS-II has
been provided by the Alfred P. Sloan Foundation, the Participating
Institutions, the National Science Foundation, the U.S. Department of
Energy, the National Aeronautics and Space Administration, the Japanese
Monbukagakusho, the Max Planck Society, and the Higher Education Funding
Council for England. The SDSS web site is http://www.sdss.org/.
NR 81
TC 36
Z9 36
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2009
VL 692
IS 1
BP 265
EP 282
DI 10.1088/0004-637X/692/1/265
PG 18
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 410CG
UT WOS:000263553000025
ER
PT J
AU Tessein, JA
Smith, CW
MacBride, BT
Matthaeus, WH
Forman, MA
Borovsky, JE
AF Tessein, Jeffrey A.
Smith, Charles W.
MacBride, Benjamin T.
Matthaeus, William H.
Forman, Miriam A.
Borovsky, Joseph E.
TI SPECTRAL INDICES FOR MULTI-DIMENSIONAL INTERPLANETARY TURBULENCE AT 1 AU
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE MHD; solar wind; turbulence
ID MEAN MAGNETIC-FIELD; SOLAR-WIND FLUCTUATIONS; ALFVENIC TURBULENCE;
DISSIPATION RANGE; MHD TURBULENCE; INERTIAL-RANGE; POWER SPECTRA;
ANISOTROPY; MAGNETOHYDRODYNAMICS; CASCADE
AB We examine Advanced Composition Explorer and Helios 1 data in search of evidence for an anisotropic spectrum of interplanetary magnetic and velocity field fluctuations. Specifically, we focus on the power-law indices of the fluctuation spectra and associated second-order structure functions and ask whether the index varies systematically with the angle between the mean magnetic field and the wind velocity. We extend previous results to show convincingly that it does not. Several popular theories for magnetohydrodynamic turbulence predict a significant variation as part of the turbulent cascade dynamic. We offer some observations on why the predicted anisotropy is not present.
C1 [Tessein, Jeffrey A.; Smith, Charles W.] Univ New Hampshire, Dept Phys, Ctr Space Sci, Durham, NH 03824 USA.
[MacBride, Benjamin T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
[Matthaeus, William H.] Univ Delaware, Dept Phys, Newark, DE USA.
[Matthaeus, William H.] Univ Delaware, Bartol Res Inst, Newark, DE USA.
[Forman, Miriam A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY USA.
[Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Tessein, JA (reprint author), Univ New Hampshire, Dept Phys, Ctr Space Sci, Durham, NH 03824 USA.
EM jay22@cisunix.unh.edu; Charles.Smith@unh.edu; Ben.MacBride@gmail.com;
whm@udel.edu; Miriam.Forman@sunysb.edu; jborovsky@lanl.gov
FU Caltech [44A-1062037]; NASA Sun-Earth Connection Guest Investigator
[NNX08AJ19G]; NASA [NNH04AA17I, NNH06AD52, INNG05HL43I, NNX08AI47G];
National Science Foundation (NSF) [ATM-0539995, ATM-0752135]
FX The authors thank the ACE/SWEPAM team for providing the thermal proton
data used in this study. J.A.T., B.T.M., and C. W. S. are funded by
Caltech subcontract 44A-1062037 to the University of New Hampshire in
support of the ACE/MAG instrument. C. W. S. and M. A. F. are supported
by NASA Sun-Earth Connection Guest Investigator grant NNX08AJ19G.
J.A.T., C. W. S., and J.E.B. are supported by NASA grants NNH04AA17I
(RSSW@ 1AU), NNH06AD52I (Solar & Heliospheric SR& T), and NNG05HL43I
(Sun- Earth Connection GI). W. H. M. acknowledges support of National
Science Foundation (NSF) ATM-0539995, ATM-0752135 (SHINE) and NASA
NNX08AI47G (Heliophysics Theory). J. A. T. is an undergraduate physics
major at the University of New Hampshire. B. T. M. was an undergraduate
at UNH when he constructed the Helios database used here and he is now a
graduate student at UC/Berkeley. We acknowledge helpful discussions with
B. J. Vasquez.
NR 43
TC 56
Z9 56
U1 0
U2 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2009
VL 692
IS 1
BP 684
EP 693
DI 10.1088/0004-637X/692/1/684
PG 10
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 410CG
UT WOS:000263553000058
ER
PT J
AU Cunningham, AJ
Frank, A
Carroll, J
Blackman, EG
Quillen, AC
AF Cunningham, Andrew J.
Frank, Adam
Carroll, Jonathan
Blackman, Eric G.
Quillen, Alice C.
TI PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE hydrodynamics; ISM: clouds; ISM: jets and outflows; stars: formation;
turbulence
ID DRIVEN BIPOLAR OUTFLOWS; HUBBLE-SPACE-TELESCOPE; MOLECULAR CLOUDS;
STAR-FORMATION; MAGNETOHYDRODYNAMIC TURBULENCE; HYDRODYNAMIC
SIMULATIONS; SUPERSONIC TURBULENCE; INTERSTELLAR-MEDIUM; CLUSTER
FORMATION; PROPER MOTIONS
AB The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.
C1 [Cunningham, Andrew J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA.
RP Cunningham, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
EM ajc4@pas.rochester.edu
OI Carroll-Nellenback, Jonathan/0000-0003-3265-7210
FU NASA [20269]; National Science Foundation [AST0406823, AST-0507519,
PHY-0552695]; Space Telescope Science Institute [HST-AR-10972,
HST-AR-11250, HST-AR-11252]; Lawrence Livermore National Laboratory
[DE-AC52-07NA27344]; University of Rochester Laboratory for Laser
Energetics [DE-FC0302NA00057]
FX We thank Chris Matzner and Chris McKee for extremely useful discussions.
Hector Arce, John Bally, and Pat Hartigan were also generous with their
time. Tim Dennis, Kris Yirak, Brandon Schroyer, and Mike Laski provided
invaluable support and help. Support for this work was in part provided
by NASA through awards issued by JPL/Caltech through Spitzer program
20269, the National Science Foundation through grants AST0406823,
AST-0507519 and PHY-0552695 as well as the Space Telescope Science
Institute through grants HST-AR-10972, HST-AR-11250, and HST-AR-11252.
Andrew Cunningham received support under the auspices of the US
Department of Energy by Lawrence Livermore National Laboratory under
contact DE-AC52-07NA27344. We also thank the University of Rochester
Laboratory for Laser Energetics and funds received through the DOE
Cooperative Agreement No. DE-FC0302NA00057.
NR 54
TC 22
Z9 22
U1 0
U2 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD FEB 10
PY 2009
VL 692
IS 1
BP 816
EP 826
DI 10.1088/0004-637X/692/1/816
PG 11
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 410CG
UT WOS:000263553000067
ER
PT J
AU Glasner, SA
Truran, JW
AF Glasner, S. Ami
Truran, James W.
TI CARBON-NITROGEN-OXYGEN "BREAKOUT" AND NUCLEOSYNTHESIS IN CLASSICAL NOVAE
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE binaries: close; novae, cataclysmic variables; stars: abundances; white
dwarfs
ID ACCRETING WHITE-DWARFS; CNO ABUNDANCES; OUTBURSTS; EVOLUTION;
CONVECTION; EXPLOSION; MODELS; SOLAR
AB For very slow white dwarf accretors in cataclysmic variables, Townsley & Bildsten found a relation between the accretion rate (M) over dot and the central temperature T-c of the white dwarf. According to this relation, for (M) over dot less than 10(-10) M-circle dot yr(-1), T-c is much lower than 10(7) K. Motivated by this study, we follow the thermonuclear runaway on massive white dwarfs (M-WD = 1.25-1.40 M-circle dot) with T-c lower than 10(7) K, accreting matter of solar composition. We demonstrate that in this range of the relevant parameter space (T-c, M-WD, and (M) over dot), the slope of the relation between the peak temperatures achieved during the runaway and T-c becomes much steeper than its value for T-c above 10(7) K. The peak temperatures we derive can lead to nuclear breakout from the conventional "hot carbon-nitrogen-oxygen" cycle. When breakout conditions are achieved the heavy-element abundances can show a much wider variety than what is possible with the common enrichment mechanisms.
C1 [Glasner, S. Ami] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
[Truran, James W.] Univ Chicago, Enrico Fermi Inst, Dept Astron & Astrophys, Chicago, IL 60637 USA.
[Truran, James W.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA.
RP Glasner, SA (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel.
FU University of Chicago, Department of Energy [B523820]; National Science
Foundation [PHY 02-16783]; U.S. Department of Energy, Office of Nuclear
Physics [DE-AC02-06CH11357]
FX This work is supported in part at the University of Chicago by the
Department of Energy under Grant B523820 to the ASC/Alliances Center for
Astrophysical Thermonuclear Flashes and by the National Science
Foundation under Grant PHY 02-16783 for the Frontier Center "Joint
Institute for Nuclear Astrophysics" (JINA), and at the Argonne National
Laboratory by the U.S. Department of Energy, Office of Nuclear Physics,
under contract DE-AC02-06CH11357.
NR 24
TC 17
Z9 17
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 2041-8205
EI 2041-8213
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 10
PY 2009
VL 692
IS 1
BP L58
EP L61
DI 10.1088/0004-637X/692/1/L58
PG 4
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 404JY
UT WOS:000263149000013
ER
PT J
AU Zhang, WQ
MacFadyen, A
Wang, P
AF Zhang, Weiqun
MacFadyen, Andrew
Wang, Peng
TI THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF THE
KELVIN-HELMHOLTZ INSTABILITY: MAGNETIC FIELD AMPLIFICATION BY A
TURBULENT DYNAMO
SO ASTROPHYSICAL JOURNAL LETTERS
LA English
DT Article
DE gamma rays: bursts; instabilities; magnetic fields; methods: numerical;
MHD; relativity; turbulence
ID GAMMA-RAY BURST; PARTICLE-ACCELERATION; ORIGIN; SUPERNOVA; SHOCK
AB Magnetic field strengths inferred for relativistic outflows including gamma-ray bursts ( GRBs) and active galactic nuclei are larger than naively expected by orders of magnitude. We present three-dimensional relativistic magnetohydrodynamic simulations demonstrating amplification and saturation of a magnetic field by a macroscopic turbulent dynamo triggered by the Kelvin-Helmholtz shear instability. We find rapid growth of electromagnetic energy due to the stretching and folding of field lines in the turbulent velocity field resulting from nonlinear development of the instability. Using conditions relevant for GRB internal shocks and late phases of GRB afterglow, we obtain amplification of the electromagnetic energy fraction to epsilon(B) similar to 5 x 10(-3). This value decays slowly after the shear is dissipated and appears to be largely independent of the initial field strength. The conditions required for operation of the dynamo are the presence of velocity shear and some seed magnetization both of which are expected to be commonplace. We also find that the turbulent kinetic energy spectrum for the case studied obeys Kolmogorov's 5/3 law and that the electromagnetic energy spectrum is essentially flat with the bulk of the electromagnetic energy at small scales.
C1 [Zhang, Weiqun; MacFadyen, Andrew] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA.
[Wang, Peng] Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA.
[Wang, Peng] Stanford Phys Dept, Menlo Pk, CA 94025 USA.
RP Zhang, WQ (reprint author), NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA.
OI MacFadyen, Andrew/0000-0002-0106-9013
FU U.S. Department of Energy [DE-AC02-98CH10886]; State of New York; New
York State Foundation for Science, Technology and Innovation (NYSTAR)
FX We are greatly indebted to Andrei Gruzinov for many stimulating
discussions. We would also like to thank Yosi Gelfand and Martin Pessah
for useful discussions. This research utilized resources at the New York
Center for Computational Sciences at Stony Brook University/Brookhaven
National Laboratory which is supported by the U.S. Department of Energy
under contract DE-AC02-98CH10886 and by the State of New York and the
CCNI, supported by the New York State Foundation for Science, Technology
and Innovation (NYSTAR).
NR 24
TC 54
Z9 55
U1 0
U2 1
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
J9 ASTROPHYS J LETT
JI Astrophys. J. Lett.
PD FEB 10
PY 2009
VL 692
IS 1
BP L40
EP L44
DI 10.1088/0004-637X/692/1/L40
PG 5
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 404JY
UT WOS:000263149000009
ER
PT J
AU Liu, B
Chen, Y
Doukov, T
Soltis, SM
Stout, CD
Fee, JA
AF Liu, Bin
Chen, Ying
Doukov, Tzanko
Soltis, S. Michael
Stout, C. David
Fee, James A.
TI Combined Microspectrophotometric and Crystallographic Examination of
Chemically Reduced and X-ray Radiation-Reduced Forms of Cytochrome ba(3)
Oxidase from Thermus thermophilus: Structure of the Reduced Form of the
Enzymes
SO BIOCHEMISTRY
LA English
DT Article
ID C-OXIDASE; SPECTROSCOPIC CHARACTERIZATION; MACROMOLECULAR STRUCTURES;
PARACOCCUS-DENITRIFICANS; PROTEIN CRYSTALLOGRAPHY; MAXIMUM-LIKELIHOOD;
OXYGEN REDUCTASES; MEMBRANE-PROTEIN; TERMINAL OXIDASE; 2.8 ANGSTROM
AB Three paths for obtaining crystals of reduced (II-E4Q/I-K258R) cytochrome ba(3) are described, and the structures of these are reported at similar to 2.8-3.0 angstrom resolution. Micro spectrophotometry of single crystals of Thermus ba3 oxidase at 100 K was used to show that crystals of the oxidized enzyme are reduced in an intense X-ray (beam line 7-1 at the Stanford Synchrotron Radiation Laboratory), being nearly complete in 1 min. The previously reported structures of ba3 (Protein Data Bank entries and
), having a crystallographically detectable water between the CUB and Fe,,3 metals of the dinuclear center, actually represent the X-ray radiation-reduced enzyme. Dithionite-reduced crystals or crystals formed from dithionite-reduced enzyme revealed the absence of the above-mentioned water and an increase in the Cu-B-Fe-a3 distance of similar to 0.3 A. The new structures are discussed in terms of enzyme function. An unexpected optical absorption envelope at similar to 590 nm is also reported. This spectral feature is tentatively thought to arise from a five-coordinate, low-spin, ferrous heme 613 that is trapped in the frozen crystals.
C1 [Doukov, Tzanko; Soltis, S. Michael] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
[Liu, Bin; Chen, Ying; Stout, C. David; Fee, James A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA.
RP Soltis, SM (reprint author), Stanford Synchrotron Radiat Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.
EM soltis@slac.stanford.edu; dave@scripps.edu; jafee@scripps.edu
RI Liu, Bin/G-1591-2012;
OI Liu, Bin/0000-0002-6581-780X
FU NIH [GM35342]; Stanford Synchrotron Radiation Laboratory (SSRL); U.S.
Department of Energy, Office of Basic Energy Sciences
FX Supported by NIH Grant GM35342 (J.A.F.). Part of this research was
carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a
national user facility operated by Stanford University on behalf of the
U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL
Structural Molecular Biology Program is supported by the Department of
Energy, Office of Biological and Environmental Research, and by the
National Institutes of Health, National Center for Research Resources,
Biomedical Technology Program, and the National Institute of General
Medical Sciences.
NR 36
TC 29
Z9 30
U1 0
U2 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD FEB 10
PY 2009
VL 48
IS 5
BP 820
EP 826
DI 10.1021/bi801759a
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 402YB
UT WOS:000263047900004
PM 19140675
ER
PT J
AU Zhang, LM
Lichtmannegger, J
Summer, KH
Webb, S
Pickering, IJ
George, GN
AF Zhang, Limei
Lichtmannegger, Josef
Summer, Karl H.
Webb, Samuel
Pickering, Ingrid J.
George, Graham N.
TI Tracing Copper-Thiomolybdate Complexes in a Prospective Treatment for
Wilson's Disease
SO BIOCHEMISTRY
LA English
DT Article
ID RAY-ABSORPTION SPECTROSCOPY; CUPROUS-THIOLATE CLUSTERS; AMMONIUM
TETRATHIOMOLYBDATE; POLYATOMIC-MOLECULES; TRANSPORTING ATPASE; INITIAL
THERAPY; ANIMAL-MODEL; LEC RATS; GENE; LIVER
AB Wilson's disease is a human genetic disorder which results in copper accumulation in liver and brain. Treatments such as copper chelation therapy or dietary supplementation with zinc can ameliorate the effects of the disease, but if left untreated, it results in hepatitis, neurological complications, and death. Tetrathiomolybdate (TTM) is a promising new treatment for Wilson's disease which has been demonstrated both in an animal model and in clinical trials. X-ray absorption spectroscopy suggests that TTM acts as a novel copper chelator, forming a complex with accumulated copper in liver. We have used X-ray absorption spectroscopy and X-ray fluorescence imaging to trace the molecular form and distribution of the complex in liver and kidney of an animal model of human Wilson's disease. Our work allows new insights into metabolism of the metal complex in the diseased state.
C1 [Zhang, Limei; Pickering, Ingrid J.; George, Graham N.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada.
[Lichtmannegger, Josef; Summer, Karl H.] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth GmbH, Inst Toxicol, D-85764 Neuherberg, Germany.
[Webb, Samuel] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA.
RP George, GN (reprint author), Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada.
EM g.george@usask.ca
RI Webb, Samuel/D-4778-2009; George, Graham/E-3290-2013; Pickering,
Ingrid/A-4547-2013;
OI Webb, Samuel/0000-0003-1188-0464; Pickering, Ingrid/0000-0002-0936-2994
NR 43
TC 34
Z9 35
U1 1
U2 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD FEB 10
PY 2009
VL 48
IS 5
BP 891
EP 897
DI 10.1021/bi801926e
PG 7
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 402YB
UT WOS:000263047900011
PM 19146437
ER
PT J
AU Wang, C
Yin, HG
Chan, R
Peng, S
Dai, S
Sun, SH
AF Wang, Chao
Yin, Hongfeng
Chan, Ryan
Peng, Sheng
Dai, Sheng
Sun, Shouheng
TI One-Pot Synthesis of Oleylamine Coated AuAg Alloy NPs and Their
Catalysis for CO Oxidation
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID GOLD-SILVER NANOPARTICLES; OPTICAL-PROPERTIES; PHASE SYNTHESIS;
CLUSTERS; SIZE; RELAXATION; DEPENDENCE; SUPPORT; SHAPE
C1 [Wang, Chao; Chan, Ryan; Peng, Sheng; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA.
[Wang, Chao] Brown Univ, Div Engn, Providence, RI 02912 USA.
[Yin, Hongfeng; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Wang, C (reprint author), Argonne Natl Lab, Div Sci Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM chaowang@anl.gov; ssun@brown.edu
RI Peng, Sheng/E-7988-2010; Wang, Chao/F-4558-2012; Dai, Sheng/K-8411-2015
OI Wang, Chao/0000-0001-7398-2090; Dai, Sheng/0000-0002-8046-3931
FU NSF/DMR [0606264]; Brown University Seed Fund; DOE Basic Energy Sciences
at Oak Ridge
FX This work was supported by NSF/DMR 0606264 and the Brown University Seed
Fund and partially by DOE Basic Energy Sciences at Oak Ridge.
NR 29
TC 94
Z9 94
U1 10
U2 95
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 10
PY 2009
VL 21
IS 3
BP 433
EP 435
DI 10.1021/cm802753j
PG 3
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 402YL
UT WOS:000263048900001
ER
PT J
AU Christensen, ST
Elam, JW
Lee, B
Feng, Z
Bedzyk, MJ
Hersam, MC
AF Christensen, Steven T.
Elam, Jeffrey W.
Lee, Byeongdu
Feng, Zhenxing
Bedzyk, Michael J.
Hersam, Mark C.
TI Nanoscale Structure and Morphology of Atomic Layer Deposition Platinum
on SrTiO3 (001)
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID SMALL-ANGLE SCATTERING; PHOTOCATALYTIC HYDROGEN-PRODUCTION;
X-RAY-SCATTERING; STRONTIUM-TITANATE; GRAZING-INCIDENCE; FILM GROWTH;
THIN-FILMS; CATALYSTS; SURFACES; ETHANOL
AB The early stages of nucleation and growth of atomic layer deposition (ALD) platinum on SrTiO3 (001) have been studied. Scanning electron microscopy reveals the ALD Pt deposits as discrete nanoparticles that grow and coalesce with increasing number of ALD cycles, ultimately resulting in a continuous film after similar to 40 cycles. Atomic force microscopy shows the films to be fine-grained and highly conformal such that the 0.4 nm atomic steps of the underlying SrTiO3 (001) surface remain visible even after 80 Pt ALD cycles. Grazing-incidence small-angle X-ray scattering (GISAXS) studies demonstrate that the early stages of Pt ALD yields nanoparticles that are well approximated as cylinders with a height to radius ratio that is nearly unity. Consistent with nanoparticle coalescence, GISAXS also reveals an interparticle spacing that increases with the number of ALD cycles. X-ray fluorescence measurements of the Pt coverage reveal growth dynamics in which the Pt deposition is initially faster than the steady-state growth rate that emerges after 40-70 ALD cycles. These experimental results are understood through the application of a model that suggests that the SrTiO3 surface is more reactive than the Pt species and that Pt diffusion is operative in nanoparticle formation. Overall, this study delineates ALD growth conditions for forming either Pt nanoparticles or continuous Pt thin films on SrTiO3 (001), thus presenting potentially useful substrates for catalysis and microelectronics, respectively.
C1 [Christensen, Steven T.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Bedzyk, Michael J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Hersam, MC (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
EM m-hersam@northwestem.edu
RI Hersam, Mark/B-6739-2009; Bedzyk, Michael/B-7503-2009; Bedzyk,
Michael/K-6903-2013; Feng, Zhenxing/J-7457-2013;
OI Feng, Zhenxing/0000-0001-7598-5076; Lee, Byeongdu/0000-0003-2514-8805
FU Institute for Catalysis in Energy Processes, Northwestern University
[DE-FG02-03ER15457]; Argonne National Laboratory by the U.S. Department
of Energy [DE-AC02-06CH11357]; Materials Research Science and
Engineering Center through National Science Foundation [DMR-0520513]
FX This work was supported by the Institute for Catalysis in Energy
Processes, Northwestern University (U.S. Department of Energy Grant
DE-FG02-03ER15457). The X-ray measurements performed at the Advanced
Photon Source, Sector 12 (BESSRC), and the electron microscopy performed
at the Electron Microscopy Center for Materials Research were supported
at Argonne National Laboratory by the U.S. Department of Energy under
Contract DE-AC02-06CH11357 to U Chicago Argonne, LLC. This work made use
of Northwestern University Central Facilities supported by the Materials
Research Science and Engineering Center through National Science
Foundation Contract DMR-0520513. The authors are also thankful to Robin
Koshy, Michael Graham, and Jerrold Carsello at NU for converting a Cr
rotating anode X-ray target into a Zr target by sputter deposition.
NR 33
TC 48
Z9 49
U1 5
U2 46
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
J9 CHEM MATER
JI Chem. Mat.
PD FEB 10
PY 2009
VL 21
IS 3
BP 516
EP 521
DI 10.1021/cm8026863
PG 6
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 402YL
UT WOS:000263048900015
ER
PT J
AU Walsh, A
Yan, Y
Huda, MN
Al-Jassim, MM
Wei, SH
AF Walsh, Aron
Yan, Yanfa
Huda, Muhammad N.
Al-Jassim, Mowafak M.
Wei, Su-Huai
TI Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi
s and V d Orbitals
SO CHEMISTRY OF MATERIALS
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; SOLAR HYDROGEN-PRODUCTION; WAVE BASIS-SET;
VISIBLE-LIGHT; AB-INITIO; THIN-FILMS; PHOTOELECTROCHEMICAL
DECOMPOSITION; PHOTOCATALYTIC ACTIVITY; ALPHA-PBO; WATER
AB We report the first-principles electronic structure of BiVO4, a promising photocatalyst for hydrogen generation. BiVO4 is found to be a direct band gap semiconductor, despite having band extrema away from the Brillouin zone center. Coupling between Bi 6s and O 2p forces an upward dispersion of the valence band at the zone boundary; however, a direct gap is maintained via coupling between V 3d, O 2p, and Bi 6p, which lowers the conduction band minimum. These interactions result in symmetric hole and electron masses. Implications for the design of ambipolar metal oxides are discussed.
C1 [Walsh, Aron; Yan, Yanfa; Huda, Muhammad N.; Al-Jassim, Mowafak M.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Walsh, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM aron_walsh@nrel.gov
RI Walsh, Aron/A-7843-2008; Huda, Muhammad/C-1193-2008
OI Walsh, Aron/0000-0001-5460-7033; Huda, Muhammad/0000-0002-2655-498X
FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308]; DOE
[DE-AC02-05CH11231]
FX This work is supported by the U.S. Department of Energy (DOE) under
Contract No. DE-AC36-08GO28308. Computing resources of the National
Energy Research Scientific Computing Center were employed, which is
supported by DOE under Contract No. DE-AC02-05CH11231.
NR 64
TC 261
Z9 263
U1 19
U2 236
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0897-4756
EI 1520-5002
J9 CHEM MATER
JI Chem. Mat.
PD FEB 10
PY 2009
VL 21
IS 3
BP 547
EP 551
DI 10.1021/cm802894z
PG 5
WC Chemistry, Physical; Materials Science, Multidisciplinary
SC Chemistry; Materials Science
GA 402YL
UT WOS:000263048900019
ER
PT J
AU Adams, T
Batra, P
Bugel, L
Camilleri, L
Conrad, JM
De Gouvea, A
Fisher, PH
Formaggio, JA
Jenkins, J
Karagiorgi, G
Kobilarcik, TR
Kopp, S
Kyle, G
Loinaz, WA
Mason, DA
Milner, R
Moore, R
Morfin, JG
Nakamura, M
Naples, D
Nienaber, P
Olness, FI
Owens, JF
Pate, SF
Pronin, A
Seligman, WG
Shaevitz, MH
Schellman, H
Schienbein, I
Syphers, MJ
Tait, TMP
Takeuchi, T
Tan, CY
De Water, RGV
Yamamoto, RK
Yu, JY
AF Adams, T.
Batra, P.
Bugel, L.
Camilleri, L.
Conrad, J. M.
De Gouvea, A.
Fisher, P. H.
Formaggio, J. A.
Jenkins, J.
Karagiorgi, G.
Kobilarcik, T. R.
Kopp, S.
Kyle, G.
Loinaz, W. A.
Mason, D. A.
Milner, R.
Moore, R.
Morfin, J. G.
Nakamura, M.
Naples, D.
Nienaber, P.
Olness, F. I.
Owens, J. F.
Pate, S. F.
Pronin, A.
Seligman, W. G.
Shaevitz, M. H.
Schellman, H.
Schienbein, I.
Syphers, M. J.
Tait, T. M. P.
Takeuchi, T.
Tan, C. Y.
De Water, R. G. Van
Yamamoto, R. K.
Yu, J. Y.
TI TERASCALE PHYSICS OPPORTUNITIES AT A HIGH STATISTICS, HIGH ENERGY
NEUTRINO SCATTERING EXPERIMENT: NuSOnG
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A
LA English
DT Article
DE Electroweak radiative corrections; neutral currents; processes in other
lepton-lepton interactions; nonstandard-model neutrinos; right-handed
neutrinos; Z bosons
ID QUASI-DEGENERATE NEUTRINOS; MU-L-TAU; GAUGED B-3L(TAU); FLAVOR SYMMETRY;
ELECTROWEAK PARAMETERS; SUPERSYMMETRIC MODELS; STANDARD MODEL; DETECTOR;
CALORIMETER; MASSES
AB This paper presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes. nu(mu) + e(-) -> nu(mu) + e(-) and nu(mu) + e(-) -> nu(e) + mu(-). A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modi. cations of Z nu nu couplings, tree-level exchanges of new particles such as Z's, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This paper reviews these physics opportunities.
C1 [Adams, T.; Owens, J. F.] Florida State Univ, Tallahassee, FL 32306 USA.
[Tait, T. M. P.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Loinaz, W. A.] Amherst Coll, Amherst, MA 01002 USA.
[Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; Karagiorgi, G.; Seligman, W. G.; Shaevitz, M. H.] Columbia Univ, New York, NY 10027 USA.
[Kobilarcik, T. R.; Mason, D. A.; Moore, R.; Morfin, J. G.; Syphers, M. J.; Tan, C. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[De Water, R. G. Van] Los Alamos Natl Accelerator Lab, Los Alamos, NM 87545 USA.
[Schienbein, I.] Univ Grenoble 1, LPSC, F-38026 Grenoble, France.
[Fisher, P. H.; Formaggio, J. A.; Milner, R.; Yamamoto, R. K.] MIT, Cambridge, MA 02139 USA.
[Nakamura, M.] Nagoya Univ, Nagoya, Aichi 46401, Japan.
[Kyle, G.; Pate, S. F.] New Mexico State Univ, Las Cruces, NM 88003 USA.
[De Gouvea, A.; Jenkins, J.; Schellman, H.; Tait, T. M. P.] Northwestern Univ, Evanston, IL 60208 USA.
[Naples, D.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA.
[Olness, F. I.; Yu, J. Y.] So Methodist Univ, Dallas, TX 75205 USA.
[Kopp, S.] Univ Texas Austin, Austin, TX 78712 USA.
[Pronin, A.; Takeuchi, T.] Virginia Tech, Blacksburg, VA 24061 USA.
RP Adams, T (reprint author), Florida State Univ, Tallahassee, FL 32306 USA.
EM fisherp@mit.edu
OI Takeuchi, Tatsu/0000-0002-3594-5149; Van de Water,
Richard/0000-0002-1573-327X; Loinaz, William/0000-0001-7501-5002
FU Deutsche Forschungsgemeinschaft; Kavli Institute for Theoretical
Physics; United States Department of Energy; United States National
Science Foundation
FX We thank the following people for their thoughtful comments on the
development of this physics case: P. Langacker, M. Shaposhnikov, F.
Vannucci and J. Wells.; We acknowledge the support of the following
funding agencies for the authors of this paper: Deutsche
Forschungsgemeinschaft, The Kavli Institute for Theoretical Physics, The
United States Department of Energy and The United States National
Science Foundation.
NR 99
TC 25
Z9 25
U1 0
U2 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-751X
J9 INT J MOD PHYS A
JI Int. J. Mod. Phys. A
PD FEB 10
PY 2009
VL 24
IS 4
BP 671
EP 717
PG 47
WC Physics, Nuclear; Physics, Particles & Fields
SC Physics
GA 420PT
UT WOS:000264302400003
ER
PT J
AU Dimitrijevic, NM
De la Garza, L
Rajh, T
AF Dimitrijevic, Nada M.
De la Garza, Linda
Rajh, Tijana
TI LIGHT-INDUCED CHARGE SEPARATION ACROSS BIO-INORGANIC INTERFACE
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
LA English
DT Article
DE Titanium dioxide; charge transfer complex; extended charge separation;
phonon interactions
ID ELECTRON-SPIN-RESONANCE; SEMICONDUCTOR PHOTOCATALYSIS; NANOCRYSTALLINE
TIO2; SURFACE MODIFICATION; TITANIUM-DIOXIDE; SENSITIZED TIO2; REDOX
REACTIONS; PHOTOSYSTEM-II; COLLOIDAL TIO2; NANOPARTICLES
AB Rational design of hybrid biomolecule - nanoparticulate semiconductor conjugates enables coupling of functionality of biomolecules with the capability of semiconductors for solar energy capture, that can have potential application in energy conversion, sensing and catalysis. The particular challenge is to obtain efficient charge separation analogous to the natural photosynthesis process. The synthesis of axially anisotropic TiO(2) nano-objects such as tubes, rods and bricks, as well as spherical and faceted nanoparticles has been developed in our laboratory. Depending on their size and shape, these nanostructures exhibit different domains of crystallinity, surface areas and aspect ratios. Moreover, in order to accommodate for high curvature in nanoscale regime, the surfaces of TiO(2) nano-objects reconstructs resulting in changes in the coordination of surface Ti atoms from octahedral (D(2d)) to square pyramidal structures (C(4)v). The formation of these coordinatively unsaturated Ti atoms, thus depends strongly on the size and shape of nanocrystallites and affects trapping and reactivity of photogenerated charges. We have exploited these coordinatively unsaturated Ti atoms to coupe electron-donating (such as dopamine) and electron-accepting (pyrroloquinoline quinone) conductive linkers that allow wiring of biomolecules and proteins resulting in enhanced charge separation which increases the yield of ensuing chemical transformations.
C1 [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Dimitrijevic, Nada M.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.
[De la Garza, Linda] Valdosta State Univ, Dept Chem, Valdosta, GA 31698 USA.
RP Dimitrijevic, NM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM dimitrijevic@anl.gov; ldelagarza@valdosta.edu; rajh@anl.gov
FU U.S. Department of Energy, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX The work was performed under the auspices of the U.S. Department of
Energy, Office of Basic Energy Sciences under Contract No.
DE-AC02-06CH11357.
NR 49
TC 4
Z9 4
U1 4
U2 11
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0217-9792
J9 INT J MOD PHYS B
JI Int. J. Mod. Phys. B
PD FEB 10
PY 2009
VL 23
IS 4
BP 473
EP 491
PG 19
WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
SC Physics
GA 414QN
UT WOS:000263880400001
ER
PT J
AU Akgun, B
Ugur, G
Jiang, Z
Narayanan, S
Song, S
Lee, H
Brittain, WJ
Kim, H
Sinha, SK
Foster, MD
AF Akgun, Bulent
Ugur, Goekce
Jiang, Zhang
Narayanan, Suresh
Song, Sanghoon
Lee, Heeju
Brittain, William J.
Kim, Hyunjung
Sinha, Sunil K.
Foster, Mark D.
TI Surface Dynamics of "Dry" Homopolymer Brushes
SO MACROMOLECULES
LA English
DT Article
ID PHOTON-CORRELATION SPECTROSCOPY; COHERENT X-RAYS; CONCENTRATED
POLYMER-SOLUTIONS; FILMS; CAPILLARY; MODES; SCATTERING; CROSSOVER;
WAVES; TRANSITION
AB The dynamics of the surface height fluctuations on layers of covalently tethered, nearly monodisperse polymer chains synthesized by atom transfer radical polymerization were studied using X-ray photon correlation spectroscopy. The data reveal that both polystyrene and poly(n-butyl acrylate) "brushes" have structure at the Surface with length scales in the region of 620-3100 nm, but the surface features show no relaxation in a time window of 0.1...1000 s, even at temperatures more than 130 degrees C above the glass transition temperature of the corresponding untethered chains. This remarkable alteration of the dynamics, is compared with the suppression of fluctuations Oil this length Scale anticipated by thermodynamic theories. The alteration Of Surface dynamics by tethering has implications for wetting, friction, and adhesion.
C1 [Akgun, Bulent; Ugur, Goekce; Brittain, William J.; Foster, Mark D.] Univ Akron, Maurice Morton Inst Polymer Sci, Akron, OH 44325 USA.
[Akgun, Bulent] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.
[Akgun, Bulent] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA.
[Jiang, Zhang; Sinha, Sunil K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.
[Narayanan, Suresh] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA.
[Song, Sanghoon; Lee, Heeju; Kim, Hyunjung] Sogang Univ, Dept Phys & Interdisciplinary, Program Integrated Biotechnol, Seoul 121742, South Korea.
RP Foster, MD (reprint author), Univ Akron, Maurice Morton Inst Polymer Sci, Akron, OH 44325 USA.
EM mfoster@uakron.edu
RI Akgun, Bulent/H-3798-2011; Jiang, Zhang/A-3297-2012
OI Jiang, Zhang/0000-0003-3503-8909
FU American Chemical Society Petroleum Research Fund [AC7-42995]; US
Department of Energy, Office of Science, Office of Basic Energy Science
[DE-AC02-06CH11357]; Seoul Research & Business Development [10816];
National Science Foundation [DMR-0072977]
FX B.A., G.U., and M.D.F. acknowledge the assistance of Scott Collins in
performing air-sensitive synthetic steps and partial support made by the
donors of The American Chemical Society Petroleum Research Fund for this
research (AC7-42995). Use of the Advanced Photon Source was supported by
the US Department of Energy, Office of Science, Office of Basic Energy
Science, under Contract DE-AC02-06CH11357. S.S., H.L., and H.K.
acknowledge support from Seoul Research & Business Development Program
(10816). W.J.B. acknowledges the support of the National Science
Foundation (DMR-0072977).
NR 39
TC 19
Z9 19
U1 2
U2 20
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD FEB 10
PY 2009
VL 42
IS 3
BP 737
EP 741
DI 10.1021/ma801279z
PG 5
WC Polymer Science
SC Polymer Science
GA 402TD
UT WOS:000263035100024
ER
PT J
AU Press, WH
AF Press, William H.
TI Strong profiling is not mathematically optimal for discovering rare
malfeasors
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE screening; square-root biased sampling; rare events
ID RACIAL BIAS; MINIMIZATION
AB The use of profiling by ethnicity or nationality to trigger secondary security screening is a controversial social and political issue. Overlooked is the question of whether such actuarial methods are in fact mathematically justified, even under the most idealized assumptions of completely accurate prior probabilities, and secondary screenings concentrated on the highest-probablity individuals. We show here that strong profiling (defined as screening at least in proportion to prior probability) is no more efficient than uniform random sampling of the entire population, because resources are wasted on the repeated screening of higher probability, but innocent, individuals. A mathematically optimal strategy would be "square-root biased sampling,'' the geometric mean between strong profiling and uniform sampling, with secondary screenings distributed broadly, although not uniformly, over the population. Square-root biased sampling is a general idea that can be applied whenever a "bell-ringer'' event must be found by sampling with replacement, but can be recognized (either with certainty, or with some probability) when seen.
C1 [Press, William H.] Univ Texas Austin, Dept Comp Sci, Austin, TX 78703 USA.
[Press, William H.] Univ Texas Austin, Sch Biol Sci, Austin, TX 78703 USA.
[Press, William H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Press, WH (reprint author), Univ Texas Austin, Dept Comp Sci, Austin, TX 78703 USA.
EM wpress@cs.utexas.edu
NR 10
TC 10
Z9 10
U1 0
U2 0
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 10
PY 2009
VL 106
IS 6
BP 1716
EP 1719
DI 10.1073/pnas.0813202106
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 405VO
UT WOS:000263252500010
PM 19188610
ER
PT J
AU Brulc, JM
Antonopoulos, DA
Miller, MEB
Wilson, MK
Yannarell, AC
Dinsdale, EA
Edwards, RE
Frank, ED
Emerson, JB
Wacklin, P
Coutinho, PM
Henrissat, B
Nelson, KE
White, BA
AF Brulc, Jennifer M.
Antonopoulos, Dionysios A.
Miller, Margret E. Berg
Wilson, Melissa K.
Yannarell, Anthony C.
Dinsdale, Elizabeth A.
Edwards, Robert E.
Frank, Edward D.
Emerson, Joanne B.
Wacklin, Pirjo
Coutinho, Pedro M.
Henrissat, Bernard
Nelson, Karen E.
White, Bryan A.
TI Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome
reveals forage specific glycoside hydrolases
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE CAZymes; cellulases; plant cell wall; pyrosequencing
ID HERBIVORE GASTROINTESTINAL-TRACT; REAL-TIME PCR; PHYLOGENETIC ANALYSIS;
HYBRIDIZATION PROBES; BACTERIAL COMMUNITY; GUT MICROBIOME; DIVERSITY;
POPULATIONS; DNA; FIBROBACTER
AB The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample ( a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen ( forages and legumes) or the termite hindgut (wood).
C1 [Brulc, Jennifer M.; Miller, Margret E. Berg; Wilson, Melissa K.; Yannarell, Anthony C.; White, Bryan A.] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA.
[Antonopoulos, Dionysios A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA.
[Dinsdale, Elizabeth A.; Edwards, Robert E.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA.
[Dinsdale, Elizabeth A.] Flinders Univ S Australia, Sch Biol Sci, Adelaide, SA 5001, Australia.
[Edwards, Robert E.] San Diego State Univ, Ctr Microbial Sci, San Diego, CA 92813 USA.
[Edwards, Robert E.] San Diego State Univ, Dept Comp Sci, San Diego, CA 92813 USA.
[Edwards, Robert E.; Frank, Edward D.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA.
[Emerson, Joanne B.; Wacklin, Pirjo; Coutinho, Pedro M.; Nelson, Karen E.] J Craig Venter Inst, Rockville, MD 20850 USA.
[Coutinho, Pedro M.; Henrissat, Bernard] Univ Aix Marseille 1, CNRS, UMR 6098, F-13288 Marseille, France.
[Coutinho, Pedro M.; Henrissat, Bernard] Univ Aix Marseille 2, CNRS, UMR 6098, F-13288 Marseille, France.
[Miller, Margret E. Berg; Yannarell, Anthony C.; White, Bryan A.] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA.
RP White, BA (reprint author), Univ Illinois, Dept Anim Sci, 328 Mumford Hall, Urbana, IL 61801 USA.
EM bwhite44@illinois.edu
RI Frank, Edward/A-8865-2012; Henrissat, Bernard/J-2475-2012;
OI Emerson, Joanne/0000-0001-9983-5566
FU United States Department of Agriculture (USDA) Cooperative State
Research, Education; Extension Service National Research Initiative
Competitive [2006-35206-16652]; Finnish Cultural Foundation
FX The authors also thank Corinne Rancurel for her help with the CAZy
computer routines developed specifically for this work, Larry Berger for
his help with the animal study, the Ribosomal Database Project at
Michigan State University, and James Cole and Benli Chai for their
invaluable contributions. This project was supported by the United
States Department of Agriculture (USDA) Cooperative State Research,
Education, and Extension Service National Research Initiative
Competitive Grant 2006-35206-16652 ( to B. A. W. and K. E. N.) and the
Finnish Cultural Foundation.
NR 57
TC 282
Z9 306
U1 15
U2 101
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 10
PY 2009
VL 106
IS 6
BP 1948
EP 1953
DI 10.1073/pnas.0806191105
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 405VO
UT WOS:000263252500051
PM 19181843
ER
PT J
AU Martinez, D
Challacombe, J
Morgenstern, I
Hibbett, D
Schmoll, M
Kubicek, CP
Ferreira, P
Ruiz-Duenas, FJ
Martinez, AT
Kersten, P
Hammel, KE
Wymelenberg, AV
Gaskell, J
Lindquist, E
Sabat, G
BonDurant, SS
Larrondo, LF
Canessa, P
Vicuna, R
Yadav, J
Doddapaneni, H
Subramanian, V
Pisabarro, AG
Lavin, JL
Oguiza, JA
Master, E
Henrissat, B
Coutinho, PM
Harris, P
Magnuson, JK
Baker, SE
Bruno, K
Kenealy, W
Hoegger, PJ
Kues, U
Ramaiya, P
Lucash, S
Salamov, A
Shapiro, H
Tu, H
Chee, CL
Misra, M
Xie, G
Teter, S
Yaver, D
James, T
Mokrejs, M
Pospisek, M
Grigoriev, IV
Brettin, T
Rokhsar, D
Berka, R
Cullen, D
AF Martinez, Diego
Challacombe, Jean
Morgenstern, Ingo
Hibbett, David
Schmoll, Monika
Kubicek, Christian P.
Ferreira, Patricia
Ruiz-Duenas, Francisco J.
Martinez, Angel T.
Kersten, Phil
Hammel, Kenneth E.
Wymelenberg, Amber Vanden
Gaskell, Jill
Lindquist, Erika
Sabat, Grzegorz
BonDurant, Sandra Splinter
Larrondo, Luis F.
Canessa, Paulo
Vicuna, Rafael
Yadav, Jagjit
Doddapaneni, Harshavardhan
Subramanian, Venkataramanan
Pisabarro, Antonio G.
Lavin, Jose L.
Oguiza, Jose A.
Master, Emma
Henrissat, Bernard
Coutinho, Pedro M.
Harris, Paul
Magnuson, Jon Karl
Baker, Scott E.
Bruno, Kenneth
Kenealy, William
Hoegger, Patrik J.
Kuees, Ursula
Ramaiya, Preethi
Lucash, Susan
Salamov, Asaf
Shapiro, Harris
Tu, Hank
Chee, Christine L.
Misra, Monica
Xie, Gary
Teter, Sarah
Yaver, Debbie
James, Tim
Mokrejs, Martin
Pospisek, Martin
Grigoriev, Igor V.
Brettin, Thomas
Rokhsar, Dan
Berka, Randy
Cullen, Dan
TI Genome, transcriptome, and secretome analysis of wood decay fungus
Postia placenta supports unique mechanisms of lignocellulose conversion
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE cellulose; fenton; lignin; cellulase; brown-rot
ID BROWN-ROT BASIDIOMYCETE; DEGRADING HEME PEROXIDASES; ARYL-ALCOHOL
OXIDASE; PHANEROCHAETE-CHRYSOSPORIUM; GLOEOPHYLLUM-TRABEUM; OXALIC-ACID;
WHITE-ROT; CELLULOSE; DEGRADATION; SEQUENCE
AB Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exo-cellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe( II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.
C1 [Kersten, Phil; Hammel, Kenneth E.; Gaskell, Jill; Cullen, Dan] Forest Prod Lab, Madison, WI 53726 USA.
[Martinez, Diego; Challacombe, Jean; Misra, Monica; Xie, Gary; Brettin, Thomas] Los Alamos Natl Lab, Joint Genome Inst, Los Alamos, NM 87545 USA.
[Martinez, Diego] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA.
[Hibbett, David] Clark Univ, Dept Biol, Worcester, MA 01610 USA.
[Schmoll, Monika; Kubicek, Christian P.] Vienna Univ Technol, Inst Chem Engn, Res Area Gene Technol & Appl Biochem, A-1060 Vienna, Austria.
[Ferreira, Patricia; Ruiz-Duenas, Francisco J.; Martinez, Angel T.] CSIC, Ctr Invest Biol, E-28040 Madrid, Spain.
[Wymelenberg, Amber Vanden] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.
[Lucash, Susan; Salamov, Asaf; Shapiro, Harris; Tu, Hank; Grigoriev, Igor V.; Rokhsar, Dan] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Sabat, Grzegorz; BonDurant, Sandra Splinter] Univ Wisconsin, Ctr Biotechnol, Madison, WI 53706 USA.
[Larrondo, Luis F.; Canessa, Paulo; Vicuna, Rafael] Pontificia Univ Catolica Chile, Millennium Inst Fundamental & Appl Biol, Fac Ciencias Biol, Dept Mol Genet & Microbiol, Santiago 8331010, Chile.
[Yadav, Jagjit; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan] Univ Cincinnati, Dept Environm Hlth, Cincinnati, OH 45267 USA.
[Pisabarro, Antonio G.; Lavin, Jose L.; Oguiza, Jose A.] Univ Publ Navarra, Genet & Microbiol Res Grp, Pamplona 31006, Spain.
[Master, Emma] Univ Toronto, Toronto, ON M5S 3E5, Canada.
[Henrissat, Bernard; Coutinho, Pedro M.] Univ Aix Marseille 1, CNRS, UMR 6098, F-13288 Marseille, France.
[Henrissat, Bernard; Coutinho, Pedro M.] Univ Aix Marseille 2, CNRS, UMR 6098, F-13288 Marseille, France.
[Harris, Paul; Ramaiya, Preethi; Teter, Sarah; Yaver, Debbie; Berka, Randy] Novozymes Inc, Davis, CA 95618 USA.
[Magnuson, Jon Karl; Baker, Scott E.; Bruno, Kenneth] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Kenealy, William] Mascoma Inc, Lebanon, NH 03766 USA.
[Hoegger, Patrik J.; Kuees, Ursula] Univ Gottingen, Busgen Inst, D-37077 Gottingen, Germany.
[James, Tim] Univ Michigan, Dept Ecol & Evolut Biol, Ann Arbor, MI 48109 USA.
[Mokrejs, Martin; Pospisek, Martin] Charles Univ Prague, Fac Sci, CR-12844 Prague, Czech Republic.
RP Cullen, D (reprint author), Forest Prod Lab, Madison, WI 53726 USA.
EM dcullen@wisc.edu
RI Ruiz-Duenas, Francisco/L-9837-2015; Larrondo, Luis/J-1086-2016; Lavin,
Jose Luis/J-7892-2013; Kues, Ursula/B-8280-2008; Hammel,
Kenneth/G-1890-2011; Henrissat, Bernard/J-2475-2012; Larrondo,
Luis/A-2916-2013; Pospisek, Martin/A-9100-2008; Pisabarro,
Antonio/K-3622-2014; Master, Emma/O-3554-2014
OI Mokrejs, Martin/0000-0002-2521-4473; Schmoll,
Monika/0000-0003-3918-0574; xie, gary/0000-0002-9176-924X; Kues,
Ursula/0000-0001-9180-4079; Martinez, Angel T/0000-0002-1584-2863;
Ruiz-Duenas, Francisco/0000-0002-9837-5665; Larrondo,
Luis/0000-0002-8832-7109; Lavin, Jose Luis/0000-0003-0914-3211; Hammel,
Kenneth/0000-0002-2935-5847; Pisabarro, Antonio/0000-0001-6987-5794;
FU U. S. Department of Energy's Office of Science, Biological and
Environmental Research Program, and University of California; Lawrence
Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore
National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory
[DE-AC02-06NA25396]; University of Wisconsin [DE-FG02-87ER13712]; Forest
Products Laboratory; U. S. Department of Agriculture, Cooperative State
Research, Education, and Extension Services [2007-35504-18257]; National
Institutes of Health [GM060201]; Centro de Investigaciones Biologicas (
Madrid) [NMP2-2006-026456]; Ministry of Education Czech Republic
[LC06066]
FX We thank Sally Ralph (FPL) for preparation of ball-milled aspen. This
work was supported by the U. S. Department of Energy's Office of
Science, Biological and Environmental Research Program, and University
of California, Lawrence Berkeley National Laboratory Contract
DE-AC02-05CH11231; Lawrence Livermore National Laboratory Contract
DE-AC52-07NA27344; Los Alamos National Laboratory Contract
DE-AC02-06NA25396; University of Wisconsin Grant DE-FG02-87ER13712;
Forest Products Laboratory, U. S. Department of Agriculture, Cooperative
State Research, Education, and Extension Services Grant
2007-35504-18257; National Institutes of Health Grant GM060201 ( to
University of New Mexico); Centro de Investigaciones Biologicas (
Madrid) EU-project NMP2-2006-026456; Ministry of Education Czech
Republic Grant LC06066.
NR 33
TC 269
Z9 289
U1 6
U2 145
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 10
PY 2009
VL 106
IS 6
BP 1954
EP 1959
DI 10.1073/pnas.0809575106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 405VO
UT WOS:000263252500052
PM 19193860
ER
PT J
AU Carneiro, AMD
Airey, DC
Thompson, B
Zhu, CB
Lu, L
Chesler, EJ
Erikson, KM
Blakely, RD
AF Carneiro, Ana M. D.
Airey, David C.
Thompson, Brent
Zhu, Chong-Bin
Lu, Lu
Chesler, Elissa J.
Erikson, Keith M.
Blakely, Randy D.
TI Functional coding variation in recombinant inbred mouse lines reveals
multiple serotonin transporter-associated phenotypes
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE gene; haplotype; iron; serotonin; dopamine
ID QUANTITATIVE TRAIT LOCI; BRAIN-SEROTONIN; PROMOTER-POLYMORPHISM;
COLLABORATIVE CROSS; GENETIC-ANALYSIS; NERVOUS-SYSTEM; DEFICIENT MICE;
KNOCKOUT MICE; EXPRESSION; BEHAVIOR
AB The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology and treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism, and obsessive-compulsive disorder (OCD). Here, we use naturally occurring polymorphisms in recombinant inbred ( RI) lines to identify multiple phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by 2 nonsynonymous coding variants [Gly-39 and Lys-152 (GK)]. At these positions, many other mouse lines, including DBA/2J, encode, respectively, Glu-39 and Arg-152 ( ER haplotype), amino acids found also in hSERT. Ex vivo synaptosomal 5- HT transport studies revealed reduced uptake associated with the GK variant, a finding confirmed by in vitro heterologous expression studies. Experimental and in silico approaches using RI lines (C57BL/6J x DBA/2J = BXD) identify multiple anatomical, biochemical, and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are several traits associated with alcohol consumption and multiple traits associated with dopamine signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates iron-regulated DA phenotypes. Our studies provide an example of the power of coordinated in vitro, in vivo, and in silico approaches using mouse RI lines to elucidate and quantify the system-level impact of gene variation.
C1 [Carneiro, Ana M. D.; Airey, David C.; Thompson, Brent; Zhu, Chong-Bin; Blakely, Randy D.] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37232 USA.
[Blakely, Randy D.] Vanderbilt Univ, Sch Med, Dept Psychiat, Nashville, TN 37232 USA.
[Blakely, Randy D.] Vanderbilt Univ, Sch Med, Ctr Mol Neurosci, Nashville, TN 37232 USA.
[Lu, Lu] Nantong Univ, Key Lab Nerve Regenerat, Nantong 226001, Peoples R China.
[Lu, Lu] Univ Tennessee, Ctr Hlth Sci, Dept Anat & Neurobiol, Memphis, TN 38163 USA.
[Chesler, Elissa J.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA.
[Erikson, Keith M.] Univ N Carolina, Dept Nutr, Greensboro, NC 27402 USA.
RP Blakely, RD (reprint author), Vanderbilt Univ, Sch Med, Dept Pharmacol, Med Res Bldg 3,Rm 7140, Nashville, TN 37232 USA.
EM randy.blakely@vanderbilt.edu
OI Thompson, Brent/0000-0002-2302-0886
FU 2005 NARSAD Young Investigator Award [U01AA014425]; NINDS
[1R15NS061309-01]; Alfred L. George Jr. and the Vanderbilt Institute for
Integrative Genomics; Institutional Research and Academic Career
Development Award [GM068543]; National Institutes of Health Award
[DA00390]; National Institute on Alcohol Abuse and Alcoholism
[U01AA13499, U24AA13513]; National Institute on Drug Abuse
[R01DA020677]; Department of Energy Office of Biological and
Environmental Research [DE-AC05-00OR22725]; [MH6521]; [MH65782];
[DA07390]; [MH07828]
FX We are grateful to Rob Williams ( University of Tennessee Health Science
Center) for provision of RI lines. We thank Michael Aschner for helpful
discussion during the development of the project. We gratefully
acknowledge Jane Wright for animal husbandry and support in the behavior
tasks and Qiao Han for tissue culture support. We also thank Ray Johnson
and Denise Malone from the Center for Molecular Neuroscience
Neurochemistry and Neurogenomics cores, for neurochemistry and DNA
sequencing support. We acknowledge support from MH65215, MH65782 ( A. M.
D. C.), 2005 NARSAD Young Investigator Award ( C. B. Z.), U01AA014425 (
L. L.), NINDS 1R15NS061309-01 ( K. M. E.), and DA07390 and MH07828 ( R.
D. B.). D. C. A. acknowledges support from Alfred L. George Jr. and the
Vanderbilt Institute for Integrative Genomics. B. T. was supported by
Institutional Research and Academic Career Development Award GM068543 to
R. C. and by National Institutes of Health Award DA00390 ( to R. D. B.).
E. C. acknowledges funding from National Institute on Alcohol Abuse and
Alcoholism ( U01AA13499 and U24AA13513), National Institute on Drug
Abuse R01DA020677, and Department of Energy Office of Biological and
Environmental Research under contract DE-AC05-00OR22725 with University
of Tennessee-Battelle, LLC. NEUROSCIENCE
NR 42
TC 46
Z9 46
U1 0
U2 7
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 10
PY 2009
VL 106
IS 6
BP 2047
EP 2052
DI 10.1073/pnas.0809449106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 405VO
UT WOS:000263252500068
PM 19179283
ER
PT J
AU Hill, J
Polasky, S
Nelson, E
Tilman, D
Huo, H
Ludwig, L
Neumann, J
Zheng, HC
Bonta, D
AF Hill, Jason
Polasky, Stephen
Nelson, Erik
Tilman, David
Huo, Hong
Ludwig, Lindsay
Neumann, James
Zheng, Haochi
Bonta, Diego
TI Climate change and health costs of air emissions from biofuels and
gasoline
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE fine particulate matter; ethanol; biomass; greenhouse gas; life-cycle
analysis
ID CORN STOVER; NET ENERGY; POLLUTION; CARBON; ETHANOL; SWITCHGRASS;
BIOMASS; BIOENERGY; NITROGEN; RISK
AB Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472-952 million for corn ethanol depending on biorefinery heat source ( natural gas, corn stover, or coal) and technology, but only $123-208 million for cellulosic ethanol depending on feedstock ( prairie biomass, Mis-canthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U. S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels.
C1 [Hill, Jason; Polasky, Stephen; Tilman, David] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA.
[Hill, Jason; Polasky, Stephen; Zheng, Haochi; Bonta, Diego] Univ Minnesota, Dept Appl Econ, St Paul, MN 55108 USA.
[Nelson, Erik] Stanford Univ, Woods Inst Environm, Dept Biol, Stanford, CA 94305 USA.
[Nelson, Erik] Stanford Univ, Woods Inst Environm, Nat Capital Project, Stanford, CA 94305 USA.
[Huo, Hong] Argonne Natl Lab, Argonne, IL 60439 USA.
[Ludwig, Lindsay; Neumann, James] Ind Econ, Cambridge, MA 02140 USA.
RP Hill, J (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 1987 Upper Buford Circle, St Paul, MN 55108 USA.
EM hill0408@umn.edu; tilman@umn.edu
RI Hill, Jason/A-8919-2008;
OI Hill, Jason/0000-0001-7609-6713; Nelson, Erik/0000-0002-7291-5192
FU University of Minnesota's Initiative for Renewable Energy and the
Environment
FX We thank Joe Fargione, Ray Hattenbach, Moira Hill, Bryan Hubbell, Kerry
Smith, Doug Tiffany, Michael Wang, and Gary Yohe for their valuable
comments. This work supported by the University of Minnesota's
Initiative for Renewable Energy and the Environment.
NR 40
TC 156
Z9 159
U1 6
U2 106
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 10
PY 2009
VL 106
IS 6
BP 2077
EP 2082
DI 10.1073/pnas.0812835106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 405VO
UT WOS:000263252500073
PM 19188587
ER
PT J
AU Peng, XH
Wong, SS
AF Peng, Xiaohui
Wong, Stanislaus S.
TI Functional Covalent Chemistry of Carbon Nanotube Surfaces
SO ADVANCED MATERIALS
LA English
DT Review
ID PHOTOINDUCED ELECTRON-TRANSFER; DIIMIDE-ACTIVATED AMIDATION;
FINE-STRUCTURE SPECTROSCOPY; SIDEWALL FUNCTIONALIZATION; CHEMICAL
FUNCTIONALIZATION; MECHANICAL-PROPERTIES; ORGANIC FUNCTIONALIZATION;
TETHERED PYRENES; IONIC LIQUID; STRUCTURAL-CHARACTERIZATION
AB In this Progress Report, we update covalent chemical strategies commonly used for the focused functionalization of single-walled carbon nanotube (SWNT) surfaces. In recent years, SWNTs have been treated as legitimate nanoscale chemical reagents. Hence, herein we seek to understand, from a structural and mechanistic perspective, the breadth and types of controlled covalent reactions SWNTs can undergo in solution phase, not only at ends and defect sites but also along sidewalls. We explore advances in the formation of nanotube derivatives that essentially maintain and even enhance their performance metrics after precise chemical modification. We especially highlight molecular insights (and corresponding correlation with properties) into the binding of functional moieties onto carbon nanotube surfaces. Controllable chemical functionalization suggests that the unique optical, electronic, and mechanical properties of SWNTs can be much more readily tuned than ever before, with key implications for the generation of truly functional nanoscale working devices.
C1 [Peng, Xiaohui; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
[Wong, Stanislaus S.] Brookhaven Natl Lab, Dept Mat & Chem Sci, Upton, NY 11973 USA.
RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.
EM sswong@notes.cc.sunysb.edu
FU US Department of Energy [DE-AC02-98CH10886]; National Science Foundation
[DMR-0348239]; Alfred P. Sloan Foundation
FX We acknowledge the US Department of Energy (DE-AC02-98CH10886) for
facility and personnel support. We also thank the National Science
Foundation (CAREER award DMR-0348239), and the Alfred P. Sloan
Foundation (2006-2008) for PI support and experimental supplies.
NR 211
TC 159
Z9 161
U1 16
U2 172
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0935-9648
J9 ADV MATER
JI Adv. Mater.
PD FEB 9
PY 2009
VL 21
IS 6
BP 625
EP 642
DI 10.1002/adma.200801464
PG 18
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied;
Physics, Condensed Matter
SC Chemistry; Science & Technology - Other Topics; Materials Science;
Physics
GA 409FQ
UT WOS:000263492000001
ER
PT J
AU Chen, YM
Selvamanickam, V
Zhang, YF
Zuev, Y
Cantoni, C
Specht, E
Paranthaman, MP
Aytug, T
Goyal, A
Lee, D
AF Chen, Yimin
Selvamanickam, Venkat
Zhang, Yifei
Zuev, Yuri
Cantoni, Claudia
Specht, Eliot
Paranthaman, M. Parans
Aytug, Tolga
Goyal, Amit
Lee, Dominic
TI Enhanced flux pinning by BaZrO3 and (Gd,Y)(2)O-3 nanostructures in metal
organic chemical vapor deposited GdYBCO high temperature superconductor
tapes
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE barium compounds; critical currents; defect states; flux pinning;
gadolinium compounds; high-temperature superconductors; MOCVD;
nanostructured materials; superconducting tapes; yttrium compounds
ID COATED CONDUCTORS; FILMS
AB We have formed BaZrO3 nanocolumns and (Gd,Y)(2)O-3 nanoprecipitates in reel-to-reel metal organic chemical vapor deposition (MOCVD) processed (Gd,Y)Ba2Cu3O7-x coated conductors and increased the critical currents (I-c) of the conductors in applied magnetic fields to remarkable levels. A (Gd,Y)Ba2Cu3O7-x tape of 1 m in length with 6.5% Zr-additions and 30% composition rich in both Gd and Y showed I-c values of 813 A/cm width at (self-field, 77 K) and above 186 A/cm width at (1 T, 77 K). The strongly enhanced flux pinning over a wide range of magnetic field orientations can be attributed to the bidirectionally aligned defect structures of BaZrO3 and (Gd,Y)(2)O-3 created by optimized MOCVD conditions.
C1 [Chen, Yimin; Selvamanickam, Venkat] SuperPower Inc, New York, NY 12304 USA.
[Zhang, Yifei; Zuev, Yuri; Cantoni, Claudia; Specht, Eliot; Paranthaman, M. Parans; Aytug, Tolga; Goyal, Amit; Lee, Dominic] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Chen, YM (reprint author), SuperPower Inc, 450 Duane Ave, New York, NY 12304 USA.
EM ychen@superpower-inc.com
RI Paranthaman, Mariappan/N-3866-2015; Cantoni, Claudia/G-3031-2013;
Specht, Eliot/A-5654-2009
OI Paranthaman, Mariappan/0000-0003-3009-8531; Cantoni,
Claudia/0000-0002-9731-2021; Specht, Eliot/0000-0002-3191-2163
FU U. S. Department of Energy
FX This work was partially supported by U. S. Department of Energy, Office
of Electricity Delivery and Energy Reliability-Superconductivity
Program.
NR 14
TC 54
Z9 54
U1 1
U2 21
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 9
PY 2009
VL 94
IS 6
AR 062513
DI 10.1063/1.3082037
PG 3
WC Physics, Applied
SC Physics
GA 408BW
UT WOS:000263409400070
ER
PT J
AU Chernov, AA
Kozioziemski, BJ
Koch, JA
Atherton, LJ
Johnson, MA
Hamza, AV
Kucheyev, SO
Lugten, JB
Mapoles, EA
Moody, JD
Salmonson, JD
Sater, JD
AF Chernov, A. A.
Kozioziemski, B. J.
Koch, J. A.
Atherton, L. J.
Johnson, M. A.
Hamza, A. V.
Kucheyev, S. O.
Lugten, J. B.
Mapoles, E. A.
Moody, J. D.
Salmonson, J. D.
Sater, J. D.
TI Single crystal growth and formation of defects in deuterium-tritium
layers for inertial confinement nuclear fusion
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE annealing; crystal defects; crystal growth; deuterium; dislocations;
grain boundaries; plasma inertial confinement; plastic deformation;
solidification; surface roughness; tritium
ID TARGETS; ENERGY
AB We identify vapor-etched grain boundary grooves on the solid-vapor interface as the main source of surface roughness in the deuterium-tritium (D-T) fuel layers, which are solidified and then cooled. Current inertial confinement fusion target designs impose stringent limits to the cross-sectional area and total volume of these grooves. Formation of these grain boundaries occurs over time scales of hours as the dislocation network anneals and is inevitable in a plastically deformed material. Therefore, either cooling on a much shorter time scale or a technique that requires no cooling after solidification should be used to minimize the roughness.
C1 [Chernov, A. A.; Kozioziemski, B. J.; Koch, J. A.; Atherton, L. J.; Johnson, M. A.; Hamza, A. V.; Kucheyev, S. O.; Lugten, J. B.; Mapoles, E. A.; Moody, J. D.; Salmonson, J. D.; Sater, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Chernov, AA (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave Livermore, Livermore, CA 94551 USA.
EM chernov2@llnl.gov
FU U.S. DOE [DE-AC52-07NA27344]
FX Our gratitude goes to Professor M. E. Glicksman for valuable
discussions. This work was accomplished under the auspices of the U.S.
DOE by LLNL under Contract No. DE-AC52-07NA27344.
NR 19
TC 14
Z9 15
U1 3
U2 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 9
PY 2009
VL 94
IS 6
AR 064105
DI 10.1063/1.3080655
PG 3
WC Physics, Applied
SC Physics
GA 408BW
UT WOS:000263409400122
ER
PT J
AU Murray, CE
Ren, Z
Ying, A
Polvino, SM
Noyan, IC
Cai, Z
AF Murray, Conal E.
Ren, Z.
Ying, A.
Polvino, S. M.
Noyan, I. C.
Cai, Z.
TI Strain measured in a silicon-on-insulator, complementary
metal-oxide-semiconductor device channel induced by embedded
silicon-carbon source/drain regions
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE CMOS integrated circuits; internal stresses; lattice constants;
silicon-on-insulator; X-ray diffraction
ID MECHANICAL-STRESS
AB The strain imparted to 60 nm wide, silicon-on-insulator (SOI) channel regions by heteroepitaxially deposited, embedded silicon-carbon (e-SiC) features was measured using x-ray microbeam diffraction, representing one of the first direct measurements of the lattice parameter conducted in situ in an SOI device channel. Comparisons of closed-form, analytical modeling to the measured, depth-averaged strain distributions show close correspondence for the e-SiC features but 95% of the predicted strain in the SOI channel. Mechanical constraint due to the overlying gate and the contribution of SOI underneath the e-SiC in the diffracting volume to the measurements can explain this difference.
C1 [Murray, Conal E.] IBM TJ Watson Res Ctr, New York, NY 10598 USA.
[Ren, Z.] IBM Semicond Res & Dev Ctr, Hopewell Jct, NY 12533 USA.
[Ying, A.; Polvino, S. M.; Noyan, I. C.] Columbia Univ, Dept Appl Phys & Math, New York, NY 10027 USA.
[Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Murray, CE (reprint author), IBM TJ Watson Res Ctr, New York, NY 10598 USA.
EM conal@us.ibm.com
FU U.S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences
[DE-AC02-06CH11357]
FX Use of the Advanced Photon Source was supported by the U.S. Dept. of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 12
TC 14
Z9 14
U1 0
U2 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 9
PY 2009
VL 94
IS 6
AR 063502
DI 10.1063/1.3079656
PG 3
WC Physics, Applied
SC Physics
GA 408BW
UT WOS:000263409400107
ER
PT J
AU Wang, L
Pan, YX
Ding, Y
Yang, WG
Mao, WL
Sinogeikin, SV
Meng, Y
Shen, GY
Mao, HK
AF Wang, Lin
Pan, Yuexiao
Ding, Yang
Yang, Wenge
Mao, Wendy L.
Sinogeikin, Stanislav V.
Meng, Yue
Shen, Guoyin
Mao, Ho-kwang
TI High-pressure induced phase transitions of Y2O3 and Y2O3:Eu3+
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE europium; high-pressure solid-state phase transformations;
photoluminescence; Raman spectra; X-ray diffraction; yttrium compounds
ID X-RAY-DIFFRACTION; TRANSFORMATION; SESQUIOXIDES
AB We investigated high-pressure induced phase transitions in Y2O3 and Eu-doped Y2O3 (Y2O:Eu3+) using angular dispersive synchrotron x-ray diffraction, Raman spectroscopy, and photoluminescence (PL). With increasing pressure, we observed a series of phase transformations in Y2O3:Eu3+, which followed a structure sequence of cubic -> monoclinic -> hexagonal, while Y2O3 followed a sequence of cubic -> hexagonal. During decompression, both hexagonal structured Y2O3 and Y2O3:Eu3+ transformed into monoclinic phases which were quenchable back to ambient pressure. Raman and PL measurements shed additional light on the different phase transition behavior in these two samples.
C1 [Wang, Lin; Ding, Yang; Shen, Guoyin; Mao, Ho-kwang] Carnegie Inst Sci, HPSynC, Argonne, IL 60439 USA.
[Pan, Yuexiao] S China Univ Technol, Coll Chem, Guangzhou 510641, Peoples R China.
[Yang, Wenge; Sinogeikin, Stanislav V.; Meng, Yue; Shen, Guoyin; Mao, Ho-kwang] Carnegie Inst Sci, HPCAT, Argonne, IL 60439 USA.
[Mao, Wendy L.] Stanford Univ, Stanford, CA 94305 USA.
[Mao, Wendy L.] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA.
[Mao, Ho-kwang] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA.
RP Wang, L (reprint author), Carnegie Inst Sci, HPSynC, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM wanglin@aps.anl.gov; wmao@stanford.edu
RI Mao, Wendy/D-1885-2009; Shen, Guoyin/D-6527-2011; Yang,
Wenge/H-2740-2012; WANG, LIN/G-7884-2012; Ding, Yang/K-1995-2014
OI Ding, Yang/0000-0002-8845-4618
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences, [DE-AC02-06CH11357]
FX Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA, NSF, and
the W. M. Keck Foundation. Use of the Advanced Photon Source and Center
for Nanoscale Materials were supported by the U. S. Department of
Energy, Office of Science, Office of Basic Energy Sciences, under
Contract No. DE-AC02-06CH11357.
NR 20
TC 48
Z9 48
U1 1
U2 33
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0003-6951
EI 1077-3118
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 9
PY 2009
VL 94
IS 6
AR 061921
DI 10.1063/1.3082082
PG 3
WC Physics, Applied
SC Physics
GA 408BW
UT WOS:000263409400048
ER
PT J
AU Wasserman, D
Ribaudo, T
Lyon, SA
Lyo, SK
Shaner, EA
AF Wasserman, D.
Ribaudo, T.
Lyon, S. A.
Lyo, S. K.
Shaner, E. A.
TI Room temperature midinfrared electroluminescence from InAs quantum dots
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE aluminium compounds; electroluminescence; excited states; gallium
arsenide; III-V semiconductors; indium compounds; semiconductor quantum
dots
ID INFRARED PHOTODETECTORS; LASER; LUMINESCENCE
AB We demonstrate room temperature midinfrared electroluminescence from intersublevel transitions in self-assembled InAs quantum dots. The dots are grown in GaAs/AlGaAs heterostructures designed to maximize current injection into dot excited states while preferentially removing electrons from the ground states. As such, these devices resemble quantum cascade lasers. However, rigorous modeling of carrier transport through the devices indicates that the current transport mechanism for quantum dot active regions differs from that of quantum-well-based midinfrared lasers. We present the calculated energy states and transport mechanism for an intersublevel quantum dot emitter, as well as experimental electroluminescence data for these structures.
C1 [Wasserman, D.; Ribaudo, T.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA.
[Lyon, S. A.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA.
[Lyo, S. K.; Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
RP Wasserman, D (reprint author), Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA.
EM daniel_wasserman@uml.edu
RI Wasserman, Daniel/D-3913-2011
FU Lockheed Martin Co.; United States Department of Energy's National
Nuclear Security Administration [DE-AC04-94AL85000]
FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Co., for the United States Department of Energy's
National Nuclear Security Administration under Contract No.
DE-AC04-94AL85000.
NR 20
TC 23
Z9 23
U1 1
U2 12
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 9
PY 2009
VL 94
IS 6
AR 061101
DI 10.1063/1.3080688
PG 3
WC Physics, Applied
SC Physics
GA 408BW
UT WOS:000263409400001
ER
PT J
AU Yamamoto, A
Jaroszynski, J
Tarantini, C
Balicas, L
Jiang, J
Gurevich, A
Larbalestier, DC
Jin, R
Sefat, AS
McGuire, MA
Sales, BC
Christen, DK
Mandrus, D
AF Yamamoto, A.
Jaroszynski, J.
Tarantini, C.
Balicas, L.
Jiang, J.
Gurevich, A.
Larbalestier, D. C.
Jin, R.
Sefat, A. S.
McGuire, M. A.
Sales, B. C.
Christen, D. K.
Mandrus, D.
TI Small anisotropy, weak thermal fluctuations, and high field
superconductivity in Co-doped iron pnictide Ba(Fe1-xCox)(2)As-2
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE barium compounds; cobalt compounds; doping profiles; fluctuations in
superconductors; flux pinning; galvanomagnetic effects; high-temperature
superconductors; iron compounds; magnetic anisotropy; magnetisation;
nanostructured materials; superconducting critical field;
superconducting transition temperature; superconducting transitions
AB We performed high-field magnetotransport and magnetization measurements on a single crystal of the 122-phase iron pnictide Ba(Fe1-xCox)(2)As-2. Unlike the high-temperature superconductor cuprates and 1111-phase oxypnictides, Ba(Fe1-xCox)(2)As-2 showed practically no broadening of the resistive transitions under magnetic fields up to 45 T. We report the temperature dependencies of the upper critical field H-c2 both parallel and perpendicular to the c-axis, the irreversibility field H-irr(c)(T), and a rather unusual symmetric volume pinning force curve F-p(H) suggestive of a strong pinning nanostructure. The anisotropy parameter gamma=H-c2(ab)/H-c2(c) deduced from the slopes of dH(c2)(ab)/dT=4.9 T/K and dH(c2)(c)/dT=2.5 T/K decreases from similar to 2 near T-c, to similar to 1.5 at lower temperatures, much smaller than gamma for 1111pnictides and high-T-c cuprates.
C1 [Yamamoto, A.; Jaroszynski, J.; Tarantini, C.; Balicas, L.; Jiang, J.; Gurevich, A.; Larbalestier, D. C.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
[Jin, R.; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
RP Yamamoto, A (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA.
EM yamamoto@asc.magnet.fsu.edu
RI Yamamoto, Akiyasu/A-6630-2009; McGuire, Michael/B-5453-2009; Yamamoto,
Akiyasu/A-5119-2012; Gurevich, Alex/A-4327-2008; Mandrus,
David/H-3090-2014; Larbalestier, David/B-2277-2008; Sefat,
Athena/R-5457-2016; Jiang, Jianyi/F-2549-2017
OI McGuire, Michael/0000-0003-1762-9406; Gurevich,
Alex/0000-0003-0759-8941; Larbalestier, David/0000-0001-7098-7208;
Sefat, Athena/0000-0002-5596-3504; Jiang, Jianyi/0000-0002-1094-2013
FU NSF [DMR-0084173]; DOE; AFOSR [FA9550-06-10474]; JSPS
FX Work at the NHMFL was supported by the NSF Cooperative Agreement
DMR-0084173, by the State of Florida, by the DOE and by AFOSR under
Grant No. FA9550-06-10474. Work at ORNL was supported by the Division of
Materials Science and Engineering, Office of Basic Energy Sciences. AY
is supported by a fellowship of the JSPS.
NR 24
TC 215
Z9 216
U1 4
U2 44
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 9
PY 2009
VL 94
IS 6
AR 062511
DI 10.1063/1.3081455
PG 3
WC Physics, Applied
SC Physics
GA 408BW
UT WOS:000263409400068
ER
PT J
AU Knaus, E
Killen, J
AF Knaus, Emily
Killen, James
TI OIL SHALE-Conclusion Technology may control adverse environmental
effects
SO OIL & GAS JOURNAL
LA English
DT Article
C1 [Knaus, Emily] Intek Inc, Arlington, VA USA.
[Killen, James] US DOE, Washington, DC USA.
RP Knaus, E (reprint author), Intek Inc, Arlington, VA USA.
NR 5
TC 2
Z9 2
U1 0
U2 1
PU PENNWELL PUBL CO ENERGY GROUP
PI TULSA
PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA
SN 0030-1388
J9 OIL GAS J
JI Oil Gas J.
PD FEB 9
PY 2009
VL 107
IS 6
BP 42
EP 45
PG 4
WC Energy & Fuels; Engineering, Petroleum
SC Energy & Fuels; Engineering
GA 690SQ
UT WOS:000285027700016
ER
PT J
AU Walter, MD
Booth, CH
Lukens, WW
Andersen, RA
AF Walter, Marc D.
Booth, Corwin H.
Lukens, Wayne W.
Andersen, Richard A.
TI Cerocene Revisited: The Electronic Structure of and Interconversion
Between Ce-2(C8H8)(3) and Ce(C8H8)(2)
SO ORGANOMETALLICS
LA English
DT Article
ID LIGAND-FIELD THEORY; SANDWICH COMPLEXES; CYCLOOCTATETRAENYL COMPLEXES;
MOLECULAR-STRUCTURE; MAGNETIC-PROPERTIES; OXIDATION-STATE; CERIUM;
SPECTROSCOPY; CHEMISTRY; COORDINATION
AB New synthetic procedures for the preparation of Ce(cot)(2), cerocene, from [Li(thf)(4)][Ce(cot)(2)], and Ce-2(cot)(3) in high yield and purity are reported. Heating solid Ce(cot)(2) yields Ce-2(cot)(3) and COT while heating Ce-2(cot)(3) with an excess of COT in C6D6 to 65 degrees C over four months yields Ce(cot)(2). The solid state magnetic susceptibility data of these three organocerium compounds show that Ce(cot)(2) behaves as a TIP (temperature independent paramagnet) over the temperature range of 5-300 K, while that of Ce-2(cot)(3) shows that the spin carriers are antiferromagnetically coupled below 10 K; above 10 K, the individual spins are uncorrelated, and [Ce(cot)(2)](-) behaves as an isolated f(1) paramagnet. The EPR spectra recorded at 1.5 K confirm that Ce-2(cot)(3) and [Ce(cot)(2)](-) have a erround-state of M-j= +/- 1/2. The L-III edge XANES of Ce(cot)(2) (Booth, C.H.; Walter, M.D.; Daniel, M.; Lukens, W.W., Andersen, R.A., Phys. Rev. Lett. 2005, 95, 267202) and Ce-2(cot)(3) over 30-500 K are reported; the Ce(cot)(2) XANES spectra show Ce(III) and Ce(IV) signatures up to a temperature of approximately 500 K, whereupon the Ce(IV) signature disappears, consistent with the thermal behavior observed in the melting experiment. The EXAFS of Ce(cot)(2) and Ce-2(cot)(3) are reported at 30 K; the agreement between the molecular parameters for Ce(cot)(2) derived from EXAFS and single crystal X-ray diffraction data are excellent. In the case of Ce-2(cot)(3) no X-ray diffraction data are known to exist, but the EXAFS are consistent with a "triple-decker" sandwich structure. A molecular rationalization is presented for the electronic structure of cerocene having a multiconfiguration ground-state that is an admixture of the two configurations Ce(III, 4f(1))(cot(1.5-))2 and Ce(IV, 4f(0))(Cot(2-))(2); the multiconfigurational ground-state has profound effects on the magnetic properties and on the nature of the chemical bond in cerocene and, perhaps, other molecules.
C1 [Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Andersen, RA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA.
EM raandersen@lbl.gov
RI Walter, Marc/E-4479-2012
FU U.S. Department of Energy [DE-AC02-05CH11231]; German Academic Exchange
Service (DAAD)
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. We thank Norman Edelstein for helpful discussions
about the electronic structure of lanthanides and the German Academic
Exchange Service (DAAD) for a fellowship (M.D.W.). XANES and EXAFS data
were collected at the SSRL, a national user facility operated by
Stanford University on behalf of the DOE/OBES.
NR 64
TC 53
Z9 53
U1 2
U2 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD FEB 9
PY 2009
VL 28
IS 3
BP 698
EP 707
DI 10.1021/om7012327
PG 10
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA 401BR
UT WOS:000262913600007
ER
PT J
AU Appel, AM
Lee, SJ
Franz, JA
DuBois, DL
DuBois, MR
Twamley, B
AF Appel, Aaron M.
Lee, Suh-Jane
Franz, James A.
DuBois, Daniel L.
DuBois, M. Rakowski
Twamley, Brendan
TI Determination of S-H Bond Strengths in Dimolybdenum Tetrasulfide
Complexes
SO ORGANOMETALLICS
LA English
DT Article
ID TRANSITION-METAL-COMPLEXES; HYDROGEN-ATOM TRANSFER; MONONUCLEAR
MOLYBDENUM ENZYMES; DISSOCIATION ENERGIES; SULFIDO LIGANDS; CARBONYL
HYDRIDES; CHAIN TRANSFER; SULFUR; REACTIVITY; KINETICS
AB Homolytic solution bond dissociation free energies (SBDFE) for S-H bonds have been determined for soluble dimolybdenum tetrasulfide complexes through thermochemical cycles using electrochemical potentials and pK(a) values in acetonitrile. In spite of the importance and extensive use of metal sulfide catalysts, these S-H bond strengths are among the first experimentally determined values for metal sulfide systems. For [CP*MO(mu-S)(mu-SMe)(2)(mu-SH)MoCp*](+) (S(4)Me(2)H(+)), [Cp*Mo(mu-S)(mu-SMe)(mu-SH)(2)MoCP*](+) (S(4)MeH(2)(+)), and [Cp*Mo(mu-S)(mu-SH)(3)MoCP*](+) (S(4)H(3)(+)), the pK(a) values were determined to be 5.6 +/- 0.4, 5.3 +/- 0.3, and 4.9 +/- 0.3, respectively. The E(1/2) values for S(4)Me(2)(center dot+/o), S(4)MeH(center dot+/o), and S(4)H(2)(center dot+/o) were measured to be -0.02 +/- 0.02, +0.04 +/- 0.05, and +0.07 +/- 0.07 V vs FeCp(2)(+/o), respectively. Using these experimental values, the homolytic S-H SBDFE for S(4)Me(2)H(+) to S(4)Me(2)(center dot+), S(4)MeH(2)(+) to S(4)MeH(center dot+), and S(4)H(3)(+) to S(4)H(2)(center dot+) were determined to be 60.8 +/- 1.0, 61.8 +/- 1.6, and 61.9 +/- 2.0 kcal/mol, respectively. These SBDFE values can be used to estimate gas phase bond dissociation enthalpies of 65.6, 66.6, and 66.7 kca/mol, respectively. Solid state structures are presented for S(4)MeH and S(4)H(2.)
C1 [Appel, Aaron M.; Lee, Suh-Jane; Franz, James A.; DuBois, Daniel L.; DuBois, M. Rakowski] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Twamley, Brendan] Univ Idaho, Dept Chem, Moscow, ID 83844 USA.
RP Franz, JA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM james.franz@pnl.gov
OI Lee, Suh-Jane/0000-0002-3396-5859; Appel, Aaron/0000-0002-5604-1253
FU U.S. Department of Energy's
FX This work was supported by the U.S. Department of Energy's (DOE) Office
of Basic Energy Sciences, Chemical Sciences program. The Pacific
Northwest National Laboratory is operated by Battelle for DOE. The
Bruker (Siemens) SMART APEX diffraction facility was established at the
University of Idaho with the assistance of the NSF-EPSCoR program and
the M. J. Murdock Charitable Trust, Vancouver, WA.
NR 62
TC 24
Z9 24
U1 2
U2 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD FEB 9
PY 2009
VL 28
IS 3
BP 749
EP 754
DI 10.1021/om800875n
PG 6
WC Chemistry, Inorganic & Nuclear; Chemistry, Organic
SC Chemistry
GA 401BR
UT WOS:000262913600013
ER
PT J
AU Prok, Y
Bosted, P
Burkert, VD
Deur, A
Dharmawardane, KV
Dodge, GE
Griffioen, KA
Kuhn, SE
Minehart, R
Adams, G
Amaryan, MJ
Anghinolfi, M
Asryan, G
Audit, G
Avakian, H
Bagdasaryan, H
Baillie, N
Ball, JP
Baltzell, NA
Barrow, S
Battaglieri, M
Beard, K
Bedlinskiy, I
Bektasoglu, M
Bellis, M
Benmouna, N
Berman, BL
Biselli, AS
Blaszczyk, L
Boiarinov, S
Bonner, BE
Bouchigny, S
Bradford, R
Branford, D
Briscoe, WJ
Brooks, WK
Bultmann, S
Butuceanu, C
Calarco, JR
Careccia, SL
Carman, DS
Casey, L
Cazes, A
Chen, S
Cheng, L
Cole, PL
Collins, P
Coltharp, P
Cords, D
Corvisiero, P
Crabb, D
Crede, V
Cummings, JP
Dale, D
Dashyan, N
De Masi, R
De Vita, R
De Sanctis, E
Degtyarenko, PV
Denizli, H
Dennis, L
Dhuga, KS
Dickson, R
Djalali, C
Doughty, D
Dugger, M
Dytman, S
Dzyubak, OP
Egiyan, H
Egiyan, KS
El Fassi, L
Elouadrhiri, L
Eugenio, P
Fatemi, R
Fedotov, G
Feldmann, G
Fersh, RG
Feuerbach, RJ
Forest, TA
Fradi, A
Funsten, H
Garcon, M
Gavalian, G
Gevorgyan, N
Gilfoyle, GP
Giovanetti, KL
Girod, FX
Goetz, JT
Golovatch, E
Gothe, RW
Guidal, M
Guillo, M
Guler, N
Guo, L
Gyurjyan, V
Hadjidakis, C
Hafidi, K
Hakobyan, H
Hanretty, C
Hardie, J
Hassall, N
Heddle, D
Hersman, FW
Hicks, K
Hleiqawi, I
Holtrop, M
Huertas, M
Hyde-Wright, CE
Ilievan, Y
Ireland, DG
Ishkhanov, BS
Isupov, EL
Ito, MM
Jenkins, D
Jo, HS
Johnstone, JR
Joo, K
Juengst, HG
Kalantarians, N
Keith, CD
Kellie, JD
Khandaker, M
Kim, KY
Kim, K
Kim, W
Klein, A
Klein, FJ
Klusman, M
Kossov, M
Krahn, Z
Kramer, LH
Kubarovsky, V
Kuhn, J
Kuleshov, SV
Kuznetsov, V
Lachniet, J
Laget, JM
Langheinrich, J
Lawrence, D
Li, J
Lima, ACS
Livingston, K
Lu, HY
Lukashin, K
MacCormick, M
Marchand, C
Markov, N
Mattione, R
McAleer, S
McKinnon, B
McNabb, JWC
Mecking, BA
Mestayer, MD
Meyere, CA
Mibe, T
Mikhailov, K
Mirazita, M
Miskimen, R
Mokeev, V
Morand, L
Moreno, B
Moriya, K
Morrow, SA
Moteabbed, M
Mueller, J
Munevar, E
Mutchler, GS
Nadel-Turonski, R
Nasseripour, R
Niccolai, S
Niculescu, G
Niculescu, I
Niczyporuk, BB
Niroula, MR
Niyazov, RA
Nozar, M
O'Rielly, GV
Osipenko, M
Ostrovidov, AI
Park, K
Pasyuk, E
Paterson, C
Pereira, SA
Philips, SA
Pierce, J
Pivnyuk, N
Pocanic, D
Pogorelko, O
Popa, I
Pozdniakov, S
Preedom, BM
Price, JW
Procureur, S
Protopopescu, D
Qin, LM
Raue, BA
Riccardi, G
Ricco, G
Ripani, M
Ritchie, BG
Rosner, G
Rossi, P
Rowntree, D
Rubin, PD
Sabatie, F
Salamanca, J
Salgado, C
Santoro, JP
Sapunenko, V
Schumacher, RA
Seely, ML
Serov, VS
Sharabian, YG
Sharov, D
Shaw, J
Shvedunov, NV
Skabelin, AV
Smith, ES
Smith, LC
Sober, DI
Sokhan, D
Stavinsky, A
Stepanyan, SS
Stepanyan, S
Stokes, BE
Stoler, P
Strakovsky, II
Strauch, S
Suleiman, R
Taiuti, M
Tedeschi, DJ
Tkabladze, A
Tkachenko, S
Todor, L
Ungaro, M
Vineyard, MF
Vlassov, AV
Watts, DP
Weinstein, LB
Weygand, DP
Williams, M
Wolin, E
Wood, MH
Yegneswaran, A
Yun, J
Zana, L
Zhang, J
Zhao, B
Zhao, ZW
AF Prok, Y.
Bosted, P.
Burkert, V. D.
Deur, A.
Dharmawardane, K. V.
Dodge, G. E.
Griffioen, K. A.
Kuhn, S. E.
Minehart, R.
Adams, G.
Amaryan, M. J.
Anghinolfi, M.
Asryan, G.
Audit, G.
Avakian, H.
Bagdasaryan, H.
Baillie, N.
Ball, J. P.
Baltzell, N. A.
Barrow, S.
Battaglieri, M.
Beard, K.
Bedlinskiy, I.
Bektasoglu, M.
Bellis, M.
Benmouna, N.
Berman, B. L.
Biselli, A. S.
Blaszczyk, L.
Boiarinov, S.
Bonner, B. E.
Bouchigny, S.
Bradford, R.
Branford, D.
Briscoe, W. J.
Brooks, W. K.
Bueltmann, S.
Butuceanu, C.
Calarco, J. R.
Careccia, S. L.
Carman, D. S.
Casey, L.
Cazes, A.
Chen, S.
Cheng, L.
Cole, P. L.
Collins, P.
Coltharp, P.
Cords, D.
Corvisiero, P.
Crabb, D.
Crede, V.
Cummings, J. P.
Dale, D.
Dashyan, N.
De Masi, R.
De Vita, R.
De Sanctis, E.
Degtyarenko, P. V.
Denizli, H.
Dennis, L.
Dhuga, K. S.
Dickson, R.
Djalali, C.
Doughty, D.
Dugger, M.
Dytman, S.
Dzyubak, O. P.
Egiyan, H.
Egiyan, K. S.
El Fassi, L.
Elouadrhiri, L.
Eugenio, P.
Fatemi, R.
Fedotov, G.
Feldmann, G.
Fersh, R. G.
Feuerbach, R. J.
Forest, T. A.
Fradi, A.
Funsten, H.
Garcon, M.
Gavalian, G.
Gevorgyan, N.
Gilfoyle, G. P.
Giovanetti, K. L.
Girod, F. X.
Goetz, J. T.
Golovatch, E.
Gothe, R. W.
Guidal, M.
Guillo, M.
Guler, N.
Guo, L.
Gyurjyan, V.
Hadjidakis, C.
Hafidi, K.
Hakobyan, H.
Hanretty, C.
Hardie, J.
Hassall, N.
Heddle, D.
Hersman, F. W.
Hicks, K.
Hleiqawi, I.
Holtrop, M.
Huertas, M.
Hyde-Wright, C. E.
Ilievan, Y.
Ireland, D. G.
Ishkhanov, B. S.
Isupov, E. L.
Ito, M. M.
Jenkins, D.
Jo, H. S.
Johnstone, J. R.
Joo, K.
Juengst, H. G.
Kalantarians, N.
Keith, C. D.
Kellie, J. D.
Khandaker, M.
Kim, K. Y.
Kim, K.
Kim, W.
Klein, A.
Klein, F. J.
Klusman, M.
Kossov, M.
Krahn, Z.
Kramer, L. H.
Kubarovsky, V.
Kuhn, J.
Kuleshov, S. V.
Kuznetsov, V.
Lachniet, J.
Laget, J. M.
Langheinrich, J.
Lawrence, D.
Li, Ji
Lima, A. C. S.
Livingston, K.
Lu, H. Y.
Lukashin, K.
MacCormick, M.
Marchand, C.
Markov, N.
Mattione, R.
McAleer, S.
McKinnon, B.
McNabb, J. W. C.
Mecking, B. A.
Mestayer, M. D.
Meyere, C. A.
Mibe, T.
Mikhailov, K.
Mirazita, M.
Miskimen, R.
Mokeev, V.
Morand, L.
Moreno, B.
Moriya, K.
Morrow, S. A.
Moteabbed, M.
Mueller, J.
Munevar, E.
Mutchler, G. S.
Nadel-Turonski, R.
Nasseripour, R.
Niccolai, S.
Niculescu, G.
Niculescu, I.
Niczyporuk, B. B.
Niroula, M. R.
Niyazov, R. A.
Nozar, M.
O'Rielly, G. V.
Osipenko, M.
Ostrovidov, A. I.
Park, K.
Pasyuk, E.
Paterson, C.
Pereira, S. Anefalos
Philips, S. A.
Pierce, J.
Pivnyuk, N.
Pocanic, D.
Pogorelko, O.
Popa, I.
Pozdniakov, S.
Preedom, B. M.
Price, J. W.
Procureur, S.
Protopopescu, D.
Qin, L. M.
Raue, B. A.
Riccardi, G.
Ricco, G.
Ripani, M.
Ritchie, B. G.
Rosner, G.
Rossi, P.
Rowntree, D.
Rubin, P. D.
Sabatie, F.
Salamanca, J.
Salgado, C.
Santoro, J. P.
Sapunenko, V.
Schumacher, R. A.
Seely, M. L.
Serov, V. S.
Sharabian, Y. G.
Sharov, D.
Shaw, J.
Shvedunov, N. V.
Skabelin, A. V.
Smith, E. S.
Smith, L. C.
Sober, D. I.
Sokhan, D.
Stavinsky, A.
Stepanyan, S. S.
Stepanyan, S.
Stokes, B. E.
Stoler, P.
Strakovsky, I. I.
Strauch, S.
Suleiman, R.
Taiuti, M.
Tedeschi, D. J.
Tkabladze, A.
Tkachenko, S.
Todor, L.
Ungaro, M.
Vineyard, M. F.
Vlassov, A. V.
Watts, D. P.
Weinstein, L. B.
Weygand, D. P.
Williams, M.
Wolin, E.
Wood, M. H.
Yegneswaran, A.
Yun, J.
Zana, L.
Zhang, J.
Zhao, B.
Zhao, Z. W.
CA CLAS Collaboration
TI Moments of the spin structure functions g(1)(p) and g(1)(d) for 0.05 <
Q(2) < 3.0 GeV2
SO PHYSICS LETTERS B
LA English
DT Article
DE Spin structure functions; Nucleon structure; Chiral Perturbation Theory
ID CHIRAL PERTURBATION-THEORY; INELASTIC MUON SCATTERING; SUM-RULE; PROTON;
NUCLEON; DEUTERON; Q(2)-DEPENDENCE; NEUTRON; CLAS
AB The spin structure functions g, for the proton and the deuteron have been measured over a wide kinematic range in x and Q(2) using 1.6 and 5.7 GeV longitudinally polarized electrons incident upon polarized NH3 and ND3 targets at Jefferson Lab. Scattered electrons were detected in the CEBAF Large Acceptance Spectrometer, for 0.05 < Q(2) < 5 GeV2 and W < 3 GeV. The first moments of g(1) for the proton and deuteron are presented - both have a negative slope at low Q(2), as predicted by the extended Gerasimov-Drell-Hearn sum rule. The first extraction of the generalized forward spin polarizability of the proton gamma(p)(0) is also reported. This quantity shows strong Q(2) dependence at low Q(2). Our analysis of the Q(2) evolution of the first moment of g, shows agreement in leading order with Heavy Baryon Chiral Perturbation Theory. However, a significant discrepancy is observed between the gamma(p)(0) data and Chiral Perturbation calculations for gamma(p)(0), even at the lowest Q(2). (C) 2009 Elsevier B.V. All rights reserved.
C1 [Dharmawardane, K. V.; Dodge, G. E.; Kuhn, S. E.; Amaryan, M. J.; Bagdasaryan, H.; Bektasoglu, M.; Bueltmann, S.; Careccia, S. L.; Forest, T. A.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Juengst, H. G.; Kalantarians, N.; Klein, A.; Lachniet, J.; Niroula, M. R.; Niyazov, R. A.; Qin, L. M.; Sabatie, F.; Tkachenko, S.; Weinstein, L. B.; Yun, J.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA.
[Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA.
[Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA.
[Bellis, M.; Bradford, R.; Dickson, R.; Krahn, Z.; Kuhn, J.; Lachniet, J.; McNabb, J. W. C.; Meyere, C. A.; Moriya, K.; Schumacher, R. A.; Todor, L.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Casey, L.; Cheng, L.; Klein, F. J.; Lukashin, K.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA.
[Audit, G.; De Masi, R.; Garcon, M.; Girod, F. X.; Laget, J. M.; Marchand, C.; Morand, L.; Morrow, S. A.; Procureur, S.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France.
[Prok, Y.; Doughty, D.; Elouadrhiri, L.; Hardie, J.; Stepanyan, S.] Christopher Newport Univ, Newport News, VA 23606 USA.
[Joo, K.; Markov, N.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA.
[Branford, D.; Sokhan, D.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland.
[Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA.
[Blaszczyk, L.; Chen, S.; Coltharp, P.; Crede, V.; Dennis, L.; Klein, A.; Kramer, L. H.; Moteabbed, M.; Nasseripour, R.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA.
[Barrow, S.; Eugenio, P.; Hanretty, C.; McAleer, S.; Ostrovidov, A. I.; Riccardi, G.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA.
[Benmouna, N.; Berman, B. L.; Briscoe, W. J.; Dhuga, K. S.; Feldmann, G.; Ilievan, Y.; Lima, A. C. S.; Munevar, E.; Nadel-Turonski, R.; Niccolai, S.; Niculescu, I.; O'Rielly, G. V.; Philips, S. A.; Popa, I.; Strakovsky, I. I.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA.
[Avakian, H.; De Sanctis, E.; Hassall, N.; Ireland, D. G.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; McKinnon, B.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland.
[Cole, P. L.; Dale, D.; Forest, T. A.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA.
[Avakian, H.; De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy.
[Anghinolfi, M.; Battaglieri, M.; Corvisiero, P.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Sapunenko, V.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy.
[Bouchigny, S.; Fradi, A.; Guidal, M.; Hadjidakis, C.; Huertas, M.; MacCormick, M.; Morrow, S. A.; Niccolai, S.] Ctr Univ Orsay, Inst Phys Nucl, Orsay, France.
[Bedlinskiy, I.; Boiarinov, S.; Kossov, M.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Beard, K.; Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA.
[Kim, K.; Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea.
[Rowntree, D.; Skabelin, A. V.; Suleiman, R.] MIT, Cambridge, MA 02139 USA.
[Lawrence, D.; Miskimen, R.; Shaw, J.] Univ Massachusetts, Amherst, MA 01003 USA.
[Fedotov, G.; Ishkhanov, B. S.; Mokeev, V.; Osipenko, M.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, Moscow 119899, Russia.
[Calarco, J. R.; Gavalian, G.; Hersman, F. W.; Holtrop, M.; Protopopescu, D.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA.
[Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA.
[Hicks, K.; Hleiqawi, I.; Mibe, T.; Niculescu, G.] Ohio Univ, Athens, OH 45701 USA.
[Denizli, H.; Dytman, S.; Kim, K. Y.] Univ Pittsburgh, Pittsburgh, PA 15260 USA.
[Adams, G.; Biselli, A. S.; Cummings, J. P.; Klusman, M.; Kubarovsky, V.; Kuhn, J.; Li, Ji; Stokes, B. E.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA.
[Bonner, B. E.; Mattione, R.; Mutchler, G. S.] Rice Univ, Houston, TX 77005 USA.
[Gilfoyle, G. P.; Rubin, P. D.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA.
[Baltzell, N. A.; Dzyubak, O. P.; Gothe, R. W.; Guillo, M.; Huertas, M.; Langheinrich, J.; Lu, H. Y.; Nasseripour, R.; Preedom, B. M.; Strauch, S.; Tedeschi, D. J.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA.
[Bosted, P.; Burkert, V. D.; Deur, A.; Avakian, H.; Boiarinov, S.; Bouchigny, S.; Brooks, W. K.; Cole, P. L.; Cords, D.; Degtyarenko, P. V.; Doughty, D.; Egiyan, H.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Hardie, J.; Heddle, D.; Joo, K.; Keith, C. D.; Kramer, L. H.; Kubarovsky, V.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Raue, B. A.; Seely, M. L.; Sharabian, Y. G.; Smith, L. C.; Stepanyan, S. S.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA.
[Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA.
[Jenkins, D.; Santoro, J. P.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA.
[Minehart, R.; Fatemi, R.; Pierce, J.; Pocanic, D.; Smith, E. S.] Univ Virginia, Charlottesville, VA 22901 USA.
[Griffioen, K. A.; Butuceanu, C.; Egiyan, H.; Egiyan, K. S.; Fersh, R. G.; Feuerbach, R. J.; Funsten, H.] Coll William & Mary, Williamsburg, VA 23187 USA.
[Asryan, G.; Bagdasaryan, H.; Dashyan, N.; Egiyan, K. S.; Gevorgyan, N.; Hakobyan, H.; Stepanyan, S.] Yerevan Phys Inst, Yerevan 375036, Armenia.
[El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA.
RP Dodge, GE (reprint author), Old Dominion Univ, Norfolk, VA 23529 USA.
EM gdodge@odu.edu
RI Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Osipenko,
Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Ireland,
David/E-8618-2010; Kuleshov, Sergey/D-9940-2013; Schumacher,
Reinhard/K-6455-2013; Bektasoglu, Mehmet/A-2074-2012; Lu,
Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; riccardi,
gabriele/A-9269-2012; Zana, Lorenzo/H-3032-2012; Isupov,
Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012;
Brooks, William/C-8636-2013
OI Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975;
Osipenko, Mikhail/0000-0001-9618-3013; Sapunenko,
Vladimir/0000-0003-1877-9043; Ireland, David/0000-0001-7713-7011;
Kuleshov, Sergey/0000-0002-3065-326X; Schumacher,
Reinhard/0000-0002-3860-1827; Zhao, Bo/0000-0003-3171-5335; Brooks,
William/0000-0001-6161-3570
FU US Department of Energy and National Science Foundation; Italian
Istituto Nazionale di Fisica Nucleare; French Centre National de la
Recherche Scientifique; French Commissariat A l'Energie Atomique; Korean
Science and Engineering Foundation; Thomas Jefferson National
Accelerator Facility for the United States Department of Energy
[DE-AC05-84ER-40150]
FX We would like to acknowledge the outstanding efforts of the staff of the
Accelerator and the Physics Divisions at Jefferson Lab that made this
experiment possible. This work was supported in part by the US
Department of Energy and National Science Foundation, the Italian
Istituto Nazionale di Fisica Nucleare, the French Centre National de la
Recherche Scientifique, the French Commissariat A l'Energie Atomique and
the Korean Science and Engineering Foundation. Jefferson Science
Associates operates the Thomas Jefferson National Accelerator Facility
for the United States Department of Energy under contract
DE-AC05-84ER-40150. We would also like to thank M. Vanderhaeghen for
helpful discussions.
NR 46
TC 36
Z9 36
U1 0
U2 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0370-2693
J9 PHYS LETT B
JI Phys. Lett. B
PD FEB 9
PY 2009
VL 672
IS 1
BP 12
EP 16
DI 10.1016/j.physletb.2008.12.063
PG 5
WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields
SC Astronomy & Astrophysics; Physics
GA 406RV
UT WOS:000263313500003
ER
PT J
AU Van Odyck, DEA
Bell, JB
Monmont, F
Nikiforakis, N
AF Van Odyck, Daniel E. A.
Bell, John B.
Monmont, Franck
Nikiforakis, Nikolaos
TI The mathematical structure of multiphase thermal models of flow in
porous media
SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING
SCIENCES
LA English
DT Article
DE porous media flow; multiphase flow; multicomponent flow; phase
equilibrium; conservation laws
ID RESERVOIR SIMULATION
AB This paper is concerned with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow in porous media. The fluid model consists of individual chemical component (species) conservation equations, Darcy's law for volumetric flow rates and an energy equation in terms of enthalpy. The model is closed with an equation of state and phase equilibrium conditions that determine the distribution of the chemical components into phases. It is shown that, in the absence of diffusive forces, the flow equations can be split into a system of hyperbolic conservation laws for the species and enthalpy and a parabolic equation for pressure. This decomposition forms the basis of a sequential formulation where the pressure equation is solved implicitly and then the component and enthalpy conservation laws are solved explicitly. A numerical method based on this sequential formulation is presented and used to demonstrate some typical flow behaviour that occurs during fluid injection into a reservoir.
C1 [Van Odyck, Daniel E. A.; Nikiforakis, Nikolaos] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England.
[Bell, John B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Monmont, Franck] Schlumberger Cambridge Res Ltd, Cambridge CB3 0EL, England.
RP Van Odyck, DEA (reprint author), Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England.
EM deav2@cam.ac.uk
NR 22
TC 9
Z9 9
U1 0
U2 13
PU ROYAL SOC
PI LONDON
PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND
SN 1364-5021
J9 P R SOC A
JI Proc. R. Soc. A-Math. Phys. Eng. Sci.
PD FEB 8
PY 2009
VL 465
IS 2102
BP 523
EP 549
DI 10.1098/rspa.2008.0268
PG 27
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 386VJ
UT WOS:000261910400010
ER
PT J
AU Chempath, S
Pratt, LR
Paulaitis, ME
AF Chempath, Shaji
Pratt, Lawrence R.
Paulaitis, Michael E.
TI Quasichemical theory with a soft cutoff
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE free energy; liquid theory; molecular dynamics method; Monte Carlo
methods; solvation; water
ID MOLECULAR-DYNAMICS; LIQUID WATER; FREE-ENERGY; HYDRATION
AB In view of the wide success of molecular quasichemical theory of liquids, this paper develops the soft-cutoff version of that theory. This development allows molecular dynamics simulations to be used for the calculation of solvation free energy, whereas the hard-cutoff version of the theory needs Monte Carlo simulations. This development also shows how fluids composed of molecules with smooth repulsive interactions can be treated analogously to the molecular-field theory of the hard-sphere fluid. In the treatment of liquid water, quasichemical theory with soft-cutoff conditioning does not change the fundamental convergence characteristics of the theory using hard-cutoff conditioning. In fact, hard cutoffs are found here to work better than softer ones in that case.
C1 [Chempath, Shaji] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA.
[Paulaitis, Michael E.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA.
RP Chempath, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
EM lpratt@tulane.edu
RI Pratt, Lawrence/H-7955-2012
OI Pratt, Lawrence/0000-0003-2351-7451
FU National Nuclear Security Administration of the U.S. Department of
Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]
FX This work was carried out under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy at Los Alamos
National Laboratory under Contract No. DE-AC52-06NA25396.
NR 20
TC 18
Z9 18
U1 1
U2 11
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 7
PY 2009
VL 130
IS 5
AR 054113
DI 10.1063/1.3072666
PG 5
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 404QC
UT WOS:000263167100016
PM 19206964
ER
PT J
AU Feldman, JL
Johnson, JK
Hemley, RJ
AF Feldman, J. L.
Johnson, J. Karl
Hemley, Russell J.
TI Vibron hopping and bond anharmonicity in hot dense hydrogen
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE anharmonic lattice modes; hopping conduction; hydrogen; melting;
molecular dynamics method; Raman spectra; rotational states; vibronic
states
ID PATH-INTEGRAL SIMULATIONS; VIBRATIONAL RAMAN-SPECTRA; SOLID HYDROGEN;
MIXED-CRYSTALS; MOLECULAR-HYDROGEN; MEGABAR PRESSURES; ROOM-TEMPERATURE;
FLUID HYDROGEN; ENERGY BANDS; DEUTERIUM
AB The Raman-active vibron of dense hydrogen has been shown to exhibit unexpected changes as a function of pressure and temperature to above 100 GPa. To understand these results we have performed supercell-based calculations using Van Kranendonk theory taking into account the renormalization of the hopping parameter by the lattice vibrations. We find that the major temperature dependence at this level of theory comes from the differences in populations of rotational states. The theory provides a fair description of the experimental results up to 70 GPa. We examine in detail a number of assumptions made in the application of the Van Kranendonk model to hydrogen as a function of pressure and temperature. We also present results of hybrid path integral molecular dynamics calculations in the fluid state at a low pressure (7 GPa) near the melting temperature. An amorphous-solid model of the fluid predicts that the Raman vibron frequencies change little upon melting, in agreement with experiment. The Van Kranendonk theory with fixed rotational identities of the molecules tends to predict more peaks in the Raman spectrum than are observed experimentally.
C1 [Feldman, J. L.] USN, Res Lab, Ctr Computat Mat, Washington, DC 20375 USA.
[Feldman, J. L.] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA.
[Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA.
[Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA.
[Hemley, Russell J.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA.
RP Feldman, JL (reprint author), USN, Res Lab, Ctr Computat Mat, Washington, DC 20375 USA.
EM feldman@dave.nrl.navy.mil
RI Johnson, Karl/E-9733-2013
OI Johnson, Karl/0000-0002-3608-8003
NR 43
TC 4
Z9 4
U1 0
U2 1
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 7
PY 2009
VL 130
IS 5
AR 054502
DI 10.1063/1.3072713
PG 10
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 404QC
UT WOS:000263167100031
PM 19206979
ER
PT J
AU Tretiak, S
Isborn, CM
Niklasson, AMN
Challacombe, M
AF Tretiak, Sergei
Isborn, Christine M.
Niklasson, Anders M. N.
Challacombe, Matt
TI Representation independent algorithms for molecular response
calculations in time-dependent self-consistent field theories
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
DE carbon nanotubes; conducting polymers; density functional theory;
eigenvalues and eigenfunctions; excited states; HF calculations;
perturbation theory; RPA calculations; SCF calculations
ID DENSITY-FUNCTIONAL THEORY; RANDOM PHASE APPROXIMATION;
ELECTRONIC-STRUCTURE; EXCITED-STATES; HARTREE-FOCK; EXCITATION-ENERGIES;
NONEMPIRICAL CALCULATIONS; CONJUGATED MOLECULES; SYMMETRIC-MATRICES;
CARBON NANOTUBES
AB Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.
C1 [Tretiak, Sergei; Niklasson, Anders M. N.; Challacombe, Matt] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.
[Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
[Isborn, Christine M.] Univ Washington, Dept Chem, Seattle, WA 98195 USA.
RP Tretiak, S (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA.
EM serg@lanl.gov; mchalla@lanl.gov
RI Tretiak, Sergei/B-5556-2009
OI Tretiak, Sergei/0000-0001-5547-3647
FU U.S. Department of Energy; Los Alamos LDRD; National Nuclear Security
Administration of the U.S. Department of Energy [DE-AC52-06NA25396];
Center for Integrated Nanotechnology (CINT); Center for Nonlinear
Studies (CNLS)
FX This work was supported by the U.S. Department of Energy and Los Alamos
LDRD funds. Los Alamos National Laboratory was operated by the Los
Alamos National Security, LLC, for the National Nuclear Security
Administration of the U.S. Department of Energy under Contract No.
DE-AC52-06NA25396. We acknowledge support of the Center for Integrated
Nanotechnology (CINT) and the Center for Nonlinear Studies (CNLS). C. M.
I. thanks Andri Arnaldsson for useful discussions.
NR 100
TC 45
Z9 45
U1 2
U2 15
PU AMER INST PHYSICS
PI MELVILLE
PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA
SN 0021-9606
EI 1089-7690
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 7
PY 2009
VL 130
IS 5
AR 054111
DI 10.1063/1.3068658
PG 16
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 404QC
UT WOS:000263167100014
PM 19206962
ER
PT J
AU Wang, LM
Pal, R
Huang, W
Zeng, XC
Wang, LS
AF Wang, Lei-Ming
Pal, Rhitankar
Huang, Wei
Zeng, Xiao Cheng
Wang, Lai-Sheng
TI Tuning the electronic properties of the golden buckyball by endohedral
doping: M@Au-16(-) (M=Ag,Zn,In)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID PHOTOELECTRON-SPECTROSCOPY; GLOBAL OPTIMIZATION; BIMETALLIC CLUSTERS;
METAL-CLUSTERS; AL; TRANSITION; STABILITY; MOLECULES; CAGE; SN
AB The golden Au-16(-) cage is doped systematically with an external atom of different valence electrons: Ag, Zn, and In. The electronic and structural properties of the doped clusters, MAu16- (M=Ag,Zn,In), are investigated by photoelectron spectroscopy and theoretical calculations. It is observed that the characteristic spectral features of Au-16(-), reflecting its near tetrahedral (T-d) symmetry, are retained in the photoelectron spectra of MAu16-, suggesting endohedral structures with little distortion from the parent Au-16(-) cage for the doped clusters. Density functional calculations show that the endohedral structures of M@Au-16(-) with Td symmetry are low-lying structures, which give simulated photoelectron spectra in good agreement with the experiment. It is found that the dopant atom does not significantly perturb the electronic and atomic structures of Au-16(-), but simply donate its valence electrons to the parent Au-16(-) cage, resulting in a closed-shell 18-electron system for Ag@Au-16(-), a 19-electron system for Zn@Au-16(-) with a large energy gap, and a 20-electron system for In@Au-16(-). The current work shows that the electronic properties of the golden buckyball can be systematically tuned through doping. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3073884]
C1 [Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA.
[Wang, Lei-Ming; Huang, Wei; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Pal, Rhitankar; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA.
[Pal, Rhitankar; Zeng, Xiao Cheng] Univ Nebraska, Ctr Mat & Nanosci, Lincoln, NE 68588 USA.
RP Wang, LM (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA.
EM xczeng@phase2.unl.edu; ls.wang@pnl.gov
RI Wang, Leiming/A-3937-2011
FU National Science Foundation [CHE-0749496]; NSF; Nebraska Research
Initiative; University of Nebraska-Lincoln; Holland Supercomputing
Center at University of Nebraska-Omaha
FX The experimental work was supported by the National Science Foundation
(Grant No. CHE-0749496) and performed at the W. R. Wiley Environmental
Molecular Sciences Laboratory, a national scientific user facility
sponsored by DOE's Office of Biological and Environmental Research and
located at Pacific Northwest National Laboratory, operated for DOE by
Battelle. The theoretical work was supported in part by grants from the
NSF (CHE, CMMI, and DMR/MRSEC), and the Nebraska Research Initiative,
and by the Research Computing Facility at University of Nebraska-Lincoln
and Holland Supercomputing Center at University of Nebraska-Omaha.
X.C.Z. thanks Professor J. M. Dong and Professor W. Fa for helpful
discussions.
NR 33
TC 44
Z9 45
U1 0
U2 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 7
PY 2009
VL 130
IS 5
AR 051101
DI 10.1063/1.3073884
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 404QC
UT WOS:000263167100001
PM 19206949
ER
PT J
AU Popescu, BFG
George, MJ
Bergmann, U
Garachtchenko, AV
Kelly, ME
McCrea, RPE
Luning, K
Devon, RM
George, GN
Hanson, AD
Harder, SM
Chapman, LD
Pickering, IJ
Nichol, H
AF Popescu, Bogdan F. Gh
George, Martin J.
Bergmann, Uwe
Garachtchenko, Alex V.
Kelly, Michael E.
McCrea, Richard P. E.
Luning, Katharina
Devon, Richard M.
George, Graham N.
Hanson, Akela D.
Harder, Sheri M.
Chapman, L. Dean
Pickering, Ingrid J.
Nichol, Helen
TI Mapping metals in Parkinson's and normal brain using rapid-scanning
x-ray fluorescence
SO PHYSICS IN MEDICINE AND BIOLOGY
LA English
DT Article
ID NIGRAL IRON CONTENT; SUBSTANTIA-NIGRA; ALZHEIMERS-DISEASE;
WILSONS-DISEASE; BASAL GANGLIA; TRACE-METALS; COPPER; FERRITIN; ZINC;
HISTOCHEMISTRY
AB Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.
C1 [Popescu, Bogdan F. Gh; George, Martin J.; McCrea, Richard P. E.; Devon, Richard M.; George, Graham N.; Hanson, Akela D.; Chapman, L. Dean; Nichol, Helen] Univ Saskatchewan, Dept Anat & Cell Biol, Coll Med, Saskatoon, SK S7N 0W0, Canada.
[Bergmann, Uwe; Garachtchenko, Alex V.; Luning, Katharina] Stanford Synchrotron Radiat Lab, Menlo Pk, CA USA.
[Kelly, Michael E.] Univ Saskatchewan, Div Neurosurg, Saskatoon, SK S7N 0W0, Canada.
[George, Graham N.; Pickering, Ingrid J.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 0W0, Canada.
[Harder, Sheri M.] Univ Saskatchewan, Dept Med Imaging, Saskatoon, SK S7N 0W0, Canada.
RP Nichol, H (reprint author), Univ Saskatchewan, Dept Anat & Cell Biol, Coll Med, Saskatoon, SK S7N 0W0, Canada.
EM h.nichol@usask.ca
RI George, Graham/E-3290-2013; Pickering, Ingrid/A-4547-2013;
OI Pickering, Ingrid/0000-0002-0936-2994
FU Canadian Health Research Projects program [NSERC-CIHR CHRPJ313008-2005];
Natural Sciences and Engineering Research Council of Canada (NSERC);
Canadian Institutes of Health Research (CIHR)
FX We thank Dr Hannes Vogel, Neuropathologist, Stanford University Medical
Center, for providing the specimens and Honglin Zhang for help with
image processing. BP and RM were supported by Dean's scholarships and AH
by a University Graduate Scholarship from the Faculty of Graduate
Studies, University of Saskatchewan. This work was supported by the
Canadian Health Research Projects program (NSERC-CIHR CHRPJ313008-2005)
administered through the Natural Sciences and Engineering Research
Council of Canada (NSERC) on behalf of both NSERC and the Canadian
Institutes of Health Research (CIHR). GNG, LDC and IJP are Canada
Research Chairs. GNG and IJP are supported by NSERC, CIHR and the
National Institutes of Health. Additional support came from a
Saskatchewan Health Research Foundation Research Group Facilitation
Grant, SHRF 1639. Human tissue was obtained from the NICHD Brain and
Tissue Bank for Developmental Disorders under contracts N01-HD-4-3368
and N01-HD-$-3383. Portions of this research were carried out at the
Stanford Synchrotron Radiation Laboratory, a national user facility
operated by Stanford University on behalf of the US Department of
Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular
Biology Program is supported by the Department of Energy, Office of
Biological and Environmental Research and by the National Institutes of
Health, National Center for Research Resources, Biomedical Technology
Program.
NR 54
TC 63
Z9 63
U1 2
U2 27
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0031-9155
J9 PHYS MED BIOL
JI Phys. Med. Biol.
PD FEB 7
PY 2009
VL 54
IS 3
BP 651
EP 663
DI 10.1088/0031-9155/54/3/012
PG 13
WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging
SC Engineering; Radiology, Nuclear Medicine & Medical Imaging
GA 393GJ
UT WOS:000262359000012
PM 19131671
ER
PT J
AU Brown, G
Singer, A
Lunin, VV
Proudfoot, M
Skarina, T
Flick, R
Kochinyan, S
Sanishvili, R
Joachimiak, A
Edwards, AM
Savchenko, A
Yakunin, AF
AF Brown, Greg
Singer, Alexander
Lunin, Vladimir V.
Proudfoot, Michael
Skarina, Tatiana
Flick, Robert
Kochinyan, Samvel
Sanishvili, Ruslan
Joachimiak, Andrzej
Edwards, Aled M.
Savchenko, Alexei
Yakunin, Alexander F.
TI Structural and Biochemical Characterization of the Type II
Fructose-1,6-bisphosphatase GlpX from Escherichia coli
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID INOSITOL MONOPHOSPHATASE; FRUCTOSE 1,6-BISPHOSPHATASE;
CRYSTAL-STRUCTURE; LITHIUM-THERAPY; CORYNEBACTERIUM-GLUTAMICUM;
PHOSPHATASE-ACTIVITIES; PUTATIVE TARGET; GENE-PRODUCT; ENZYME;
PURIFICATION
AB Gluconeogenesis is an important metabolic pathway, which produces glucose from noncarbohydrate precursors such as organic acids, fatty acids, amino acids, or glycerol. Fructose-1,6-bisphosphatase, a key enzyme of gluconeogenesis, is found in all organisms, and five different classes of these enzymes have been identified. Here we demonstrate that Escherichia coli has two class II fructose-1,6-bisphosphatases, GlpX and YggF, which show different catalytic properties. We present the first crystal structure of a class II fructose-1,6-bisphosphatase (GlpX) determined in a free state and in the complex with a substrate (fructose 1,6-bisphosphate) or inhibitor (phosphate). The crystal structure of the ligand-free GlpX revealed a compact, globular shape with two alpha/beta-sandwich domains. The core fold of GlpX is structurally similar to that of Li(+)-sensitive phosphatases implying that they have a common evolutionary origin and catalytic mechanism. The structure of the GlpX complex with fructose 1,6-bisphosphate revealed that the active site is located between two domains and accommodates several conserved residues coordinating two metal ions and the substrate. The third metal ion is bound to phosphate 6 of the substrate. Inorganic phosphate strongly inhibited activity of both GlpX and YggF, and the crystal structure of the GlpX complex with phosphate demonstrated that the inhibitor molecule binds to the active site. Alanine replacement mutagenesis of GlpX identified 12 conserved residues important for activity and suggested that Thr(90) is the primary catalytic residue. Our data provide insight into the molecular mechanisms of the substrate specificity and catalysis of GlpX and other class II fructose-1,6-bisphosphatases.
C1 [Brown, Greg; Singer, Alexander; Proudfoot, Michael; Skarina, Tatiana; Flick, Robert; Kochinyan, Samvel; Edwards, Aled M.; Savchenko, Alexei; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada.
[Lunin, Vladimir V.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
[Sanishvili, Ruslan; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Biosci Div, Argonne, IL 60439 USA.
[Sanishvili, Ruslan; Joachimiak, Andrzej] Struct Biol Ctr, Argonne, IL 60439 USA.
RP Yakunin, AF (reprint author), Univ Toronto, Banting & Best Dept Med Res, 112 Coll St, Toronto, ON M5G 1L6, Canada.
EM a.iakounine@utoronto.ca
RI Yakunin, Alexander/J-1519-2014;
OI Yakunin, Alexander/0000-0003-0813-6490
FU National Institutes of Health [GM074942]; Genome Canada (through the
Ontario Genomics Institute); United States Department of Energy, Office
of Biological and Environmental Research [DE-AC02-06CH11357]
FX This work was supported, in whole or in part, by National Institutes of
Health Grant GM074942. This work was also supported by Genome Canada
(through the Ontario Genomics Institute) and by the United States
Department of Energy, Office of Biological and Environmental Research,
Contract DE-AC02-06CH11357. The costs of publication of this article
were defrayed in part by the payment of page charges. This article must
therefore be hereby marked "advertisement" in accordance with 18 U. S.
C. Section 1734 solely to indicate this fact.
NR 61
TC 21
Z9 23
U1 2
U2 8
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD FEB 6
PY 2009
VL 284
IS 6
BP 3784
EP 3792
DI 10.1074/jbc.M808186200
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 400MO
UT WOS:000262872500047
PM 19073594
ER
PT J
AU Shin, DS
DiDonato, M
Barondeau, DP
Hura, GL
Hitomi, C
Berglund, JA
Getzoff, ED
Cary, SC
Tainer, JA
AF Shin, David S.
DiDonato, Michael
Barondeau, David P.
Hura, Greg L.
Hitomi, Chiharu
Berglund, J. Andrew
Getzoff, Elizabeth D.
Cary, S. Craig
Tainer, John A.
TI Superoxide Dismutase from the Eukaryotic Thermophile Alvinella
pompejana: Structures, Stability, Mechanism, and Insights into
Amyotrophic Lateral Sclerosis
SO JOURNAL OF MOLECULAR BIOLOGY
LA English
DT Article
DE thermophile; thermostable proteins; superoxide dismutase; amyotrophic
lateral sclerosis; amyloid filaments
ID STRAND BREAK REPAIR; X-RAY SOLUTION; ACTIVE-SITE; CU,ZN-SUPEROXIDE
DISMUTASE; ELECTROSTATIC RECOGNITION; 3-DIMENSIONAL STRUCTURE; ANGSTROM
RESOLUTION; SOLUTION SCATTERING; RECOMBINANT HUMAN; FREE CYSTEINES
AB Prokaryotic thermophiles supply stable human protein homologs for structural biology; yet, eukaryotic thermophiles would provide more similar macromolecules plus those missing in microbes. Alvinella pompejana is a deep-sea hydrothermal-vent worm that has been found in temperatures averaging as high as 68 degrees C, with spikes up to 84 degrees C. Here, we used Cu,Zn superoxide dismutase (SOD) to test if this eukaryotic thermophile can provide insights into macromolecular mechanisms and stability by supplying better stable mammalian homologs for structural biology and other biophysical characterizations than those from prokaryotic thermophiles. Identification, cloning, characterization, X-ray scattering (small-angle X-ray scattering, SAXS), and crystal structure determinations show that A. pompejana SOD (ApSOD) is superstable, homologous, and informative. SAXS solution analyses identify the human-like ApSOD dimer. The crystal structure shows the active site at 0.99 angstrom resolution plus anchoring interaction motifs in loops and termini accounting for enhanced stability of ApSOD versus human SOD. Such stabilizing features may reduce movements that promote inappropriate intermolecular interactions, such as amyloid-like filaments found in SOD mutants causing the neurodegenerative disease familial amyotrophic lateral sclerosis or Lou Gehrig's disease. ApSOD further provides the structure of a long-sought SOD product complex at 1.35 angstrom resolution, suggesting a unified innersphere mechanism for catalysis involving metal ion movement. Notably, this proposed mechanism resolves apparent paradoxes regarding electron transfer. These results extend knowledge of SOD stability and catalysis and suggest that the eukaryote A. pompejana provides macromolecules highly similar to those from humans, but with enhanced stability more suitable for scientific and medical applications. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Cary, S. Craig] Univ Delaware, Coll Marine Studies, Lewes, DE 19958 USA.
[Shin, David S.; DiDonato, Michael; Barondeau, David P.; Hitomi, Chiharu; Getzoff, Elizabeth D.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA.
[Hura, Greg L.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Berglund, J. Andrew] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA.
[Cary, S. Craig] Univ Waikato, Dept Biol Sci, Hamilton 3240, New Zealand.
RP Cary, SC (reprint author), Univ Delaware, Coll Marine Studies, Lewes, DE 19958 USA.
EM caryc@udel.edu; jat@scripps.edu
RI Barondeau, David/D-6736-2015;
OI Barondeau, David/0000-0002-6422-9053; Cary, Stephen/0000-0002-2876-2387
FU 3rd Annual Incyte Discovery Award; National Institutes of Health [R01
GM037684]; National Sciences Foundation LExEn [9907666]; Biocomplexity
[OCE-0120648]; Department of Energy; Skaggs Institute for Chemical
Biology and Ruth L. Kirschstein NSRA Fellowships
FX We thank B. R. Chapados, D. S. Daniels, J. A. Fee, K. Henscheid, K.
Hitomi, and L. Noodleman for helpful discussions and technical support.
We thank the staffs of SSRL beamline 11-1 and Advanced Light Source
beamline 1.2.3.1 for diffraction facilities. We thank the R/V Atlantis
and DSV Alvin crews in aiding A. pompejana sample collection. This work
was supported by the 3rd Annual Incyte Discovery Award (D.S.S., S.C.C.,
J.A.T.), National Institutes of Health R01 GM037684 (E.D.G.), National
Sciences Foundation LExEn NSF-9907666 (S.C.C.), Biocomplexity
OCE-0120648 (S.C.C.), and Department of Energy program Integrated
Diffraction Analysis Technologies (J.A.T.). D.S.S. was supported in part
by Skaggs Institute for Chemical Biology and Ruth L. Kirschstein NSRA
Fellowships.
NR 89
TC 49
Z9 49
U1 0
U2 12
PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-2836
J9 J MOL BIOL
JI J. Mol. Biol.
PD FEB 6
PY 2009
VL 385
IS 5
BP 1534
EP 1555
DI 10.1016/j.jmb.2008.11.031
PG 22
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 421UI
UT WOS:000264383400017
PM 19063897
ER
PT J
AU Calvo, I
Sanchez, R
Carreras, BA
AF Calvo, I.
Sanchez, R.
Carreras, B. A.
TI Fractional Levy motion through path integrals
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
LA English
DT Article
ID BROWNIAN-MOTION; WALKS
AB Fractional Levy motion (fLm) is the natural generalization of fractional Brownian motion in the context of self-similar stochastic processes and stable probability distributions. In this paper we give an explicit derivation of the propagator of fLm by using path integral methods. The propagators of Brownian motion and fractional Brownian motion are recovered as particular cases. The fractional diffusion equation corresponding to fLm is also obtained.
C1 [Calvo, I.] CIEMAT, Asociac EURATOM, Lab Nacl Fus, E-28040 Madrid, Spain.
[Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA.
[Carreras, B. A.] BACV Solut Inc, Oak Ridge, TN 37830 USA.
RP Calvo, I (reprint author), CIEMAT, Asociac EURATOM, Lab Nacl Fus, E-28040 Madrid, Spain.
EM ivan.calvo@ciemat.es; sanchezferlr@ornl.gov; bacv@comcast.net
RI Calvo, Ivan/B-3444-2009
OI Calvo, Ivan/0000-0003-3118-3463
FU Laboratory Research and Development Program of Oak Ridge National
Laboratory; US Department of Energy [DE-AC05-00OR22725]
FX IC acknowledges the hospitality of the Oak Ridge National Laboratory,
where this work was carried out. Part of this research was sponsored by
the Laboratory Research and Development Program of Oak Ridge National
Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy
under contract number DE-AC05-00OR22725. BAC acknowledges the
hospitality of the Laboratorio Nacional de Fusion, Asociacion
EURATOM-CIEMAT.
NR 20
TC 11
Z9 11
U1 0
U2 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1751-8113
J9 J PHYS A-MATH THEOR
JI J. Phys. A-Math. Theor.
PD FEB 6
PY 2009
VL 42
IS 5
AR 055003
DI 10.1088/1751-8113/42/5/055003
PG 8
WC Physics, Multidisciplinary; Physics, Mathematical
SC Physics
GA 392XY
UT WOS:000262336700005
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Anastasoaie, M
Ancu, LS
Andeen, T
Andrieu, B
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Jesus, ACSA
Atramentov, O
Avila, C
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, P
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Blazey, G
Blekman, F
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchanan, NJ
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Calfayan, P
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Cho, DK
Choi, S
Choudhary, B
Christofek, L
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cuplov, V
Cutts, D
Cwiok, M
da Motta, H
Das, A
Davies, G
De, K
de Jong, SJ
De la Cruz-Burelo, E
Martins, CD
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Dugad, SR
Duggan, D
Duperrin, A
Dutt, S
Dyer, J
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Ermolov, P
Evans, H
Evdokimov, A
Evdokimov, VN
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia, C
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hadley, NJ
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hoang, T
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jarvis, C
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YN
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lellouch, J
Li, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lima, JGR
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Madaras, RJ
Mattig, P
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
Meijer, MM
Melnitchouk, A
Mendoza, L
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mitrevski, J
Mommsen, RK
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
O'Neil, DC
Obrant, G
Ochando, C
Onoprienko, D
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Petteni, M
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Pope, BG
Popov, AV
Potter, C
da Silva, WLP
Prosper, HB
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rodrigues, RF
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwartzman, A
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strandberg, S
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Sznajder, A
Tanasijczuk, A
Taylor, W
Tiller, B
Tissandier, F
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
Vachon, B
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vilanova, D
Villeneuve-Seguier, F
Vint, P
Vokac, P
Voutilainen, M
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wermes, N
Wetstein, M
White, A
Wicke, D
Williams, MRJ
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zieminski, A
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Anastasoaie, M.
Ancu, L. S.
Andeen, T.
Andrieu, B.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Jesus, A. C. S. Assis
Atramentov, O.
Avila, C.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, P.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Blazey, G.
Blekman, F.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchanan, N. J.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Calfayan, P.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Cho, D. K.
Choi, S.
Choudhary, B.
Christofek, L.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cuplov, V.
Cutts, D.
Cwiok, M.
da Motta, H.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De la Cruz-Burelo, E.
De Oliveira Martins, C.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Dugad, S. R.
Duggan, D.
Duperrin, A.
Dutt, S.
Dyer, J.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Ermolov, P.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia, C.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hadley, N. J.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hoang, T.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jarvis, C.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. N.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lima, J. G. R.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Madaras, R. J.
Mattig, P.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mitrevski, J.
Mommsen, R. K.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
O'Neil, D. C.
Obrant, G.
Ochando, C.
Onoprienko, D.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Garzon, G. J. Otero Y.
Owen, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Petteni, M.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Pope, B. G.
Popov, A. V.
Potter, C.
da Silva, W. L. Prado
Prosper, H. B.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rodrigues, R. F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwartzman, A.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strandberg, S.
Strang, M. A.
Strauss, E.
Strauss, M.
Strohmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Sznajder, A.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Tissandier, F.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Vachon, B.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vilanova, D.
Villeneuve-Seguier, F.
Vint, P.
Vokac, P.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wermes, N.
Wetstein, M.
White, A.
Wicke, D.
Williams, M. R. J.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zieminski, A.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA DO Collaboration
TI Search for Neutral Higgs Bosons at High tan beta in the b(h/H/A) -> b
tau(+)tau(-) Channel
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MSSM
AB The first search in p (p) over bar collisions at root s = 1.96 TeV for the production of neutral Higgs bosons in association with bottom quarks and decaying in two tau leptons is presented. The cross section for this process is enhanced in many extensions of the standard model, such as its minimal supersymmetric extension (MSSM) at large tan beta. The data, corresponding to an integrated luminosity of 328 pb(-1), were collected with the D0 detector at the Fermilab Tevatron Collider. An upper limit is set on the production cross section of neutral Higgs bosons in the mass range of 90 to 150 GeV, and this limit is used to exclude part of the MSSM parameter space.
C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verdier, P.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France.
[Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France.
[Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Ochando, C.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France.
[Andrieu, B.; Bernardi, G.; Hensel, C.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France.
[Andrieu, B.; Bernardi, G.; Hensel, C.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Irfu, Saclay, France.
[Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France.
[Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany.
[Buescher, V.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Strohmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Dutt, S.; Mattig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Kim, T. J.; Lim, J. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stolin, V.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.; Bertram, I.; Strandberg, S.] Lund Univ, Lund, Sweden.
[Asman, B.; Belanger-Champagne, C.; Bertram, I.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Bertram, I.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Bertram, I.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden.
[Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Garzon, G. J. Otero Y.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Buszello, C. P.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Lam, D.; Parua, N.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Cammin, J.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hohlfeld, M.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA.
[Brown, D.; Buehler, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[Burnett, T. H.; Dorland, T.; Goussiou, A.; Hirosky, R.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Yip, Kin/D-6860-2013; Mundim, Luiz/A-1291-2012; Ancu, Lucian
Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013;
Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy,
Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco,
Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; bu,
xuebing/D-1121-2012; Perfilov, Maxim/E-1064-2012; Merkin,
Mikhail/D-6809-2012; Boos, Eduard/D-9748-2012; Novaes,
Sergio/D-3532-2012; Leflat, Alexander/D-7284-2012; Dudko,
Lev/D-7127-2012; Shivpuri, R K/A-5848-2010; Gutierrez,
Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Christoudias,
Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015;
Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015;
OI Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; Ancu,
Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489;
Sharyy, Viatcheslav/0000-0002-7161-2616; Novaes,
Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192;
Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae
Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder,
Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Bertram,
Iain/0000-0003-4073-4941
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia);
CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR
(Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada);
BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden);
CAS; CNSF (China); Alexander von Humboldt Foundation (Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech
Republic); CRC Program, CFI, NSERC, and the WestGrid Project (Canada);
BMBF and DFG (Germany); SFI (Ireland); the Swedish Research Council
(Sweden); CAS and CNSF (China); and the Alexander von Humboldt
Foundation (Germany).
NR 17
TC 13
Z9 13
U1 1
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 051804
DI 10.1103/PhysRevLett.102.051804
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400018
PM 19257505
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Anastasoaie, M
Ancu, LS
Andeen, T
Andrieu, B
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Jesus, ACSA
Atramentov, O
Avila, C
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, P
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Biscarat, C
Blazey, G
Blekman, F
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchanan, NJ
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Butler, JM
Calfayan, P
Calvet, S
Cammin, J
Carrasco-Lizarraga, MA
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Chevallier, F
Cho, DK
Choi, S
Choudhary, B
Christofek, L
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cuplov, V
Cutts, D
Cwiok, M
da Motta, H
Das, A
Davies, G
De, K
de Jong, SJ
De la Cruz-Burelo, E
Martins, CD
DeVaughan, K
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Dugad, SR
Duggan, D
Duperrin, A
Dyer, J
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Ermolov, P
Evans, H
Evdokimov, A
Evdokimov, VN
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia, C
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gomez, B
Goussiou, A
Grannis, PD
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hadley, NJ
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hobbs, JD
Hoeneisen, B
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jarvis, C
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Karmanov, D
Kasper, PA
Katsanos, I
Kau, D
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YM
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lellouch, J
Li, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lima, JGR
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna-Garcia, R
Lyon, AL
Maciel, AKA
Mackin, D
Madaras, RJ
Mattig, P
Magass, C
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
Meijer, MM
Melnitchouk, A
Mendoza, L
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mitrevski, J
Mommsen, RK
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Naumann, NA
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
O'Dell, V
O'Neil, DC
Obrant, G
Ochando, C
Onoprienko, D
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Petteni, M
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Pope, BG
Popov, AV
Potter, C
da Silva, WLP
Prosper, HB
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rodrigues, RF
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwartzman, A
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strandberg, S
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Sznajder, A
Tanasijczuk, A
Taylor, W
Tiller, B
Tissandier, F
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
Vachon, B
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vilanova, D
Villeneuve-Seguier, F
Vint, P
Vokac, P
Voutilainen, M
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wermes, N
Wetstein, M
White, A
Wicke, D
Williams, M
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Xu, C
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zieminski, A
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Anastasoaie, M.
Ancu, L. S.
Andeen, T.
Andrieu, B.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Jesus, A. C. S. Assis
Atramentov, O.
Avila, C.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, P.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Biscarat, C.
Blazey, G.
Blekman, F.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchanan, N. J.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Butler, J. M.
Calfayan, P.
Calvet, S.
Cammin, J.
Carrasco-Lizarraga, M. A.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Chevallier, F.
Cho, D. K.
Choi, S.
Choudhary, B.
Christofek, L.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cuplov, V.
Cutts, D.
Cwiok, M.
da Motta, H.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De la Cruz-Burelo, E.
De Oliveira Martins, C.
DeVaughan, K.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Dugad, S. R.
Duggan, D.
Duperrin, A.
Dyer, J.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Ermolov, P.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia, C.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruenendahl, S.
Gruenewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hadley, N. J.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hobbs, J. D.
Hoeneisen, B.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jarvis, C.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kau, D.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. M.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lima, J. G. R.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna-Garcia, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Madaras, R. J.
Maettig, P.
Magass, C.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
Meijer, M. M.
Melnitchouk, A.
Mendoza, L.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mitrevski, J.
Mommsen, R. K.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Naumann, N. A.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
O'Dell, V.
O'Neil, D. C.
Obrant, G.
Ochando, C.
Onoprienko, D.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Otero y Garzon, G. J.
Owen, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Petteni, M.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Pope, B. G.
Popov, A. V.
Potter, C.
Prado da Silva, W. L.
Prosper, H. B.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rodrigues, R. F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwartzman, A.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soeldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strandberg, S.
Strang, M. A.
Strauss, E.
Strauss, M.
Stroehmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Sznajder, A.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Tissandier, F.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Vachon, B.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vilanova, D.
Villeneuve-Seguier, F.
Vint, P.
Vokac, P.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wermes, N.
Wetstein, M.
White, A.
Wicke, D.
Williams, M.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Xu, C.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zieminski, A.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA D0 Collaboration
TI Search for Large Extra Spatial Dimensions in the Dielectron and Diphoton
Channels in p(p)over-bar Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SCALE GRAVITY; MILLIMETER
AB We report on a search for large extra spatial dimensions in the dielectron and diphoton channels using a data sample of 1: 05 fb(-1) of p (p) over bar collisions at a center-of-mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. The invariant mass spectrum of the data agrees well with the prediction of the standard model. We find the most restrictive 95% C. L. lower limits on the effective Planck scale between 2.1 and 1.3 TeV for 2 to 7 extra dimensions.
C1 [Abazov, V. M.; Kharzheev, Y. M.; Malyshev, V. L.; Meijer, M. M.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Alton, A.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Bu, X. B.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Bu, X. B.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Bu, X. B.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Bu, X. B.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada.
[Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France.
[Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France.
[Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France.
[Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Irfu, Saclay, France.
[Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France.
[Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France.
[Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany.
[Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nogima, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Maettig, P.; Peters, Y.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Dudko, L. V.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Alexeev, G. D.; Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Kasper, P. A.; Kuzmin, V. A.; Leflat, A.; Merkin, M.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, D.; Evdokimov, A.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Wagner, R.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.] Univ Rochester, Rochester, NY 14627 USA.
[Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Snow, J.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Bose, T.; Christofek, L.; Cutts, D.; Evans, H.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.] Rice Univ, Houston, TX 77005 USA.
[Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI bu, xuebing/D-1121-2012; Perfilov, Maxim/E-1064-2012; Merkin,
Mikhail/D-6809-2012; Mercadante, Pedro/K-1918-2012; Dudko,
Lev/D-7127-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012;
Mundim, Luiz/A-1291-2012; Shivpuri, R K/A-5848-2010; Leflat,
Alexander/D-7284-2012; Gutierrez, Phillip/C-1161-2011; Yip,
Kin/D-6860-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013;
Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae
Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016;
Li, Liang/O-1107-2015
OI Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549;
Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De,
Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723;
Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo,
Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li,
Liang/0000-0001-6411-6107
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia);
CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR
(Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada);
BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden);
CAS; CNSF (China); Alexander von Humboldt Foundation (Germany)
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech
Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF
and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden);
CAS and CNSF (China); and the Alexander von Humboldt Foundation
(Germany).
NR 30
TC 28
Z9 28
U1 0
U2 3
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 051601
DI 10.1103/PhysRevLett.102.051601
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400013
PM 19257500
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahn, SH
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Anastasoaie, M
Ancu, LS
Andeen, T
Anderson, S
Andrieu, B
Anzelc, MS
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Jesus, ACSA
Atramentov, O
Autermann, C
Avila, C
Ay, C
Badaud, F
Baden, A
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, S
Banerjee, P
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Biscarat, C
Blazey, G
Blekman, F
Blessing, S
Bloch, D
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Buchanan, NJ
Buchholz, D
Buehler, M
Buescher, V
Bunichev, S
Burdin, S
Burke, S
Burnett, TH
Buszello, CP
Butler, JM
Calfayan, P
Calvet, S
Cammin, J
Carvalho, W
Casey, BCK
Cason, NM
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chan, K
Chandra, A
Charles, F
Cheu, E
Chevallier, F
Cho, DK
Choi, S
Choudhary, B
Christofek, L
Christoudias, T
Cihangir, S
Claes, D
Coadou, Y
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cutts, D
Cwiok, M
da Motta, H
Das, A
Davies, G
De, K
de Jong, SJ
De La Cruz-Burelo, E
Martins, CD
Degenhardt, JD
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dong, H
Dudko, LV
Duflot, L
Dugad, SR
Duggan, D
Duperrin, A
Dyer, J
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Ermolov, P
Evans, H
Evdokimov, A
Evdokimov, VN
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Ford, M
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Gallas, E
Galyaev, E
Garcia, C
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Gele, D
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gollub, N
Gomez, B
Goussiou, A
Grannis, PD
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grundahl, S
Grunewald, MW
Guo, J
Guo, F
Gutierrez, P
Gutierrez, G
Haas, A
Hadley, NJ
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Hansson, P
Harder, K
Harel, A
Harrington, R
Hauptman, JM
Hauser, R
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinmiller, JM
Heinson, AP
Heintz, U
Hensel, C
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hobbs, JD
Hoeneisen, B
Hoeth, H
Hohlfeld, M
Hong, SJ
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jarvis, C
Jesik, R
Johns, K
Johnson, C
Johnson, M
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Kalinin, AM
Kalk, JR
Kalk, JM
Kappler, S
Karmanov, D
Kasper, PA
Katsanos, I
Kau, D
Kaur, R
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YM
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Korablev, VM
Kozelov, AV
Krop, D
Kuhl, T
Kumar, A
Kunori, S
Kupco, A
Kurca, T
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lehner, F
Lellouch, J
Leveque, J
Li, J
Li, QZ
Li, L
Lietti, SM
Lima, JGR
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna, R
Lyon, AL
Maciel, AKA
Mackin, D
Madaras, RJ
Mattig, P
Magass, C
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Mao, HS
Maravin, Y
Martin, B
McCarthy, R
Melnitchouk, A
Mendoza, L
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, J
Meyer, A
Millet, T
Mitrevski, J
Molina, J
Mommsen, RK
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulders, M
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Naumann, NA
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
O'Dell, V
O'Neil, DC
Obrant, G
Ochando, C
Onoprienko, D
Oshima, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Petteni, M
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Pope, BG
Popov, AV
Potter, C
da Silva, WLP
Prosper, HB
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Reucroft, S
Rich, P
Rieger, J
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rodrigues, RF
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Santoro, A
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schwanenberger, C
Schwartzman, A
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, J
Snow, GR
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Steele, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strandberg, S
Strang, MA
Strauss, M
Strauss, E
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Sznajder, A
Talby, M
Tamburello, P
Tanasijczuk, A
Taylor, W
Temple, J
Tiller, B
Tissandier, F
Titov, M
Tokmenin, VV
Toole, T
Torchiani, I
Trefzger, T
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, S
Uvarov, L
Uzunyan, S
Vachon, B
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Vaupel, M
Verdier, P
Vertogradov, LS
Verzocchi, M
Villeneuve-Seguier, F
Vint, P
Vokac, P
Von Toerne, E
Voutilainen, M
Wagner, R
Wahl, HD
Wang, L
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, M
Weber, G
Welty-Rieger, L
Wenger, A
Wermes, N
Wetstein, M
White, A
Wicke, D
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Yacoob, S
Yamada, R
Yan, M
Yasuda, T
Yatsunenko, YA
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zatserklyaniy, A
Zeitnitz, C
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zieminski, A
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahn, S. H.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Anastasoaie, M.
Ancu, L. S.
Andeen, T.
Anderson, S.
Andrieu, B.
Anzelc, M. S.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Jesus, A. C. S. Assis
Atramentov, O.
Autermann, C.
Avila, C.
Ay, C.
Badaud, F.
Baden, A.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, S.
Banerjee, P.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Biscarat, C.
Blazey, G.
Blekman, F.
Blessing, S.
Bloch, D.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Buchanan, N. J.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, S.
Burdin, S.
Burke, S.
Burnett, T. H.
Buszello, C. P.
Butler, J. M.
Calfayan, P.
Calvet, S.
Cammin, J.
Carvalho, W.
Casey, B. C. K.
Cason, N. M.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chan, K.
Chandra, A.
Charles, F.
Cheu, E.
Chevallier, F.
Cho, D. K.
Choi, S.
Choudhary, B.
Christofek, L.
Christoudias, T.
Cihangir, S.
Claes, D.
Coadou, Y.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cutts, D.
Cwiok, M.
da Motta, H.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De La Cruz-Burelo, E.
De Oliveira Martins, C.
Degenhardt, J. D.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dong, H.
Dudko, L. V.
Duflot, L.
Dugad, S. R.
Duggan, D.
Duperrin, A.
Dyer, J.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Ermolov, P.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Ford, M.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Gallas, E.
Galyaev, E.
Garcia, C.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Gele, D.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gollub, N.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Gruendahl, S.
Grunewald, M. W.
Guo, J.
Guo, F.
Gutierrez, P.
Gutierrez, G.
Haas, A.
Hadley, N. J.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Hansson, P.
Harder, K.
Harel, A.
Harrington, R.
Hauptman, J. M.
Hauser, R.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinmiller, J. M.
Heinson, A. P.
Heintz, U.
Hensel, C.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hobbs, J. D.
Hoeneisen, B.
Hoeth, H.
Hohlfeld, M.
Hong, S. J.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jarvis, C.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Kalinin, A. M.
Kalk, J. R.
Kalk, J. M.
Kappler, S.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kau, D.
Kaur, R.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. M.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Korablev, V. M.
Kozelov, A. V.
Krop, D.
Kuhl, T.
Kumar, A.
Kunori, S.
Kupco, A.
Kurca, T.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lehner, F.
Lellouch, J.
Leveque, J.
Li, J.
Li, Q. Z.
Li, L.
Lietti, S. M.
Lima, J. G. R.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Madaras, R. J.
Mattig, P.
Magass, C.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Mao, H. S.
Maravin, Y.
Martin, B.
McCarthy, R.
Melnitchouk, A.
Mendoza, L.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, J.
Meyer, A.
Millet, T.
Mitrevski, J.
Molina, J.
Mommsen, R. K.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulders, M.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Naumann, N. A.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
O'Dell, V.
O'Neil, D. C.
Obrant, G.
Ochando, C.
Onoprienko, D.
Oshima, N.
Osta, J.
Otec, R.
Garzon, G. J. Otero Y.
Owen, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Petteni, M.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Pope, B. G.
Popov, A. V.
Potter, C.
da Silva, W. L. Prado
Prosper, H. B.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Reucroft, S.
Rich, P.
Rieger, J.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rodrigues, R. F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Santoro, A.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schwanenberger, C.
Schwartzman, A.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, J.
Snow, G. R.
Snyder, S.
Soldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Steele, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strandberg, S.
Strang, M. A.
Strauss, M.
Strauss, E.
Strohmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Sznajder, A.
Talby, M.
Tamburello, P.
Tanasijczuk, A.
Taylor, W.
Temple, J.
Tiller, B.
Tissandier, F.
Titov, M.
Tokmenin, V. V.
Toole, T.
Torchiani, I.
Trefzger, T.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, S.
Uvarov, L.
Uzunyan, S.
Vachon, B.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Vaupel, M.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Villeneuve-Seguier, F.
Vint, P.
Vokac, P.
Von Toerne, E.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, L.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, M.
Weber, G.
Welty-Rieger, L.
Wenger, A.
Wermes, N.
Wetstein, M.
White, A.
Wicke, D.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Yacoob, S.
Yamada, R.
Yan, M.
Yasuda, T.
Yatsunenko, Y. A.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zatserklyaniy, A.
Zeitnitz, C.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zieminski, A.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA DO Collaboration
TI Measurement of the Semileptonic Branching Ratio of Bs(0) to an Orbitally
Excited D-s** State: Br(Bs(0) -> Ds1(-)(2536)mu(+)nu X)
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID QUARK-MODEL; B-DECAY; MESON; PHYSICS
AB In a data sample of approximately 1.3 fb(-1) collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D-s1(+/-)(2536) has been observed with a measured mass of 2535.7 +/- 0.6(stat) +/- 0.5(syst) MeV/c(2) via the decay mode B-s(0) -> D-s1(-)(2536)mu(+)nu X-mu. A first measurement is made of the branching ratio product Br((b) over bar -> D-s1(-)(2536)mu(+)nu X-mu) x Br(D-s1(-) -> D*K--(S)0). Assuming that D-s1(-)(2536) production in semileptonic decay is entirely from B-s(0), an extraction of the semileptonic branching ratio Br(B-s(0) -> D-s1(-)(2536)mu(+)nu X-mu) is made.
C1 [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Piegaia, R.; Pol, M. -E.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada.
[Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Kupco, A.; Lokajicek, M.; Tanasijczuk, A.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.; Kupco, A.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France.
[Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, F-38041 Grenoble, France.
[Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Talby, M.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France.
[Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France.
[Bloch, D.; Charles, F.; Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France.
[Geist, W.; Millet, T.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France.
[Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France.
[Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France.
[Autermann, C.; Hebbeker, T.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany.
[Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Strohmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Hoeth, H.; Mattig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Grunewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Castilla-Valdez, H.; De La Cruz-Burelo, E.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Bunichev, S.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, Lund, Sweden.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Lehner, F.; Love, P.; Rakitine, A.; Ratoff, P. N.; Wenger, A.] Univ Zurich, Inst Phys, Zurich, Switzerland.
[Bauer, D.; Bertram, I.; Beuselinck, R.; Blekman, F.; Borissov, G.; Burdin, S.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Love, P.; Petteni, M.; Rakitine, A.; Ratoff, P. N.; Robinson, S.; Sopczak, A.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Davies, G.; Harder, K.; Jesik, R.; Jonsson, P.; Mommsen, R. K.; Owen, M.; Peters, K.; Petteni, M.; Rich, P.; Robinson, S.; Scanlon, T.; Schwanenberger, C.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Cheu, E.; Das, A.; Ford, M.; Harder, K.; Johns, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Tamburello, P.; Varnes, E. W.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England.
[Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Madaras, R. J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA.
[Hall, R. E.; Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Chandra, A.; Ellison, J.; Hall, R. E.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Chandra, A.; Duggan, D.; Ellison, J.; Gershtein, Y.; Hagopian, S.; Kau, D.; Li, L.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Blessing, S.; Boehnlein, A.; Bross, A.; Buchanan, N. J.; Casey, B. C. K.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Duggan, D.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gershtein, Y.; Greenlee, H.; Gruendahl, S.; Gutierrez, G.; Hagopian, S.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Kau, D.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Garzon, G. J. Otero Y.; Podstavkov, V. M.; Prosper, H. B.; Rubinov, P.; Savage, G.; Sekaric, J.; Sirotenko, V.; Stutte, L.; Sumowidagdo, S.; Verzocchi, M.; Wahl, H. D.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Florida State Univ, Tallahassee, FL 32306 USA.
[Adams, M.; Baldin, B.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Gerber, C. E.; Greenlee, H.; Gruendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Shabalina, E.; Sirotenko, V.; Stutte, L.; Varelas, N.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Gerber, C. E.; Hedin, D.; Heinmiller, J. M.; Lima, J. G. R.; Shabalina, E.; Uzunyan, S.; Varelas, N.; Zutshi, V.] Univ Illinois, Chicago, IL 60607 USA.
[Andeen, T.; Anzelc, M. S.; Bagby, L.; Blazey, G.; Buchholz, D.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Kirby, M. H.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Alton, A.; Anzelc, M. S.; Buchholz, D.; Evans, H.; Kirby, M. H.; Parua, N.; Rieger, J.; Schellman, H.; Strom, D.; Van Kooten, R.; Welty-Rieger, L.; Yacoob, S.; Youn, S. W.; Zieminska, D.; Zieminski, A.] Northwestern Univ, Evanston, IL 60208 USA.
[Chan, K. M.; Evans, H.; Hildreth, M. D.; Krop, D.; Lam, D.; Osta, J.; Parua, N.; Pogorelov, Y.; Rieger, J.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Van Kooten, R.; Warchol, J.; Wayne, M.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA.
[Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Lam, D.; Mal, P. K.; Osta, J.; Parashar, N.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Hauptman, J. M.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Bean, A.; Hauptman, J. M.; Steele, J.; Wilson, G. W.] Iowa State Univ, Ames, IA 50011 USA.
[Ahsan, M.; Bandurin, D. V.; Baringer, P.; Bean, A.; Bolton, T. A.; Ferapontov, A. V.; Hensel, C.; Maravin, Y.; Moulik, T.; Onoprienko, D.; Shamim, M.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Arov, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Greenwood, Z. D.; Kalk, J. M.; Maravin, Y.; Onoprienko, D.; Sawyer, L.; Shamim, M.; Von Toerne, E.; Wobisch, M.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wetstein, M.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Baden, A.; Boline, D.; Butler, J. M.; Cho, D. K.; Eno, S.; Hadley, N. J.; Heintz, U.; Jabeen, S.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA.
[Alverson, G.; Barberis, E.; Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Hesketh, G.; Jabeen, S.; Wood, D. R.] Boston Univ, Boston, MA 02215 USA.
[Alton, A.; Alverson, G.; Barberis, E.; Degenhardt, J. D.; Harrington, R.; Hesketh, G.; Magerkurth, A.; Neal, H. A.; Qian, J.; Reucroft, S.; Strandberg, J.; Wood, D. R.; Zhou, B.] Northeastern Univ, Boston, MA 02115 USA.
[Abolins, M.; Alton, A.; Benitez, J. A.; Brock, R.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Dyer, J.; Edmunds, D.; Hall, I.; Linnemann, J.; Magerkurth, A.; Neal, H. A.; Piper, J.; Pope, B. G.; Qian, J.; Schwienhorst, R.; Strandberg, J.; Unalan, R.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Melnitchouk, A.; Piper, J.; Pope, B. G.; Quinn, B.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA.
[Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Melnitchouk, A.; Quinn, B.; Snow, G. R.; Voutilainen, M.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Haley, J.; Malik, S.; Schwartzman, A.; Snow, G. R.; Tully, C.; Voutilainen, M.; Wagner, R.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Schwartzman, A.; Strang, M. A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Iashvili, I.; Johnson, C.; Katsanos, I.; Kharchilava, A.; Khatidze, D.; Kumar, A.; Lammers, S.; Mitrevski, J.; Parsons, J.; Strang, M. A.; Tuts, P. M.; Zivkovic, L.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Cammin, J.; Demina, R.; Ferbel, T.; Gadfort, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Haas, A.; Harel, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Slattery, P.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Begel, M.; Cammin, J.; Demina, R.; Dong, H.; Ferbel, T.; Garcia, C.; Ginther, G.; Grannis, P. D.; Guo, J.; Guo, F.; Harel, A.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Park, S. -J.; Rijssenbeek, M.; Schamberger, R. D.; Slattery, P.; Strauss, E.; Tsybychev, D.; Zhu, J.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA.
[Begel, M.; Dong, H.; Evdokimov, A.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Patwa, A.; Protopopescu, S.; Rijssenbeek, M.; Schamberger, R. D.; Snyder, S.; Strauss, E.; Tsybychev, D.; Yip, K.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snow, J.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Abbott, B.; Gutierrez, G.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Khanov, A.; Rizatdinova, F.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA.
[Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Khanov, A.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Rizatdinova, F.; Xie, Y.; Yoo, H. D.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Bose, T.; Brandt, A.; Christofek, L.; Cutts, D.; De, K.; Enari, Y.; Kaushik, V.; Landsberg, G.; Li, J.; Narain, M.; Pangilinan, M.; Partridge, R.; Sosebee, M.; Spurlock, B.; White, A.; Xie, Y.; Yoo, H. D.; Yu, J.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Kehoe, R.; Li, J.; Renkel, P.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Bargassa, P.; Corcoran, M.; Kehoe, R.; Mackin, D.; Padley, P.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Brown, D.; Buehler, M.; Cooke, M.; Corcoran, M.; Hirosky, R.; Maciel, A. K. A.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA.
[Brown, D.; Buehler, M.; Burnett, T. H.; Goussiou, A.; Hirosky, R.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Virginia, Charlottesville, VA 22901 USA.
[Burnett, T. H.; Garcia-Bellido, A.; Lubatti, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov,
Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae
Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016;
Li, Liang/O-1107-2015; Perfilov, Maxim/E-1064-2012; Merkin,
Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante,
Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013;
Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Shivpuri, R
K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Leflat,
Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Ancu, Lucian
Stefan/F-1812-2010
OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias,
Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo,
Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li,
Liang/0000-0001-6411-6107; Novaes, Sergio/0000-0003-0471-8549; Mundim,
Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De,
Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Ancu,
Lucian Stefan/0000-0001-5068-6723
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia);
CAPES; CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India);
Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET;
UBACyT (Argentina); FOM (The Netherlands); Science and Technology
Facilities Council (United Kingdom); MSMT; GACR (Czech Republic); CRC
Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI
(Ireland); Swedish Research Council (Sweden); CAS; CNSF (China);
Alexander von Humboldt Foundation; Marie Curie Program
FX We thank the staffs at Fermilab and collaborating institutions, and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP,
and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia);
CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina);
FOM (The Netherlands); Science and Technology Facilities Council (United
Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and
WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The
Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von
Humboldt Foundation; and the Marie Curie Program.
NR 29
TC 20
Z9 20
U1 0
U2 5
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 051801
DI 10.1103/PhysRevLett.102.051801
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400015
ER
PT J
AU Abazov, VM
Abbott, B
Abolins, M
Acharya, BS
Adams, M
Adams, T
Aguilo, E
Ahsan, M
Alexeev, GD
Alkhazov, G
Alton, A
Alverson, G
Alves, GA
Anastasoaie, M
Ancu, LS
Andeen, T
Andrieu, B
Anzelc, MS
Aoki, M
Arnoud, Y
Arov, M
Arthaud, M
Askew, A
Asman, B
Jesus, ACSA
Atramentov, O
Avila, C
Badaud, F
Bagby, L
Baldin, B
Bandurin, DV
Banerjee, P
Banerjee, S
Barberis, E
Barfuss, AF
Bargassa, P
Baringer, P
Barreto, J
Bartlett, JF
Bassler, U
Bauer, D
Beale, S
Bean, A
Begalli, M
Begel, M
Belanger-Champagne, C
Bellantoni, L
Bellavance, A
Benitez, JA
Beri, SB
Bernardi, G
Bernhard, R
Bertram, I
Besancon, M
Beuselinck, R
Bezzubov, VA
Bhat, PC
Bhatnagar, V
Biscarat, C
Blazey, G
Blekman, F
Blessing, S
Bloom, K
Boehnlein, A
Boline, D
Bolton, TA
Boos, EE
Borissov, G
Bose, T
Brandt, A
Brock, R
Brooijmans, G
Bross, A
Brown, D
Bu, XB
Buchanan, NJ
Buchholz, D
Buehler, M
Buescher, V
Bunichev, V
Burdin, S
Burnett, TH
Buszello, CP
Butler, JM
Calfayan, P
Calvet, S
Cammin, J
Carrera, E
Carvalho, W
Casey, BCK
Castilla-Valdez, H
Chakrabarti, S
Chakraborty, D
Chan, KM
Chandra, A
Cheu, E
Chevallier, F
Cho, DK
Choi, S
Choudhary, B
Christofek, L
Christoudias, T
Cihangir, S
Claes, D
Clutter, J
Cooke, M
Cooper, WE
Corcoran, M
Couderc, F
Cousinou, MC
Crepe-Renaudin, S
Cuplov, V
Cutts, D
Cwiok, M
da Motta, H
Das, A
Davies, G
De, K
de Jong, SJ
De la Cruz-Burelo, E
Martins, CD
DeVaughan, K
Degenhardt, JD
Deliot, F
Demarteau, M
Demina, R
Denisov, D
Denisov, SP
Desai, S
Diehl, HT
Diesburg, M
Dominguez, A
Dong, H
Dorland, T
Dubey, A
Dudko, LV
Duflot, L
Dugad, SR
Duggan, D
Duperrin, A
Dyer, J
Dyshkant, A
Eads, M
Edmunds, D
Ellison, J
Elvira, VD
Enari, Y
Eno, S
Ermolov, P
Evans, H
Evdokimov, A
Evdokimov, VN
Ferapontov, AV
Ferbel, T
Fiedler, F
Filthaut, F
Fisher, W
Fisk, HE
Fortner, M
Fox, H
Fu, S
Fuess, S
Gadfort, T
Galea, CF
Garcia, C
Garcia-Bellido, A
Gavrilov, V
Gay, P
Geist, W
Geng, W
Gerber, CE
Gershtein, Y
Gillberg, D
Ginther, G
Gollub, N
Gomez, B
Goussiou, A
Grannis, PD
Greenlee, H
Greenwood, ZD
Gregores, EM
Grenier, G
Gris, P
Grivaz, JF
Grohsjean, A
Grunendahl, S
Grunewald, MW
Guo, F
Guo, J
Gutierrez, G
Gutierrez, P
Haas, A
Hadley, NJ
Haefner, P
Hagopian, S
Haley, J
Hall, I
Hall, RE
Han, L
Harder, K
Harel, A
Hauptman, JM
Hays, J
Hebbeker, T
Hedin, D
Hegeman, JG
Heinson, AP
Heintz, U
Hensel, C
Herner, K
Hesketh, G
Hildreth, MD
Hirosky, R
Hobbs, JD
Hoeneisen, B
Hoeth, H
Hohlfeld, M
Hossain, S
Houben, P
Hu, Y
Hubacek, Z
Hynek, V
Iashvili, I
Illingworth, R
Ito, AS
Jabeen, S
Jaffre, M
Jain, S
Jakobs, K
Jarvis, C
Jesik, R
Johns, K
Johnson, C
Johnson, M
Johnston, D
Jonckheere, A
Jonsson, P
Juste, A
Kajfasz, E
Kalk, JM
Karmanov, D
Kasper, PA
Katsanos, I
Kau, D
Kaushik, V
Kehoe, R
Kermiche, S
Khalatyan, N
Khanov, A
Kharchilava, A
Kharzheev, YM
Khatidze, D
Kim, TJ
Kirby, MH
Kirsch, M
Klima, B
Kohli, JM
Konrath, JP
Kozelov, AV
Kraus, J
Kuhl, T
Kumar, A
Kupco, A
Kurca, T
Kuzmin, VA
Kvita, J
Lacroix, F
Lam, D
Lammers, S
Landsberg, G
Lebrun, P
Lee, WM
Leflat, A
Lellouch, J
Li, J
Li, L
Li, QZ
Lietti, SM
Lim, JK
Lima, JGR
Lincoln, D
Linnemann, J
Lipaev, VV
Lipton, R
Liu, Y
Liu, Z
Lobodenko, A
Lokajicek, M
Love, P
Lubatti, HJ
Luna, R
Lyon, AL
Maciel, AKA
Mackin, D
Madaras, RJ
Mattig, P
Magass, C
Magerkurth, A
Mal, PK
Malbouisson, HB
Malik, S
Malyshev, VL
Maravin, Y
Martin, B
McCarthy, R
Melnitchouk, A
Mendoza, L
Mercadante, PG
Merkin, M
Merritt, KW
Meyer, A
Meyer, J
Mitrevski, J
Mommsen, RK
Mondal, NK
Moore, RW
Moulik, T
Muanza, GS
Mulhearn, M
Mundal, O
Mundim, L
Nagy, E
Naimuddin, M
Narain, M
Naumann, NA
Neal, HA
Negret, JP
Neustroev, P
Nilsen, H
Nogima, H
Novaes, SF
Nunnemann, T
O'Dell, V
O'Neil, DC
Obrant, G
Ochando, C
Onoprienko, D
Oshima, N
Osman, N
Osta, J
Otec, R
Garzon, GJOY
Owen, M
Padley, P
Pangilinan, M
Parashar, N
Park, SJ
Park, SK
Parsons, J
Partridge, R
Parua, N
Patwa, A
Pawloski, G
Penning, B
Perfilov, M
Peters, K
Peters, Y
Petroff, P
Petteni, M
Piegaia, R
Piper, J
Pleier, MA
Podesta-Lerma, PLM
Podstavkov, VM
Pogorelov, Y
Pol, ME
Polozov, P
Pope, BG
Popov, AV
Potter, C
da Silva, WLP
Prosper, HB
Protopopescu, S
Qian, J
Quadt, A
Quinn, B
Rakitine, A
Rangel, MS
Ranjan, K
Ratoff, PN
Renkel, P
Rich, P
Rieger, J
Rijssenbeek, M
Ripp-Baudot, I
Rizatdinova, F
Robinson, S
Rodrigues, RF
Rominsky, M
Royon, C
Rubinov, P
Ruchti, R
Safronov, G
Sajot, G
Sanchez-Hernandez, A
Sanders, MP
Sanghi, B
Savage, G
Sawyer, L
Scanlon, T
Schaile, D
Schamberger, RD
Scheglov, Y
Schellman, H
Schliephake, T
Schlobohm, S
Schwanenberger, C
Schwartzman, A
Schwienhorst, R
Sekaric, J
Severini, H
Shabalina, E
Shamim, M
Shary, V
Shchukin, AA
Shivpuri, RK
Siccardi, V
Simak, V
Sirotenko, V
Skubic, P
Slattery, P
Smirnov, D
Snow, GR
Snow, J
Snyder, S
Soldner-Rembold, S
Sonnenschein, L
Sopczak, A
Sosebee, M
Soustruznik, K
Spurlock, B
Stark, J
Steele, J
Stolin, V
Stoyanova, DA
Strandberg, J
Strandberg, S
Strang, MA
Strauss, E
Strauss, M
Strohmer, R
Strom, D
Stutte, L
Sumowidagdo, S
Svoisky, P
Sznajder, A
Tamburello, P
Tanasijczuk, A
Taylor, W
Tiller, B
Tissandier, F
Titov, M
Tokmenin, VV
Torchiani, I
Tsybychev, D
Tuchming, B
Tully, C
Tuts, PM
Unalan, R
Uvarov, L
Uvarov, S
Uzunyan, S
Vachon, B
van den Berg, PJ
Van Kooten, R
van Leeuwen, WM
Varelas, N
Varnes, EW
Vasilyev, IA
Verdier, P
Vertogradov, LS
Verzocchi, M
Vilanova, D
Villeneuve-Seguier, F
Vint, P
Vokac, P
Voutilainen, M
Wagner, R
Wahl, HD
Wang, MHLS
Warchol, J
Watts, G
Wayne, M
Weber, G
Weber, M
Welty-Rieger, L
Wenger, A
Wermes, N
Wetstein, M
White, A
Wicke, D
Williams, M
Wilson, GW
Wimpenny, SJ
Wobisch, M
Wood, DR
Wyatt, TR
Xie, Y
Yacoob, S
Yamada, R
Yang, WC
Yasuda, T
Yatsunenko, YA
Yin, H
Yip, K
Yoo, HD
Youn, SW
Yu, J
Zeitnitz, C
Zelitch, S
Zhao, T
Zhou, B
Zhu, J
Zielinski, M
Zieminska, D
Zieminski, A
Zivkovic, L
Zutshi, V
Zverev, EG
AF Abazov, V. M.
Abbott, B.
Abolins, M.
Acharya, B. S.
Adams, M.
Adams, T.
Aguilo, E.
Ahsan, M.
Alexeev, G. D.
Alkhazov, G.
Alton, A.
Alverson, G.
Alves, G. A.
Anastasoaie, M.
Ancu, L. S.
Andeen, T.
Andrieu, B.
Anzelc, M. S.
Aoki, M.
Arnoud, Y.
Arov, M.
Arthaud, M.
Askew, A.
Asman, B.
Jesus, A. C. S. Assis
Atramentov, O.
Avila, C.
Badaud, F.
Bagby, L.
Baldin, B.
Bandurin, D. V.
Banerjee, P.
Banerjee, S.
Barberis, E.
Barfuss, A. -F.
Bargassa, P.
Baringer, P.
Barreto, J.
Bartlett, J. F.
Bassler, U.
Bauer, D.
Beale, S.
Bean, A.
Begalli, M.
Begel, M.
Belanger-Champagne, C.
Bellantoni, L.
Bellavance, A.
Benitez, J. A.
Beri, S. B.
Bernardi, G.
Bernhard, R.
Bertram, I.
Besancon, M.
Beuselinck, R.
Bezzubov, V. A.
Bhat, P. C.
Bhatnagar, V.
Biscarat, C.
Blazey, G.
Blekman, F.
Blessing, S.
Bloom, K.
Boehnlein, A.
Boline, D.
Bolton, T. A.
Boos, E. E.
Borissov, G.
Bose, T.
Brandt, A.
Brock, R.
Brooijmans, G.
Bross, A.
Brown, D.
Bu, X. B.
Buchanan, N. J.
Buchholz, D.
Buehler, M.
Buescher, V.
Bunichev, V.
Burdin, S.
Burnett, T. H.
Buszello, C. P.
Butler, J. M.
Calfayan, P.
Calvet, S.
Cammin, J.
Carrera, E.
Carvalho, W.
Casey, B. C. K.
Castilla-Valdez, H.
Chakrabarti, S.
Chakraborty, D.
Chan, K. M.
Chandra, A.
Cheu, E.
Chevallier, F.
Cho, D. K.
Choi, S.
Choudhary, B.
Christofek, L.
Christoudias, T.
Cihangir, S.
Claes, D.
Clutter, J.
Cooke, M.
Cooper, W. E.
Corcoran, M.
Couderc, F.
Cousinou, M. -C.
Crepe-Renaudin, S.
Cuplov, V.
Cutts, D.
Cwiok, M.
da Motta, H.
Das, A.
Davies, G.
De, K.
de Jong, S. J.
De la Cruz-Burelo, E.
De Oliveira Martins, C.
DeVaughan, K.
Degenhardt, J. D.
Deliot, F.
Demarteau, M.
Demina, R.
Denisov, D.
Denisov, S. P.
Desai, S.
Diehl, H. T.
Diesburg, M.
Dominguez, A.
Dong, H.
Dorland, T.
Dubey, A.
Dudko, L. V.
Duflot, L.
Dugad, S. R.
Duggan, D.
Duperrin, A.
Dyer, J.
Dyshkant, A.
Eads, M.
Edmunds, D.
Ellison, J.
Elvira, V. D.
Enari, Y.
Eno, S.
Ermolov, P.
Evans, H.
Evdokimov, A.
Evdokimov, V. N.
Ferapontov, A. V.
Ferbel, T.
Fiedler, F.
Filthaut, F.
Fisher, W.
Fisk, H. E.
Fortner, M.
Fox, H.
Fu, S.
Fuess, S.
Gadfort, T.
Galea, C. F.
Garcia, C.
Garcia-Bellido, A.
Gavrilov, V.
Gay, P.
Geist, W.
Geng, W.
Gerber, C. E.
Gershtein, Y.
Gillberg, D.
Ginther, G.
Gollub, N.
Gomez, B.
Goussiou, A.
Grannis, P. D.
Greenlee, H.
Greenwood, Z. D.
Gregores, E. M.
Grenier, G.
Gris, Ph.
Grivaz, J. -F.
Grohsjean, A.
Grunendahl, S.
Grunewald, M. W.
Guo, F.
Guo, J.
Gutierrez, G.
Gutierrez, P.
Haas, A.
Hadley, N. J.
Haefner, P.
Hagopian, S.
Haley, J.
Hall, I.
Hall, R. E.
Han, L.
Harder, K.
Harel, A.
Hauptman, J. M.
Hays, J.
Hebbeker, T.
Hedin, D.
Hegeman, J. G.
Heinson, A. P.
Heintz, U.
Hensel, C.
Herner, K.
Hesketh, G.
Hildreth, M. D.
Hirosky, R.
Hobbs, J. D.
Hoeneisen, B.
Hoeth, H.
Hohlfeld, M.
Hossain, S.
Houben, P.
Hu, Y.
Hubacek, Z.
Hynek, V.
Iashvili, I.
Illingworth, R.
Ito, A. S.
Jabeen, S.
Jaffre, M.
Jain, S.
Jakobs, K.
Jarvis, C.
Jesik, R.
Johns, K.
Johnson, C.
Johnson, M.
Johnston, D.
Jonckheere, A.
Jonsson, P.
Juste, A.
Kajfasz, E.
Kalk, J. M.
Karmanov, D.
Kasper, P. A.
Katsanos, I.
Kau, D.
Kaushik, V.
Kehoe, R.
Kermiche, S.
Khalatyan, N.
Khanov, A.
Kharchilava, A.
Kharzheev, Y. M.
Khatidze, D.
Kim, T. J.
Kirby, M. H.
Kirsch, M.
Klima, B.
Kohli, J. M.
Konrath, J. -P.
Kozelov, A. V.
Kraus, J.
Kuhl, T.
Kumar, A.
Kupco, A.
Kurca, T.
Kuzmin, V. A.
Kvita, J.
Lacroix, F.
Lam, D.
Lammers, S.
Landsberg, G.
Lebrun, P.
Lee, W. M.
Leflat, A.
Lellouch, J.
Li, J.
Li, L.
Li, Q. Z.
Lietti, S. M.
Lim, J. K.
Lima, J. G. R.
Lincoln, D.
Linnemann, J.
Lipaev, V. V.
Lipton, R.
Liu, Y.
Liu, Z.
Lobodenko, A.
Lokajicek, M.
Love, P.
Lubatti, H. J.
Luna, R.
Lyon, A. L.
Maciel, A. K. A.
Mackin, D.
Madaras, R. J.
Mattig, P.
Magass, C.
Magerkurth, A.
Mal, P. K.
Malbouisson, H. B.
Malik, S.
Malyshev, V. L.
Maravin, Y.
Martin, B.
McCarthy, R.
Melnitchouk, A.
Mendoza, L.
Mercadante, P. G.
Merkin, M.
Merritt, K. W.
Meyer, A.
Meyer, J.
Mitrevski, J.
Mommsen, R. K.
Mondal, N. K.
Moore, R. W.
Moulik, T.
Muanza, G. S.
Mulhearn, M.
Mundal, O.
Mundim, L.
Nagy, E.
Naimuddin, M.
Narain, M.
Naumann, N. A.
Neal, H. A.
Negret, J. P.
Neustroev, P.
Nilsen, H.
Nogima, H.
Novaes, S. F.
Nunnemann, T.
O'Dell, V.
O'Neil, D. C.
Obrant, G.
Ochando, C.
Onoprienko, D.
Oshima, N.
Osman, N.
Osta, J.
Otec, R.
Garzon, G. J. Otero Y.
Owen, M.
Padley, P.
Pangilinan, M.
Parashar, N.
Park, S. -J.
Park, S. K.
Parsons, J.
Partridge, R.
Parua, N.
Patwa, A.
Pawloski, G.
Penning, B.
Perfilov, M.
Peters, K.
Peters, Y.
Petroff, P.
Petteni, M.
Piegaia, R.
Piper, J.
Pleier, M. -A.
Podesta-Lerma, P. L. M.
Podstavkov, V. M.
Pogorelov, Y.
Pol, M. -E.
Polozov, P.
Pope, B. G.
Popov, A. V.
Potter, C.
da Silva, W. L. Prado
Prosper, H. B.
Protopopescu, S.
Qian, J.
Quadt, A.
Quinn, B.
Rakitine, A.
Rangel, M. S.
Ranjan, K.
Ratoff, P. N.
Renkel, P.
Rich, P.
Rieger, J.
Rijssenbeek, M.
Ripp-Baudot, I.
Rizatdinova, F.
Robinson, S.
Rodrigues, R. F.
Rominsky, M.
Royon, C.
Rubinov, P.
Ruchti, R.
Safronov, G.
Sajot, G.
Sanchez-Hernandez, A.
Sanders, M. P.
Sanghi, B.
Savage, G.
Sawyer, L.
Scanlon, T.
Schaile, D.
Schamberger, R. D.
Scheglov, Y.
Schellman, H.
Schliephake, T.
Schlobohm, S.
Schwanenberger, C.
Schwartzman, A.
Schwienhorst, R.
Sekaric, J.
Severini, H.
Shabalina, E.
Shamim, M.
Shary, V.
Shchukin, A. A.
Shivpuri, R. K.
Siccardi, V.
Simak, V.
Sirotenko, V.
Skubic, P.
Slattery, P.
Smirnov, D.
Snow, G. R.
Snow, J.
Snyder, S.
Soldner-Rembold, S.
Sonnenschein, L.
Sopczak, A.
Sosebee, M.
Soustruznik, K.
Spurlock, B.
Stark, J.
Steele, J.
Stolin, V.
Stoyanova, D. A.
Strandberg, J.
Strandberg, S.
Strang, M. A.
Strauss, E.
Strauss, M.
Strohmer, R.
Strom, D.
Stutte, L.
Sumowidagdo, S.
Svoisky, P.
Sznajder, A.
Tamburello, P.
Tanasijczuk, A.
Taylor, W.
Tiller, B.
Tissandier, F.
Titov, M.
Tokmenin, V. V.
Torchiani, I.
Tsybychev, D.
Tuchming, B.
Tully, C.
Tuts, P. M.
Unalan, R.
Uvarov, L.
Uvarov, S.
Uzunyan, S.
Vachon, B.
van den Berg, P. J.
Van Kooten, R.
van Leeuwen, W. M.
Varelas, N.
Varnes, E. W.
Vasilyev, I. A.
Verdier, P.
Vertogradov, L. S.
Verzocchi, M.
Vilanova, D.
Villeneuve-Seguier, F.
Vint, P.
Vokac, P.
Voutilainen, M.
Wagner, R.
Wahl, H. D.
Wang, M. H. L. S.
Warchol, J.
Watts, G.
Wayne, M.
Weber, G.
Weber, M.
Welty-Rieger, L.
Wenger, A.
Wermes, N.
Wetstein, M.
White, A.
Wicke, D.
Williams, M.
Wilson, G. W.
Wimpenny, S. J.
Wobisch, M.
Wood, D. R.
Wyatt, T. R.
Xie, Y.
Yacoob, S.
Yamada, R.
Yang, W. -C.
Yasuda, T.
Yatsunenko, Y. A.
Yin, H.
Yip, K.
Yoo, H. D.
Youn, S. W.
Yu, J.
Zeitnitz, C.
Zelitch, S.
Zhao, T.
Zhou, B.
Zhu, J.
Zielinski, M.
Zieminska, D.
Zieminski, A.
Zivkovic, L.
Zutshi, V.
Zverev, E. G.
CA DO Collaboration
TI Search for Associated W and Higgs Boson Production in p(p)over-bar
Collisions at root s=1.96 TeV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We present results of a search for WH -> l nu b (b) over bar production in p (p) over bar collisions based on the analysis of 1.05 fb(-1) of data collected by the D0 experiment at the Fermilab Tevatron, using a neural network for separating the signal from backgrounds. No signal-like excess is observed, and we set 95% C. L. upper limits on the WH production cross section multiplied by the branching ratio for H -> b (b) over bar for Higgs boson masses between 100 and 150 GeV. For a mass of 115 GeV, we obtain an observed (expected) limit of 1.5 (1.4) pb, a factor of 11.4 (10.7) times larger than the standard model prediction.
C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia.
[Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina.
[Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil.
[Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil.
[Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil.
[Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada.
[Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada.
[Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia.
[Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic.
[Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic.
[Lokajicek, M.; Tanasijczuk, A.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic.
[Hoeneisen, B.; Kupco, A.] Univ San Francisco Quito, Quito, Ecuador.
[Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France.
[Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France.
[Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France.
[Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France.
[Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France.
[Andrieu, B.; Arthaud, M.; Bassler, U.; Bernardi, G.; Besancon, M.; Chakrabarti, S.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France.
[Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France.
[Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France.
[Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France.
[Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France.
[Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany.
[Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany.
[Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany.
[Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany.
[Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Strohmer, R.; Tiller, B.] Univ Munich, Munich, Germany.
[Hoeth, H.; Mattig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany.
[Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India.
[Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India.
[Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India.
[Cwiok, M.; Grunewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland.
[Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea.
[Choi, S.] Sungkyunkwan Univ, Suwon, South Korea.
[Castilla-Valdez, H.; De la Cruz-Burelo, E.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands.
[Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands.
[Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands.
[Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia.
[Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Yatsunenko, Y. A.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia.
[Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia.
[Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden.
[Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden.
[Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Wenger, A.; Williams, M.] Univ Lancaster, Lancaster, England.
[Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Rakitine, A.; Ratoff, P. N.; Robinson, S.; Scanlon, T.; Sopczak, A.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England.
[Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Robinson, S.; Scanlon, T.; Soldner-Rembold, S.; Villeneuve-Seguier, F.; Vint, P.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England.
[Cheu, E.; Das, A.; Johns, K.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Tamburello, P.; Varnes, E. W.; Wyatt, T. R.] Univ Arizona, Tucson, AZ 85721 USA.
[Madaras, R. J.; Tamburello, P.; Varnes, E. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA.
[Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA.
[Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.; Wimpenny, S. J.] Florida State Univ, Tallahassee, FL 32306 USA.
[Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Grunendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Garzon, G. J. Otero Y.; Podstavkov, V. M.; Prosper, H. B.; Rubinov, P.; Sanghi, B.; Savage, G.; Sekaric, J.; Sirotenko, V.; Stutte, L.; Sumowidagdo, S.; Verzocchi, M.; Wahl, H. D.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA.
[Adams, M.; Gerber, C. E.; Rubinov, P.; Savage, G.; Shabalina, E.; Sirotenko, V.; Stutte, L.; Varelas, N.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Univ Illinois, Chicago, IL 60607 USA.
[Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Shabalina, E.; Uzunyan, S.; Varelas, N.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA.
[Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Uzunyan, S.; Yacoob, S.; Youn, S. W.; Zutshi, V.] Northwestern Univ, Evanston, IL 60208 USA.
[Evans, H.; Parua, N.; Rieger, J.; Schellman, H.; Strom, D.; Van Kooten, R.; Welty-Rieger, L.; Yacoob, S.; Youn, S. W.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA.
[Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Rieger, J.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Van Kooten, R.; Warchol, J.; Wayne, M.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Univ Notre Dame, Notre Dame, IN 46556 USA.
[Parashar, N.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Purdue Univ Calumet, Hammond, IN 46323 USA.
[Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA.
[Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA.
[Ahsan, M.; Bandurin, D. V.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Wilson, G. W.] Kansas State Univ, Manhattan, KS 66506 USA.
[Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Shamim, M.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA.
[Eno, S.; Hadley, N. J.; Jarvis, C.; Sawyer, L.; Steele, J.; Wetstein, M.; Wobisch, M.] Univ Maryland, College Pk, MD 20742 USA.
[Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.; Wetstein, M.] Boston Univ, Boston, MA 02215 USA.
[Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA.
[Alton, A.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Wood, D. R.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Qian, J.; Schwienhorst, R.; Strandberg, J.; Unalan, R.; Zhou, B.] Michigan State Univ, E Lansing, MI 48824 USA.
[Melnitchouk, A.; Pope, B. G.; Quinn, B.; Schwienhorst, R.; Unalan, R.] Univ Mississippi, University, MS 38677 USA.
[Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Quinn, B.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA.
[Haley, J.; Schwartzman, A.; Snow, G. R.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA.
[Iashvili, I.; Kharchilava, A.; Kumar, A.; Schwartzman, A.; Strang, M. A.; Tully, C.; Wagner, R.] SUNY Buffalo, Buffalo, NY 14260 USA.
[Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Parsons, J.; Strang, M. A.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA.
[Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Mulhearn, M.; Tuts, P. M.; Zielinski, M.; Zivkovic, L.] Univ Rochester, Rochester, NY 14627 USA.
[Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Slattery, P.; Strauss, E.; Tsybychev, D.; Zhu, J.; Zielinski, M.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Rijssenbeek, M.; Schamberger, R. D.; Snyder, S.; Strauss, E.; Tsybychev, D.; Yip, K.; Zhu, J.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Protopopescu, S.; Severini, H.; Snow, J.; Snyder, S.; Yip, K.] Langston Univ, Langston, OK 73050 USA.
[Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Skubic, P.; Snow, J.] Univ Oklahoma, Norman, OK 73019 USA.
[Khanov, A.; Rizatdinova, F.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Oklahoma State Univ, Stillwater, OK 74078 USA.
[Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Rizatdinova, F.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA.
[Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Xie, Y.; Yoo, H. D.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA.
[Kehoe, R.; Renkel, P.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] So Methodist Univ, Dallas, TX 75275 USA.
[Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Renkel, P.] Rice Univ, Houston, TX 77005 USA.
[Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA.
[Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA.
RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia.
RI Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015;
KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder,
Andre/L-1621-2016; Li, Liang/O-1107-2015; Yip, Kin/D-6860-2013; bu,
xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Perfilov,
Maxim/E-1064-2012; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013;
Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot,
Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek,
Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Shivpuri, R
K/A-5848-2010; Novaes, Sergio/D-3532-2012; Mercadante,
Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Gutierrez,
Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat,
Alexander/D-7284-2012; Boos, Eduard/D-9748-2012
OI Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae
Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder,
Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Yip,
Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian
Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616;
Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805;
Dudko, Lev/0000-0002-4462-3192;
FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia);
CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias
(Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT
(Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR
(Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada);
BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden);
CAS; CNSF (China); Alexander von Humboldt Foundation (Germany)
FX We thank the staffs at Fermilab and collaborating institutions and
acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3
(France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and
FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT
(Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM
(The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech
Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF
and DFG (Germany); SFI (Ireland); the Swedish Research Council (Sweden);
CAS and CNSF (China); and the Alexander von Humboldt Foundation
(Germany).
NR 20
TC 18
Z9 18
U1 2
U2 8
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 051803
DI 10.1103/PhysRevLett.102.051803
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400017
PM 19257504
ER
PT J
AU Abelev, BI
Aggarwal, MM
Ahammed, Z
Anderson, BD
Arkhipkin, D
Averichev, GS
Bai, Y
Balewski, J
Barannikova, O
Barnby, LS
Baudot, J
Baumgart, S
Beavis, DR
Bellwied, R
Benedosso, F
Betts, RR
Bhardwaj, S
Bhasin, A
Bhati, AK
Bichsel, H
Bielcik, J
Bielcikova, J
Biritz, B
Bland, LC
Bombara, M
Bonner, BE
Botje, M
Bouchet, J
Braidot, E
Brandin, AV
Bruna, E
Bueltmann, S
Burton, TP
Bystersky, M
Cai, XZ
Caines, H
Sanchez, MCD
Callner, J
Catu, O
Cebra, D
Cendejas, R
Cervantes, MC
Chajecki, Z
Chaloupka, P
Chattopadhyay, S
Chen, HF
Chen, JH
Chen, JY
Cheng, J
Cherney, M
Chikanian, A
Choi, KE
Christie, W
Chung, SU
Clarke, RF
Codrington, MJM
Coffin, JP
Cormier, TM
Cosentino, MR
Cramer, JG
Crawford, HJ
Das, D
Dash, S
Daugherity, M
De Silva, C
de Moura, MM
Dedovich, TG
DePhillips, M
Derevschikov, AA
de Souza, RD
Didenko, L
Djawotho, P
Dogra, SM
Dong, X
Drachenberg, JL
Draper, JE
Du, F
Dunlop, JC
Mazumdar, MRD
Edwards, WR
Efimov, LG
Elhalhuli, E
Elnimr, M
Emelianov, V
Engelage, J
Eppley, G
Erazmus, B
Estienne, M
Eun, L
Fachini, P
Fatemi, R
Fedorisin, J
Feng, A
Filip, P
Finch, E
Fine, V
Fisyak, Y
Gagliardi, CA
Gaillard, L
Gangadharan, DR
Ganti, MS
Garcia-Solis, E
Ghazikhanian, V
Ghosh, P
Gorbunov, YN
Gordon, A
Grebenyuk, O
Grosnick, D
Grube, B
Guertin, SM
Guimaraes, KSFF
Gupta, A
Gupta, N
Guryn, W
Haag, B
Hallman, TJ
Hamed, A
Harris, JW
He, W
Heinz, M
Heppelmann, S
Hippolyte, B
Hirsch, A
Hjort, E
Hoffman, AM
Hoffmann, GW
Hofman, DJ
Hollis, RS
Huang, HZ
Humanic, TJ
Igo, G
Iordanova, A
Jacobs, P
Jacobs, WW
Jakl, P
Jin, F
Jones, PG
Joseph, J
Judd, EG
Kabana, S
Kajimoto, K
Kang, K
Kapitan, J
Kaplan, M
Keane, D
Kechechyan, A
Kettler, D
Khodyrev, VY
Kiryluk, J
Kisiel, A
Klein, SR
Knospe, AG
Kocoloski, A
Koetke, DD
Kopytine, M
Kotchenda, L
Kouchpil, V
Kravtsov, P
Kravtsov, VI
Krueger, K
Krus, M
Kuhn, C
Kumar, L
Kurnadi, P
Lamont, MAC
Landgraf, JM
LaPointe, S
Lauret, J
Lebedev, A
Lednicky, R
Lee, CH
LeVine, MJ
Li, C
Li, Y
Lin, G
Lin, X
Lindenbaum, SJ
Lisa, MA
Liu, F
Liu, H
Liu, J
Liu, L
Ljubicic, T
Llope, WJ
Longacre, RS
Love, WA
Lu, Y
Ludlam, T
Lynn, D
Ma, GL
Ma, YG
Mahapatra, DP
Majka, R
Mall, OI
Mangotra, LK
Manweiler, R
Margetis, S
Markert, C
Matis, HS
Matulenko, YA
McShane, TS
Meschanin, A
Millane, J
Miller, ML
Minaev, NG
Mioduszewski, S
Mischke, A
Mitchell, J
Mohanty, B
Molnar, L
Morozov, DA
Munhoz, MG
Nandi, BK
Nattrass, C
Nayak, TK
Nelson, JM
Nepali, C
Netrakanti, PK
Ng, MJ
Nogach, LV
Nurushev, SB
Odyniec, G
Ogawa, A
Okada, H
Okorokov, V
Olson, D
Pachr, M
Page, BS
Pal, SK
Pandit, Y
Panebratsev, Y
Pawlak, T
Peitzmann, T
Perevoztchikov, V
Perkins, C
Peryt, W
Phatak, SC
Planinic, M
Pluta, J
Poljak, N
Poskanzer, AM
Potukuchi, BVKS
Prindle, D
Pruneau, C
Pruthi, NK
Putschke, J
Raniwala, R
Raniwala, S
Ray, RL
Reed, R
Ridiger, A
Ritter, HG
Roberts, JB
Rogachevskiy, OV
Romero, JL
Rose, A
Roy, C
Ruan, L
Russcher, MJ
Rykov, V
Sahoo, R
Sakrejda, I
Sakuma, T
Salur, S
Sandweiss, J
Sarsour, M
Schambach, J
Scharenberg, RP
Schmitz, N
Seger, J
Selyuzhenkov, I
Seyboth, P
Shabetai, A
Shahaliev, E
Shao, M
Sharma, M
Shi, SS
Shi, XH
Sichtermann, EP
Simon, F
Singaraju, RN
Skoby, MJ
Smirnov, N
Snellings, R
Sorensen, P
Sowinski, J
Spinka, HM
Srivastava, B
Stadnik, A
Stanislaus, TDS
Staszak, D
Strikhanov, M
Stringfellow, B
Suaide, AAP
Suarez, MC
Subba, NL
Sumbera, M
Sun, XM
Sun, Y
Sun, Z
Surrow, B
Symons, TJM
de Toledo, AS
Takahashi, J
Tang, AH
Tang, Z
Tarnowsky, T
Thein, D
Thomas, JH
Tian, J
Timmins, AR
Timoshenko, S
Tlusty, D
Tokarev, M
Trainor, TA
Tram, VN
Trattner, AL
Trentalange, S
Tribble, RE
Tsai, OD
Ulery, J
Ullrich, T
Underwood, DG
Van Buren, G
van Leeuwen, M
Molen, AMV
Vanfossen, JA
Varma, R
Vasconcelos, GMS
Vasilevski, IM
Vasiliev, AN
Videbaek, F
Vigdor, SE
Viyogi, YP
Vokal, S
Voloshin, SA
Wada, M
Waggoner, WT
Wang, F
Wang, G
Wang, JS
Wang, Q
Wang, X
Wang, XL
Wang, Y
Webb, JC
Westfall, GD
Whitten, C
Wieman, H
Wissink, SW
Witt, R
Wu, Y
Xu, N
Xu, QH
Xu, Y
Xu, Z
Yepes, P
Yoo, IK
Yue, Q
Zawisza, M
Zbroszczyk, H
Zhan, W
Zhang, H
Zhang, S
Zhang, WM
Zhang, Y
Zhang, ZP
Zhao, Y
Zhong, C
Zhou, J
Zoulkarneev, R
Zoulkarneeva, Y
Zuo, JX
AF Abelev, B. I.
Aggarwal, M. M.
Ahammed, Z.
Anderson, B. D.
Arkhipkin, D.
Averichev, G. S.
Bai, Y.
Balewski, J.
Barannikova, O.
Barnby, L. S.
Baudot, J.
Baumgart, S.
Beavis, D. R.
Bellwied, R.
Benedosso, F.
Betts, R. R.
Bhardwaj, S.
Bhasin, A.
Bhati, A. K.
Bichsel, H.
Bielcik, J.
Bielcikova, J.
Biritz, B.
Bland, L. C.
Bombara, M.
Bonner, B. E.
Botje, M.
Bouchet, J.
Braidot, E.
Brandin, A. V.
Bruna, E.
Bueltmann, S.
Burton, T. P.
Bystersky, M.
Cai, X. Z.
Caines, H.
Sanchez, M. Calderon De la Barca
Callner, J.
Catu, O.
Cebra, D.
Cendejas, R.
Cervantes, M. C.
Chajecki, Z.
Chaloupka, P.
Chattopadhyay, S.
Chen, H. F.
Chen, J. H.
Chen, J. Y.
Cheng, J.
Cherney, M.
Chikanian, A.
Choi, K. E.
Christie, W.
Chung, S. U.
Clarke, R. F.
Codrington, M. J. M.
Coffin, J. P.
Cormier, T. M.
Cosentino, M. R.
Cramer, J. G.
Crawford, H. J.
Das, D.
Dash, S.
Daugherity, M.
De Silva, C.
de Moura, M. M.
Dedovich, T. G.
DePhillips, M.
Derevschikov, A. A.
de Souza, R. Derradi
Didenko, L.
Djawotho, P.
Dogra, S. M.
Dong, X.
Drachenberg, J. L.
Draper, J. E.
Du, F.
Dunlop, J. C.
Mazumdar, M. R. Dutta
Edwards, W. R.
Efimov, L. G.
Elhalhuli, E.
Elnimr, M.
Emelianov, V.
Engelage, J.
Eppley, G.
Erazmus, B.
Estienne, M.
Eun, L.
Fachini, P.
Fatemi, R.
Fedorisin, J.
Feng, A.
Filip, P.
Finch, E.
Fine, V.
Fisyak, Y.
Gagliardi, C. A.
Gaillard, L.
Gangadharan, D. R.
Ganti, M. S.
Garcia-Solis, E.
Ghazikhanian, V.
Ghosh, P.
Gorbunov, Y. N.
Gordon, A.
Grebenyuk, O.
Grosnick, D.
Grube, B.
Guertin, S. M.
Guimaraes, K. S. F. F.
Gupta, A.
Gupta, N.
Guryn, W.
Haag, B.
Hallman, T. J.
Hamed, A.
Harris, J. W.
He, W.
Heinz, M.
Heppelmann, S.
Hippolyte, B.
Hirsch, A.
Hjort, E.
Hoffman, A. M.
Hoffmann, G. W.
Hofman, D. J.
Hollis, R. S.
Huang, H. Z.
Humanic, T. J.
Igo, G.
Iordanova, A.
Jacobs, P.
Jacobs, W. W.
Jakl, P.
Jin, F.
Jones, P. G.
Joseph, J.
Judd, E. G.
Kabana, S.
Kajimoto, K.
Kang, K.
Kapitan, J.
Kaplan, M.
Keane, D.
Kechechyan, A.
Kettler, D.
Khodyrev, V. Yu.
Kiryluk, J.
Kisiel, A.
Klein, S. R.
Knospe, A. G.
Kocoloski, A.
Koetke, D. D.
Kopytine, M.
Kotchenda, L.
Kouchpil, V.
Kravtsov, P.
Kravtsov, V. I.
Krueger, K.
Krus, M.
Kuhn, C.
Kumar, L.
Kurnadi, P.
Lamont, M. A. C.
Landgraf, J. M.
LaPointe, S.
Lauret, J.
Lebedev, A.
Lednicky, R.
Lee, C-H.
LeVine, M. J.
Li, C.
Li, Y.
Lin, G.
Lin, X.
Lindenbaum, S. J.
Lisa, M. A.
Liu, F.
Liu, H.
Liu, J.
Liu, L.
Ljubicic, T.
Llope, W. J.
Longacre, R. S.
Love, W. A.
Lu, Y.
Ludlam, T.
Lynn, D.
Ma, G. L.
Ma, Y. G.
Mahapatra, D. P.
Majka, R.
Mall, O. I.
Mangotra, L. K.
Manweiler, R.
Margetis, S.
Markert, C.
Matis, H. S.
Matulenko, Yu. A.
McShane, T. S.
Meschanin, A.
Millane, J.
Miller, M. L.
Minaev, N. G.
Mioduszewski, S.
Mischke, A.
Mitchell, J.
Mohanty, B.
Molnar, L.
Morozov, D. A.
Munhoz, M. G.
Nandi, B. K.
Nattrass, C.
Nayak, T. K.
Nelson, J. M.
Nepali, C.
Netrakanti, P. K.
Ng, M. J.
Nogach, L. V.
Nurushev, S. B.
Odyniec, G.
Ogawa, A.
Okada, H.
Okorokov, V.
Olson, D.
Pachr, M.
Page, B. S.
Pal, S. K.
Pandit, Y.
Panebratsev, Y.
Pawlak, T.
Peitzmann, T.
Perevoztchikov, V.
Perkins, C.
Peryt, W.
Phatak, S. C.
Planinic, M.
Pluta, J.
Poljak, N.
Poskanzer, A. M.
Potukuchi, B. V. K. S.
Prindle, D.
Pruneau, C.
Pruthi, N. K.
Putschke, J.
Raniwala, R.
Raniwala, S.
Ray, R. L.
Reed, R.
Ridiger, A.
Ritter, H. G.
Roberts, J. B.
Rogachevskiy, O. V.
Romero, J. L.
Rose, A.
Roy, C.
Ruan, L.
Russcher, M. J.
Rykov, V.
Sahoo, R.
Sakrejda, I.
Sakuma, T.
Salur, S.
Sandweiss, J.
Sarsour, M.
Schambach, J.
Scharenberg, R. P.
Schmitz, N.
Seger, J.
Selyuzhenkov, I.
Seyboth, P.
Shabetai, A.
Shahaliev, E.
Shao, M.
Sharma, M.
Shi, S. S.
Shi, X-H.
Sichtermann, E. P.
Simon, F.
Singaraju, R. N.
Skoby, M. J.
Smirnov, N.
Snellings, R.
Sorensen, P.
Sowinski, J.
Spinka, H. M.
Srivastava, B.
Stadnik, A.
Stanislaus, T. D. S.
Staszak, D.
Strikhanov, M.
Stringfellow, B.
Suaide, A. A. P.
Suarez, M. C.
Subba, N. L.
Sumbera, M.
Sun, X. M.
Sun, Y.
Sun, Z.
Surrow, B.
Symons, T. J. M.
de Toledo, A. Szanto
Takahashi, J.
Tang, A. H.
Tang, Z.
Tarnowsky, T.
Thein, D.
Thomas, J. H.
Tian, J.
Timmins, A. R.
Timoshenko, S.
Tlusty, D.
Tokarev, M.
Trainor, T. A.
Tram, V. N.
Trattner, A. L.
Trentalange, S.
Tribble, R. E.
Tsai, O. D.
Ulery, J.
Ullrich, T.
Underwood, D. G.
Van Buren, G.
van Leeuwen, M.
Molen, A. M. Vander
Vanfossen, J. A., Jr.
Varma, R.
Vasconcelos, G. M. S.
Vasilevski, I. M.
Vasiliev, A. N.
Videbaek, F.
Vigdor, S. E.
Viyogi, Y. P.
Vokal, S.
Voloshin, S. A.
Wada, M.
Waggoner, W. T.
Wang, F.
Wang, G.
Wang, J. S.
Wang, Q.
Wang, X.
Wang, X. L.
Wang, Y.
Webb, J. C.
Westfall, G. D.
Whitten, C., Jr.
Wieman, H.
Wissink, S. W.
Witt, R.
Wu, Y.
Xu, N.
Xu, Q. H.
Xu, Y.
Xu, Z.
Yepes, P.
Yoo, I-K.
Yue, Q.
Zawisza, M.
Zbroszczyk, H.
Zhan, W.
Zhang, H.
Zhang, S.
Zhang, W. M.
Zhang, Y.
Zhang, Z. P.
Zhao, Y.
Zhong, C.
Zhou, J.
Zoulkarneev, R.
Zoulkarneeva, Y.
Zuo, J. X.
CA STAR Collaboration
TI Indications of Conical Emission of Charged Hadrons at the BNL
Relativistic Heavy Ion Collider
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID EVENTS
AB Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d + Au, and Au + Au collisions at root(NN)-N-S = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d + Au and peripheral Au + Au collisions. An additional structure is observed in central Au + Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta = 1.37 +/- 0.02(stat)(-0.07)(+0.06)(syst), independent of p perpendicular to.
C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA.
[Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Barnby, L. S.; Bombara, M.; Bueltmann, S.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England.
[Beavis, D. R.; Bland, L. C.; Christie, W.; Chung, S. U.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Lu, Y.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Zhang, H.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Crawford, H. J.; Ng, M. J.; Perkins, C.; Trainor, T. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA.
[Sanchez, M. Calderon De la Barca; Cebra, D.; Das, D.; Drachenberg, J. L.; Draper, J. E.; Haag, B.; Liu, H.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Mall, O. I.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Reed, R.; Romero, J. L.; Ruan, L.; Sorensen, P.; Tang, A. H.; Tang, Z.] Univ Calif Davis, Davis, CA 95616 USA.
[Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA.
[de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil.
[Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA.
[Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Creighton Univ, Omaha, NE 68178 USA.
[Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Krus, M.; Pachr, M.; Sumbera, M.; Tlusty, D.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic.
[Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] Lab High Energy JINR, Dubna, Russia.
[Arkhipkin, D.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.; Zoulkarneeva, Y.] Particle Phys Lab JINR, Dubna, Russia.
[Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India.
[Heinz, M.; Nandi, B. K.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India.
[Djawotho, P.; He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA.
[Baudot, J.; Coffin, J. P.; Estienne, M.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Inst Rech Subatom, Strasbourg, France.
[Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India.
[Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Pandit, Y.; Rykov, V.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA.
[Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA.
[Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China.
[Dong, X.; Edwards, W. R.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Subba, N. L.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Xu, Q. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Balewski, J.; Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.; Surrow, B.] MIT, Cambridge, MA 02139 USA.
[Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany.
[Bhardwaj, S.; Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA.
[Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia.
[Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA.
[Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands.
[Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands.
[Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA.
[Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India.
[Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA.
[Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia.
[Hirsch, A.; Molnar, L.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, Q.] Purdue Univ, W Lafayette, IN 47907 USA.
[Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea.
[Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India.
[Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA.
[Cosentino, M. R.; de Moura, M. M.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil.
[Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China.
[Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X-H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.
[Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France.
[Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA.
[Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA.
[Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China.
[Witt, R.] USN Acad, Annapolis, MD 21402 USA.
[Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA.
[Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Ctr Variable Energy Cyclotron, Kolkata 700064, India.
[Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland.
[Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA.
[Bellwied, R.; Cormier, T. M.; De Silva, C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA.
[Chen, J. Y.; Feng, A.; Lin, G.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China.
[Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA.
[Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia.
RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA.
RI Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka,
Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza,
Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics,
Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma,
Yu-Gang/M-8122-2013; Barnby, Lee/G-2135-2010; Mischke,
Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic,
Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt,
Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Pandit,
Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Dogra, Sunil
/B-5330-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014;
Strikhanov, Mikhail/P-7393-2014
OI van Leeuwen, Marco/0000-0002-5222-4888; Fornazier Guimaraes, Karin
Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468;
Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide,
Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma,
Yu-Gang/0000-0002-0233-9900; Bhasin, Anju/0000-0002-3687-8179; Barnby,
Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann,
Thomas/0000-0002-7116-899X; Pandit, Yadav/0000-0003-2809-7943;
Cosentino, Mauro/0000-0002-7880-8611; Sumbera,
Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405
FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science
Grid consortium; Offices of NP and HEP within the U. S. DOE Office of
Science; U. S. NSF; Sloan Foundation; DFG Excellence Cluster EXC153 of
Germany; CNRS/IN2P3; RA; RPL; EMN of France; STFC; EPSRC of the United
Kingdom; FAPESP of Brazil; Russian Ministry of Sci. and Tech.; NNSFC;
CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of the
Netherlands; DAE; DST; CSIR of the Government of India; Swiss NSF;
Polish State Committee for Scientific Research; Korea Sci.Eng.
Foundation
FX We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center
at LBNL and the resources provided by the Open Science Grid consortium
for their support. This work was supported in part by the Offices of NP
and HEP within the U. S. DOE Office of Science, the U. S. NSF, the Sloan
Foundation, the DFG Excellence Cluster EXC153 of Germany, CNRS/IN2P3,
RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP
of Brazil, the Russian Ministry of Sci. and Tech., the NNSFC, CAS, MoST,
and MoE of China, IRP and GA of the Czech Republic, FOM of the
Netherlands, DAE, DST, and CSIR of the Government of India, Swiss NSF,
the Polish State Committee for Scientific Research, and the Korea
Sci.&Eng. Foundation.
NR 27
TC 84
Z9 85
U1 0
U2 15
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
EI 1079-7114
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 052302
DI 10.1103/PhysRevLett.102.052302
PG 7
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400021
PM 19257508
ER
PT J
AU Costi, TA
Bergqvist, L
Weichselbaum, A
von Delft, J
Micklitz, T
Rosch, A
Mavropoulos, P
Dederichs, PH
Mallet, F
Saminadayar, L
Bauerle, C
AF Costi, T. A.
Bergqvist, L.
Weichselbaum, A.
von Delft, J.
Micklitz, T.
Rosch, A.
Mavropoulos, P.
Dederichs, P. H.
Mallet, F.
Saminadayar, L.
Baeuerle, C.
TI Kondo Decoherence: Finding the Right Spin Model for Iron Impurities in
Gold and Silver
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NUMERICAL RENORMALIZATION-GROUP; ANDERSON MODEL; ENERGY; RESISTANCE;
ALLOYS
AB We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a long-standing question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin, and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo model, but the value of S remained ambiguous. We perform density functional theory calculations that suggest S = 3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi-one-dimensional wires to numerical renormalization group predictions for S = 1/2, 1, and 3/2, finding excellent agreement for S = 3/2.
C1 [Costi, T. A.; Bergqvist, L.; Mavropoulos, P.; Dederichs, P. H.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany.
[Costi, T. A.; Mavropoulos, P.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany.
[Weichselbaum, A.; von Delft, J.] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany.
[Weichselbaum, A.; von Delft, J.] Univ Munich, Ctr Nanosci, D-80333 Munich, Germany.
[Micklitz, T.; Rosch, A.] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany.
[Mallet, F.; Saminadayar, L.; Baeuerle, C.] CNRS, Inst Neel, F-38042 Grenoble, France.
[Mallet, F.; Saminadayar, L.; Baeuerle, C.] Univ Grenoble 1, F-38042 Grenoble, France.
[Saminadayar, L.] Inst Univ France, F-75005 Paris, France.
[Micklitz, T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
RP Costi, TA (reprint author), Forschungszentrum Julich, Inst Festkorperforsch, Postfach 1913, D-52425 Julich, Germany.
RI Rosch, Achim/A-2962-2009; Bauerle, Christopher/A-3972-2012; Mavropoulos,
Phivos/H-6189-2013; Weichselbaum, Andreas/I-8858-2012; Bergqvist,
Lars/J-5282-2014; Costi, Theo/C-5113-2011; Bauerle,
Christopher/S-8973-2016
OI Rosch, Achim/0000-0002-6586-5721; Mavropoulos,
Phivos/0000-0002-0205-8025; Weichselbaum, Andreas/0000-0002-5832-3908;
Bergqvist, Lars/0000-0003-4341-5663; Costi, Theo/0000-0003-0815-5237;
FU ESF [ERAS-CT2003-980409;]; U. S. Department of Energy
[DE-AC0206CH11357]; John von Neumann Institute for Computing; DFG [SFB
608, SFB-TR12, De730/3-2]; Cluster of Excellence Nanosystems Initiative
Munich
FX L. B. acknowledges support from the EU within the Marie Curie Actions
for Human Resources and Mobility; P. M. from the ESF program SONS,
Contract No. ERAS-CT2003-980409; T. M. from the U. S. Department of
Energy, Office of Science, Contract No. DE-AC0206CH11357; L. S. and C.
B. acknowledge technical support from the Quantronics group, Saclay, and
A. D. Wieck and financial support from ANR PNANO "QuSPIN.''Support from
the John von Neumann Institute for Computing (Julich), the DFG (SFB 608,
SFB-TR12, and De730/3-2) and from the Cluster of Excellence Nanosystems
Initiative Munich is gratefully acknowledged.
NR 29
TC 54
Z9 54
U1 3
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 056802
DI 10.1103/PhysRevLett.102.056802
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400047
PM 19257534
ER
PT J
AU Luo, JW
Bester, G
Zunger, A
AF Luo, Jun-Wei
Bester, Gabriel
Zunger, Alex
TI Full-Zone Spin Splitting for Electrons and Holes in Bulk GaAs and GaSb
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ZINCBLENDE-TYPE SEMICONDUCTORS; QUANTUM DOTS; MAGNETIC-FIELDS;
BAND-STRUCTURE; PSEUDOPOTENTIALS
AB The spin-orbit interaction-a fundamental electroweak force-is equivalent to an effective magnetic field intrinsic to crystals, leading to band spin splitting for certain k points in sufficiently low-symmetry structures. This (Dresselhaus) splitting has usually been calculated at restricted regions in the Brillouin zone via small wave vector approximations (e. g., k . p), potentially missing the "big picture.'' We provide a full-zone description of the Dresselhaus splitting in zinc blende semiconductors by using pseudo-potentials, empirically corrected to rectify local density approximation errors by fitting GW results. In contrast to what was previous thought, we find that the largest spin splitting in the lowest conduction band and upper valence band (VB1) occurs surprisingly along the (210) direction, not the (110) direction, and that the splitting of the VB1 is comparable to that of the next two valence bands VB2 and VB3.
C1 [Luo, Jun-Wei; Bester, Gabriel; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Zunger, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.
EM alexzunger@nrel.gov
RI LUO, JUN-WEI/A-8491-2010; Bester, Gabriel/I-4414-2012; Zunger,
Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013
OI Bester, Gabriel/0000-0003-2304-0817;
FU U. S. Department of Energy [DE-AC36-08GO28308]
FX This work was funded by the U. S. Department of Energy, Office of
Science, Basic Energy Science, Materials Sciences and Engineering, under
Contract No. DE-AC36-08GO28308 to NREL.
NR 22
TC 26
Z9 26
U1 1
U2 7
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 056405
DI 10.1103/PhysRevLett.102.056405
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400044
PM 19257531
ER
PT J
AU Souza-Neto, NM
Haskel, D
Tseng, YC
Lapertot, G
AF Souza-Neto, Narcizo M.
Haskel, Daniel
Tseng, Yuan-Chieh
Lapertot, Gerard
TI Pressure-Induced Electronic Mixing and Enhancement of Ferromagnetic
Ordering in EuX (X = Te, Se, S, O) Magnetic Semiconductors
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID EUROPIUM CHALCOGENIDES; MONOCHALCOGENIDES; TRANSITIONS; DICHROISM;
VALENCE; RAYS; GPA
AB The pressure- and anion-dependent electronic structure of EuX (X = Te, Se, S, O) monochalcogenides is probed with element- and orbital-specific x-ray absorption spectroscopy in a diamond anvil cell. An isotropic lattice contraction enhances the ferromagnetic ordering temperature by inducing mixing of Eu 4f and 5d electronic orbitals. Anion substitution (Te -> O) enhances competing exchange pathways through spin-polarized anion p states, counteracting the effect of the concomitant lattice contraction. The results have strong implications for efforts aimed at enhancing FM exchange interactions in thin films through interfacial strain or chemical substitutions.
C1 [Souza-Neto, Narcizo M.; Haskel, Daniel; Tseng, Yuan-Chieh] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Tseng, Yuan-Chieh] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60201 USA.
[Lapertot, Gerard] CEA Grenoble, SPSMS, Inst Nanosci & Cryogenie, F-38054 Grenoble, France.
RP Souza-Neto, NM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RI Souza-Neto, Narcizo/G-1303-2010; LAPERTOT, Gerard/B-3354-2008
OI Souza-Neto, Narcizo/0000-0002-7474-8017;
FU U. S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC-02-06CH11357]
FX The authors are grateful to Michael Norman, Michel van Veenendaal, Mark
Antonio, and Yves Joly for discussions and comments. Work at Argonne is
supported by the U. S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357.
NR 32
TC 30
Z9 30
U1 3
U2 12
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 057206
DI 10.1103/PhysRevLett.102.057206
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400059
PM 19257546
ER
PT J
AU Tassin, P
Zhang, L
Koschny, T
Economou, EN
Soukoulis, CM
AF Tassin, P.
Zhang, Lei
Koschny, Th.
Economou, E. N.
Soukoulis, C. M.
TI Low-Loss Metamaterials Based on Classical Electromagnetically Induced
Transparency
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID STORAGE; LIGHT; OPTICS
AB We demonstrate theoretically that electromagnetically induced transparency can be achieved in metamaterials, in which electromagnetic radiation is interacting resonantly with mesoscopic oscillators rather than with atoms. We describe novel metamaterial designs that can support a full dark resonant state upon interaction with an electromagnetic beam and we present results of its frequency-dependent effective permeability and permittivity. These results, showing a transparency window with extremely low absorption and strong dispersion, are confirmed by accurate simulations of the electromagnetic field propagation in the metamaterial.
C1 [Tassin, P.] Vrije Univ Brussels, Dept Appl Phys & Photon, B-1050 Brussels, Belgium.
[Zhang, Lei; Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
[Zhang, Lei; Koschny, Th.; Soukoulis, C. M.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Koschny, Th.; Economou, E. N.; Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Greece.
[Koschny, Th.; Economou, E. N.; Soukoulis, C. M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Greece.
RP Tassin, P (reprint author), Vrije Univ Brussels, Dept Appl Phys & Photon, Pleinlaan 2, B-1050 Brussels, Belgium.
RI Tassin, Philippe/B-7152-2008; Economou, Eleftherios /E-6374-2010;
Soukoulis, Costas/A-5295-2008
FU Department of Energy [DE-AC0207CH11358]; Office of Naval Research
[N00014-07-1D359]; European Community [213390, 503259]
FX This work was supported by the FWO-Vlaanderen and the University
Foundation of Belgium. P. T. acknowledges the FWO-Vlaanderen for his
Aspirant grant. Work at Ames Laboratory was supported by the Department
of Energy (Basic Energy Sciences) under Contract No. DE-AC0207CH11358.
This work was partially supported by the Office of Naval Research (Grant
No. N00014-07-1D359) and European Community projects PHOME (Contract No.
213390) and MI (Contract No. 503259).
NR 28
TC 354
Z9 359
U1 11
U2 88
PU AMER PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 6
PY 2009
VL 102
IS 5
AR 053901
DI 10.1103/PhysRevLett.102.053901
PG 4
WC Physics, Multidisciplinary
SC Physics
GA 404PV
UT WOS:000263166400026
PM 19257513
ER
PT J
AU Krumholz, MR
Klein, RI
Mckee, CF
Offner, SSR
Cunningham, AJ
AF Krumholz, Mark R.
Klein, Richard I.
McKee, Christopher F.
Offner, Stella S. R.
Cunningham, Andrew J.
TI The Formation of Massive Star Systems by Accretion
SO SCIENCE
LA English
DT Article
ID PROTOSTELLAR DISKS; MOLECULAR CLOUDS; CORES; COLLAPSE; LIMIT;
FRAGMENTATION; TURBULENT; EVOLUTION; TRANSPORT
AB Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a condition that has long been expected to prevent them from growing by accretion. We present three- dimensional radiation-hydrodynamic simulations of the collapse of a massive prestellar core and find that radiation pressure does not halt accretion. Instead, gravitational and Rayleigh- Taylor instabilities channel gas onto the star system through nonaxisymmetric disks and filaments that self- shield against radiation while allowing radiation to escape through optically thin bubbles. Gravitational instabilities cause the disk to fragment and form a massive companion to the primary star. Radiation pressure does not limit stellar masses, but the instabilities that allow accretion to continue lead to small multiple systems.
C1 [Krumholz, Mark R.] Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA.
[Klein, Richard I.; McKee, Christopher F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA.
[Klein, Richard I.; Cunningham, Andrew J.] Lawrence Livermore Natl Lab, AX Div, Livermore, CA 94550 USA.
[McKee, Christopher F.; Offner, Stella S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
RP Krumholz, MR (reprint author), Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA.
EM krumholz@ucolick.org
OI Krumholz, Mark/0000-0003-3893-854X
FU NSF [AST-0807739, AST-0606831]; Spitzer Space Telescope Theoretical
Research Program; NASA; Jet Propulsion Laboratory; Astrophysics Theory
and Fundamental Physics Program [NAG 05-12042, NNG 06-GH96G]; U.S.
Department of Energy at Lawrence Livermore National Laboratory
[B-542762]; NSF San Diego Supercomputer Center [UCB267]
FX Supported by NSF grants AST-0807739 (M.R.K.) and AST-0606831 (R.I.K. and
C.F.M.); the Spitzer Space Telescope Theoretical Research Program,
provided by NASA through a contract issued by the Jet Propulsion
Laboratory (M.R.K.); NASA through Astrophysics Theory and Fundamental
Physics Program grants NAG 05-12042 and NNG 06-GH96G (R.I.K. and
C.F.M.); and the U.S. Department of Energy at Lawrence Livermore
National Laboratory under contract B-542762 (R.I.K., S.S.R.O., and
A.J.C.). This research used the Datastar system at the NSF San Diego
Supercomputer Center (grant UCB267).
NR 29
TC 284
Z9 286
U1 0
U2 10
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 6
PY 2009
VL 323
IS 5915
BP 754
EP 757
DI 10.1126/science.1165857
PG 4
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 403EV
UT WOS:000263066800038
PM 19150809
ER
PT J
AU Prabhakar, S
Visel, A
Akiyama, JA
Shoukry, M
Lewis, KD
Holt, A
Plajzer-Frick, I
Morrison, H
FitzPatrick, DR
Afzal, V
Pennacchio, LA
Rubin, EM
Noonan, JP
AF Prabhakar, Shyam
Visel, Axel
Akiyama, Jennifer A.
Shoukry, Malak
Lewis, Keith D.
Holt, Amy
Plajzer-Frick, Ingrid
Morrison, Harris
FitzPatrick, David R.
Afzal, Veena
Pennacchio, Len A.
Rubin, Edward M.
Noonan, James P.
TI Response to Comment on "Human-Specific Gain of Function in a
Developmental Enhancer"
SO SCIENCE
LA English
DT Editorial Material
ID BIASED GENE CONVERSION; HUMAN GENOME; RECOMBINATION RATES; EVOLUTION;
MAP
AB Duret and Galtier argue that human- specific sequence divergence and gain of function in the HACNS1 enhancer result from deleterious biased gene conversion (BGC) with no contribution from positive selection. We reinforce our previous conclusion by analyzing hypothesized BGC events genomewide and assessing the effect of recombination rates on human- accelerated conserved noncoding sequence ascertainment. We also provide evidence that AT --> GC substitution bias can coexist with positive selection.
C1 [Prabhakar, Shyam; Visel, Axel; Akiyama, Jennifer A.; Shoukry, Malak; Lewis, Keith D.; Holt, Amy; Plajzer-Frick, Ingrid; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.; Noonan, James P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA.
[Morrison, Harris; FitzPatrick, David R.] Western Gen Hosp, MRC, Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland.
[Pennacchio, Len A.; Rubin, Edward M.] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA.
RP Rubin, EM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA.
EM EMRubin@lbl.gov; james.noonan@yale.edu
RI Visel, Axel/A-9398-2009;
OI Visel, Axel/0000-0002-4130-7784; FitzPatrick, David
R./0000-0003-4861-969X
NR 13
TC 1
Z9 1
U1 1
U2 5
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD FEB 6
PY 2009
VL 323
IS 5915
DI 10.1126/science.1166571
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 403EV
UT WOS:000263066800021
ER
PT J
AU Bobaru, F
Yang, MJ
Alves, LF
Silling, SA
Askari, E
Xu, JF
AF Bobaru, Florin
Yang, Mijia
Alves, Leonardo Frota
Silling, Stewart A.
Askari, Ebrahim
Xu, Jifeng
TI Convergence, adaptive refinement, and scaling in 1D peridynamics
SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
LA English
DT Article
DE peridynamics; non-local methods; adaptive refinement; convergence;
multiscale modeling
ID NONLOCAL DAMAGE MODELS; SIMPLE ERROR ESTIMATOR; FINITE-ELEMENT METHOD;
LONG-RANGE FORCES; SPURIOUS REFLECTION; ELASTIC-WAVES; MESHES; BAR
AB We introduce here adaptive refinement algorithms for the non-local method peridynamics, which was proposed in (J. Mech. Phys. Solids 2000; 48:175-209) as a reformulation of classical elasticity for discontinuities and long-range forces. We use scaling of the micromodulus and horizon and discuss the particular features of adaptivity in peridynamics for which multiscale modeling and and refinement are closely connected. We discuss three types of numerical convergence for peridynamics and obtain uniform convergence to the classical solutions of static and dynamic elasticity problems in 1D in the limit of the horizon going to zero. Continuous micromoduli lead to optimal rates of convergence independent of the grid used, while discontinuous micromoduli produce optimal rates of convergence only for uniform grids. Examples for static and dynamic elasticity problems in 1D are shown. The relative error for the static and dynamic solutions obtained using adaptive refinement are significantly lower than those obtained using uniform refinement, for the same number of nodes. Copyright (c) 2008 John Wiley & Sons, Ltd.
C1 [Bobaru, Florin; Yang, Mijia; Alves, Leonardo Frota] Univ Nebraska, Dept Engn Mech, Lincoln, NE 68583 USA.
[Silling, Stewart A.] Sandia Natl Labs, Multiscale Dynam Mat Modeling Dept, Albuquerque, NM 87185 USA.
[Askari, Ebrahim; Xu, Jifeng] Boeing Co, Bellevue, WA USA.
[Yang, Mijia] Univ Texas San Antonio, Dept Civil & Environm Engn, San Antonio, TX USA.
RP Bobaru, F (reprint author), Univ Nebraska, Dept Engn Mech, Lincoln, NE 68583 USA.
EM fbobaru2@unl.edu
RI Yang, Mijia/B-1847-2008; Bobaru, Florin/J-2167-2012
OI Yang, Mijia/0000-0002-5781-8765; Bobaru, Florin/0000-0002-9954-6489
FU United States Department of Energy's National Nuclear Security
Administration [DE-AC04-94AL85000]; Computer Science Research
Foundation; Computer Science Research Institute at Sandia National
Laboratories; Boeing Co. via a sub-contract from Sandia National Labs
FX The work of the first three authors has been supported by funds from the
Boeing Co. via a sub-contract from Sandia National Labs awarded to the
University of Nebraska-Lincoln. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000. This work was partially
supported by the Computer Science Research Foundation and Computer
Science Research Institute at Sandia National Laboratories.
NR 45
TC 73
Z9 75
U1 1
U2 25
PU WILEY-BLACKWELL
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA
SN 0029-5981
EI 1097-0207
J9 INT J NUMER METH ENG
JI Int. J. Numer. Methods Eng.
PD FEB 5
PY 2009
VL 77
IS 6
BP 852
EP 877
DI 10.1002/nme.2439
PG 26
WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary
Applications
SC Engineering; Mathematics
GA 398YP
UT WOS:000262767900005
ER
PT J
AU Borovsky, JE
Denton, MH
AF Borovsky, Joseph E.
Denton, Michael H.
TI Relativistic-electron dropouts and recovery: A superposed epoch study of
the magnetosphere and the solar wind
SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
LA English
DT Review
ID ION-CYCLOTRON WAVES; DENSE-PLASMA SHEET; INTERPLANETARY MAGNETIC-FIELD;
ENERGETIC PARTICLE DECREASES; OUTER RADIATION BELT; STORM MAIN PHASE;
RING CURRENT; GEOSYNCHRONOUS ORBIT; INNER-MAGNETOSPHERE; GEOMAGNETIC
STORMS
AB During 124 high-speed-stream-driven storms from two solar cycles, a multispacecraft average of the 1.1-1.5 MeV electron flux measured at geosynchronous orbit is examined to study global dropouts of the flux. Solar wind and magnetospheric measurements are analyzed with a superposed epoch technique, with the superpositions triggered by storm-convection onset, by onset of the relativistic-electron dropouts, and by recovery of the dropouts. It is found that the onset of dropout occurs after the passage of the IMF sector reversal prior to the passage of the corotating interaction region (CIR) stream interface. The recovery from dropout commences during the passage of the compressed fast wind. Relativistic-electron-dropout onset is temporally associated with the onset of the superdense ion and electron plasma sheet, with the onset of the extra-hot ion and electron plasma sheet and with the formation of the plasmaspheric drainage plume. Dropout recovery is associated with the termination of the superdense plasma sheet and with a decay of the plasmaspheric drainage plume. When there is appreciable spatial overlap of the superdense ion plasma sheet with the drainage plume, dropouts occur, and when that overlap ends, dropouts recover. This points to pitch-angle scattering by electromagnetic ion-cyclotron (EMIC) waves as the primary cause of the relativistic-electron dropouts, with the waves residing in the lumpy drainage plumes driven by the superdense ion plasma sheet. The drainage plume is caused by enhanced magnetospheric convection associated with southward (GSM) magnetic field after the IMF sector reversal. The superdense plasma sheet has its origin in the compressed slow wind of the CIR.
C1 [Borovsky, Joseph E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Denton, Michael H.] Univ Lancaster, Dept Commun Syst, Lancaster LA1 4WA, England.
RP Borovsky, JE (reprint author), Los Alamos Natl Lab, Mail Stop D466, Los Alamos, NM 87545 USA.
EM jborovsky@lanl.gov
OI Denton, Michael/0000-0002-1748-3710
FU NASA; NSF; Los Alamos National Laboratory LDRD Program
FX The authors thank John Steinberg for useful conversations and Reiner
Friedel for SOPA data, Tom Cayton for fits to the SOPA data, Bob
McPherron for his list of solar wind stream interfaces, and Michelle
Thomsen for MPA data. J.E.B. thanks the Department of Communication
Systems at Lancaster University for their hospitality. This research was
supported by the NASA Targeted Research and Technology Program, by the
NSF National Space Weather Program, and by the Los Alamos National
Laboratory LDRD Program.
NR 142
TC 66
Z9 67
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 2169-9380
EI 2169-9402
J9 J GEOPHYS RES-SPACE
JI J. Geophys. Res-Space Phys.
PD FEB 5
PY 2009
VL 114
AR A02201
DI 10.1029/2008JA013128
PG 27
WC Astronomy & Astrophysics
SC Astronomy & Astrophysics
GA 404UU
UT WOS:000263179300002
ER
PT J
AU Kamerlin, SCL
Haranczyk, M
Warshel, A
AF Kamerlin, Shina C. L.
Haranczyk, Maciej
Warshel, Arieh
TI Progress in Ab Initio QM/MM Free-Energy Simulations of Electrostatic
Energies in Proteins: Accelerated QM/MM Studies of pK(a), Redox
Reactions and Solvation Free Energies
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Review
ID DENSITY-FUNCTIONAL THEORY; PHOTOSYNTHETIC REACTION CENTERS;
PROTON-TRANSFER REACTIONS; DNA-POLYMERASE-BETA; MULTICONFIGURATION
MOLECULAR-MECHANICS; PEPTIDE-BOND FORMATION; SUBSTRATE-ASSISTED
CATALYSIS; PANCREATIC TRYPSIN-INHIBITOR; POLARIZABLE CONTINUUM MODEL;
POISSON-BOLTZMANN EQUATION
AB Hybrid quantum mechanical/molecular mechanical (QM/MM) approaches have been used to provide a general scheme for chemical reactions in proteins. However, such approaches stil present a major challenge to computational chemists, not only because of the need for cry large computer time in order to evaluate the QM energy but also because of the need for proper computational sampling. This review focuses on the sampling issue in QM/MM evaluations of electrostatic energies in proteins. We chose this example since electrostatic energies play a major role in controlling the function of proteins and are key to the structure-function correlation of biological molecules. Thus, the correct treatment of electrostatics is essential for the accurate simulation of biological systems. Although we will be presenting different types of QM/MM calculations of electrostatic energies (and related properties) here, our focus will be on pK(a) calculations. This reflects the fact that pK(a)'s of ionizable groups in proteins provide one of the most direct benchmarks for the accuracy of electrostatic models of macromolecules. While pK(a) calculations by semimacroscopic models have given reasonable results in many cases, existing attempts to perform pX(a), calculations using QM/MM-FEP have led to discrepancies between calculated and experimental values. In this work, we accelerate our QM/MM calculations using an updated mean charge distribution and a classical reference potential. We examine both a surface residue (Asp3) of the bovine pancreatic trypsin inhibitor and a residue buried in a hydrophobic pocket (Lys 102) of the T4-lysozyme mutant. We demonstrate that, by using this approach, we are able to reproduce the relevant side chain pK(a)'s with an accuracy of 3 kcal/mol. This is well within the 7 kcal/mol energy difference observed in studies of enzymatic catalysis, and is thus sufficient accuracy to determine the main contributions to the catalytic energies of enzymes. We also provide all overall perspective of the potential of QM/MM calculations in general evaluations of electrostatic free energies, pointing out that our approach should provide a very powerful and accurate tool to predict the electrostatics of not only solution but also enzymatic reactions, as well as the solvation free energies of even larger systems, such as nucleic acid bases incorporated into DNA.
C1 [Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA.
[Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Warshel, A (reprint author), Univ So Calif, Dept Chem, 418 SGM Bldg,3620 McClintock Ave, Los Angeles, CA 90089 USA.
EM warshel@usc.edu
RI Haranczyk, Maciej/A-6380-2014; Kamerlin, Shina/G-9554-2011
OI Haranczyk, Maciej/0000-0001-7146-9568; Kamerlin,
Shina/0000-0002-3190-1173
FU NIH [GM22492, GM40283]; NSF [MCB-0342276]; University of Southern
California High Performance Computing and Communication Centre (HPCC);
U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by NIH grant GM22492, NIH grant GM40283, and NSF
grant MCB-0342276. All computational work was supported by the
University of Southern California High Performance Computing and
Communication Centre (HPCC). M.H. is a 2008 Seaborg Fellow at Lawrence
Berkeley National Laboratory. This research was supported in part (to
M.H.) by the U.S. Department of Energy under contract DE-AC02-05CH11231.
We would also like to thank Edina Rosta and Spyridon Vicatos for
insightful discussion and Robert Rucker for his assistance in the
preparation of the manuscript.
NR 302
TC 182
Z9 182
U1 5
U2 111
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD FEB 5
PY 2009
VL 113
IS 5
BP 1253
EP 1272
DI 10.1021/jp8071712
PG 20
WC Chemistry, Physical
SC Chemistry
GA 400XL
UT WOS:000262902600006
PM 19055405
ER
PT J
AU Parkinson, GS
Dohnalek, Z
Smith, RS
Kay, BD
AF Parkinson, Gareth S.
Dohnalek, Zdenek
Smith, R. Scott
Kay, Bruce D.
TI Reactivity of Fe-0 Atoms, Clusters, and Nanoparticles with CCl4
Multilayers on FeO(111)
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID LAYER-ASSISTED DEPOSITION; SCANNING-TUNNELING-MICROSCOPY; SINGLE-CRYSTAL
HEMATITE; CARBON-TETRACHLORIDE; NANOSTRUCTURE GROWTH; TERMINATED
FEO(111); SURFACE; IRON; CHEMISTRY; PT(111)
AB The interaction of Fe-0 atoms and clusters with CCl4 multilayers was investigated using a novel "atom dropping" method at 30 K over a FeO(111) thin film. Temperature programmed desorption experiments over a range of Fe-0 and CCl4 coverages demonstrate a rich surface chemistry with several reaction products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, and FeCl3) observed. X-ray photoelectron spectroscopy data show that the initial reactive interaction occurs spontaneously at 30 K, with the experimentally observed reaction products formed at higher temperature, in agreement with the results of theoretical calculations. The formation of OCCl2 and CO is concluded to occur through abstraction of O atoms from the generally inert FeO(111) substrate. The buffer layer assisted growth technique is used to show that the reactivity, and interestingly the reaction products, are determined by the size of Fe-0 nanoparticles which interact with CCl4.
C1 [Parkinson, Gareth S.; Dohnalek, Zdenek; Smith, R. Scott; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA.
RP Dohnalek, Z (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, POB 999,Mail Stop K8-88, Richland, WA 99352 USA.
EM Zdenek.Dohnalek@pnl.gov; Bruce.Kay@pnl.gov
RI Parkinson, Gareth/F-4361-2012; Smith, Scott/G-2310-2015;
OI Smith, Scott/0000-0002-7145-1963; Parkinson, Gareth/0000-0003-2457-8977;
Dohnalek, Zdenek/0000-0002-5999-7867
FU U.S. Department of Energy by Battelle [DE-AC06-76RLO 1830]
FX The authors acknowledge valuable discussions with our theoretical
collaborators, Bojana Ginovska, Donald M. Camaioni, and Michel Dupuis.
This work was sponsored by the U.S. Department of Energy Office of Basic
Energy Sciences, Chemical Sciences Division. This work was performed at
the W. R. Wiley Environmental Molecular Sciences Laboratory, a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research and located at Pacific
Northwest National Laboratory. Pacific Northwest National Laboratory is
operated for the U.S. Department of Energy by Battelle under Contract
No. DE-AC06-76RLO 1830.
NR 39
TC 16
Z9 16
U1 0
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 5
PY 2009
VL 113
IS 5
BP 1818
EP 1829
DI 10.1021/jp8076062
PG 12
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 400XN
UT WOS:000262902800028
ER
PT J
AU Camaioni, DM
Ginovska, B
Dupuis, M
AF Camaioni, Donald M.
Ginovska, Bojana
Dupuis, Michel
TI Modeling the Reaction of Fe Atoms with CCl4
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; ACTIVATION-ENERGY; BOND ORDER; COMPLEXES;
METAL; IRON; CHEMISTRY; GAS; THERMOCHEMISTRY; DEGRADATION
AB The reaction of iron atoms with carbon tetrachloride (CCl4) in gas phase was studied using density functional theory. A recent experimental study (Parkinson, G. S.; Dohnalek, Z.; Smith, R. S.; Kay, B. D. J. Phys. Chem. C 2009, 113, 1818) of this reaction, performed by dropping Fe atoms into CCl4 deposited on a cold FeO(111) surface, demonstrates rich chemistry with several products (C2Cl4, C2Cl6, OCCl2, CO, FeCl2, and FeCl3) observed. The reactions of Fe with CCl4 was studied under three stoichiometries, one Fe with one CCl4, one Fe With two CCl4 molecules, and two Fe with one CCl4, modeling the stoichiometric, CCl4-rich, and Fe-rich environments of the experimental work. The electronic structure calculations give insight into the reactions leading to the experimentally observed products, in particular with regard to the formation of FeCl3 and other oxygen containing compounds that are not predicted from the simplest reactive model of successive Cl atom abstractions. They rather suggest that novel Fe-C-Cl containing species are important intermediates in these reactions. The intermediate complexes are formed in highly exothermic reactions, in agreement with the experimentally observed reactivity on the surface at low temperature (30 K). This initial survey of the reactivity of Fe with CCl4 identifies some potential reaction pathways that are important in the effort to use Fe nanoparticles to differentiate harmful pathways that lead to the formation of contaminants like chloroform (CHCl3) from harmless pathways that lead to products such as formate (HCO2-) or carbon oxides in water and soil.
C1 [Camaioni, Donald M.; Ginovska, Bojana; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
RP Ginovska, B (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
EM Donald.Camaioni@pnl.gov
FU U.S. Department of Energy Office of Basic Energy Sciences, Chemical
Sciences Division and Biological and Environmental Research,
Environmental Research Sciences; U.S. Department of Energy by Battelle
[DE-AC06-76RLO 1830]
FX The authors acknowledge valuable discussions with our collaborators,
Gareth S. Parkinson, Zdenek Dohnalek, R. Scott Smith, Bruce D. Kay and
Don Baer and their enthusiasm for pursuing fundamental experiments that
facilitate theoretical analysis. This work was sponsored by the U.S.
Department of Energy Office of Basic Energy Sciences, Chemical Sciences
Division and Biological and Environmental Research, Environmental
Research Sciences Program.. Pacific Northwest National Laboratory is
operated for the U.S. Department of Energy by Battelle under Contract
No. DE-AC06-76RLO 1830.
NR 44
TC 8
Z9 8
U1 0
U2 1
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 5
PY 2009
VL 113
IS 5
BP 1830
EP 1836
DI 10.1021/jp807604f
PG 7
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 400XN
UT WOS:000262902800029
ER
PT J
AU Zhang, Z
Du, Y
Petrik, NG
Kimmel, GA
Lyubinetsky, I
Dohnalek, Z
AF Zhang, Zhenrong
Du, Yingge
Petrik, Nikollay G.
Kimmel, Greg A.
Lyubinetsky, Igor
Dohnalek, Zdenek
TI Water as a Catalyst: Imaging Reactions of O-2 with Partially and Fully
Hydroxylated TiO2(110) Surfaces
SO JOURNAL OF PHYSICAL CHEMISTRY C
LA English
DT Article
ID OXYGEN ADATOMS; OH GROUPS; DISSOCIATION; PHOTOCATALYSIS; DEFECTS;
OXIDATION; HYDROGEN; SITES; H2O
AB The reactions of molecular oxygen with bridging hydroxyl groups (OHb'S) formed by H2O dissociation on bridging oxygen vacancies (V-o's) of TiO2(110) are studied at low and high OHb coverages as a function of the O-2 exposure, using scanning tunneling microscopy, temperature programmed desorption, and electron stimulated desorption techniques. In agreement with prior studies, oxygen adatoms (O-a), hydroperoxyls (HO2), and terminal hvdroxyls (OHt) are observed as intermediates of the reactions with O-2 ultimately leading to H2O as a product. Here, we show that water plays an important role in the room-temperature reactions of O-2 with both partially and fully hydroxylated TiO2(110). On partially hydroxylated surfaces, water is found to be involved in the reaction cycle that leads to the consumption of O-a and V-O sites thus resulting in a practically O-a- and V-O-free surface. In these reactions, water is observed to participate in multiple ways-as a reactant, product, and catalyst. On fully hydroxylated TiO2(110), water is found to mediate the diffusion of surface species such as OHb that would otherwise be stationary and thus brings reactants together, catalyzing the reactions with O-2. As a result, the O-a, HO2, and OHt intermediates are not observed in STM, while OHb species are available on the surface.
C1 [Zhang, Zhenrong; Petrik, Nikollay G.; Kimmel, Greg A.; Dohnalek, Zdenek] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
[Du, Yingge; Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA.
RP Kimmel, GA (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA.
EM gregory.kimmel@pnl.gov; igor.lyubinetsky@pnl.gov;
zdenek.dohnalek@pnl.gov
RI Petrik, Nikolay/G-3267-2015;
OI Petrik, Nikolay/0000-0001-7129-0752; Kimmel, Greg/0000-0003-4447-2440;
Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek,
Zdenek/0000-0002-5999-7867
FU U.S. Department of Energy (DOE); Office of Basic Energy Sciences,
Division of Chemical Sciences; W.R. Wiley Environmental Molecular
Science Laboratory; Office of Biological and Environmental Research
FX We thank M. A. Henderson and N. A. Deskins for stimulating discussions.
This work was supported by the U.S. Department of Energy (DOE), Office
of Basic Energy Sciences, Division of Chemical Sciences, and performed
at the W.R. Wiley Environmental Molecular Science Laboratory, a DOE User
Facility sponsored by the Office of Biological and Environmental
Research.
NR 29
TC 59
Z9 59
U1 5
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1932-7447
J9 J PHYS CHEM C
JI J. Phys. Chem. C
PD FEB 5
PY 2009
VL 113
IS 5
BP 1908
EP 1916
DI 10.1021/jp809001x
PG 9
WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science,
Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 400XN
UT WOS:000262902800038
ER
PT J
AU Bradshaw, DH
Milonni, PW
AF Bradshaw, Douglas H.
Milonni, Peter W.
TI QUANTUM OPTICS A shift on a chip
SO NATURE
LA English
DT Editorial Material
ID LAMB SHIFT; CIRCUIT; VACUUM
C1 [Bradshaw, Douglas H.; Milonni, Peter W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Bradshaw, DH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM pwm@lanl.gov
NR 8
TC 3
Z9 3
U1 0
U2 2
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 5
PY 2009
VL 457
IS 7230
BP 671
EP 671
DI 10.1038/457671a
PG 1
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 403EA
UT WOS:000263064700028
PM 19194440
ER
PT J
AU Xantheas, SS
AF Xantheas, Sotiris S.
TI COMPUTATIONAL CHEMISTRY Dances with hydrogen cations
SO NATURE
LA English
DT Editorial Material
ID INFRARED-SPECTRUM; PROTON TRANSPORT; WATER CLUSTERS; SIMULATION
C1 [Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA.
RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA.
EM sotiris.xantheas@pnl.gov
RI Xantheas, Sotiris/L-1239-2015;
OI Xantheas, Sotiris/0000-0002-6303-1037
NR 15
TC 15
Z9 15
U1 3
U2 17
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 5
PY 2009
VL 457
IS 7230
BP 673
EP 674
DI 10.1038/457673a
PG 2
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 403EA
UT WOS:000263064700030
PM 19194442
ER
PT J
AU Wright, JC
Sugden, D
Francis-McIntyre, S
Riba-Garcia, I
Gaskell, SJ
Grigoriev, IV
Baker, SE
Beynon, RJ
Hubbard, SJ
AF Wright, James C.
Sugden, Deana
Francis-McIntyre, Sue
Riba-Garcia, Isabel
Gaskell, Simon J.
Grigoriev, Igor V.
Baker, Scott E.
Beynon, Robert J.
Hubbard, Simon J.
TI Exploiting proteomic data for genome annotation and gene model
validation in Aspergillus niger
SO BMC GENOMICS
LA English
DT Article
ID FALSE DISCOVERY RATES; MASS-SPECTROMETRY; PROTEIN IDENTIFICATION;
SEQUENCE; MICROARRAYS; TECHNOLOGY; GENERATION; PEPTIDES; FUTURE
AB Background: Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A. niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR).
Results: 405 identified peptide sequences were mapped to 214 different A. niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models.
Conclusion: This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A. niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.
C1 [Wright, James C.; Hubbard, Simon J.] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England.
[Wright, James C.; Beynon, Robert J.] Univ Liverpool, Dept Vet Preclin Sci, Liverpool L69 7ZJ, Merseyside, England.
[Sugden, Deana; Francis-McIntyre, Sue; Riba-Garcia, Isabel; Gaskell, Simon J.] Univ Manchester, MIB, MBCMS, Manchester M13 9PT, Lancs, England.
[Grigoriev, Igor V.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA.
[Baker, Scott E.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Hubbard, SJ (reprint author), Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England.
EM james.wright@manchester.ac.uk; deena.sugden@manchester.ac.uk;
sue.mcintyre@manchester.ac.uk; isabel.riba@manchester.ac.uk;
simon.gaskell@manchester.ac.uk; IVGrigoriev@lbl.gov;
scott.baker@pnl.gov; r.beynon@liverpool.ac.uk;
simon.hubbard@manchester.ac.uk
RI Hubbard, Simon/B-9006-2009; Beynon, Robert/K-1408-2014;
OI Beynon, Robert/0000-0003-0857-495X; Wright, James/0000-0001-6950-4328;
Hubbard, Simon/0000-0002-8601-9524
FU NERC [NER/S/R/2005/13607]; Biotechnology and Biological Science Research
Council via BBSRC [CFB17723]
FX JW acknowledges NERC studentship NER/S/R/2005/13607. SJH, SJG, IRG, DS,
SM acknowledge support, either directly or indirectly, from the
Biotechnology and Biological Science Research Council via BBSRC grant
CFB17723.
NR 39
TC 25
Z9 26
U1 1
U2 8
PU BIOMED CENTRAL LTD
PI LONDON
PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T
4LB, ENGLAND
SN 1471-2164
J9 BMC GENOMICS
JI BMC Genomics
PD FEB 4
PY 2009
VL 10
AR 61
DI 10.1186/1471-2164-10-61
PG 14
WC Biotechnology & Applied Microbiology; Genetics & Heredity
SC Biotechnology & Applied Microbiology; Genetics & Heredity
GA 418BT
UT WOS:000264122900001
PM 19193216
ER
PT J
AU Li, YL
Cao, CZ
Jia, W
Yu, LL
Mo, M
Wang, Q
Huang, YP
Lim, JM
Ishihara, M
Wells, L
Azadi, P
Robinson, H
He, YW
Zhang, L
Mariuzza, RA
AF Li, Yili
Cao, Chunzhang
Jia, Wei
Yu, Lily
Mo, Min
Wang, Qian
Huang, Yuping
Lim, Jae-Min
Ishihara, Mayumi
Wells, Lance
Azadi, Parastoo
Robinson, Howard
He, You-Wen
Zhang, Li
Mariuzza, Roy A.
TI Structure of the F-spondin domain of mindin, an integrin ligand and
pattern recognition molecule
SO EMBO JOURNAL
LA English
DT Article
DE extracellular matrix; innate immunity; integrin; mindin (spondin-2);
structure
ID MATRIX PROTEIN MINDIN; C-MANNOSYLATION; TYPE-1 REPEATS; O-FUCOSYLATION;
CELL-ADHESION; FLOOR PLATE; I-DOMAIN; ALPHA(M)BETA(2); IDENTIFICATION;
INSIGHTS
AB Mindin (spondin-2) is an extracellular matrix protein of unknown structure that is required for efficient T-cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N-terminal F-spondin (FS) domain and C-terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8-A resolution. The structure revealed an eight-stranded antiparallel beta-sandwich motif resembling that of membrane-targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C-mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.
C1 [Li, Yili; Yu, Lily; Mo, Min; Wang, Qian; Huang, Yuping; Mariuzza, Roy A.] Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, WM Keck Lab Struct Biol, Rockville, MD 20850 USA.
[Cao, Chunzhang; Zhang, Li] Univ Maryland, Sch Med, Ctr Vasc & Inflammatory Dis, Dept Physiol, Baltimore, MD 21201 USA.
[Jia, Wei; Mariuzza, Roy A.] Duke Univ, Med Ctr, Div Immunol, Durham, NC 27710 USA.
[Lim, Jae-Min; Ishihara, Mayumi; Wells, Lance; Azadi, Parastoo] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA.
[Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
RP Mariuzza, RA (reprint author), Univ Maryland, Inst Biotechnol, Ctr Adv Res Biotechnol, WM Keck Lab Struct Biol, 9600 Gudelsky Dr, Rockville, MD 20850 USA.
EM mariuzza@carb.nist.gov
RI Wells, Lance/H-3118-2013
FU National Institutes of Health [AI065612, P01 HL54710, AI054658,
AI061364]; National Synchrotron Light Source; US Department of Energy;
National Center for Research Resources of the National Institutes of
Health
FX This study was supported by National Institutes of Health Grants
AI065612 (RAM), P01 HL54710 (LZ), and AI054658 and AI061364 (Y-WH).
Support for the data collected at beamline X29 of the National
Synchrotron Light Source comes from the Offices of Biological and
Environmental Research and of Basic Energy Sciences of the US Department
of Energy, and from the National Center for Research Resources of the
National Institutes of Health.
NR 47
TC 21
Z9 22
U1 2
U2 7
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA
SN 0261-4189
J9 EMBO J
JI Embo J.
PD FEB 4
PY 2009
VL 28
IS 3
BP 286
EP 297
DI 10.1038/emboj.2008.288
PG 12
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 403II
UT WOS:000263075900015
PM 19153605
ER
PT J
AU Chaudhuri, A
Rajaram, H
Viswanathan, H
Zyvoloski, G
Stauffer, P
AF Chaudhuri, A.
Rajaram, H.
Viswanathan, H.
Zyvoloski, G.
Stauffer, P.
TI Buoyant convection resulting from dissolution and permeability growth in
vertical limestone fractures
SO GEOPHYSICAL RESEARCH LETTERS
LA English
DT Article
ID NATURAL-CONVECTION
AB Upward flow through vertical fractures in limestone formations under a geothermal gradient favors dissolution and permeability growth. We investigate the transition from conductive and forced convective regimes to instability and buoyant convection as a result of permeability growth. The onset time for instability and roll height at onset depend on the initial aperture and driving pressure. A modified Rayleigh number criterion is proposed, which provides a unified interpretation of the instability across a wide range of initial aperture and driving pressure. Interaction between buoyant convection and aperture alteration leads to narrow upward flow paths supporting dissolution and precipitation in surrounding downward flow regions. Citation: Chaudhuri, A., H. Rajaram, H. Viswanathan, G. Zyvoloski, and P. Stauffer (2009), Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures, Geophys. Res. Lett., 36, L03401, doi: 10.1029/2008GL036533.
C1 [Chaudhuri, A.; Rajaram, H.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA.
[Viswanathan, H.; Zyvoloski, G.; Stauffer, P.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.
RP Chaudhuri, A (reprint author), Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA.
EM hari@colorado.edu
RI Stauffer, Philip/A-1384-2009; Chaudhuri, Abhijit/D-1175-2013;
OI Stauffer, Philip/0000-0002-6976-221X
FU Institute for Geophysics and Planetary Physics at Los Alamos National
Laboratory [IGPP Geo 1714]
FX We gratefully acknowledge financial support from the Institute for
Geophysics and Planetary Physics at Los Alamos National Laboratory
(grant IGPP Geo 1714).
NR 8
TC 11
Z9 11
U1 0
U2 4
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0094-8276
J9 GEOPHYS RES LETT
JI Geophys. Res. Lett.
PD FEB 4
PY 2009
VL 36
AR L03401
DI 10.1029/2008GL036533
PG 5
WC Geosciences, Multidisciplinary
SC Geology
GA 404ST
UT WOS:000263174000003
ER
PT J
AU Pol, VG
Thiyagarajan, P
AF Pol, Vilas G.
Thiyagarajan, P.
TI Measurement of Autogenous Pressure and Dissociated Species during the
Thermolysis of Mesitylene for the Synthesis of Monodispersed, Pure,
Paramagnetic Carbon Particles
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID NANOPARTICLES; SPHERES; PYROLYSIS; SPHERULES; DECOMPOSITION;
HYDROCARBONS; TEMPERATURES; NANOTUBES; NANORODS; CATALYST
AB Two reaction parameters are important for the synthesis of entirely monodispersed, pure, paramagnetic spherical carbon particles. The experimental setup is developed to measure in situ autogenous pressure as a function of temperature during the thermolysis of mesitylene in a closed reactor. In situ mass spectrometry analyzed the dissociated species during the heating cycle of mesitylene as a function of temperature. The morphology, structure, composition, and magnetic properties of the as-prepared spherical carbon particles are characterized by using SEM, XRD, Raman spectroscopy, EDX, CHNS analysis, and EPR.
C1 [Pol, Vilas G.; Thiyagarajan, P.] Argonne Natl Lab, IPNS, Argonne, IL 60439 USA.
RP Pol, VG (reprint author), Argonne Natl Lab, IPNS, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM vilaspol@gmail.com
FU U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357]
FX This work benefited from the use of the facilities at IPNS, CNM, and EMC
at ANL supported by the U.S. Department of Energy, Office of Science,
Office of Basic Energy Sciences, under. Contract No. DE-AC02-06CH11357
by U. Chicago Argonne, LLC. We acknowledge Nada Dimitrijevic at
Chemistry division at ANL for the EPR measurement of the SCPs. The
authors also thank Kenneth Volin of IPNS for installing a
pressure-measurement system.
NR 31
TC 15
Z9 15
U1 0
U2 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD FEB 4
PY 2009
VL 48
IS 3
BP 1484
EP 1489
DI 10.1021/ie8014928
PG 6
WC Engineering, Chemical
SC Engineering
GA 400TY
UT WOS:000262892800059
ER
PT J
AU Cools, R
Frank, MJ
Gibbs, SE
Miyakawa, A
Jagust, W
D'Esposito, M
AF Cools, Roshan
Frank, Michael J.
Gibbs, Sasha E.
Miyakawa, Asako
Jagust, William
D'Esposito, Mark
TI Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its
Sensitivity to Dopaminergic Drug Administration
SO JOURNAL OF NEUROSCIENCE
LA English
DT Article
DE dopamine; reward; punishment; striatum; PET; learning
ID WORKING-MEMORY CAPACITY; PREFRONTAL CORTEX; COMPONENT PROCESSES;
PARKINSONS-DISEASE; COGNITIVE FUNCTION; RECEPTOR AGONIST; REWARD;
MODULATION; HUMANS; BROMOCRIPTINE
AB Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D(2) receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D(2) receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity.
C1 [Cools, Roshan] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands.
[Gibbs, Sasha E.; Miyakawa, Asako; Jagust, William; D'Esposito, Mark] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.
[Frank, Michael J.] Brown Univ, Dept Cognit & Linguist Sci, Providence, RI 02912 USA.
[Frank, Michael J.] Brown Univ, Dept Psychol, Providence, RI 02912 USA.
[Gibbs, Sasha E.] Stanford Univ, Dept Psychol, Stanford, CA 94305 USA.
[Jagust, William] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.
RP Cools, R (reprint author), Donders Ctr Cognit Neuroimaging, Kapittelweg 29, NL-6500 HB Nijmegen, Netherlands.
EM roshan.cools@donders.ru.nl
RI Cools, Roshan/D-1905-2010
FU National Institutes of Health [MH63901, NS40813, DA02060, AG027984]
FX This work was supported by National Institutes of Health Grants MH63901,
NS40813, DA02060, and AG027984. R.C. and M.D. conceived the study. A.M.
and S.E.G. collected and analyzed the PET data, while R.C. analyzed and
interpreted the psychopharmacological data in relation to the PET data.
W.J. developed methods for acquisition and analysis of PET data. M. F.
performed the model-based analyses and helped R.C. interpret the data
and write the study. All authors discussed the results and commented on
the study. We thank Lee Altamirano, Elizabeth Kelley, George Elliott
Wimmer, and Emily Jacobs for assistance with data collection and Cindee
Madison for assistance with data analysis.
NR 40
TC 161
Z9 161
U1 4
U2 25
PU SOC NEUROSCIENCE
PI WASHINGTON
PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA
SN 0270-6474
J9 J NEUROSCI
JI J. Neurosci.
PD FEB 4
PY 2009
VL 29
IS 5
BP 1538
EP 1543
DI 10.1523/JNEUROSCI.4467-08.2009
PG 6
WC Neurosciences
SC Neurosciences & Neurology
GA 403GZ
UT WOS:000263072400029
PM 19193900
ER
PT J
AU Unal, B
Jenks, CJ
Thiel, PA
AF Unal, Baris
Jenks, C. J.
Thiel, P. A.
TI Adsorption sites on icosahedral quasicrystal surfaces: dark stars and
white flowers
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID AL-PD-MN; SCANNING-TUNNELING-MICROSCOPY; ENERGY-ELECTRON DIFFRACTION;
FIVEFOLD SURFACE; AL70PD21MN9; NUCLEATION; DEPOSITION; ALPDMN; GROWTH;
ATOMS
AB From other work, two preferred sites have been suggested for metals and semimetals adsorbed on the fivefold surfaces of icosahedral, Al-based quasicrystals. Because of their appearance in scanning tunneling microscopy (STM) images, these sites are known as dark stars and white flowers. In this paper, we analyze four bulk structural models in physical space to determine the types, chemical decorations, and densities of the dark star-and, to a lesser extent, the white flower-adsorption sites for the fivefold planes of icosahedral Al-Pd-Mn. We find that the chemical decorations of these sites are heterogeneous, even within a single model. Both features are also structurally heterogeneous, according to STM measurements, and the structural variation is consistent with the bulk structure models. Finally, from the models, the density of dark stars in the planes correlates with the step height. This may explain previous experimental observations of different properties for different terraces.
C1 [Unal, Baris; Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Unal, Baris; Jenks, C. J.; Thiel, P. A.] Ames Lab, Ames, IA 50011 USA.
[Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Unal, B (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
EM thiel@ameslab.gov
FU Iowa State University of Science and Technology [DE-AC02-07CH11358];
Office of Science, Basic Energy Sciences, Materials Science Division of
the US Department of Energy (USDOE)
FX This work was supported by the Office of Science, Basic Energy Sciences,
Materials Science Division of the US Department of Energy (USDOE). This
manuscript has been authored by Iowa State University of Science and
Technology under Contract No. DE-AC02-07CH11358 with the US Department
of Energy. We are grateful to Denis Gratias, Marianne Quiquandon, Gerald
Kasner, Zorka Papadopolos, Akiji Yamamoto, and Marc de Boissieu for
supplying us with 3D atomic coordinates of the quasicrystal models. We
are grateful to James W Evans for his careful reading and useful
suggestions. We are thankful to Qisheng Lin for his help with the
Diamond software which was used for plotting figure 2. We are thankful
to Julian Ledieu for fruitful discussions.
NR 52
TC 9
Z9 9
U1 2
U2 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
EI 1361-648X
J9 J PHYS-CONDENS MAT
JI J. Phys.-Condes. Matter
PD FEB 4
PY 2009
VL 21
IS 5
AR 055009
DI 10.1088/0953-8984/21/5/055009
PG 10
WC Physics, Condensed Matter
SC Physics
GA 393LP
UT WOS:000262375100011
PM 21817296
ER
PT J
AU Fulmer, GR
Muller, RP
Kemp, RA
Goldberg, KI
AF Fulmer, Gregory R.
Muller, Richard P.
Kemp, Richard A.
Goldberg, Karen I.
TI Hydrogenolysis of Palladium(II) Hydroxide and Methoxide Pincer Complexes
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID REDUCTIVE ELIMINATION; ORGANOMETALLIC CHEMISTRY; CATALYZED
HYDROGENATION; CARBON-HYDROGEN; FORMIC-ACID; BOND; HYDRIDE; ACTIVATION;
OXYGEN; CO2
AB Hydrogenolysis reactions of palladium(II) hydroxide and methoxide complexes to form water and methanol, respectively, and the corresponding palladium(II) hydride are reported. In the presence of water, 1 was found to exist in solution as a water-bridged dimer; however, kinetic studies suggest the reaction of 1 and H(2) proceeds exclusively through the hydroxide monomer to form the palladium(II) hydride and water. Computational studies suggest a four-center intramolecular proton transfer as opposed to an oxidative addition/reductive elimination pathway.
C1 [Kemp, Richard A.] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA.
[Fulmer, Gregory R.; Goldberg, Karen I.] Univ Washington, Dept Chem, Seattle, WA 98195 USA.
[Muller, Richard P.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA.
RP Kemp, RA (reprint author), Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA.
EM rakemp@unm.edu; goldberg@chem.washington.edu
FU Department of Energy [DE-FG02-06ER15765, DE-AC04-94AL85000];
Laboratory-Directed Research and Development program at Sandia [52591]
FX This work was supported by the Department of Energy (DE-FG02-06ER15765)
and the Laboratory-Directed Research and Development program at Sandia
(52591). The X-ray structural I determination of 1 and 2 were performed
by Rodney D. Swartz, II. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy's National Nuclear Security Administration under
contract DE-AC04-94AL85000.
NR 27
TC 44
Z9 44
U1 1
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 4
PY 2009
VL 131
IS 4
BP 1346
EP +
DI 10.1021/ja807936q
PG 3
WC Chemistry, Multidisciplinary
SC Chemistry
GA 427PS
UT WOS:000264791800006
PM 19173658
ER
PT J
AU Liu, JW
Stace-Naughton, A
Jiang, XM
Brinker, CJ
AF Liu, Juewen
Stace-Naughton, Alison
Jiang, Xingmao
Brinker, C. Jeffrey
TI Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery
Vehicles
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MESOPOROUS SILICA NANOPARTICLES; RESPONSIVE CONTROLLED-RELEASE;
DRUG-DELIVERY; MOLECULES; SYSTEM; NEUROTRANSMITTERS; MEMBRANE
AB Mixing liposomes with hydrophilic particles induces fusion of the liposome onto the particle surface. Such supported bilayers have been studied extensively as models of the cell membrane, while their applications in drug delivery have not been pursued. In this communication, we report liposome fusion on mesoporous particles as a synergistic means to simultaneously toad and seat cargo within the porous core. We find fusion of a cationic lipid (DOTAP) on an anionic silica particle loads an anionic fluorescent dye (calcein) into the particle to a concentration exceeding 100x that in the surrounding medium. The loaded "protocell" particles are taken up efficiently by Chinese hamster ovary cells, where, due to a reduced pH within endosomal compartments, calcein is effectively released. Compared to some other nanoparticle systems, protocells provide a simple construct for cargo loading, seating, delivery, and release. They promise to serve as useful vectors in nanomedicine.
C1 [Liu, Juewen; Stace-Naughton, Alison; Jiang, Xingmao; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87106 USA.
[Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA.
[Brinker, C. Jeffrey] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87106 USA.
[Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87106 USA.
RP Brinker, CJ (reprint author), Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87106 USA.
EM cjbrink@sandia.gov
RI jiang, xingmao /H-3554-2013; Liu, Juewen/A-2701-2014
FU National Institutes of Health; DOE Office of Science; Air Force Office
of Scientific Research
FX This work is funded by the National Institutes of Health through the NIH
Roadmap for Medical Research, DOE Office of Science, and Air Force
Office of Scientific Research.
NR 22
TC 179
Z9 183
U1 16
U2 138
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 4
PY 2009
VL 131
IS 4
BP 1354
EP +
DI 10.1021/ja808018y
PG 4
WC Chemistry, Multidisciplinary
SC Chemistry
GA 427PS
UT WOS:000264791800010
PM 19173660
ER
PT J
AU Fang, X
Mao, J
Levin, EM
Schmidt-Rohr, K
AF Fang, XiaoWen
Mao, JingDong
Levin, E. M.
Schmidt-Rohr, Klaus
TI Nonaromatic Core-Shell Structure of Nanodiamond from Solid-State NMR
Spectroscopy
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID NUCLEAR-MAGNETIC-RESONANCE; C-13 NMR; CHEMICAL-SHIFT; ORGANIC-MATTER;
DIAMOND POWDER; CARBON; SURFACE; NANOSCALE; DEFECTS; PROTON
AB The structure of synthetic nanodiamond has been characterized by C-13 nuclear magnetic resonance (NMR) spectral editing combined with measurements of long-range H-1-C-13 dipolar couplings and C-13 relaxation times. The surface layer of these similar to 4.8-nm diameter carbon particles consists mostly of sp(3)-hybridized C that is protonated or bonded to OH groups, while sp(2)-hybridized carbon makes up less than 1% of the material. The surface protons surprisingly resonate at 3.8 ppm, but their direct bonding to carbon is proved by fast dipolar dephasing under homonuclear decoupling. Long-range H-1-C-13 distance measurements, based on C-13{H-1} dipolar dephasing by surface protons, show that seven carbon layers, in a shell of 0.63 nm thickness that contains similar to 60% of all carbons, predominantly resonate more than +8 ppm from the 37-ppm peak of bulk diamond (i.e., within the 45-80 ppm range). Nitrogen detected in N-15 NMR spectra is mostly not protonated and can account for some of the high-frequency shift of carbon. The location of unpaired electrons (similar to 40 unpaired electrons per particle) was studied in detail, based on their strongly distance-dependent effects on T-1,T-C relaxation. The slower relaxation of the surface carbons, selected by spectral editing, showed that the unpaired electrons are not dangling bonds at the surface. This was confirmed by detailed simulations, which indicated that the unpaired electrons are mostly located in the disordered shell, at distances between 0.4 and 1 nm from the surface. On the basis of these results, a nonaromatic core-shell structural model of nanodiamond particles has been proposed.
C1 [Fang, XiaoWen; Schmidt-Rohr, Klaus] Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
[Mao, JingDong] Old Dominion Univ, Dept Chem & Biochem, Norfolk, VA 23529 USA.
[Levin, E. M.; Schmidt-Rohr, Klaus] US DOE, Ames Lab, Ames, IA 50011 USA.
[Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.
RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
EM srohr@iastate.edu
FU National Science Foundation [CHE-0138117]
FX This work was supported by the National Science Foundation (Grant No.
CHE-0138117). The authors thank Zhihong Tang for help with preparing the
annealed nanodiamond sample.
NR 69
TC 79
Z9 80
U1 5
U2 43
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 4
PY 2009
VL 131
IS 4
BP 1426
EP 1435
DI 10.1021/ja8054063
PG 10
WC Chemistry, Multidisciplinary
SC Chemistry
GA 427PS
UT WOS:000264791800039
PM 19133766
ER
PT J
AU Messina, P
Fradin, FY
Pittana, P
AF Messina, Paolo
Fradin, F. Y.
Pittana, Paolo
TI Low noise, low heat dissipation, high gain AC-DC front end amplification
for scanning probe microscopy
SO NANOTECHNOLOGY
LA English
DT Article
ID VACUUM-TUNNELING TRANSDUCERS; ELECTRON-SPIN-RESONANCE; TIP-SAMPLE
CAPACITANCE; STM; MOLECULES
AB We report here on the design, construction and testing of a vacuum compatible AC-DC amplification system for low signal measurements with scanning probes. The most important feature of this new amplification system is incorporated within the head of a scanning tunneling microscope (STM). This is achieved with a very low thermal dissipation radio frequency amplifier at the STM head. The amplifier gain is higher than 40 dB and has a 50 dB maximum. Further, the AC noise figure is 0.7 dB between 100 and 1000 MHz. The noise induced in the DC amplifier is less than 2 pA RMS (root mean square), which enables the microscope to scan over soft insulating molecular layers. Thermal drift at the STM tip - sample interface is below 0.1 nm min(-1) both in air and in vacuum operation. Atomic resolution on highly oriented pyrolytic graphite surfaces is reliably achieved. Spin noise measurements are provided as an example of an application.
C1 [Messina, Paolo; Fradin, F. Y.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Pittana, Paolo] Sincrotrone Trieste SCpA Interesse Nazl, I-34012 Trieste, Italy.
RP Messina, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.
FU US Department of Energy, Basic Energy Sciences [DE-AC0206CH11357]
FX This work was supported by the US Department of Energy, Basic Energy
Sciences under Contract No. DE-AC0206CH11357.
NR 34
TC 2
Z9 2
U1 1
U2 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0957-4484
J9 NANOTECHNOLOGY
JI Nanotechnology
PD FEB 4
PY 2009
VL 20
IS 5
AR 055705
DI 10.1088/0957-4484/20/5/055705
PG 10
WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary;
Physics, Applied
SC Science & Technology - Other Topics; Materials Science; Physics
GA 393LV
UT WOS:000262375700033
PM 19417364
ER
PT J
AU Berkowitz, B
Cortis, A
Dror, I
Scher, H
AF Berkowitz, Brian
Cortis, Andrea
Dror, Ishai
Scher, Harvey
TI Laboratory experiments on dispersive transport across interfaces: The
role of flow direction
SO WATER RESOURCES RESEARCH
LA English
DT Article
ID POROUS-MEDIA; SOLUTE TRANSPORT; ANOMALOUS TRANSPORT;
BOUNDARY-CONDITIONS; SOIL COLUMNS; MONTE-CARLO
AB We present experimental evidence of asymmetrical dispersive transport of a conservative tracer across interfaces between different porous materials. Breakthrough curves are measured for tracer pulses that migrate in a steady state flow field through a column that contains adjacent segments of coarse and fine porous media. The breakthrough curves show significant differences in behavior, with tracers migrating from fine medium to coarse medium arriving significantly faster than those from coarse medium to fine medium. As the flow rate increases, the differences between the breakthrough curves diminish. We argue that this behavior indicates the occurrence of significant, time-dependent tracer accumulation in the resident concentration profile across the heterogeneity interface. Conventional modeling using the advection-dispersion equation is demonstrated to be unable to capture this asymmetric behavior. However, tracer accumulation at the interface has been observed in particle-tracking simulations, which may be related to the asymmetry in the observed breakthrough curves.
C1 [Berkowitz, Brian; Dror, Ishai; Scher, Harvey] Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel.
[Cortis, Andrea] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA.
RP Berkowitz, B (reprint author), Weizmann Inst Sci, Dept Environm Sci & Energy Res, IL-76100 Rehovot, Israel.
EM brian.berkowitz@weizmann.ac.il; acortis@lbl.gov;
ishai.dror@weizmann.ac.il; harvey.scher@weizmann.ac.il
RI BERKOWITZ, BRIAN/K-1497-2012
OI BERKOWITZ, BRIAN/0000-0003-3078-1859
FU Israel Ministry of Science and Technology
FX We thank the Israel Ministry of Science and Technology for financial
support. The authors thank Yotam Smilansky for assistance with the
experiments. B. B. holds the Sam Zuckerberg Professorial Chair.
NR 17
TC 21
Z9 22
U1 2
U2 17
PU AMER GEOPHYSICAL UNION
PI WASHINGTON
PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA
SN 0043-1397
EI 1944-7973
J9 WATER RESOUR RES
JI Water Resour. Res.
PD FEB 4
PY 2009
VL 45
AR W02201
DI 10.1029/2008WR007342
PG 6
WC Environmental Sciences; Limnology; Water Resources
SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water
Resources
GA 404VF
UT WOS:000263180400004
ER
PT J
AU Orville, AM
Lountos, GT
Finnegan, S
Gadda, G
Prabhakar, R
AF Orville, Allen M.
Lountos, George T.
Finnegan, Steffan
Gadda, Giovanni
Prabhakar, Rajeev
TI Crystallographic, Spectroscopic, and Computational Analysis of a Flavin
C4a-Oxygen Adduct in Choline Oxidase
SO BIOCHEMISTRY
LA English
DT Article
ID X-RAY CRYSTALLOGRAPHY; FUNGUS PENIOPHORA SP; PYRANOSE 2-OXIDASE;
CRYSTAL-STRUCTURE; HYDROXYBENZOATE HYDROXYLASE; OXYGEN REACTIVITY;
SUBSTRATE-BINDING; ENZYME; INTERMEDIATE; DIOXYGEN
AB Flavin C4a-OO(H) and C4a-OH adducts are critical inteemediates proposed in many flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single-crystal spectroscopic methods and in the 1.86 angstrom resolution X-ray crystal structure of choline oxidase. The microspectrophotometry results show that the adduct forms rapidly in situ at 100 K upon exposure to X-rays. Density functional theory calculations establish the electronic structures for the flavin C4a-OH and C4a-OO(H) adducts and estimate the stabilization energy of several active site hydrogen bonds deduced from the crystal structure. We propose that the enzyme-bound FAD is reduced in the X-ray beam. The aerobic crystals then form either a C4a-OH or C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic temperatures.
C1 [Orville, Allen M.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Lountos, George T.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.
[Finnegan, Steffan; Gadda, Giovanni] Georgia State Univ, Dept Chem, Atlanta, GA 30302 USA.
[Gadda, Giovanni] Georgia State Univ, Dept Biol, Atlanta, GA 30302 USA.
[Gadda, Giovanni] Georgia State Univ, Ctr Biotechnol & Drug Design, Atlanta, GA 30302 USA.
[Prabhakar, Rajeev] Univ Miami, Dept Chem, Coral Gables, FL 33146 USA.
RP Orville, AM (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
EM amorv@bnl.gov; ggadda@gsu.edu; rpr@miami.edu
RI Lountos, George/B-3983-2015
FU American Chemical Society Petroleum Research Fund [403 10-G4, 37351-G4];
American Heart Association Grant in Aid [0555286B]; Offices of
Biological and Environmental Research of the U.S. Department of Energy;
National Institutes of Health [2 P41 RR012408]; NSF CAREER Award
[MCB-0545712]; Georgia State University Research Initiation Grant;
Molecular Basis Disease Fellowship from Georgia State University; U.S.
Department of Education GAANN Fellowship
FX This work was supported in part by a grant from the American Chemical
Society Petroleum Research Fund (403 10-G4), an American Heart
Association Grant in Aid (0555286B), the Offices of Biological and
Environmental Research of the U.S. Department of Energy, and the
National Institutes of Health (2 P41 RR012408) to A.M.O.; an NSF CAREER
Award (MCB-0545712), a grant from the American Chemical Society
Petroleum Research Fund (37351-G4), and a Georgia State University
Research Initiation Grant to G.G.; a Molecular Basis Disease Fellowship
from Georgia State University to S.F.; and a U.S. Department of
Education GAANN Fellowship to G.T.L.
NR 44
TC 40
Z9 40
U1 1
U2 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0006-2960
J9 BIOCHEMISTRY-US
JI Biochemistry
PD FEB 3
PY 2009
VL 48
IS 4
BP 720
EP 728
DI 10.1021/bi801918u
PG 9
WC Biochemistry & Molecular Biology
SC Biochemistry & Molecular Biology
GA 399SL
UT WOS:000262819500008
PM 19133805
ER
PT J
AU Taylor, CD
AF Taylor, Christopher D.
TI The transition from metal-metal bonding to metal-solvent interactions
during a dissolution event as assessed from electronic structure
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET;
SURFACES; MODEL; POTENTIALS; SIMULATION; SOLVATION; EXCHANGE; DENSITY
AB A model for the electrochemical interface appropriate to the simulation of metal atom deposition and dissolution processes using electronic structure methods has been constructed and analyzed to observe the key steps governing the movement of a metal atom across the electrochemical double layer. A transition from metal-metal bonding to metal-solvent bonding occurs at a distance of 1 angstrom. Shortcomings in this model are assessed and related to the difficulty of dynamical sampling in ab initio treatments. The model is shown to provide a flexible basis for understanding the effect of system perturbations to the structure of the dissolution potential energy surface. (C) 2008 Elsevier B.V. All rights reserved.
C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Taylor, CD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM cdtaylor@lanl.gov
FU Los Alamos National Security LLC for the National Nuclear Security
Administration of the U.S. Department of Energy [DE-AC52-06NA25396]
FX The author is grateful for illuminating and motivational discussions
with Prof. Robert Kelly (University of Virginia), Prof. Matthew Neurock
(University of Virginia), Prof. Eliezer Gileadi (Tel-Aviv University),
and Dr. Scott Lillard (Los Alamos National Laboratory). The author also
acknowledges helpful discussions and critical readings of this
manuscript by Dr. Jeff Greeley (Argonne National Laboratory), as well as
helpful comments provided by anonymous reviewers. The Los Alamos
National Laboratory is operated by Los Alamos National Security LLC for
the National Nuclear Security Administration of the U.S. Department of
Energy under contract DE-AC52-06NA25396.
NR 30
TC 10
Z9 10
U1 0
U2 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
EI 1873-4448
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 3
PY 2009
VL 469
IS 1-3
BP 99
EP 103
DI 10.1016/j.cplett.2008.12.058
PG 5
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 399LM
UT WOS:000262801400020
ER
PT J
AU Wang, W
Liu, GK
Cho, HS
Guo, Y
Shi, D
Lian, J
Ewing, RC
AF Wang, W.
Liu, G. K.
Cho, H. S.
Guo, Y.
Shi, D.
Lian, J.
Ewing, R. C.
TI Surface charge induced Stark effect on luminescence of quantum dots
conjugated on functionalized carbon nanotubes
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CHEMISTRY
AB A significant blue shift of the luminescence of CdSe/ZnS quantum dots (QD) conjugated with functionalized multi-wall carbon nanotubes (CNT) is investigated. The observed Stark shift is due to the local electrostatic field induced by the carboxylic anions on the CNT surface. A theoretical model is developed to evaluate the contribution of the surface charges to the observed spectral shift ( up to 0.59 eV). Based on the present model, the Stark shift provides an effective method for evaluating the density of carboxyl groups on the surface of functionalized CNTs and can be used as a charge detector for QD-nanostructures. (C) 2008 Elsevier B. V. All rights reserved.
C1 [Wang, W.; Liu, G. K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
[Wang, W.; Cho, H. S.; Guo, Y.; Shi, D.] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA.
[Lian, J.] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA.
[Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA.
RP Liu, GK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
EM gkliu@anl.gov
RI Lian, Jie/A-7839-2010
FU US Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]
FX Work performed at Argonne National Laboratory was supported by the US
Department of Energy, Office of Basic Energy Sciences, Division of
Chemical Sciences, Geosciences, and Biosciences, under contract
DE-AC02-06CH11357.
NR 13
TC 15
Z9 15
U1 0
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 3
PY 2009
VL 469
IS 1-3
BP 149
EP 152
DI 10.1016/j.cplett.2008.12.065
PG 4
WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
SC Chemistry; Physics
GA 399LM
UT WOS:000262801400030
ER
PT J
AU Diebold, ED
Mack, NH
Doom, SK
Mazur, E
AF Diebold, Eric D.
Mack, Nathan H.
Doom, Stephen K.
Mazur, Eric
TI Femtosecond Laser-Nanostructured Substrates for Surface-Enhanced Raman
Scattering
SO LANGMUIR
LA English
DT Article
ID AGGREGATED SILVER FILMS; OPTICAL-PROPERTIES; SILICON; SPECTROSCOPY;
MOLECULES; MORPHOLOGY; ELECTRODE; SPECTRA; GOLD; SITE
AB We present a new type of surface-enhanced Raman scattering (SERS) substrate that exhibits extremely large and uniform cross-section enhancements over a macroscopic (greater than 25 mm(2)) area. The substrates are fabricated using a femtosecond laser nanostructuring process, followed by thermal deposition of silver. SERS signals from adsorbed molecules show a spatially uniform enhancement factor of approximately 10(7). Spectroscopic characterization of these substrates suggests their potential for use in few or single-molecule Raman spectroscopy.
C1 [Diebold, Eric D.; Mazur, Eric] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Mack, Nathan H.; Doom, Stephen K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA.
RP Mazur, E (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
EM mazur@seas.harvard.edu
RI Mazur, Eric/B-8918-2009
FU Army Research Office [N00014-03-M-0325, W91INF-05-1-0341]; NDSEG; LANL
Agnew Postdoctoral Fellowship; LANL LDRD program
FX This work was supported by the Army Research Office, under Contract Nos.
N00014-03-M-0325 and W91INF-05-1-0341. E.D.D. fabricated the substrates,
and performed Raman spectroscopic measurements. N.H.M. performed the
excitation profiling and Raman spectroscopic measurements. S.K.D. and
E.M. supervised the research. The authors would like to thank Horiba
Jobin Yvon and X. Sunney Xie for use of their laboratories' facilities,
and Jessica Watkins for assistance with statistical analysis of the
data. All authors contributed to the manuscript. E.D.D. acknowledges
support from an NDSEG fellowship. N.H.M. acknowledges support from the
LANL Agnew Postdoctoral Fellowship. S.K.D. acknowledges support from the
LANL LDRD program.
NR 31
TC 83
Z9 83
U1 4
U2 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0743-7463
J9 LANGMUIR
JI Langmuir
PD FEB 3
PY 2009
VL 25
IS 3
BP 1790
EP 1794
DI 10.1021/la803357q
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science,
Multidisciplinary
SC Chemistry; Materials Science
GA 399VM
UT WOS:000262827400078
PM 19133764
ER
PT J
AU Morales, MA
Schwegler, E
Ceperley, D
Pierleoni, C
Hamel, S
Caspersen, K
AF Morales, Miguel A.
Schwegler, Eric
Ceperley, David
Pierleoni, Carlo
Hamel, Sebastien
Caspersen, Kyle
TI Phase separation in hydrogen-helium mixtures at Mbar pressures
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE ab initio molecular dynamics; high pressure; planetary interiors
ID GIANT PLANETS; METALLIC HYDROGEN; FLUID PLANETS; LOW-MASS; EVOLUTION;
JUPITER; SATURN; STARS
AB The properties of hydrogen-helium mixtures at Mbar pressures and intermediate temperatures (4000 to 10000 K) are calculated with first-principles molecular dynamics simulations. We determine the equation of state as a function of density, temperature, and composition and, using thermodynamic integration, we estimate the Gibbs free energy of mixing, thereby determining the temperature, at a given pressure, when helium becomes insoluble in dense metallic hydrogen. These results are directly relevant to models of the interior structure and evolution of Jovian planets. We find that the temperatures for the demixing of helium and hydrogen are sufficiently high to cross the planetary adiabat of Saturn at pressures approximate to 5 Mbar; helium is partially miscible throughout a significant portion of the interior of Saturn, and to a lesser extent in Jupiter.
C1 [Morales, Miguel A.; Ceperley, David] Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
[Ceperley, David] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA.
[Ceperley, David; Pierleoni, Carlo] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA.
[Schwegler, Eric; Hamel, Sebastien; Caspersen, Kyle] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Pierleoni, Carlo] Univ Aquila, Consorzio Nazl Interuniv Sci Fis Mat, I-67100 Laquila, Italy.
[Pierleoni, Carlo] Univ Aquila, Dept Phys, I-67100 Laquila, Italy.
RP Ceperley, D (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA.
EM ceperley@uiuc.edu
RI Schwegler, Eric/F-7294-2010; Ceperley, David/A-6858-2008; Schwegler,
Eric/A-2436-2016; Pierleoni, Carlo/D-5519-2016
OI Schwegler, Eric/0000-0003-3635-7418; Pierleoni,
Carlo/0000-0001-9188-3846
FU Department of Energy National Nuclear Security Administration;
Department of Energy [DOE-DE-FG52-06NA26170]; Ministero dell'Istruzione,
dell'Universita e della Ricerca Grant [PRIN2007]; Livermore Computing
facility; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
FX We thank D. J. Stevenson and N. W. Ashcroft for useful comments. C. P.
thanks the Institute of Condensed Matter Theory at the University of
Illinois at Urbana-Champaign for a short-term visit. This work was
supported by the Department of Energy National Nuclear Security
Administration (M. A. M.); Department of Energy under Contract
DOE-DE-FG52-06NA26170 (to D. M. C.); Ministero dell'Istruzione,
dell'Universita e della Ricerca Grant PRIN2007 (to C. P.). Extensive
computational support was provided by the Livermore Computing facility.
This work was partly performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.
NR 24
TC 52
Z9 52
U1 1
U2 13
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 P NATL ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 3
PY 2009
VL 106
IS 5
BP 1324
EP 1329
DI 10.1073/pnas.0812581106
PG 6
WC Multidisciplinary Sciences
SC Science & Technology - Other Topics
GA 403HV
UT WOS:000263074600009
PM 19171896
ER
PT J
AU Serpico, PD
AF Serpico, Pasquale D.
TI Gamma ray astrophysics and signatures of axion-like particles
SO ADVANCES IN SPACE RESEARCH
LA English
DT Review
DE Gamma-ray sources; Background radiations; Axions
ID EXTRAGALACTIC BACKGROUND LIGHT; ENERGY COSMIC-RAYS; STRONG CP PROBLEM;
SN 1987A; CONVERSION; PHOTON; PSEUDOSCALARS; UNIVERSE; SPECTRA; BLAZARS
AB We propose that axion-like particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to effects in the spectra of high-energy gamma-ray sources detectable by satellite or ground-based telescopes. We discuss two kinds of signatures: (i) a peculiar spectral depletion due to gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies; (ii) an appearance of otherwise invisible sources in the GeV or TeV sky due to back-conversion of an ALP flux (associated with gamma-ray emitters suffering some attenuation) in the magnetic field of the Milky Way. These two mechanisms might also provide an exotic way to avoid the exponential cutoff of very high energy gamma-rays expected due to the pair production onto the extragalactic background light. (C) 2008 COSPAR. Published by Elsevier Ltd. All rights reserved.
C1 [Serpico, Pasquale D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.
RP Serpico, PD (reprint author), CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland.
EM serpico@cern.ch
FU DOE; NASA [NAG5-10842]; United States Department of Energy [DE-AC02-07CH
11359]
FX The author thank D. Hooper and M. Simet for collaboration on the topics
this article is partially based upon. This work was supported in part by
the DOE and NASA Grant NAG5-10842. Fermilab is operated by Fermi
Research Alliance, LLC under Contract No. DE-AC02-07CH 11359 with the
United States Department of Energy.
NR 41
TC 0
Z9 0
U1 1
U2 1
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0273-1177
EI 1879-1948
J9 ADV SPACE RES
JI Adv. Space Res.
PD FEB 2
PY 2009
VL 43
IS 3
BP 335
EP 341
DI 10.1016/j.asr.2008.10.025
PG 7
WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology &
Atmospheric Sciences
SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences
GA 407TX
UT WOS:000263388300001
ER
PT J
AU Babentsov, V
Franc, J
James, RB
AF Babentsov, V.
Franc, J.
James, R. B.
TI Compensation and carrier trapping in indium-doped CdTe: Contributions
from an important near-mid-gap donor
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE ab initio calculations; cadmium compounds; deep levels; electron traps;
Fermi level; hole traps; II-VI semiconductors; indium;
photoluminescence; semiconductor doping; thermoelectricity; wide band
gap semiconductors
ID RADIATION DETECTORS; CADMIUM TELLURIDE; DEFECT STRUCTURE; CDZNTE;
IRRADIATION; CRYSTALS; GROWTH; PHOTOSENSITIVITY; SPECTROSCOPY;
RESISTIVITY
AB We report on the recharging of the neutral state of a deep-donor layer that increases the efficiency of charge collection in detector-grade CdTe:In. Measurements with photoinduced current transient spectroscopy and thermoelectric effect spectroscopy revealed positively charged energy level at E(C)-0.65 eV. Photoluminescence measurements identified this level being responsible for the 0.68 eV emission band. Its positive charge is converted into a neutral one by the upward displacement of Fermi level. We discuss the nature of this deep defect based on the latest ab initio calculations.
C1 [Babentsov, V.] Natl Acad Sci Ukraine, Inst Semicond Phys, Dept Phys & Technol Low Dimens Syst, UA-03028 Kiev, Ukraine.
[Franc, J.] Charles Univ Prague, Fac Math & Phys, Inst Phys, CR-12116 Prague, Czech Republic.
[James, R. B.] Brookhaven Natl Lab, Dept Nonproliferat & Natl Secur, Upton, NY 11973 USA.
RP Babentsov, V (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, Dept Phys & Technol Low Dimens Syst, UA-03028 Kiev, Ukraine.
EM franc@karlov.mff.cuni.cz
RI Franc, Jan/C-3802-2017
OI Franc, Jan/0000-0002-9493-3973
FU Grant Agency of the Czech Republic [GACR 102/06/0258]; Alexander von
Humboldt Foundation; Ministry of Education of the Czech Republic [MSM
0021620834]; U.S. Department of Energy, Office of Nonproliferation
Research and Development [NA-22]
FX The authors thank M. Fiederle and A. Fauler for help with the PICTS and
resistivity measurements and for useful discussion. The financial
support was received from the Grant Agency of the Czech Republic under
Grant No. GACR 102/06/0258 and Alexander von Humboldt Foundation. It is
also a part of the research plan Grant No. MSM 0021620834 financed by
the Ministry of Education of the Czech Republic. One of the authors
(R.B.J.) gratefully acknowledges support from the U.S. Department of
Energy, Office of Nonproliferation Research and Development, NA-22.
NR 24
TC 21
Z9 21
U1 1
U2 18
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 2
PY 2009
VL 94
IS 5
AR 052102
DI 10.1063/1.3073738
PG 3
WC Physics, Applied
SC Physics
GA 404QB
UT WOS:000263167000029
ER
PT J
AU Oden, M
Rogstrom, L
Knutsson, A
Terner, MR
Hedstrom, P
Almer, J
Ilavsky, J
AF Oden, M.
Rogstrom, L.
Knutsson, A.
Terner, M. R.
Hedstrom, P.
Almer, J.
Ilavsky, J.
TI In situ small-angle x-ray scattering study of nanostructure evolution
during decomposition of arc evaporated TiAlN coatings
SO APPLIED PHYSICS LETTERS
LA English
DT Article
DE aluminium compounds; ceramics; nanoparticles; nanotechnology; pyrolysis;
titanium compounds; vacuum deposited coatings; X-ray scattering
AB Small-angle x-ray scattering was used to study in situ decomposition of an arc evaporated TiAlN coating into cubic-TiN and cubic-AlN particles at elevated temperature. At the early stages of decomposition particles with ellipsoidal shape form, which grow and change shape to spherical particles at higher temperatures. The spherical particles grow at a rate of 0.18 A/degrees C while coalescing.
C1 [Oden, M.; Rogstrom, L.; Knutsson, A.] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden.
[Terner, M. R.; Hedstrom, P.] Lulea Univ Technol, SE-97187 Lulea, Sweden.
[Almer, J.; Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
RP Oden, M (reprint author), Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden.
EM magod@ifm.liu.se
RI Oden, Magnus/E-9662-2010; Hedstrom, Peter/F-8920-2010; USAXS,
APS/D-4198-2013;
OI Oden, Magnus/0000-0002-2286-5588; Hedstrom, Peter/0000-0003-1102-4342;
Ilavsky, Jan/0000-0003-1982-8900; Rogstrom, Lina/0000-0002-0866-1909
FU Swedish Research Council (VR); U. S. Department of Energy, Office of
Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
FX The financial support from the Swedish Research Council (VR) is
gratefully acknowledged. Use of the Advanced Photon Source was supported
by the U. S. Department of Energy, Office of Science, Office of Basic
Energy Sciences under Contract No. DE-AC02-06CH11357.
NR 16
TC 39
Z9 39
U1 2
U2 16
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 2
PY 2009
VL 94
IS 5
AR 053114
DI 10.1063/1.3078283
PG 3
WC Physics, Applied
SC Physics
GA 404QB
UT WOS:000263167000062
ER
PT J
AU Rao, LF
Tian, GX
AF Rao, Linfeng
Tian, Guoxin
TI Complexation of Lanthanides with Nitrate at Variable Temperatures:
Thermodynamics and Coordination Modes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID STABILITY-CONSTANTS; TRIVALENT LANTHANIDE; AQUEOUS-SOLUTIONS;
TRANSITIONS; ACTINIDE; CHLORIDE; ANIONS; LUMINESCENCE; THIOCYANATE;
EUROPIUM
AB Complexation of neodymium(III) with nitrate was studied at variable temperatures (25, 40, 55, and 70 degrees C) by spectrophotometry and microcalorimetry. The NdNO(3)(2+) complex is weak and becomes slightly stronger as the temperature is increased. The enthalpy of complexation at 25 degrees C was determined by microcalorimetry to be small and positive, 1.5 +/- 0.2 kJ.mol(-1), in good agreement with the trend of the stability constant at variable temperatures. Luminescence emission spectra and the lifetime of Eu(III) in nitrate solutions suggest that inner-sphere and bidentate complexes form between trivalent lanthanides (Nd(3+) and Eu(3+)) and nitrate in aqueous solutions. A specific ion interaction approach was used to obtain the stability constants of NdNO(3)(2+) at infinite dilution and variable temperatures.
C1 [Rao, Linfeng; Tian, Guoxin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
EM LRao@lbl.gov
FU Office of Science; Office of Basic Energy Sciences; Division of Chemical
Sciences of U.S. Department of Energy [DE-AC02-05CH11231]
FX This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, Division of Chemical Sciences of U.S. Department
of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley
National Laboratory.
NR 38
TC 28
Z9 29
U1 4
U2 36
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 2
PY 2009
VL 48
IS 3
BP 964
EP 970
DI 10.1021/ic801604f
PG 7
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 399EJ
UT WOS:000262782900030
PM 19115981
ER
PT J
AU Black, CA
Costa, JS
Fu, WT
Massera, C
Roubeau, O
Teat, SJ
Aromi, G
Gamez, P
Reedijk, J
AF Black, Cory A.
Costa, Jose Sanchez
Fu, Wen Tian
Massera, Chiara
Roubeau, Olivier
Teat, Simon J.
Aromi, Guillem
Gamez, Patrick
Reedijk, Jan
TI 3-D Lanthanide Metal-Organic Frameworks: Structure, Photoluminescence,
and Magnetism
SO INORGANIC CHEMISTRY
LA English
DT Article
ID COORDINATION POLYMERS; CRYSTAL-STRUCTURE; BUILDING UNITS; SURFACE-AREA;
DESIGN; COMPLEXES; STORAGE; REFINEMENT; SEPARATION; CATALYSIS
AB A series of isostructural three-dimensional metal-organic frameworks [Pr(2)(N-BDC)(3)(dmf)(4)](infinity) (1), {[Eu(2)(N-BDC)(3)- (dmf)(4)]center dot 2DMF}(infinity) (2 center dot 2DMF), [Gd(2)(N-BDC)(3)(dmf)(4)](infinity) (3), {[Tb(2)(N-BDC)(3)(dmf)(4)]center dot 2DMF}(infinity) (4 center dot 2DMF), {[DY(2)(N-BDC)(3)(dmf)(4)]center dot 2DMF}(infinity) (5 center dot 2DMF) (N-H(2)BDC = 2-amino-1,4-benzenedicarboxylic acid; DMF = N,N '-dimethylformamide) with cubic 4(12)center dot 6(3) topology have been synthesized using solvothermal conditions. The networks were generated via formation of a dinuclear Ln(2) secondary building block, involving the dicarboxylate ligand as a bridge. The luminescent properties of the Tb(III) and Eu(III) complexes were studied and showed characteristic emissions at room temperature, Antiferromagnetic interactions between Ln(III) ions were observed from magnetic susceptibility data.
C1 [Black, Cory A.; Costa, Jose Sanchez; Fu, Wen Tian; Gamez, Patrick; Reedijk, Jan] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands.
[Roubeau, Olivier] Univ Bordeaux 1, CNRS, CRPP, F-33600 Pessac, France.
[Massera, Chiara] Univ Parma, I-43100 Parma, Italy.
[Teat, Simon J.] ALS, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, Grp Interacc Magnet, E-08028 Barcelona, Spain.
RP Gamez, P (reprint author), Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands.
EM p.gamez@chem.leidenuniv.nl; reedijk@chem.leidenuniv.nl
RI Roubeau, Olivier/A-6839-2010; Reedijk, Jan/F-1992-2010; Gamez,
Patrick/B-3610-2012; Aromi, Guillem/I-2483-2015; Sanchez Costa,
Jose/N-9085-2014
OI Roubeau, Olivier/0000-0003-2095-5843; Reedijk, Jan/0000-0002-6739-8514;
Massera, Chiara/0000-0003-0230-1707; Gamez, Patrick/0000-0003-2602-9525;
Aromi, Guillem/0000-0002-0997-9484; Sanchez Costa,
Jose/0000-0001-5426-7956
FU NIOK; HRSMC; PTN; COST program Action [D35/0011]; FP6 Network of
Excellence "Magmanet" [515767]; U.S. Department of Energy
[DE-AC02-05CH11231]
FX Support by the Graduate Research School Combination "Catalysis", a joint
activity of the , Graduate research schools NIOK, HRSMC, and PTN and by
the COST program Action D35/0011 is thanked. Coordination of some of our
research by the FP6 Network of Excellence "Magmanet" (contract number
515767) is also kindly acknowledged. The Advanced Light Source is
supported by the Director, Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.
NR 44
TC 93
Z9 94
U1 1
U2 54
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 2
PY 2009
VL 48
IS 3
BP 1062
EP 1068
DI 10.1021/ic8017826
PG 7
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 399EJ
UT WOS:000262782900041
PM 19128001
ER
PT J
AU Zhao, YL
Flora, JW
Thweatt, WD
Garrison, SL
Gonzalez, C
Houk, KN
Marquez, M
AF Zhao, Yi-Lei
Flora, Jason W.
Thweatt, William David
Garrison, Stephen L.
Gonzalez, Carlos
Houk, K. N.
Marquez, Manuel
TI Phosphine Polymerization by Nitric Oxide: Experimental Characterization
and Theoretical Predictions of Mechanism
SO INORGANIC CHEMISTRY
LA English
DT Article
ID POST-HARTREE-FOCK; AB-INITIO; SOLID ARGON; OZONE COMPLEX; THIO ANALOGS;
GAS-PHASE; PHOSPHORUS; CHEMISTRY; ACID; PRODUCTS
AB A yellow solid material [PxHy] has been obtained in the reaction of phosphine (PH3) and nitric oxide (NO) at room temperature and characterized by thermogravimetric analysis mass spectrometry (TGA-MS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. In this work using complete basis set (CBS-QB3) methods a plausible mechanism has been investigated for phosphine polymerization in the presence of nitric oxide (NO). Theoretical explorations with the ab initio method suggest (a) instead of the monomer the nitric oxide dimer acts as an initial oxidant, (b) the resulting phosphine oxides (H3P=O <-> H3P+O-) in the gas phase draw each other via strong dipolar interactions between the P-O groups, and (c) consequently an autocatalyzed polymerization occurs among the phosphine oxides, forming P-P chemical bonds and losing water. The possible structures of polyhydride phosphorus polymer were discussed. In the calculations a series of cluster models was computed to simulate polymerization.
C1 [Zhao, Yi-Lei; Garrison, Stephen L.; Gonzalez, Carlos; Marquez, Manuel] NIST, Ctr Theoret & Computat Nanosci, Phys & Chem Properties Div, Gaithersburg, MD 20899 USA.
[Flora, Jason W.; Thweatt, William David] Altria Client Serv, Res Dev & Engn, Richmond, VA 23219 USA.
[Houk, K. N.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Marquez, Manuel] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ 85287 USA.
[Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.
RP Zhao, YL (reprint author), NIST, Ctr Theoret & Computat Nanosci, Phys & Chem Properties Div, Gaithersburg, MD 20899 USA.
EM yi-lei.zhao@nist.gov
RI Lujan Center, LANL/G-4896-2012; Liu, Peng/D-1233-2013
FU INEST, Interdisciplinary Network of Emerging Science and Technology
FX Y.L.Z., W.D.T., and S.L.G. are INEST fellowship recipients (INEST,
Interdisciplinary Network of Emerging Science and Technology). The
authors thank the INEST group for support and NIST and NIH for
administration and supercomputer time. Partial calculations were
conducted in NIH Biowulf cluster. The synthesis and FFIR experiments
were conducted by J.W.F. and TGA-MS by W.D.T. Certain commercial
materials and equipment are identified in this paper in order to specify
procedures completely. In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and
Technology nor does it imply that the material or equipment identified
is necessarily the best available for the purpose.
NR 45
TC 6
Z9 6
U1 3
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
EI 1520-510X
J9 INORG CHEM
JI Inorg. Chem.
PD FEB 2
PY 2009
VL 48
IS 3
BP 1223
EP 1231
DI 10.1021/ic801917a
PG 9
WC Chemistry, Inorganic & Nuclear
SC Chemistry
GA 399EJ
UT WOS:000262782900059
PM 19102679
ER
PT J
AU Biglarbigi, K
Moban, H
Carolus, M
Killen, J
AF Biglarbigi, Khosrow
Moban, Hitesh
Carolus, Marshall
Killen, James
TI Analytic approach estimates oil shale development economics
SO OIL & GAS JOURNAL
LA English
DT Article
C1 [Biglarbigi, Khosrow; Moban, Hitesh; Carolus, Marshall] Intek Inc, Arlington, VA USA.
[Killen, James] US DOE, Washington, DC USA.
RP Biglarbigi, K (reprint author), Intek Inc, Arlington, VA USA.
EM mmcarolus@inteki.com
NR 6
TC 0
Z9 0
U1 0
U2 3
PU PENNWELL PUBL CO ENERGY GROUP
PI TULSA
PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA
SN 0030-1388
J9 OIL GAS J
JI Oil Gas J.
PD FEB 2
PY 2009
VL 107
IS 5
BP 48
EP 53
PG 6
WC Energy & Fuels; Engineering, Petroleum
SC Energy & Fuels; Engineering
GA 690SP
UT WOS:000285027600019
ER
PT J
AU Schlachter, S
Elder, AD
Esposito, A
Kaminski, GS
Frank, JH
van Geest, LK
Kaminski, CF
AF Schlachter, S.
Elder, A. D.
Esposito, A.
Kaminski, G. S.
Frank, J. H.
van Geest, L. K.
Kaminski, C. F.
TI mhFLIM: Resolution of heterogeneous fluorescence decays in widefield
lifetime microscopy
SO OPTICS EXPRESS
LA English
DT Article
ID FREQUENCY-DOMAIN; IMAGING MICROSCOPY; ENERGY-TRANSFER; LIVING CELLS;
FLIM; SYSTEM; PHASE
AB Frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate way of measuring fluorescence lifetimes in widefield microscopy. However, the resolution of multiple exponential fluorescence decays has remained beyond the reach of most practical FD-FLIM systems. In this paper we describe the implementation of FD-FLIM using a 40MHz pulse train derived from a supercontinuum source for excitation. The technique, which we term multi-harmonic FLIM (mhFLIM), makes it possible to accurately resolve biexponential decays of fluorophores without any a priori information. The system's performance is demonstrated using a mixture of spectrally similar dyes of known composition and also on a multiply-labeled biological sample. The results are compared to those obtained from time correlated single photon counting (TCSPC) microscopy and a good level of agreement is achieved. We also demonstrate the first practical application of an algorithm derived by G. Weber [1] for analysing mhFLIM data. Because it does not require nonlinear minimisation, it offers potential for realtime analysis during acquisition. (C) 2009 Optical Society of America
C1 [Schlachter, S.; Elder, A. D.; Esposito, A.; Kaminski, G. S.; Kaminski, C. F.] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 1RA, England.
[van Geest, L. K.] Lambert Instruments Inc, NL-9301 ZP Roden, Netherlands.
[Frank, J. H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
[Kaminski, C. F.] Univ Erlangen Nurnberg, Div 3, Max Planck Res Grp, SAOT, D-91058 Erlangen, Germany.
RP Schlachter, S (reprint author), Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB2 1RA, England.
EM ss678@cam.ac.uk; cfk23@cam.ac.uk
RI Esposito, Alessandro/A-8536-2008; Kaminski, Clemens/G-7488-2016
OI Esposito, Alessandro/0000-0002-5051-091X;
FU BBSRC [BB/F016336/1]; EPSRC [EP/F028261/1]; U. S. A. Department of
Energy, Office of Basic Energy Sciences, Division of Chemical Sciences,
Geosciences, and Biosciences
FX This work was supported by grants from the BBSRC (grant BB/F016336/1)
and the EPSRC (grant EP/F028261/1). J. H. Frank acknowledges support
from the U. S. A. Department of Energy, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences.
NR 28
TC 17
Z9 17
U1 0
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1094-4087
J9 OPT EXPRESS
JI Opt. Express
PD FEB 2
PY 2009
VL 17
IS 3
BP 1557
EP 1570
DI 10.1364/OE.17.001557
PG 14
WC Optics
SC Optics
GA 408JX
UT WOS:000263432400044
PM 19188985
ER
PT J
AU Kulkarni, SS
Koishiyev, GT
Moutinho, H
Dhere, NG
AF Kulkarni, Sachin S.
Koishiyev, Galymzhan T.
Moutinho, Helio
Dhere, Neelkanth G.
TI Preparation and characterization of CuIn1-xGaxSe2-ySy thin film solar
cells by rapid thermal processing
SO THIN SOLID FILMS
LA English
DT Article; Proceedings Paper
CT Symposium on Thin Film Chalcogenide Photovoltaic Materials held at the
EMRS 2008 Spring Conference
CY MAY 26-30, 2008
CL Strasbourg, FRANCE
SP European Mat Res Soc
DE CuIn1-xGaxSe2-ySy; RTP; Materials and electrical characterization
AB This paper describes the synthesis and characterization of CuIn1-xGaxSe2-ySy (CIGSeS) thin-film solar cells prepared by rapid thermal processing (RTP). An efficiency of 12.78% has been achieved on similar to 2 mu m thick absorber. Materials characterization of these films was done by SEM, EDS, XRD, and AES. J-V curves were obtained at different temperatures. It was found that the open circuit voltage increases as temperature decreases while the short circuit current stays constant. Dependence of the open circuit voltage and fill factor on temperature has been estimated. Bandgap value calculated from the intercept of the linear extrapolation was 1.1-1.2 eV. Capacitance-voltage analysis gave a carrier density of 4.0 x 10(15) cm(-3). (C) 2008 Elsevier B.V. All rights reserved.
C1 [Kulkarni, Sachin S.; Dhere, Neelkanth G.] Univ Cent Florida, Florida Solar Energy Ctr, Cocoa, FL 32922 USA.
[Koishiyev, Galymzhan T.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA.
[Moutinho, Helio] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Kulkarni, SS (reprint author), Univ Cent Florida, Florida Solar Energy Ctr, 1679 Clearlake Rd, Cocoa, FL 32922 USA.
EM sskulkarni@fsec.ucf.edu
NR 4
TC 10
Z9 10
U1 0
U2 7
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD FEB 2
PY 2009
VL 517
IS 7
BP 2121
EP 2124
DI 10.1016/j.tsf.2008.10.128
PG 4
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 414ES
UT WOS:000263847300005
ER
PT J
AU Abou-Ras, D
Contreras, MA
Noufi, R
Schock, HW
AF Abou-Ras, D.
Contreras, M. A.
Noufi, R.
Schock, H. -W.
TI Impact of the Se evaporation rate on the microstructure and texture of
Cu(In,Ga)Se-2 thin films for solar cells
SO THIN SOLID FILMS
LA English
DT Article; Proceedings Paper
CT Symposium on Thin Film Chalcogenide Photovoltaic Materials held at the
EMRS 2008 Spring Conference
CY MAY 26-30, 2008
CL Strasbourg, FRANCE
SP European Mat Res Soc
DE Cu(In,Ga)Se-2; Thin film solar cells; Se evaporation rate;
Microstructure; Texture; Grain boundaries
ID GROWTH; ORIENTATION; CRYSTALS
AB Coevaporated Cu(In,Ga)Se-2 layers on Mo-coated soda-lime glass substrates were produced by a three-stage process using various Se overpressure conditions during the three stages. Cross-sections of these samples were analyzed by electron backscatter diffraction (EBSD) in a scanning electron microscope in order to reveal the microstructures in the Cu(in,Ga)Se-2 layers. In addition, the preferential orientations of these Cu(In,Ga)Se-2 layers were studied by plan-view EBSD measurements. It was found that Cu(In,Ga)Se-2 exhibits a texture in 110 orientation for Se/(Cu+In+Ga) atomic flux ratios R which are sufficiently large (>= 4). In one Cu(In,Ga)Se-2 layer produced with approximately R=4, a large density of(near) Sigma 3 (twin) boundaries were detected which are oriented preferentially perpendicular to the substrate. By comparison of the local textures of neighboring grains and the theoretically possible changes in orientation by twinning, it is possible to retrace how the twinning occurred. (C) 2008 Published by Elsevier B.V.
C1 [Abou-Ras, D.; Schock, H. -W.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany.
[Contreras, M. A.; Noufi, R.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Abou-Ras, D (reprint author), Hahn Meitner Inst Berlin GmbH, Glienicker Str 100, D-14109 Berlin, Germany.
EM daniel.abou-ras@hmi.de
NR 15
TC 13
Z9 13
U1 0
U2 16
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD FEB 2
PY 2009
VL 517
IS 7
BP 2218
EP 2221
DI 10.1016/j.tsf.2008.10.133
PG 4
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 414ES
UT WOS:000263847300027
ER
PT J
AU Metzger, WK
Repins, IL
Romero, M
Dippo, P
Contreras, M
Noufi, R
Levi, D
AF Metzger, W. K.
Repins, I. L.
Romero, M.
Dippo, P.
Contreras, M.
Noufi, R.
Levi, D.
TI Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se-2
solar cells
SO THIN SOLID FILMS
LA English
DT Article; Proceedings Paper
CT Symposium on Thin Film Chalcogenide Photovoltaic Materials held at the
EMRS 2008 Spring Conference
CY MAY 26-30, 2008
CL Strasbourg, FRANCE
SP European Mat Res Soc
DE Solar cell; Device model; Luminescence; Grain boundary; Copper indium
gallium diselenide; Lifetime
ID TIME-RESOLVED PHOTOLUMINESCENCE; THIN-FILMS; EFFICIENCY
AB Time-resolved photoluminescence (TRPL) measurements indicate that bare Cu(In,Ga)Se-2 (CIGS) films degrade when they are exposed to air or stored in nitrogen-purged dry boxes. The degradation significantly affects device performance and electro-optical measurements. Measuring films prior to degradation reveals long lifetimes and distinct recombination properties. For high-quality material. the surface recombination velocity at grain boundaries, bare CIGS surfaces, and CIGS/CdS interfaces is less than 10(3) cm/s, and lifetime values are often greater than 50 ns. In high injection, CIGS has recombination properties similar to GaAs. On completed devices, charge-separation dynamics can be characterized. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Metzger, W. K.; Repins, I. L.; Romero, M.; Dippo, P.; Contreras, M.; Noufi, R.; Levi, D.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Metzger, WK (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
EM Wyatt_Metzger@nrel.gov
NR 20
TC 89
Z9 90
U1 1
U2 62
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD FEB 2
PY 2009
VL 517
IS 7
BP 2360
EP 2364
DI 10.1016/j.tsf.2008.11.050
PG 5
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 414ES
UT WOS:000263847300061
ER
PT J
AU Gessert, TA
Metzger, WK
Dippo, P
Asher, SE
Dhere, RG
Young, MR
AF Gessert, T. A.
Metzger, W. K.
Dippo, P.
Asher, S. E.
Dhere, R. G.
Young, M. R.
TI Dependence of carrier lifetime on Cu-contacting temperature and ZnTe:Cu
thickness in CdS/CdTe thin film solar cells
SO THIN SOLID FILMS
LA English
DT Article; Proceedings Paper
CT Symposium on Thin Film Chalcogenide Photovoltaic Materials held at the
EMRS 2008 Spring Conference
CY MAY 26-30, 2008
CL Strasbourg, FRANCE
SP European Mat Res Soc
DE Solar cells; Cadmium telluride; Copper
AB Cu diffusion from a ZnTe:Cu contact interface can increase the net acceptor concentration in the CdTe layer of a CdS/CdTe photovoltaic solar cell. This reduces the space-charge width (W(d)) of the junction and enhances cur-rent collection and open-circuit voltage. Here we study the effect of Cu concentration in the CdTe layer on carrier lifetime (tau) using time-resolved photoluminescence measurements of ZnTe:Cu/Ti-contacted CdTe devices. Measurements show that if the ZnTe:Cu layer thickness remains constant and contact temperature is varied, tau increases significantly above its as-deposited value when the contacting temperature is in a range that has been shown to yield high-performance devices (-280 degrees to -320 degrees C). However, when the contacting temperature is maintained near an optimum value and the ZnTe:Cu thickness is varied, tau decreases with ZnTe:Cu thickness. Published by Elsevier B.V.
C1 [Gessert, T. A.; Metzger, W. K.; Dippo, P.; Asher, S. E.; Dhere, R. G.; Young, M. R.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Gessert, TA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA.
EM tim_gessert@nrel.gov
NR 10
TC 61
Z9 63
U1 5
U2 37
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD FEB 2
PY 2009
VL 517
IS 7
BP 2370
EP 2373
DI 10.1016/j.tsf.2008.11.008
PG 4
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 414ES
UT WOS:000263847300063
ER
PT J
AU Abou-Ras, D
Koch, CT
Kustner, V
van Aken, PA
Jahn, U
Contreras, MA
Caballero, R
Kaufmann, CA
Scheer, R
Unold, T
Schock, HW
AF Abou-Ras, D.
Koch, C. T.
Kuestner, V.
van Aken, P. A.
Jahn, U.
Contreras, M. A.
Caballero, R.
Kaufmann, C. A.
Scheer, R.
Unold, T.
Schock, H. -W.
TI Grain-boundary types in chalcopyrite-type thin films and their
correlations with film texture and electrical properties
SO THIN SOLID FILMS
LA English
DT Article; Proceedings Paper
CT Symposium on Thin Film Chalcogenide Photovoltaic Materials held at the
EMRS 2008 Spring Conference
CY MAY 26-30, 2008
CL Strasbourg, FRANCE
SP European Mat Res Soc
DE Cu(In,Ga)Se(2); CuInS(2); Chalcopyrite-type; Thin film solar cells;
Grain boundary types; Texture; EBSD; Cathodoluminescence; In-line
electron holography
ID SOLAR-CELLS
AB Grain boundaries in chalcopyrite-type thin films can be divided into (near) Sigma 3 (twin) and random boundaries. it is shown that Sigma 3 grain boundaries in a 110/201-textured Cu(In,Ga)Se(2) film may exhibit a preferential orientation perpendicular to the substrate, however, that this preferential orientation is not a common feature in 110/201-textured films. In general, it is not possible to draw conclusions about the Cu(In, Ga)Se(2) thin-film microstructure based on its texture and vice versa. From cathodoluminescence and electron backscatter diffraction measurements acquired on the same area of a CuInS(2) cross-section sample, it is concluded that the density of non-radiating recombination centers at random boundaries is substantially larger than that at Sigma 3 (twin) boundaries. Evaluation of reconstructed phase images from transmission electron microscopy focus series revealed considerably larger mean-inner potential wells at a random boundary as compared with Sigma 3 (twin) boundaries. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Abou-Ras, D.; Caballero, R.; Kaufmann, C. A.; Scheer, R.; Unold, T.; Schock, H. -W.] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany.
[Koch, C. T.; Kuestner, V.; van Aken, P. A.] Max Planck Inst Met Res, D-70569 Stuttgart, Germany.
[Jahn, U.] Paul Drude Inst Festkorperelekt, D-10117 Berlin, Germany.
[Contreras, M. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA.
RP Abou-Ras, D (reprint author), Hahn Meitner Inst Berlin GmbH, Glienicker Str 100, D-14109 Berlin, Germany.
EM daniel.abou-ras@hmi.de
RI Koch, Christoph/E-9689-2011; Caballero, Raquel/L-1152-2015;
OI Koch, Christoph/0000-0002-3984-1523; Unold, Thomas/0000-0002-5750-0693
NR 25
TC 30
Z9 31
U1 1
U2 14
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0040-6090
J9 THIN SOLID FILMS
JI Thin Solid Films
PD FEB 2
PY 2009
VL 517
IS 7
BP 2545
EP 2549
DI 10.1016/j.tsf.2008.11.044
PG 5
WC Materials Science, Multidisciplinary; Materials Science, Coatings &
Films; Physics, Applied; Physics, Condensed Matter
SC Materials Science; Physics
GA 414ES
UT WOS:000263847300106
ER
PT J
AU Demmel, J
Hida, Y
Riedy, EJ
Li, XS
AF Demmel, James
Hida, Yozo
Riedy, E. Jason
Li, Xiaoye S.
TI Extra-Precise Iterative Refinement for Overdetermined Least Squares
Problems
SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
LA English
DT Article
DE Algorithms; Reliability; Linear algebra; LAPACK; BLAS; floating-point
arithmetic
ID ERROR-BOUNDS; PERTURBATION
AB We present the algorithm, error bounds, and numerical results for extra-precise iterative refinement applied to overdetermined linear least squares (LLS) problems. We apply our linear system refinement algorithm to Bjorck's augmented linear system formulation of an LLS problem. Our algorithm reduces the forward normwise and componentwise errors to O(epsilon(w)), where ew is the working precision, unless the system is too ill conditioned. In contrast to linear systems, we provide two separate error bounds for the solution x and the residual r. The refinement algorithm requires only limited use of extra precision and adds only O(mn) work to the O(mn(2)) cost of QR factorization for problems of size m-by-n. The extra precision calculation is facilitated by the new extended-precision BLAS standard in a portable way, and the refinement algorithm will be included in a future release of LAPACK and can be extended to the other types of least squares problems.
C1 [Demmel, James; Hida, Yozo; Riedy, E. Jason] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA.
[Demmel, James] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.
[Li, Xiaoye S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA.
RP Demmel, J (reprint author), Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA.
EM demmel@cs.berkeley.edu; yozo@cs.berkeley.edu; xsli@lbl.gov;
ejr@cs.berkeley.edu
RI Riedy, Jason/E-7647-2016
OI Riedy, Jason/0000-0002-4345-4200
FU NSF [CCF-0444486, EIA-0122599, CNS-0325873, EIA-0303575]; DOE
[DE-FC02-01ER25478, DE-FC02-06ER25786]; U.S. Department of Energy
[DE-AC03-76SF00098]; Intel Corporation; Hewlett-Packard Corporation; IBM
Corporation
FX This research was supported in part by the NSF Grant Nos. CCF-0444486,
EIA-0122599, and CNS-0325873; the DOE Grant Nos. DE-FC02-01ER25478 and
DE-FC02-06ER25786. X. S. Li was supported in part by the Director,
Office of Advanced Scientific Computing Research of the U.S. Department
of Energy under contract DE-AC03-76SF00098. The authors wish to
acknowledge the contribution from Intel Corporation, Hewlett-Packard
Corporation, IBM Corporation, and the NSF EIA-0303575 in making hardware
and software available for the CITRIS Cluster was used in producing
these research results.
NR 21
TC 8
Z9 8
U1 0
U2 1
PU ASSOC COMPUTING MACHINERY
PI NEW YORK
PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA
SN 0098-3500
J9 ACM T MATH SOFTWARE
JI ACM Trans. Math. Softw.
PD FEB
PY 2009
VL 35
IS 4
AR 28
DI 10.1145/1462173.1462177
PG 32
WC Computer Science, Software Engineering; Mathematics, Applied
SC Computer Science; Mathematics
GA 419UA
UT WOS:000264244000004
ER
PT J
AU Gu, ZJ
Paranthaman, MP
Xu, J
Pan, ZW
AF Gu, Zhanjun
Paranthaman, M. Parans
Xu, Jun
Pan, Zheng Wei
TI Aligned ZnO Nanorod Arrays Grown Directly on Zinc Foils and Zinc Spheres
by a Low-Temperature Oxidization Method
SO ACS NANO
LA English
DT Article
DE nanorod array; oxidization; ZnO; zinc foil; zinc microsphere
ID NANOWIRE ARRAYS; OXIDE; EMISSION; COPPER
AB Vertically aligned, dense ZnO nanorod arrays were grown directly on zinc foils by a catalyst-free, low-temperature (450-500 degrees C) oxidization method. The zinc foils remain conductive even after the growth of ZnO nanorods on its surface. The success of this synthesis largely relies on the level of control over oxygen introduction. By replacing zinc foils with zinc microspheres, unique and sophisticated urchin-like ZnO nanorod assemblies can be readily obtained.
C1 [Gu, Zhanjun; Pan, Zheng Wei] Univ Georgia, Fac Engn, Athens, GA 30602 USA.
[Gu, Zhanjun; Pan, Zheng Wei] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA.
[Paranthaman, M. Parans; Xu, Jun] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Pan, ZW (reprint author), Univ Georgia, Fac Engn, Athens, GA 30602 USA.
EM pans@uga.edu
RI Gu, Zhanjun/A-7592-2013; Paranthaman, Mariappan/N-3866-2015
OI Pan, Zhengwei/0000-0002-3854-958X; Gu, Zhanjun/0000-0003-3717-2423;
Paranthaman, Mariappan/0000-0003-3009-8531
FU University of Georgia Research Foundation; US Office of Naval Research
[N004315578]; Oak Ridge National Laboratory (ORNL) through U.S.
Department of Energy, Office of Basic Energy Sciences (BES)-Division of
Materials Sciences and Engineering (DMSE); US Department of Energy (DOE)
[DE-AC05-00OR22725]
FX This work was supported by the University of Georgia Research
Foundation, the US Office of Naval Research (under contract No.
N004315578), and the Oak Ridge National Laboratory (ORNL) through the
support from the U.S. Department of Energy, Office of Basic Energy
Sciences (BES)-Division of Materials Sciences and Engineering (DMSE).
ORNL is managed by UT-Battelle, LLC, for the US Department of Energy
(DOE) under contract No. DE-AC05-00OR22725.
NR 28
TC 87
Z9 90
U1 6
U2 60
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD FEB
PY 2009
VL 3
IS 2
BP 273
EP 278
DI 10.1021/nn800759y
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 412AR
UT WOS:000263696100006
PM 19236061
ER
PT J
AU Juluri, BK
Kumar, AS
Liu, Y
Ye, T
Yang, YW
Flood, AH
Fang, L
Stoddart, JF
Weiss, PS
Huang, TJ
AF Juluri, Bala Krishna
Kumar, Ajeet S.
Liu, Yi
Ye, Tao
Yang, Ying-Wei
Flood, Amar H.
Fang, Lei
Stoddart, J. Fraser
Weiss, Paul S.
Huang, Tony Jun
TI A Mechanical Actuator Driven Electrochemically by Artificial Molecular
Muscles
SO ACS NANO
LA English
DT Article
DE bistable rotaxanes; electrochemistry; microcantilever; molecular
machines; NEMS; supramolecular chemistry
ID SELF-ASSEMBLED MONOLAYERS; CARBON-NANOTUBE ACTUATORS; INTERLOCKED
MOLECULES; ELECTRONIC DEVICES; SURFACE STRESS; POLYMER GELS; MACHINES;
MOTORS; MOTION; NANOVALVES
AB A microcantilever, coated with a monolayer of redox-controllable, bistable [3]rotaxane molecules (artificial molecular muscles), undergoes reversible deflections when subjected to alternating oxidizing and reducing electrochemical potentials. The microcantilever devices were prepared by precoating one surface with a gold film and allowing the palindromic [3]rotaxane molecules to adsorb selectively onto one side of the microcantilevers, utilizing thiol-gold chemistry. An electrochemical cell was employed in the experiments, and deflections were monitored both as a function of (i) the scan rate (<= 20 mV s(-1)) and (ii) the time for potential step experiments at oxidizing (> +0.4 V) and reducing (< +0.2 V) potentials. The different directions and magnitudes of the deflections for the microcantilevers, which were coated with artificial molecular muscles, were compared with (i) data from nominally bare microcantilevers precoated with gold and (ii) those coated with two types of control compounds, namely, dumbbell molecules to simulate the redox activity of the palindromic bistable [3]rotaxane molecules and inactive 1-dodecanethiol molecules. The comparisons demonstrate that the artificial molecular muscles are responsible for the deflections, which can be repeated over many cycles. The microcantilevers deflect in one direction following oxidation and in the opposite direction upon reduction. The similar to 550 nm deflections were calculated to be commensurate with forces per molecule of similar to 650 pN. The thermal relaxation that characterizes the device's deflection is consistent with the double bistability associated with the palindromic [3]rotaxane and reflects a metastable contracted state. The use of the cooperative forces generated by these self-assembled, nanometer-scale artificial molecular muscles that are electrically wired to an external power supply constitutes a seminal step toward molecular-machine-based nanoelectromechanical systems (NEMS).
C1 [Fang, Lei; Stoddart, J. Fraser] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Juluri, Bala Krishna; Huang, Tony Jun] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA.
[Kumar, Ajeet S.; Ye, Tao; Weiss, Paul S.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA.
[Kumar, Ajeet S.; Liu, Yi; Weiss, Paul S.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
[Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Yang, Ying-Wei] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.
[Flood, Amar H.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA.
RP Stoddart, JF (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.
EM stoddart@northwestern.edu; stm@psu.edu; junhuang@psu.edu
RI Huang, Tony/A-1546-2009; Juluri, Bala Krishna/A-2924-2009; Yang,
Ying-Wei/B-2445-2009; Weiss, Paul/A-2575-2011; Fang, Lei/C-1084-2008;
Stoddart, James /H-1518-2011; Liu, yi/A-3384-2008; Ye, Tao/F-5375-2014;
Flood, Amar/B-3863-2016
OI Yang, Ying-Wei/0000-0001-8839-8161; Weiss, Paul/0000-0001-5527-6248;
Fang, Lei/0000-0003-4757-5664; Liu, yi/0000-0002-3954-6102;
FU Air Force Office of Scientific Research [FA9550-08-1-0349]; Penn State
Center for Nanoscale Science (MRSEC); National Science Foundation
[ECCS-0609128, ECCS-0801922]; Office of Science, Office of Basic Energy
Sciences, of the U.S. Department of Energy [DE-AC02-05 CH11231]
FX This work was supported by the Air Force Office of Scientific Research
(FA9550-08-1-0349), the Penn State Center for Nanoscale Science (MRSEC),
and a Nanoscale Interdisciplinary Research Team (NIRT) grant from the
National Science Foundation (ECCS-0609128, ECCS-0801922). The authors
thank Vin Crespi, Xiaole Mao, T. J. Mullen, Jinjie Shi, Thomas R.
Walker, and Yuebing Zheng for helpful discussions. Y.L. acknowledges the
support by the Office of Science, Office of Basic Energy Sciences, of
the U.S. Department of Energy under Contract No. DE-AC02-05 CH11231.
NR 95
TC 148
Z9 149
U1 13
U2 118
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
EI 1936-086X
J9 ACS NANO
JI ACS Nano
PD FEB
PY 2009
VL 3
IS 2
BP 291
EP 300
DI 10.1021/nn8002373
PG 10
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 412AR
UT WOS:000263696100008
PM 19236063
ER
PT J
AU Meulenberg, RW
Lee, JRI
Wolcott, A
Zhang, JZ
Terminello, LJ
van Buuren, T
AF Meulenberg, Robert W.
Lee, Jonathan R. I.
Wolcott, Abraham
Zhang, Jin Z.
Terminello, Louis J.
van Buuren, Tony
TI Determination of the Excition Binding Energy in CdSe Quantum Dots
SO ACS NANO
LA English
DT Article
DE CdSe; quantum dot; exciton; binding energy; photoemission; surface
termination
ID X-RAY PHOTOEMISSION; ELECTRONIC-STRUCTURE; BAND-STRUCTURE; STATE;
NANOCRYSTALS; SPECTROSCOPY; INTERFACES; PHOTOLUMINESCENCE;
SUPERLATTICES; CRYSTALLITES
AB The exciton binding energy (EBE) in CdSe quantum dots (QDs) has been determined using X-ray spectroscopy. Using X-ray absorption and photoemission spectroscopy, the conduction band (0) and valence band (VB) edge shifts as a function of particle size have been determined and combined to obtain the true band gap of the QDs (i.e., without an exciton). These values can be compared to the excitonic gap obtained using optical spectroscopy to determine the EBE. The experimental EBE results are compared with theoretical calculations on the EBE and show excellent agreement.
C1 [Meulenberg, Robert W.; Lee, Jonathan R. I.; Terminello, Louis J.; van Buuren, Tony] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
[Wolcott, Abraham; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem, Santa Cruz, CA 95064 USA.
RP Meulenberg, RW (reprint author), Univ Maine, Dept Phys & Astron, Lab Surface Sci & Technol, Orono, ME 04469 USA.
EM robert.meulenberg@maine.edu
OI Meulenberg, Robert/0000-0003-2696-8792
FU Laboratory Directed Research and Development Program [07-LW-041]; Basic
Energy Sciences (BES) Division of the U.S. Department of Energy (DOE);
Office of BES, Division of Materials Science [DE-AC52-07NA27344]
FX The authors thank Dan Brehmer and Curtis Troxel for assistance with
experiments on beamline 8-2 at the Stanford Synchrotron Radiation
Laboratory (SSRL). This work was funded by the Laboratory Directed
Research and Development Program at LLNL under project tracking code
07-LW-041. J. Zhang acknowledges the Basic Energy Sciences (BES)
Division of the U.S. Department of Energy (DOE) for financial support.
This work was partially supported by the Office of BES, Division of
Materials Science, under the auspices of the U.S. DOE by LLNL under
Contract DE-AC52-07NA27344. This work was conducted at SSRL, a national
user facility operated by Stanford University on behalf of the U.S. DOE,
Office of BES.
NR 31
TC 79
Z9 79
U1 4
U2 66
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD FEB
PY 2009
VL 3
IS 2
BP 325
EP 330
DI 10.1021/nn8006916
PG 6
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 412AR
UT WOS:000263696100012
PM 19236067
ER
PT J
AU Petkov, V
Ren, Y
Saratovsky, I
Pasten, P
Gurr, SJ
Hayward, MA
Poeppelmeier, KR
Gaillard, JF
AF Petkov, V.
Ren, Y.
Saratovsky, I.
Pasten, P.
Gurr, S. J.
Hayward, M. A.
Poeppelmeier, K. R.
Gaillard, J. -F.
TI Atomic-Scale Structure of Biogenic Materials by Total X-ray Diffraction:
A Study of Bacterial and Fungal MnOx
SO ACS NANO
LA English
DT Article
DE biogenic materials; structure determination; X-ray diffraction;
manganese oxides
ID MANGANESE OXIDES; NANOCRYSTALS; MINERALS; PROGRAM
AB Biogenic materials are produced by microorganisms and are typically found in a nanophase state. As such, they are difficult to characterize structurally. In this report, we demonstrate how high-energy X-ray diffraction and atomic pair distribution function analysis can be used to determine the atomic-scale structures of MnOx produced by bacteria and fungi. These structures are well-defined, periodic, and species-specific, built of Mn-O-6 octahedra forming birnessite-type layers and todorokite-type tunnels, respectively. The inherent structural diversity of biogenic material may offer opportunities for practical applications.
C1 [Petkov, V.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA.
[Ren, Y.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Saratovsky, I.; Hayward, M. A.] Univ Oxford, Inorgan Chem Lab, Oxford OX1 3QR, England.
[Pasten, P.] Pontificia Univ Catolica Chile, Santiago 690441, Chile.
[Gurr, S. J.] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England.
[Poeppelmeier, K. R.] Northwestern Univ, Dept Chem, Evanston, IL 60202 USA.
[Gaillard, J. -F.] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA.
RP Petkov, V (reprint author), Cent Michigan Univ, Dept Phys, 203 Dow Sci, Mt Pleasant, MI 48859 USA.
EM petkov@phy.cmich.edu
RI Gaillard, Jean-Francois/B-6981-2009; Gaillard,
Jean-Francois/E-9445-2013; Pasten, Pablo/D-3604-2014;
OI Gaillard, Jean-Francois/0000-0002-8276-6418; Hayward,
Michael/0000-0002-6248-2063
FU CMU [REF 60628]; DOE [DE-AC02-06CH11357]; EPSRC Adventurous Chemistry
program
FX K.R.P. and J.F.G. acknowledge support from the EMSI program of NSF and
DOE at the NU institute for Environmental Catalysis. V.P. acknowledges
support from CMU through Grant REF 60628. Work at APS was supported by
DOE under Contract No. DE-AC02-06CH11357. I.S., M.H., and S.G.
acknowledge the support of the EPSRC Adventurous Chemistry program.
NR 27
TC 26
Z9 28
U1 2
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1936-0851
J9 ACS NANO
JI ACS Nano
PD FEB
PY 2009
VL 3
IS 2
BP 441
EP 445
DI 10.1021/nn800653a
PG 5
WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &
Nanotechnology; Materials Science, Multidisciplinary
SC Chemistry; Science & Technology - Other Topics; Materials Science
GA 412AR
UT WOS:000263696100028
PM 19236083
ER
PT J
AU Leung, DW
Ginder, ND
Nix, JC
Basler, CF
Honzatko, RB
Amarasinghe, GK
AF Leung, Daisy W.
Ginder, Nathaniel D.
Nix, Jay C.
Basler, Christopher F.
Honzatko, Richard B.
Amarasinghe, Gaya K.
TI Expression, purification, crystallization and preliminary X-ray studies
of the Ebola VP35 interferon inhibitory domain
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID DOUBLE-STRANDED-RNA; IRF-3 ACTIVATION; VIRUS; PROTEIN; TRANSCRIPTION;
REPLICATION; ANTAGONIST
AB Ebola VP35 is a multifunctional protein that is important for host immune suppression and pathogenesis. VP35 contains an N-terminal oligomerization domain and a C-terminal interferon inhibitory domain (IID). Mutations within the VP35 IID result in loss of host immune suppression. Here, efforts to crystallize recombinantly overexpressed VP35 IID that was purified from Escherichia coli are described. Native and selenomethionine-labeled crystals belonging to the orthorhombic space group P2(1)2(1)2(1) were obtained by the hanging-drop vapor-diffusion method and diffraction data were collected at the ALS synchrotron.
C1 [Leung, Daisy W.; Ginder, Nathaniel D.; Honzatko, Richard B.; Amarasinghe, Gaya K.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.
[Nix, Jay C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA.
[Basler, Christopher F.] Mt Sinai Sch Med, Dept Microbiol, New York, NY 10029 USA.
RP Amarasinghe, GK (reprint author), Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA.
EM amarasin@iastate.edu
OI Amarasinghe, Gaya/0000-0002-0418-9707
FU Roy J. Carver Charitable Trust Research [09-3271]; Roy J. Carver
Charitable Trust Graduate Fellowship; National Institutes of Health
[AI059536]
FX We thank Drs D. Klein, J. Rutter and D. Borek for support and
discussions, Dr J. Hoy for assistance with initial X-ray data collection
and Dr B. Fulton for initial NMR data collection. We also thank P.
Ramanan, L. Helgeson, D. Peterson and M. Farahbakhsh for laboratory
assistance and the Iowa State University Office of Biotechnology
Facilities (DNA, Macromolecular X-ray Crystallography, Nuclear Magnetic
Resonance and Protein Facilities). This work was supported in part by
the Roy J. Carver Charitable Trust Research Grant 09-3271 (to GKA), a
Roy J. Carver Charitable Trust Graduate Fellowship (to NDG) and National
Institutes of Health Grant AI059536 (to CFB).
NR 17
TC 8
Z9 8
U1 0
U2 5
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD FEB
PY 2009
VL 65
BP 163
EP 165
DI 10.1107/S1744309108044187
PG 3
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 403GP
UT WOS:000263071400024
PM 19194011
ER
PT J
AU Gardberg, AS
Blakeley, MP
Myles, DAA
AF Gardberg, Anna S.
Blakeley, Matthew P.
Myles, Dean A. A.
TI A preliminary neutron crystallographic study of proteinase K at pD 6.5
SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION
COMMUNICATIONS
LA English
DT Article
ID TRITIRACHIUM-ALBUM-LIMBER; X-RAY; RESOLUTION; SOFTWARE; ANGSTROM;
TRYPSIN
AB A preliminary neutron crystallographic study of the proteolytic enzyme proteinase K is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the vapor-diffusion method. Data were collected to a resolution of 2.3 angstrom on the LADI-III diffractometer at the Institut Laue-Langevin ( ILL) in 2.5 d. The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure with the aim of providing relevant information on the location of H atoms, particularly at the active site. This information will contribute to further understanding of the molecular mechanisms underlying the catalytic activity of proteinase K and to an enriched understanding of the subtilisin clan of serine proteases.
C1 [Gardberg, Anna S.; Myles, Dean A. A.] Oak Ridge Natl Lab, CSMB, Oak Ridge, TN 37831 USA.
RP Gardberg, AS (reprint author), Oak Ridge Natl Lab, CSMB, Oak Ridge, TN 37831 USA.
EM gardbergas@ornl.gov
RI myles, dean/D-5860-2016; Blakeley, Matthew/G-7984-2015
OI myles, dean/0000-0002-7693-4964; Blakeley, Matthew/0000-0002-6412-4358
FU US Department of Energy
FX This research was sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory, managed by
UT-Battelle LLC for the US Department of Energy. We gratefully
acknowledge the assistance of Dr Monika Budayova-Spano ( University
Joseph Fourier/EMBL) and Mr Esko Oksanen ( University of Helsinki) with
data collection, as well as Dr Suzanne Z. Fisher, Dr Pavel Afonine and
Professor Flora Meilleur for helpful discussion.
NR 25
TC 5
Z9 5
U1 0
U2 4
PU WILEY-BLACKWELL PUBLISHING, INC
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 1744-3091
J9 ACTA CRYSTALLOGR F
JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun.
PD FEB
PY 2009
VL 65
BP 184
EP 187
DI 10.1107/S1744309109000566
PG 4
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Biophysics; Crystallography
SC Biochemistry & Molecular Biology; Biophysics; Crystallography
GA 403GP
UT WOS:000263071400029
PM 19194016
ER
PT J
AU Filinchuk, Y
Ronnebro, E
Chandra, D
AF Filinchuk, Yaroslav
Roennebro, Ewa
Chandra, Dhanesh
TI Crystal structures and phase transformations in Ca(BH4)(2)
SO ACTA MATERIALIA
LA English
DT Article
DE In situ synchrotron diffraction; Hydrides; Crystal structure
ID VON ERDALKALIBORANATEN ME2; HYDROGEN-STORAGE; MAGNESIUM
BOROHYDRIDE; CALCIUM BOROHYDRIDE; UND DIBORAN; MG(BH4)(2); DIFFRACTION;
COMPOSITES; LIBH4
AB Crystal structures of three polymorphs of Ca(BH4)(2), and related phase transitions, have been identified. Removal of solvent from Ca(BH4)(2)center dot 2THF results in various mixtures of alpha- and beta-polymorphs of Ca(BH4)(2). These mixtures were studied by in situ synchrotron powder diffraction in argon atmosphere. The alpha-Ca(BH4)(2) structure crystallizes in the noncentrosymmetric space group F2dd, and contains an ordered BH4- anion. Upon increasing the temperature, the cell parameters a and c of the alpha-phase approach each other, and at similar to 495 K, a second order alpha -> alpha' transition takes place resulting in a tetragonal alpha'-phase of space group I-42d, a supergroup of F2dd. The structure of beta-Ca(BH4)(2), which is 3.7-5.6% denser depending on temperature, was described in space group P-4. Crystal structures, variation of the cell parameters, and weight fraction are reported for the three Ca(BH4)(2) phases as a function of temperature. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Roennebro, Ewa] Sandia Natl Labs, Livermore, CA 94551 USA.
[Filinchuk, Yaroslav] Swiss Norwegian Beam Lines ESRF, F-38043 Grenoble, France.
[Chandra, Dhanesh] Univ Nevada, Reno, NV 89557 USA.
RP Ronnebro, E (reprint author), Sandia Natl Labs, 7011 E Ave, Livermore, CA 94551 USA.
EM ecronne@sandia.gov
NR 36
TC 88
Z9 88
U1 4
U2 29
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD FEB
PY 2009
VL 57
IS 3
BP 732
EP 738
DI 10.1016/j.actamat.2008.10.034
PG 7
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 402PJ
UT WOS:000263025300011
ER
PT J
AU Mattern, N
Goerigk, G
Vainio, U
Miller, MK
Gemming, T
Eckert, J
AF Mattern, N.
Goerigk, G.
Vainio, U.
Miller, M. K.
Gemming, T.
Eckert, J.
TI Spinodal decomposition of Ni-Nb-Y metallic glasses
SO ACTA MATERIALIA
LA English
DT Article
DE Phase separation; Metallic glass; Spinodal decomposition; Small angle
scattering; Small angle X-ray scattering
ID X-RAY-SCATTERING; IN-SITU FORMATION; AL-CO ALLOY; PHASE-SEPARATION;
MATERIALS SCIENCE; SYSTEM; MICROSTRUCTURE
AB Phase-separated Ni-Nb Y metallic glasses were prepared by rapid quenching from the melt. The early stages of decomposition were characterized in Ni Nb Y alloys with Ni contents of more than 60 at.%. Strongly correlated chemical fluctuations with a nanometer length scale Were found to exist in the as-quenched state. The observed fluctuation lengths range from 5 to 12 nm, depending on the actual composition or the glass. The "Frozen-in" early stages of decomposition occur in the deeply undercooled melt due to the reduction in the critical temperature of liquid-liquid phase separation with Ni content. Annealing of the phase-separated Ni(70)Nb(15)Y(15) glass below the crystallization temperature leads to an increase in the amplitude of the fluctuations. However, the wavelength Was unchanged, which provides evidence for the spinodal character of the decomposition. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Mattern, N.; Gemming, T.; Eckert, J.] Leibniz Inst IFW Dresden, Inst Complex Mat, D-01171 Dresden, Germany.
[Goerigk, G.] Forschungszentrum Julich, Inst Solid State Res, D-52425 Julich, Germany.
[Vainio, U.] DESY, HASYLAB, D-22603 Hamburg, Germany.
[Miller, M. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA.
RP Mattern, N (reprint author), Leibniz Inst IFW Dresden, Inst Complex Mat, POB 270116, D-01171 Dresden, Germany.
EM n.mattern@ifw-dresden.de
RI Gemming, Thomas/D-3920-2015
OI Gemming, Thomas/0000-0002-7353-595X
NR 26
TC 26
Z9 26
U1 2
U2 23
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD FEB
PY 2009
VL 57
IS 3
BP 903
EP 908
DI 10.1016/j.actamat.2008.10.028
PG 6
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 402PJ
UT WOS:000263025300029
ER
PT J
AU Asta, M
Beckermann, C
Karma, A
Kurz, W
Napolitano, R
Plapp, M
Purdy, G
Rappaz, M
Trivedi, R
AF Asta, M.
Beckermann, C.
Karma, A.
Kurz, W.
Napolitano, R.
Plapp, M.
Purdy, G.
Rappaz, M.
Trivedi, R.
TI Solidification microstructures and solid-state parallels: Recent
developments, future directions
SO ACTA MATERIALIA
LA English
DT Review
DE Solidification microstructures; Solid-state phase transformations;
Solid-liquid interface; Phase-field modeling; Atomistic modeling
ID INTERFACIAL FREE-ENERGY; PHASE-FIELD SIMULATION; LENNARD-JONES SYSTEM;
SILICON HYPOEUTECTIC ALLOYS; UNDERCOOLED METALLIC MELTS; LAMELLAR
EUTECTIC GROWTH; FREE DENDRITIC GROWTH; AL-SI ALLOYS; DYNAMICS
COMPUTER-SIMULATION; DOUBLE-DIFFUSIVE CONVECTION
AB Rapid advances in atomistic and phase-field modeling techniques as well as new experiments have led to major progress in solidification science during the first years of this century. Here we review the most important findings in this technologically important area that impact Our quantitative understanding of: (i) key anisotropic properties of the solid-liquid interface that govern solidification pattern evolution, including the solid-liquid interface free energy and the kinetic coefficient; (ii) dendritic solidification at small and large growth rates. with particular emphasis on orientation selection; (iii) regular and irregular eutectic and peritectic microstructures; (iv) effects of convection on microstructure formation; (v) solidification at a high Volume fraction of solid and the related formation of pores and hot cracks: and (vi) solid-state transformations as far as they relate to solidification models anti techniques. In light of this progress, critical issues that point to directions for future research in both solidification and solid-state transformations are identified. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Kurz, W.; Rappaz, M.] Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland.
[Asta, M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA.
[Beckermann, C.] Univ Iowa, Dept Mech & Ind Engn, Iowa City, IA 52242 USA.
[Karma, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA.
[Karma, A.] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA.
[Napolitano, R.; Trivedi, R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.
[Napolitano, R.; Trivedi, R.] US DOE, Ames Lab, Ames, IA 50011 USA.
[Plapp, M.] Ecole Polytech, F-91128 Palaiseau, France.
[Purdy, G.] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada.
RP Kurz, W (reprint author), Ecole Polytech Fed Lausanne, Inst Mat, CH-1015 Lausanne, Switzerland.
EM wilfried.kurz@epfl.ch
RI Beckermann, Christoph/F-7158-2010
OI Beckermann, Christoph/0000-0002-9976-0995
FU US Department of Energy [DE-FG02-07ER46400, DE-FG02-01ER45910,
DE-FG02-06ER46282]; Computational Materials Science Network; NASA
[NNM04AA18G]
FX M.A. and A.K. thank the US Department of Energy for support through
Grants DE-FG02-07ER46400 (A.K.), DE-FG02-01ER45910 (M.A.) and
DE-FG02-06ER46282 (M.A.), and funds from the Computational Materials
Science Network. The work of C.B. was supported, in part, by NASA under
Contract NNM04AA18G.
NR 386
TC 277
Z9 289
U1 34
U2 318
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD FEB
PY 2009
VL 57
IS 4
BP 941
EP 971
DI 10.1016/j.actamat.2008.10.020
PG 31
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 419VV
UT WOS:000264248700001
ER
PT J
AU Brown, DW
Sisneros, TA
Clausen, B
Abeln, S
Bourke, MAM
Smith, BG
Steinzig, ML
Tome, CN
Vogel, SC
AF Brown, D. W.
Sisneros, T. A.
Clausen, B.
Abeln, S.
Bourke, M. A. M.
Smith, B. G.
Steinzig, M. L.
Tome, C. N.
Vogel, S. C.
TI Development of intergranular thermal residual stresses in beryllium
during cooling from processing temperatures
SO ACTA MATERIALIA
LA English
DT Article
DE Neutron diffraction; Residual stresses; Beryllium; Powder processing
ID ROD TEXTURE; ZIRCALOY-2; DEFORMATION
AB The intergranular thermal residual stresses in texture-free solid polycrystalline beryllium were determined by comparison of crystallographic lattice parameters in solid and powder samples measured by neutron diffraction during cooling from 800 degrees C. The internal stresses are not significantly different front zero >575 degrees C and increase nearly linearly <525 degrees C. At room temperature, the c axis of an average grain is under similar to 200 MPa of compressive internal stress, and the a axis is under 100 MPa of tensile stress. For comparison, the stresses have also been calculated using an Eshelby-type polycrystalline model. The measurements and calculations agree very well when temperature dependence of elastic constants is accounted for, and no plastic relaxation is allowed in the model. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Brown, D. W.; Sisneros, T. A.; Clausen, B.; Abeln, S.; Bourke, M. A. M.; Smith, B. G.; Steinzig, M. L.; Tome, C. N.; Vogel, S. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Brown, DW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA.
EM dbrown@lanl.gov
RI Lujan Center, LANL/G-4896-2012; Tome, Carlos/D-5058-2013; Clausen,
Bjorn/B-3618-2015;
OI Clausen, Bjorn/0000-0003-3906-846X; Vogel, Sven C./0000-0003-2049-0361
FU Office of Basic Energy Sciences (DOE); DOE [DE-AC52-06NA25396]; Office
of Basic Energy Science (DOE) [FWP 06SCPE401]
FX This work has benefited from the use of the Lujan Neutron Scattering
Center at LANSCE, which is funded by the Office of Basic Energy Sciences
(DOE). Los Alamos National Laboratory is operated by Los Alamos National
Security LLC under DOE Contract DE-AC52-06NA25396. C.N.T. acknowledges
financial support from Office of Basic Energy Science (DOE) through
Project FWP 06SCPE401.
NR 12
TC 16
Z9 17
U1 0
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD FEB
PY 2009
VL 57
IS 4
BP 972
EP 979
DI 10.1016/j.actamat.2008.09.044
PG 8
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 419VV
UT WOS:000264248700002
ER
PT J
AU Sun, T
Donthu, S
Sprung, M
D'Aquila, K
Jiang, Z
Srivastava, A
Wang, J
Dravid, VP
AF Sun, Tao
Donthu, Suresh
Sprung, Michael
D'Aquila, Kenneth
Jiang, Zhang
Srivastava, Arvind
Wang, Jin
Dravid, Vinayak P.
TI Effect of Pd doping on the microstructure and gas-sensing performance of
nanoporous SnOx thin films
SO ACTA MATERIALIA
LA English
DT Article
DE Small-angle X-ray scattering; Porous; Gas sensing; Sol-gel; Tin oxide
ID X-RAY-SCATTERING; SOL-GEL ROUTE; GRAIN-GROWTH; NANOCRYSTALLINE SNO2;
SENSITIVE RESISTORS; GRAZING-INCIDENCE; SENSORS; METAL; SIZE;
SOL->GEL->GLASS
AB Pristine and Pd-doped nanoporous SnO(x) thin films were fabricated via a sol-gel route. The Pd-doped film exhibited enhanced H(2) gas-sensing performance. in terms of higher sensitivity and shorter response time. Structural characterization was performed to investigate the effect of Pd doping on the microstructure evolution of the films. The grain and pore size of Pd-doped film, as measured using transmission electron microscopy and grazing-incidence small-angle X-ray scattering (GISAXS), are both smaller than those of undoped film. In particular. the pore size evolution of the films during annealing was quantitatively monitored in situ using synchrotron-based GISAXS. Knudsen gas diffusion and depletion layer models were employed to evaluate the microstructure influence on the gas sensitivity semi-quantitatively, The results suggest that the microstructure of the Pd-doped film is critical for improving the gas sensitivity but Cannot account for the total sensitivity enhancement. implying other mechanisms Could play a more important role. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Sun, Tao; Sprung, Michael; Jiang, Zhang; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.
[Sun, Tao; Donthu, Suresh; D'Aquila, Kenneth; Srivastava, Arvind; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA.
[Sun, Tao; Donthu, Suresh; Srivastava, Arvind; Dravid, Vinayak P.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA.
RP Wang, J (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.
EM wangj@aps.anl.gov; v-dravid@northwestern.edu
RI Dravid, Vinayak/B-6688-2009; Jiang, Zhang/A-3297-2012
OI Jiang, Zhang/0000-0003-3503-8909
FU US Department of Energy, Office of Science, Office of Basic Energy
Sciences [DE-AC02-06CH11357, DE-F602-07ER46444]; NSF-NSEC
[EEC-0118025/003]; NSF-MRSEC [DMR-0520513]; State of Illinois and
Northwestern University
FX The authors thank Dr. B. Lee and Dr. S. Narayanan of the APS for
valuable discussions. and H. Gibson for his assistance in the
experiments, and Dr. A. Srivastava for his assistance on gas
measurement. This work and the use of the Advanced Photon Source were
supported by the US Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work
was also partially Supported by NSF-NSEC under Contract No.
EEC-0118025/003, NSF-MRSEC under Contract No. DMR-0520513, and the
nanopatterning research by DOE under Contract No. DE-F602-07ER46444. The
SEM and TEM experiments were performed in the EPIC facility of the
NUANCE Center at Northwestern University. The NUANCE Center is Supported
by NSF-NSEC, NSF-MRSEC, the State of Illinois and Northwestern
University.
NR 52
TC 13
Z9 14
U1 2
U2 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
J9 ACTA MATER
JI Acta Mater.
PD FEB
PY 2009
VL 57
IS 4
BP 1095
EP 1104
DI 10.1016/j.actamat.2008.10.049
PG 10
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 419VV
UT WOS:000264248700014
ER
PT J
AU Cheng, S
Xie, J
Stoica, AD
Wang, XL
Horton, JA
Brown, DW
Choo, H
Liaw, PK
AF Cheng, S.
Xie, J.
Stoica, A. D.
Wang, X. -L.
Horton, J. A.
Brown, D. W.
Choo, H.
Liaw, P. K.
TI Cyclic deformation of nanocrystalline and ultrafine-grained nickel
SO ACTA MATERIALIA
LA English
DT Article
DE Ultrafine-grained; Cyclic deformation; Neutron diffraction; Cyclic
hardening/softening; Lattice strain
ID FATIGUE BEHAVIOR; METALS; ALLOYS; SIZE; NI; STRENGTH; ALUMINUM;
FRACTURE; COPPER
AB The cyclic deformation behavior Of ultrafine-grained (UFG) Ni samples synthesized by the electrodeposition method was studied. Different from those made by severely plastic deformation, the UFG samples used in this study are characterized by large-angle grain boundaries. Behaviors from nanocrystalline Ni and coarse-grained Ni samples were compared with that Of Ultrafine-grained Ni. With in situ neutron diffraction. unusual evolutions of residual lattice strains as well as cyclic hardening and softening behavior were demonstrated during the cyclic deformation. The microstructural changes investigated by TEM are discussed with respect to the unusual lattice strain and cyclic hardening/softening. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
C1 [Cheng, S.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
[Cheng, S.; Stoica, A. D.; Wang, X. -L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA.
[Xie, J.] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China.
[Horton, J. A.; Choo, H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.
[Brown, D. W.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA.
RP Cheng, S (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.
EM schengl@utk.edu
RI Wang, Xun-Li/C-9636-2010; Cheng, Sheng/D-9153-2013; Choo,
Hahn/A-5494-2009; Stoica, Alexandru/K-3614-2013
OI Wang, Xun-Li/0000-0003-4060-8777; Cheng, Sheng/0000-0003-1137-1926;
Choo, Hahn/0000-0002-8006-8907; Stoica, Alexandru/0000-0001-5118-0134
FU NSF [DMR-0421219, DMR-0231320]; Division of Materials Sciences and
Engineering, Office of Basic Energy Sciences, US Department of Energy
[DE-AC05-00OR22725, DE-AC52-06NA25396]
FX Financial support was through the NSF Major Research Instrumentation
Program (DMR-0421219) and NSF International Materials Institutes program
(DMR-0231320). XLW, ADS and JAH acknowledge support by Division of
Materials Sciences and Engineering, Office of Basic Energy Sciences, US
Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle,
LLC. The neutron diffraction was conducted at the Lujan Neutron
Scattering Center at LANSCE funded by the Department of Energy's Office
of Basic Energy Science. The Los Alamos National Laboratory (LANL) is
operated by the Los Alamos National Security LLC under the DOE Contract
DE-AC52-06NA25396.
NR 37
TC 15
Z9 15
U1 0
U2 26
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-6454
EI 1873-2453
J9 ACTA MATER
JI Acta Mater.
PD FEB
PY 2009
VL 57
IS 4
BP 1272
EP 1280
DI 10.1016/j.actamat.2008.11.011
PG 9
WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical
Engineering
SC Materials Science; Metallurgy & Metallurgical Engineering
GA 419VV
UT WOS:000264248700031
ER
PT J
AU Dumas, P
Miller, LM
Tobin, MJ
AF Dumas, P.
Miller, L. M.
Tobin, M. J.
TI Challenges in Biology and Medicine with Synchrotron Infrared Light
SO ACTA PHYSICA POLONICA A
LA English
DT Article; Proceedings Paper
CT 42nd Zakopane School of Physics International Symposium Breaking
Frontiers
CY MAY 19-25, 2008
CL Zakopane, POLAND
ID DECONVOLVED FTIR SPECTRA; IN-SITU CHARACTERIZATION; ELECTRON
STORAGE-RING; ALZHEIMERS-DISEASE; CANCER-CELLS; FLUORESCENCE MICROSCOPY;
BIOMEDICAL APPLICATIONS; IR MICROSPECTROSCOPY; PROTEIN-STRUCTURE;
RADIATION
AB The brightness (or brilliance) of synchrotron radiation was exploited in infrared microspectrosocopy. Among application of this synchrotron-based microanalytical technique, biological and biomedical investigations, at the diffraction-limited spot size, are exhibit of an increasing interest among almost all the existing infrared beamline worldwide. This paper is presenting the main properties of such a source, coupled with an infrared microscope. Several important applications in biomedical field are reported: cancer cells studies and drug effects, human substantia nigra in Parkinson's disease, beta-amyloids deposits in Alzheimer's disease.
C1 [Dumas, P.] SOLEIL Synchrotron, F-91192 Gif Sur Yvette, France.
[Miller, L. M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA.
[Tobin, M. J.] Australian Synchrotron Project, Clayton, Vic, Australia.
RP Dumas, P (reprint author), SOLEIL Synchrotron, BP 48, F-91192 Gif Sur Yvette, France.
RI Tobin, Mark/B-8208-2015
OI Tobin, Mark/0000-0003-1862-0649
NR 59
TC 12
Z9 13
U1 0
U2 7
PU POLISH ACAD SCIENCES INST PHYSICS
PI WARSAW
PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND
SN 0587-4246
EI 1898-794X
J9 ACTA PHYS POL A
JI Acta Phys. Pol. A
PD FEB
PY 2009
VL 115
IS 2
BP 446
EP 454
PG 9
WC Physics, Multidisciplinary
SC Physics
GA 427NC
UT WOS:000264785000005
ER
PT J
AU Jones, KW
Bronson, S
Brink, P
Gordon, C
Mosher-Smith, K
Brown, M
Chaudhry, S
Rizzo, A
Sigismondi, R
Whitehurst, M
Lukaszewski, A
Kranz, D
Bland, K
Gordan, D
Lobel, J
Sullivan, J
Metzger, M
O'Shea, C
Harris, C
Arezzo, R
Kambhampati, MS
AF Jones, K. W.
Bronson, S.
Brink, P.
Gordon, C.
Mosher-Smith, K.
Brown, M.
Chaudhry, S.
Rizzo, A.
Sigismondi, R.
Whitehurst, M.
Lukaszewski, A.
Kranz, D.
Bland, K.
Gordan, D.
Lobel, J.
Sullivan, J.
Metzger, M.
O'Shea, C.
Harris, C.
Arezzo, R.
Kambhampati, M. S.
TI Bivalve Characterization Using Synchrotron Micro X-Ray Fluorescence
SO ACTA PHYSICA POLONICA A
LA English
DT Article; Proceedings Paper
CT 42nd Zakopane School of Physics International Symposium Breaking
Frontiers
CY MAY 19-25, 2008
CL Zakopane, POLAND
ID PROTEIN
AB Bivalves, oysters, mussels, and clams are important constituents of riverine and estuarine ecosystems. Their shells and soft tissues provide information on the environments in which they live. Since they are filter feeders, they also are factors in improving water quality through removal of particulate matter from the water column. Finally, they are a valuable food source that has substantial economic value. Hence, characterization of shells and soft tissues is useful for improved understanding of these factors. Here, we used X-ray microprobes and computed microtomography facilities at the Brookhaven National Synchrotron Light Source to investigate elemental distributions in bivalves taken from locations around New York, Washington, DC, and New Orleans, LA. The results form the initial basis for compilation of a database of relevant parameters that can serve for tracking environmental changes and for assessing toxicity of particular metals. The work was enabled by active collaboration with students from the several regions, community groups, and research scientists. The collaboration was facilitated through use of web conferencing between Brookhaven National Laboratory and the varied locations.
C1 [Jones, K. W.; Bronson, S.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Brink, P.; Gordon, C.] SUNY Stony Brook, Stony Brook, NY 11794 USA.
[Mosher-Smith, K.] Gowanus Dredgers Community Oyster Garden, Brooklyn, NY 11215 USA.
[Brown, M.; Chaudhry, S.; Rizzo, A.; Sigismondi, R.; Whitehurst, M.] Sayville High Sch, W Sayville, NY 11796 USA.
[Lukaszewski, A.; Kranz, D.; Bland, K.; Gordan, D.; Lobel, J.; Sullivan, J.] Syosset High Sch, Syosset, NY 11791 USA.
[Metzger, M.; O'Shea, C.] Southampton High Sch, Southampton, NY 11968 USA.
[Harris, C.] Washington Math Sci & Technol Publ Charter High S, Washington, DC 20003 USA.
[Arezzo, R.] NY Harbor Sch, Brooklyn, NY 11237 USA.
[Kambhampati, M. S.] So Univ New Orleans, New Orleans, LA 70126 USA.
RP Jones, KW (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.
NR 12
TC 2
Z9 2
U1 1
U2 3
PU POLISH ACAD SCIENCES INST PHYSICS
PI WARSAW
PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND
SN 0587-4246
J9 ACTA PHYS POL A
JI Acta Phys. Pol. A
PD FEB
PY 2009
VL 115
IS 2
BP 477
EP 481
PG 5
WC Physics, Multidisciplinary
SC Physics
GA 427NC
UT WOS:000264785000010
ER
PT J
AU Gomes, LH
Almeida, VAF
Almeida, JM
Castro, FDO
Bettencourt, LMA
AF Gomes, Luiz H.
Almeida, Virgilio A. F.
Almeida, Jussara M.
Castro, Fernando D. O.
Bettencourt, Luis M. A.
TI QUANTIFYING SOCIAL AND OPPORTUNISTIC BEHAVIOR IN EMAIL NETWORKS
SO ADVANCES IN COMPLEX SYSTEMS
LA English
DT Article
DE Complex networks; email networks; opportunistic behavior
ID HEAVY TAILS; COMMUNITY; COMMUNICATION
AB Email graphs have been used to illustrate the general properties of social networks of communication and collaboration. However, increasingly, the majority of Internet traffic reflects opportunistic rather than symbiotic social relations. Here we use email data drawn from a large university to construct directed graphs of email exchange that quantify the differences between social and opportunistic behavior, represented by legitimate messages and spam, respectively. We show that while structural characteristics typical of other social networks are shared to a large extent by the legitimate component, they are not characteristic of opportunistic traffic. To complement the graph analysis, which suffers from incomplete knowledge of users external to the domain, we study temporal patterns of communication to show dynamical properties of email traffic. The results indicate that social email traffic has lower entropy (higher structural information) than opportunistic traffic for periods covering both working and non-working hours. We see in general that both social and opportunistic traffics are not random, and that social email shows stronger temporal structure with a high probability for long silences and bursts of a few messages. These findings offer insights into the fundamental differences between social and opportunistic behavior in email networks, and may generalize to the structure of opportunistic social relations in other environments.
C1 [Gomes, Luiz H.; Almeida, Virgilio A. F.; Almeida, Jussara M.; Castro, Fernando D. O.] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil.
[Bettencourt, Luis M. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
[Bettencourt, Luis M. A.] Santa Fe Inst, Santa Fe, NM 87501 USA.
RP Gomes, LH (reprint author), Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil.
EM lhg@dcc.ufmg.br; virgilio@dcc.ufmg.br; jussara@dcc.ufmg.br;
fernando@dcc.ufmg.br; lmbett@lanl.gov
NR 32
TC 2
Z9 2
U1 0
U2 9
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE
SN 0219-5259
EI 1793-6802
J9 ADV COMPLEX SYST
JI Adv. Complex Syst.
PD FEB
PY 2009
VL 12
IS 1
BP 99
EP 112
PG 14
WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
SC Mathematics; Science & Technology - Other Topics
GA 420PR
UT WOS:000264302200007
ER
PT J
AU Wohlberg, B
Tartakovsky, DM
AF Wohlberg, Brendt
Tartakovsky, Daniel M.
TI Delineation of geological facies from poorly differentiated data
SO ADVANCES IN WATER RESOURCES
LA English
DT Article
DE Geostatistics; Nearest neighbor; Undifferentiated; Classification;
Measurement error
AB The ability to delineate geologic facies and to estimate their properties from sparse data is essential for modeling physical and biochemical processes occurring in the subsurface. If such data are poorly differentiated, this challenging task is complicated further by the absence of a clear distinction between differentiated, hydrofacies at locations where data are available. We consider three alternative approaches for analysis of poorly differentiated data: a k-means clustering algorithm, an expectation-maximization algorithm, and a mini mum-variance algorithm. Two distinct synthetically generated geological settings are used to analyze the ability of these algorithms to assign accurately the membership of such data in a given geologic facies. On average, the minimum-variance algorithm provides a more robust performance than its two counterparts, and when combined with a nearest neighbor algorithm, it also yields the most accurate reconstruction of the boundaries between the facies. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Tartakovsky, Daniel M.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
[Wohlberg, Brendt] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Tartakovsky, DM (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.
EM brendt@t7.lanl.gov; dmt@ucsd.edu
RI Tartakovsky, Daniel/E-7694-2013; Wohlberg, Brendt/M-7764-2015
OI Wohlberg, Brendt/0000-0002-4767-1843
FU NNSA's Laboratory Directed Research and Development Program; DOE's
Office of Advanced Scientific Computing Research
FX This research was supported in part by the DOE's Office of Advanced
Scientific Computing Research.
NR 11
TC 3
Z9 3
U1 1
U2 3
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0309-1708
J9 ADV WATER RESOUR
JI Adv. Water Resour.
PD FEB
PY 2009
VL 32
IS 2
BP 225
EP 230
DI 10.1016/j.advwatres.2008.10.014
PG 6
WC Water Resources
SC Water Resources
GA 423QY
UT WOS:000264512000009
ER
PT J
AU Frippiat, CC
Illangasekare, TH
Zyvoloski, GA
AF Frippiat, C. C.
Illangasekare, T. H.
Zyvoloski, G. A.
TI Anisotropic effective medium solutions of head and velocity variance to
quantify flow connectivity
SO ADVANCES IN WATER RESOURCES
LA English
DT Article
DE Flow connectivity; Effective medium theory; Self-consistent approach
ID HETEROGENEOUS AQUIFERS; GROUNDWATER-FLOW; SPATIAL VARIABILITY;
STOCHASTIC-ANALYSIS; INDICATOR; TRANSMISSIVITY; DISPERSION; TRANSPORT;
MODELS; WATER
AB Most methods for upscaling flow and transport in heterogeneous media from the measurement scale to the simulation scale for field applications generally focus on the prediction of values of effective permeability and apparent dispersion coefficients. Although typically considered as secondary data, measures of head variance sigma(2)(phi) and velocity variance sigma(2)(qx) also contain valuable information on the level of heterogeneity of the hydraulic conductivity (K) distribution of the soil. In particular, we investigate the suitability of sigma(2)(phi) and sigma(2)(qx) to yield insight into the potential occurrence of flow barriers and preferential pathways, which significantly affect flow connectivity. Before the application of complex numerical simulators, a proper understanding of the actual link between head and velocity variance, and the spatial distribution of K can be obtained using closed-form solutions. In this paper, semi-analytical expressions of effective permeability, head variance, and velocity variance are derived for saturated flow in two-dimensional anisotropic porous media. The expressions are obtained using the methodology initially proposed by Dagan [Dagan G. Models of groundwater flow in statistically homogeneous porous formations. Water Resour Res 1979;15(1):47-63] for isotropic heterogeneous formations. The solutions are illustrated in the case of binary heterogeneous media and compared to results from numerical simulations of steady-state flow in random K fields. It is found that the self-consistent solution generally yields relatively poor results when applied to the prediction of head statistics, while both longitudinal and transverse velocity variance are correctly predicted in all cases. The results of the numerical simulations are also used to illustrate the link between sigma(2)(phi), sigma(2)(qx), and flow connectivity. Although head variance is not a stationary property of two-dimensional flow fields, and hence might not exactly represent an intrinsic property of flow such as connectivity, it is found that sigma(2)(phi) is negatively correlated to effective permeability K(ex) for poorly connected K fields. On the contrary, sigma(2)(qx) is found to be positively correlated to K(ex) for all levels of connectivity. Therefore, the results suggest that these statistics of the flow field could be used to quantify flow connectivity when measures of other indicators are not available. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Frippiat, C. C.; Illangasekare, T. H.] Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA.
[Frippiat, C. C.] Catholic Univ Louvain, Dept Civil & Environm Engn, B-3000 Louvain, Belgium.
[Zyvoloski, G. A.] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Frippiat, CC (reprint author), Colorado Sch Mines, Ctr Expt Study Subsurface Environm Proc CESEP, 1500 Illinos St, Golden, CO 80401 USA.
EM cfrippia@mines.edu
FU Los Alamos National Laboratory; National Science Foundation of Belgium;
Fonds National de la Recherche Scientifique, FRS-FNRS, Belgium
[1.1.035.07.F]
FX Christophe Frippiat is supported by Los Alamos National Laboratory and
by the National Science Foundation of Belgium (Fonds National de la
Recherche Scientifique, FRS-FNRS, Belgium, Grant No. 1.1.035.07.F).
NR 41
TC 7
Z9 7
U1 1
U2 2
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0309-1708
J9 ADV WATER RESOUR
JI Adv. Water Resour.
PD FEB
PY 2009
VL 32
IS 2
BP 239
EP 249
DI 10.1016/j.advwatres.2008.11.001
PG 11
WC Water Resources
SC Water Resources
GA 423QY
UT WOS:000264512000011
ER
PT J
AU Belair, M
Dovat, M
Foley, B
Mayerat, C
Pantaleo, G
Graziosi, C
AF Belair, Manon
Dovat, Magali
Foley, Brian
Mayerat, Claude
Pantaleo, Giuseppe
Graziosi, Cecilia
TI The Polymorphic Nature of HIV Type 1 env V4 Affects the Patterns of
Potential N-Glycosylation Sites in Proviral DNA at the Intrahost Level
SO AIDS RESEARCH AND HUMAN RETROVIRUSES
LA English
DT Article
ID HUMAN-IMMUNODEFICIENCY-VIRUS; ACTIVE ANTIRETROVIRAL THERAPY; X-SER/THR
SEQUON; AMINO-ACID; INFLUENZA HEMAGGLUTININ; ENVELOPE GLYCOPROTEIN;
IMPORTANT DETERMINANT; SURFACE GLYCOPROTEIN; B-CELLS; INFECTION
AB We have previously shown that env V4 from HIV-1 plasma RNA is highly heterogeneous within a single patient, due to indel-associated polymorphism. In this study, we have analyzed the variability of V4 in proviral DNA from unfractionated PBMC and sorted T and non-T cell populations within individual patients. Our data show that the degree of sequence variability and length polymorphism in V4 from HIV provirus is even higher than we previously reported in plasma. The data also show that the sequence of V4 depends largely on the experimental approach chosen. We could observe no clear trend for compartmentalization of V4 variants in specific cell types. Of interest is the fact that some variants that had been found to be predominant in plasma were not detected in any of the cell subsets analyzed. Consistently with our observations in plasma, V3 was found to be relatively conserved at both interpatient and intrapatient level. Our data show that V4 polymorphism involving insertions and deletions in addition to point mutations results in changes in the patterns of sequons in HIV-1 proviral DNA as well as in plasma RNA. These rearrangements may result in the coexistence, within the same individual, of a swarm of different V4 regions, each characterized by a different carbohydrate surface shield. Further studies are needed to investigate the mechanism responsible for the variability observed in V4 and its role in HIV pathogenesis.
C1 [Graziosi, Cecilia] CHU Vaudois, Dept Med, Lab AIDS Immunopathogenesis, CH-1011 Lausanne, Switzerland.
[Belair, Manon] Univ Laval, Quebec City, PQ, Canada.
[Dovat, Magali] CHU Vaudois, Inst Univ Med Legale, CH-1011 Lausanne, Switzerland.
[Foley, Brian] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87544 USA.
RP Graziosi, C (reprint author), CHU Vaudois, Dept Med, Lab AIDS Immunopathogenesis, 29 Ave Beaumont,Room 02-36, CH-1011 Lausanne, Switzerland.
EM cecilia.graziosi@chuv.ch
RI Pantaleo, Giuseppe/K-6163-2016;
OI Foley, Brian/0000-0002-1086-0296
NR 39
TC 7
Z9 8
U1 0
U2 1
PU MARY ANN LIEBERT INC
PI NEW ROCHELLE
PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA
SN 0889-2229
J9 AIDS RES HUM RETROV
JI Aids Res. Hum. Retrovir.
PD FEB
PY 2009
VL 25
IS 2
BP 199
EP 206
DI 10.1089/aid.2008.0162
PG 8
WC Immunology; Infectious Diseases; Virology
SC Immunology; Infectious Diseases; Virology
GA 411US
UT WOS:000263677500010
PM 19239359
ER
PT J
AU O'Hara, MJ
Burge, SR
Grate, JW
AF O'Hara, Matthew J.
Burge, Scott R.
Grate, Jay W.
TI Quantification of Technetium-99 in Complex Groundwater Matrixes Using a
Radiometric Preconcentrating Minicolumn Sensor in an Equilibration-Based
Sensing Approach
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID ANION-EXCHANGE RESINS; NEVADA TEST-SITE; FLOW-INJECTION; SEQUENTIAL
INJECTION; CONTAMINATED GROUNDWATER; RADIONUCLIDE SENSORS; IMPROVED
SELECTIVITY; RENEWABLE COLUMN; SYSTEM; TECHNETIUM
AB A preconcentrating minicolumn sensor for technetium-99 detection in water consists of a packed bed containing a mixture of anion-exchange resin and scintillating plastic beads. The column materials are contained in a transparent plastic flow cell placed between two photomultiplier tubes for radiometric detection. Upon retention of pertechnetate anions, the radioactive decay of Tc-99 results in detectable scintillation pulses that are counted in coincidence. In equilibration-based sensing mode, the sample is pumped through the packed bed until complete chromatographic equilibrium is achieved between the activity concentration in the water sample and the concentration on the anion-exchange resin. The analytical signal is the observed steady-state count rate at equilibrium. The sensitivity is related to a measurement efficiency parameter that is the product of the retention volume and the absolute radiometric detection efficiency. This sensor can readily detect pertechnetate to levels 10 times below the drinking water standard of 0.033 Bq/mL. The potential for other anions in natural groundwater and contaminated groundwater plumes to interfere with pertechnetate detection and quantification has been examined in detail, with reference to the groundwater chemistry at the Hanford site in Washington state. Individual anions such as nitrate, carbonate, chloride, and iodide, at natural or elevated concentrations, do not interfere significantly with pertechnetate uptake on the anion-exchange resin. Elevated chromate or sulfate anion concentrations can interfere with pertechnetate uptake by the resin, but only at levels substantially higher than typical concentrations in groundwater or contamination plumes. Nevertheless, elevated anion concentrations may reduce pertechnetate uptake and sensitivity of the sensor when present in combination. Chromate is retained on the anion-exchange resin from water at parts-per-billion levels, leading to an orange stain that interferes with pertechnetate detection by the absorption of scintillation light pulses (color quench). Radioactivity from radioiodine, tritium, and uranium is not expected to create a significant positive bias in ground-water analyses. A method of automated fluidic standard addition is demonstrated that corrects for matrix interferences leading to accurate analyses over a wide range of groundwater compositions. Ibis method is developed for automated groundwater monitoring applications.
C1 [O'Hara, Matthew J.; Grate, Jay W.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Burge, Scott R.] Burge Environm Inc, Tempe, AZ 85283 USA.
RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM jwgrate@piil.gov
OI O'Hara, Matthew/0000-0003-3982-5897
FU U.S. DOE Office of Science Environmental Management Science Program;
U.S. DOE Office of Science STTR program
FX The authors gratefully acknowledge funding from U.S. DOE Office of
Science Environmental Management Science Program and the Environmental
Remediation Science Program as well as funding from the U.S. DOE Office
of Science STTR program. We thank Dr. Anne Farawila for a detailed
reading of this manuscript. J.W.G. acknowledges that a portion of the
research was performed using EMSL, a national scientific user facility
sponsored by the Department of Energy's Office of Biological and
Environmental Research located at Pacific Northwest National Laboratory.
The Pacific Northwest National Laboratory is a multiprogram national
laboratory operated for the U.S. Department of Energy by Battelle
Memorial Institute.
NR 48
TC 8
Z9 9
U1 1
U2 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 1
PY 2009
VL 81
IS 3
BP 1068
EP 1078
DI 10.1021/ac8021604
PG 11
WC Chemistry, Analytical
SC Chemistry
GA 401CE
UT WOS:000262915100030
PM 19178339
ER
PT J
AU O'Hara, MJ
Burge, SR
Grate, JW
AF O'Hara, Matthew J.
Burge, Scott R.
Grate, Jay W.
TI Automated Radioanalytical System for the Determination of Sr-90 in
Environmental Water Samples by Y-90 Cherenkov Radiation Counting
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID SOLID-PHASE EXTRACTION; UNIVERSAL SAMPLING/ANALYTICAL SYSTEM; SEQUENTIAL
INJECTION METHOD; IN-SITU; RADIONUCLIDE SENSORS; RAPID-DETERMINATION;
CERENKOV COUNTER; NUCLEAR-WASTE; GROUNDWATER; SEPARATIONS
AB Strontium-90 is an environmental contaminant at several U.S. Department of Energy sites, including the Hanford site, Washington. Due to its high biological toxicity and moderately long half-life of similar to 29 years, groundwater and surface water contamination plumes containing Sr-90 must be closely monitored. The highly energetic P radiation from the short-lived Y-90 daughter of Sr-90 generates Cherenkov photons in aqueous media that can be detected by photomultiplier tubes with good sensitivity, without the use of scintillation cocktails. A laboratory-based automated fluid handling system coupled to a Cherenkov radiation detector for measuring Sr-90 via the high-energy beta decay of its daughter, Y-90, has been assembled and tested using standards prepared in Hanford groundwater. A Superlig 620 column in the system enables preconcentration and separation of Sr-90 from matrix and radiological interferences and, by removing the Y-90 present in the sample, creates a pure Sr-90 source from which subsequent Y-90 ingrowth can be measured. This Y-90 is fluidically transferred from the column to the Cherenkov detection flow cell for quantification and calculation of the original 90Sr concentration. Preconcentrating 0.35 L sample volumes by this approach, we have demonstrated a detection limit of 0.057 Bq/L using a 5 mL volume Cherenkov flow cell, which is below the drinking water limit of 0.30 Bq/L. This method does not require that the sample be at secular equilibrium prior to measurement.. The system can also deliver water samples directly to the counting cell for analysis without preconcentration or separation, assuming that the sample is in secular equilibrium, with a detection limit of 7 Bq/L. The performance of the analysis method using a preconcentrating separation column is characterized in detail and compared with direct counting. This method is proposed as the basis for an automated fluidic monitor for Sr-90 for unattended at-site operation.
C1 [Burge, Scott R.] Burge Environm Inc, Tempe, AZ 85283 USA.
[O'Hara, Matthew J.; Grate, Jay W.] Pacific NW Natl Lab, Richland, WA 99352 USA.
RP O'Hara, MJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA.
EM Matthew.OHara@pnl.gov
OI O'Hara, Matthew/0000-0003-3982-5897
FU Department of Energy's SBIR/STTR; Department of Energy's Environmental
Management Science Program (EMSP); Environmental Remediation Sciences
Program (ERSP)
FX The authors acknowledge the Department of Energy's SBIR/STTR program for
funding to enable the creation of the laboratory prototype
90Sr monitoring system and Department of Energy's
Environmental Management Science Program (EMSP) and Environmental
Remediation Sciences Program (ERSP) for funding new science and
technology for measuring radionuclides in water. J.W.G. acknowledges
that a portion of the research was performed using EMSL, a national
scientific user facility sponsored by the Department of Energy's Office
of Biological and Environmental Research located at Pacific Northwest
National Laboratory. The Pacific Northwest National Laboratory is a
multiprogram national laboratory operated for the U.S. Department of
Energy by Battelle Memorial Institute.
NR 50
TC 11
Z9 11
U1 5
U2 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 1
PY 2009
VL 81
IS 3
BP 1228
EP 1237
DI 10.1021/ac8021407
PG 10
WC Chemistry, Analytical
SC Chemistry
GA 401CE
UT WOS:000262915100050
PM 19138126
ER
PT J
AU Xie, WJ
Xu, AS
Yeung, ES
AF Xie, Wenjun
Xu, Aoshuang
Yeung, Edward S.
TI Determination of NAD(+) and NADH in a Single Cell under Hydrogen
Peroxide Stress by Capillary Electrophoresis
SO ANALYTICAL CHEMISTRY
LA English
DT Article
ID NICOTINAMIDE ADENINE-DINUCLEOTIDE; PYRIDINE-NUCLEOTIDES; INJURY;
DEHYDROGENASE; ERYTHROCYTES; INHIBITION; SYNTHETASE; METABOLISM;
ASTROCYTES; EXTRACTION
AB A capillary electrophoresis (CE) method based on an enzymatic cycling reaction is developed to determine both NAD(+) and NADH in a single cell in a single run. The detection limit can reach down to 0.2 amol of NAD(+) and 1 amol of NADH with a homemade capillary electrophoresis laser-induced fluorescence (CE-LIF) setup. This method shows good reproducibility and specificity. After an intact cell is injected into the capillary and lysed using a Tesla coil, intracellular NAD(+) and NADH were separated, incubated with the cycling buffer, and quantified by recording the amount of fluorescent product generated. Cellular NAD(+) and NADH levels of a rat myoblast cell line were determined using this method. Both NAD(+) and NADH levels decreased when the cells were exposed to oxidative stress induced by H2O2. This may be due to the activation of the DNA repair enzyme, poly(ADP-ribose) polymerase, in response to the oxidative damage imposed on DNA, since pretreatment of the cells with an inhibitor of these enzymes prevented the reduction of cellular NAD(+) and NADH levels.
C1 [Yeung, Edward S.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA.
Iowa State Univ, Dept Chem, Ames, IA 50011 USA.
RP Yeung, ES (reprint author), Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA.
EM yeung@ameslab.gov
FU Director of Science, Office of Basic Energy Sciences, Division of
Chemical Sciences [DE-AC02-07CH11358]
FX E.S.Y. thanks tire Robert Allen Wright Endowment for Excellence for
support. The Ames Laboratory is operated for the U.S. Department of
Energy by Iowa State University under Contract No. DE-AC02-07CH11358.
This work was supported by the Director of Science, Office of Basic
Energy Sciences, Division of Chemical Sciences.
NR 25
TC 59
Z9 59
U1 3
U2 35
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0003-2700
J9 ANAL CHEM
JI Anal. Chem.
PD FEB 1
PY 2009
VL 81
IS 3
BP 1280
EP 1284
DI 10.1021/ac802249m
PG 5
WC Chemistry, Analytical
SC Chemistry
GA 401CE
UT WOS:000262915100057
PM 19178345
ER
PT J
AU Benveniste, H
AF Benveniste, Helene
TI Glutamate, Microdialysis, and Cerebral Ischemia
SO ANESTHESIOLOGY
LA English
DT Editorial Material
ID AMINO-ACIDS; RAT-BRAIN; ASPARTATE; NEUROTOXICITY; INJURY; MODEL
C1 [Benveniste, Helene] SUNY Stony Brook, Hlth Sci Ctr Level 4, Dept Anesthesiol, Stony Brook, NY 11794 USA.
[Benveniste, Helene] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA.
RP Benveniste, H (reprint author), SUNY Stony Brook, Hlth Sci Ctr Level 4, Dept Anesthesiol, Stony Brook, NY 11794 USA.
EM Benveniste@bnl.gov
NR 25
TC 9
Z9 16
U1 1
U2 1
PU LIPPINCOTT WILLIAMS & WILKINS
PI PHILADELPHIA
PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA
SN 0003-3022
EI 1528-1175
J9 ANESTHESIOLOGY
JI Anesthesiology
PD FEB
PY 2009
VL 110
IS 2
BP 422
EP 425
PG 4
WC Anesthesiology
SC Anesthesiology
GA 400ZI
UT WOS:000262907500030
PM 19194168
ER
PT J
AU Taghavi, S
Garafola, C
Monchy, S
Newman, L
Hoffman, A
Weyens, N
Barac, T
Vangronsveld, J
van der Lelie, D
AF Taghavi, Safiyh
Garafola, Craig
Monchy, Sebastien
Newman, Lee
Hoffman, Adam
Weyens, Nele
Barac, Tanja
Vangronsveld, Jaco
van der Lelie, Daniel
TI Genome Survey and Characterization of Endophytic Bacteria Exhibiting a
Beneficial Effect on Growth and Development of Poplar Trees
SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY
LA English
DT Article
ID VOLATILES PROMOTE GROWTH; X NIGRA DN34; PLANT-GROWTH; ACC DEAMINASE;
RESISTANCE; STRAIN; ACID; PHYTOREMEDIATION; PLASMID; GENES
AB The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides x Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels.
C1 [Taghavi, Safiyh; Garafola, Craig; Monchy, Sebastien; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA.
[Newman, Lee; Hoffman, Adam] Univ S Carolina, Arnold Sch Publ Hlth, Columbia, SC 29208 USA.
[Newman, Lee; Hoffman, Adam] Savannah River Ecol Lab, Aiken, SC 29802 USA.
[Weyens, Nele; Barac, Tanja; Vangronsveld, Jaco] Univ Hasselt, Dept Environm Biol, CMK, B-3590 Diepenbeek, Belgium.
RP van der Lelie, D (reprint author), Brookhaven Natl Lab, Dept Biol, Bldg 463, Upton, NY 11973 USA.
EM vdlelied@bnl.gov
FU U. S. Department of Energy, Office of Science, Biological and
Environmental Research, project KP1102010 [DE-AC02-98CH10886];
Brookhaven National Laboratory; Laboratory Directed Research and
Development project [LDRD05-063]; WO-Flanders, Belgium; IWT, Belgium
FX This work was supported by the U. S. Department of Energy, Office of
Science, Biological and Environmental Research, project KP1102010, under
contract DE-AC02-98CH10886. D. V. D. L. and S. T. are also supported by
Laboratory Directed Research and Development funds from the Brookhaven
National Laboratory under a contract with the U. S. Department of
Energy. This work was also funded under Laboratory Directed Research and
Development project LDRD05-063. T. B. was supported by a postdoctorate
grant from the FWO-Flanders, Belgium. N.W. is presently supported by a
Ph.D. grant from IWT, Belgium. We thank Bill Greenberg and Alina
Sikar-Gang for technical assistance and Dmytro Nykypanchuk (BNL CFN) for
assisting with the fluorescence microscopy.
NR 46
TC 178
Z9 189
U1 9
U2 66
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0099-2240
J9 APPL ENVIRON MICROB
JI Appl. Environ. Microbiol.
PD FEB
PY 2009
VL 75
IS 3
BP 748
EP 757
DI 10.1128/AEM.02239-08
PG 10
WC Biotechnology & Applied Microbiology; Microbiology
SC Biotechnology & Applied Microbiology; Microbiology
GA 397VK
UT WOS:000262690100025
PM 19060168
ER
PT J
AU Jespersen, ST
Baudry, F
Schmah, D
Wakeman, MD
Michaud, V
Blanchard, P
Norris, RE
Manson, JAE
AF Jespersen, S. T.
Baudry, F.
Schmaeh, D.
Wakeman, M. D.
Michaud, V.
Blanchard, P.
Norris, R. E.
Manson, J. -A. E.
TI Rapid Processing of Net-Shape Thermoplastic Planar-Random Composite
Preforms
SO APPLIED COMPOSITE MATERIALS
LA English
DT Article
DE Preforming; Net-shape; Thermoplastic composites; Stamp forming
ID GLASS; DECONSOLIDATION
AB A novel thermoplastic composite preforming and moulding process is investigated to target cost issues in textile composite processing associated with trim waste, and the limited mechanical properties of current bulk flow-moulding composites. The thermoplastic programmable powdered preforming process (TP-P4) uses commingled glass and polypropylene yarns, which are cut to length before air assisted deposition onto a vacuum screen, enabling local preform areal weight tailoring. The as-placed fibres are heat-set for improved handling before an optional preconsolidation stage. The preforms are then preheated and press formed to obtain the final part. The process stages are examined to optimize part quality and throughput versus processing parameters. A viable processing route is proposed with typical cycle times below 40 s (for a plate 0.5 x 0.5 m(2), weighing 2 kg), enabling high production capacity from one line. The mechanical performance is shown to surpass that of 40 wt.% GMT and has properties equivalent to those of 40 wt.% GMTex at both 20A degrees C and 80A degrees C.
C1 [Jespersen, S. T.; Baudry, F.; Schmaeh, D.; Wakeman, M. D.; Michaud, V.; Manson, J. -A. E.] Ecole Polytech Fed Lausanne, Lab Technol Composites & Polymeres LTC, CH-1015 Lausanne, Switzerland.
[Blanchard, P.] Ford Motor Co, Ford Res & Innovat Ctr, Dearborn, MI 48124 USA.
[Norris, R. E.] Oak Ridge Natl Lab, US Dept Energy, Oak Ridge, TN 37831 USA.
RP Manson, JAE (reprint author), Ecole Polytech Fed Lausanne, Lab Technol Composites & Polymeres LTC, CH-1015 Lausanne, Switzerland.
EM jan-anders.manson@epfl.ch
RI Michaud, Veronique/A-6390-2009; Norris, Robert/E-5670-2017;
OI Michaud, Veronique/0000-0001-5699-740X; Wakeman,
Martyn/0000-0003-2590-6143
FU EPFL; Automotive Composites Consortium
FX This work was supported by the EPFL and the Automotive Composites
Consortium; comprising Daimler Chrysler, Ford Motor Company General
Motors and the US department of energy and US Council for Automotive
research (USCAR). The authors wish to thank J. Carron, D. May, L. K
mpfer and G. Pasche from the EPFL, J. Dahl, G. Smith, M. DeBolt, R.
Cooper and D. Houston from Ford Motor Co., S. A. Iobst from General
Motors and K. D. Yarborough and R. D. Lomax from Oak Ridge National lab
as well as C. Ducret from Owens Corning. The authors would also like to
acknowledge the National Composites Center for aid with the processing.
NR 27
TC 3
Z9 3
U1 0
U2 15
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0929-189X
J9 APPL COMPOS MATER
JI Appl. Compos. Mater.
PD FEB
PY 2009
VL 16
IS 1
BP 55
EP 71
DI 10.1007/s10443-008-9078-y
PG 17
WC Materials Science, Composites
SC Materials Science
GA 401GS
UT WOS:000262928600004
ER
PT J
AU Singer, MA
Green, WH
AF Singer, Michael A.
Green, William H.
TI Using adaptive proper orthogonal decomposition to solve the
reaction-diffusion equation
SO APPLIED NUMERICAL MATHEMATICS
LA English
DT Article
DE Model reduction; Premixed flame; Proper orthogonal decomposition; Strang
splitting
ID STEADY-STATE APPROXIMATION; LOW-DIMENSIONAL MANIFOLDS; REDUCED-ORDER
MODELS; ERROR ESTIMATION; DYNAMICAL-SYSTEMS; REDUCTION; KINETICS; FLOW;
TURBULENCE; CHEMISTRY
AB We introduce an adaptive POD method to reduce the computational cost of reacting flow simulations. The scheme is coupled with an operator-splitting algorithm to solve the reaction-diffusion equation. For the reaction sub-steps, locally valid basis vectors, obtained via POD and the method of snapshots, are used to project the minor species mass fractions onto a reduced dimensional space thereby decreasing the number of equations that govern combustion chemistry. The method is applied to a one-dimensional, laminar premixed CH4-air flame using GRImech 3.0; with errors less than 0.25%, a speed-up factor of 3.5 is observed. The speed-up results from fewer source term evaluations required to compute the Jacobian matrices. (c) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
C1 [Singer, Michael A.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA.
[Green, William H.] MIT, Dept Chem Engn, Cambridge, MA 02139 USA.
RP Singer, MA (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA.
EM msinger@llnl.gov
RI Green, William/C-9684-2012
OI Green, William/0000-0003-2603-9694
FU U.S. Department of Energy Office of Basic Energy Sciences
[DE-FG02-98ER14914]; Lawrence Livermore National Security, LLC, for the
U.S. Department of Energy, National Nuclear Security Administration
[DE-AC52-07NA27344]
FX M.A.S. acknowledges helpful discussions with Professor Karen Willcox.
This work was supported by the U.S. Department of Energy Office of Basic
Energy Sciences through grant DE-FG02-98ER14914. Lawrence Livermore
National Laboratory is operated by Lawrence Livermore National Security,
LLC, for the U.S. Department of Energy, National Nuclear Security
Administration under Contract DE-AC52-07NA27344.
NR 48
TC 19
Z9 19
U1 0
U2 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-9274
EI 1873-5460
J9 APPL NUMER MATH
JI Appl. Numer. Math.
PD FEB
PY 2009
VL 59
IS 2
BP 272
EP 279
DI 10.1016/j.apnum.2008.02.004
PG 8
WC Mathematics, Applied
SC Mathematics
GA 391FW
UT WOS:000262220200003
ER
PT J
AU Ebert, V
Settersten, TB
Killinger, DK
AF Ebert, Volker
Settersten, Thomas B.
Killinger, Dennis K.
TI Laser Applications to Chemical, Security, and Environmental Analysis:
introduction to the feature issue
SO APPLIED OPTICS
LA English
DT Editorial Material
AB This Applied Optics feature issue on Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) highlights papers presented at the LACSEA 2008 Eleventh Topical Meeting sponsored by the Optical Society of America. (C) 2009 Optical Society of America
C1 [Settersten, Thomas B.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.
[Ebert, Volker] Heidelberg Univ, Inst Phys Chem, D-69120 Heidelberg, Germany.
[Killinger, Dennis K.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA.
RP Settersten, TB (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969, Livermore, CA 94551 USA.
EM tbsette@sandia.gov
RI Settersten, Thomas/B-3480-2009; Ebert, Volker/E-7671-2011
OI Settersten, Thomas/0000-0002-8017-0258; Ebert,
Volker/0000-0002-1394-3097
NR 0
TC 0
Z9 0
U1 0
U2 2
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD FEB 1
PY 2009
VL 48
IS 4
BP A1
EP A2
DI 10.1364/AO.48.LACSEA1
PG 2
WC Optics
SC Optics
GA 422FR
UT WOS:000264413400001
ER
PT J
AU Hoops, AA
Reichardt, TA
AF Hoops, Alexandra A.
Reichardt, Thomas A.
TI Impact of collisional quenching on the detection of HgCl2 via
photofragment emission
SO APPLIED OPTICS
LA English
DT Article; Proceedings Paper
CT 11th Meeting on Laser Applications to Chemical and Environment Analysis
CY MAR 15-20, 2008
CL St Petersburg, FL
ID EXCIMER-LASER PHOTOFRAGMENTATION; CROSS-SECTIONS; MERCURY ATOMS;
GAS-PHASE; ELECTRONIC-STRUCTURE; INDUCED FLUORESCENCE; RESONANCE
RADIATION; ABSORPTION-SPECTRA; REMOTE DETECTION; MOLECULAR-BEAM
AB The effects of collisional quenching on photofragment emission (PFE) detection of vapor-phase HgCl2 in combustion flue gas constituents are investigated. Exciting HgCl2 via the 1(1)Pi(u) <- 1(1)Sigma(+)(g) transition, time-resolved measurements of emission from the Hg(6(3)p(1)) daughter in buffer-gas mixtures of N-2, O-2, and CO2 indicate that the fragmentation pathway passes through a long-lived intermediate species, which we assign to Hg(6(3)P(2)). Total quenching rate coefficients of Hg(6(3)P(1)) by N-2, O-2, and CO2 are consistent with values reported in the literature. In addition, total quenching rate coefficients for the intermediate Hg(6(3)P(2)) state are determined to be 1.72(+/- 0.08) x 10(-10) cm(3) molecule(-1) s(-1) and 2.90(+/- 0.37) x 10(-10) cm(3) molecule(-1) s(-1) for N-2 and O-2, respectively. An analysis of the impact of the collisionally dependent energy-transfer process that precedes the formation of Hg(6(3)P(1)) on the use of PFE to measure HgCl2 concentration is presented. (C) 2008 Optical Society of America
C1 [Hoops, Alexandra A.; Reichardt, Thomas A.] Sandia Natl Labs, Livermore, CA 94551 USA.
RP Reichardt, TA (reprint author), Sandia Natl Labs, POB 969,MS 9056, Livermore, CA 94551 USA.
EM tareich@sandia.gov
NR 50
TC 5
Z9 5
U1 1
U2 5
PU OPTICAL SOC AMER
PI WASHINGTON
PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA
SN 1559-128X
EI 2155-3165
J9 APPL OPTICS
JI Appl. Optics
PD FEB 1
PY 2009
VL 48
IS 4
BP B32
EP B42
DI 10.1364/AO.48.000B32
PG 11
WC Optics
SC Optics
GA 422FR
UT WOS:000264413400006
PM 19183579
ER
PT J
AU Lowhorn, ND
Wong-Ng, W
Zhang, W
Lu, ZQ
Otani, M
Thomas, E
Green, M
Tran, TN
Dilley, N
Ghamaty, S
Elsner, N
Hogan, T
Downey, AD
Jie, Q
Li, Q
Obara, H
Sharp, J
Caylor, C
Venkatasubramanian, R
Willigan, R
Yang, J
Martin, J
Nolas, G
Edwards, B
Tritt, T
AF Lowhorn, N. D.
Wong-Ng, W.
Zhang, W.
Lu, Z. Q.
Otani, M.
Thomas, E.
Green, M.
Tran, T. N.
Dilley, N.
Ghamaty, S.
Elsner, N.
Hogan, T.
Downey, A. D.
Jie, Q.
Li, Q.
Obara, H.
Sharp, J.
Caylor, C.
Venkatasubramanian, R.
Willigan, R.
Yang, J.
Martin, J.
Nolas, G.
Edwards, B.
Tritt, T.
TI Round-robin measurements of two candidate materials for a Seebeck
coefficient Standard Reference Material (TM)
SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
LA English
DT Article
AB A Standard Reference Material (SRM (TM)) for the Seebeck coefficient is critical for inter-laboratory data comparison and for instrument calibration. To develop this SRM T, we have conducted an international round-robin measurement survey of two candidate materials-undoped Bi(2)Te(3) and constantan (55% Cu and 45% Ni alloy). Measurements were performed in two rounds by twelve laboratories involved in active thermoelectric research using a number of commercial and custom-built measurement systems and techniques. We report the results of these measurements and the statistical analysis performed. Based on this extensive study, we have selected Bi(2)Te(3) as the prototype standard material.
C1 [Lowhorn, N. D.; Wong-Ng, W.; Zhang, W.; Lu, Z. Q.; Otani, M.; Thomas, E.; Green, M.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA.
[Tran, T. N.] USN, Ctr Surface Warfare, Bethesda, MD 20817 USA.
[Dilley, N.] Quantum Design, San Diego, CA 92121 USA.
[Ghamaty, S.; Elsner, N.] Hi Z Technol Inc, San Diego, CA 92126 USA.
[Hogan, T.; Downey, A. D.] Michigan State Univ, E Lansing, MI 48824 USA.
[Jie, Q.; Li, Q.] Brookhaven Natl Lab, Upton, NY 11973 USA.
[Obara, H.] Adv Inst Sci & Technol, Ibaraki, Japan.
[Sharp, J.] Marlow Ind Inc, Dallas, TX 75238 USA.
[Caylor, C.; Venkatasubramanian, R.] Res Triangle Inst, Res Triangle Pk, NC 27709 USA.
[Willigan, R.] United Technol Corp, E Hartford, CT 06108 USA.
[Yang, J.] Gen Motors R&D Ctr, Warren, MI 48090 USA.
[Martin, J.; Nolas, G.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA.
[Edwards, B.; Tritt, T.] Clemson Univ, Dept Phys, Clemson, SC 29634 USA.
RP Wong-Ng, W (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA.
EM winnie.wong-ng@nist.gov
RI Yang, Jihui/A-3109-2009; Jie, Qing/H-3780-2011; Zhang,
Weiping/C-6158-2014; Jie, Qing/N-8673-2013
NR 4
TC 15
Z9 15
U1 0
U2 18
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0947-8396
J9 APPL PHYS A-MATER
JI Appl. Phys. A-Mater. Sci. Process.
PD FEB
PY 2009
VL 94
IS 2
BP 231
EP 234
DI 10.1007/s00339-008-4876-5
PG 4
WC Materials Science, Multidisciplinary; Physics, Applied
SC Materials Science; Physics
GA 377NE
UT WOS:000261257100003
ER
PT J
AU Barros, G
Guedes, I
Misoguti, L
Zilio, SC
Loong, CK
Wang, J
Hu, X
Zhang, H
AF Barros, G.
Guedes, I.
Misoguti, L.
Zilio, S. C.
Loong, C. -K.
Wang, J.
Hu, X.
Zhang, H.
TI Nonlinear refractive index of RECOB (RE = Gd and La) crystals
SO APPLIED PHYSICS B-LASERS AND OPTICS
LA English
DT Article
ID Z-SCAN MEASUREMENTS; INTRACAVITY 2ND-HARMONIC GENERATION; CALCIUM
OXYBORATE CRYSTALS; TI-SAPPHIRE LASER; FREQUENCY-CONVERSION; DOPED
CA4GDO(BO3)(3); OPTICAL-PROPERTIES; FEMTOSECOND LASER; PULSE GENERATION;
INFRARED-LASER
AB The Z-scan technique is employed to obtain the nonlinear refractive index (n (2)) of the Ca(4)REO(BO(3))(3) (RECOB, where RE = Gd and La) single crystals using 30 fs laser pulses centered at 780 nm for the two orthogonal orientations determined by the optical axes (X and Z) relative to the direction of propagation of the laser beam (k//Y// crystallographic b-axis). The large values of n (2) indicate that both GdCOB and LaCOB are potential hosts for Yb:RECOB lasers operating in the Kerr-lens mode locking (KLM) regime.
C1 [Barros, G.; Guedes, I.] Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
[Misoguti, L.; Zilio, S. C.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
[Loong, C. -K.] Argonne Natl Lab, Div Intense Pulsed Neutron Source, Argonne, IL 60439 USA.
[Wang, J.; Hu, X.; Zhang, H.] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.
RP Guedes, I (reprint author), Univ Fed Ceara, Dept Fis, Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil.
EM guedes@fisica.ufc.br
RI zilio, sergio/B-4663-2011; Misoguti, Lino/C-2462-2012; Group,
Photonics/D-3910-2012; Barros, Glaydson/I-1858-2012; GUEDES,
ILDE/C-3451-2013; Nanobiosimes, Inct/K-2263-2013; Sao Carlos Institute
of Physics, IFSC/USP/M-2664-2016; UFC, DF/E-1564-2017; Universidade
Federal do Ceara, Physics Department/J-4630-2016;
OI Misoguti, Lino/0000-0001-6624-8453; Universidade Federal do Ceara,
Physics Department/0000-0002-9247-6780; GUEDES, ILDE/0000-0002-1040-5891
FU CNPq; CAPES; FUNCAP; FAPESP; US DOE-BES [W-31-109-ENG-38]; State Key
Program of China
FX Financial support from the Brazilian agencies CNPq, CAPES, FUNCAP, and
FAPESP is gratefully acknowledged. Work performed at Argonne National
Laboratory is supported by the US DOE-BES under contracts No.
W-31-109-ENG-38. The work at Shandong University is supported by a grant
for State Key Program of China.
NR 36
TC 4
Z9 4
U1 0
U2 12
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0946-2171
J9 APPL PHYS B-LASERS O
JI Appl. Phys. B-Lasers Opt.
PD FEB
PY 2009
VL 94
IS 2
BP 221
EP 225
DI 10.1007/s00340-008-3252-7
PG 5
WC Optics; Physics, Applied
SC Optics; Physics
GA 394XR
UT WOS:000262487000008
ER
PT J
AU Cutler, PJ
Haaland, DM
Andries, E
Gemperline, PJ
AF Cutler, Patrick J.
Haaland, David M.
Andries, Erik
Gemperline, Paul J.
TI Methods for Kinetic Modeling of Temporally Resolved Hyperspectral
Confocal Fluorescence Images
SO APPLIED SPECTROSCOPY
LA English
DT Article
DE Hyperspectral confocal microscopy; Fluorescence imaging; Photobleaching;
Kinetic modeling; Hard modeling; Soft modeling; Multivariate curve
resolution; MCR; Separable least squares; SLS; Direct nonlinear
estimation; DNL
ID MULTIVARIATE CURVE RESOLUTION; REACTION-RATE CONSTANTS;
SPECTROPHOTOMETRIC TITRATIONS; SPECTROSCOPIC MEASUREMENTS; VIBRATIONAL
SPECTROSCOPY; CHROMATOGRAPHIC PEAKS; AQUEOUS-SOLUTION; HARD; SOFT;
EQUILIBRIUM
AB Elucidating kinetic information (rate constants) from temporally resolved hyperspectral confocal fluorescence images offers some very important opportunities for the interpretation of spatially resolved hyperspectral confocal fluorescence images but also presents significant challenges, these being (1) the massive amount of data contained in a series of time-resolved spectral images (one time course of spectral data for each pixel) and (2) unknown concentrations of the reactants and products at time = 0, a necessary precondition normally required by traditional kinetic fitting approaches. This paper describes two methods for solving these problems: direct nonlinear (DNL) estimation of all parameters and separable least squares (SLS). The DNL method can be applied to reactions of any rate law, while the SLS method is restricted to first-order reactions. In SLS, the inherently linear and nonlinear parameters of first-order reactions are solved in separate linear and nonlinear steps, respectively. The new methods are demonstrated using simulated data sets and an experimental data set involving photobleaching of several fluorophores. This work demonstrates that both DNL, and SLS hard-modeling methods applied to the kinetic modeling of temporally resolved hyperspectral images can outperform traditional soft-modeling and hard/soft-modeling methods which use multivariate curve resolution-alternating least squares (MCR-ALS) methods. In addition, the SLS method is much faster and is able to analyze much larger data sets than the DNL method.
C1 [Cutler, Patrick J.; Gemperline, Paul J.] E Carolina Univ, Dept Chem, Greenville, NC 27858 USA.
[Haaland, David M.] Sandia Natl Labs, Albuquerque, NM 87185 USA.
[Andries, Erik] Univ New Mexico, Dept Math & Pathol, Albuquerque, NM 87131 USA.
RP Gemperline, PJ (reprint author), E Carolina Univ, Dept Chem, Greenville, NC 27858 USA.
EM gemperlinep@ecu.edu
FU United States Department of Energy [DE-AC04-94AL85000]; Sandia National
Laboratories
FX The authors would like to thank Howland Jones for software and data
analysis support on this project. Darryl Sasaki provided the
fluorescently tagged beads and Michael Sinclair developed the microscope
and collected the hyperspectral bead image. Sandia is a multi-program
laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under Contract
DE-AC04-94AL85000. Support is acknowledged from Sandia National
Laboratories' Laboratory Directed Research and Development project
titled Microscale Immune Studies Laboratory (MISL).
NR 41
TC 2
Z9 2
U1 2
U2 8
PU SOC APPLIED SPECTROSCOPY
PI FREDERICK
PA 201B BROADWAY ST, FREDERICK, MD 21701 USA
SN 0003-7028
J9 APPL SPECTROSC
JI Appl. Spectrosc.
PD FEB
PY 2009
VL 63
IS 2
BP 153
EP 163
PG 11
WC Instruments & Instrumentation; Spectroscopy
SC Instruments & Instrumentation; Spectroscopy
GA 409FH
UT WOS:000263491100003
PM 19215644
ER
PT J
AU Wang, M
Kang, QJ
Pan, N
AF Wang, Moran
Kang, Qinjun
Pan, Ning
TI Thermal conductivity enhancement of carbon fiber composites
SO APPLIED THERMAL ENGINEERING
LA English
DT Article
DE Effective thermal conductivity; Multiphase fibrous systems; Lattice
Boltzmann method; Carbon fiber composites; Porous media
ID BOLTZMANN BGK MODEL; POLYMER COMPOSITES; FLOWS; PCM
AB The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The energy transport governing equations are then solved through the three-dimensional structures using a high-efficiency lattice Boltzmann scheme. The resultant predictions agree well with the available experimental data. Compared with the existing theoretical models, the present method does not depend upon empirical parameters which have to be determined case by case, so that it is useful for design and optimization for new materials, beyond prediction and analysis just for existing composites. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Wang, Moran; Pan, Ning] Univ Calif Davis, NEAT, Davis, CA 95616 USA.
[Kang, Qinjun] Los Alamos Natl Lab, Hydrol & Geochem Grp, Los Alamos, NM 87545 USA.
RP Wang, M (reprint author), Univ Calif Davis, NEAT, Davis, CA 95616 USA.
EM mmwang@ucdavis.edu
RI Pan, Ning/B-1315-2008; Wang, Moran/A-1150-2010; Kang, Qinjun/A-2585-2010
OI Pan, Ning/0000-0002-8772-2596; Kang, Qinjun/0000-0002-4754-2240
FU [NTC-M04-CD01]
FX The present work is supported by the NTC-M04-CD01. The authors would
also like to acknowledge the helpful discussions with Prof. Q.-S. Zheng.
NR 30
TC 69
Z9 76
U1 11
U2 73
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1359-4311
J9 APPL THERM ENG
JI Appl. Therm. Eng.
PD FEB
PY 2009
VL 29
IS 2-3
BP 418
EP 421
DI 10.1016/j.applthermaleng.2008.03.004
PG 4
WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics
SC Thermodynamics; Energy & Fuels; Engineering; Mechanics
GA 423YN
UT WOS:000264532800028
ER
PT J
AU Horita, J
AF Horita, Juske
TI Isotopic Evolution of Saline Lakes in the Low-Latitude and Polar Regions
SO AQUATIC GEOCHEMISTRY
LA English
DT Article
DE Saline lakes; Isotopic compositions; Evaporation; Freezing;
Low-latitude; Arctic; Antarctica; Steady-state; Perturbations
ID AQUEOUS SALT-SOLUTIONS; LIQUID WATER EQUILIBRATION; MCMURDO DRY VALLEYS;
SOUTHERN VICTORIA LAND; EAST-ANTARCTICA; STABLE-ISOTOPE; HYDROGEN
ISOTOPES; MEROMICTIC LAKES; OXYGEN-ISOTOPE; VESTFOLD HILLS
AB Isotopic fractionations associated with two primary processes (evaporation and freezing of water) are discussed, which are responsible for the formation and evolution of saline lakes in deserts from both low-latitude and the Polar regions. In an evaporative system, atmospheric parameters (humidity and isotopic composition of water vapor) have strong influence on the isotopic behavior of saline lakes, and in a freezing system, salinity build-up largely controls the extent of freezing and associated isotope fractionation. In both systems, salinity has a direct impact on the isotopic evolution of saline lakes. It is proposed that a steady-state "terminal lake" model with short-term hydrologic and environmental perturbations can serve as a useful framework for investigating both evaporative and freezing processes of perennial saline lakes. Through re-assessment of own work and literature data for saline lakes, it was demonstrated that effective uses of the isotope activity compositions of brines and salinity-chemistry data could reveal dynamic changes and evolution in the isotopic compositions of saline lakes in response to hydrologic and environmental changes. The residence time of isotopic water molecules in lakes determines the nature of responses in the isotopic compositions following perturbations in the water and isotope balances (e.g., dilution by inflow, water deficit by increased evaporation, and/or reduction in inflow). The isotopic profiles of some saline lakes from the Polar regions show that they switched the two contrasting modes of operation between evaporative and freezing systems, in response to climate and hydrological changes in the past.
C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.
RP Horita, J (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008,MS 6110, Oak Ridge, TN 37831 USA.
EM horitaj@ornl.gov
FU U. S. Department of Energy [DE-AC05-00OR22725]
FX Thanks are due to Berry Lyons, and an anonymous reviewer for their
comments. Research was sponsored by the Division of Chemical Sciences,
Geosciences, and Biosciences, Office of Basic Energy Sciences, U. S.
Department of Energy under contract DE-AC05-00OR22725, Oak Ridge
National Laboratory, managed by UT-Battle, LLC.
NR 72
TC 13
Z9 13
U1 3
U2 13
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1380-6165
EI 1573-1421
J9 AQUAT GEOCHEM
JI Aquat. Geochem.
PD FEB
PY 2009
VL 15
IS 1-2
BP 43
EP 69
DI 10.1007/s10498-008-9050-3
PG 27
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 428EQ
UT WOS:000264831200003
ER
PT J
AU Wang, HQ
Jacob, DJ
Le Sager, P
Streets, DG
Park, RJ
Gilliland, AB
van Donkelaar, A
AF Wang, Huiqun
Jacob, Daniel J.
Le Sager, Philippe
Streets, David G.
Park, Rokjin J.
Gilliland, Alice B.
van Donkelaar, A.
TI Surface ozone background in the United States: Canadian and Mexican
pollution influences
SO ATMOSPHERIC ENVIRONMENT
LA English
DT Article
DE Background ozone; Surface ozone; Air quality standard; Chemical
transport model; Global model
ID TROPOSPHERIC OZONE; NORTH-AMERICA; AIR-QUALITY; VARIABILITY; EMISSIONS;
TRANSPORT; SATELLITE; CHEMISTRY; AIRCRAFT; METHANE
AB We use a global chemical transport model (GEOS-Chem) with 1 degrees x 1 degrees horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 +/- 8 ppb and 30 +/- 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 +/- 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Wang, Huiqun; Jacob, Daniel J.; Le Sager, Philippe] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
[Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Park, Rokjin J.] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea.
[Gilliland, Alice B.] US EPA, Off Res & Dev, Natl Exposure Res Lab, Atmospher Modeling Div, Washington, DC USA.
[van Donkelaar, A.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
RP Wang, HQ (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA.
EM hwang@cfa.harvard.edu
RI Chem, GEOS/C-5595-2014; Park, Rokjin/I-5055-2012;
OI Park, Rokjin/0000-0001-8922-0234; Streets, David/0000-0002-0223-1350
FU US Department of Energy; Office of Fossil Energy; Argonne National
Laboratory
FX This work was sponsored by US Department of Energy, Office of Fossil
Energy, through a contract with Argonne National Laboratory. We thank
Naresh Kumar at EPRI and Thomas Grahame at DOE for their constructive
input to this work.
NR 28
TC 52
Z9 52
U1 0
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1352-2310
EI 1873-2844
J9 ATMOS ENVIRON
JI Atmos. Environ.
PD FEB
PY 2009
VL 43
IS 6
BP 1310
EP 1319
DI 10.1016/j.atmosenv.2008.11.036
PG 10
WC Environmental Sciences; Meteorology & Atmospheric Sciences
SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences
GA 408HR
UT WOS:000263426600018
ER
PT J
AU Williams, E
Nathou, N
Hicks, E
Pontikis, C
Russell, B
Miller, M
Bartholomew, MJ
AF Williams, E.
Nathou, N.
Hicks, E.
Pontikis, C.
Russell, B.
Miller, M.
Bartholomew, M. J.
TI The electrification of dust-lofting gust fronts ('haboobs') in the Sahel
SO ATMOSPHERIC RESEARCH
LA English
DT Article; Proceedings Paper
CT 13th International Conference on Atmospheric Electricity
CY AUG 13-17, 2007
CL Beijing, PEOPLES R CHINA
SP Int Commiss Atmospher Elect
DE Haboob; Gust front; Dust; Charge separation; Tribo-electricity; Sand
grains; Saltation; Electric field
ID ELECTRIC FIELD; SANDSTORMS; SIMULATION; STORMS; DEVIL; SAND
AB Two Doppler radars and a suite of auxiliary surface observations are used to document the electrical, aerosol and aerodynamic properties of dust-lofting gust fronts near Niamey, Niger during the AMMA (African Monsoon Multidisciplinary Analysis). Electrification with dominant negative polarity is a common behavior, consistent with earlier studies on dust devils and the Harmattan wind in dry environments. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Williams, E.] MIT, Ralph M Parsons Lab, Cambridge, MA 02139 USA.
[Russell, B.] Univ Michigan, Ann Arbor, MI 48109 USA.
[Miller, M.; Bartholomew, M. J.] Brookhaven Natl Lab, Upton, NY 11973 USA.
RP Williams, E (reprint author), MIT, Ralph M Parsons Lab, Cambridge, MA 02139 USA.
EM earlew@ll.mit.edu
NR 26
TC 40
Z9 41
U1 2
U2 7
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0169-8095
J9 ATMOS RES
JI Atmos. Res.
PD FEB
PY 2009
VL 91
IS 2-4
BP 292
EP 298
DI 10.1016/j.atmosres.2008.05.017
PG 7
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 405AI
UT WOS:000263193900022
ER
PT J
AU Fleenor, SA
Biagi, CJ
Cummins, KL
Krider, EP
Shao, XM
AF Fleenor, Stacy A.
Biagi, Christopher J.
Cummins, Kenneth L.
Krider, E. Philip
Shao, Xuan-Min
TI Characteristics of cloud-to-ground lightning in warm-season
thunderstorms in the Central Great Plains
SO ATMOSPHERIC RESEARCH
LA English
DT Article; Proceedings Paper
CT 13th International Conference on Atmospheric Electricity
CY AUG 13-17, 2007
CL Beijing, PEOPLES R CHINA
SP Int Commiss Atmospher Elect
DE Lightning; Positive; Negative; Central Great Plains; Thunderstorms
ID ALAMOS SFERIC ARRAY; STROKE WAVE-FORMS; PEAK CURRENT; SUMMER
THUNDERSTORMS; RETURN STROKES; UNITED-STATES; SEVERE STORMS; POLARITY;
PRECIPITATION; DISCHARGES
AB In July 2005, a Held campaign was conducted in the Central Great Plains to obtain 60-field/s video imagery of lightning in correlation with reports from the U.S. National Lightning Detection Network (NLDN) and broadband electric field waveforms from the Los Alamos Sferic Array (LASA). A total of 342 GPS time-stamped cloud-to-ground (CG) flashes were recorded in 17 different sessions, and 311 (91%) of these were correlated with reports from the NLDN. Only 6 of the 17 recording sessions were dominated by flashes that lowered negative charge to ground, and 11 were dominated by positive CG flashes. A total of 103 flashes recorded on video were correlated with at least one NLDN report of negative CC strokes, 204 video flashes were correlated with one or two positive stroke reports, and 4 had bipolar reports. In this paper, we will give distributions of the estimated peak current, I(p), as reported by the NLDN, of negative and positive first strokes that were recorded on video, the multiplicity of strokes that were recorded on video, and the number of ground contacts per flash that were resolved on video. 41 (40%) of the negative flashes produced just a single-stroke on video, and 62 (60%) showed two or more strokes. The observed multiplicity of negative flashes averaged 2.83, which becomes about 3.14 after correcting for the finite time-resolution of the video camera. 195 (96%) of the positive flashes produced just a single-stroke on video, and 9 (4%) showed two strokes; therefore, the observed multiplicity of positive flashes averaged 1.04. Five out of 9 (56%) of the positive subsequent strokes re-illuminated a previous channel, and 4 out of 9 (44%) created a new ground contact. Simultaneous video, LASA, and NLDN measurements also allowed us to examine the classification of NLDN reports during 3 single-cell storms (one negative and two positive). Based on the LASA waveforms, a total of 204 out of 376 (54%) NLDN reports of CG strokes were determined to be for cloud pulses. The misclassified negative reports had vertical bar I(p)vertical bar values ranging from 3.8 kA to 29.7 kA, but only 58 (24%) of these had vertical bar I(p)vertical bar > 10 kA, and only one misclassified positive report had I(p)>20 kA. Radar analyses showed that most of the negative and positive CG strokes that were recorded on video were produced within or near the convective cores of storms. The radar imagery also showed that single-cell storms tended to produce one polarity of CG flashes at a time, and that such storms could switch rapidly from negative to positive CG flashes when the reflectivity was near maximum, Multiple-cell storms produced both negative and positive flashes over a broad region, but each polarity tended to cluster near regions of high-reflectivity. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Fleenor, Stacy A.; Biagi, Christopher J.; Cummins, Kenneth L.; Krider, E. Philip] Univ Arizona, Dept Atmospher Sci, Tucson, AZ 85721 USA.
[Biagi, Christopher J.] Univ Florida, Gainesville, FL USA.
[Cummins, Kenneth L.] Vaisola NLDN, Tucson, AZ USA.
[Shao, Xuan-Min] Los Alamos Natl Lab, Los Alamos, NM USA.
RP Krider, EP (reprint author), Univ Arizona, Dept Atmospher Sci, PAS Room 542,1118 E 4th St,POB 210081, Tucson, AZ 85721 USA.
EM krider@atmo.arizona.edu
OI Cummins, Kenneth/0000-0001-9871-691X
NR 61
TC 55
Z9 56
U1 3
U2 17
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 0169-8095
J9 ATMOS RES
JI Atmos. Res.
PD FEB
PY 2009
VL 91
IS 2-4
BP 333
EP 352
DI 10.1016/j.atmosres.2008.08.011
PG 20
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 405AI
UT WOS:000263193900027
ER
PT J
AU Mellone, BG
AF Mellone, Barbara G.
TI Structural and temporal regulation of centromeric chromatin
SO BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE
LA English
DT Article; Proceedings Paper
CT Annual Meeting of the
Canadian-Society-of-Biochemistry-Molecular-and-Cellular-Biology on
Epigenetics and Chromatin Dynamics
CY MAR 06-09, 2008
CL Banff, CANADA
SP Canadian Soc Biochem Mole & Cellular Biol
DE centromere; kinetochore; CenH3; CENP-A; chromatin
ID FISSION YEAST CENTROMERE; FUNCTIONAL DROSOPHILA CENTROMERE; CENP-A
CHROMATIN; CHROMOSOME SEGREGATION; SACCHAROMYCES-CEREVISIAE; BUDDING
YEAST; HISTONE H3; KINETOCHORE; HETEROCHROMATIN; PROTEIN
AB Normal inheritance of genetic material requires that chromosomes segregate faithfully during mitosis and meiosis. The kinetochore is a unique structure that attaches chromosomes to the microtubule spindle, monitors proper chromosome attachment to the spindle through the mitotic checkpoint, and Couples spindle and motor protein forces to move chromosomes during prometaphase and anaphase. The centromere is a specialized chromosomal site that is the structural and functional foundation for kinetochore formation, and is characterized by a unique type of chromatin that needs to be reconstituted after each replication cycle. In this review, recent progress ill understanding the structural nature of this chromatin and how it is specifically maintained through cell division are discussed.
C1 [Mellone, Barbara G.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.
[Mellone, Barbara G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome & Computat Biol, Berkeley, CA 94720 USA.
RP Mellone, BG (reprint author), Univ Connecticut, Dept Mol & Cell Biol, 354 Mansfield Rd,Unit 2131, Storrs, CT 06269 USA.
EM barbara.mellone@uconn.edu
OI Mellone, Barbara/0000-0002-2785-5119
NR 73
TC 5
Z9 5
U1 0
U2 0
PU NATL RESEARCH COUNCIL CANADA-N R C RESEARCH PRESS
PI OTTAWA
PA BUILDING M 55, OTTAWA, ON K1A 0R6, CANADA
SN 0829-8211
J9 BIOCHEM CELL BIOL
JI Biochem. Cell Biol.
PD FEB
PY 2009
VL 87
IS 1
BP 255
EP 264
DI 10.1139/O08-121
PG 10
WC Biochemistry & Molecular Biology; Cell Biology
SC Biochemistry & Molecular Biology; Cell Biology
GA 439CM
UT WOS:000265605100023
PM 19234539
ER
PT J
AU Hark, AT
Vlachonasios, KE
Pavangadkar, KA
Rao, S
Gordon, H
Adamakis, ID
Kaldis, A
Thomashow, MF
Triezenberg, SJ
AF Hark, Amy T.
Vlachonasios, Konstantinos E.
Pavangadkar, Kanchan A.
Rao, Sumana
Gordon, Hillary
Adamakis, Ioannis-Dimosthenis
Kaldis, Athanasios
Thomashow, Michael F.
Triezenberg, Steven J.
TI Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have
distinct biological functions
SO BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS
LA English
DT Article
DE Histone acetylation; Transcriptional coactivator; Abiotic stress
ID HISTONE ACETYLTRANSFERASE COMPLEX; GENE-EXPRESSION; SANT DOMAIN; GCN5;
ACETYLATION; DROSOPHILA; CHROMATIN; ACTIVATION; HOMOLOGS; PROTEINS
AB Histone acetylation is an example of covalent modification of chromatin structure that has the potential to regulate gene expression. Gcn5 is a prototypical histone acetyltransferase that associates with the transcriptional coactivator Ada2. In Arabidopsis, two genes encode proteins that resemble yeast ADA2 and share approximately 45% amino acid sequence identity. We previously reported that plants harboring a T-DNA insertion in the ADA2b gene display a dwarf phenotype with developmental defects in several organs. Here we describe T-DNA insertion alleles in the ADA2a gene, which result in no dramatic growth or developmental phenotype. Both ADA2a and ADA2b are expressed in a variety of plant tissues; moreover, expression of ADA2a from a constitutive promoter fails to complement the ada2b-1 mutant phenotype, consistent with the hypothesis that the two proteins have distinct biochemical roles. To further probe the cellular roles of ADA2a and ADA2b, we studied the response of the transcriptional coactivator mutants to abiotic stress. Although ada2b seedlings display hypersensitivity to salt and abscisic acid and altered responses to low temperature stress, the responses of ada2a seedlings to abiotic stress generally parallel those of wildtype plants. Intriguingly, ada2a;ada2b double mutant plants display an intermediate, gcn5-like phenotype, suggesting that ADA2a and ADA2b each work independently with GCN5 to affect genome function in Arabidopsis. (C) 2008 Elsevier B.V. All rights reserved.
C1 [Hark, Amy T.; Rao, Sumana; Gordon, Hillary] Muhlenberg Coll, Dept Biol, Allentown, PA 18104 USA.
[Vlachonasios, Konstantinos E.; Adamakis, Ioannis-Dimosthenis; Kaldis, Athanasios] Aristotle Univ Thessaloniki, Dept Bot, Sch Biol, Thessaloniki 54124, Greece.
[Pavangadkar, Kanchan A.; Thomashow, Michael F.; Triezenberg, Steven J.] Michigan State Univ, Grad Program Genet, E Lansing, MI 48824 USA.
[Thomashow, Michael F.] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA.
[Thomashow, Michael F.] Michigan State Univ, Plant Res Lab, MSU DOE, E Lansing, MI 48824 USA.
[Triezenberg, Steven J.] Van Andel Res Inst, Grand Rapids, MI 49503 USA.
RP Hark, AT (reprint author), Muhlenberg Coll, Dept Biol, 2400 Chew St, Allentown, PA 18104 USA.
EM hark@muhlenberg.edu
RI Vlachonasios, Konstantinos/F-2001-2011
FU NSF [MCB-0240309]; Michigan State University; Muhlenberg College; Greek
Ministry of Education [21964]
FX We thank the Arabidopsis Knockout Facility at the University of
Wisconsin for making available the initial T-DNA mutant populations and
the Salk Institute Genomic Analysis Laboratory for providing the
sequence-indexed Arabidopsis T-DNA insertion mutants. ATH thanks Sunny
Saxena for his assistance in the phenotypic analysis of the ada2a-3
mutant. David Nadziejka (VARI) provided editorial assistance. This work
was supported by NSF grant MCB-0240309, Michigan State University,
Muhlenberg College, and the Greek Ministry of Education (EPEAEK,
Pythagoras #21964).
NR 38
TC 25
Z9 30
U1 2
U2 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1874-9399
J9 BBA-GENE REGUL MECH
JI Biochim. Biophys. Acta-Gene Regul. Mech.
PD FEB
PY 2009
VL 1789
IS 2
BP 117
EP 124
DI 10.1016/j.bbagrm.2008.09.003
PG 8
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 403HM
UT WOS:000263073700006
PM 18929690
ER
PT J
AU Mukundan, H
Xie, HZ
Anderson, AS
Gracet, WK
Shively, JE
Swanson, BI
AF Mukundan, Harshini
Xie, Hongzhi
Anderson, Aaron S.
Gracet, W. Kevin
Shively, John E.
Swanson, Basil I.
TI Optimizing a Waveguide-Based Sandwich Immunoassay for Tumor Biomarkers:
Evaluating Fluorescent Labels and Functional Surfaces
SO BIOCONJUGATE CHEMISTRY
LA English
DT Article
ID QUANTUM DOTS; BREAST-CANCER; PROBES; NANOCRYSTALS; DYES
AB The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor for the detection of biomarkers associated with disease. We have previously demonstrated the application of this technology to the sensitive detection of carcinoembryonic antigen in serum and nipple aspirate fluid from breast cancer patients. In this publication, we report improvements to this technology that will facilitate transition to a point-of-care diagnostic system and/or robust research tool. The first improvement involved replacing phospholipid bilayers used for waveguide functionalization with self-assembled monolayers. These thin films are stable, specific, and robust silane-based surfaces that reduce nonspecific binding and enhance the signal to background ratio. Second, we have explored four different fluorescent labeling paradigms to determine the optimal procedure for use in the assay. Labeling the detector antibody with an organic dye (AlexaFluor 647) in the hinge region allows for unusual signal enhancement with repeat excitation (at 635 nm) in our assay format, thereby facilitating a better signal resolution at lower concentrations of the antigen. We have also labeled the detector antibody with photostable quantum dots through either the amine groups of lysine (Fc, NH) or using a histidine tag in the hinge region of the antibody (Hinge, H). Both labeling strategies allow for acceptable signal resolution, but quantum dots show much greater resistance to photobleaching than organic dyes.
C1 [Swanson, Basil I.] Los Alamos Natl Lab, C PCS, C Div, MS J567, Los Alamos, NM 87545 USA.
[Shively, John E.] City Hope Natl Med Ctr, Beckman Res Inst, Duarte, CA 91010 USA.
RP Swanson, BI (reprint author), Los Alamos Natl Lab, C PCS, C Div, MS J567, POB 1663, Los Alamos, NM 87545 USA.
EM basil@lanl.gov
FU Los Alamos National Laboratory directed research (LDRD)
FX The authors thank Karen Grace, Sohee Jeong, and Jennifer Martinez at the
Los Alamos National Laboratory for help with waveguide instrumentation
and helpful suggestions. This work was supported, in part, by a Los
Alamos National Laboratory directed research (LDRD) grant.
NR 21
TC 22
Z9 22
U1 4
U2 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1043-1802
J9 BIOCONJUGATE CHEM
JI Bioconjugate Chem.
PD FEB
PY 2009
VL 20
IS 2
BP 222
EP 230
DI 10.1021/bc800283e
PG 9
WC Biochemical Research Methods; Biochemistry & Molecular Biology;
Chemistry, Multidisciplinary; Chemistry, Organic
SC Biochemistry & Molecular Biology; Chemistry
GA 409TP
UT WOS:000263529000008
PM 19173652
ER
PT J
AU Beller, HR
Legler, TC
Bourguet, F
Letain, TE
Kane, SR
Coleman, MA
AF Beller, Harry R.
Legler, Tina C.
Bourguet, Feliza
Letain, Tracy E.
Kane, Staci R.
Coleman, Matthew A.
TI Identification of c-type cytochromes involved in anaerobic, bacterial
U(IV) oxidation
SO BIODEGRADATION
LA English
DT Article
DE Cytochrome; Anaerobic; Thiobacillus denitrificans; Uranium; Genetic
system
ID THIOBACILLUS-DENITRIFICANS; PROTEINS; DATABASE; NITRATE
AB Anaerobic, bacterial reduction of water-soluble U(VI) complexes to the poorly soluble U(IV) mineral uraninite has been intensively studied as a strategy for in situ remediation of uranium-contaminated groundwater. A novel and potentially counteracting metabolic process, anaerobic, nitrate-dependent U(IV) oxidation, has recently been described in two bacterial species (Geobacter metallireducens and Thiobacillus denitrificans), but the underlying biochemistry and genetics are completely unknown. We report here that two diheme, c-type cytochromes (putatively c (4) and c (5) cytochromes) play a major role in nitrate-dependent U(IV) oxidation by T. denitrificans. Insertion mutations in each of the two genes encoding these cytochromes resulted in a greater than 50% decrease in U(IV) oxidation activity, and complementation in trans restored activity to wild-type levels. Sucrose-density-gradient ultracentrifugation confirmed that both cytochromes are membrane-associated. Insertion mutations in genes encoding other membrane-associated, c-type cytochromes did not diminish U(IV) oxidation. This is the first report of proteins involved in anaerobic U(IV) oxidation.
C1 [Beller, Harry R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Beller, Harry R.; Legler, Tina C.; Bourguet, Feliza; Letain, Tracy E.; Kane, Staci R.; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
RP Beller, HR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,Mail Stop 70A-3317, Berkeley, CA 94720 USA.
EM hrbeller@lbl.gov
RI Beller, Harry/H-6973-2014;
OI Coleman, Matthew/0000-0003-1389-4018
FU U.S. Department of Energy by the University of California; Lawrence
Livermore National Laboratory [W-7405-Eng-48]
FX We thank Rachel Lindvall and Edmund Salazar (LLNL) for technical
assistance. De novo peptide sequencing was performed by ProtTech, Inc.
(Norristown, PA). This work was performed under the auspices of the U.S.
Department of Energy by the University of California, Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.
NR 19
TC 12
Z9 12
U1 0
U2 15
PU SPRINGER
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 0923-9820
J9 BIODEGRADATION
JI Biodegradation
PD FEB
PY 2009
VL 20
IS 1
BP 45
EP 53
DI 10.1007/s10532-008-9198-y
PG 9
WC Biotechnology & Applied Microbiology
SC Biotechnology & Applied Microbiology
GA 389II
UT WOS:000262085700005
PM 18470655
ER
PT J
AU Wada, M
Heux, L
Nishiyama, Y
Langan, P
AF Wada, Masahisa
Heux, Laurent
Nishiyama, Yoshiharu
Langan, Paul
TI X-ray Crystallographic, Scanning Microprobe X-ray Diffraction, and
Cross-Polarized/Magic Angle Spinning C-13 NMR Studies of the Structure
of Cellulose IIIII
SO BIOMACROMOLECULES
LA English
DT Article
ID NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; LIQUID-AMMONIA
TREATMENT; CRYSTAL-STRUCTURE; NATIVE CELLULOSE; ENZYMATIC-HYDROLYSIS;
HIGH-TEMPERATURES; COTTON FIBERS; I-BETA; TRANSFORMATION
AB The X-ray crystallographic structure of cellulose IIIII is characterized by disorder; the unit cell (space group P2(1); a = 4.45 angstrom, b = 7.64 angstrom, c = 10.36 angstrom, alpha = beta = 90 degrees, gamma = 106.96 degrees) is occupied by one chain that is the average of statistically disordered antiparallel chains. C-13 CP/MAS NMR studies reveal the presence of three distinct molecular conformations that can be interpreted as a mixture of two different crystal forms, one equivalent to cellulose IIIII and another with two independent glucosyl conformations in the asymmetric unit. Both X-ray crystallographic and C-13 NMR spectroscopic results are consistent with an aggregated microdomain structure for cellulose IIIII. This structure can be generated from a new crystal form (space group P2(1); a = 4.45 angstrom, b = 14.64 angstrom, c = 10.36 angstrom, alpha = beta = 90 degrees, gamma = 90.05 degrees; two crystallographically independent and antiparallel chains; gt hydroxymethyl groups) by multiple dislocation defects. These defects produce microdomains of the new crystal form and cellulose IIIt that scanning microprobe diffraction studies show are distributed consistently through the cellulose IIIII fiber.
C1 [Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA.
[Wada, Masahisa] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat Sci, Tokyo 1138657, Japan.
[Heux, Laurent; Nishiyama, Yoshiharu] Univ Grenoble 1, CNRS, Ctr Rech Macromol Vegetales, F-38041 Grenoble 9, France.
RP Langan, P (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA.
EM langan_paul@lanl.gov
RI Nishiyama, Yoshiharu/A-3492-2012; ID, BioCAT/D-2459-2012; Langan,
Paul/N-5237-2015
OI Nishiyama, Yoshiharu/0000-0003-4069-2307; Langan,
Paul/0000-0002-0247-3122
FU Scientific Research [18780131]; French Agence Nationale de la Recherche;
Office of Biological and Environmental Research of the Department of
Energy; National Institute of Medical Sciences of the National
Institutes of Health [1R01GM071939-01]; Los Alamos National Laboratory
[20080001DR]
FX We thank beam line BL38B1 at the SPring-8, Japan, and beam lines NECAT
and BIOCAT at the Advanced Photon Source for use of facilities. We also
thank Raul Barrea, Joseph Orgel, and Narayanasami Sukumar for help with
data collection on BIOCAT and NECAT. M.W. was supported by a
Grant-in-Aid for Scientific Research (18780131). This study was partly
funded by the French Agence Nationale de la Recherche. P.L. was
supported in part by the Office of Biological and Environmental Research
of the Department of Energy, a grant from the National Institute of
Medical Sciences of the National Institutes of Health (1R01GM071939-01),
and a Laboratory Directed Research and Development grant from Los Alamos
National Laboratory (20080001DR).
NR 51
TC 28
Z9 30
U1 1
U2 15
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1525-7797
J9 BIOMACROMOLECULES
JI Biomacromolecules
PD FEB
PY 2009
VL 10
IS 2
BP 302
EP 309
DI 10.1021/bm8010227
PG 8
WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science
SC Biochemistry & Molecular Biology; Chemistry; Polymer Science
GA 405LM
UT WOS:000263226300014
PM 19199578
ER
PT J
AU Granderson, J
Sandhu, JS
Vasquez, D
Ramirez, E
Smith, KR
AF Granderson, Jessica
Sandhu, Jaspal S.
Vasquez, Domitila
Ramirez, Expedita
Smith, Kirk R.
TI Fuel use and design analysis of improved woodburning cookstoves in the
Guatemalan Highlands
SO BIOMASS & BIOENERGY
LA English
DT Article
DE RESPIRE study; Woodfuel; Fuel efficiency; Kitchen performance test;
Participant observation; Human factors; Contextual design
ID DEVELOPING-COUNTRIES
AB This study examined the fuel use and design of an improved woodburning cookstove (plancha), in comparison to traditional cooking over an open woodfire. These cookstoves had been randomly introduced into population households in the Guatemalan Highlands that had previously used open woodfires. This research consisted of: (1) a 12-household Kitchen Performance Test (KPT) over a 4-day period and (2) single-day participant observation in five households. The KPT monitored fuel consumption and the number, age, and gender of people who were cooked for, while the participant observation was used to form a complete understanding of fuel use patterns and to examine the influence of stove condition and cooking behavior. In spite of fairly low variability in the fuel use data (coefficients of variation of about 0.34) the KPT did not show statistically significant differences in fuel use between the two cooking methods. It is possible that increased study power through a larger sample size may have resulted in a statistically significant difference in favor of the plancha, but it is doubtful that the size of the effect would be of any practical significance. Thus, although other studies have shown that the plancha is extremely effective in reducing indoor air pollution in the study area, the KPT did not indicate that it offered any benefits with respect to fuel use. Practical and experimental recommendations for future cookstove efficiency studies are presented, with directions for continued work in this area. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Granderson, Jessica] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
[Sandhu, Jaspal S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.
[Vasquez, Domitila; Ramirez, Expedita] Univ Valle Gautemala, Proyecto RESPIRE, Ctr Estudios Salud, Guatemala City 01901, Guatemala.
[Smith, Kirk R.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA.
RP Granderson, J (reprint author), 2201 Virginia St,Apt 9, Berkeley, CA 94709 USA.
EM jgrander@me.berkeley.edu
FU Brian and Jennifer Maxwell Endowed Chair in Public Health; National
Institute of Environmental Health Sciences; Guatemala Ministry of Health
FX The authors would like to thank Professor Kirk Smith's Brian and
Jennifer Maxwell Endowed Chair in Public Health for providing funding
for this research in its entirety. Our work would not have been possible
without the assistance of the RESPIRE project, in collaboration with the
Center of Health Studies, at Universidad del Valle de Guatemala, which
was funded by the National Institute of Environmental Health Sciences,
and the Guatemala Ministry of Health. The assistance of the following
people in the RESPIRE randomized trial at the site was invaluable to our
project: Anaite Diaz Artiga, Mayari Hengstermann, Eduardo Canuz Castro,
and Vicente Tema Lopez. We also appreciate the help and advice of Lisa
Thompson, Alisa Jenny, and Yu Kuwabara of UC Berkeley and John McCracken
at the Harvard University School of Public Health. The authors are very
grateful for the generosity and openness of the participating
households, without whom this study could not have taken place. Finally,
we thank the anonymous reviewers who provided us with critical,
constructive feedback.
NR 22
TC 24
Z9 25
U1 1
U2 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0961-9534
J9 BIOMASS BIOENERG
JI Biomass Bioenerg.
PD FEB
PY 2009
VL 33
IS 2
BP 306
EP 315
DI 10.1016/j.biombioe.2008.06.003
PG 10
WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy &
Fuels
SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels
GA 416HA
UT WOS:000263995200017
ER
PT J
AU Shabalovskaya, SA
Tian, H
Anderegg, JW
Schryvers, DU
Carroll, WU
Van Humbeeck, J
AF Shabalovskaya, Svetlana A.
Tian, He
Anderegg, Jarnes W.
Schryvers, Dominique U.
Carroll, William U.
Van Humbeeck, Jan
TI The influence of surface oxides on the distribution and release of
nickel from Nitinol wires
SO BIOMATERIALS
LA English
DT Article
DE Nitinol; Ti oxides; Ni ion release; Corrosion; Biocompatibility; Intimal
hyperplasia
ID SHAPE-MEMORY ALLOYS; EXPANDING CORONARY STENT; CORROSION BEHAVIOR;
BIOCOMPATIBILITY; RESISTANCE; OXIDATION
AB The patterns of Ni release from Nitinol vary depending on the type of material (Ni-Ti alloys with low or no processing versus commercial wires or sheets). A thick TiO(2) layer generated on the wire surface during processing is often considered as a reliable barrier against Ni release. The present study of Nitinol wires with surface oxides resulting from production was conducted to identify the sources of Ni release and its distribution in the surface sublayers. The chemistry and topography of the surfaces of Nitinol wires drawn using different techniques were studied with XPS and SEM. The distribution of Ni into surface depth and the surface oxide thickness were evaluated using Auger spectroscopy, TEM with FIB and ELNES. Ni release was estimated using either ICPA or AAS. Potentiodynamic potential polarization of selected wires was performed in as-received state with no strain and in treated strained samples. Wire samples in the as-received state showed low breakdown potentials (200 mV): the improved Corrosion resistance of these wires after treatment was not affected by strain. It is shown how processing techniques affect surface topography, chemistry and also Ni release. Nitinol wires with the thickest surface oxide TiO(2) (LIP to 720 nM) showed the highest Ni release, attributed to the presence of particles of essentially pure Ni whose number and size increased while approaching the interface between the surface and the bulk. The biological implications of high and lasting Ni release are also discussed. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Shabalovskaya, Svetlana A.; Van Humbeeck, Jan] Katholieke Univ Leuven, Dept Met & Mat Sci, B-3001 Louvain, Belgium.
[Tian, He; Schryvers, Dominique U.] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium.
[Shabalovskaya, Svetlana A.; Anderegg, Jarnes W.] Ames Lab DOE, Ames, IA 50011 USA.
[Carroll, William U.] Natl Univ Ireland, Dept Chem, Galway, Ireland.
RP Shabalovskaya, SA (reprint author), Katholieke Univ Leuven, Dept Met & Mat Sci, B-3001 Louvain, Belgium.
EM svetinol@yahoo.com
FU National Science Foundation of Flanders [0465.05]; Iowa State University
of Science and Technology [DE-AC02-07CH11358]; Department of Energy
FX The Research Fund of K.U. Leuven is acknowledged for a partial financial
support. Part of this work was also funded by the National Science
Foundation of Flanders under the project G.0465.05 The functional
properties of shape memory alloys: a fundamental approach.' This
manuscript has been also authored by Iowa State University of Science
and Technology under Contract No. DE-AC02-07CH11358 with the U.S.
Department of Energy. The authors also thankful to G. Rondelli for the
assistance with the corrosion tests. One of the authors appreciates a
productive discussion with M. Rettenmayr.
NR 27
TC 64
Z9 69
U1 2
U2 26
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0142-9612
J9 BIOMATERIALS
JI Biomaterials
PD FEB
PY 2009
VL 30
IS 4
BP 468
EP 477
DI 10.1016/j.biomaterials.2008.10.014
PG 10
WC Engineering, Biomedical; Materials Science, Biomaterials
SC Engineering; Materials Science
GA 389BR
UT WOS:000262065500006
PM 18996586
ER
PT J
AU Tarasevich, BJ
Lea, S
Bernt, W
Engelhard, MH
Shaw, WJ
AF Tarasevich, Barbara J.
Lea, Scott
Bernt, William
Engelhard, Mark H.
Shaw, Wendy J.
TI Rapid Communication Changes in the Quaternary Structure of Amelogenin
When Adsorbed onto Surfaces
SO BIOPOLYMERS
LA English
DT Article
DE amelogenin; nanospheres; quaternary structure
ID ATOMIC-FORCE MICROSCOPY; DYNAMIC LIGHT-SCATTERING; ENAMEL MATRIX;
NANOSPHERES; MONOLAYERS; ADSORPTION; PROTEINS; MODEL
AB Amelogenin is a unique protein that self-assembles into spherical aggregates called "nanospheres" and is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin onto substrates is of great interest because protein-surface interactions are critical to its function. We report studies of the adsorption of amelogenin onto self-assembled monolayers containing COOH end group functionality as well as single crystal fluoroapatite, a biologically relevant surface. We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as dimers or trimers were observed oil the hydrophilic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that "shed" or disassemble from the nanospheres that are present in solution. (c) 2008 Wiley Periodicals, Inc. Biopolymers 91: 103-107, 2009.
C1 [Tarasevich, Barbara J.; Lea, Scott; Engelhard, Mark H.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99352 USA.
[Bernt, William] Particle Characterizat Labs, Novato, CA 94945 USA.
RP Tarasevich, BJ (reprint author), Pacific NW Natl Lab, 908 Battelle Blvd, Richland, WA 99352 USA.
EM bjtarasevich@pnl.gov; wendy.shaw@pnl.gov
RI Engelhard, Mark/F-1317-2010;
OI Lea, Alan/0000-0002-4232-1553; Engelhard, Mark/0000-0002-5543-0812
FU NIH-NIDCR [DE-015347]
FX Contract grant sponsor: NIH-NIDCR Contract grant number: DE-015347
NR 18
TC 20
Z9 20
U1 1
U2 4
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0006-3525
J9 BIOPOLYMERS
JI Biopolymers
PD FEB
PY 2009
VL 91
IS 2
BP 103
EP 107
DI 10.1002/bip.21095
PG 5
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 389CE
UT WOS:000262067100001
PM 19025992
ER
PT J
AU Chan, JW
Taylor, DS
Thompson, DL
AF Chan, James W.
Taylor, Douglas S.
Thompson, Deanna L.
TI The Effect of Cell Fixation on the Discrimination of Normal and Leukemia
Cells with Laser Tweezers Raman Spectroscopy
SO BIOPOLYMERS
LA English
DT Article
DE Raman spectroscopy; laser tweezers; leukemia; cell fixation; cancer
ID SECONDARY STRUCTURE; METAL-BINDING; AMYLOID-BETA; IN-VITRO;
MICROSPECTROSCOPY; IDENTIFICATION; SPECTRA; TISSUES; CANCER; TUMOR
AB Laser tweezers Raman spectroscopy (LTRS) was used to characterize the effect of different chemical fixation procedures on the Raman spectra of normal and leukemia cells. Individual unfixed, paraformaldehyde-fixed, and methanol-fixed normal and transformed lymphocytes from three different cell lines were analyzed with LTRS. When compared to the spectra of unfixed cells, the fixed cell spectra show clear, reproducible changes in the intensity of specific Raman markers commonly assigned to DNA, RNA, protein, and lipid vibrations (e.g. 785, 1230, 1305, 1660 cm(-1)) in mammalian cells, many of which are important markets that have been used to discriminate between normal and cancer lymphocytes. Statistical analyses of the Raman data and classification using principal component analysis and linear discriminant analysis indicate that methanol fixation induces a greater change in the Raman spectra than paraformaldehyde. In addition, we demonstrate that the spectral changes as a result of the fixation process have an adverse effect on the accurate Raman discrimination of the normal and cancer cells. The spectral artifacts created by the use of fixatives indicate that the method of cell preparation is an important parameter to consider when applying Raman spectroscopy to characterize, image, or differentiate between different fixed cell samples to avoid potential misinterpretation of the data. (c) 2008 Wiley Periodicals, Inc. Biopolymers 91: 132-139, 2009.
C1 [Chan, James W.] Lawrence Livermore Natl Lab, Appl Phys & Biophys Div, Livermore, CA 94550 USA.
[Chan, James W.; Taylor, Douglas S.; Thompson, Deanna L.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA.
[Taylor, Douglas S.] Univ Calif Davis, Dept Pediat, Sacramento, CA 95817 USA.
[Thompson, Deanna L.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA.
RP Chan, JW (reprint author), Lawrence Livermore Natl Lab, Appl Phys & Biophys Div, Livermore, CA 94550 USA.
EM chan19@llnl.gov
RI Chan, James/J-3829-2014;
OI Wolfson, Deanna/0000-0001-6059-2472
FU U.S. Department of Energy by Lawrence Livermore National Laboratory
[W-7405-Eng-48, DE-AC52-07NA27344]; National Science Foundation, Center
for Biophotonics Science and Technology [PHY 0120999]; Children's
Miracle Network, Keaton-Raphael Memorial Fund
FX Contract grant sponsor: U.S. Department of Energy by Lawrence Livermore
National Laboratory Contract grant numbers: W-7405-Eng-48,
DE-AC52-07NA27344 Contract grant sponsor: National Science Foundation,
Center for Biophotonics Science and Technology Contract grant number:
PHY 0120999 Contract grant sponsor: Children's Miracle Network,
Keaton-Raphael Memorial Fund
NR 27
TC 30
Z9 30
U1 1
U2 16
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0006-3525
J9 BIOPOLYMERS
JI Biopolymers
PD FEB
PY 2009
VL 91
IS 2
BP 132
EP 139
DI 10.1002/bip.21094
PG 8
WC Biochemistry & Molecular Biology; Biophysics
SC Biochemistry & Molecular Biology; Biophysics
GA 389CE
UT WOS:000262067100004
PM 18825777
ER
PT J
AU Williams, DN
Ananthakrishnan, R
Bernholdt, DE
Bharathi, S
Brown, D
Chen, M
Chervenak, AL
Cinquini, L
Drach, R
Foster, IT
Fox, P
Fraser, D
Garcia, J
Hankin, S
Jones, P
Middleton, DE
Schwidder, J
Schweitzer, R
Schuler, R
Shoshani, A
Siebenlist, F
Sim, A
Strand, WG
Su, M
Wilhelmi, N
AF Williams, D. N.
Ananthakrishnan, R.
Bernholdt, D. E.
Bharathi, S.
Brown, D.
Chen, M.
Chervenak, A. L.
Cinquini, L.
Drach, R.
Foster, I. T.
Fox, P.
Fraser, D.
Garcia, J.
Hankin, S.
Jones, P.
Middleton, D. E.
Schwidder, J.
Schweitzer, R.
Schuler, R.
Shoshani, A.
Siebenlist, F.
Sim, A.
Strand, W. G.
Su, M.
Wilhelmi, N.
TI THE EARTH SYSTEM GRID Enabling Access to Multimodel Climate Simulation
Data
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Article
AB By leveraging current technologies to manage distributed climate data in a unified virtual environment, the Earth System Grid (ESG) project is promoting data sharing between international research centers and diverse users. In transforming these data into a collaborative community resource, ESG is changing the way global climate research is conducted.
Since ESG's production beginnings in 2004, its most notable accomplishment was to efficiently store and distribute climate simulation data of some 20 global coupled ocean-atmosphere models to the scores of scientific contributors to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC); the IPCC collective scientific achievement was recognized by the award of a 2007 Nobel Peace Prize. Other international climate stakeholders such as the North American Regional Climate Change Assessment Program (NARCCAP) and the developers of the Community Climate System Model (CCSM) and of the Climate Science Computational End Station (CCES) also have endorsed ESG technologies for disseminating data to their respective user communities. In coming years, the recently created Earth System Grid Center for Enabling Technology (ESG-CET) will extend these methods to assist the international climate community in its efforts to better understand the global climate
C1 [Williams, D. N.; Drach, R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA.
[Ananthakrishnan, R.; Foster, I. T.; Fraser, D.; Siebenlist, F.] Argonne Natl Lab, Argonne, IL 60439 USA.
[Bernholdt, D. E.; Chen, M.; Schwidder, J.] Oak Ridge Natl Lab, Oak Ridge, TN USA.
[Bharathi, S.; Chervenak, A. L.; Schuler, R.; Su, M.] Univ So Calif, Informat Serv Inst, Marina Del Rey, CA USA.
[Brown, D.; Cinquini, L.; Fox, P.; Garcia, J.; Middleton, D. E.; Strand, W. G.; Wilhelmi, N.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA.
[Hankin, S.; Schweitzer, R.] NOAA PMEL, Seattle, WA USA.
[Jones, P.] Los Alamos Natl Lab, Los Alamos, NM USA.
[Shoshani, A.; Sim, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA.
RP Williams, DN (reprint author), Lawrence Livermore Natl Lab, Mail Stop L-103,POB 808, Livermore, CA 94551 USA.
EM williams13@llnl.gov
OI Strand, Warren/0000-0001-9740-0104; Fox, Peter/0000-0002-1009-7163
NR 10
TC 40
Z9 41
U1 0
U2 11
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
EI 1520-0477
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD FEB
PY 2009
VL 90
IS 2
BP 195
EP 205
DI 10.1175/2008BAMS2459.1
PG 11
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 418ZA
UT WOS:000264187600004
ER
PT J
AU Rauscher, SA
Covey, C
Henderson-Sellers, A
Giorgi, F
AF Rauscher, Sara A.
Covey, Curt
Henderson-Sellers, Ann
Giorgi, Filippo
TI DEVELOPING KNOW-HOW ON REGIONAL CLIMATE CHANGE RESEARCH
SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
LA English
DT Editorial Material
C1 [Rauscher, Sara A.; Giorgi, Filippo] Abdus Salam Int Ctr Theoret Phys, Earth Syst Phys Sect, I-34100 Trieste, Italy.
[Covey, Curt] Lawrence Livermore Natl Lab, Livermore, CA USA.
[Henderson-Sellers, Ann] Macquarie Univ, Sydney, NSW 2109, Australia.
RP Giorgi, F (reprint author), Abdus Salam Int Ctr Theoret Phys, Earth Syst Phys Sect, I-34100 Trieste, Italy.
EM giorgi@ictp.it
RI Henderson-Sellers, Ann/H-5323-2011; Giorgi, Filippo/C-3169-2013
NR 0
TC 0
Z9 0
U1 0
U2 4
PU AMER METEOROLOGICAL SOC
PI BOSTON
PA 45 BEACON ST, BOSTON, MA 02108-3693 USA
SN 0003-0007
J9 B AM METEOROL SOC
JI Bull. Amer. Meteorol. Soc.
PD FEB
PY 2009
VL 90
IS 2
BP 231
EP 234
DI 10.1175/2008BAMS2665.1
PG 4
WC Meteorology & Atmospheric Sciences
SC Meteorology & Atmospheric Sciences
GA 418ZA
UT WOS:000264187600007
ER
PT J
AU Yang, XN
Bonner, JL
AF Yang, Xiaoning
Bonner, Jessie L.
TI Characteristics of Chemical Explosive Sources from Time-Dependent Moment
Tensors
SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
LA English
DT Article
ID SURFACE-WAVES; INVERSION; NUCLEAR; SPALL; MESA; SEISMOGRAMS; RANGE
AB Using a frequency-domain linear inversion technique and near-source broadband data, we inverted for the time-dependent source moment tensors of eight chemical explosions detonated in an open-pit coal mine during the Source Phenomenology Experiments (SPE) conducted by a consortium of U. S. research institutions to investigate a suite of explosive-source related problems. The moment tensors of the explosions from the inversion are dominated by their isotropic components regardless of variations between explosions in source size, confinement condition, and whether the explosion was on a bench and collapsed the vertical face of the bench. The percentage of isotropic moment-tensor component ranges from 96% to 98% for largest part of the source-time histories. Source-configuration variations result in differences that are most apparent in long-period moment-tensor spectra reflecting possible secondary source effects such as cylindrical source shape, spall, and compensated linear vector dipole (CLVD). Unconfined explosions show more oscillatory diagonal moment-tensor component time histories than confined and partially confined explosions possibly due to stronger free-surface effects such as material cast. Compared with pit explosions, deviatoric components of moment tensors of the two bench explosions are of higher amplitudes. There is a discernible long-period (<5 Hz) signal on one of the off-diagonal components, which could be related to the presence of the bench face in the source region and the horizontal material cast by the explosions. Although off-diagonal moment-tensor components comprise a small portion of the moment tensor, they are capable of generating a disproportionally large amount of shear waves.
C1 [Yang, Xiaoning] Los Alamos Natl Lab, Solid Earth Geophys Grp, Los Alamos, NM 87545 USA.
[Bonner, Jessie L.] Weston Geophys Corp, Lexington, MA 02420 USA.
RP Yang, XN (reprint author), Los Alamos Natl Lab, Solid Earth Geophys Grp, EES 17,MS D408, Los Alamos, NM 87545 USA.
EM xyang@lanl.gov; jes_bonner@yahoo.com
FU U.S. Department of Energy by Los Alamos National Laboratory; Weston
Geophysical Corporation [DE-AC52-06NA25396, DE-FC03-02SF22638]
FX The Source Phenomenology Experiments (SPE) involved so many people and
so many institutions, companies, and local governments that it is
impossible to mention them all. We sincerely thank all the people who
participated in or provided support to the SPE planning, execution, and
data collection and processing. Howard Patton of Los Alamos National
Laboratory and Steve Taylor of Rocky Mountain Geophysics carefully read
the manuscript, and their insightful comments helped improve the study
and the manuscript. We thank David Bowers for his critical and valuable
review of the manuscript. The revised manuscript benefited greatly from
his comments and suggestions. We also appreciate the comments by an
anonymous reviewer. Associate Editor Jose Pujol provided valuable
editorial and professional assistance. Leidig et al. (2005) developed
the P-wave velocity model used in this study. This work was performed
under the auspices of the U.S. Department of Energy by Los Alamos
National Laboratory and Weston Geophysical Corporation under Contracts
Numbers DE-AC52-06NA25396 and DE-FC03-02SF22638.
NR 36
TC 4
Z9 5
U1 2
U2 4
PU SEISMOLOGICAL SOC AMER
PI EL CERRITO
PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA
SN 0037-1106
J9 B SEISMOL SOC AM
JI Bull. Seismol. Soc. Amer.
PD FEB 1
PY 2009
VL 99
IS 1
BP 36
EP 51
DI 10.1785/0120080243
PG 16
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 447HB
UT WOS:000266181100003
ER
PT J
AU Pei, SP
Cui, ZX
Sun, YS
Toksoz, MN
Rowe, CA
Gao, X
Zhao, JM
Liu, HB
He, JK
Morgan, FD
AF Pei, Shunping
Cui, Zhongxiong
Sun, Youshun
Toksoez, M. Nafi
Rowe, Charlotte A.
Gao, Xing
Zhao, Junmeng
Liu, Hongbing
He, Jiankun
Morgan, F. Dale
TI Structure of the Upper Crust in Japan from S-Wave Attenuation Tomography
SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
LA English
DT Article
ID STRUCTURE BENEATH; AMPLITUDE TOMOGRAPHY; P-WAVE; EARTHQUAKES; CHINA;
EVOLUTION; DISTRICT; SPECTRA; REGIONS; SURFACE
AB Seismic attenuation (Q-value) can be estimated by extracting the amplitude-frequency information contained in seismic waveforms. We apply the attenuation tomography method of Pei et al. (2006) using M(L) amplitude data to estimate attenuation within the upper crust in Japan. More than 60,000 Sg-wave maximum amplitude readings from 5559 events, recorded by 971 stations, were selected from the dense High-Sensitivity Seismography Network (Hi-net) under the condition that epicentral distance is less than 2 degrees and event depth is less than 10 km. The lateral S-wave Q variations of the upper crust at 1 Hz in Japan were obtained. The results indicate that low Q-values exist in the central Japanese islands, with almost the same distribution as volcanoes, while high Q-values exist mainly between the front of volcanoes and the Japanese east coast. In addition, a low Q was found between the eastern coast and the subducted trench. Most large crustal earthquakes occur in or around zones of low Q or the boundaries between areas of low and high Q, which will be very helpful in estimating the risk of large earthquakes.
C1 [Pei, Shunping; Cui, Zhongxiong; Gao, Xing; Zhao, Junmeng; Liu, Hongbing; He, Jiankun] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China.
[Sun, Youshun; Toksoez, M. Nafi; Morgan, F. Dale] MIT, Earth Resources Lab, Cambridge, MA 02319 USA.
[Rowe, Charlotte A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
RP Pei, SP (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China.
OI Rowe, Charlotte/0000-0001-5803-0147
FU National Natural Science Foundation of China [40674073, 40674031,
40674052]; Talent Project of the Chinese Academy of Sciences (CAS);
Knowledge Innovating Project of the CAS [kzcx3-sw-143]; Earth Resources
Laboratory at Massachusetts Institute of Technology [FA8718-04-C-0018];
Los Alamos National Laboratory, U.S. Department of Energy
FX We gratefully acknowledge the National Research Institute of Japan for
providing the data, and we thank Ling Bai for valuable suggestions and
discussion. This research was supported jointly by the National Natural
Science Foundation of China (Grant Numbers 40674073, 40674031, and
40674052), the Talent Project of the Chinese Academy of Sciences (CAS),
the Knowledge Innovating Project of the CAS (Grant Number kzcx3-sw-143),
the Earth Resources Laboratory at Massachusetts Institute of Technology
(under Contract Number FA8718-04-C-0018), and the Los Alamos National
Laboratory, U. S. Department of Energy.
NR 29
TC 6
Z9 6
U1 0
U2 2
PU SEISMOLOGICAL SOC AMER
PI EL CERRITO
PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA
SN 0037-1106
J9 B SEISMOL SOC AM
JI Bull. Seismol. Soc. Amer.
PD FEB 1
PY 2009
VL 99
IS 1
BP 428
EP 434
DI 10.1785/0120080029
PG 7
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 447HB
UT WOS:000266181100036
ER
PT J
AU Murphy, KR
Mayeda, K
Walter, WR
AF Murphy, Katherine R.
Mayeda, Kevin
Walter, William R.
TI Lg-Coda Methods Applied to Nevada Test Site Events: Spectral Peaking and
Yield Estimation
SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
LA English
DT Article
ID WESTERN UNITED-STATES; EXPLOSIONS; WAVES; EARTHQUAKES; MOMENT; SPALL
AB We have applied the regional S-wave coda calibration technique of Mayeda et al. (2003) to earthquake data in and around the Nevada Test Site (NTS) using four regional broadband stations from the Lawrence Livermore National Laboratory (LLNL) seismic network. We applied the same path and site corrections to tamped nuclear explosion data and averaged the source spectra over the four stations. Narrowband coda amplitudes from the spectra were then regressed against inferred yield based on the regional m(b)(Pn) magnitude of Denny et al. (1987), along with the yield formulation of Vergino and Mensing (1990). We find the following: (1) the coda-derived spectra show a peak that is dependent upon emplacement depth, not event size; (2) source size estimates are stable for the coda and show a dependence upon the near-source strength and gas porosity; (3) for explosions with the same m(b)(Pn) or inferred yield, those in weaker material have lower coda amplitudes at 1-3 Hz.
C1 [Murphy, Katherine R.; Mayeda, Kevin] Weston Geophys Corp, Lexington, MA 02420 USA.
[Walter, William R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
RP Murphy, KR (reprint author), Weston Geophys Corp, 181 Bedford St,Suite 1, Lexington, MA 02420 USA.
RI Walter, William/C-2351-2013
OI Walter, William/0000-0002-0331-0616
FU Department of Energy [DE-AC52-05NA26610]; U.S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory
[W-7405-Eng-48]
FX We would like to thank Sean Ford for providing seismic moment
information for Baseball and Borrego. We thank Anton Dainty and an
anonymous reviewer for their thoughtful reviews of the manuscript. Work
by K. R. Murphy and K. Mayeda was supported by the Department of Energy
Contract Number DE-AC52-05NA26610. Work by W. R. Walter was performed
under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract Number
W-7405-Eng-48. This is Lawrence Livermore National Laboratory
Contribution Number UCRL-JRNL-234567.
NR 24
TC 6
Z9 6
U1 0
U2 1
PU SEISMOLOGICAL SOC AMER
PI EL CERRITO
PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA
SN 0037-1106
J9 B SEISMOL SOC AM
JI Bull. Seismol. Soc. Amer.
PD FEB 1
PY 2009
VL 99
IS 1
BP 441
EP 448
DI 10.1785/0120080046
PG 8
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 447HB
UT WOS:000266181100038
ER
PT J
AU Arrowsmith, SJ
Whitaker, R
Katz, C
Hayward, C
AF Arrowsmith, Stephen J.
Whitaker, Rod
Katz, Charles
Hayward, Chris
TI The F-Detector Revisited: An Improved Strategy for Signal Detection at
Seismic and Infrasound Arrays
SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
LA English
DT Article
AB This short article explores and extends the adaptive detection algorithm recently developed by Arrowsmith, Whitaker, et al. (2008). In particular, this article highlights its application for seismic data, compares results for colocated seismic and infrasonic data, and assesses detector performance through comparison with analyst picks. We assess the adaptive detector by generating receiver-operating characteristic (ROC) curves, illustrating the trade-off between detection probability and false-alarm probability, and comparing the results with the conventional F-detector. The results show that the adaptive detector performs much better than the conventional detector for both seismic and infrasound data by maintaining high detection probabilities while significantly decreasing false-alarm probabilities, illustrating that correlated noise is ubiquitous for both types of data. The effect of the adaptation window is illustrated and shown to be especially important for infrasound data where diurnal variations in ambient noise levels are pronounced. A window choice of 1 hr (i.e., significantly less than 24 hr) is shown to be adequate for representing variations in ambient noise levels.
C1 [Arrowsmith, Stephen J.; Whitaker, Rod] Los Alamos Natl Lab, Los Alamos, NM 87545 USA.
[Katz, Charles] Sci Applicat Int Corp, San Diego, CA 92121 USA.
[Hayward, Chris] So Methodist Univ, Dedman Coll, Dept Geol Sci, Dallas, TX 75275 USA.
RP Arrowsmith, SJ (reprint author), Los Alamos Natl Lab, EES 17,POB 1663, Los Alamos, NM 87545 USA.
FU U.S. Department of Energy, Office of Non-Proliferation Research and
Development
FX We thank George Randall, Steve Taylor, Diane Doser, and an anonymous
referee for their comments on an earlier draft of this article. This
work was supported in part by the U.S. Department of Energy, Office of
Non-Proliferation Research and Development.
NR 6
TC 15
Z9 16
U1 0
U2 5
PU SEISMOLOGICAL SOC AMER
PI EL CERRITO
PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA
SN 0037-1106
J9 B SEISMOL SOC AM
JI Bull. Seismol. Soc. Amer.
PD FEB 1
PY 2009
VL 99
IS 1
BP 449
EP 453
DI 10.1785/0120080180
PG 5
WC Geochemistry & Geophysics
SC Geochemistry & Geophysics
GA 447HB
UT WOS:000266181100039
ER
PT J
AU Nikolic, I
Blecic, D
Radmilovic, V
AF Nikolic, I.
Blecic, D.
Radmilovic, V.
TI INVESTIGATION OF MECHANISM OF AL(OH)(3) CRYSTAL GROWTH
SO CANADIAN JOURNAL OF CHEMICAL ENGINEERING
LA English
DT Article
DE crystal growth; caustic soda solution; Al(OH)(3); oxalic acid
ID CAUSTIC ALUMINATE SOLUTIONS; ATOMIC-FORCE MICROSCOPY; GIBBSITE CRYSTALS;
TRIHYDROXIDE; NUCLEATION; MORPHOLOGY; KINETICS
AB Crystallization of Al(OH)(3) that occurs during the decomposition of caustic soda solutions is an important part of Bayer process for alumina production. Several phenomend, which influence the physicochemical characteristics of precipitated Al(OH)(3), occur Simultaneously during this process. They are nucleation, agglomeration, and crystal growth of Al(OH)(3). In this article, we have investigated the mechanism of Al(OH)(3) crystal growth from pure caustic soda solutions and in the presence of oxalic acid.
The results have shown that the growth of Al(OH)(3) crystals from caustic soda solutions follow the B+S model (birth and spread). New Al(OH)(3) particles, formed during the decomposition process of pure caustic soda solutions, are characterized by regular hexagonal shape. The nuclei have the same geometry as the contact face. However, microstructural investigations of Al(OH)(3) samples, obtained by crystallization from caustic soda solutions in the presence of oxalic acid, have shown the presence of nuclei of irregular shape in addition to regular ones. So, the presence of oxalic acid in the caustic soda solutions leads to a change in crystal habit.
Besides, the results obtained by kinetic investigation confirmed the mentioned mechanism of Al(OH)(3) crystal growth.
C1 [Nikolic, I.; Blecic, D.] Univ Montenegro, Fac Technol & Met, Podgorica 81000, Serbia.
[Radmilovic, V.] Univ Calif Berkeley, LBNL, NCEM, Berkeley, CA 94720 USA.
RP Nikolic, I (reprint author), Univ Montenegro, Fac Technol & Met, Cetinjski Put Bb, Podgorica 81000, Serbia.
FU U.S. Department of Energy [DE-AC02-05CH11231]
FX The authors acknowledge the support of the National Center for Electron
Microscopy, Lawrence Berkeley Lab., which is supported by the U.S.
Department of Energy under Contract a DE-AC02-05CH11231.
NR 19
TC 0
Z9 0
U1 1
U2 9
PU WILEY-BLACKWELL
PI MALDEN
PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA
SN 0008-4034
J9 CAN J CHEM ENG
JI Can. J. Chem. Eng.
PD FEB
PY 2009
VL 87
IS 1
BP 31
EP 37
DI 10.1002/cjce.20141
PG 7
WC Engineering, Chemical
SC Engineering
GA 416HT
UT WOS:000263997300004
ER
PT J
AU Dale, VH
Lannom, KO
Tharp, ML
Hodges, DG
Fogel, J
AF Dale, Virginia H.
Lannom, Karen O.
Tharp, M. Lynn
Hodges, Donald G.
Fogel, Jonah
TI Effects of climate change, land-use change, and invasive species on the
ecology of the Cumberland forests
SO CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE
FORESTIERE
LA English
DT Article
ID SOUTHERN NEW-ENGLAND; HEMLOCK FORESTS; VASCULAR FLORA; MODEL; TENNESSEE;
PLATEAU; PRECIPITATION; DISTURBANCES; SIMULATIONS; INFESTATION
AB Model projections suggest that both climate and land-use changes have large effects on forest biomass and composition in the Cumberland forests of Tennessee and Kentucky. These forests have high levels of diversity, ecological importance, land-use changes, and pressures due to invasive herbivorous insects and climate change. Three general circulation models project warming for all months in 2030 and 2080 and complex patterns of precipitation change. Climate changes from 1980 to 2100 were developed from these projections and used in the forest ecosystem model LINKAGES to estimate transient changes in forest biomass and species composition over time. These projections show that climate changes can instigate a decline in forest stand biomass and then recovery as forest species composition shifts. In addition, a landscape model (LSCAP) estimates changes in land-cover types of the Cumberlands based on projected land-use changes and the demise of eastern hemlock (Tsuga canadensis (L.) Carriere) due to the spread of the hemlock adelgid (Adelges tsugae Annand). LSCAP suggests that land-cover changes can be quite large and can cause a decline not only in the area of forested lands but also in the size and number of large contiguous forest patches that are necessary habitat for many forest species characteristic of the Cumberlands.
C1 [Dale, Virginia H.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA.
[Lannom, Karen O.; Hodges, Donald G.] Univ Tennessee, Nat Resource Policy Ctr, Knoxville, TN 37996 USA.
[Tharp, M. Lynn] CompSci Consulting LLC, Mcrae, GA 31055 USA.
[Fogel, Jonah] Virginia Tech Univ, Virginia Cooperat Extens, NE Dist Off, Richmond, VA 23294 USA.
RP Dale, VH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.
EM Dalevh@ornl.gov
RI Dale, Virginia/B-6023-2009;
OI Hodges, Donald/0000-0001-6751-0927
FU National Commission on Energy Policy; US Department of Energy
[DE-AC05-00OR22725]
FX This research was supported by a grant from the National Commission on
Energy Policy. Paul Hanson, Mac Post, Joel Smith, and Stan Wullschleger
provided useful suggestions for this study. The GCM data and PDFs were
provided by the Institute for the Study of Society and Environment
(ISSE) at the National Center for Atmospheric Research (NCAR), based on
model data from the World Climate Research Programme's Coupled Model
Intercomparison Project phase 3 (WCRP CMIP3) multimodel dataset. These
data were supplied to Stratus Consulting Inc. and then to this project,
and are # 2006 University Corporation for Atmospheric Research; all
rights reserved. More information about the RCPM analysis can be found
at http://rcpm.ucar.edu. Oak Ridge National Laboratory is managed by the
UT-Battelle, LLC, for the US Department of Energy under contract
DE-AC05-00OR22725.
NR 52
TC 9
Z9 9
U1 3
U2 30
PU NATL RESEARCH COUNCIL CANADA-N R C RESEARCH PRESS
PI OTTAWA
PA BUILDING M 55, OTTAWA, ON K1A 0R6, CANADA
SN 0045-5067
J9 CAN J FOREST RES
JI Can. J. For. Res.-Rev. Can. Rech. For.
PD FEB
PY 2009
VL 39
IS 2
BP 467
EP 480
DI 10.1139/X08-172
PG 14
WC Forestry
SC Forestry
GA 431IH
UT WOS:000265054300020
ER
PT J
AU Castro, DJ
Lohr, CV
Fischer, KA
Waters, KM
Webb-Robertson, BJM
Dashwood, RH
Bailey, GS
Williams, DE
AF Castro, David J.
Lohr, Christiane V.
Fischer, Kay A.
Waters, Katrina M.
Webb-Robertson, Bobbie-Jo M.
Dashwood, Roderick H.
Bailey, George S.
Williams, David E.
TI Identifying efficacious approaches to chemoprevention with
chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse
model of transplacental carcinogenesis
SO CARCINOGENESIS
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; AFLATOXIN B-1; MULTIORGAN
CARCINOGENESIS; CHILDHOOD LEUKEMIA; RAINBOW-TROUT; DIETARY
CHLOROPHYLLIN; PARTICULATE MATTER; PRENATAL EXPOSURE; CRITICAL WINDOWS;
AIR-POLLUTION
AB The carcinogenic potential of dibenzo[a,l]pyrene (DBP) has been well characterized in numerous animal models. We have previously documented that a single dose of 15 mg/Kg DBP to pregnant mice late in gestation (GD 17) produces an aggressive T-cell lymphoma as well as lung and liver cancer in offspring. The current study examines the chemopreventative properties of chlorophyllin (CHL) and chlorophyll (Chl) in this transplacental carcinogenesis model. Pregnant B6129SF1 females, bred to 129S1/SvIm males, received purified diets incorporated with either 2000 p.p.m. CHL, 2000 p.p.m. Chl or 10% freeze-dried spinach beginning at gestation day 9. Lymphoma-dependent mortality was not significantly altered by maternal consumption of any of the diet and little effect on lung tumor burden in mice surviving to 10 months of age was observed. However, coadministration of CHL at 380 mg/Kg with DBP by gavage (molar ratio of 10:1, CHL:DBP) provided significant protection against DBP-initiated carcinogenesis. Offspring born to dams receiving CHL co-gavaged with DBP exhibited markedly less lymphoma-dependent mortality (P < 0.001). The degree of protection by CHL, compared with controls dosed with DBP in tricaprylin (TCP) as the vehicle, was less marked, but still significant. Coadministration of CHL (TCP as vehicle) also reduced lung tumor multiplicity in mice by similar to 50% and this was observed throughout the study (P < 0.005). This is the first demonstration that CHL can provide potent chemoprotection in a transplacental carcinogenesis model and support a mechanism involving complex-mediated reduction of carcinogen uptake.
C1 [Castro, David J.; Dashwood, Roderick H.; Bailey, George S.; Williams, David E.] Oregon State Univ, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA.
[Castro, David J.; Dashwood, Roderick H.; Bailey, George S.; Williams, David E.] Oregon State Univ, Linus Pauling Inst, Corvallis, OR 97331 USA.
[Lohr, Christiane V.; Fischer, Kay A.] Oregon State Univ, Coll Vet Med, Corvallis, OR 97331 USA.
[Lohr, Christiane V.; Dashwood, Roderick H.; Bailey, George S.; Williams, David E.] Oregon State Univ, Environm Hlth Sci Ctr, Corvallis, OR 97331 USA.
[Waters, Katrina M.; Webb-Robertson, Bobbie-Jo M.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Williams, DE (reprint author), Oregon State Univ, Dept Environm & Mol Toxicol, ALS1007, Corvallis, OR 97331 USA.
EM david.williams@oregonstate.edu
RI Dashwood, Roderick/E-9090-2011
FU National Institutes of Health [CA90890, ES07060, ES00210]; The Linus
Pauling Institute at Oregon State University; Laboratory-Directed
Research and Development Program at the Pacific Northwest National
Laboratory [DE-AC06-76RLO1830]
FX Public Health Service (CA90890 to R.H.D., G.S.B., D.E.W.; ES07060 to
D.J.C.; ES00210 to C.V.L.) from the National Institutes of Health and by
the Cancer Chemoprotection Program of The Linus Pauling Institute at
Oregon State University (R.H.D., G.S.B., D.E.W.); Laboratory-Directed
Research and Development Program at the Pacific Northwest National
Laboratory operated by Battelle for the U.S. Department of Energy under
contract DE-AC06-76RLO1830.
NR 55
TC 16
Z9 16
U1 0
U2 9
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0143-3334
J9 CARCINOGENESIS
JI Carcinogenesis
PD FEB
PY 2009
VL 30
IS 2
BP 315
EP 320
DI 10.1093/carcin/bgn280
PG 6
WC Oncology
SC Oncology
GA 404OK
UT WOS:000263162500017
PM 19073876
ER
PT J
AU Xu, Q
Tucker, MP
Arenkiel, P
Ai, X
Rumbles, G
Sugiyama, J
Himmel, ME
Ding, SY
AF Xu, Qi
Tucker, Melvin P.
Arenkiel, Phil
Ai, Xin
Rumbles, Garry
Sugiyama, Junji
Himmel, Michael E.
Ding, Shi-You
TI Labeling the planar face of crystalline cellulose using quantum dots
directed by type-I carbohydrate-binding modules
SO CELLULOSE
LA English
DT Article
DE Crystalline cellulose; Carbohydrate-binding modules; Quantum dots;
Nanoscale imaging; Microscopy
ID CELL-WALL; DOMAIN; VISUALIZATION; RECOGNITION; RESOLUTION; PROTEINS
AB We report a new method for the direct labeling and visualization of crystalline cellulose using quantum dots (QDs) directed by carbohydrate-binding modules (CBMs). Two type-I (surface binding) CBMs belonging to families 2 and 3a were cloned and expressed with dual histidine tags at the N- and C-termini. Semiconductor (CdSe)ZnS QDs were used to label these CBMs following their binding to Valonia cellulose crystals. Using this approach, we demonstrated that QDs are linearly arrayed on cellulose, which implies that these CBMs specifically bind to a planar face of cellulose. Direct imaging has further shown that different sizes (colors) of QDs can be used to label CBMs bound to cellulose. Furthermore, the binding density of QDs arrayed on cellulose was modified predictably by selecting from various combinations of CBMs and QDs of known dimensions. This approach should be useful for labeling and imaging cellulose-containing materials precisely at the molecular scale, thereby supporting studies of the molecular mechanisms of lignocellulose conversion for biofuels production.
C1 [Xu, Qi; Arenkiel, Phil; Ai, Xin; Rumbles, Garry; Himmel, Michael E.; Ding, Shi-You] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA.
[Tucker, Melvin P.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.
[Sugiyama, Junji] Kyoto Univ, RISH, Kyoto 6110011, Japan.
RP Ding, SY (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA.
EM shi_you_ding@nrel.gov
RI Ding, Shi-You/O-1209-2013;
OI Rumbles, Garry/0000-0003-0776-1462
FU USDOE OHER; NIH NIBIB EB [008121-23]; U. S. DOE
FX The authors are grateful to M. Simon, B. Lin, and J. Wall (Brookhaven
National Laboratory) for STEM studies (supported by USDOE OHER and NIH
NIBIB EB 008121-23). This research was supported by U. S. DOE the Office
of the Biomass Program.
NR 22
TC 25
Z9 25
U1 1
U2 14
PU SPRINGER
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0969-0239
J9 CELLULOSE
JI Cellulose
PD FEB
PY 2009
VL 16
IS 1
BP 19
EP 26
DI 10.1007/s10570-008-9234-4
PG 8
WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer
Science
SC Materials Science; Polymer Science
GA 389IN
UT WOS:000262086200003
ER
PT J
AU Landau, SM
Lal, R
O'Neil, JP
Baker, S
Jagust, WJ
AF Landau, Susan M.
Lal, Rayhan
O'Neil, James P.
Baker, Suzanne
Jagust, William J.
TI Striatal Dopamine and Working Memory
SO CEREBRAL CORTEX
LA English
DT Article
ID POSITRON-EMISSION-TOMOGRAPHY; AMINO-ACID DECARBOXYLASE; SUPPLEMENTARY
MOTOR AREA; PARKINSONS-DISEASE; BASAL GANGLIA; PREFRONTAL CORTEX;
COGNITIVE DEFICITS; CAUDATE-NUCLEUS; D1 RECEPTORS; OLDER ADULTS
AB Recent studies have emphasized the importance of dopamine projections to the prefrontal cortex (PFC) for working memory (WM) function, although this system has rarely been studied in humans in vivo. However, dopamine and PFC activity can be directly measured with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), respectively. In this study, we examined WM capacity, dopamine, and PFC function in healthy older participants in order to test the hypothesis that there is a relationship between these 3 factors. We used the PET tracer 6-[F-18]fluoro-L-m-tyrosine to measure dopamine synthesis capacity in the striatum (caudate, putamen), and event-related fMRI to measure brain activation during different epochs (cue, delay, probe) of a WM task. Caudate (but not putamen) dopamine correlated positively with WM capacity, whereas putamen (but not caudate) dopamine correlated positively with motor speed. In addition, delay-related fMRI activation in a left inferior prefrontal region was related to both caudate dopamine and task accuracy, suggesting that this may be a critical site for the integration of WM maintenance processes. These results provide new evidence that striatal dopaminergic function is related to PFC-dependent functions, particularly brain activation and behavioral performance during WM tasks.
C1 [Landau, Susan M.; Lal, Rayhan; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.
[Landau, Susan M.; O'Neil, James P.; Baker, Suzanne; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Funct Imaging, Berkeley, CA 94720 USA.
RP Landau, SM (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 132 Barker Hall 3190, Berkeley, CA 94720 USA.
EM slandau@berkeley.edu
FU National Institute on Aging [AG027984]
FX National Institute on Aging grant (AG027984).
NR 86
TC 121
Z9 123
U1 1
U2 18
PU OXFORD UNIV PRESS INC
PI CARY
PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA
SN 1047-3211
J9 CEREB CORTEX
JI Cereb. Cortex
PD FEB
PY 2009
VL 19
IS 2
BP 445
EP 454
DI 10.1093/cercor/bhn095
PG 10
WC Neurosciences
SC Neurosciences & Neurology
GA 395IW
UT WOS:000262518800019
PM 18550595
ER
PT J
AU Feng, H
Elam, JW
Libera, JA
Pellin, MJ
Stair, PC
AF Feng, H.
Elam, J. W.
Libera, J. A.
Pellin, M. J.
Stair, P. C.
TI Catalytic nanoliths
SO CHEMICAL ENGINEERING SCIENCE
LA English
DT Article
DE Catalysis; Nanostructure; Porous media; Multiphase reactions; Anodic
aluminum oxide (AAO); Oxidative dehydrogenation (ODH)
ID ATOMIC LAYER DEPOSITION; ANODIC ALUMINA; OXIDATIVE DEHYDROGENATION;
MEMBRANES; ALKANES; REACTOR; GROWTH; ARRAY; FLOW
AB The nanoporous anodic aluminum oxide (AAO) structure is shown to be a useful platform for heterogeneous catalysis. By appropriately masking the perimeter during anodization and etching, the AAO can be formed at the center of an aluminum disc. The remaining aluminum ring connects seamlessly to the AAO and provides mechanical support for convenient handling. The supported AAO can be sealed in a standard fitting so that the nanopores in the structure function as an array of tubular reactors, i.e. a nanolith. Coating the walls with catalytically active materials turns the nanolith into a novel catalytic system. For the oxidative dehydrogenation (ODH) of cyclohexane, the nanolith catalytic system is superior to a conventional powdered catalyst in terms of both efficiency and in reducing over oxidation. A simple analysis of the flow through the nanolith combined with experimental data indicates that mass transfer through the nanopores follows a mixed flow model. (C) 2008 Elsevier Ltd. All rights reserved.
C1 [Stair, P. C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
[Stair, P. C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA.
[Elam, J. W.; Libera, J. A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA.
[Pellin, M. J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
[Feng, H.; Stair, P. C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.
RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
EM pstair@northwestern.edu
RI Pellin, Michael/B-5897-2008
OI Pellin, Michael/0000-0002-8149-9768
FU US Department of Energy; BES-Materials Sciences (materials synthesis);
BES-Chemical Sciences (catalytic activity) [W-31-109-ENG-38];
[DE-FG0203ER15457]
FX The work at Argonne is supported by the US Department of Energy,
BES-Materials Sciences (materials synthesis), and BES-Chemical Sciences
(catalytic activity) under Contract W-31-109-ENG-38. The work at
Northwestern is supported by the US Department of Energy, BES-Chemical
Sciences, Geosciences and Biosciences Division under Grant no.
DE-FG0203ER15457. The electron microscopy was performed at the Electron
Microscopy Center for Material Research at Argonne National Laboratory.
NR 25
TC 26
Z9 26
U1 1
U2 19
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0009-2509
J9 CHEM ENG SCI
JI Chem. Eng. Sci.
PD FEB 1
PY 2009
VL 64
IS 3
BP 560
EP 567
DI 10.1016/j.ces.2008.09.027
PG 8
WC Engineering, Chemical
SC Engineering
GA 402LD
UT WOS:000263014300015
ER
PT J
AU Lu, ZG
Gong, YB
Gai, W
Gao, P
Gao, F
Wei, YY
Wang, WX
AF Lu Zhi-Gang
Gong Yu-Bin
Gai Wei
Gao Peng
Gao Feng
Wei Yan-Yu
Wang Wen-Xiang
TI Experimental Test of 7.8 GHz Power Extractor Using Dielectric Loaded
Rectangular Waveguide Structures
SO CHINESE PHYSICS LETTERS
LA English
DT Article
AB We report on experimental test of a 7.8 GHz power extractor using a dielectric loaded rectangular waveguide structure. This work is conducted at the Argonne wakefield accelerator (AWA) facility. The wakefield is excited by an electron beam travelling through a dielectric loaded rectangular waveguide, and the generated rf power is then subsequently extracted with a properly designed rf coupler. In the experiment, 30 MW of output power is excited by a 66 nC single electron bunch, and wakefield superposition by a train consisting of four bunches is also demonstrated. Both the results agree well with theoretical predictions.
C1 [Lu Zhi-Gang; Gong Yu-Bin; Gao Peng; Wei Yan-Yu; Wang Wen-Xiang] Univ Elect Sci & Technol China, Coll Phys Elect, Chengdu 610054, Peoples R China.
[Lu Zhi-Gang; Gai Wei; Gao Feng] Argonne Natl Lab, High Phys Div, Argonne, IL 60439 USA.
[Gao Peng] Univ Wisconsin, Coll Engn, Madison, WI 53706 USA.
[Gao Feng] IIT, Chicago, IL 60616 USA.
RP Lu, ZG (reprint author), Univ Elect Sci & Technol China, Coll Phys Elect, Chengdu 610054, Peoples R China.
EM lzhgchnn@uestc.edu.cn
FU National Natural Science Foundation of China [60532010]
FX Supported by Key Project of the National Natural Science Foundation of
China under Grant No 60532010.
NR 7
TC 0
Z9 0
U1 0
U2 0
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0256-307X
J9 CHINESE PHYS LETT
JI Chin. Phys. Lett.
PD FEB
PY 2009
VL 26
IS 2
AR 028401
PG 3
WC Physics, Multidisciplinary
SC Physics
GA 405SF
UT WOS:000263243800076
ER
PT J
AU Feng, WM
Yu, P
Hu, SY
Liu, ZK
Du, Q
Chen, LQ
AF Feng, W. M.
Yu, P.
Hu, S. Y.
Liu, Z. K.
Du, Q.
Chen, L. Q.
TI A Fourier Spectral Moving Mesh Method for the Cahn-Hilliard Equation
with Elasticity
SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS
LA English
DT Article
CT 7th International Conference on Spectral and High Order Methods
CY JUN 18-22, 2007
CL Chinese Acad Sci, Beijing, PEOPLES R CHINA
HO Chinese Acad Sci
DE Phase field; diffuse interface; moving mesh; adaptive mesh;
Fourier-spectral method; adaptive spectral method; Cahn-Hilliard
equation; elasticity
ID PARTIAL-DIFFERENTIAL EQUATIONS; PHASE-FIELD-EQUATIONS; ADAPTIVE MESH;
EQUILIBRIUM SHAPES; GRID METHOD; MICROSTRUCTURES; INHOMOGENEITY;
COMPUTATIONS; PRECIPITATE; SIMULATION
AB In recent years, Fourier spectral methods have emerged as competitive numerical methods for large-scale phase field simulations of microstructures in computational materials sciences. To further improve their effectiveness, we recently developed a new adaptive Fourier-spectral semi-implicit method (AFSIM) for solving the phase field equation by combining an adaptive moving mesh method and the semi-implicit Fourier spectral algorithm. In this paper, we present the application of AFSIM to the Cahn-Hilliard equation with inhomogeneous, anisotropic elasticity Numerical implementations and test examples in both two and three dimensions are considered with a particular illustration using the well-studied example of mis-fitting particles in a solid as they approach to their equilibrium shapes. It is shown that significant savings in memory and computational time is achieved while accurate solutions are preserved.
C1 [Feng, W. M.; Liu, Z. K.; Du, Q.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
[Yu, P.; Du, Q.] Penn State Univ, Dept Math, University Pk, PA 16802 USA.
[Hu, S. Y.] Pacific NW Natl Lab, Richland, WA 99354 USA.
RP Du, Q (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.
EM qdu@math.psu.edu
RI Du, Qiang/B-1021-2008; Madruga, Santiago/D-2984-2012; Chen,
LongQing/I-7536-2012; Liu, Zi-Kui/A-8196-2009;
OI Du, Qiang/0000-0002-1067-8937; Chen, LongQing/0000-0003-3359-3781; Liu,
Zi-Kui/0000-0003-3346-3696; HU, Shenyang/0000-0002-7187-3082
NR 43
TC 22
Z9 23
U1 2
U2 6
PU GLOBAL SCIENCE PRESS
PI WANCHAI
PA ROOM 2303, OFFICER TOWER, CONVENTION PLAZA, 1 HARBOUR ROAD, WANCHAI,
HONG KONG 00000, PEOPLES R CHINA
SN 1815-2406
J9 COMMUN COMPUT PHYS
JI Commun. Comput. Phys.
PD FEB
PY 2009
VL 5
IS 2-4
BP 582
EP 599
PG 18
WC Physics, Mathematical
SC Physics
GA 410FT
UT WOS:000263563600021
ER
PT J
AU Sjogreen, B
Yee, HC
AF Sjogreen, Bjorn
Yee, H. C.
TI Variable High Order Multiblock Overlapping Grid Methods for Mixed Steady
and Unsteady Multiscale Viscous Flows
SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS
LA English
DT Article
CT 7th International Conference on Spectral and High Order Methods
CY JUN 18-22, 2007
CL Chinese Acad Sci, Beijing, PEOPLES R CHINA
HO Chinese Acad Sci
DE Multiblock grid; overset grids; high order numerical methods; blunt body
hypersonic flows; mixed steady and unsteady flows
ID SCHEMES
AB Flows containing steady or nearly steady strong shocks on parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme, even under the multiblock grid or adaptive grid refinement framework. While sixth-order or higher-order shock-capturing methods are appropriate for unsteady turbulence with shocklets, third-order or lower shock-capturing methods are more effective for strong steady or nearly steady shocks in terms of convergence. In order to minimize the short comings of low order and high order s